
A METHOD FOR EVALUATING AND STANDARDIZING ONTOLOGIES

by

Ali Patrice Seyed

December 23, 2011

A dissertation submitted to the

Faculty of the Graduate School of

the University at Buffalo, State University of New York

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science and Engineering

ii

THIS PAGE INTENTIONALLY LEFT BLANK

Acknowledgements

I have many people to thank for helping through the Ph.D. process. My wife,

Kelly: thank you for your love and patience with those countless nights and

weekends of my “dissertating”. I would like to also thank my father, mother,

and sister for their love and support.

Thank you Dr. Shapiro for investing your time and energy in me these past

four years. Our logic and ontology discussions have truly shaped how I now

approach ontology research and also life–that’s the truly valuable part about

rigourous, logical thinking. Clearly just a “thank you” here is inadequate, but I

hope to thank you furthermore by representing SNeRG, the Computer Science

and Engineering Department, and the University at Buffalo well in all my future

ventures.

I would like to thank Dr. Rapaport for his time and energy also, and working

through proofs with me, as I laid down the foundations for my work. Thank

you also for the handful of stories from which so many important lessons have

emerged. Thank you Dr. Smith for the valuable exchanges that helped reinforce

important aspects of ontology research. Thank you to my committee as a whole

for commenting on the many revisions that lead to this point of completion.

I would like to thank all of the members of the SNeRG research lab, especially

Jonathan Bona for the valuable user testing on the Wizard plugin application,

Michael Prentice for hand-checking some of my early fitch-style proofs, and also

thank you both for being good friends. Thank you to Andre Andrade for the

valuable user testing also.

iii

iv

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Acknowledgements iii

Abstract xi

I Introduction 1

1 Introduction 3

2 Clarification of Terms 9

3 Background 15

3.1 Ontology . 15

3.2 Ontological Engineering . 16

3.3 Domain Ontology . 17

3.4 BFO . 19

3.4.1 Introduction . 19

3.4.2 Theory . 20

3.5 OntoClean . 21

3.5.1 Introduction . 21

3.5.2 Rigidity . 22

3.5.3 Identity . 23

3.5.4 Unity . 25

3.5.5 Dependence . 27

v

vi CONTENTS

4 OntoClean-Related

Work 29

4.1 Original OntoClean Application 29

4.2 WebODE . 31

4.3 OntoEdit . 32

4.4 TMEO Method . 33

II Integration 35

5 The Theory of Classes 37

5.1 Introduction . 37

5.2 Unifying Properties and Types 38

5.3 Formal System . 39

5.4 Existence . 40

5.5 Formal Theory of Classes . 42

5.6 Integrating Rigidity . 44

5.6.1 Introduction . 44

5.7 Rigid . 46

5.8 Non-Rigid . 47

5.9 Anti-Rigid . 48

5.10 Discussion . 49

6 BFO Theory of Types 51

6.1 Formal Theory . 51

6.2 Relation Ontology . 71

6.3 Applying BFO Distinctions to Properties 77

7 Integrating

Unity and Identity

with BFO 83

7.1 Integrating Unity with BFO . 83

CONTENTS vii

7.1.1 Introduction . 83

7.1.2 Reformulating OntoClean’s Notion of Unity for the For-

mal Theory of Classes . 84

7.2 Integrating Identity with BFO 93

7.2.1 Introduction . 93

7.2.2 Redefining OntoClean’s Notion of Identity

for the Formal Theory of Classes 94

7.3 Unity and Identity of

Material Entities . 104

7.3.1 Introduction . 104

7.3.2 Object . 104

7.3.3 Object Aggregate . 106

7.3.4 Amounts of Matter . 110

7.4 Discussion . 111

III Method 113

8 Evaluating Candidate Types 115

8.1 Introduction . 115

8.2 Violations of the Disjointness Principle 115

8.3 Applying Type Criteria . 116

9 Implementation 127

9.1 Introduction . 127

9.2 Demonstration . 128

9.2.1 Rigid Example . 129

9.2.2 Non-Rigid Example . 130

IV Discussion and Future Directions 133

10 Introduction 135

viii CONTENTS

11 Restricted Domain Modeling 137

12 Non-Rigidity and Canonicity 139

13 Status of Classes that are Not Types 141

13.1 Introduction . 141

13.2 Constraints of the Disjointness and Single Inheritance Principles 141

13.3 Modeling Classes that are not Types 145

13.4 Rigid Classes That are Not Types 146

13.5 Non-Rigid Processes . 146

14 Heterogeneity and Other Type-Level Relations 147

15 Experimental Work with Information Artifacts 149

16 External Dependence 153

17 Implementation Advances 155

18 Conclusions 157

Appendices 163

A BFO Type immediate is a Hierarchy (Partial View) 163

B Instance-Level Relations of Relation Ontology 165

C Formulas 167

C.1 In Order of Appearance . 167

C.2 In Order of Type . 176

C.2.1 Definitions . 176

C.2.2 Definition Schema . 178

C.2.3 Axioms . 179

C.2.4 Theorems . 182

C.2.5 Metatheorems . 186

CONTENTS ix

D BFO Upper Ontology Formulas 187

D.1 Taxonomic Axioms . 188

D.2 Disjointness Theorems . 189

E Introducing Person Class 191

F Introducing Reactant Class 197

G Introducing Compound Class 203

H Introducing Element Class 209

Bibliography 217

x CONTENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative ef-

fort for developing interoperable, science-based ontologies. The Basic Formal

Ontology (BFO) serves as the upper ontology for the domain-level ontologies

of OBO. BFO is an upper ontology of types as conceived by defenders of real-

ism. Among the ontologies developed for OBO use, there are those which have

been ratified, and those currently holding the status of candidate. To maintain

consistency between ontologies, it is important to establish formal principled

criteria that a candidate ontology must meet for ratification. Members of the

OBO Foundry have expressed interest in using OntoClean to help construct

BFO compliant domain ontologies. OntoClean is a system that decomposes the

notion of sortal into criteria for deciding when subsumption can hold between

classes. OntoClean primarily includes three components, based on the notions

of Rigidity, Identity, and Unity. The methodology for integrating the OntoClean

and BFO approaches to constructing consistent ontologies has been clarified by

this dissertation.

A formal integration between BFO, the Relation Ontology of BFO (RO),

and OntoClean is given. The informal aspects and differing formalisms within

and between the theories are analyzed and integrated within the axioms and

theorems of one first-order system put forth in the dissertation. To set the

foundation for this work, the categorical units of type and property of BFO

and OntoClean, respectively, are unified under class. The modal logic axioms

that OntoClean’s theory of Rigidity is expressed within are interpreted and

xi

xii CONTENTS

reformulated in our system, where axioms connecting it with BFO’s categorical

unit type is given. Central to this work is the axiom that a type is a class that

is Rigid, i.e., a class whose definition is fundamental to the existence of the

members of the class.

A unity criterion for a class is a way in which certain parts of a member of the

class are related such that they form the whole member. Our reformulation of

this work focuses on the notion of the underlying unifying relation. As opposed

to the informal approach taken by OntoClean, we express the notion that a class

is unified under a relation as a meta-predicate defined by a definition schema.

An identity criterion for a class is a test by which a member of the class can be

re-identified. However as given in OntoClean, the notion of identity criteria is

ontologically ambiguous. A formalization is given that provides a mapping to

processes during which identity is confirmed. The reformulations of Unity and

Identity are discussed in terms of Material Entity subtypes of BFO’s theory.

The integration work and resulting formal system affords a theoretically

sound ontological foundation. A method for evaluating and standardizing can-

didate OBO Foundry ontologies is developed atop this foundation, where the

method focuses on BFO’s integration with OntoClean’s notion of Rigidity. The

method is given as a decision tree algorithm that evaluates one class at a time

as they are introduced into an ontology, asking a prospective modeler questions

that map to specific integration axioms.

Finally, an implementation of the decision tree is provided in the form of

an interactive Wizard plugin for the ontology editor Protégé. In an iterative

approach informal user testing was applied to improve the questions and error

messages. The plugin serves to facilitate ontologists and subject matter experts

in making explicit what is implicit in, or unclearly specified for, the classes

they choose to introduce into an ontology. Ultimately though, the integration

axioms serves as a software platform-independent foundation for future software

designed to evaluate and standardize candidate domain ontologies for the OBO

Foundry.

Part I

Introduction

1

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1

Introduction

Ontology research today involves interdisciplinary collaborations, where contri-

butions are drawn from researchers in the fields of philosophy (e.g., metaphysics,

epistemology), linguistics, mathematics, logic, computer science, and the natu-

ral sciences. In philosophy, an ontology is “a system of categories accounting

for a certain vision of the world” (Guarino, 1998, p. 2) and is independent of a

particular language. In computer science or ontological engineering, an ontology

is a engineering artifact that is a constituted of a set of terms and predicates

that have an intended meaning or denotation, and are used to describe a certain

reality (Guarino, 1998, p. 2). An ontology in this sense is commonly expressed

in a formal system that includes a clear syntax and semantics, as well as rules

for deduction.

A domain ontology (in the philosophical sense) is an ontology of a specific

area of interest (e.g., genomes, psychiatry). Domain ontologies are also for-

malized at different levels of granularity (e.g., micro-organism, macro-organism,

population, geopolitics). An upper ontology is constituted of primitive cate-

gories (e.g., object, quality, process) and relations (e.g., subsumption, inherence,

participation) that can be used as a framework for any domain ontology.

The purpose of this thesis is to develop a method for evaluating and stan-

dardizing domain ontologies based on how their categories relate to those of an

3

4 CHAPTER 1. INTRODUCTION

upper ontology and to metacategories. We use ‘category’ as an informal term

to refer to a class, property, or type. Each of these is defined in Chapter 2.

By ‘metacategory’, we mean categories of categories, that is, categories with

categories as members. Upper ontology categories (e.g., Object, Process) are

those that are the most general and useful as a framework for defining any

domain-specific category (e.g., Hummingbird, Process of Hummingbird Pollina-

tion). The metacategories discussed in this dissertation are based on an analysis

of the notion of sortal. Sortals are categories for which there is a way to dis-

tinguish between, identify, and count their instances. For example, Identity is

a meta-category of every category (e.g., Human) for which there is a way to

uniquely identify each of its instances. In other words, the objects that be-

long to the Identity category are in fact categories whose objects are uniquely

identifiable.

A formal language in which an ontology is expressed is syntactically com-

posed of predicates and terms. A predicate is a symbol that, when applied to

any number of terms as arguments, forms an atomic formula. The predicates

and terms are used to denote relations and entities, respectively. Predicates

and terms, along with connectives and quantifiers, are used to compose formu-

las, which according to the syntax of a formal language, may or may not be

well-formed.

The World Wide Web Consortium (W3C) defines the intension of a class

as the set of criteria that individuals must satisfy in order to be its members.1

It is often the case, as in Description Logics (Baader et al., 2003), that unary

predicates are used to denote classes. A fundamental aspect of ontology research

is how predicates representing classes are logically specified in an ontology. How

a predicate is logically related to another should reflect the actual relationships

between the individuals the represented classes are intended to include.

Often predicates, terms, and variously constructed formalisms are docu-

mented with a natural language description of what each is intended to rep-

1http://www.w3.org/TR/owl-features/

5

resent. If formalized in a W3C standard specification language (e.g., RDF or a

member of the OWL family2) these descriptions appear in ‘rdfs:comment’ XML

tags. Because logical formalisms are limited in some way or other in even the

most expressive logics, it is important to an ontology’s utility that any assump-

tions underlying the modeling are explicated in these descriptions.

Our evaluation method is based on two foundations; first, on Basic Formal

Ontology (BFO) (Smith, 1998; Grenon, 2003a,b; Spear, 2007), an upper on-

tology which uses the notion of types as its categories. BFO is conceived by

defenders of realism. Realist ontologies are constructed with the aim of reflect-

ing reality as it is, without being influenced by how it is conceived. Second, it is

based on the OntoClean method (Guarino and Welty, 2001, 2002, 2004; Welty

and Guarino, 2001), which primarily decomposes the notion of sortal into cri-

teria for clarifying when subsumption can hold between properties. A property

φ subsumes a property ψ if φ “generalizes” ψ. In other words, any object that

has the property ψ at a time must have the property φ at the same time. For

example being an organism subsumes being a human. Although distinct no-

tions, types and properties are similar in that they have corresponding classes.

‘Type’, ‘property’, and ‘class’ are defined in Chapter 2 and analysed in Section

5.

BFO is an upper ontology that has been widely adopted in biomedical re-

search (Smith et al., 2007). BFO has a highly active user list, and both its

content and its applications have been and will continue to be subjected to

thorough critical review. However BFO is only partially logically axiomatized.

This leads domain experts using BFO as an upper ontology for developing their

domain ontologies to regularly query the ontologists who are developing BFO,

in order to adhere to its principles.

OntoClean is an approach for quality assurance of ontologies, as it is a

method for detecting where the subsumption relation is being used improperly

(Welty and Guarino, 2001). OntoClean was orginally intended to be applied to

2http://www.w3.org/TR/owl-ref/

6 CHAPTER 1. INTRODUCTION

ontologies composed of properties. Properties, in the sense we are using this

term here, are the meanings of certain linguistic expressions; these expressions

are predicates, sentences with the subject noun phrase removed. It is a property

which is an interpretation of a predicate, or more formally, provides a mapping

from a predicate to domain objects that serve as referents or extensions of the

predicate. These domain objects are said to “have” the property. For example

if we say that some thing is a ball and red, we are in effect saying it has the

property being a ball and being red, or for simplicity, has the property ball and

red. By the OntoClean approach, x having the property φ also means that x

instantiates φ. Property φ subsumes property σ if and only if every x that has

the property σ also has the property φ.

OntoClean employs certain features for describing properties. The under-

standing of these features is primarily based on an analysis of the notion of

sortals. Sortals are categories for which there is a way to distinguish between,

identify, and count their members. Note that categories which are sortals, by

the original intent for the term ‘sortal’, have as members material objects. On-

toClean requires categorizing properties by assigning to them certain features

which they possess, referred to as ‘metaproperties’, based on the notions of

Rigidity, Identity, Unity, and Dependence. For each metaproperty, there are im-

plications upon if the subsumption relation can hold between properties. Incon-

sistencies derived after a modeler classifies properties by metaproperties serves

to reveal modeling mistakes.

Identity is a metaproperty of those properties that are sortals. Identity

holds for every property for which there is a way to uniquely identify each of

its instances. For example, Identity holds for the property ‘being a human’. A

criterion for identity of this property’s instances is based on the possibility of

fingerprinting. Take also for example the property ‘being an airline passenger’.

The criterion for identity of its instances is based on having flown on a specific,

unique flight. Therefore a particular that is identified as two passengers may be

one human. Because the criterion for identity of ‘being a human’ does not apply

7

to ‘being an airline passenger’, the former property cannot subsume the latter.

Because OntoClean includes explicit contraints like this one, whereas most other

methods for constructing ontologies are merely guidelines (Little and Vizenor,

2006; Gangemi et al., 2001), OntoClean is an attractive approach for improving

the quality of ontologies.

OntoClean’s constraints are useful to help a modeler check if she is using the

subsumption relation incorrectly, but it does not address the specific assump-

tions that should be clarified in order for a modeler to successfully address the

ontological issues surrounding a constraint violation. For instance, oftentimes

the relation between properties is stated as subsumption where the implicit as-

sumptions of the modeler would confirm it as a different relation. An OntoClean

constraint violation that detected that subsumption is incorrect would be alle-

viated simply if the subsumption relation were removed, with no concern of its

being more accurately changed instead. Our research addresses this problem,

and also serves to bridge the gap between the evaluation of ontologies and an

approach for standardization.

Although some ontology editing tools (e.g., WebODE, OntoEdit) (Fernandez-

Lopez et al., 2002; Sure et al., 2003) have included OntoClean constraints in their

software, there is no theoretically sound evaluation method developed within the

framework of the OntoClean constraints—they indicate when violations occur

and nothing more. This is analogous to a compiler that provides a list of error

messages, or a spell checker that does not suggest possible corrections.

OntoClean is considered by influential figures in the ontology research com-

munity as a good approach to improving ontologies (Oltramari et al., 2002;

Fernandez-Lopez et al., 2002). Members of the BFO developer and user commu-

nities have expressed interest in using OntoClean to help construct well-formed

BFO-compliant domain ontologies, and we here show for the first time how this

can be done. One common criticism of OntoClean is that “it is not always clear

how to assign metaproperties, and that agreement between even experienced

ontology designers is quite low” (Welty, 2006). Another criticism is that it is

8 CHAPTER 1. INTRODUCTION

difficult and time-consuming to apply in a practical setting; this is particularly

true for someone with no experience in formal ontology or philosophy, which is

predominantly the case for domain experts.

An emerging approach towards the goal of data interoperability is establish-

ing a standard semantics that is used for constructing ontologies appropriately.

BFO and OntoClean try to reach this goal by following different strategies.

BFO is an upper ontology and serves as a foundation for classifying domain

categories. OntoClean provides constraints on subsumption, and is aimed at

helping modelers of ontologies use the subsumption relation in a consistent,

well-founded manner. By applying the notions of OntoClean to the perspective

of BFO, we advance the aim of ontology quality assurance, and ultimately move

closer to the goal of data interoperability.

Our method evaluates ontologies based on their level of adherence to BFO

and OntoClean, and decides how an ontology should be altered based on this

information. The method also considers what concise questions can be posed

to the modeler in order to improve the ontology based on the evaluation. This

will facilitate ontologists and subject matter experts in making explicit what is

implicit in, or not clearly specified for, the nature of the categories of a domain

they choose to include in their ontology. This will result in the creation of

domain ontologies with more accurately and more clearly defined categories,

which will promote their reuse and further the goal of a standard semantics for

data interoperability.

Chapter 2

Clarification of Terms

Ontology research is performed by researchers working within several overlap-

ping and collaborating disciplines. Because of this, polysemy of shared terms

often exists and leads to miscommunication and ultimately confusion. (Not to

mention, meanings of a term can migrate with changes in focus of a particular

discipline.) The definitions provided are introduced for the purposes of this dis-

sertation, but we believe that they each correspond to established usage within

at least some of the sub-communities involved in ontology research.

An entity is anything that exists, which includes what is mind-dependent

(e.g., my thoughts on the shape of bacteria) and what is mind-independent (e.g.,

the bacteria themselves), as well as what is general (e.g., blood types) and what

is specific (e.g., this sample of blood)(Smith et al., 2006, p. 1). A particular is

an entity that is confined to a single specific spatial, spatiotemporal, or temporal

region (e.g., a specific grasshopper in front of me, its life, or the time interval of

its life, respectively).

We, as people, generally use natural language to communicate, using sen-

tences as the foundational unit. Within sentences we use nouns to refer to the

entities about which we aim to convey some meaning. A predicatelin is that

which results from removing the subject noun phrase from a sentence. An open

predicatelin is a predicatelin whose application is not restricted to a finite num-

9

10 CHAPTER 2. CLARIFICATION OF TERMS

ber of particulars (Armstrong, 1980, p.14). Examples of open predicateslin are

‘is round’, ‘is orange’, and ‘is a human’. If a predicatelin is not open, then it is

closed, e.g., ‘is the first person in space’. An open predicate lin with the copula

removed is still usually considered an open predicate lin, but here we mainly re-

fer to it as a ‘general term’. For example, ‘Red’ and ‘Round’ are general terms

which can be applied for example to a specific red ball.

A class is an entity that is a collection of all and only the particulars to

which a given general term applies (Smith et al., 2006). This definition (which

we shall formalize later) commits a class to being an extensional entity, despite

the fact that its definition is either extensional or intensional. The intension

of a general term is commonly referred to as its property, which is said to be

its meaning or sense (Quinton, 1957). OntoClean uses properties as its unit for

classification.

A type (also called a universal) is “a generalization about the structure,

order, and regularity that exists in nature that experiments and observations

make posssible” (Spear, 2007, p.16). General terms such as ‘molecule’, ‘cell’,

and ‘photosynthesis’ refer to types. A type exists at all times and in all places

where particulars instantiating them exist (Spear, 2007). What distinguishes

types and particulars is that the former is multiply instantiated while the latter

is and can be instantiated only once. Types are repeatable (instances are non-

repeatable). Note that an arbitrary collection of particulars (e.g., gifts I received

for Christmas) can form a class but is not a type. This is debatable, as Lakoff

(1990) suggests: in the Dyirbal language, women, fire and dangerous things do

form a type. This notion of type does however diverge from the one put forth

in this section.

Realist ontologies, the kind we focus on in this dissertation, include only

those classes which are types for scientific classification. The defenders of onto-

logical realism see types as what is discovered or discoverable through rigorous

empirical research. We employ this sense of ’type’ in what follows.

A representation is of or about something, and is intended to refer to some

11

entity or entities external to the representation (Smith et al., 2006, p.2). Based

on this loose definition, representations are mind-dependent (i.e., cognitive, e.g.,

ideas, thoughts, beliefs, symbols) or mind-independent (images, records, signs).

(Symbols and signs from the perspective of Semiotics is out of the current scope.)

A concretization of a representation is a representational artifact that

“serve[s] to make the cognitive representations existing in the minds of sepa-

rate subjects publicly accessible in some enduring fashion” (Smith et al., 2006,

p.3). Subsequent to the discovery of types, they are typically made compre-

hensible to wide audiences via some form of representation artifact, for example

some sentence, or some publication (primarily electronic and/or printed format)

that explicates them. Widely accessible forms include textbooks distributed in

schools, as well as scientific journals.

The term ‘predicate’ also has a relevant meaning in logic

(henceforth predicatelog). An n-ary predicatelog is a symbol that, with n

terms as arguments, forms an atomic formula. The combination of a predicate

applied to at least one variable term is referred to as an open (logical) sentence.

Properties are commonly represented by unary predicates log (e.g., alive(x)),

binary relations are represented by binary predicateslog (e.g., taller than(x,y)),

and in general n-ary relations are represented by n-ary predicateslog (e.g., a

ternary relation is connection between flights(x,y,z)). A unary predicatelog

chosen for representation is commonly intuitively chosen to correspond to a

general term whose meaning is the intended property and applies to the intended

class of particulars. For example one may choose the symbol ‘dog’ with the

intent that its meaning corresponds to the property ‘being a dog’ and applies

to the class of all dogs.

A property is the meaning of a predicate, and for practical domain mod-

eling, is treated as a criterion that must be satisfied in order for a particular to

be in its corresponding class. Not every property corresponds to a non-empty

class; ‘being a round square’ does not. (However, some argue that a property

that does not have any corresponding instances is not a property at all.) Two

12 CHAPTER 2. CLARIFICATION OF TERMS

different properties (‘being an equiangular triangle’ and ‘being an equilateral

triangle’) may have the same corresponding class. No two classes with differ-

ent members correspond to the same property. Specializing a property (e.g.,

replacing ‘being a cell’ with ‘being a pyramidal cell’) either further restricts the

number of particulars that have that property or has no effect, but can never

increase the number.

The use of properties as the categorical unit for constructing ontologies often

leads to the formation of arbitrary kinds of classes, such as those defined by

a random collection of objects (e.g., utensils in your kitchen), not currently

existing entities (e.g., the 100th President), and specific scaled measurements

(e.g., the period of time taken to grow a collection of cells). Creating ontologies

based on properties is an approach that does not require specialized training,

but can lead to confusion as to what relations truly hold between its classes,

and ultimately what an ontology formed on this basis is about. We give a more

in-depth analysis of this problem in Section 5.

A metaproperty is a category of a property which serves to inform an on-

tology modeler about how the particulars of an ontology are conceived. ‘meta’

was chosen to prefix the term ‘property’ in order to emphasize that a metaprop-

erty is a modeling tool and lies outside the domain of discourse. An example

metaproperty is Rigid. A property is Rigid if and only if (henceforth iff) the

entities to which the property applies must have that property. (Rigid is defined

formally and discussed in greater detail in Section 5.6.) For instance, ‘being a

human’ is a property that all humans must have, but ‘being a student’ is op-

tional. Any entity that is a student can be (i.e., can exist) without being a

student. Any entity that is a human, cannot be without being a human.

The metaproperties of OntoClean are defined in Section 3.5. Considering

that ontologies based on BFO and those to which the OntoClean method is

assumed to be applied are formed by the application of the notion of types and

properties, respectively, we compare these as a starting point of our integration

in Section 5.

13

Each class that is introduced as part of a domain ontology is a candidate

type (henceforth ‘candidate’), until it is “promoted” to a type (of BFO), which

cannot occur if there are any theorems derivable about it that violate any BFO

and/or OntoClean formalisms. In Part II we introduce constraints that if vio-

lated prevent this promotion from occurring, at least until they are alleviated.

14 CHAPTER 2. CLARIFICATION OF TERMS

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3

Background

3.1 Ontology

As a discipline of philosophy, ontology deals with the nature of being or exis-

tence. When used as a common noun, ‘ontology’ is used to refer to a “classifica-

tion of the entities of the world (physical objects, events, etc.)” (Cocchiarella,

2001). An ontology will often include other relations between the entities in

its domain, such as part of relations. Ontologies are developed in the field of

formal ontology, the “systematic, formal axiomatic development of the logic of

all forms and modes of being” (Cocchiarella, 2001). We take the term ‘formal’

to mean an approach that leads to logical specification. The term ‘ontology’

has also been used in the field of artificial intelligence (AI), in a different sense.

There, it is rather an engineering artifact that is usually expressed in a logical

system. An ontology includes a list of terms and predicates, with descriptions

of explicit assumptions made about the meaning of the terms and predicates

(Guarino, 1998). These assumptions are normally formalized in first-order logic

or a fragment thereof. The unary predicates refer to classes and the binary

predicates refer to relations (Guarino, 1998), although this causes problems for

relations that require time-indexing (see Section 3.4, on relations involving con-

tinuants). Classes form a subsumption hierarchy, where a subsumee has all the

15

16 CHAPTER 3. BACKGROUND

properties of its subsumers, along with additional properties. More elaborate

ontologies include axioms to indicate relations between the classes other than

subsumption, which further “constrains [the concept’s] intended interpretation”

(Guarino, 1998). The term ‘ontology’ is now also associated with the field

conceptual modeling, almost separated from its original use (Guarino, 1998).

Guarino (1998) indicates a preference for using the common noun ‘ontology’ for

the AI sense, which will be its use in this dissertation.

3.2 Ontological Engineering

Ontological engineering is a field that puts into practice the ontological study of

domains of interest and logical formalizations about entities of those domains.

It is “the set of activities that concern the ontology development process, the

ontology life cycle, and the methodologies, tools, and languages for building

ontologies”(Gómez-Pérez et al., 2004). It attempts to “codify the features of

things based on the essence of things” (Gómez-Pérez et al., 2004). The goal

of ontological engineering is to produce “reusable knowledge-based components

and services” (Gómez-Pérez, 1995), which are beneficial to developers at the

time at which they are designing software, because it results in a “shared appli-

cation of domain knowledge using a common vocabulary” (Guarino, 1998).

A strong link between formal ontological theories and their practical ap-

plication is vital to forming a basis for interoperability between disparate data

sources. The current research takes a step forward in this direction. Our method

for evaluating ontologies integrates multiple methods for domain modeling for-

malized as a set of constraints that enforce good practices, such that an ontology

evaluated and standardized by the method will have a more solid foundation as

a result, one rooted in formal ontological theory.

3.3. DOMAIN ONTOLOGY 17

3.3 Domain Ontology

A domain ontology is the logical formalization of the objects, qualities, func-

tions, roles, events, etc., and their respective relationships within a specific area

of interest (or domain). The ontology is normally constructed by a domain

expert, but ideally by a team of a domain expert and an ontologist. With

recent advances in science and the resultant explosion of data—often in dis-

parate sources—domain ontologies play a critical role in improving interoper-

ability among information systems, improving communication between infor-

mation systems and people (e.g., researchers, clinicians, software developers,

etc.), and improving communication among people. Good domain ontologies

include a collection of terms that are intended to refer exclusively to types, and

that cover entities of the domain of interest. Each term includes a natural lan-

guage definition that is concise yet expressive, resulting from careful analysis

of what each term is intended to represent. Furthermore, how the terms relate

by subsumption—forming the ontology backbone—and by any other relation is

accurately formalized in logic. (Ideally, relationships that are too expressive for

the logic used should still be expressed in natural language, and accompany the

ontology as documentation.)

Single inheritance is the principle that no class has more than one immediate

superclass. Disjointness is the principle that there is no overlap between classes,

i.e., if they share members at all, one shares all its members with the other. In

other words, if a particular instantiates two classes then one of the two classes

must be a subclass of the other or they are identical. Single inheritance and

disjointness are principles that good domain ontologies exhibit (Smith, 2003).

Therefore, their hierarchies form a set of trees, where the nodes refer to classes

that are disjoint from classes at the same level in the tree. Unfortunately, it is

not only good domain ontologies that find widespread use (Schulz et al., 2006),

and as a result, poorly constructed ontologies propagate problems that they

were created to solve. BFO and OntoClean both encourage the creation of

18 CHAPTER 3. BACKGROUND

ontologies that follow the principles of single inheritance and disjointness, each

with a different approach. Nevertheless, there is still work to be done to link

these approaches to each other, and for practical use, which is addressed by this

dissertation.

3.4. BFO 19

3.4 BFO

3.4.1 Introduction

BFO is an upper ontology, that is, an ontology that is domain neutral and de-

signed to be useful as a framework for formalizing any domain. BFO is guided by

realism, the philosophical position in which “reality and its constituents exist in-

dependently of our (linguistic, conceptual, theoretical, cultural) representations

thereof” (Grenon, 2003c). BFO is an upper ontology of types as we have defined

the term in Chapter 2. BFO has served as the upper ontology for several do-

main ontologies of the collaborative, science-based Open Biomedical Ontologies

(OBO) Foundry effort (Smith et al., 2007), including the Phenotypic Quality

ontology (PATO).1 Because of its widespread use, especially in the biomedical

sciences where ontologies fill an immediate need, and also because it was created

to reflect reality, BFO is a good choice for evaluating ontologies.

Besides realism, the design of BFO presupposes perspectivalism, fallibilism,

and adequatism. The position of perspectivalism admits that there exist mul-

tiple representations of reality that are equally good and can “capture different

and important features of one and the same reality” (Spear, 2007). This includes

the view of separating out particulars in the world at different levels of granu-

larity. Fallibilism concedes the possibility that scientific theories may in fact be

incorrect, given that reality “exists independently of our ways of conceptualizing

it” (Spear, 2007). Finally, adequatism is the principle that an ontology repre-

senting a domain should remain true to the domain’s fundamental elements,

instead of abstracting to basic aspects of reality (Spear, 2007). For example,

an ontology of biological phenomena must not only include such things as cells

and organs but also populations (Spear, 2007). An ontology should describe the

domain at the level of granularity that is necessary to be comprehensive.

1http://www.obofoundry.org/

20 CHAPTER 3. BACKGROUND

3.4.2 Theory

BFO divides entities into continuants and occurrents following (Zemach, 1970).

To reflect this distinction BFO’s ontology of types includes as upper level types

Continuant and Occurrent. (Henceforth we use BFO-rooted type labels (which

we italicize) informally followed by the term ‘particular’ to refer to the partic-

ulars that instantiate a certain type, or simply informally use the type label

to refer to a particular. For example, continuant particular and continuant are

used interchangeably.) What differentiates these types is their relation to time.

Continuants are entities that are continuous with respect to time and there-

fore do not have temporal parts. This implies and is implied by the equally

fundamental notion that continuants are fully present in any instant of time in

which they exist. For instance, a cell is a continuant. Occurrents are entities

that are bound with respect to time or “unfold”. This implies and is implied

by the equally fundamental notion that occurrents have time as a part of them.

(Instantaneous occurrents do not have a typing in BFO and are out of the cur-

rent scope, but are discussed in (Bittner and Donnelly, 2004).) For instance,

an occurrence of cell division is an occurrent. Temporal regions are occurrents

whose parts consist solely of temporal regions.

In BFO, Continuant has subtypes IndependentContinuant and Dependent-

Continuant (see figure 6.1). Dependent continuants, such as qualities, inhere in

or are borne by independent continuants. By this we mean they exist insofar

as they exist as a characteristic of some specific independent continuant. For

example, the shape of a cell inheres in a specific cell. (The terms ‘inhere in’ and

‘borne by’ are further defined in Section 6.2.)

Continuant is also subtyped by Spatial Region. A spatial region is some

part of space-time which is either not extended at all in time or does not extend

past an instant of time (Bittner and Donnelly, 2004, p. 284). (BFO considers

space-time as an absolute 4-dimensional entity.) An independent or dependent

continuant “occupies” or is located at a spatial region for some time.

In BFO, Occurrent is subtyped by ProcessualEntity and SpatiotemporalRe-

3.5. ONTOCLEAN 21

gion (see 6.1). For processual entities we mainly focus on processes, for example

the course of a disease or the life of a bumble bee. A spatio-temporal region is

some part of space-time. A processual entity occupies a space-time region.

Occurrent is also subtyped by TemporalRegion. Temporal regions are taken

to be “a neutral kind of time” (Spear, 2007, p. 62) and “indexes” both con-

tinuant entities existing in spatial regions and processual entities existing in

space-time regions. (“A neutral kind of time” and “indexes” are admittedly

unclear and vague terms, and the nature of time is not made entirely clear in

the BFO literature.)

Trentelman (Personal Communication) however treats time as a projection

of a time function that maps spatiotemporal regions onto a maximal temporal

region (i.e., the timeline of the universe), and treats space as a projection of

a space function which maps spatiotemporal regions onto a maximal spatial

region (i.e, the space of the universe). Further investigation and theorizing

on the nature of the universe falls outside of this dissertation’s scope, as we

maintain our course towards evaluating and standardizing ontologies with BFO

as it is currently theorized, with minor formalization adjustments.

3.5 OntoClean

3.5.1 Introduction

OntoClean is a method that provides insight into how to properly construct

an ontology of properties. Recall from Chapter 2 that a property has a corre-

sponding class, and like types, properties have particulars as instances. In the

OntoClean literature it is common to refer to a property by the general term

of which it is the meaning (Guarino and Welty, 2009); this convention is oc-

casionally followed (when convenient) in the current section. For example, the

property ‘being a human’ is referred to as Human.

The originators of OntoClean, Guarino and Welty, describe the philosophical

notions of identity and unity based on whether particulars of a property can be

22 CHAPTER 3. BACKGROUND

distinguished and counted, respectively. This is derived from Strawson (1959),

who discusses sortals as categories with these characteristics. Guarino and Welty

define identity and unity, as well as rigidity and dependence as metaproperties,

because they are defined as properties of properties. However, we prefer to

define metaproperties as characteristics of properties, where a characteristic

picks out some aspect of all particulars that instantiate a property. We offer a

full treatment of this perspective and its axiomatization in Part II.

OntoClean requires that a modeler classify the properties of an ontology by

assigning to them the metaproperties just listed. For each metaproperty, there

are constraints concerning when the subsumption relation can hold between

properties, the violations of which are only apparent after the aforementioned

classification is performed. Each metaproperty and its corresponding constraints

are discussed in the following subsections. In the current chapter, we present

OntoClean informally, as Guarino and Welty have in (Guarino and Welty, 2004,

2009). In Part II, we provide the corresponding formal account, discuss our

interpretation of the work, and show how we leverage it towards a method for

evaluating and standardizing candidate BFO domain ontologies.

3.5.2 Rigidity

The notion of rigidity includes the metaproperties Rigid, Non-Rigid, and Anti-

Rigid. Each characterizes properties with respect to the essentialness of a prop-

erty to its instances. A property is essential to an instance if it is a property

the instance must have. For example, the property ‘being human’ is essential

to a particular human, Peter, because he cannot exist other than as a human.

A property is Rigid iff the property is essential to all of its instances. ‘being

human’ is a Rigid property. A property is Non-Rigid iff the property is not

Rigid (i.e., there is some instance for which that property is not essential to it).

By this definition, the property ‘being a student’ is Non-Rigid, because there is

at least one human for which the property is inessential. As another example,

the property ‘being an organism of only one cell with only one nucleus’ is Non-

3.5. ONTOCLEAN 23

Rigid because it is inessential for some instances (e.g., Caulerpa particulars,

which originally have one nucleus, but as they develop have many (Jacobs,

1994)). Note that this property being essential for some instances, which it

is for diatom particulars (i.e., diatoms are unicellular, mononucleate organisms

throughout their existence) is irrelevant to the definition of Non-Rigid.

A property is Anti-Rigid iff it is inessential (i.e., optional) to every particular

with that property. ‘being a student’ is a prototypical case, given that every

person is not a student before enrollment or after graduation. The constraint

that applies to Rigidity is that Anti-Rigid properties can only subsume other

Anti-Rigid properties. This is formally discussed in Section 5.6.

Notions like Rigidity are not exclusive to realist ontologies. Andersen and

Menzel (2004) suggest there are “non-existent” bacteria, i.e., a class defined by

a description of a strand of bacteria that has never existed. A property based

on such a category would exhibit the metaproperty of Rigid. Furthermore,

fictitious worlds with elaborately described natural laws could possibly apply

the notion of Rigidity as well. In a fairy tale world where a human can turn into

a frog, the property ‘being a human’ is Non-Rigid, because there exists some

human that can cease being a human and still exist. Currently BFO does not

have a way of dealing with either of these kinds of categories, we address how

it can in Part II.

3.5.3 Identity

The study of identity deals with being able to determine whether and how a

particular can be re-identified (Guarino and Welty, 2009, p. 204). An identity

criterion is a metaproperty for how particulars of a property are identifiable.

Properties are used to define classes by some similarities their instances share.

For example the property ‘having DNA’ is a property all humans share. In

contrast, an identity criterion concerns how particulars that share a property

are different from each other in such a way that they can be distinguished on that

basis. Often identity criteria can be limited to those that are simply necessary,

24 CHAPTER 3. BACKGROUND

i.e., essential to an entity. Naturally if x and y do not share the same essential

properties they are not identical. For example a necessary identity criterion for

humans is “having the same DNA encoding”. This is not a sufficient identity

criterion due to identical twins having the same DNA encoding.

Identity criteria are a topic that has been hotly debated in the field of phi-

losophy. Such debates sometime involve a conflation of two distinct questions

concerning some particular x : ‘What is it for this to be x?’ and ‘How can we

know that this is x ’? (Williamson, 1990). The former, a metaphysical question,

addresses the nature of x. The latter, an epistemological question, addresses

some characteristic by which x with a certain property can be told apart from y

with the same property. OntoClean’s usage, which we consider in this section,

seems to be in the latter sense, although there is no clear boundary between

the ontological and epistemological issues at hand. In Chapter II we investigate

both OntoClean’s and BFO’s perspectives on this topic.

A question that often leads to the discovery of a characteristic for identifi-

cation is, given some x and some y : ‘Do x and y have the same ?’. Since

identity criteria are difficult to specify, necessary or sufficient conditions are

considered (by OntoClean) acceptable as long as they are not trivial or circular.

As a constraint, every property must inherit identity criteria of their subsuming

properties. A property with an identity criterion that its subsuming type does

not have must be Rigid, and is said to “supply” that identity criterion (Welty

and Guarino, 2001). Otherwise, an identity criterion is inherited, and is said to

“carry” it.

For example, Organism has the identity criterion ‘having the same DNA

code’. If there is no subsumer of Organism with this identity criterion, then Or-

ganism must be Rigid (and carries it), which is the case. (This is not provable

but rather an axiom assumed of the OntoClean work.) Its subproperty Hu-

man inherits this identity criterion, and has another identity criterion ‘having

the same fingerprint pattern’, because every human can be uniquely identified

through fingerprinting. Its immediate subsumer, Organism does not have this

3.5. ONTOCLEAN 25

criterion, therefore Human must be Rigid, which it is. In this example Organ-

ism supplies the identity criterion ‘having the same DNA code’, while Human

inherits this criterion (ergo carries it) and supplies the identity criterion ‘having

the same fingerprint pattern’. This example of two properties conforms to the

constraint for an identity criterion, but would not if Human did not inherit

the identity criterion ‘having the same DNA code’ from its subsumer property

Organism, i.e., if humans could be not identified by DNA code.

3.5.4 Unity

Another OntoClean metaproperty is Unity, which holds for properties whose

particulars are integral wholes. Thus for each particular satisfying a property

with the metaproperty Unity, its parts and boundaries are connected in such a

way that they are connected to all the other parts and to nothing else (Welty

and Guarino, 2001, p.7). An example of a property without Unity is Amount of

Water, because water can be scattered arbitrarily. In contrast, Book has Unity,

since its particulars are whole objects. We can distinguish what is and is not a

part of a book, for example pages, cover, etc. This is referred to by some as the

count-mass distinction.

A unity criterion of a property is a specific condition that must hold among

the parts of each of its particulars in order for the particular to be considered

a whole. One could argue that a table with a portion removed is still a table,

and therefore does not have a unity criterion, but this is not the case. The

following passage explicates why by describing the nature of the property Table,

emphasizing the importance of connectedness (Quine, 1981, pp.92–93):

A table contains a graded multitude of nested or overlapping physical

objects each of which embodies enough of the substance to have

qualified as a table in its own right, but only in abstraction from the

rest of the molecules. Each of these physical objects would qualify

as a table, that is, if cleared of the overlapping and surrounding

26 CHAPTER 3. BACKGROUND

molecules, but should not be counted as a table when still embedded

in a further physical object.

A simplified way to determine whether a property has a unity criterion is

by being able to answer the question of its instances ‘how much/many are

there?’ without a measuring unit (Lowe, 1989a). For example, ‘how much

coffees are there?’ cannot be answered without assuming units (e.g., pounds,

cups). In contrast, ‘how many marbles are there?’ can be. Although this is a

useful device, there are more fine-grained distinctions that exist for describing

unity criteria (e.g., for liquids with varied compositional structure (Bittner and

Donnelly, 2007)). We will investigate this further, and provide formulae which

will enrich the theory and strengthen its use for evaluation and correction.

There are three main kinds of unity, namely: topological, which deals with

how an entity’s parts are connected (e.g., a piece of coal); “morphological”,

a combination of topological and shape (e.g., a constellation); and functional,

where the parts contribute to a function the whole performs (e.g., a hammer

strikes a surface) (Welty and Guarino, 2001, p.10). Unity criteria are inher-

ited downward in a subsumption hierarchy, like identity criteria. A property

has Anti-Unity if every particular is not necessarily a whole (Welty and Guar-

ino, 2001, p.10-11). Anti-Unity is also inherited downward in a subsumption

hierarchy.

This dissertation investigates the best approach to logically formalize the

ontological entities involved in a unity criterion and their relationships with

BFO upper ontology types and RO relations. Since the research on OntoClean

describes three kinds of unity, we can use these as a starting point for our work.

This formalization has also not been investigated and performed previously, and

is crucial in our effort of integrating BFO and RO with OntoClean.

3.5. ONTOCLEAN 27

3.5.5 Dependence

OntoClean includes as a metaproperty external dependence, primarily based on

Simons (1987). (OntoClean refers to this metaproperty as dependence, but we

refer to it as external dependence to avoid confusion with BFO’s closely related

notion.) A property x is externally dependent on a property y if the existence of

x implies the existence of y, and y neither constitutes nor is a part of x (Welty

and Guarino, 2001).

A property that is externally dependent (on some existing child) is Parent,

since each of its particulars exist only if there is some corresponding Child

particular (Welty and Guarino, 2001). A parent is externally dependent on a

child because he or she cannot be a parent without having had a child. Also the

property Child is externally dependent also, because every child is borne of his

or her parents. Another example is Satellite—one such particular, Ganymede,

exists as a satellite in relation to Jupiter (Simons, 1987). The constraint that

applies to external dependence is that it is inherited downward in a subsumption

hierarchy. The property Sibling inherits external dependence from Relative in

the subsumption hierarchy. In the OntoClean literature, every example property

that is given as an instance of external dependence is also an instance of Anti-

Rigid. For our method we investigate this, and the relation between OntoClean’s

notion of dependence and BFO/RO.

28 CHAPTER 3. BACKGROUND

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 4

OntoClean-Related

Work

4.1 Original OntoClean Application

The researchers behind OntoClean made an initial attempt at translating it

into an application for evaluating ontologies (Welty and Guarino, 2001). They

used CLASSIC (Brachman et al., 1991) to create what they describe as a ques-

tion/answer system that performs consistency checking based on OntoClean.

Each possible metaproperty is represented as a Description Logic (DL) con-

cept in CLASSIC, with corresponding subsumption constraints (as described in

Section 3.5) as necessary conditions on them. The domain properties are rep-

resented as individuals of the OntoClean metaproperties, based on assignments

given by the modeler during use of the system. CLASSIC was not able to pro-

vide any subsumption reasoning services between the properties because they

were represented by DL individuals, instead of DL concepts.

The following describes a typical interaction of the system and a modeler

(Welty and Guarino, 2001):

[It] is designed to assist a modeler in choosing the appropriate metaprop-

29

30 CHAPTER 4. ONTOCLEAN-RELATED WORK

erties for their property by asking a series of questions. More general

questions are asked first, such as “does the property carry identity?”

and the modeler may respond yes, no, or unsure. If unsure about

a metaproperty, more specific questions can be asked such as, “are

instances of the property countable?” It is always possible to leave

answers unknown, of course. In these cases the system cannot verify

the correctness of those properties.

The system notifies the modeler when she makes a decision that violates any

of the constraints of OntoClean, which includes that only Anti-Rigid properties

can be a subproperty of Anti-Rigid properties. A significant issue with this

implementation is that it generates an ABox (i.e., ground facts) version of the

ontology that is not linked to the original ontology. The concepts of the mod-

eler’s ontology are individuals in the meta-ontology, and a method for mapping

the two is not provided.

Although OntoClean has been used by those with experience in conceptual

modeling, a major difficulty in using it is “what identity and unity criteria to

apply to the properties of the domain” (Welty and Guarino, 2001). To address

this problem, Welty and Guarino (2001) included several examples of common

identity and unity criteria as subproperties of the existing metaproperties. If

a modeler is unsure about when to indicate an identity or unity criterion, the

application suggests these example criteria to help her determine which are

appropriate for the properties she is modeling.

In order for the proposed evaluation and standardization method to be real-

izable as an application that can detect and correct violations pertaining to the

principles of OntoClean and BFO, it should consider that specific questions, not

unlike the ones asked above, be posed to the modeler. However, our approach

will differ, since the questions that need to be asked should not pertain to just

a category and its subsumer category, but also under which one of several dis-

joint categories of BFO a category is subsumed. For instance a modeler can be

assisted by being asked a question that helps to decide whether a category is a

4.2. WEBODE 31

Continuant or Occurrent, and if a Continuant, whether it is a DependentContin-

uant or IndependentContinuant, and so forth (Simon and Smith, 2004). G&W

did not connect their approach with an upper ontology as we do here, which

will assist with additional constraints and ultimately standardization. We also

investigate what it means for there to be several violations at once, and what

kinds of questions can be asked to alleviate multiple violations at once.

4.2 WebODE

WebODE (Corcho et al., 2002) is an application for ontological engineering that

includes reasoning capabilities. WedODE provides support for using Methon-

tology (Fernandez et al., 1997), a method for building ontologies from scratch

(Corcho et al., 2002). Corcho et al. (2002) claim a tight integration of Onto-

Clean with Methontology. This is useful because Methontology by itself does

not include design principles for the development of taxonomies or methods for

isolating and correcting mistakes in taxonomies (Fernandez-Lopez et al., 2002),

the latter of which is directly related to the current research. The built-in soft-

ware that supports OntoClean in WebODE is called ODEClean. It uses the

Ontology of Properties (Guarino and Welty, 2000a) as the base ontology, and

includes the OntoClean constraints. This ontology is translated into Ciao Prolog

automatically with WebODE, and ODEClean consults the types (as they define

them) and Prolog axioms during evaluation of a domain ontology. Therefore

the evaluation itself is more or less automated.

The top of the base ontology consists of Type and Role, which in the Ontol-

ogy of Properties are labeled sortal and non-sortal, respectively. Also used is an

ontology of particulars, the instances of which are in fact particulars of the do-

main. The metaproperty tagging of rigidity, identity, unity, and dependence are

instance attributes inherited from the root class of the ontology of particulars,

property. The WAB (WebODE axiom builder) module is used for formalizing

the OntoClean subsumption constraint axioms (discussed in Section 3.5). Every

32 CHAPTER 4. ONTOCLEAN-RELATED WORK

concept is linked as an instance of the root class. Through the inheritance of the

meta-attributes, the user can give values for each concept that is being built.

In WebODE, when an OntoClean axiom is violated, a pop-up error message

window appears with the exact axiom violated and the two types involved. A

novice modeler would have difficulty appropriately reacting to the message in

the WebODE window without experience with OntoClean, because they would

not have an idea of how best to correct it. Furthermore, the approach fails to

take advantage of knowledge already available in the ontology, such as relations

with upper ontology types, or knowledge that is applied to the design of an

upper ontology like BFO, to help a modeler alleviate a violation. If it did, it

could suggest how the error could be removed based on existing formalizations.

Our method lays the groundwork for an application that not only evaluates

the assignments of metaproperties with respect to constraint violations, but

also changes an ontology—towards standardization in line with BFO—based on

user feedback to certain questions.

4.3 OntoEdit

The closed-source Java-based application OntoEdit (Sure et al., 2003) focuses on

the steps of ontology development: requirements specification, refinement, and

evaluation. The initial phase, requirements specification, requires a modeler to

describe an ontology domain and goal, as well as its use cases, and applications

supported by it. This is performed using the OntoKick and Mind2Onto plugins

of OntoEdit (Sure et al., 2003). During the refinement phase, the modeler

extends the description of the ontology, which is completely formalized in the

knowledge representation language F-Logic (Kifer et al., 1990). Ontobroker

provides inferencing to support the process. Features of Ontobroker include

support for namespaces (for modularization, naming ontologies), switching off

sets of definitions for testing (i.e., reasoning over portions of an ontology), unique

rule names, database connectors (for mapping DB tables into predicates), and

4.4. TMEO METHOD 33

an available API.

The evaluation phase includes observing the requirements specification and

applying the OntoClean method. (Sure et al., 2003) use two building blocks of

“a set of axioms that formalize definitions, constraints and guidelines given in

OntoClean” and a meta-ontology of properties to have as a reference model when

performing evaluations. In OntoEdit, the OntoClean constraints for rigidity,

unity, identity, and dependence are formalized as F-Logic axioms. Using a

plugin developed just for applying OntoClean, when once meta-relations have

been used to tag concepts with OntoClean metaproperties, queries can be made

to determine if any inconsistencies exist, using Ontobroker (Sure et al., 2003).

Sure et al. (2003) indicate the next version of their plugin will have a dynamic

GUI to tag concepts with metaproperties, and the results should guide the

user through possible actions for fixing inconsistencies that were detected. The

work of OntoEdit has been developed as a commercial product by the company

Ontoprise, coupled with the Ontobroker inference engine and OntoKick plugin

for requirements specification.

OntoEdit is an all-in-one software suite for ontology editing that has built

in the OntoClean subsumption constraints and provides violation alerts. Un-

fortunately, there is no current work on guiding the user to removing culprits

of the constraint violations. Further, there is no usage of an upper ontology

for additional constraints or any motivation towards standardization, which are

integral to our research.

4.4 TMEO Method

TMEO (Tutoring Methodology for the Enrichment of Ontologies) (Oltramari

and Vetere, 2008) is a prototype software system that assists a user in classi-

fying their classes based on the DOLCE upper ontology (Masolo et al., 2003).

Although DOLCE was developed from a cognitive/linguistic perspective—which

differs from BFO’s realist perspective—it shares several features with BFO, in-

34 CHAPTER 4. ONTOCLEAN-RELATED WORK

cluding the top-level division of entities as continuants or occurrents. The de-

velopers of TMEO emphasize that they hide deep ontological issues from users

because the system is intended for users of any experience level.

As an example, the system asks a user if an instance of Glass (1) has a

spatial or temporal nature, (2) is something a human can sense, (3) is countable,

(4) is an artifact. The questions correspond to different levels of specificity of

the DOLCE ontology, and the system classifies the class in question, here Glass,

based on the responses. In this case, if the user answers yes to the final question,

the class is subsumed under Artifact, which is subsumed under the DOLCE class

Concrete.

TMEO is interesting because, like the intentions behind this dissertation,

it attempts to make the principles behind an upper ontology “accessible” to a

modeler of a domain ontology while they are constructing it. TMEO however,

unlike our work, does not apply an upper ontology as a standard by which do-

main ontologies can be more easily integrated, as is the case for the BFO and

the OBO Foundry, and does not take advantage of OntoClean. Also unlike our

work, there are no formalisms provided, and there is no discussion on how a

reasoner can be used to correct inconsistent modeling choices given their frame-

work. For our method we take into consideration the approach of helping a

user in the process of identifying which is the appropriate superclass—among

mutually disjoint child classes—of the class she is currently trying to model.

Part II

Integration

35

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 5

The Theory of Classes

5.1 Introduction

In the following chapters we perform a detailed analysis of the OntoClean meta-

properties and explicate how they can be leveraged towards a method for evalu-

ating and standardizing candidate BFO domain ontologies. As a starting point,

we inspect and compare the classification units of OntoClean and BFO, respec-

tively property and type.

The originators of OntoClean assume that properties, which they consider

the meanings of expressions, are commonly used as the categorical unit to build

ontologies because it requires no specialized training to consider them. Therefore

in OntoClean a modeler is assumed to use properties as the basis for designating

classes of an ontology. However under this approach properties are frequently

treated as if isomorphic to classes. Some properties, for example ‘being a round

square’, correspond to an empty class, therefore isomorphism is lost.

Building ontologies on the basis of predicateslin is a course-grained approach,

as evidenced by the need for a method like OntoClean. For example, the prop-

erty ‘in close proximity to Earth’ is used to classify objects. The property refers

to an object external to the instance, the Earth. Therefore the property depends

on a binary relation between spatially separate objects. For BFO, properties

37

38 CHAPTER 5. THE THEORY OF CLASSES

that are relational cannot correspond to a type, because types do not depend on

objects other than their instances. By the BFO approach, binary relations hold

between the pairs of particulars in question (we discuss one of these relations in

Subsection 6.2) and should be represented as such. This promotes the practice

for every particular that plays an important role in the domain being modeled,

it has a typing.

5.2 Unifying Properties and Types

In order to integrate OntoClean with BFO, that is, apply the notions underlying

OntoClean to the process of constructing BFO-compliant domain ontologies,

we must “unify” their categorization units, properties and types, respectively.

Every property and type has a corresponding class (although only properties

may have empty classes). As discussed in Chapter 2, classes (except those which

are empty) are composed of particulars. As mentioned, a general term applies

to, or denotes, a class of particulars. We formally apply the category class in

order to address the differing ontological perspectives committed to by BFO

and OntoClean, that is, realism and a mixture of natural language semantics

and epistemology, respectively.

For our formal system we consider the two most basic kinds of entities to be

particulars and classes, as opposed to particulars and types. The latter division

would be more appropriate for a formal system defined for ontologies that are

assumed to already be BFO-compliant. However, we design our system for the

evaluation of all classes, and the detection of those classes that are certainly

not types (Smith et al., 2006). In what follows we put forth our formal system

which reflects this.

In this chapter we analyze Rigidity as it is given in the formal system cho-

sen by Guarino and Welty, and redefine the core ideas of Rigidity within our

formal system, while also giving BFO’s theory of types. In closing, we describe

how this work is useful for evaluating candidate types and the eventual goal of

5.3. FORMAL SYSTEM 39

constructing BFO-compliant ontologies.

5.3 Formal System

Traditional first-order logic has one kind of object, and models have a single

domain. In other words, there is no syntactic difference between kinds of objects.

With sorted logic the domain of objects is divided into what are called sorts,

therefore distinguishing objects can be done in the formal system instead of

through classes. Because this provides a benefit in terms of simpler formal

expressions and for computation, we assume a sorted logic with identity.

In the current and all subsequent chapters, variables w, x, y, and z range

over all objects; A, B, C, and D range over those objects that are classes; t, t1,

and t2 range over those objects that are times; and r and s range over relations.

The logical connectives ¬, ∧, ∨, ⊕ →, and ↔ have the meanings of nega-

tion, conjunction, inclusive disjunction, exclusive disjunction, implication, and

bi-implication, respectively. The binary relation = is identity. A definition is ex-

pressed by putting what is being defined on the left of the binary relation, =def,

and to that which it is being defined as meaning on the right (definiendum and

definiens, respectively). We provide axioms to capture the basic assumptions

about our theory, define certain important predicates in terms of the theory, and

use axioms and definitions to prove theorems. ∀ and ∃ represent universal and

existential quantification. Leading universal quantifiers are generally omitted

for readability in the text, and are assumed to have the widest possible scope.

In a definition, each argument serves as a meta-variable, standing for any

term, which could be a variable or a constant term. In each case of a definition,

within any well-formed formula besides the definition the definiendum can be re-

placed by the definiens, with the appropriate term substitution. Because we can

always use the definiens in place of the definiendum, definitions are theoretically

superfluous, but do make our formalisms more manageable. More importantly,

a definition usually implies that the definiens is worth careful consideration, and

40 CHAPTER 5. THE THEORY OF CLASSES

the aggregate of definitions put forth in a theory embodies a choice of what is

most important to the theory (Whitehead and Russell, 1957). Definitions pro-

vide easy summaries of information that we never need to look at again – thus

they allow more complex thoughts to be lazily and easily transmitted and used

in further and more ambitious research.

In Chapter 7, we introduce several notions that, in order to introduce them

them into a formal system, require, instead of a first-order system, a second-

order system or a first-order system that provides for second-order expressivity,

which are both beyond our current scope. We therefore introduce definition

schemata, labeled as such, for introducing several notions which, given our first-

order system, are meta-logical, and are therefore given as meta-predicates.

For example if a meta-predicate P(x,r) is introduced x is a metavariable

that represents any particular particular and r is a metavariable that represents

any particular relation. As in any schemata, the constants which are applied,

i.e., the constants that take the place of x and r, replace occurrences of x and

r of the wffs in the definiens (i.e., right hand side) of the definition schema.

Note that in all cases where a meta-predicate appears in the definiens of an-

other definition schema or the right-hand side of an implication, it serves only

as a “shortcut” for the definiens of the respective definition schema, with the

appropriate substitutions. We list all axioms, definitions, definition schemata,

and theorems in order of appearance in Appendix C.1 and by type in Appendix

C.2.

5.4 Existence

Prior to providing our non-modal formulation of Rigid, it is necessary to discuss

the topic of existence, a highly contentious philosophical topic. Existence is both

intuitive and elusive, the boundary conditions for which are frequently debated.

Kant said that “existence is not a predicate”—you cannot define things into

existence (Kant, 1933). In other words, predicating ‘exists’ of an object does not

5.4. EXISTENCE 41

add additional information in the same way ‘is red’ and ‘is alive’ does. Russell

(1905) believed that sentences in which a general term denotes a non-existent

are false, given his theory of descriptions.

Quine held that there are two kinds of existence: concrete, physical existence

in the world (e.g., of Barack Obama), and abstract, non-physical existence (e.g.,

of the number 27) (Hirst, 1991). Meinong (1904) described his position in an

oxymoron: there are objects of which it is true that there are no such objects,

i.e., that they do not exist. Like Brentano, his teacher, Meinong proposed that

every thought of an idea, such as the idea of a gold mountain, must be “directed

toward” some object, and so all objects of thought have being in some sense,

even if not real-world existence.

According to Rapaport (1978) there are two modes of predication, repre-

senting, respectively, the relation between Meinongian objects and their prop-

erties and, on the one hand, the relation between actual, physical objects and

their properties, on the other. According to Parsons (1980) in an approach

motivated by Meinong, existence is a property but not a categorical one (i.e.,

extranuclear), and as such it is not part of the nature of objects. Hirst (1991)

suggests that quantifiers must sometimes scope over non-existent entities, but

that even though existence can be predicated, it is neither a single predicate

nor a predicate of an ordinary kind.

Although there is a wealth of theories of various kinds of existence, we intro-

duce a relation, exists at(x,t), which is uncommitted in this regard, and means

that object x ’s existence spans t. For a certain ontological theory, if object x is

within its domain, then it holds that it exists at some time:

Axiom 1. ∃t(exists at(x,t))

Because it is presupposed that what ‘x’ denotes exists, if x does not exist at

some time, there is some time at which it does exist.

42 CHAPTER 5. THE THEORY OF CLASSES

5.5 Formal Theory of Classes

In order to integrate OntoClean’s notion of Rigidity with BFO’s theory of types,

we must first “unify” their categorization units, properties and types, respec-

tively. Every property and type has a corresponding class (although only prop-

ertie may have empty classes). As discussed in Chapter 2, classes (except those

that are empty) are a collection of particulars. As mentioned, a general term

applies to, or denotes, a class of particulars, We formally apply the notion of

class in order to address the differing ontological perspectives committed to by

OntoClean and BFO, that is, a mixture of natural language semantics with

epistemology and realism, respectively.

We formalize member of(x,A,t) to mean that the particular x falls under,

or is a member of the class A at time t. x is a member of class A iff x satisfies the

definition given for A. This formalism maintains first-order expressivity because

classes are treated as first-order objects of the domain and are represented by

terms, not predicates.

The subsumption relation between classes is subclass of, and is defined by

the member of relation:

Definition 1. subclass of(A,B) =def ∀xt(member of(x,A,t) →

member of(x,B,t))

If two classes are identical then every time at which a particular is a member

of one class, it is a member of the other:

Axiom 2. A=B ↔ (subclass of(A,B) ∧ subclass of(B,A))

subclass of is therefore anti-symmetric. This axiom commits a class to being

an extensional entity, despite the fact that a class definition is either exclusively

extensional or intensional. For example, we can define a class giraffe at Buffalo

Zoo by referring to each giraffe at Buffalo Zoo, or by giving the conditions only

all giraffes at Buffalo Zoo satisfy. In either case, they are the same class. This

informs our choice of the predicate ‘member of’, which is to stress the exten-

5.5. FORMAL THEORY OF CLASSES 43

sional nature of the relationship we are modeling. The subclass of relation is

reflexive:

Theorem 1. subclass of(A,A)

Proof. Let x, A, and t be such that x is a member of A at t, which tautologically

implies x is a member of A at t. By definition of subclass of (Definition 1),

subclass of(A,A).

The subclass of relation is transitive:

Theorem 2. subclass of(A,B) ∧ subclass of(B,C) →

subclass of(A,C)

Proof. Let A and B be such that subclass of(A,B) and subclass of(B,C).

Also let x and t be such that x is a member of A at t. By subclass of(A,B),

subclass of(B,C), and the definition of subclass of (Definition 1) it holds

that x is a member of C at t. Therefore subclass of(A,C).

Also, membership at a time does not presuppose that existence spans that time:

Axiom 3. ¬∀xt(member of(x,A,t) → exists at(x,t))

For example, George Washington is a member of a class we define under the

general term ‘former president’ at the present time, t. George Washington does

not exist at t (he passed away in 1799). Therefore not all members that satisfy

a definition of a class at t exists at t.

Note here that for humans we equate existence to being alive. Existence con-

ditions for other classes may differ. When member of(x,A,t) and ¬exists at(x,t)

both hold for a certain x, A, and t, it means that x satisfies the definition of A

at some time t, and exists at some time which is not t. In the case of the class

Former President, informally we assume its definition to be such that its mem-

bers are those individuals that at some time in the past served as the President

of the United States. Given this, George Washington is a member of this class

for all time, whether alive or not, once he satisfies the definition.

44 CHAPTER 5. THE THEORY OF CLASSES

A notable feature of some classes is that of having at least one member at a

time at which the member exists in the world, thus satisfying the unary relation

Instantiated:

Definition 2. Instantiated(A) =def ∃xt(member of(x,A,t) ∧

exists at(x,t))

If a class does not have any members at any time, it satisfies the unary relation

Empty:

Definition 3. Empty(A) =def ¬∃xt(member of(x,A,t))

If a class has as members only those objects that exist at all times at which

they are members, it satisfies the unary relation Members Exist:

Definition 4. Members Exist(A) =def ∀xt(member of(x,A,t) →

exists at(x,t))

For example, if the class President is defined not to include dead ex-presidents

as being presidents, then Members Exist holds for that class. As another

example, if the class Human Race is defined to have members as current mem-

bers any people that have passed away, it would not satisfy Members Exist.

In both examples, where humans are being classified, we equate existing with

being alive.

Note that if a class satisfies Empty, then the class also trivially satisfies both

Rigid and Members Exist. This does not cause any limitations because, as

I describe in Chapter 6, these predicates are applied to the notion of type and

the BFO Standard for evaluating classes.

5.6 Integrating Rigidity

5.6.1 Introduction

In Chapter 3, we informally described OntoClean in natural language, which

is an approach taken by Guarino and Welty in a recent publication (Guarino

5.6. INTEGRATING RIGIDITY 45

and Welty, 2009). In this chapter, we analyze Rigidity as it is given in the

formal system chosen by Guarino and Welty, and carefully inspect its underlying

intuitions. We then redefine the core ideas of Rigidity within our formal system,

which we will later use to help define BFO’s theory of types.

Rigidity is a notion of OntoClean that characterizes a property as either:

Rigid, essential to all its instances; Non-Rigid, non-essential to some instance;

or Anti-Rigid, non-essential to all instances. Categorizing properties on this

basis is valuable because it helps a modeler make clear their commitment (i.e.,

assumptions) for a given conceptualization (i.e., perspective). Note also that

OntoClean allows for multiple perspectives, thereby does not impress upon a

modeler that a property must have one certain ontological nature.

For the first iteration of Guarino and Welty’s work (ThGW1)1 Rigidity is

presented in S5 modal logic with the Barcan Formula (Hughes and Cresswell,

1996). (The Barcan Formula states the relationships between modalities and

quantifiers.) With S5 it is assumed that every world is accessible from every

other world, and for the domain of every world there are both possible and

actual objects. Objects are treated as in Section 5.5, those entities belonging to

the intended domain. The domain of quantification consists of the union of the

domains of all possible worlds (i.e., fixed domain semantics), as opposed to the

domain ranging over the current world of evaluation, the actual world (Welty

and Guarino, 2001, p.56)(Andersen and Menzel, 2004, p.120).

Because the domain of quantification includes all objects, an existence pred-

icate was introduced in a later revision (ThGW2)2 to represent actual existence

(Welty and Andersen, 2005, p.109),(Andersen and Menzel, 2004, p.122)(Carrara,

2004, p.132). Therefore x exists at t in a world iff ‘x’ denotes an object that is

actual in that world at t.

Also because there is a fixed domain, times across worlds are the same.

Given this, for the informal definitions that follow we assume that OntoClean’s

notion of time is the same as that given in Section 5.5. Given that time is the

1ThGW1 stands for ‘Guarino and Welty’s first theory’.
2ThGW2 stands for ‘Guarino and Welty’s second theory’.

46 CHAPTER 5. THE THEORY OF CLASSES

same across worlds, an object can be actual in one world and possible in another

at the same time.

Welty and Andersen (2005, p.108) (ThWA, and assumed for ThGW2) 3

define subsumption between properties such that property φ subsumes property

ψ iff, in all worlds, x has property φ at time t only if x has property ψ at t. Welty

and Guarino (2001, p.56) treat the definiendum of the metaproperty definitions

as first-order schemata in order to avoid second-order semantics; in our formal

system classes are reified, therefore classes are first-order objects of the formal

system.

Welty and Andersen (2005, p.109) admit there are many forms of Rigid, the

usage of which depends on the type of ontology being constructed. They also

suggest that although modal logic is used for the formalisms of Rigid in the

OntoClean literature, reformulations that do not require modal logic can also

be useful. In what follows we inspect what it means for a property to be Rigid,

Non-Rigid, and Anti-Rigid in the context of the modal formal system used by

Guarino and Welty, and then redefine these notions in our formal system using

classes as the categorical unit, as part of our integration.

5.7 Rigid

Recall from section 3.5.2 that a property φ is Rigid iff φ is essential to all of those

particulars to which φ is applied. Within ThGW1, a property φ is Rigid only if,

in all worlds, if x has the property φ at a time, then in all worlds, if x exists at

a time then x has the property φ at that same time. The underling intuition,

however, is that each object that has a Rigid property has that property at all

times at which the object exists. We formalize this under classes as follows:

Definition 5. Rigid(A) =def ∀x (∃t(member of(x,A,t)) →

∀t1(exists at(x,t1) → member of(x,A,t1)))

For example, Person is a Rigid class iff all members of the class are people at

3ThWA stands for ‘Welty and Andersen’s first theory’.

5.8. NON-RIGID 47

all times at which they exist.

As an amendment to the previous formulation, within the later formualation,

ThGW2, a property φ is Rigid only if, in all worlds, if x has the property φ at

a time, then x exists at that time. We have captured this intuition separately

from Rigid, under the Members Exist predicate.

Because under ThGW1 unexemplifiable properties are trivially Rigid, within

ThGW2 the domain is constrained (as suggested by Andersen and Menzel (2004,

p.121) and Carrara (2004, p.132)) to properties for which it is possible in every

world that the property has an instance at some time (Welty and Andersen,

2005, p.108). We have separately defined this notion, also, under the Instanti-

ated predicate.

5.8 Non-Rigid

Recall from section 3.5.2 that a property is Non-Rigid iff there is some particular

for which that property is not essential. In terms of the modal semantics given

by Guarino and Welty, a property φ is Non-Rigid iff, in some world, some x has

property φ at a time and in some other world x does not have property φ at a

time. Formally, Non-Rigid was originally presented as the negation of the core

notion of Rigid, which we apply for our class formulation as well:

Definition 6. Non-Rigid(A) =def ¬Rigid(A)

From which it follows:

Theorem 3. Non-Rigid(A) ↔ ∃x (∃t(member of(x,A,t)) ∧

∃t1(exists at(x,t1) ∧ ¬member of(x,A,t1)))

Proof. Follows from the definition of Rigid (Definition 5) and Non-Rigid (Definition

6).

For example, Student is a Non-Rigid class iff a member of the class exists at a

time at which he or she is not a student. Finally, every class must be Rigid or

Non-Rigid:

48 CHAPTER 5. THE THEORY OF CLASSES

Theorem 4. Rigid(A) ⊕ Non-Rigid(A)

Proof. By Definition 6, we have the implication that if A is Non-Rigid then

A is not Rigid. In disjunctive form, we have that A is not Non-Rigid or not

Rigid (A cannot be both Rigid and Non-Rigid.) To introduce an exclusive OR,

we must establish that A cannot be neither Rigid nor Non-Rigid. With the

disjunctive form just given, by Definition 6 we can replace not Non-Rigid

with Rigid and not Rigid with Non-Rigid, therefore we have that A is Rigid or

Non-Rigid (A must be at least one of Rigid or Non-Rigid). Ergo, we have that

A is exclusively Rigid or Non-Rigid.

5.9 Anti-Rigid

Anti-Rigid is a further restriction on the meaning of Non-Rigid. Recall that a

property is Anti-Rigid iff it is not essential to all particulars with that property.

In terms of the modal semantics given by Guarino and Welty, a property is

Anti-Rigid iff, in all worlds, if x has property φ at a time, then there is some

world in which x does not have property φ at some time. It follows from the

definitions of Rigid and Anti-Rigid that if φ is Rigid and ψ is Anti-Rigid, then

it is not the case that ψ subsumes φ. The corresponding proof requires the

formula of ThGW2 that all properties are exemplifiable.

Welty and Andersen (2005, p.108) argue that modal logic is necessary to

define the meaning of Anti-Rigid. To support their argument they suggest

there are Anti-Rigid properties, for example ‘being a hospital patient’, which

a person can have at all times at which he exists, with the possibility that he

could have existed without having that property.

Our theory is not concerned with possible futures, or “what could have

been”, but rather what has been or currently is. Therefore Anti-Rigid is ir-

relevant to our theory. Given this, the partition of classes as (non-modally)

Rigid or Non-Rigid is the extent of our integration of Rigidity with BFO, and

5.10. DISCUSSION 49

Non-Rigid becomes the designation that plays a prominent role in our theory,

not Anti-Rigid. This issue is non-limiting, as we explain in Part II, Method.

5.10 Discussion

Note here that by eliminating Anti-Rigid we cannot constrain the subsumption

relation in the same manner as was intended by OntoClean. In the modal

system, it can be proven that an Anti-Rigid property cannot subsume a Rigid

property. In our system, we cannot show that the subclass relation does not

hold between two classes if one is Non-Rigid and the other is Rigid. Firstly, we

can show that there is a Rigid class that is a subclass of a Non-Rigid class:

Theorem 5. ∃AB(Rigid(A) ∧ Non-Rigid(B) ∧ subclass of(A,B))

Proof. Consider a class Human, that is Rigid. Also consider a class B, defined

by the disjunction of Human and another class, Reactant, that is Non-Rigid.

Class B is Non-Rigid because there is some member of B (i.e., some non-human

reactant) that exists at a time it is not a reactant. By definition of subclass,

Human is a subclass of B. Therefore a Rigid class is a subclass of a Non-Rigid

class.

Note that it is only contingent that a class defined by the disjunction of a

Rigid class and a Non-Rigid class is Non-Rigid. For example, a class defined by

the disjunction of Human and Student is Rigid under the assumption that all

students are human.

Secondly, we can show that there is a Non-Rigid class that is a subclass of

a Rigid class:

Theorem 6. ∃AB(Rigid(A) ∧ Non-Rigid(B) ∧ subclass of(B,A))

Proof. Consider a class Human, that is Rigid, a class Student that is Non-

Rigid, and that every member of student is a member of Human. By definition

of subclass, Student is a subclass of Human. Therefore a Non-Rigid class is a

subclass of a Rigid class.

50 CHAPTER 5. THE THEORY OF CLASSES

Due to this contingent relationship, assignments of Rigid and Non-Rigid

cannot be immediately applied to inform a modeler when the subclass of rela-

tion cannot hold between classes, as was the case for assignments that included

Anti-Rigid. The Rigid/Non-Rigid distinction, however, is useful within the

scope of BFO’s Theory of Types, as we shall see in the next chapter, Chap-

ter 6. Although assignments of Rigid and Non-Rigid cannot inform when the

subclass of relation does not hold, careful inspection of classes that satisfy

Non-Rigid does. When a class A satisfies Non-Rigid, then by definition

some member x of A at some time t is not a member of A at some other time

t1. If the modeler were to make explicit that x is a member of another class B

at t1, then it would be true that A is not a subclass of B (regardless of whether

or not B satisfies Rigid).

Chapter 6

BFO Theory of Types

6.1 Formal Theory

The objects of BFO’s domain are what we described in Chapter 2 as particu-

lars. Therefore the two most basic objects evaluated for BFO are, disjointly,

particular and class. We do not assume particular and type because it is for the

evaluation of all classes, and the detection of those classes that are not types,

that we propose our system.

Given the commitment to particulars, exists at(x,t) is true iff x has real-

world physical existence at t. This means x is observable at some level of

granularity and/or causal by some scientifically-based measure at t, and can

somehow be validated by a community of scientists. By this token, abstract

objects like numbers are not particulars.1 Particulars only exist in the past or

at present, and cannot exist as “future” objects. (We admit however that it is

not intuitive to discuss regions of space, time, and space-time in this manner,

an issue we visited in Section 3.4.)

Types are classes which satisfy additional criteria. We introduce a unary

1Note however that BFO is not a closed world artifact. Thus if a purported particular is
not observable by science, this does not necessary imply that by BFO that the entity does not
exist. Furthermore, the proposals that we make refer strictly to BFO 1.1, since BFO evolves
only very incrementally, but the bulk of the ideas will be valid even for the later versions of
BFO.

51

52 CHAPTER 6. BFO THEORY OF TYPES

relation, Type, which holds for classes that are BFO types. A criterion each

class that is a type must satisfy is that it is instantiated by some particular at

some time, in the actual world (Smith, 2003, p. 6). Therefore each type satisfies

the unary relation Instantiated:

Axiom 4. Type(A) → Instantiated(A)

A class that satisfies Instantiated, but has as a member an object which is a

not a particular, satisfies Partial:

Definition 7. Partial(A) =def Instantiated(A) ∧

∃xt(member of(x,A,t) ∧ ¬exists at(x,t))

Another criterion for every class that is a type is that every member of the

class at some time is such that it exists at that time. Therefore each type also

satisfies the unary relation Members Exist:

Axiom 5. Type(A) → Members Exist(A)

Theorem 7. Type(A) → ¬Partial(A)

Proof. As a reductio proof, let us assume that there is some A such that

Type(A) and Partial(A). By Partial(A) and the definition of

Partial (Definition 7), there is some x and t be such that member of(x,A,t)

and ¬exist at(x,t). By Axiom 5 and Type(A) it follows that Members Exist(A).

By the definition of Members Exist(A) and member of(x, A,t), it follows

that exists at(x,t), a contradiction.

In the BFO literature, types are however not characterized as what we define

as Rigid, primarily due to controversy surrounding the existence conditions of

particulars that fall under classes which correspond to stages of (human) devel-

opment, e.g., Embryo, Fetus, Neonate, Infant, Child, and Adult. It is unsettled

in the OBO Foundry community whether the identity of some x persists across

the times it is a member of these classes. For example it is not clear if an embryo

that develops into a fetus can be identified as being the “same thing” as the em-

bryo, or is something new altogether. Are the changes that an embryo undergoes

6.1. FORMAL THEORY 53

during the span of development between being a embryo and a fetus sufficient to

cause a change in identity? If the answer is “yes”, then Embryo and Fetus are

Rigid, otherwise they are Non-Rigid. If the latter is correct, because by some

opinions these classes are types, the question then becomes whether some types

are in fact Non-Rigid.

It might be suggested that since these classes, which are based on develop-

mental stages are in fact roles, are Non-Rigid they might be categorized as Role

types. However they are not “optional” in the way that roles are. Note the

following schema: everything that is a human embryo is a human, everything

that is a human embryo was a fetus, and everything that is an adult was an

embryo.

Because these class are not types in BFO (in both the current version 1.1,

in 2011, and the upcoming 2.0) and they are not optional in the way that roles

are, I will exclude the modeling and evaluation of these developmental stage

based classes from the domain.2

With this exclusion in place, Rigidity is in fact fundamental to the rela-

tionship between a particular and its type, which is the the classification unit

for BFO compliant ontologies. This has not been formulated to this point, for

the reasons given, which we think will assist in the process of modeling BFO-

compliant ontologies.

Under the assumptions given, each type satisfies the Rigid relation:

Axiom 6. Type(A) → Rigid(A)

From which it follows that classes which satisfy Empty are not BFO types:

Theorem 8. Type(A) → ¬Empty(A)

Proof. Let A be a class that is a type. Because each type is instantiated (Axiom

4), and an instantiated class is not empty (Definition 2, Definition 3), it holds

that A is not empty.

2BFO developers want these classes to be considered as types, but the relevant portion
of BFO has not been officially documented, yet, and will not be included in BFO 2.0 (Barry
Smith, Personal Communication).

54 CHAPTER 6. BFO THEORY OF TYPES

It is worth noting that if a class satisfies Empty, it is vacuously true that

the class satisfies Members Exist. Because all types satisfy Instantiated,

this is of no interesting consequence, since our framework is centered on type

candidacy.

Also, our definition of Empty is such that there is no member at some time,

which trivially entails there is no member at some time that exists at that time.

What is important is that classes that satisfy Empty or this entailment are

not relevant to BFO. This includes those classes for which, at some time in the

future, members are anticipated to exist. This remains a hotly debated topic.

Dumontier and Hoehndorf (2010) among others argue that there are certain

classes that we can fully describe the features of that, although they have never

had members, are valuable in an ontology of the biomedical sciences. Take

for example Chemical Compound Not Yet Synthesized, which has as members

“potential” pharmaceutical drugs, which are modeled in computer simulations

but have never been synthesized. The originators of BFO argue that these kinds

of classes are not types because the intended members are not such that they

exist. B. Smith (Personal Communication) suggests that they are descriptions or

plans, and the latter are generically dependent continuants rather than classes.

To further this point, if “future” types are admitted into an ontology, then

those which are fictional, imaginary, abstract, etc. are given equal (ontological)

status. The root of this debate is unfortunately a perpetual one between realists

and conceptualists and/or epistemologists on what role in scientific research an

ontology is supposed to play.

Given that types (under the restriction given) are Rigid, it follows also that

no Non-Rigid class is a type:

Theorem 9. Non-Rigid(A) → ¬Type(A)

Proof. Let A be a class which is Non-Rigid. By Definition 6 it is not Rigid,

so by Axiom 6 it is not a type.

Non-Rigid is very useful as a modeling construct because it often picks out

6.1. FORMAL THEORY 55

classes that are often dependent continuant types and whose members are inde-

pendent continuant particulars. For modeling BFO ontologies, we can now use

Rigid and Non-Rigid as a replacement for OntoClean’s modal definitions of

Rigidity. In what follows we present the rest of BFO’s theory of types, which

also serve as criteria that BFO types must meet.

The fundamental relation between a particular and a type is instance of.

instance of(x,A,t) is true iff particular x is an instance of type A at time t. If

a general term refers to a class that is a BFO type, then each of the members

of the class instantiates the type:

Definition 8. instance of(x,A,t) =def member of(x,A,t) ∧ Type(A)

This definition is important, because it means that classes that are types are

class that only have particulars as members, which therefore exist at all times

they are members:

Theorem 10. Type(A) ∧ member of(x,A,t) → exists at(x,t)

Proof. Let x, A, and t be such that Type(A) and instance of(x,A,t). By the

definition of instance of (Definition 8), it follows that member of(x,A,t).

By Axiom 5 and Type(A) it follows that Members Exist(A). By the def-

inition of Members Exist (Definition 4) and member of(x,A,t) it follows

that exists at(x,t).

We therefore easily show that every x that instantiates a type at t exists at t :

Theorem 11. instance of(x,A,t) → exists at(x,t)

Proof. Let x, A, and t be such that x is an instance of A at t. By the definition of

instance of (Definition 8), x is a member of A at t and A satisfies Type. By

Axiom 5 A satisfies Members Exist. By the definition of Members Exist

it follows that each member exists when a member.

Also, it follows that every type has an instance:

Theorem 12. Type(A) → ∃xt(instance of(x,A,t))

56 CHAPTER 6. BFO THEORY OF TYPES

Proof. Let A be such that Type(A). From Axiom 4 it holds that there is

some x and t such that member of(x,A,t). From the definition of instance of

(Definition 8), Type(A), and member of(x,A,t) it follows that

instance of(x,A,t).

It also follows that if a member of a class does not instantiate it, that class is

not a type:

Theorem 13. ∃xt(member of(x,A,t) ∧ ¬instance of(x,A,t)) →

¬Type(A)

Proof. Let x, A, and t be such that member of(x,A,t) and ¬instance of(x,A,t).

From ¬instance of(x,A,t) and the definition of instance of (Definition 8),

it follows that ¬member of(x,A,t) or ¬Type(A). Because we assume mem-

ber of(x,A,t), the latter disjunct, ¬Type(A), holds.

While there is no restriction on which objects can be members of a class, only

particulars are instances of a type:

Axiom 7. Type(A) ∧ Type(B) → ∀t(¬instance of(A,B,t))

BFO considers instance of, not member of, the most basic relation for

constructing ontologies. Particulars that instantiate some type are in some

sense a part of a whole; types exist in their corresponding particulars (Smith,

2003, p.6) and so there is a dependency between them. (This may be more

controversial for types that are artifactual, however.) The existence conditions

of types is however out of the current scope.

With the member of(x,A,t) relation, however, x is presupposed to be a

particular, but there is no commitment about the nature of A, and certainly

not that it characterizes what is essential to x. It is simply a classification,

which is why we apply member of relation as a primitive for defining Rigid

and Non-Rigid, and as a modeling construct for evaluating candidate types.

is a is a relation between types and is the basic or “backbone” BFO relation

for scientific classification, i.e., building taxonomies. The definition of a type

6.1. FORMAL THEORY 57

serves as a more general definition for its subtypes. Hence every particular x

that instantiates a type A at a time t also instantiates a supertype B at the

same time t :3

Definition 9. is a(A,B) =def ∀xt(instance of(x,A,t) →

instance of(x,B,t))

is a is a relation between types:

Theorem 14. is a(A,B) → Type(A) ∧ Type(B)

Proof. Let A and B be such that is a(A,B). From Theorem 12 and the def-

inition of is a (Definition 9) it follows there is some x and t such that in-

stance of(x,A,t) and instance of(x,B,t). From the definition of instance of

(Definition 8) it follows that Type(A) and Type(B).

Two types are identical if and only if one is a subtype of the other, and vice

versa:4

Axiom 8. A=B ↔ (is a(A,B) ∧ is a(B,A))

Given the definition of is a, two types are identical if and only if every time

at which a particular is an instance of one type, it is a member of the other,

and vice versa.

is a is therefore provably anti-symmetric. is a is also provably reflexive and

transitive, as proven for Theorem 1 and Theorem 2, where types and in-

stances must be substituted for classes and members. Because by definition

instance of(x,A,t) entails member of(x,A,t), we can easily show that if A is

a subtype of B, then A is a subclass of B :

Theorem 15. is a(A,B) → subclass of(A,B)

3We use ‘time’ to refer to the time objects of BFO, temporal regions, which includes
temporal instants.

4It is not clear from the BFO literature that the ‘→’ holds; however, from personal com-
munication Barry Smith indicates where it is not true (in the OBO Foundry), it is a mistake.

58 CHAPTER 6. BFO THEORY OF TYPES

Proof. Let A and B be such that is a(A,B). Also let x and t be such that x is

a member of A at t. By Theorem 14, A is a type, and by the definition of

instance of (Definition 8), x is an instance of A at t. Applying the definition

of is a (Definition 9) to is a(A,B), x is an instance of B at t. By Definition

8, x is a member of B at t. Therefore subclass of(A,B).

Our non-modal definitions of Rigid and Non-Rigid are useful for domain

modeling by constraining use of the BFO classification relation, is a:

Theorem 16. is a(A,B) → Rigid(A) ∧ Rigid(B)

Proof. Follows from Theorem 14 and Axiom 6.

Theorem 17. Non-Rigid(A) → ∀B(¬is a(A,B) ∧ ¬is a(B,A))

Proof. Follows from Theorem 6 and Theorem 14.

As noted, Instantiated, Exists, and Empty also restrict the is a relation.

In BFO, it is assumed that only types subsume types because BFO does not

acknowledge any other kind of category. Therefore no Non-Rigid class is a

supertype of a Rigid class, and no Rigid class is a supertype of a Non-Rigid

class. The latter implication is unique to BFO; in OntoClean it is only that

Non-Rigid cannot subsume Rigid, there is no constraint that Non-Rigid cannot

be subsumed by Rigid. We henceforth treat these formulations as constraints

that a class within a candidate BFO domain ontology must satisfy in order to

be a type.

Every type is a subtype of BFO’s root type, Entity :

Axiom 9. Type(A) → is a(A,Entity)

and every class rooted under (i.e., a subtype of) Entity is a type:

Theorem 18. is a(A,Entity) → Type(A)

Proof. Follows from Theorem 14.

6.1. FORMAL THEORY 59

From Theorem 18 it also follows that Type(Entity).

Every subtype or supertype is a subtype of Entity :

Theorem 19. is a(A,B) → is a(A,Entity) ∧ is a(B,Entity)

Proof. Follows from Theorem 14 and Axiom 9.

Under BFO for any particular x that exists at a time t, x instantiates some type

A at t :

Axiom 10. exists at(x,t) → ∃A(instance of(x,A,t))

therefore if a particular instantiates any type at a time, it instantiates Entity

at that time:

Theorem 20. ∃A(instance of(x,A,t)) → instance of(x,Entity,t)

Proof. Follows from the definition of instance of (Definition 8), Axiom 9,

and the definition of is a (Definition 9).

Given these last two formalisms, we can show:

Theorem 21. member of(x,A,t) ∧ exists at(x,t) →

∃B(member of(x,B,t) ∧ Rigid(B))

Proof. By Axiom 10, under BFO’s theory, every object that exists at some time

is an instance of some type at that time (hence is a particular). By Axiom 6,

every type is a Rigid class. Therefore, every member of a Non-Rigid class that

is a particular is a member of some Rigid class.

Similarly, and tying in our OntoClean reformulation of Rigid and restricting

members to particulars by virtue of exists at, it follows that:

Theorem 22. (Non-Rigid(A) ∧ Members Exist(A)) →

∃B(subclass of(A,B) ∧ Rigid(B))

60 CHAPTER 6. BFO THEORY OF TYPES

Proof. Let x, A, and t be such that member of(x,A,t), and assume that Non-

Rigid(A) (which has no bearing) and Members Exist(A). By the definition

of Members Exist (Definition 5), it follows that exists at(x,t). By Axiom

10, follows instance of(x,B,t) for some indefinite B. It follows from the defini-

tion of instance of (Definition 8) that member of(x,B,t) holds. Therefore

subclass of(A,B). From the definition of instance of and instance of(x,B,t)

it follows that Type(B). By Axiom 6, it follows that Rigid(B).

Furthermore, we can show that if a class is a subclass of Entity (therefore if

it is a subclass of any BFO type), it satisfies Members Exist:

Theorem 23. subclass of(A,Entity) → Members Exist(A)

Proof. Let x, A, and t be such that x is a member of A at t, and A is a subclass

of Entity. By the definition of subclass of (Definition 1) it follows that

x is a member of Entity at t. Since Entity is a type (Theorem 18), Entity

satisfies Members Exist (Axiom 5). Therefore, x exists at t ; ergo, A satisfies

Members Exist.

As discussed in Section 3.4.2, the root type of the BFO upper ontology is

Entity ; Continuant and Occurrent are its subtypes. For occurrents, if they

instantiate a type at some time, they instantiate that type for all time:

Axiom 11. ∃t(instance of(x,Occurrent,t)) →

∀t1(instance of(x,Occurrent,t1))

It follows that all occurrents exist for all time:

Theorem 24. ∃t(instance of(x,Occurrent,t)) → ∀t1(exists at(x,t1))

Proof. Let x and t be such that x is an instance of Occurrent at a time t.

Therefore by Axiom 11 x is an instance of Occurrent for all time. Since for

all times at which something is an instance of a type, it exists at those times

(Theorem 11), x exists for all time.

Also, for a subtype A of Occurrent, its instances are instances of A for all time:

6.1. FORMAL THEORY 61

Theorem 25. is a(A,Occurrent) → ∀x (∃t(instance of(x,A,t)) →

∀t(instance of(x,A,t)))

Proof. Let A be such that it is a subtype of Occurrent. Let x and t be such that

x is an instance of A at t. By the definition of is a (Definition 9), it follows

that x is an instance of Occurrent at t. By Axiom 11, it follows that x is an

instance of A for all time.

Terms used to represent types within our formal system are simply labels

chosen for their mnemonic usefulness. In practice, unique numeric identifiers

are used for domain types (The Gene Ontology Consortium, 2008; Ruttenberg,

2009), leaving what they denote to be defined by formalisms and natural lan-

guage parses.

Besides is a, we define the relationship between a type and an immediate

supertype (i.e., there being no other type “between” a type and its immedi-

ate supertype in the is a hierarchy in which the types are included), with the

immediate is a relation, as below:

Definition 10. immediate is a(A,B) =def is a(A,B) ∧ A 6=B ∧

∀C (is a(A,C) ∧ is a(C,B) → A=C ⊕ C=B)

immediate is a is irreflexive, intransitive, and asymmetric, and is a is its tran-

sitive closure. From this definition it follows that:

Theorem 26. immediate is a(A,B) → ∃xt(instance of(x,B,t) ∧

¬instance of(x,A,t))

Proof. Given the identity of is a (Axiom 8), if B is a subtype of A, then A

and B are identical. But B cannot be a subtype of A, because by definition of

immediate is a (Definition 10), A 6=B. B is not a subtype of A only if there

is some particular x that instantiates B that does not instantiate A.

62 CHAPTER 6. BFO THEORY OF TYPES

BFO’s theory of types commits to the notion that two types are disjoint (i.e.,

have no instances in common) unless one is a subtype of the other (henceforth

the ‘Disjointness Principle’):

Disjointness Principle

Axiom 12. ∃xt(instance of(x,A,t) ∧ instance of(x,B,t)) →

is a(A,B) ∨ is a(B,A)

Candidates that violate these principles are not types. Given Axiom 4 and

Axiom 12, we derive a theorem for the disjointness of types:

Theorem 27. is a(A,B) ∧ is a(A,C) → is a(B,C) ∨ is a(C,B)

Proof. Let A, B, and C be such that is a(A,B) and is a(A,C). From Axiom 4

every type A has an instance, so there is some particular x that is an instance

of both B and C. By the Disjointness Principle (Axiom 12), is a(B,C) or

is a(C,B).

It also follows that if there is an instance of a type A, and A is a subclass of

B and C, if B and C are not related by is a, then either B or C is not a type:

Theorem 28. ∃xt(instance of(x,A,t)) ∧

subclass of(A,B) ∧ subclass of(A,C) →

¬is a(B,C) ∨ ¬is a(C,B) →

¬Type(B) ∨ ¬Type(C)

Proof. If B and C are types, then by the definitions of subclass and in-

stance of, is a(A,B) and is a(A,C). Then by the disjointness of types (Theorem

27), it follows that is a(B,C) or is a(B,C). If we assume that neither hold, it

follows that B or C is not a type.

BFO was also developed under the assumption that no type has more than

one direct supertype, henceforth the ‘Single Inheritance Principle’, which fol-

6.1. FORMAL THEORY 63

lows from the Disjointness Principle:

Single Inheritance Principle

Theorem 29. immediate is a(A,B) → (immediate is a(A,C) ↔

B=C)

Proof. Let A, B, and C be such that immediate is a(A,B) and immedi-

ate is a(A,C). Therefore by the definition of immediate is a (Definition

10), is a(A,B), is a(A,C), A 6=B, and A 6=C. By the disjointness of types (Theorem

27), is a(B,C) or is a(C,B). By Definition 10 for is a(A,B) and the disjunct

is a(B,C), it holds that A=B or B=C. Because A 6=B, it holds that B=C. By

Definition 10 for is a(A,C) and the disjunct is a(C,B), it holds that A=C or

C=B. Because A 6=C, it holds that C=B. Therefore C=B.

From the definition of immediate is a and the Disjointness Principle, it

follows that two types which have an instance and a direct parent in common

are identical:

Theorem 30. (instance of(x,A,t) ∧ instance of(x,B,t) ∧

immediate is a(A,C) ∧ immediate is a(B,C)) →

A=B

Proof. Let x, t, A, B, and C be such that instance of(x,A,t), instance of(x,B,t),

immediate is a(A,C), and immediate is a(B,C). By the definition of im-

mediate is a (Definition 10) it then holds that isa(A,C), isa(B,C), A 6=C,

and B 6=C. By this definition it also holds that if is a(A,B) and is a(B,C) then

A=B or B=C. Similarly, if is a(B,A) and is a(A,C) then B=A or A=C. By the

Disjointness Principle (Axiom 12), instance of(x,A,t), and instance of(x,B,t),

it follows that is a(A,B) or is a(B,A). Because isa(A,C) and is a(B,C) hold,

and is a(A,B) or is a(B,A) holds, A=B or B=C or A=C follows. Due to A 6=C

and and B 6=C, A=B follows.

We can also show that:

64 CHAPTER 6. BFO THEORY OF TYPES

Theorem 31. (∃A(is a(A,B) ∧ is a(A,C)) ∧

∃D(immediate is a(B,D) ∧

immediate is a(C,D))) → B=C

Proof. Let A, B, C and D be such that is a(A,B), is a(A,C), immediate is a(B,D),

and immediate is a(C,D). From Axiom 4 every type A has an instance, so

there is some particular x that is an instance of both B and C. By Theorem

30, B=C.

Figure 6.1 illustrates a portion of the top seven levels of the BFO upper

ontology type (or is a) hierarchy. We propose that the subtyping relation be-

tween upper ontology types is immediate is a, which is a restricted version of

is a. We make this assumption given that the types of BFO’s upper ontology

fall within a finite domain. If BFO is changed such that for upper ontology

types A and B a new upper ontology type C is placed between them in the

BFO hierarchy, then it is a different ontology. Axioms corresponding to those

illustrated are listed in Appendix D.

We define a relation for disjoint classes, disjoint fromclass:

Definition 11. disjoint fromclass(A,B) =def ∀xt(member of(x,A,t) →

¬member of(x,B,t))

We also define a relation for disjoint types. disjoint from(A,B) holds iff A

and B do not share any instances at any time:

Definition 12. disjoint fromtype(A,B) =def ∀xt(instance of(x,A,t) →

¬instance of(x,B,t))

Theorem 32. disjoint fromtype(A,B) → Type(A) ∧ Type(B)

Proof. By the definition of instance of (Definition 8).

A class that has as members members of disjoint types satisfies the unary pred-

icate Heterogeneous:

6.1. FORMAL THEORY 65

OccurrentContinuant

Entity

Dependent

Continuant

Independent

Continuant
Spatial
Region

Object

Aggregate

Specifically
Dependent
Contiuant

Processual
Entity

Temporal
Region

Material
Entity

Generically
Dependent
Continuant

Object Quality
Realizable
Entity

Disposition

Function

Role

Spatio-
Temporal

Region

Temporal
Instant

Temporal
IntervalProcess

Figure 6.1: BFO Continuant Type immediate is a Hierarchy (Partial View)

66 CHAPTER 6. BFO THEORY OF TYPES

Definition 13. Heterogeneous(A) =def ∃xBCt(member of(x,A,t) ∧

member of(x,B,t) ∧ member of(x,C,t) ∧

disjoint fromtype(B,C))

Based on this definition we can show that a heterogeneous class is an instantiated

one:

Theorem 33. Heterogeneous(A) → Instantiated(A)

Proof. Let A be such that Heterogeneous(A). x is an indefinite member of

A at t and of two indefinite classes B and C at t, which are disjoint types, as

entailed by Theorem 32. Every type satisfies Members Exist (Axiom 5),

which means that every member of B or C at some time exists at that time.

Therefore, x exists at a time it is a member of A, and so A satisfies Instantiated

(Definition 2).

It follows that disjointness among types implies that the types do not share

any members, due to the fact that all members of a class that is type are its

instances:

Theorem 34. disjoint fromtype(A,B) → disjoint fromclass(A,B)

Proof. Let A and B be such that disjoint fromtype(A,B), and also let x and t

be such that member of(x,A,t). By Theorem 32, it follows thatType(A) and

Type(B) hold. By the definition of instance of (Definition 8), it follows that

instance of(x,A,t). From the definition of disjoint fromtype (Definition 12)

and instance of(x,A,t), it follows that ¬instance(x,B,t). From the definition

of instance of, if instance of(x,B,t) does not hold, then either Type(B) and

member of(x,B,t) (or both) do not hold. Because the former holds, it follows

that ¬member(x,B,t).

disjoint fromclass is non-reflexive (i.e., not irreflexive and not reflexive):

Theorem 35. ¬∀A(¬disjoint fromclass(A,A))

6.1. FORMAL THEORY 67

Proof. As a reductio proof, we assume that there is no A such that

disjoint from(A,A). Because there is some (and only one) class which satisfies

Empty (Definition 3), which is disjoint from itself because it has no members,

there is a contradiction.

Theorem 36. ¬∀A(disjoint fromclass(A,A))

Proof. As a reductio proof, let A be such that disjoint fromclass(A,A). It fol-

lows that disjoint fromclass(Entity,Entity). Since every type satisfies Instan-

tiated, there is some x such that member of(x,Entity,t). By our assumption,

this entails ¬member of(x,Entity,t), a contradiction.

disjoint fromtype however is irreflexive:

Theorem 37. ∀A(¬disjoint fromtype(A,A))

Proof. As a reductio proof, let some A be such that disjoint fromtype(A,A).

A is a type, and because every type satisfies Instantiated, there is some

x and t such that instance of(x,A,t). By our assumption it follows that

¬instance of(x,A,t), a contradiction.

disjoint fromclass is symmetric:

Theorem 38. disjoint fromclass(A,B) → disjoint fromclass(B,A)

Proof. Let A and B be such that disjoint fromclass(A,B). From the definition

of disjoint fromclass (Definition 11) it follows that every member of B at t

is not a member of A at t. Therefore disjoint fromclass(B,A).

disjoint fromtype is also symmetric:

Theorem 39. disjoint fromtype(A,B) → disjoint fromtype(B,A)

Proof. Let A and B be such that disjoint fromtype(A,B). From the definition

of disjoint fromtype (Definition 12) it follows that every member of B at t

is not a member of A at t. Therefore disjoint fromtype(B,A).

If a class A is a subclass of two disjoint classes, B and C, then A is empty:

68 CHAPTER 6. BFO THEORY OF TYPES

Theorem 40. subclass of(A,B) ∧ subclass of(A,C) ∧

disjoint fromclass(B,C) → Empty(A)

Proof. Let A, B, and C be such that subclass of(A,B), subclass of(A,C),

and disjoint fromclass(B,C). It follows that there is no x such that it is a

member of B and C at some t. From this it follows that there is no x such

that it is a member of A at some t. Therefore by definition A satisfies Empty

(Definition 3).

If it holds that disjoint fromtype(A,B), we infer that all subtypes of A are

disjoint from B :

Theorem 41. disjoint fromtype(A,B) ∧ is a(C,A) →

disjoint fromtype(C,B)

Proof. Let A, B, and C be such that disjoint fromtype(A,B) and is a(C,A).

By is a(C,A) every instance of C is also an instance of A (Definition 9), and by

disjoint fromtype(A,B) no instance of A is an instance of B (Definition 12).

Therefore no instance of C is an instance of B, hence disjoint fromtype(C,B).

and from Definition 12 and Theorem 41 we further derive that two subtypes

of two respective disjoint types are also disjoint:

Theorem 42. disjoint fromtype(A,B) ∧ is a(C,A) ∧ is a(D,B) →

disjoint fromtype(C,D)

Proof. By application of Theorem 42 for disjoint fromtype(A,B) and is a(C,A),

disjoint fromtype(C,B) holds. By application of Theorem 42 for

disjoint fromtype(C,B) and is a(D,B), disjoint fromtype(C,D) holds.

We can show that for two immediate subtypes of a third type, if those two

types are not identical, then they are disjoint:

Theorem 43. immediate is a(A,C) ∧ immediate is a(B,C) ∧ A 6=B →

disjoint fromtype(A,B)

6.1. FORMAL THEORY 69

Proof. Let A, B, and C be such that immediate is a(A,C), immediate is a(B,C),

and A 6= B. By the definition of immediate is a, it holds that is a(A,C),

is a(B,C), A 6=C and B 6=C. As a reductio proof, let’s also assume that

¬disjoint fromtype(A,B) holds, which implies there is some particular x that

is a member of A and a member of B at some time t. Due to the Disjointness

Principle (Axiom 12), is a(A,B) or is a(B,A). If is a(A,B) holds, then by the

definition of immediate is a (Definition 10), A=B or B=C holds. Because

neither holds, it does not hold that is a(A,B). If is a(B,A) holds, then by Def-

inition 10, B=A or A=C hold. Because neither hold, it does not hold that

is a(B,A). Since neither is a(A,B) nor is a(B,A) hold, there is a contradiction.

Therefore it holds that disjoint fromtype(A,B).

We can also prove that sibling BFO upper ontology types (e.g., Continuant

and Occurrent), and more generally, any types not related by is a, are disjoint

types:

Theorem 44. (is a(A,B) ∨ is a(B,A)) ⊕ disjoint fromtype(A,B)

Proof. From the Disjointness Principle (Axiom 12) we have that

∀xt(¬instance of(x,A,t) ∨ ¬instance of(x,B,t)) ∨ is a(A,B) ∨ is a(B,A) which

we can transform into ∀xt(instance of(x,A,t) →¬instance of(x,B,t)) ∨ is a(A,B)

∨ is a(B,A). From the definition of disjoint fromtype (Definition 12), it fol-

lows that

disjoint fromtype(A,B) ∨ (is a(A,B) ∨ is a(B,A)). Because disjoint types

cannot share instances, and vice versa, the outer disjunction is exclusive.

By applying Theorem 43 we can prove that sibling BFO upper ontology

types are disjoint. For instance, Continuant and Occurrent are disjoint types, as

are IndependentContinuant and DependentContinuant. (We list the disjointness

theorems for sibling types of BFO in Appendix D.2 (A59-A70). We can also

prove that non-sibling upper ontology types not related by is a are disjoint, by

applying Theorem 41 and Theorem 39.

Finally, disjoint fromtype is non-transitive (i.e., not transitive or intransitive):

70 CHAPTER 6. BFO THEORY OF TYPES

Theorem 45. ¬∀ABC (disjoint fromtype(A,B) ∧

disjoint fromtype(B,C) →

disjoint fromtype(A,C))

Proof. As a reductio proof, we assume the negation of our theorem. Therefore

if Continuant is disjoint from Occurrent, and Occurrent is disjoint from Contin-

uant, then Occurrent is disjoint from Occurrent. Because Continuant is disjoint

from Occurrent, and due to the symmetry of disjoint fromtype (Theorem

26) the inverse also holds, Occurrent is disjoint from Occurrent. Since every

type has an instance (Theorem 12), it is not the case that Occurrent is disjoint

from Occurrent, a contradiction.

Theorem 46. ¬∀ABC (disjoint fromtype(A,B) ∧

disjoint fromtype(B,C) →

¬disjoint fromtype(A,C))

Proof. As a reductio proof, we assume the negation of our theorem. Therefore

if IndependentContinuant is disjoint from DependentContinuant and Depen-

dentContinuant is disjoint from Occurrent, then IndependentContinuant is not

disjoint from Occurrent. Both conjuncts hold, therefore IndependentContinuant

is not disjoint from Occurrent, which is false.

Ontologies that do not observe the principles of disjointness and single in-

heritence are often considered ill-formed (Smith, 2003), and are even described

as “tangled” (Welty and Guarino, 2001). Rector (2003) recommends a similar

approach to enable modularization. He recommends that an ontology specified

in a Description Logic should avoid multiple inheritance in its asserted hierarchy.

BFO’s upper ontology was designed with these principles in mind. An upper

ontology like BFO provides basic, or upper ontology types with the intent that

the types of a domain ontology are subtypes of them. It is also the design

principles of BFO which are reflected in its axioms that must also be applied in

order for the rooting’s benefit to be apparent to the ontology modeler.

6.2. RELATION ONTOLOGY 71

Given this important role that BFO plays in shaping ontologies, there is

a potential and also a need to evaluate the correctness of ontologies that are

proposed to be domain ontologies using BFO. This role can be played by evalu-

ating candidate domain types in a manner that determines their rooting under

BFO.5 Further, formalisms of candidate types can be checked for consistency

with BFO axioms. (Smith and Ceusters, 2010, p.143) suggests that a decision

procedure that determines which classes are types would be valuable to the

community, but that this determination is an ongoing process. Our method for

evaluating and standardizing candidate types is a procedure which we assert in

that process.

By rooting domain types in those of BFO, what particulars the types are

asserted to refer becomes. It is a necessary task to be undertaken for any domain

ontology, in order for BFO to serve as a facilitator of interoperability, one that

is ideally undertaken during the design of the domain ontology, but one that

can also occur afterwards. We discuss this process in detail in Chapter 8.

6.2 Relation Ontology

After the development of the BFO is a hierarchy, it was determined that addi-

tional relations were needed, as evidenced by the exists at relation. BFO was

later complemented with a core set of primitive relations, formalized within the

Relation Ontology (RO) (Smith et al., 2005).(RO is integrated into the next

version of BFO, 2.0, but we consider version 1.1 stable and “frozen” for our

research.)

BFO is influenced by Aristotle’s work in many respects, including the di-

vision of particulars into substances and accidents, which BFO refers to as

independent continuants and dependent continuants, respectively. An example

of an independent continuant is a specific chunk of wood; an example of a de-

pendent continuant is the texture of that chunk of wood. The texture is given

5By ‘rooting’ under BFO we mean that each candidate type is subtyped under a leaf BFO
type, i.e., a type that has no additional subtypes in BFO.

72 CHAPTER 6. BFO THEORY OF TYPES

the status of a particular in BFO, but conditionally so. The texture of the wood

only exists when the chunk of wood exists. The texture exists insofar as the

chunk does; in this respect, the texture “depends on” it. We hereby formalize

the depends on relation, depends on(x,y,t), which means that particular x

depends on particular y at a time t (we axiomatize this notion below). (We also

refer to y as the bearer of x.) This relation commits x to being a dependent

continuant particular and y to being an independent continuant particular:

Axiom 13. depends on(x,y,t) →

instance of(x,DependentContinuant,t) ∧

instance of(y,IndependentContinuant,t)

The dependence relation between a dependent and independent continuant

only holds at a time at which they both exist:

Theorem 47. depends on(x,y,t) → exists at(x,t) ∧ exists at(y,t)

Proof. By Axiom 13, the definition of instance of (Definition 8), Axiom

5, and the definition of Members Exist (Definition 4).

This entails that if x or y does not exist at time t, then depends on(x,y,t) does

not hold at that time.

As mentioned in our example, a dependent continuant particular only exists

when the independent continuant particular it depends on exists. Therefore,

if a dependent continuant particular x depends on an independent continuant

particular y at a time t, then the existence of x at time t1 implies the existence

of y at the same time, t1:

Axiom 14. ∃t(depends on(x,y,t)) → ∀t1(exists at(x,t1) →

exists at(y,t1))

(Note that in BFO, the existence of dependent continuants does not depend

on other dependent continuants.) Relative to our example, if our chunk of wood

ceases to exist, so does its texture. Dependent continuants cannot migrate from

one bearer to another, therefore:

6.2. RELATION ONTOLOGY 73

Axiom 15. ∃tt1(depends on(x,y,t) ∧ depends on(x,z,t1)) → y=z

Bittner and Donnelly (2005, p.3) refer to this as the single-immediate-successor

(logical) property. (This relation would be functional in the set-theoretic sense

if specified as a binary, atemporal relation.)

This kind of dependence we refer to as specific dependence. Another kind

of dependence is generic dependence. It is a relationship that holds between a

dependent continuant particular and an independent continuant type (instead

of an independent continuant particular). Generic dependence is such that if

one bearer of the dependent continuant ceases to exist, then the dependent

continuant can survive only if there are other bearers. For example, a specific

PDF document is generically dependent on some instance of the type Storage

Medium since there has to be at least one storage medium on which the PDF

document is stored. If the PDF document is erased, for example from a hard

drive, it survives only if it is stored on other media, for example a backup hard

drive or USB key. (One might rightfully suggest that the PDF document is

also generically dependent on some file saved on the storage medium.) generi-

cally depends on(x,A,t) means that particular x is generically dependent on

type A at time t. This relation commits x to being a generically dependent

continuant particular and A to being an independent continuant type:

Axiom 16. generically depends on(x,A,t) →

instance of(x,GenericallyDependentContinuant,t) ∧

is a(A,IndependentContinuant)

There are several kinds of specifically dependent continuants. There are

qualities and also realizable entities. A quality is exhibited at a time if it in-

heres in an independent continuant that exists at that time. Although the

biconcave disc shape of a red blood cell is dependent on its cell, the shape is

more specifically a quality of it. Realizable entities include primarily roles and

functions.

Roles are externally-grounded realizable entities, and “exist because the

74 CHAPTER 6. BFO THEORY OF TYPES

bearer is in some special physical, social, or institutional set of circumstances”

(Arp and Smith, 2008), in which the bearer does not have to be. They are not

such that if they cease to exist, then the physical make-up of their bearers is

thereby changed. An example of a role is that of a student, which is the role of a

person when she is enrolled and participating in courses. Another example of a

role is that of reporter gene, which is a role of the green florescent protein gene

(GFP) when it is fused to a promoter of the gene of interest in a genetically

engineered model (Phillips, 2001).

Functions, in BFO’s use of the term, which is in a specific teleological sense,

are realizable entities that are internally grounded. A disposition is “a realizable

entity which if it ceases to exist, then its bearer is physically changed, and whose

realization occurs when this bearer is in some special physical circumstances, in

virtue of the bearer’s physical make-up” (Arp and Smith, 2008).

A function exists in virtue of the bearer’s make-up, and this physical make-

up is something the bearer possesses because it came into being, either through

evolution (in the case of natural biological entities) or through intentional de-

sign (in the case of artifacts) in order to realize processes of a certain kind.

An example of a function is to pump blood, which is a function of any human

heart. Another example is to withstand protein denaturing conditions, which is

a function of taq polymerase in polymerase chain reaction (Saiki et al., 1988).

Although there are separate RO relations for the relationships of qualities, roles,

and functions with independent continuants, there no additional formal distinc-

tions between them. Given that, for the purposes of our method we use only the

depends on relation, which holds for all specifically dependent continuants.

The RO primitive relations also include part of, located at, and partic-

ipates in. part of(x,y,t) means that particular x is a part of particular y

at time t. part of is transitive, anti-symmetric, and reflexive. As with in-

stance of, the part of relation with respect to time is different for occurrents:

Axiom 17. is a(A,Occurrent) ↔ ∀x (∃t(part of(x,A,t)) →

∀t(part of(x,A,t)))

6.2. RELATION ONTOLOGY 75

Relation arg1 arg2 arg3
depends on Dependent Continuant Independent Continuant Temporal Region
part of Particular Particular Temporal Region
participates in Continuant Occurrent Temporal Region
located in Continuant Spatial Region Temporal Region

Figure 6.2: Instance-Level Relations of Relation Ontology

For any x that fully exists at some temporal instance t, any part of x at t

also exists at t :

Axiom 18. exists at(x,t) → ∀y(part of(y,x,t) → exists at(y,t))

located in(x,y,t) means that x is located in particular y at t. Here x is

committed to being a continuant particular and y is committed to being a

spatial region particular:

Axiom 19. located in(x,y,t) →

instance of(x,Continuant,t) ∧

instance of(y,SpatialRegion,t)

participates in(x,y,t) is a primitive relation between a continuant x, a pro-

cess y, and a time t at which x participates in some way in the y (Smith et al.,

2005, p. 10):

Axiom 20. participates in(x,y,t) →

instance of(x,Continuant,t) ∧

instance of(y,Process,t)

For example, a cell participates in a process of cell transport. Figure 6.2 dis-

plays the RO instance-level relations discussed and the types of their arguments.

Discussions of other RO instance-level relations are provided in (Mungall, 2007).

Besides generic dependence, we also define other type-level relations to for-

malize relationship patterns between particulars of two types. Recall that the

depends on relation represents the relationship between a dependent contin-

uant and an independent continuant at a time. At the type level, for every in-

76 CHAPTER 6. BFO THEORY OF TYPES

stance of A, Depends On(A,B) means that there is some instance of B where

the former instance depends on the latter instance:

Definition 14. Depends On(A,B) =def

∀xt(instance of(x,A,t) →

∃y(instance of(y,B,t) ∧

depends on(x,y,t)))

For example, every instance of supplying cellular energy depends on (or more

specifically, is a function of) some mitochondrion. We can formalized this as

Depends On(SupplyingCellularEnergy,Mitochondrion).

The part of relation represents the parthood relationship between particu-

lars, for instance a particular appendix, appendix03, is a part of a human body,

body022, at some time, formalized: ∃t(part of(appendix03,body022,t)) where

instance of(appendix03,Appendix) and instance of(body022,Body). Another

type-level relation is that for parthood. For every instance of type A

Part Of(A,B) means that there is some instance of type B where the former

instances is a part of the latter instance (Smith and Rosse, 2004, p.445):

As another type level relation for parthood, for every instance of type B

Has Part(B,A) means that there is some instance of type A where the former

instance has the latter instance as a part of it (Smith and Rosse, 2004, p.445).

Definition 16. Has Part(B,A) =def

∀yt(instance of(y,B,t) →

∃z (instance of(z,A,t) ∧ part of(z,y,t)))

Note that these two type-level relations for parthood are not converses. The

relational distinction provided in the previous two definitions is useful when

considering cases where only one of these relations holds. Given the previous

definition, we can represent the relationship between types Human and Heart as

Has Part(Human,Heart). Notice that Part Of(Heart,Human) does not hold

6.3. APPLYING BFO DISTINCTIONS TO PROPERTIES 77

since there are non-humans that have hearts (Smith and Rosse, 2004, p.445).

Discussions of other RO type-level relations are provided in (Mungall, 2007).

Type-level relations like Depends On, Part Of, and Has Part are differ-

ent from the type-level relation is a in that the formalization of is a concerns

the generalization of types, while the type-level parthood relations describe the

relationship of a particular of one type with some particular of another type. It is

also the case that these type-level relations are mutually exclusive with is a. For

example if we have the following formula, Part Of(Prostate,Male Genital System),

which means that every prostate is a part of a male genital system, then it is

not the case that is a(Prostate,Male Genital System). Conversely, given the

mutual exclusivity, if for some types A and B the is a relation holds, then none

of the type-level RO relations hold. Mutual exclusivity among the type-level

RO relations is enforced through type restrictions.

6.3 Applying BFO Distinctions to Properties

As discussed in Chapter 5, there are some predicateslin, like ‘has mass’ that make

reference to entities that BFO deems particulars, that is dependent continuants.

Consider another example, a specific pile of sugar on a table, which we refer to

as MySugar. Consider also two properties Sugar and Hydrophilic. We assume

the property Sugar has as instances6 those entities that are “edible crystalline

carbohydrates [...] characterized by a sweet flavor.” (Campbell and Reece,

2007, p.70), and Hydrophilic those that “[have] an affinity for water [and] can

transiently bound with water through hydrogen bonding” (Campbell and Reece,

2007, p.51). Oftentimes in ontologies such natural language definitions are not

given and are treated as implicit for the general term provided. By applying

the property-centric approach we assert that MySugar is an instance of, or has

the property, Sugar and Hydrophilic. The latter is a property that any amount

6We remind the reader that the sense of ‘instance’ and ‘property’ is given in Chapter 1
and is based on Guarion and Welty. Therefore Sugar and Hydrophillic are shortcuts for being
sugar and being hydrophillic. ‘instance’ is used differently in BFO, and ‘property’ is used
different in philosophy at large.

78 CHAPTER 6. BFO THEORY OF TYPES

Figure 6.3: Initial Approach for Relationships of MySugar, Sugar, and Hy-
drophilic

of sugar has.

Given that we have “unified” properties and types with classes, and that

classes under evaluation are treated as candidate types, we therefore impose

that Sugar and Hydrophilic are denoting types, and the generalized classification

relation is instance of. We are therefore left with an ontology portion of the

following formulas, which represent the asserted relationships between these

three entities (also illustrated in Figure 6.3):

• instance of(MySugar,Sugar)

• instance of(MySugar,Hydrophilic)

Because Sugar and Hydrophilic are herein proposed as “candidate” BFO types,

they must be evaluated as such. From the BFO perspective, the assignment

that the particular MySugar is an instance of Sugar is correct because the class

Sugar defines what MySugar is essentially. MySugar exists as a sugar: any time

in which MySugar exists, it is an instance of Sugar.

The relationship between MySugar and Hydrophilic is however different.

According to BFO there is a specific attribute of MySugar, its affinity for water,

that is itself a particular, a dependent continuant. Henceforth, we denote this

particular HydrophilicityOfMySugar.

However as Hydrophilic is defined its instances includes amounts of sugar,

which are material entities, not dependent continuants like HydrophilicityOfMy-

6.3. APPLYING BFO DISTINCTIONS TO PROPERTIES 79

Sugar. For Hydrophilicity to classify dependent continuants, we would need to

reclarify our assumption for its definition from “having an affinity for water”

to “an affinity for water”. From the latter information definition it follows that

HydrophilicityOfMySugar is an instance of Hydrophilic.

Strawson (1959, p.168), whose explication of sortals inspired OntoClean,

illustrates these same distinctions. When someone speaks of characterizing an

object, says of something what it is, and attributes something to something

else, these are described as characteristic tie, universal tie, and attributive tie,

respectively. Applied to our current example, the relationship between MySugar

and Hydrophilic is a characteristic tie, that between MySugar and Sugar is a

universal tie, and that between HydrophilicityOfMySugar and MySugar is an

attributive tie.

These relationships correspond to what we will define shortly as exempli-

fies (Smith, 2005, p. 168), and also the instance of and depends relations,

respectively. A crucial distinction for modeling a domain is that instance of

is used for classification and exemplifies is used for characterization.

exemplifies is not included in RO, due to its not being a primitive relation,

but we use it here to denote the oft-ignored relation between an independent

continuant particular and a dependent continuant type of which the independent

continuant bears some instance. We define exemplifies as follows:

Definition 17. exemplifies(x,A,t) =def

∃y(depends on(y,x,t) ∧

instance of(y,A,t)) ∧

is a(A,SpecificallyDependentContinuant)

exemplifies(x,A,t) means that independent continuant particular x exem-

plifies the dependent continuant type A at time t. It is defined such that there is

some dependent continuant particular y which depends on x at time t at which

it instantiates A, a dependent continuant type.

With this relation we represent the relationship between MySugar and Hy-

80 CHAPTER 6. BFO THEORY OF TYPES

Figure 6.4: BFO Relationships of MySugar, Sugar, and Hydrophilic

drophilic directly in a formula (below), as originally proposed. We formalize

the three mentioned relationships of MySugar and the classes Sugar and Hy-

drophilic, as follows:

• ∃t(instance of(MySugar, Sugar,t))

• ∃t(instance of(HydrophilicityOfMySugar,Hydrophilic,t)

• ∃t(depends on(HydrophilicityOfMySugar, MySugar,t))

• ∃t(exemplifies(MySugar,Hydrophilic,t))

The remaining relationships holding for the entities discussed are those that

require a rooting in the BFO upper ontology, which is as follows:

6.3. APPLYING BFO DISTINCTIONS TO PROPERTIES 81

• is a(Hydrophilic, SpecificallyDependentContinuant)

• is a(Sugar, MaterialEntity)

We illustrate each of these relationships in Figure 6.4. In this figure, each

directed arc represents a relationship and each circle node represents a type and

each square node represents a particular. The darkened nodes represent BFO

upper ontology types.

82 CHAPTER 6. BFO THEORY OF TYPES

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 7

Integrating

Unity and Identity

with BFO

7.1 Integrating Unity with BFO

7.1.1 Introduction

The matter of Unity set forth by Guarino and Welty concerns, for the objects

with a given property, whether there is a relation that holds only between the

parts of the object and nothing else. In what follows we discuss the perspectives

of several figures in the field of metaphysics on this topic, and then provide an

analysis of the OntoClean notions of Unity and Unity criteria.

According to Bunge (1979), an aggregate is a collection of things not held

together by “bonds”, and therefore lacking in integrity or unity. Bunge states

that the parts of a concrete aggregate (as opposed to a conceptual one) are not

coupled, linked, connected, or bonded, such as a random sample of a biological

population.

83

84 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

In contrast, for a whole, its parts are interrelated rather than loose. By

his account, in order to distinguish between objects that are wholes and those

that are aggregates, we must distinguish what between their parts is a “mere

relation” (e.g., older than, bigger than, travelling towards), and a “connection”

(e.g., exerting pressure). Two things are connected if at least one of them acts

upon the other, i.e., if it in some way modifies the latter’s history. Under this

criterion, a whole is permitted to have spatially separated parts. Because of this

causal connection, the history of a whole is not merely the union of the history

of its parts, whereas the history of an aggregate is such a union.

In an opposing position Schlick (1965) argues that there is no ontological dif-

ference between aggregates and wholes, and that they merely reflect two modes

of representation of the same objects. Simons (1987, p. 324) however suggests

that a theory which considers the aggregate of two arbitrary objects as one ob-

ject in all cases, is to be rejected as weak. Simons (1987, p. 324) states that

the difference between purely formal ontological aggregates and wholes can be

understood by comparing their existence conditions. Aggregates exist just in

case the constituent parts exist. In contrast, for a whole to exist a further con-

stitutive condition, or unifying condition, among the constituent parts must be

fulfilled. We discuss Guarino and Welty’s account of this condition, explicated

as a relation held among certain parts of a whole, in what follows.

7.1.2 Reformulating OntoClean’s Notion of Unity for the

Formal Theory of Classes

OntoClean’s notion of Unity is heavily influenced by Simons (1987). By Welty

and Guarino’s account, Unity is a metaproperty that a modeler assigns to prop-

erties to help distinguish, for each instance of the property, it’s parts from the

rest of the world. If a property has Unity, this means there is some unifying

relation that binds together certain parts of each instance of that property such

that the parts compose the whole object. When a modeler tries to identify

a unifying relation that applies to each object of a property, she is trying to

7.1. INTEGRATING UNITY WITH BFO 85

answer: What are the parts such that they form a whole? Guarino and Welty

(2000b, p.3) cite Simons when offering an explanation of what it means for an

object to be a whole, which is as follows:1

Every member of some division of the object stands in a certain

relation to every other member, and no member bears this relation

to anything other than members of the division. (Simons, 1987, p.

327)

Simons emphasizes that this certain relation holds only among parts of a

certain division. These parts form a whole system. For example, in a human’s

skeletal system there is such a division of its parts; the parts (i.e., bones) form

a path that is connected by joints. Therefore the certain relation is connected

by joints.

Simons also emphasizes that this certain relation does not hold among ar-

bitrary parts of the whole. There are arbitrary divisions of a human’s skeletal

system such that the parts of the division are not related by connected by joints.

For example, in each human finger a distal phalanx bone and a intermediate (i.e.,

middle) phalange bone are connected by a distal interphalangeal joint. If there

is a division where the sum of the distal phalange and distal interphalangeal

joint is one part of that division and the intermediate phalange is another part,

then that summed part is not in the connected by joints relation with all other

parts, specifically not the intermediate phalange part.

Guarino and Welty (2000b, p. 3) apply Simons’ (1987) theory for a closed

system to their theory of Unity. An object x is closed under a relation r, or

simply r-closed, iff, if y is a part of x, and if y is in the r relation to z, then z is

a part of x.2 Although not cited, Guarino and Welty also apply Simons’ theory

of a connected system (Simons, 1987) to their theory of Unity. An object x is

connected under a relation r, or r-connected iff, if y and z are a part of x, then

1Note that ‘member of’ is used here to provide in set-theoretic terms the relationship
between a part of an object and the object, which is different from our standard usage as the
relationship between a particular and a class.

2Relations introduced from other works that are not or not yet included in our formal
system are introduced in italics and their respective axioms are introduced in plain English.

86 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

y and z are related by r.

Guarino and Welty apply these notions to what it is to be an integrated

whole (although they do not give it formally for Unity):

An object x is a (contingent) r-integrated whole if there exists some

division of x such that it is a closed system. r will be called a base

unifying relation for x (Guarino and Welty, 2000b, p.3).

(The use of ‘contingent’ here means “at some time” and is with respect to one

snapshot in time only.) In more recent work Guarino and Welty (2001, p.10) say

that x is “whole under r” and the definition above regarding “some division”

is omitted altogether. In both (Guarino and Welty, 2000b) and (Guarino and

Welty, 2001), they provide a definition for what it means for an object to be

whole under a unifying relation, ω.

If x is whole under ω at t, then if y is a part of x at t and z is a part of x

at t then y and z are in the ω relation at t ; furthermore, if y is a part of x at

t, and y and z are in the ω relation at t, then z is a part of x at t.

Therefore a unifying relation ω is reflexive, symmetric, and transitive, i.e., an

equivalence relation.3 The notion of “some division” is omitted in this definition,

however it is crucial to the theory because it implies that ω does not hold

between just any parts.

They define that x is an intrinsic whole under ω if for all times x exists it is

whole under t. Applying this notion to properties, property φ is unified under ω

iff for each instance of φ it is an intrinsic whole under ω. Kaplan (2001) proves

that if φ is unified under ω, then the instances of φ are non-overlapping wholes,

i.e., they do not partially overlap with other entities with the same property.

Guarino and Welty define three categories of properties based on these no-

tions: Unity, Non-Unity, and Anti-Unity. A property has Unity if there is a

relation it is unified under, a property has Non-Unity if there is no one relation

it is unified under, and finally, a property has Anti-Unity if there is no instance

3Clearly these are properties of binary relation; as discussed previously, we assume that
the relation is between two entities at some time represented in the third argument.

7.1. INTEGRATING UNITY WITH BFO 87

of the property that is an intrinsic whole under some relation.

Guarino and Welty (2000b)’s theory of Unity includes a purported non-

triviality stipulation, that it is not the case that there is a universal unifying

relation such that every object is an intrinsic whole under it. Kaplan (2001)

shows that this axiom does not accomplish its intent; it rules out a universal uni-

fying relation, but also allows for an infinite number of other unifying relations

that are trivially true.

We reformulate the notion that a property has Unity, i.e., that it has a

unifying relation, under our theory of classes. We provide a definition schema

for introducing the meta-predicate Unified Under:

Definition Schema 1. Unified Under(A,ω,p) =def

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀z (p(z,x,t) ↔

ω(z,y,t))))) ∧

∀wvt(p(w,v,t) → part of(w,v,t)) ∧

¬∀wvt(part of(w,v,t) → p(w,v,t))

We elucidate why the lattermost conjunct holds in Section 7.3.

As in any schemata, the constants which are applied, i.e., the constants that

take the place of A, ω, and p replace occurrences of A, ω, and p of the wffs

in the definiens (i.e., right hand side) of the definition schema. As a definition

schema, A serves as a meta-variable that represents any particular class and ω

and p serve as meta-variables that represent any particular relations.

Unifying relations have a transitive, symmetric, and reflexive nature; for a

class A that is unified under ω with respect to parthood subrelation p, it follows

that:

88 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

Metatheorem 1. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀zw(ω(y,z,t) ∧ ω(z,w,t) → ω(y,w,t)))))

Proof. Let A, ω, and p be such that Unified Under(A,ω,p). Let w, x, y, z, t,

and A be such that member of(x,A,t), exists at(x,t), p(y,x,t), ω(y,z,t), and

ω(z,w,t). By p(y,x,t) and ω(y,z,t) and our definition schema for Unified Under

(Metatheorem 1) it follows that p(z,x,t). Because ω(z,w,t), and also p(z,x,t),

via the definition schema for Unified Under, it follows that p(w,x,t). Due to

p(w,x,t) and p(y,x,t) and the definition schema for Unified Under, it follows

that ω(y,w,t).

Metatheorem 2. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀zw(ω(y,z,t) → ω(z,y,t)))))

Proof. Let A, ω, and p be such that Unified Under(A,ω,p). Let x, y, z, t, and

A be such that member of(x,A,t), exists at(x,t), p(y,x,t), and ω(y,z,t). By

p(y,x,t) and ω(y,z,t) and our definition schema for Unified Under (Metathe-

orem 1) it follows that p(z,x,t). Due to p(z,x,t) and p(y,x,t) and the definition

schema for Unified Under, it follows that ω(z,y,t).

Metatheorem 3. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) → ω(y,y,t))

Proof. Let A, ω, and p be such that Unified Under(A,ω,p). Let x, y, z, t,

and A be such that member of(x,A,t), exists at(x,t), and p(y,x,t). Due to

7.1. INTEGRATING UNITY WITH BFO 89

p(z,x,t), simple repetition (i.e., p(y,x,t)), and the definition schema for Uni-

fied Under, it follows that ω(y,y,t).

Clearly then, in all cases a unifying relation has properties similar to that of an

equivalence relation.

As mentioned, a unifying relation only holds among parts of a certain divi-

sion and not arbitrary parts. As given, we define this formulation by applying

a proper subrelation p of the part of relation (of Chapter 6.2, p. 129) in-

stead of the generalized parthood relation applied by Guarino and Welty, which

corresponds to part of. Here p is a relation based on a restricted notion of

parthood; however, it is not always clear how best to formalize this relation,

therefore specifying Unified Under(A,ω) can serve as a shortcut.

As mentioned unifying relation are reflexive, transitive, and symmetric. Fur-

thermore, as shown by Kaplan (2001) for Unity, for our reinterpretation: for each

object of a class, if all and only its parts are unified under some relation, then

it does not partially overlap with other members of that class:

Metatheorem 4. Unified Under(A,ω,p) →

∀xyt(member of(x,A,t) ∧ member of(y,A,t) →

exists at(x,t) ∧ exists at(y,t) →

∃z (p(z,x,t) ∧ p(z,y,t)) →

∀w(p(w,x,t) ↔ p(w,y,t))))

Proof. Let A, z, w, x, y, t, ω, and p be such that Unified Under(A,ω,p), mem-

ber of(x,A,t), member of(y,A,t), exists at(x,t), exists at(y,t), p(z,x,t), and

p(z,y,t). By the definition schema of Unified Under, parts of a certain divi-

sion of x and y have the ω relation with all other of those parts. Because p(z,x,t)

and an additional assumption p(w,x,t), then ω(w,z,t). And again, from p(z,y,t)

and ω(w,z,t), which was just derived, it follows that p(w,y,t).

These steps are repeatable to derive the other consequent, p(z,x,t), as-

suming p(z,y,t). Because p(w,y,t) and the additional assumption p(z,y,t),

90 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

ω(w,z,t). And again, from p(w,x,t) and from ω(w,z,t), which was just de-

rived, it follows that p(z,x,t). It therefore follows that if a class A satisfies

Unified Under for a relation ω and p, then if any of its members share parts

of a certain division at a time they exist, they share all parts of that division;

or in other words, the members of A do not partially overlap.

In our effort to apply OntoClean’s theory of Unity and our reformulation to

BFO, we must consider what if any relations serve as a unifying relation for cer-

tain classes, i.e., a relation ω and p for a class A such that Unified Under(A,ω,p).

To begin this discussion we consider a relation that captures the notion of phys-

ical connectedness, which is formalized by the Region Connection Calculus 8

(RCC8) relation connects with (Randell et al., 1992). In RCC8, connects with

is a primitive, binary relation, it is symmetric and reflexive, and it is formalized

on the basis of point-set topology. x connects with y means that x and y share

a common point.4 Applying this relation to real-world entities, the hand is con-

nected to the arm, and the arm is connected to the torso. In RCC8 the part of

relation is defined by the connects with relation: if x is a part of y then if z is

connected to x then z is connected to y. Another RCC8 relation, disconnected

with, is simply defined as the negation of connects with.

BFO/RO does not include a relation that corresponds to this notion. It

does however include a primitive relation that corresponds to a stricter notion,

that of external connectedness: adjacent to (Smith et al., 2005). This relation

corresponds to the RCC8 relation x is externally connected to y, which is a

defined relation, and means x is connected with y and x and y do not overlap

(i.e., do not have any parts in common). In BFO/RO, adjacent to(x,y,t)

implies that x and y do not overlap at t, but it is given as a primitive relation,

since the more generalized connection relation is not formalized.

4If introduced to BFO/RO, the representing predicate would include a third argument for
time indexing, since the BFO/RO relations hold at some instant or region of time.

7.1. INTEGRATING UNITY WITH BFO 91

We introduce a relation that corresponds to RCC8’s connected with, con-

nected with(x,y,t). For a potential unifying relation, we introduce a relation

that we define as the transitive closure of connected with, connected withtr(x,y,t).

So for example, this relation holds between a hand and a torso at some time.

We consider whether Ball is unified under the connected withtr relation;

that there are certain parts of a ball that are connected via a chain of connec-

tions, and only those parts are connected in this manner. We do not suggest

that all parts of a ball hold in this relation; in fact, this is prohibited by the def-

inition schema for Unified Under since p is a proper subrelation of part of.

This is reflected in the domain also since for the class Ball the internals of some

balls may contain loose, disconnected pieces of the ball that are parts and not

connected. Even though all parts of a solid ball are connected in this manner

(i.e., in the connected withtr with every other part), this does not hold for

all balls.

For this generalized class Ball and the proposed unifying relation con-

nected withtr, a proper subrelation of part of must be given to constraint

the parts of the division that is unified under connected withtr or a more

restricted notion of connected withtr that holds among just the parts that

maintain the round shape of a ball must be given. By itself connected withtr

does not sufficiently restrict the parts. Therefore for an appropriate unifying

relation and part of subrelation for balls, we suggest that there is some relation

that holds just between parts that form the boundary of the ball.

If we also consider a class Human Skeletal System, it is not simply unified

under the relation connected withtr either. For example, the Achilles’ tendon

(calcaneal tendon) connects the plantaris, gastrocnemius (calf) and soleus mus-

cles to the calcaneus (heel) bone, but these three muscles are not part of the

human skeletal system.5 Again, a more specific relation and part of relation is

required, here to unify the class Human Skeletal System.

5We acknowledge there is a system called the musculoskeletal system which includes mus-
cles, as well as bones, cartilage, tendons, ligaments, joints and other connective tissues. For
our example we only refer to the skeletal system to outline connected entities that are not
considered part of that system.

92 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

In the event that the parts of two balls share some boundary parts at some

time (e.g., they melt together in the sun), then the conjoined objects are no

longer balls (balls are spherical, and can roll in any direction when placed

on a flat surface) or Ball is not unified under the restricted notion of con-

nected withtr we suggested. This latter point holds true if balls that are

conjoined are, individually, members of Ball. Based on these conclusions, con-

nected withtr serves as the basis for other defined relations that capture the

notion how particulars are whole. As given, it is not sufficient to capture the

notion of a unifying relation for any class of particulars.

Beyond connected withtr, we must consider if any other relations can serve

as unifying relations among parts of objects which are particulars in BFO’s do-

main. We turn our attention to particulars that are aggregates (instances of

BFO’s Object Aggregate), particulars composed of spatially-separated particu-

lars.

Take for example the relation has the same parents as which is proposed as

a relation the property Aggregate of Siblings is unified under (Gangemi et al.,

2001, p. 6).6 We first note that the description ‘has the same parents as’ may

be interpreted as ‘at some time has the same parents as’ or ‘born of the same

parents’. In the former description the existence of parents (at some arbitrary

time) must be assumed, therefore the relation under consideration here is better

and more accurately given as born of the same parents. In this case the parts

of the division are members of the aggregate. We discuss this in more detail in

section on object aggregates.

There are many other similarly defined unifying relations for aggregates,

for example the unifying relation having the same boss and being located in

the same designated spatio-temporal region., the former holding for parts of an

aggregate of co-workers, and the latter holding for parts of an aggregate of

6This passage assumes what in everyday language are considered members of a collection
are formally parts of the collection. This is assumed for BFO/RO (Barry Smith, personal
communication), however the mereology of entities which are aggregates of people is not
formally given for BFO/RO. Nevertheless, as is demonstrated, a rejection of the purported
unifying relation in question does not require a rejection of this assumption.

7.2. INTEGRATING IDENTITY WITH BFO 93

audience members of some performance, speech, etc.

There are other purported unifying relations of classes of aggregates which

suffer from a problem in which they only hold at the level of particulars (where

the intrinsic whole under relation applies) and do not at the level of class (where

the unified under relation applies). For example, if the organization PETA is

an intrinsic whole under the relation pays dues to PETA, there is not a more

generalized relation like pays due to an organization that applies to all social

organizations, because, clearly, some person part of one organization is a person

part of a different organization at some time (therefore it is not transitive).

The same can be said, for an aggregate a and a relation being a member part

of a. Furthermore, this relation and others of its kind are self-referring to the

aggregate in question, and in this case it is trivial.

Ultimately then, as reinforced by our examples, the utility of the definition

schema for Unity is that we apply it for a specific class and relation, which

may or may not hold for purported subclasses. If it does not hold, then the

purported subclass is therefore identified as not a subclass. This notion does

not cover the stronger notion of Non-Unity introduced by Guarino and Welty,

but has immediate utility in that it covers the notion of not having a specific kind

of Unity, i.e., relative to an identified unifying relation. Anti-Unity primarily

holds for classes whose members are considered amounts of matter, which we

address in Section 7.3.4.

7.2 Integrating Identity with BFO

7.2.1 Introduction

Identity is a relation that every object has to itself and to nothing else. Follow-

ing Frege (1950), we view a criterion of identity as a way to determine when the

identity relation holds, or informally, to recognize an object as the same again.

It is very difficult to discuss the identity of a class of objects without presuppos-

ing what the objects are based on an assumed class definition, therefore identity

94 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

criteria are better expressed as “identifying criteria” (Brand, 1977, p. 1). Lowe

(1989b, p. 12) advises that this is permissible, because it is unavoidable in so

many cases, that an identity criterion make reference to the class of objects the

criterion of identity is being given for. However, says Lowe, it must not presup-

pose the criterion of identity for the class of objects whose identity criterion is

being given. For example, a criterion for the identity of events should not be

having the same causes and effects if causes and effects are themselves events

(Lowe, 1989b, p. 12). Similarly a criterion of identity for sets should not be

having the same subsets. We refer to this notion, henceforth, as the Principle

of Identity Criteria Non-Circularity.

7.2.2 Redefining OntoClean’s Notion of Identity

for the Formal Theory of Classes

Identity criteria that are both necessary and sufficient include occupying the

same spatio-temporal region for material entities or processes, and having the

same members for sets. Outside these examples, identity criteria that are both

necessary and sufficient are rare. To address this issue, Guarino and Welty

define necessary and sufficient criteria of identity separately. Another issue they

address is identity with respect to time; identity can be defined with respect to

one time (synchronic) or defined across times (diachronic). Therefore Guarino

and Welty provide time arguments that allow for either kind of identity criterion.

In many cases, analysis of identity can be limited to detecting the features

that are just necessary for keeping the identity of a given entity, based on what

can be described as essential properties. It is on these properties that Guarino

and Welty base necessary criteria of identity. According to Guarino and Welty,

a necessary criterion of identity θ of a property φ is defined such that for x

and y that are instances of φ at t and t1, respectively, and exist at t and t1,

respectively, if x and y are the same object, then they are the same under θ (i.e.,

θ(x,y,t,t1) holds).7 Where θ stands for ‘having the same genotype’ θ(x,y,t,t1) is

7We again remind the reader that the sense of ‘instance’ and ‘property’ is given in Chapter

7.2. INTEGRATING IDENTITY WITH BFO 95

read x at t and y at t1 have the same genotype. For Guarino and Welty (2001,

p.5) ‘same under’ captures the intuition that, based on the identity criterion

θ, there is some characteristic feature that is unique to the entity to which the

criterion is applied.

In considering what an identity criterion is ontologically about, for such

a criterion to be applied, there must be some procedure where x and y are

evaluated. More formally, confirms(P,x,y,t,t1) means that for x at t and y at

t1, procedure type P confirms x and y are the same thing. We discuss why the

predicate confirms applies to a type, P, rather than a particular instance of P,

shortly. We define this proposed notion under our theory of classes, and define

a predicate Necessary-IP(A,P), which means that a class A has a necessary

identity procedure P :

Definition 18. Necessary-IP(A,P) =def ∀xytt1((member of(x,A,t) ∧

exists at(x,t) ∧ member of(y,A,t1) ∧ exists at(y,t1)) →

(x=y → confirms(P,x,y,t,t1)))

We note that the nature of confirms(P,x,y,t,t1) is such that there is no

specific instance of P for confirming if x and y are the same, and that the

predicate relies on past instances of P. If confirms(P,x,y,t,t1) holds then there

is at least one entity whose identity has been confirmed in the past.8 More

formally, if Necessary-IP(A,P) and confirms(P,x,y,t,t1), then there is some

w that is a member of A and exists at a time t2, some v that is a member of A

and exists at a time t3 and confirmed(P,p,w,v,t3,t4), which means that w and

v were confirmed as the same by a procedure instance p of P :9

Axiom 21. (Necessary-IP(A,P) ∧ ∃xytt1(confirms(P,x,y,t,t1))) →

∃pwvt2t3(member of(w,A,t2) ∧ exists at(w,t2) ∧

1 and is based on Guarion and Welty. Therefore Sugar and Hydrophillic are shortcuts for
being sugar and being hydrophillic. ‘instance’ is used differently in BFO, and ‘property’ is
used differently in philosophy at large.

8We also observe that for P to be a legitimate identity procedure, there are many occur-
rences, i.e., instances of P where the identity of an entity has been confirmed in the past.

9As previously discussed, we quantify processes based on what are processes that have
already occurred, excluding what are in the present considered future processes.

96 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

member of(v,A,t3) ∧ exists at(v,t3)) ∧

confirmed(P,p,w,v,t2,t3))

Axiom 22. confirmed(P,p,w,v,t2,t3) → ∃t(instance of(p,P,t))

For an instance p of the procedure class P, there is some part of the procedure

where a result of w is derived, and some part of the procedure where a result

of v is derived, and finally, there is an end part of the procedure where these

results are compared to determine whether or not w and v are the same thing.

Note, the procedure p need not occupy contiguous spatio-temporal regions.

We provide a formalization of identity procedures that more concisely rep-

resent the aforementioned procedure parts and their results. This requires ad-

ditional predicates, matches and result of procedure. The latter predicate,

result of procedure(p1,w,t2), is a function that maps to some result of proce-

dure p1 that applies to the entity w at t2 (but need not span t2). For example,

p1 may be a process that has as a result the fingerprint pattern of a person. To

evaluate identity for an entity, another result must be acquired; hence, a second

procedure, p2, is applied to an entity v at t3, (result of procedure(p2,v,t3)).

Therefore matches(result of procedure(p1,w,t2), result of procedure(p2,v,t3))

if the result of the first procedure “matches” the result of the second procedure

(e.g., if two fingerprint patterns match). What ‘matches’ means here depends

entirely upon the identity procedure type, and it also depends upon the iden-

tity of other things, since, as we discuss shortly, there is a recursive nature to

identity procedures. Given these formulations we have the following axiom:

Axiom 23. confirmed(P,p,w,v,t2,t3) →

∃p1p2(matches(result of procedure(p1,w,t2), result of procedure(p2,v,t3)) ∧

part of(p1,p) ∧ part of(p2,p))

The practical use of matches is that when applied to two results, if p1 and p2

are parts of an instance of P that is a necessary identity procedure, if false, then

x and y are not identical. That said, because confirms(P,x,y,t,t1) captures the

7.2. INTEGRATING IDENTITY WITH BFO 97

notion of an identity procedure categorization applicable to every member of a

class, we take the confirms predicate to be our primary notion for formalizing

the relation between identity procedure types and classes of particulars to which

the identity procedures apply.

With respect to our example, one such procedure is DNA Profiling, which is a

subtype of BFO’s Process. When Necessary-IP(Person,DNA Profiling) holds,

if x exists and is a member of Person at t and y exists and is a member of Person

at t1, if x and y are identical, then confirms(DNA profiling,x,y,t,t1) holds.

Therefore if Necessary-IP(Person,DNA Profiling) holds, by our formulation

of confirmed (Axiom 20), it is also true that an instance of DNA Profiling

has in the past served to confirm necessary identity for an instance of the class

Person.

DNA profiling requires the object being evaluated have a genotype, and

since this is what we consider an essential property for people, it is accurate to

presume that the existence of a person at some time entails the existence of their

genotype at the same time. Note that although DNA profiling is a procedure

class that confirms the necessary identity of people, it is clearly not sufficient

for confirming identity, due to the existence of genetically identical twins.

The notion of a necessary identity procedure is perhaps more intuitive to

think of in terms of the contrapositive of the nested implication,

x=y → confirms(B,x,y,t,t1), of Definition 18. If two objects are not con-

firmed as identical by procedure B, they do not have the same essential prop-

erties, therefore they certainly cannot be identical. In the context of a modeler

thinking about what a necessary identity procedure of a class is, it is helpful,

in order to identify essential properties, for her to answer the question: What

feature must change or no longer exist for a member of the class, at some time

t, to no longer be the same thing at a time after t?

According to Guarino and Welty, a sufficient identity criterion θ of a property

φ is defined such that for x and y that are instances of φ at t and t1, respectively,

and exist at t and t1, respectively, if θ(x,y,t,t1) holds, then x and y are identical.

98 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

We reconsider criteria again, in this case for sufficient identity, and put forth a

notion of sufficient identity procedures under our theory of classes. Sufficient-

IP(A,B) means that a class A has a sufficient identity procedure P :

Definition 19. Sufficient-IP(A,P) =def ∀xytt1((member of(x,A,t) ∧

exists at(x,t) ∧ member of(y,A,t1) ∧ exists at(y,t1)) →

(confirms(P,x,y,t,t1) → x=y))

Take for example, a sufficient identity procedure for the class Person, Finger-

printing.10 When Sufficient-IP(Person,Fingerprinting) holds, if x exists and

is a member of Person at t and y exists and is a member of Person at t1, if

confirms(Fingerprinting,x,y,t,t1) holds, that is, if one or two instances of the

type Fingerprinting confirms x at t and y at t1 are the same person, then x and

y are identical.

The procedure type Fingerprinting is defined under the following natural

language parse: ‘a procedure in which a fingerprint pattern that exists is ana-

lyzed, the results of which are comparable to confirm identity’. The procedure

requires a fingerprint pattern that represents an actual fingerprint’s pattern.

Because fingerprints can be removed, it is not possible to compute and com-

pare fingerprint patterns between arbitrary people at any time ; therefore, the

assumption that the fingerprint pattern being evaluated during the procedure

in question exists is needed as a basis for the class definition of Fingerprinting,

in order for it to be a legitimate sufficient identity procedure.

This clarification of sufficient identity procedures brings attention to an im-

portant point about what we consider necessary and sufficient procedures for

identity. In each case, the procedure involves the identity of functions which

map from the objects of the class in question (Axiom 23, p. 96). Lowe (1989a,

p. 20) noted that identity criteria often make use of the notion of identity itself,

and can only do so informatively by alluding to the identity of things of another

class. With respect to identity procedures, for the necessary identity proce-

10The exact precision for unique identification by fingerprinting is debated.

7.2. INTEGRATING IDENTITY WITH BFO 99

dure class DNA profiling of the class Person, it is dependent on the identity of

genotypes, which must account for genetic variations over time that are due to

mutations. By this token, the corresponding identity criterion is non-primitive

and can be reduced to identity of functions mapped from individual people to

their genotype, i.e., ‘genotype of’.

Applying Guarino and Welty’s formulation, if θ(x,y,t,t1) holds where θ is

‘having the same genotype’, this implies that the genotype of x at t is identical

to the genotype of y at t1. If a person x at t and a person y at t1 are identical

under the sufficient identity criterion having the same fingerprint pattern, there

is some fingerprint pattern of x at t and fingerprint pattern of y at t1 which

are identical. Nevertheless, by defining identity procedures for necessary and

sufficient identity, instead of criteria, these issues are dealt with simply, and by

the designated identity procedure type that is a subtype of Process.

We designate necessary and sufficient identity procedures to be two kinds of

identity procedures (IP):

Definition 20. IP(A,P) =def Necessary-IP(A,P) ∨ Sufficient-IP(A,P)

We also formally designate a necessary and sufficient identity procedure

(N&S-IP) as a conjunction of both of our two kinds of identity procedure:

Definition 21. N&S-IP(A,P) =def Necessary-IP(A,P) ∧ Sufficient-IP(A,P)

The necessary and sufficient identity procedure for the duration of time of a

process is time measurement procedure. Here, the measurements, i.e., the values

that results from measurement of time, of x and of y, are identical according to

some specific scale.

Guarino and Welty (2000a) discuss how Non-Rigid properties seem to only

“carry” (i.e., inherit) identity criteria, for example being a student inherits its

identity from being a person which “supplies it”. An identity criterion proposed

to be “supplied” (i.e., not inherited) by being a student, for example having the

same registration number, is only held within certain durations of the student’s

100 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

existence. Given this limitation, Guarino and Welty decide that identity cri-

teria that are not held by Rigid properties are not of interest to their theory.

Therefore they exclude these “local” identity criteria, like having the same reg-

istration number. This approach is in line with the previously defined notion

that Non-Rigid classes are not types of BFO. We provide this informal part of

their theory formally and with respect to classes and Identity procedures:

Axiom 24. IP(A,P) → ∃B(Rigid(B) ∧ IP(B,P) ∧

subclass of(A,B))

Note that by this formulation A and B may be identical. It follows immediately

that, for an identity procedure type P of a Non-Rigid class A, there is some

Rigid class B with that identity procedure class that is a superclass of A:

Theorem 48. (Non-Rigid(A) ∧ IP(A,P)) → ∃B(Rigid(B) ∧ IP(B,P) ∧

A 6=B ∧ subclass of(A,B))

Proof. Follows trivially from Axiom 24. A 6=B is due to Theorem 4, which

states that no class is both Rigid and Non-Rigid.

Guarino and Welty define that a property φ “supplies” an identity criterion

iff φ is Rigid, has the identity criterion, and does not have a parent an ancestor

with that identity criterion.

We consider their definition for a notion of supplying an identity procedure,

and provide it in terms of classes. If A supplies an identity procedure P, that

means all other classes with identity procedure P are subclasses:

Definition 22. supplies-IP(A,P) =def IP(A,P) ∧ Rigid(A) ∧

(∀B(IP(B,P) → subclass of(B,A))

Theorem 49. supplies-IP(A,P) ∧ IP(B,P) ∧ subclass of(A,B) → A=B

Proof. Let A, B, and P be such that supplies-IP(A,P), IP(B,P), and sub-

class of(A,B). From the definition of supplies-IP (Definition 22) and IP(B,P),

7.2. INTEGRATING IDENTITY WITH BFO 101

subclass of(B,A). By subclass of(B,A), subclass of(A,B), and the defini-

tion of subclass of (Definition 1), A=B.

Axiom 25. IP(A,P) ∧ ¬supplies-IP(A,P) →

∃B(A 6=B ∧ subclass of(A,B) ∧ supplies-IP(B,P))

Theorem 50. IP(Entity,P) → supplies-IP(Entity,P)

Proof. Let P be such that IP(Entity,P), and let B be such that IP(B,P). By

definition of is a, is a(B,B), therefore by Axiom 7 it follows that is a(B,Entity).

Therefore by definition (Definition 22) it follows that supplies-IP(Entity,P).

If a class has an identity procedure, there is some class that supplies it:

Theorem 51. ∃A(IP(A,P)) → ∃B(supplies-IP(B,P))

Proof. Let A and P be such that IP(A,P). A supplies P or A does not supply

P. If A does not supply P, by Axiom 25 a superclass of A supplies P. Therefore

some class supplies P (which may or may not be identical to A).

For example, Primate supplies the identity procedure fingerprinting, which

is inherited by classes such as Human and Gorilla. If a Non-Rigid property has

an identity criterion θ then it is subsumed by a Rigid property that supplies it.

We also provide this in terms of classes and identity procedures:

Theorem 52. (Non-Rigid(A) ∧ IP(A,P)) →

∃B(supplies-IP(B,P) ∧ subclass of(A,B))

Proof. Follows trivially from Theorem 51 and Definition 22.

It follows that classes inherit necessary identity procedures:

Theorem 53. (Necessary-IP(A,P) ∧ subclass of(B,A)) →

Necessary-IP(B,P)

102 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

Proof. Let A, B, and P be such that Necessary-IP(A,P) and subclass of(B,A).

Also let x, y, and t be such that exists at(x,t), member of(x,B,t),

exists at(y,t1), member of(y,B,t1), and x=y. By subclass of(B,A) and the

definition of subclass of (D1), it holds that member of(x,A,t) and mem-

ber of(y,A,t1). It follows from Necessary-IP(A,P), Definition 18,

exists at(x,t), member of(x,A,t), exists at(y,t1), member of(y,A,t1), and

x=y that confirms(P,x,y,t,t1). Therefore it holds that Necessary-IP(B,P).

It also follows that classes inherit sufficient identity procedures:

Theorem 54. Sufficient-IP(A,P) ∧ subclass of(B,A) →

Sufficient-IP(B,P)

Proof. Let A, B, and P be such that Sufficient-IP(A,P) and subclass of(B,A).

Also let x, y, and t be such that exists at(x,t), member of(x,B,t),

exists at(y,t1), member of(y,B,t1), and confirms(P,x,y,t,t1) . By

subclass of(B,A) and the definition of subclass of (D1), it holds that mem-

ber of(x,A,t) and member of(y,A,t1). It follows from Sufficient-IP(A,P),

Definition 19, exists at(x,t), member of(x,A,t), exists at(y,t1),

member of(y,A,t1), and confirms(P,x,y,t,t1) that x=y. Therefore it holds

that Sufficient-IP(B,P).

Because every type is a class, identity procedures are also inherited by types:

Theorem 55. Sufficient-IP(A,P) ∧ is a(B,A) → Sufficient-IP(B,P)

Proof. Follows from Theorem 15 and Theorem 54.

Theorem 56. Necessary-IP(A,P) ∧ is a(B,A) → Necessary-IP(B,P)

Proof. Follows from Theorem 15 and Theorem 53.

Guarino and Welty discuss the notion that if two identity criteria are incom-

patible, then a property cannot have both. Examples are given but the notion

is not formalized.

7.2. INTEGRATING IDENTITY WITH BFO 103

In what follows, Compatible-IP(P,Q) means that some class has identity

conditions P and Q, and Incompatible-IP(P,Q) means the negation, that no

class has identity conditions P and Q :

Definition 23. Compatible-IP(P,Q) =def ∃A(IP(A,P) ∧ IP(A,Q))

Definition 24. Incompatible-IP(P,Q) =def ¬Compatible-IP(P,Q)

Theorem 57. Incompatible-IP(P,Q) ↔ ∀A¬(IP(A,P) ∧ IP(A,Q))

Proof. Follows trivially from the definition of Compatible-IC (Definition 23)

and Incompatible-IC (Definition 24).

If ω and θ are incompatible identity conditions that are held by A and B,

respectively, and A and B are types, then they are disjoint types:

Theorem 58. (Necessary-IP(A,P) ∧ Necessary-IP(B,Q) ∧

Incompatible-IP(P,Q)) →

(Type(A) ∧ Type(B)) →

disjoint fromtype(A,B)

Proof. By the definition of Incompatible-IP (Definition 24), Incompatible-

IP(P,Q), and Necessary-IP(A,P) it follows that ¬Necessary-IP(A,Q). By

Theorem 53, ¬Necessary-IP(A,Q), and Necessary-IP(B,Q), it follows that

¬subclass of(A,B).

By the definition of Incompatible-IP (Definition 24), Incompatible-

IP(P,Q), and Necessary-IP(B,Q) it follows that ¬Necessary-IP(B,P). By

Theorem 53, ¬Necessary-IP(B,P), and Necessary-IP(A,P) it follows that

¬subclass of(B,A). If A and B are types, it follows from the definition of

disjoint fromtype (Definition 12) that disjoint fromtype(A,B).

We can also give a similar proof for a theorem where Sufficient-IP(A,θ) and

Sufficient-IP(B,ω) hold and Theorem 54 is applied.

104 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

It is stated in the OntoClean literature that incompatible ICs are disjoint,

but what incompatible means is not formalized, but it is given here. We for-

malize it here, and note that the utility of the Incompatible-IC(θ,ω) is that

if a class is purported to have both Identity procedures, then there is a mistake

in classification or a mistake in assignments of Identity procedures to classes.

Ultimately it is a useful tool for modeling and isolating modeling mistakes.

We also formalize an identity procedure based precisely on mereological ex-

tensionality (ME) in the context of our discussion on object aggregates, in

Section 7.3.3.

7.3 Unity and Identity of

Material Entities

7.3.1 Introduction

BFO aims to represent reality on the basis of the best current scientific under-

standing. Although as it is described under OntoClean’s theory, identity criteria

are partially epistemic notions, we think that they can prove useful for onto-

logical modeling for domain ontologies rooted under BFO. In what follows we

inspect BFO upper ontology types given our formalisms for Unity and Identity.

7.3.2 Object

The natural language definition for the BFO type Object is as follows (Spear,

2007, p. 48):

A material entity that is spatially extended, maximally self-connected

and self-contained (the parts of a substance are not separated from

each other by spatial gaps) and possesses an internal unity. The

identity of object entities is independent of that of other entities

and can be maintained through time. Examples: an organism, a

heart, a chair, a lung, an apple.

7.3. UNITY AND IDENTITY OF MATERIAL ENTITIES 105

It is included in the definition that an object is self-connected and not sepa-

rated by spatial gaps. Consider a person at t and that person with a fingernail

detached at t1. The entity consisting of the sum of the person and the fingernail

at t1 is not the same entity as that mentioned at t.

By the BFO definition above, objects are self-connected, are not merely the

sum of their parts, and thus can survive the gain and loss of some parts. In our

example the nail at t1 is no longer a part of the person. Given this, we conclude

that the identity criterion of Object is not that of ME (as given in Axiom 29),

i.e., identity that is based precisely on its parts.

Consider also a piece of gold. Is it the same piece of gold in liquid form?

This depends on what we consider to be the entity under consideration: Is it the

substance (i.e., what) the piece of gold is made of or is it the piece of gold itself?

BFO does not allow spatial coincidence among distinct particulars; therefore,

the object under consideration must be the latter. Hence, BFO’s answer to the

question is “no” in the case that the shape, or more specifically, the molecular

arrangement of the piece of gold, is essential to what it is. Therefore for a class

with a piece of gold as one of its members, its identity procedure is not based

on ME either.

We also consider how the type Object fits with our analysis of Unity. Under

BFO’s theory, instances of Object are described as having “internal unity”,

which we believe is a relation closed under boundary parts, as discussed in the

previous section. Further we cannot assume that objects are unified under a

more generalized relation like connected withtr, due to the fact that it does

not transitively hold for just the parts of each particular that is an instance

of Object. For example, there are fused particulars, such as conjoined twins,

where, even though connected withtr holds between any two parts of the

fused totality, still the fused totality is not considered to be a single unified

particular, but a fusion of two particulars. Another view to reinforce this same

point is that, as given in Theorem 4, if a class is unified under a relation, then

the specifically unified parts of a member of the class do not partially overlap

106 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

with other members.

7.3.3 Object Aggregate

The natural language definition for the BFO type ObjectAggregate is as follows

(Spear, 2007, p. 48):

A material entity that is a mereological sum of separate object enti-

ties and possesses non-connected boundaries. Examples: a heap of

stones, a group of commuters on the subway, a collection of random

bacteria, a flock of geese, the patients in a hospital.

Every object aggregate is composed of at least two separate objects:

Axiom 26. instance of(x,ObjectAggregate,t) →

∃yz (part of(y,x,t) ∧ part of(z,x,t) ∧

instance of(y,Object,t) ∧

instance of(z,Object,t) ∧ y 6=z)

There is no one identity procedure that applies to ObjectAggregate, but var-

ious identity procedures may be identified by further inspecting different kinds

of object aggregates. Also, ObjectAggregate satisfies non-Unity because there

is some instance that shares parts with another instance (e.g., Barack Obama is

a part of the collection of people present for his the State of the Union Address

on January 25, 2011, and at the same time a part of the collection of people

intending to run for president in the 2012 Presidental Election). In what fol-

lows we inspect subclasses of Object Aggregate which we refer to as Collection,

Collective, and Organization.

A collection is a mere grouping of spatially separated particulars,11 where

the particulars are object entities (in the BFO sense) and serve as the parts,

although not the only parts, of the collection. A collection is composed of the

11We remind the reader that we introduce and define our usage of the term ‘collection’ here,
regardless of how the term is used elsewhere.

7.3. UNITY AND IDENTITY OF MATERIAL ENTITIES 107

sum of these object entity parts. Example collections include the utensils in

your kitchen, Christmas gifts under a tree, or a collection of stones.

A collection cannot survive the gain and loss of its object entity parts. What

we refer to in our examples, respectively, are precisely and at one time the

aggregation of every utensil in your kitchen, the aggregation of every gift under

the tree, and the aggregation every stone in the collection. Therefore a collection

of stones cannot survive the loss of an entire stone (e.g., an entire stone is

pulverized), but can survive various subtle changes in the stones in the collection

(e.g., erosion).

Does this mean that a collection can survive changes in its parts? In some

literature, including (Guizzardi, 2008, p.185), the member/collection relation-

ship is defined separate from the ‘part of’ relation, but it also can be considered

a restricted subrelation of it. It is defined as a relation between what we con-

sider an object entity and an object aggregate, and it is intransitive, irreflexive,

and asymmetric. A fiat part of a stone (i.e., a part that does not have dis-

tinct boundaries)12 in a collection of stones is not a member of the collection of

stones.

This sort of contextually defined ‘part of’ relation is not given for BFO,

and the part of relation is used for the composition of both objects and object

aggregates. Given that the part of relation is transitive, a fiat part of a stone

in a collection of stones is a part of the collection.

It is worthy to note that some argue that the relationship between a stone

and a collection of stones is not ‘part of’ at all. Under this view the relationship

is more specialized, as described above for the member/collection relation, that

addresses the nature of the whole. There is also a tendency to associate the ‘part

of’ relation with physical connectedness, and under such an account the relation

does not apply to the composition of aggregates. Ultimately, for those who argue

this position, the reading of ‘a piece of a stone is part of a stone collection’ goes

against common sense knowledge representation, and conceptually-speaking,

12A fiat part object part is part of a object but is not demarcated by any physical discon-
tinuities, e.g., upper and lower lobes of the left lung (Spear, 2007, p. 51).

108 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

this much is true.

We propose a relation for BFO/RO, member of aggregate, to represent

the member/collection relation, where member of aggregate is a subrelation

of part of, and it is not the case that every part is a member part of the

aggregate:

Axiom 27. member of aggregate(x,y,t) → part of(x,y,t)

Axiom 28. ¬∀xyt(part of(x,y,t) → member of aggregate(x,y,t))

Given this relation, it is not the case that a fiat part of a stone is in the

member of aggregate relation with a collection of stones. Further, if a stone

is a member of a collection, the stone is also more basically a part of the collec-

tion.13

Given this newly introduced relation, we can now formalize the (necessary

and sufficient) identity procedure of a collection based on its extensionality

under this division; a collection is the same over time iff it has the same member

parts :

Axiom 29. N&S-IP(A, ME) ↔

∀xyt((member of(x,A,t) ∧

member of(y,A,t)) →

(x=y ↔ ∀z (member of aggregate(z,x,t) ↔

member of aggregate(z,y,t))))

If a class whose members are aggregates is defined in such a way that there

is a case where all of the member parts of one of its members does not uniquely

identify the member of the class, then ME is not an identity procedure for

that class. Aggregates compose a material entity type in BFO, and defining a

subclass as having the identity procedure of ME imposes that all subclass have

this identity procedure; otherwise there is a modeling mistake.

The motivation behind BFO’s position of primarily using part of is for

maintaining transitivity of parthood across levels of granularity. BFO/RO’s

13This conclusion is based on email conversations with Barry Smith.

7.3. UNITY AND IDENTITY OF MATERIAL ENTITIES 109

part of relation based on classical mereology, therefore part of is always tran-

sitive, and variations of ‘part of’ that are not transitive are other distinct rela-

tions.

So for example, if you “zoom out” what is an object aggregate at the mi-

croscopic level may be an object at the human eye level; in either case, what

composes the particular is a part of it. Nevertheless, introduction of a grain-

specific ‘part of’ relation, as we have done with member of aggregate(z,x,t),

maintains this transitivity, via its super-relation part of. Collection has an

identity procedure, and it is that of ME, as we defined the notion in Axiom

29.

A collective differs from a collection in that the parts of a collective play

a role—the same role—that contributes to what the aggregate is as a whole.14

Collectives are like collections in that they have “atomic parts”; however, these

parts have a special status, because they have roles. Collectives also differ from

collections because certain parts of a collective are not fixed. For example, my

stamp collection is a collective because stamps of this collective may be traded

away or newly introduced, and the collective remains the same. Therefore the

identity procedure for Collective class is not based on ME.

An organization is a kind of collective, and is an aggregate of humans, where

the humans that compose the aggregate may be different humans at different

times. The humans are not just parts but also, in the social sense, members,

in virtue of the fact that they play roles. For example in a corporation there is

a generalized employee role all members have and more specialized roles such

as chairman. An organization differs from a collective in that in the former the

roles differ among its parts. There may be collectives of humans, however, for

example a soccer fan mob. Take also for example an organization composed of

musicians, e.g., a musical band. The identity of the band may remain the same

while its band members change, e.g., the Beatles after replacing drummer Pete

14This use of the term ‘collective’ differs from that introduced by Rector et al. (2006), where
they describe a theory of emergent characteristics that apply to the aggregate and not any of
part.

110 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

Best with Ringo Starr. As another example, a professional basketball team is

the same team after a trade. Organization has an identity procedure, but it

is not that of ME. Ultimately, ME is not an identity procedure for the type

ObjectAggregate.

7.3.4 Amounts of Matter

That which in philosophical literature ((Zimmerman, 1995) (Barnett, 2004)) is

referred to as an amount of matter does not clearly fall under BFO’s Object

or ObjectAggregate. An amount of matter is an object (in the formal sense)

that usually falls under terms that, in everyday language, take singular verbs,

cannot occur with numerals (unless elliptical for some measurement), and take

determiners like ‘some’, ‘little’, and ‘much’, as opposed to ‘every’, ‘few’, and

‘many’ (Zimmerman, 1995). These terms include ‘gold’, ‘sugar’, and ‘water’.

Note that although ‘time’ and ‘freedom’ also fall under this linguistic character-

ization, they do not occupy spatial regions and require a different category, and

subsequently a different treatment then the one being developed here. The de-

terminers ‘every’, ‘few’, and ‘many’ are normally reserved for nouns that denote

individuated, countable objects. Amounts of matter do not denote anything

that is essentially a lump, cube, bit, piece, portion, or fragment (Zimmerman,

1995).

Barnett (2004) argues that some of what are considered portions are not

simply the sum of their parts, which amounts of matter are. For example for a

portion (or piece) of tofu, if it is chopped into several additional pieces, the tofu

survives while the piece of tofu no longer exists. Given this, a detached part is no

longer part of an object; an amount of matter can be scattered about. However,

Barnett additionally argues that some amounts of matter are not merely just

aggregates. Some certain kinds of stuff can gain or lose subportions; these are

structured stuff. This work however falls out of the current scope.

BFO’s position on this topic is that two different entities cannot occupy the

same space at the same time; therefore, what is referred to as the portion of tofu

7.4. DISCUSSION 111

and what referred to as the tofu “stuff” might be considered identical (Grenon,

2003a, p. 12). However the tofu “stuff” has different existence conditions, for

example, if it is split into one hundred pieces it still exists while the portion of

tofu no longer exists. Because the class is cross-granular in nature, having fea-

tures of both an Object and Object Aggregate, and such the class cause problems

for BFO. More specifically, the tofu stuff is a whole object, in the sense that all

the parts are physically connected by a chain of connections, while at the same

time it is an aggregate, and one in which its parts need not be connected to

be a part. For BFO an ontology represents a certain level of granularity, based

on what is referred to as perspectivalism (Section 3.4), and by this approach

the types Object and Object Aggregate are disjoint (Theorem 44, p. 69).

Clearly, these assumptions lead to an inconsistency given our prior conclusion

that the portion of tofu and the tofu stuff are identical. Given this, something

that demonstrates the existence conditions of tofu stuff is not a particular in

BFO’s domain.

7.4 Discussion

The notion of Rigidity can help a modeler identify classes that are essential and

non-essential (with respect to time) to their members’ existence. The notion of

necessary identity procedures can help a modeler identify precisely what features

of the members of Rigid classes make them members of those classes, which can

be applied to compare any two members in a procedure that determines that

they are distinct or the same. Therefore, necessary identity procedures provide

a facility that supplements our formal theory of Rigidity, ergo types, and vice

versa.

The notion of a sufficient identity procedure is more clearly epistemic in

nature and less relevant to an upper ontology with the ontological position

such as BFO. Fingerprints can be removed and social security numbers can

be changed, all while the entities they corresponded to can continue to exist.

112 CHAPTER 7. INTEGRATING UNITY AND IDENTITY WITH BFO

Nevertheless, sufficient identity procedures can be useful for modeling, because

they are inherited, and for ontologies that are linked to databases, they can help

construct primary keys.

The notion of a unifying relation that applies to all members of a class is

based on how it is that the members of the class are wholes (i.e., how they

are composed), at any time they exist. By its formulation, clearly, a unifying

relation for a subclass of Object can serve as a basis for a sufficient (but not a

necessary) identity procedure for the same class.

We must also take into account BFO’s perspective on Identity and Unity with

respect to its types, Object and Object Aggregate, as well as more specific types of

aggregates. As mentioned, what is considered an amount of matter is, according

to BFO, cross-granular and leads to an inconsistent ontology, since Object and

ObjectAggregate are disjoint. Furthermore, BFO is clear on its position for

certain Identity criteria; what is a person that is alive at t and what remains of

the person after passing away at a time after t are identical, but are not identical

with what remains after the body is decomposed in such a way that its parts

form an object aggregate rather than an object. As another example, what is

a statue at t and what are the remains of the statue after being shattered are

not identical.

In Axiom 29 provides a identity based mereological extensionality (ME),

which object aggregates may or may not have. Among aggregates we have

those that are identified purely by their parts and also those that are not, and

are identified based on some emergent properties. This is a useful principle to

determine what sort of aggregate a class is.

Part III

Method

113

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 8

Evaluating

Candidate Types

8.1 Introduction

Our aim in this dissertation is to improve domain ontologies that are intended to

be consistent with BFO. We address this challenge in two parts. The first part

is provided in Part II, where we integrated the formal principles of OntoClean

with those of BFO. We address the second part in this chapter, by applying the

integration to the practice of constructing ontologies. This includes consistent

rooting in upper ontology types and correct use of RO relations, particularly if

an RO relation holds when the is a relation is incorrectly asserted.

8.2 Violations of the Disjointness Principle

Isolating violations of the Disjointness Principle helps reveal where some candi-

dates are not types. These violations follow the pattern:

is a(A,B) ∧ is a(A,C)

where it does not hold that:

115

116 CHAPTER 8. EVALUATING CANDIDATE TYPES

is a(B,C) ∨ is a(C,B)

The negation of both disjuncts can be inferred under closed-world reasoning,

or, it may be that the negation of both disjuncts holds. The possible ontology

changes that alleviate this violation include:

1. is a(B,C) or is a(C,B) holds.

2. is a(A,B) or is a(A,C) is removed, including the choice that is a is

changed to another relation (e.g., Depends On).

3. A is partitioned into multiple candidates, some of which are subtypes of

B and some of C.

One reason for solution #1 is that one (or both) of the disjuncts holds, but

it has not been specified yet by the modeler. A common reason for solution #2

is that one candidate, B, is a type, and the other, C, is a Non-Rigid class. #3

is appropriate if A has as members instances of disjoint upper ontology types

(satisfying Heterogeneous).

8.3 Applying Type Criteria

We aim to assist a modeler in creating an ontology that does not violate the

Disjointness Principle, by preemptively addressing the modeling choices #1, #2,

and #3 above. We present a decision tree (see Figure 8.1)1 that assists a modeler

in evaluating whether a candidate is a type according to criteria provided in

Chapter 6 (satisfying Instantiated, ¬Members Exist, and Rigid), and if

not, assists in redefining the candidate such that it is consistent with BFO. We

assume that a modeler presents her candidates, one at a time to a procedure,

which uses the decision tree to classify each in turn. A candidate that satisfies

any combination of Empty, Partial, or ¬Members Exist satisfies ¬Type

and requires further inspection.

1Redundant subtrees for Question 2 choices a, b, or c are combined. Variables that repre-
sent term input by the modeler appear in square brackets.

8.3. APPLYING TYPE CRITERIA 117

In our decision tree in Figure 8.1, each non-terminal node in the tree rep-

resents a question that is asked of the modeler. Each connecting “branch”

represents a potential answer given by the modeler in response to the question

it extends from. Each terminal node represents an assertion that is made as a

result of the series of answers leading to the node.

In Figure 8.1, the descriptions of the answer choices for Question 2 corre-

spond to more commonly modeled types under IC, DC, and Occurrent, namely

MaterialEntity, SpecificallyDependentContinuant, and Process.2 The other ma-

jor types of BFO, as illustrated in Figure 26, are SpatialRegion, TemporalRe-

gion, and SpatioTemporalRegion, and are based on the Newtonian space-time

container theory. We exclude these types from our evaluation work, because

their instances are simply not the sort of objects scientists reference directly in

real-world settings. This is evidenced by the fact that there are no subtypes

for these in the OBO Foundry’s Ontology for Biomedical Investigations (see

http://purl.obolibrary.org/obo/obi.owl). There are certain other types, (e.g.,

GenericallyDependentContinuant) that will appear in an expanded version of

the tree, in future work.

The goal of the procedure is to have a modeler perform an analysis of the

metaphysical nature of what it is she aims to classify. To address this normally

complicated task, many of the questions asked of the modeler are answerable by

“yes” or “no”. To supplement this approach, some questions include the term

the modeler has labeled the candidate under evaluation.

Before the first question is asked, the modeler is prompted for the name

of the class he wishes to add to his ontology. The first question asked for a

candidate A being evaluated is:

Question 1. What is a specific example of something that is a proto-

typical member of the class A?

Using the answer x given by the modeler, the following question is asked:

2This is reflected in the Gene Ontology’s division of classes into Cellular Component,
Molecular Function, and Biological Process.

118 CHAPTER 8. EVALUATING CANDIDATE TYPES

Figure 8.1: Decision Tree for Standardizing a Candidate Type

8.3. APPLYING TYPE CRITERIA 119

Question 2. Is x :

(a) a physical thing, something that can be seen or touched

(b) a quality, function, or role of a physical thing

(c) something that happens over time, like processes or events

(d) none of the above

If the modeler answers “d” (i.e., none of the above) to Question 2 then

the candidate includes at least one purported member that does not fall within

our restricted version of BFO’s domain. In this case the following error message

is given “x does not refer to an object in our restricted version of the BFO

domain” and the procedure terminates.

Note that even if the modeler answers a, b, or c, it is not necessarily the

case that x exists, at any time, according to BFO’s theory. The reason is that

the sentence may be interpreted by the modeler as assuming the notion of exis-

tence. As an analogy, if a modeler is asked “Is Bigfoot a vertebrate?” then the

modeler is more likely to answer “no” then if the modeler is asked “Is Bigfoot

a vertebrate, an invertebrate, or neither”. Even though “neither” is given as

an option in the latter sentence, the modeler may assume that the question

is implicitly “If Bigfoot were real, is Bigfoot a vertebrate, an invertebrate, or

neither”. Given this, a potentially useful question reordering could be that a

question about the existence of the example come before questions about its cat-

egorization. However, the current approach attempts to ground the questions

first in notions that are more accessible to the modeler. First, the modeler is

asked for an example for the class she is modeling (Question 1), and second the

modeler is asked to choose a corresponding description, each of which describes

one of the BFO types MaterialEntity, SpecificiallyDependentContinuant, and

Process (Question 2). Because existence means something different based on

the type of particular being considered, we maintain the current ordering. Fur-

thermore, the issue of assuming existence in Question 2 is dealt with directly

in subsequent questions.

120 CHAPTER 8. EVALUATING CANDIDATE TYPES

If the modeler answers a, b, or c, then the next question asked is:

Question 3. Aside from x, is every other member of A [Question 2 answer]?

If the modeler answers “no”, then the next question asked is:

Question 4. Are members of A either physical things, or else qualities,

or else functions, or else roles of a physical thing, or else processes?

If the modeler answers “no”, then the class includes some entities that do not

exist under BFO’s theory (although may include those rare types excluded),

therefore the candidate is not a type and the procedure provides the error mes-

sage “Some purported member of A does not refer to an object in our restricted

version of the BFO domain”. Following the error message the procedure termi-

nates.

If the modeler answers “yes” then the candidate satisfies Empty. The proce-

dure provides the error message “the candidate includes as members objects that

are instances of types that have no instances in common”, and terminates. In

either case if Question 4 is reached, ¬Type(A) holds, and re-conceptualization

of A is required in order for it to be introduced by our method into the ontology.

If the answer given for Question 3 was “yes”, then the next question asked

of the modeler is different depending on how the modeler answered Question

2. If the modeler answers (a) or (b) the question is fit to material entities or

specifically dependent continuants, but if the modeler answered (c) the question

is fit to processes:

Question 5a. Consider the time span before x has existed or after

x ceases to exist– is there any part of that time span in which x is a member of A?

Question 5b. Is there some time x is a member of A even though the time

is before x has happened, and by the present time, x has still not happened?

Here the example given by the modeler is part of the question to determine

if the candidate satisfies Instantiated, which is true if the answer is “no”. Note

8.3. APPLYING TYPE CRITERIA 121

though, it is not necessary false that the candidate satisfies Instantiated if the

modeler answers “no”, specifically because the question is about one particular.

Also, the question for material entities, 5a, helps determine if the candidate

satisfies Members Exist, because if the answer given is “yes”, then it follows

that ¬Members Exist(A). The question for processes, 5b, helps determine if

what x represents is in BFO’s domain. This is due to the fact that a purported

process exists for all time if it is indeed a process in BFO’s domain (Theorem

24). If the modeler answers “no” to either Question 5a or Question 5b,

a follow-up question is required, which relates the respective question to all

members. Again the question is tailored to the kind of particular the example

is, and also in this case the other members of the class, as identified through

the answers given for Question 2 and Question 3:

Question 6a. You have indicated that x exists whenever it is a member

of the class A. But is there some other member of A that is a member of A during

some part of the time span before it has existed or after it ceases to exist?

Question 6b. You have indicated that x exists whenever it is a member

of the class A. But is there some time some other member of A is a member of

A even though it is before x has happened and by the present time, x has still

not happened?

If the modeler answers “yes” to Question 6a it holds that ¬Members Exist(A).

If the modeler answers “yes” to Question 6b then one or more purported mem-

ber of A does not refer to an object in our restricted version of the BFO domain.

If “no” is the answer given in either case, the next question asked following

Question 6a and Question 6b, respectively, is:

Question 7a. Is there some time x is not a member of A while x exists?

Question 7b. Is there some time x is not a member of A after x has happened?

122 CHAPTER 8. EVALUATING CANDIDATE TYPES

If the modeler answers “yes” to either Question 7a or Question 7b then

the candidate satisfies Non-Rigid. If the modeler answers “no” then the next

question is asked following Question 7a and Question 7b, respectively:

Question 8a. You have indicated that x is a member of the class A

whenever it exists. But is there some other member of A that is not a member

of A at some time it exists?

Question 8b. You have indicated that x is a member of the class A

at all times after it has happened. But is there some other member of A that

is not a member of A even though it is after it has happened?

If the modeler answers “yes” to Question 8b or 8c, it is also the case that

A satisfies the definition of Non-Rigid. If the modeler answers “no” then

A satisfies Type(A). If Question 9 is reached, then A satisfies Non-Rigid,

and additional questions are required to make the candidate BFO compliant.

Question 9 is:

Question 9. Are objects members of A specifically because of:

(a) having some quality, function, or role

(b) being involved in some process

(c) being a part of some thing

(d) none of the above

Answer “a” confirms that the modeler’s class definition of A implicitly refer-

ences a specifically dependent continuant of some type. A could still be a type

if re-conceived as a subtype of SpecificallyDependentContinuant. A follow-up

question is asked:3

Question 10. Under which type of MaterialEntity

are the only members of A?

3In the implementation of the decision tree introduced in the next chapter, Chapter 9,
Question 10, 11, and 12 correspond to the presentation of the ontology’s class hierarchy
where the modeler is asked to pick the most specific class that all members of the class are
also members.

8.3. APPLYING TYPE CRITERIA 123

This question is asked to determine the classification of the members of A

(as it was originally conceived) under MaterialEntity. If the modeler selects a

type, B, from the existing ontology, then it is asserted that Depends On(A,B).

If the modeler selects “I don’t know”, then it is more generally asserted that

Depends On(A,MaterialEntity).

Answer “b” confirms that the modeler’s class definition implicitly considers

the participants of some indefinite process to be its members. For example, a

modeler may conceive a class Fertilization such that its members are gametes

that participate in some fertilization process. As with Question 10, a follow-up

question is asked:

Question 11. Under which type of MaterialEntity

are the only members of A?

This question is asked to determine of which type of MaterialEntity, the ob-

jects being classified are instances. If the modeler selects a type, B, from the ex-

isting ontology, then it is asserted that Has Participant(A,B). If the modeler

selects “I don’t know”, then it is more generally asserted that

Has Participant(A,MaterialEntity).

Answer “c” confirms that the modeler’s class definition implicitly considers

the parts of some indefinite particular to be the members. For example, a mod-

eler may conceive a class Endocrine System such that a member is a particular

pituitary gland that is part of some endocrine system. A follow-up question is

asked:

Question 12. Under which type of MaterialEntity

are the members of A?

This question is asked to determine under what type of MaterialEntity, the

objects being classified, are a part. If the modeler selects a type, B, from the

existing ontology, then it is asserted that Has Part(A,B). If the modeler selects

‘none”, then it is more generally asserted that Has Part(A,MaterialEntity).

124 CHAPTER 8. EVALUATING CANDIDATE TYPES

In each case of Questions 10, 11, and 12, the objects being classified are

re-classified under a type that has a type-level relation with another type whose

definition was implicit in the original (although implicit) class definition. Those

candidates conceived as satisfying any combination of Empty, Partial,

¬Members Exist, or Non-Rigid require additional inspection and definition

modification if the modeler aims for her ontology that includes such classes to

be consistent with BFO.

If a candidate satisfies Instantiated, Members Exist, and Rigid then

we consider the candidate BFO-compliant and satisfies Type. If a candidate

satisfies Instantiated, Members Exist, and Non-Rigid, our procedure poses

questions to help re-conceive and modify the class such that it is BFO-compliant.

The table in Figure 8.2 and 8.3 illustrate six uses cases that follow our decision

procedure for standardizing types.

8.3. APPLYING TYPE CRITERIA 125

F
ig

ur
e

8.
2:

R
es

p
on

se
s

to
D

ec
is

io
n

P
ro

ce
du

re
F
ol

lo
w

in
g

D
ec

is
io

n
T
re

e

126 CHAPTER 8. EVALUATING CANDIDATE TYPES

F
igure

8.3:
R

esp
onses

to
D

ecision
P

rocedure
F
ollow

ing
D

ecision
T
ree

Chapter 9

Implementation

9.1 Introduction

Our decision-tree algorithm (introduced in Section 8.3) for adding classes to

an ontology that should be compliant with BFO—enforces that a modeler take

into consideration, for each subclassing assertion, the models of the ontology

based on the assertion. The decision tree algorithm is implemented in the form

of an interactive Wizard Plugin for Protégé 4.1 (Knublauch et al., 2004). We

chose the Wizard-style plugin format because it lends itself to the decision-tree

question answering. Within a software installation wizard, a user is allowed

to configure the software installation with certain parameters. Similarly, our

Wizard plugin allows a user to formally model a class a certain way. Addition-

ally, a software installation wizard may not complete its execution successfully

due to requirements of the software installation not being met (e.g., not enough

disk space). Similarly, our Wizard Plugin will not allow a class conceived and

formalized in a way not compliant with BFO to be added to an ontology.

The wizard follows the decision-tree algorithm, and assumes that a modeler

is starting to build an ontology from scratch, introducing one class at a time.

As mentioned, the basis for the questions of the decision-tree is the formal

integration of BFOs theory of types and OntoClean’s notion Rigidity. In the

127

128 CHAPTER 9. IMPLEMENTATION

approach we use natural language questions to determine from the modeler if

Instantiated, Members Exist, Rigid or Non-Rigid hold. This approach is

limited by the fact that we attempt to use everyday language in the questions,

and BFO’s theory has its own informal and formal vocabulary which overlaps

with everyday language. To help address this limitation, for questions that are

presented to the modeler in the software, in some cases we present hints, in the

form of elaborations and examples, aimed to help a modeler understand BFO’s

usage of terms. Further, in the event where the system does not add a class to

the ontology, based on how it is conceived by the modeler, in all cases the system

presents an explanation as to why the class was not added to the ontology.

Violations of disjointness axioms of an ontology loaded into Protégé are

made apparent only after a classifier (i.e., DL reasoner) is run on the ontol-

ogy, therefore there may be inconsistencies in the ontology without a modeler’s

knowledge. To mitigate this problem, Rector et al. (2004) encourage users to

execute a classifier early and often. However, in typically modeling situations,

the classifier may not be run until after several modeling mistakes have been

made. Our implementation, based on our decision tree algorithm, enforces that

an ontology remains consistent with respect to the disjointness axioms of upper

ontology types, by asking certain questions, and applying the respective answers

to restricting where a class is rooted. There is no current plugin for Protégé

that accomplishes this for a modeler with respect to an upper ontology.

9.2 Demonstration

In this section we provide a demonstration of the BFO-Rigidity Decision Tree

Wizard Protégé plugin, which implements the decision tree presented in Chap-

ter 8. A demonstration is given for the introduction of what is found to be

a Rigid class into an ontology (as illustrated in Appendix E), and another

demonstration is given of what is found to be a Non-Rigid class into an ontol-

ogy (as illustrated in Appendix F - H).

9.2. DEMONSTRATION 129

9.2.1 Rigid Example

The first screen of the Wizard asks the modeler for the name of the class they

are adding to the ontology (Figure E.1). The bottom of the screen provides

useful tips that helps the modeler choose the class name. The tips suggest that

the modeler avoid mass nouns (e.g., glass, sugar), which are cross-granular in

nature, and recommend that the modeler choose a term that takes a determiner

like ‘every’, ‘few’ and ‘many’ and avoid terms that take determines like ‘some’,

‘little’ and ‘much’. In this case the modeler enters ‘Person’.

In the next screen the Wizard asks the modeler to enter a prototypical

example member of the class Person (Figure E.2). Again the screen provides

tips, which help the modeler understand that only particulars are members of

classes and provide various examples of particulars. There is also a tip that the

modeler may reuse previously given examples. In this case, the modeler enters

‘Tom’.

In the next screen the Wizard asks the modeler to categorize Tom, and

for provides choices based on descriptions that correspond to the BFO types

MaterialEntity, SpecificallyDependentContinuant, and Process (Figure E.3).

To help the modeler with what it means for something matching one of these

descriptions to fall under BFO’s domain, tips are given that describes what

kinds of particulars are included. Also given are specific examples of things

that are excluded. In this case the user selects the first choice, which is the

choice corresponding to MaterialEntity.

In the next screen the Wizard asks a question to determine if all members

of Person are instances of the BFO type of which Tom is an instance (Figure

E.4). In this case the user selects ‘Yes’. In the next screen, the Wizard asks

a question to determine if Tom is a member only at times he exists (Figure

E.5). The same sort of question is asked in the next screen, but with respect

to all members of the class (Figure E.6). For both screens the question is

tailored to the notion of existence for the corresponding BFO type chosen for

Tom and all members in the ‘Categorize Example’ screen (Figure E.3) and the

130 CHAPTER 9. IMPLEMENTATION

‘Homogeneity’ screen (Figure E.4), respectively. In both screens the modeler

answers ‘no’.

In the next screen the Wizard asks a question to determine if Tom is not a

member of Person at a time he exists (Figure E.7). Here examples are given

to assist the modeler with the decision. In the next screen the Wizard asks a

question to determine if any other member of Person exists at a time it is not

a member of the class (Figure E.8). In both screens the modeler answers ‘no’.

In the next screen the Wizard presents the modeler with the current class

hierarchy, and asks him to choose the some specific class that all member of the

class Person is also a member (Figure E.9). In this case the modeler chooses

MaterialEntity. In the next screen the Wizard indicates the assertion that it

makes on behalf of the modeler, which in this case is that Person is a subtype

of MaterialEntity (Figure E.10). The modeler is given an opportunity to add

additional classes to the ontology, and in this case selects ‘Yes’, and proceeds to

add the next class he wants to introduce into the ontology through repetition

of the system.

9.2.2 Non-Rigid Example

For the first and second screen the modeler enters ‘Reactant’ and ‘the compound

on the table’ as the class name and the example member, respectively (Figure

F.1, F.2). In the next four screens (Figure F.3 - F.6) the modeler answers

the questions as he did when introducing the Person class. In the very next

screen the modeler answers ‘Yes’, which confirms that the example does exist

at a time it is not a member of Reactant (Figure F.7). This implies that the

class satisfies Non-Rigid, which leads to a different set of menus then if the

class satisfied Rigid, as was the case in the previous example.

In the next screen the Wizard asks the modeler if objects are members of

Reactant because of having some quality, function, or role, being involved in

some process, being a part of something, or none (Figure F.8). Various tips

are given to help the modeler decide. In this case the modeler makes the first

9.2. DEMONSTRATION 131

choice. In the next screen the Wizard asks the modeler to choose the most

specific class that all member of Reactant are members of (Figure F.9). In

this case the modeler chooses MaterialEntity.

The next screen requires that the Wizard provide the modeler with infor-

mation about BFO’s commitment before asking a modeling question (Figure

F.10). This is given under ‘Wizard Interpretations’. Based on our decision

tree, the Wizard uses the class name given for the class being modeled to create

a new class under the type hierarchy of SpecificallyDependentContinuant. The

question the Wizard asks helps it determine if things that are reactants belong

to a more specific class or classes. In this case the modeler decides that there

is a more specific class or are more specific classes of particulars that are reac-

tants. As described, making this choice means that the modeler will be guided

through the process of adding the respective additional class(es), and for this

the Wizard repeats the process of adding a class.

For the first and second screen the modeler enters ‘Compound’ and ‘the

compound on the table’ as the class name and the example member, respectively

(Figure G.1, G.2). In the next seven screens (Figure G.3 - G.9) the modeler

answers the questions as he did when introducing the Person class (Figure E.3

- E.9), which, among other assertions, confirms that Compound satisfies Rigid.

Note that there is one difference in that Figure G.3 includes a Yes/No question

to ask the modeler whether or not the class’s members satisfy the description

of MaterialEntity. This is asked instead of the usual multiple choice question

because the modeler has already confirmed that all members of Reactant are

material entities (Figure F.4). Therefore if members of Compound are not

material entities, it would be a modeling mistake.

The next screen, Figure G.10, is very similar to Figure F.10, with the ex-

ception that Compound is now the class that the SpecificDependentContinuant

type Reactant is restricted to, instead of the more general type MaterialEntity.

Again, the modeler decides that there is a more specific class or are more spe-

cific classes of particulars that are reactants. Again, as described, making this

132 CHAPTER 9. IMPLEMENTATION

choice means that the modeler will be guided through the process of adding the

respective additional class(es), and for this the Wizard repeats the process of

adding a class.

For the first and second screen the modeler enters ‘Element’ and ‘the element

on the table’ as the class name and the example member, respectively (Figure

H.1, H.2). In the next seven screens (Figure H.3 - H.9) the modeler answers

the questions as he did it when introducing the Compound class (Figure G.3 -

G.9) and the Person class (Figure E.3 - E.9), which among other assertions

confirms that Element satisfies Rigid. The next screen, Figure H.10, is very

similar to Figure G.10, with the exception that the disjunction Compound ∨

Element is now the class that the SpecificDependentContinuant type Reactant is

restricted to, instead of more specifically Compound. In this screen the modeler

decides this is a sufficient restriction for the modeling of the class Reactant.

In the next screen the Wizard display the axioms to be asserted, which is

that Reactant is a subtype of SpecificallyDependentContinuant, and the formal

equivalent that every reactant depends on some compound or element, and is

dependent only on compounds and reactants (Figure H.11). Figure H.12

provides the axioms as they appear in Protégé.

Part IV

Discussion and Future

Directions

133

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 10

Introduction

The decision tree presented in Section 8.3 is based on the axioms and theorems

which result from our integration of OntoClean with BFO. The decision tree

helps a modeler determine whether or not Instantiated, Members Exist,

Rigid or Non-Rigid hold for a given class. When Instantiated, Mem-

bers Exist, and Non-Rigid hold for a class, the tree helps determine what

implicit relations hold between members of the class and members of some other

classes that are BFO types.

The OntoClean metaproperties Rigidity, Unity, and Identity are based on

an analysis of classes called sortals ; the entities that are members of various

sortals are also instances of BFO’s type Object. Given this, the integration

work squarely falls within the scope of modeling objects. However as given

in Chapter 8, we apply the notion of Non-Rigid to formalize classes in such

a way that they are compliant with BFO, which clearly requires and enables

the modeling of instances of Specifically Dependent Continuant (e.g., qualities,

functions, roles) in connection with objects. It also requires and enables the

modeling of processes in connection with objects, and furthermore, it enables the

modeling of the parthood relation for objects and processes. Therefore within

this scope our decision tree does help model classes that are not sortals, however;

given the current state of the BFO literature, there are certain limitations to

135

136 CHAPTER 10. INTRODUCTION

doing so.

There are some modeling assumptions for a class that are not compliant with

BFO (a class satisfying Members Exist, Instantiated, and Non-Rigid), but

that our decision tree attempts to help augment in such a way that the class can

be reconceived to be compliant with BFO. There are other modeling assump-

tion for a class that the decision tree cannot help reconceive easily or at all (a

class satisfying ¬Members Exist, ¬Instantiated, and/or Heterogeneous).

When these assumptions are detected through answers to decision tree ques-

tions, informative error messages are given to help the modeler address how the

class might be reconceived to be compliant with BFO. Finally, there are some

assumptions for a class that the decision tree cannot help reconceive due to

certain limitations of BFO (a class satisfying Members Exist, Instantiated,

and Non-Rigid and the implicit relationship being modeled is not clearly one

of the BFO primitive relations depends on, participates in, and part of).

In what follows we discuss in detail these limitations and, where appropriate,

propose them as areas for future work. In what follows we discuss in detail these

limitations of the integration work, which in some respects reflect the current

state of development of BFO.

Chapter 11

Restricted Domain

Modeling

As discussed, we restrict our decision tree to the modeling of material entities,

specifically dependent continuants (SDCs), and processes. The tree does not

assist with the modeling of Region classes, for the reasons given in Section 8.3,

p. 116, and also does not assist with the modeling of controversial classes based

on stages of development (e.g., fetus, child), for the reasons given in Section

6.1, p. 52. It also excludes modeling of classes which are more specifically

subtypes of the differentia of SpecificiallyDependentContinuant : Function, Role,

and Quality. For the body of work that covers realizable entities (includes

functions and roles, but excludes qualities), Arp and Smith (2008, p. 3) discuss

that roles are optional in comparison to the other subclasses of specifically

dependent continuant. Specifically, there are certain questions mentioned that,

if a modeler should answer them, will help them designate if a class is a Role

type or a Function type. If the question “Is this realizable such that its typical

manifestations are based on physical structures?” is answered “yes”, then the

particular is an instance of Function type. If the question “Is this realizable

such that its typical manifestation is a reflection of surrounding circumstances,

137

138 CHAPTER 11. RESTRICTED DOMAIN MODELING

especially involving social ascription, which are optional?” is answered “yes”,

then the particular is an instance of a Role type. Unfortunately though, this part

of BFO’s theory, and that involving qualities, is given entirely in English without

axioms. Our approach for this dissertation is to provide a formal integration of

BFO with OntoClean, and apply those formal notions to constructing a decision

tree that serves as a basis for a software interface for constructing ontologies

that are compliant with BFO. Since the work on realizables, and the distinction

between realizables and qualities is not yet formal, we exclude these types, the

differentia of SpecificiallyDependentContinuant, from our modeling approach

also.

For the same reason and also for the reason that it is not relevant to mod-

eling sortals or modeling of BFO types in connection with modeling sortals,

identity procedures for realizables, qualities, generically dependent continuants,

and processes are not part of the work either. Realizables can exist while not

being realized, and under what sort of conditions a realizable exists while not

being realized is not stated or axiomatized yet. If and once this work is com-

pleted, future work involves adapting the integration axioms, the decision tree,

and software to these further developments in BFO.

Chapter 12

Non-Rigidity and

Canonicity

As demonstrated in Section 8.3, we are able to use the notion of Non-Rigid

to assist a modeler in identifying implicit type-level relations. In the case of

parthood, there are some weaknesses in the way that the current type-level

relations are formalized. For example, using the decision tree, a modeler may

be led to assert Has Part(Human Body,Appendix), while it is not the case

that every human body has an appendix as a part of it, since an appendix

can be removed from a body during surgery. The issue can be resolved by

representing what we consider a prototype of what we aim to represent, by

a canonical ontology. As opposed to constructing an ontology based on how

an organism in the world is anatomically structured, a canonical ontology of

anatomy is restricted to organisms that follow a model of anatomy (Neuhaus

and Smith, 2008, p. 15). The current case is human canonical anatomy, which

is the anatomical makeup of the typical human, or in other words, the model of

anatomy explained in medical textbooks.

To address this issue it is not sufficient to express that the type-level relation

holds merely between canonical objects where part of holds. For example, it

139

140 CHAPTER 12. NON-RIGIDITY AND CANONICITY

is not the case that every canonical pituitary gland is a part of some canon-

ical endocrine system, because a canonical pituitary gland may be part of an

endocrine system without a pineal gland, for example, it having been removed

from a cadaver. We must also constrain the type-level relation for parthood

to pairs of objects which are both part of a larger canonical “system”. In the

examples covered thus far, this system would be the canonical human body.

Neuhaus and Smith (2008, p. 15) address this problem by defining a relation,

Iu(x,t), which, to address our examples, means that x is a human body that is

in conformity with anatomy u at t. By Iu(x,t), x is within the domain of bodies

that have a canonical anatomy. If x is in conformity with u at t then the the

formulas in the canonical ontology at t are true. This includes that if every

member Hand is a part of some member of Arm within the canonical domain,

for these pairs of hands and arms,1 there is some body x of which they are both

of a part. This is also formulated for the Has Part relation: if every member

Arm has as a part some member of Hand within the canonical domain, for these

pairs of hands and arms, there is some body x of which they are both of a part.

Note however that this work is not a part of BFO 1.1, and since this version

of BFO is one of the foundations of our integration, this work falls out of the

current scope. For the current work we must assume that for type-level parthood

relations canonical domains are assumed.

1We assume this specific relationship is functional.

Chapter 13

Status of Classes that are

Not Types

13.1 Introduction

In what follows we discuss issues of modeling under the constraints of the Dis-

jointness and Single Inheritance principles, modeling (Non-Rigid) classes that

are not types, and modeling Rigid class that are not types.

13.2 Constraints of the Disjointness and Single

Inheritance Principles

As was previously discussed the original BFO literature said that ontologies

should consist only of types, excluding classes that are not types (Spear, 2007,

p. 21). Furthermore, ontologies must abide by the Disjointness Principle and

the Single Inheritance Principle (Spear, 2007, p. 121). These approaches were

therefore naturally assumed for the OBO Foundry ontologies once BFO was

adopted as the project’s upper ontology. In recent efforts of the OBO Foundry

community, it has become clear that these constraints are often difficult to en-

141

142 CHAPTER 13. STATUS OF CLASSES THAT ARE NOT TYPES

force in practical modeling. For example, in the Ontology for Biomedical Inves-

tigations (OBI),1 Hybridization Oven is a subclass of Incubator and Container,

where neither is given as a subclass of the other.

In recent work, Smith and Ceusters (2010) advocate the principle of asserted

single inheritance, citing Alan Rector’s work on the topic:

Each reference ontology module should be built as an asserted mono-

hierarchy, a hierarchy in which each term has at most one parent.

(Rector, 2003)

The notion of asserted versus inferred hierarchy is relevant within the context

of Description Logics, where an asserted class hierarchy is constructed purely

on the set of axioms of an ontology, and an inferred hierarchy is obtained by the

application of a classifier (i.e., a classification reasoner) on the set of axioms of

an ontology. A classifier determines, from the necessary and sufficient conditions

of each class definition, what all its subclasses and superclasses are. Note that

if A is asserted as a subclass of B, it is trivial that A is inferred as a subclass of

B.

I evaluate this principle in the scope of our example from OBI, that

Hybridization Oven is asserted as a subclass of both Incubator and Container.

Together, the two corresponding asserted axioms violate the aforementioned

principle of asserted single inheritance. Incubator is an inferred subclass of De-

vice, and Container is fully defined (i.e., the necessary and sufficient conditions

are given) such that it is a subclass of Device and has the function of contain

function.2 Therefore, only the condition that Hybridization Oven has the func-

tion of contain function would need to be given to infer that Hybridization Oven

is a subclass of Container. If the definition of Hybridization Oven were changed

in this manner, i.e., that it has the function contain function instead of being a

subclass of Container, the violation of the principle of asserted mono-hierarchy,

1http://purl.obolibrary.org/obo/obi
2In BFO the notion of a function is stricter than what are considered functions in everyday

language. As mentioned in Section 6.2, artifacts have function through intentional design
and exist in virtue of their physical makeup.

13.2. CONSTRAINTS OF THE DISJOINTNESS AND SINGLE INHERITANCE PRINCIPLES143

condoned by Rector, would be alleviated.

Even with these changes, Hybridization Oven still has two superclasses (one

asserted, the other inferred), where one is not a subclass of the other, which

is a violation of the principle of disjointness. By adopting the principle of

asserted single inheritance for OBO, much is conceded in the way of ontology,

for modeling practicality. Firstly, if A is a subclass of B, by inference instead

of by an assertion, it still holds that A is a subclass of B. The objects that

satisfy A are objects that satisfy B, i.e., the semantics do not differ. Adopting

this weaker principle for the is a hierarchy and disregarding the principle of

disjointness allows for multiple inheritance, plain and simple. Another issue

within the discussion of (Smith and Ceusters, 2010) is that the is a relation is

discussed as the only relation for classification, therefore the dichotomy of types

and classes that are not types is not addressed.

I believe that the principle of asserted mono-hierarchy misses the point,

however, because it focuses on the manner in which an ontology is specified

and not on the the classification units applied to the objects of the ontology.

There is a way to preserve the original principles of BFO, in part by maintaining

the classification units, class and type, and instead adopting another, related

principle that Rector (2003) sets forth. The principle is that in an ontology

each class has no more than one primitive parent (i.e., immediate superclass).

This principle and the principle of asserted mono-hierarchies are actually very

similar, and would be one and the same under the assumption that classes can

only be asserted as subclasses of those classes that are primitive. Alas, no such

assumption is made nor is the assertion of subclasses of defined classes prevented

in any domain modeling tools, such as Protege.

The notion of a primitive is connected to that of types. Types are extremely

difficult to define completely in a formal language (Rector et al., 2004, p.13).

Given this, types are usually primitive classes of an ontology, with the exception

of types that are fully defined via a covering axiom.3 Note that, however, not

3In the OWL version of BFO (http://www.ifomis.org/bfo/), Entity is defined by the dis-
junction of Continuant and Occurrent.

144 CHAPTER 13. STATUS OF CLASSES THAT ARE NOT TYPES

all primitive classes are types, simply by the fact that some classes may be left

incompletely specified by a modeler, for any number of potential reasons.

From our example, Hybridization Oven is consistent with this principle be-

cause Container is a defined class, therefore Hybridization Oven only has one

primitive superclass, Incubator. By this approach, then, Container is not a type

because it is a defined class, and not a defined class due to a covering axiom.

In adapting this principle, the modeler must have a way of annotating those

classes which are primitive temporarily and will be defined at a later time, for

excluding them for the evaluation of whether or not the ontology in question

is consistent with the one primitive parent principle. Looking more closely at

the class Incubator, we suggest that it could be one such class and not a type,

because its primitive definition is primarily based on a function.

Given this clarification, the main issue is then whether or not a BFO-

compliant ontology may include classes which are not types. If not, then Con-

tainer would be excluded from the ontology, as it is fully defined. In general,

there are certain classes that are not types but satisfy Instantiated and Mem-

bers Exist (e.g., Container) that may be appropriate in a domain ontology

and there are other classes that do not satisfy either Instantiated or Mem-

bers Exist (e.g., Unicorn) that are certainly not appropriate in a domain ontol-

ogy. We continue to exclude both kinds of classes from our ontology evaluation

method, since our method remains centered on the importance of developing a

well-founded type hierarchy and compliance with BFO. We do concede, however,

in some cases, that the former kind may have utility and recommend that they

be added later in development of the ontology, for application-specific purposes

and with clear annotation that designates them as such. The type hierarchy,

hence, provides a foundation for adding such classes which in the context of DLs

are “defined”.

13.3. MODELING CLASSES THAT ARE NOT TYPES 145

13.3 Modeling Classes that are not Types

In the event that there is a potential change in policy such that “defined” classes

(as discussed in the previous section Section 9.4) are deemed BFO-compliant,

we herein explore the impact this has on our method of evaluation, i.e., the

decision tree, and how it might be changed. For some branches of the decision

tree (Question 9 answer “a” and “b”), the introduced candidate must be “re-

conceived” in order to reach type status. The designation of a class as Non-Rigid

allows the decision tree to facilitate this reconceptualization. For example if the

modeler introduces the candidate Student, given the expected answers to the

decision tree questions for such a class, at the end of the decision tree an asserted

axiom is Depends On(Student,Person). By our approach the label applied for

the class of students that is originally conceived by the modeler is applied to a

different class, that which BFO considers a subtype of Role. The benefit of our

approach is that the modeler’s intent is applied to help her reconceive the class

such that it is compliant with BFO. The difficulty with this approach is that (a)

the modeler is required to change their thinking for the class they introduced

and (b) the class the modeler originally had in mind is not a part of the ontology

following application of the decision tree.

The difficulty of (a) cannot be avoided, it can only be explained, because ul-

timately the user must comprehend why the Wizard has asserted certain axioms

on their behalf, and, ergo, come to comprehend the categories of BFO. With

the assumed change in policy, for (b), alternatively the class Student would be

kept in the ontology and defined by its relationship with a class in the Role

hierarchy (here assumed Student-Role) and its classification under a BFO type

(here assumed Person) subclass of(Student,Person) ∧ Depends On(Student-

Role,Person) ∧ Has Dependent(Student,Student-Role).4 Clearly then, the

change in policy allows the modeler to still introduce the class she had in mind,

in the case of Non-Rigid classes like these.

4This is formalized similar to how Has Part is in comparison to Part Of.
Has Dependent(A,B) iff for every instance x of A at t there is some instance y of B at
t such that y depends on x at t.

146 CHAPTER 13. STATUS OF CLASSES THAT ARE NOT TYPES

13.4 Rigid Classes That are Not Types

There are some classes which satisfy Instantiated, Members Exist, and

Rigid that the originators of BFO would not consider types. Take for example

the class Made in China or the class Made in 2011, which have as members

material artifacts. Modeling of these classes also leads to multiple inheritance.

Although clearly BFO is applied as the upper ontology of biomedical ontologies,

as a representation of reality the BFO theory needs to address these cases.

13.5 Non-Rigid Processes

Although nothing in its axiomatization prevents a wider scope, we have applied

Non-Rigid to classes whose members are material entities, given its purpose

for modeling sortals and their relationships with other entities. Therefore our

decision tree does not address the issue of modeling Non-Rigid Process classes.

An example of a Non-Rigid process is a symptom of feeling nauseous. The

notion that the process of feeling nauseous is a symptom is based purely on it

being reported in the context of a medical health care situation. Prior to being

reported, the process is not a symptom.

During the testing of the decision tree Wizard, it was determined that such a

process is Non-Rigid. We don’t have a way to formulate the relationship of the

underlying process with another entity based on the Non-Rigid designation, as

we did for specifically dependent continuants. We suggest that for future work

the BFO originators address this matter, and the decision tree can be adapted

accordingly.

Chapter 14

Exploiting Heterogeneity to

Identify Other Type-Level

Relations

We define a predicate Heterogeneous which is satisfied by any class that has

as members instances of at least two types that are disjoint. Examples include

a class PDF that has as members print-outs of pdf files and pdf files themselves

(which are informational artifacts that fall under GenericallyDependentContin-

uant), and a class Myocardial Infarction which has as members heart attack

events and collections of dead cardiac cells. As is demonstrated for Non-Rigid

classes, there is a potential opportunity to identify type-level relations that hold

between the members of classes that are heterogeneous. Alas, neither the Re-

lation Ontology nor the Information Artifact Ontology are mature enough to

provide such relations, at least for the example cases given.

147

148CHAPTER 14. HETEROGENEITY AND OTHER TYPE-LEVEL RELATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 15

Experimental Work on

Connecting Identity to

Information Artifact

Ontology Classes

In Section 7.2.2, we provide a detailed formalization of identity procedures,

such that there are two parts of the procedure which have a result and where

the results are matched against one another. In what follows we explore how

connect this formalization to an existing ontology that formalizes these notions,

but ultimately leave the completion of such a task for future work.

To answer this question For this exploration we turn to the Information

Artifact Ontology (IAO), a domain level ontology that uses BFO as an upper

ontology.1 This ontology includes a subtype of Process, Planned Process, which

is defined such that an instance is “a processual entity that realizes a plan which

is the concretization of a plan specification”. Our notion of necessary identity

1http://purl.obolibrary.org/obo/iao.owl

149

150CHAPTER 15. EXPERIMENTAL WORK WITH INFORMATION ARTIFACTS

procedure fits this definition of Planned Process therefore we could consider that

Identity Procedure is a subtype of Planned Process. An editor note explains that

the notion of a plan is not vetted, indicating “this class is included to make clear

how the plan specification, the plan, and the planned process relate. OBI will

however only subclass and work under the ‘plan specification’, and ‘planned

process’ class, as we want to avoid to get deep into discussions of ‘intent’ etc”.

In the formal OWL definition plan specification is restricted to those that

have as a part some objective specification. By the natural language definition

given in OBI an objective specification is:2

A directive information entity that describes an intended process

endpoint. When part of a plan specification, the concretization is

realized in a planned process in which the bearer tries to effect the

world so that the process endpoint is achieved.

Examples are given as “purpose of a study, support of hypothesis, or discov-

ery”and an editor note indicates that an instance of this type “Answers the

question, why did you do this experiment?”. This class may be close to what

would be a subclass of a class that whose definition corresponds to the notion of

identity criterion put forth by Guarino and Welty. For example, the description

for the purported necessary identity criterion having the same genotype, “having

the same genotype”, serves to partially describe the object specification class

“to determine if two evaluants have the same genotype”.

Furthermore, IAO includes a relation (i.e., an OWL property) that is a

subrelation of has participant, has specified output, which is defined as:

A relation between a planned process and a continuant participating

in that process. The presence of the continuant at the end of the

process is explicitly specified in the objective specification which the

process realizes the concretization of.

In the case of an objective specification class we describe as “to determine

2“Note that the status indicates “pending final vetting”.

151

if two evaluants have the same genotype” of a planned process P, given con-

firmed(P,p,w,v,t,t1), one such continuant in this relation is what OBI considers

an information content entity, which is about the identity of w at t, another

such continuant is another information content entity that is about the identity

of v at t1, and finally an information content entity that is a boolean value that

is the output of a test comparing those information content entities about w

and v.

152CHAPTER 15. EXPERIMENTAL WORK WITH INFORMATION ARTIFACTS

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 16

External Dependence

Previously we mentioned that we do not model subtypes and subrelations of

SDC and depends on, respectively, due to lack of axioms that differentiate

them in BFO. For this same reason we do not integrate external dependence

with BFO, which heavily relies on a theory of roles.

153

154 CHAPTER 16. EXTERNAL DEPENDENCE

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 17

Implementation Advances

When a candidate type does not follow the criteria to be a type nor is recon-

ceived to be type following confirmation of the candidate as Non-Rigid, the

software simply terminates with an explanation as to why the candidate is not

a type. There however is value in storing decision-tree question answers, in cases

where the answers to questions change upon further analysis by the modeler, for

updated answers which confirm the candidate as a type. To provide for the flex-

ibility of allowing a modeler to revisit the modeling of such a candidate, future

work on the implementation will store the question answers to non-compliant

classes in annotation properties, and will add as a subclass of a class designated

for those candidate not yet types, Candidate.

Other future implementation advances include incorporating the integration

of Unity and Identity into the decision tree and Wizard implementation. We

envision for this work that for each class that is rooted in the class hierarchy,

the wizard queries the identity procedures and unifying relations for the corre-

sponding superclasses. If the modeler confirms that they hold for the candidate

type, the Wizard asks the user to add any additional identity procedures or

unifying relations that apply to the newly introduced candidate type.

155

156 CHAPTER 17. IMPLEMENTATION ADVANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 18

Conclusions

The BFO-Rigidity Decision Tree Wizard offers an analysis that an experienced

ontologist normally performs intuitively when adding classes to an ontology.

The Wizard therefore makes this exercise both explicit and directed. While

testing the user interface of the Wizard it became apparent that the Wizard

forces a modeler to think about aspects of the class are modeling that he may

not have considered when first introducing the class. We think this is one of the

values of the Wizard; a class will not be added to the ontology until the modeler

undergoes the necessary thinking process needed for the class to be considered

an addition to a BFO-compliant ontology.

One of the benefits of isolating classes which satisfy Heterogeneous is

that it identifies and disallows candidate types into a domain ontology which

are inherently upper level. For example if a modeler introduces a class Thing

which has as members what BFO considers continuants and occurrents, it is an

upper level class and is redundant with Entity. Another benefit is to isolate and

eliminate candidate types that conflate the classification under both Continuant

and Occurrent, as was done in the LinKBase system (Simon and Smith, 2004,

p. 6) (Simon et al., 2006, p. 227)

After a class name A is entered, the first question (Question 1) asks: “What

is a specific example of something that is a prototypical member of the class A?”

157

158 CHAPTER 18. CONCLUSIONS

Once Question 1 is answered the modeler has entered both a class name A and

an example member a of the class, therefore ∃t(member of(a,A,t)). Question

2 attempts to determine if a is an instance of the type (a) MaterialEntity, (b)

SpecificallyDependentContinuant, or (c) Process. Question 3 then determines

if all members of A are instances of the same type selected in Question 2. So

for instance, if (a) is selected for Question 2, this corresponds to the asser-

tion ∃t(member of(a,MaterialEntity,t)), and if Question 3 is answered “yes”,

then this corresponds to the assertion

∃t(member of(x,A,t)) → ∃t1(member of(x,MaterialEntity,t)). If Question

2 is answered (d), then, based on our restriction of modeling to material entities,

specifically dependent continuants, and processes, it is not the case that what

‘a’ represents falls within BFO’s domain.1

Axiom 1 represents that an entity x in BFO’s domain exists at some time.

What cannot be represented, due to the contradictory nature of the assertion,

but is assumed under BFO theory is that if something does not fall within what

x ranges over, it does not exist at any time. Therefore the choice (d) here, al-

though unintutively, corresponds to the assertion that ¬∃t(exists at(a,t)) due

to the fact that ‘a’ does not refer to an object in our restricted version of the

BFO domain. This however leads to an inconsistent ontology because by appli-

cation of Axiom 1 ¬∃t(exists at(a,t)) ∧ ∃t(exists at(a,t)), a contradiction.

In terms of revising the ontology such that it is consistent, at least one of those

conjuncts must be removed. Since the latter conjunct is based on an axiom

of our system, we would normally consider that it is the former conjunct that

should be removed, ¬∃t(exists at(a,t)). Unfortunately, removal of this con-

junct is not the case either, based on the answer (d) given by the modeler to

Question 2. Ultimately, to what ‘a’ refers does not fall within BFO’s domain,

and the inconsistency is resolved by removing the conjunctive assertion and a as

a purported particular. Since there may be other objects the modelers consider

members of A, it is not necessarily the case that A satisfies Empty, but it is

1As discussed in Section 8.3, we restrict our domain of particulars by excluding uncom-
monly represented types.

159

the case if every member follows the modeler’s assumptions for a.

Question 5 and Question 6 determine whether or not the example and

then all members of the class exist at all times they are members, respectively.2

For Question 5 the answers and corresponding asserted formulas are:

(yes): ∃t(member of(a,A,t) ∧ ¬exists at(a,t))

(no): member of(a,A,t) → exists at(a,t)

Based on a “no” assertion for Question 5, and the answer to Question 1,

which corresponds to ∃t(member of(a,A,t), it follows that

∃t(member of(a,A,t) ∧ exists at(a,t)). From this formula and Definition 2

it follows that Instantiated(A). From the “yes” assertion for Question 5a it

follows that ¬Members Exists(A) (based on Definition 4), and from that

it follows that ¬Type(A) (based on Axiom 5). Note that for the version of

Question 5 for processes, 5b, if “yes” were to hold, this would lead to an in-

consistent ontology. This is due to the fact that processes exist for all time. For

Question 6 the answers and corresponding asserted formulas are:

(yes): ∃xt(member of(x,A,t) ∧ ¬exists at(x,t))

(no): member of(x,A,t) → exists at(x,t)

From the “yes” assertion for Question 6a also it follows that ¬Members Exists(A)

(based on Definition 4), and from that it follows that ¬Type(A) (based on

Axiom 5). As with Question 5, for the version of Question 6 for processes,

6b, if “yes” were to hold, this would lead to an inconsistent ontology. If a “no”

assertion is made for both Question 5 or Question 6, additional decision tree

questions are posed.

Question 7 and Question 8 determine whether or not the example and

then all members of the class are members at all time they exist. For Question

7 the answers and corresponding assertions asserted formulas are:

2Question 5, 6, 7, and 8 have alternate versions: (a) phrases the question to address
the existence of material entities or specifically dependent continuants, and (b) phrases the
question to address the existence of processes. The version asked of the modeler is based on
previous answers. For simplicity, in this chapter we refer to the overall question instead of the
specific version.

160 CHAPTER 18. CONCLUSIONS

(yes): ∃t(¬member of(a,A,t) ∧ exists at(a,t))

(no): member of(a,A,t) → ∀t1(exists at(a,t1) → member of(a,A,t1))

For Question 8 the answer and corresponding asserted formulas are:

(yes): ∃xt(¬member of(x,A,t) ∧ exists at(x,t))

(no): member of(x,A,t) → ∀t1(exists at(x,t1) → member of(x,A,t1))

Based on “yes” assertions for Question 7 and Question 8, and the assertion

of Question 1 (∃t(member of(a,A,t))), it follows that Rigid(A) (based on

Definition 5). Based on a “no” assertion for either Question 7 or Question

8, it follows that Non-Rigid(A) (based on Definition 5 and Definition 6,

but also given immediately in Theorem 21). Although we don’t formalize it

in our system due to possible exceptions,3 for the sake of the decision tree we

assume that if A satisfies Instantiated, Members Exist, and Rigid it also

satisfies Type. For the candidate A, the answer “no” to Question 5, 6, 7 or

8 results in the inference that ¬Type(A), which can be shown using Axiom 5

and Axiom 6.

Ultimately, the answers to questions of the decision tree correspond to for-

mulas that can be asserted in our formal system, and the inferences based on

these formulas are implicit made within the decision tree structure. The rest

of the decision tree starting at Question 9 addresses how to model the candi-

date based on it satisfying Non-Rigid (and also satisfying Instantiated and

Members Exist).

The notion that a class is exclusively Rigid or Non-Rigid (Theorem 4)

is a very useful modeling device; if a modeler cannot make the assignment of

a candidate type as Rigid or Non-Rigid, this indicates that he has not yet

considered this aspect of the class he is introducing. It is this aspect that is

vital for modeling a BFO-compliant domain ontology, because a Non-Rigid class

does not belong in the is a hierarchy (Theorem 17). The example given by

3Please see Section 13.4, which discuss “false positives”, i.e., classes which satisfy In-
stantiated, Members Exist, and Rigid but may not be types under BFO’s theory.

161

the modeler and the other members of the class, at a time that they exist, are

members of some other class that is Rigid (Theorem 21) which, under BFO’s

theory, better represents what they are. Further, there are additional entities

that these members are in some relation with that should be represented (as

explicated in Section 6.3). Specifically there is some class the Non-Rigid class

is a subclass of that is Rigid (Theorem 21), which is one criterion for being a

type. Question 9 helps determine the better representation and the additional

entities for the members of the introduced class.

The answer for Question 9 helps determine if the the additional entity to

represent is (a) a quality, function, or role, (b) a process (c) a part of something

else under the same BFO types. Although there are not necessarily additional

inferences based on these answers, type-level relationships are formalized on

behalf of the modeler once they help identify what the type of the additional

entity is.

Ultimately, the decision tree makes the above assertions implicitly and per-

forms these inferences on behalf of the user, instead of having the user create

these axioms directly and in their system. This is useful because generally these

assertions are not considered within the scope of a domain level ontology.

One of the major challenges of integrating BFO with OntoClean is the lack of

clarity of the formal theories of both BFO and OntoClean. For instance, the doc-

ument titled the BFO manual on the BFO website (http://www.ifomis.org/bfo)

explicates all the types of BFO, but it does not include any axioms. There are

many other papers by the originator of BFO, Barry Smith, that do include ax-

ioms, but it is not clear if these papers are considered a part of BFO or not. To

address this challenge I communicated with Barry Smith directly, while at the

same time have made the effort to to take into account only what is considered

a part of BFO version 1.1’s theory, and not what is considered BFO 2.0, which

is yet to be released at the time of this writing.

On the OntoClean side, the formulations of Rigidity have changed signifi-

cantly through the various papers published by Guarino and Welty, and in more

162 CHAPTER 18. CONCLUSIONS

recent publications (Guarino and Welty, 2004) the axioms have been left out

altogether. This is an approach taken to address certain flaws that are difficult

to deal with formally and at the same time an attempt to make the OntoClean

theory more accessible to laypeople. With our work we were able to maintain

that balance, in terms of informal and formal explication of our integrated the-

ory, while also providing an implementation based on a decision tree that can

serve as a training tool. As previously mentioned, the questions asked in the

decision tree have a close mapping to the questions an experienced ontologist

asks themselves when trying to create a BFO-compliant ontology.

In performing this work we have discovered that a reformulated notion of

Rigidity can play a key role in domain modeling under BFO’s upper ontology.

Under BFO’s theory, using classes as the only categorical unit is limiting, hence

the introduction of types. All types are Rigid, and a candidate type being

assigned by a modeler as Non-Rigid reveals that addition work is required by

the modeler for their ontology to be BFO-compliant.

Appendix A

BFO Type immediate is a

Hierarchy (Partial View)

163

164APPENDIX A. BFO TYPE IMMEDIATE IS A HIERARCHY (PARTIAL VIEW)

OccurrentContinuant

Entity

Dependent

Continuant

Independent

Continuant
Spatial
Region

Object

Aggregate

Specifically
Dependent
Contiuant

Processual
Entity

Temporal
Region

Material
Entity

Generically
Dependent
Continuant

Object Quality
Realizable
Entity

Disposition

Function

Role

Spatio-
Temporal

Region

Temporal
Instant

Temporal
IntervalProcess

Appendix B

Instance-Level Relations of

Relation Ontology

Relation arg1 arg2 arg3
depends on Dependent Continuant Independent Continuant Temporal Region
part of Particular Particular Temporal Region
participates in Continuant Occurrent Temporal Region
located in Continuant Spatial Region Temporal Region

165

166APPENDIX B. INSTANCE-LEVEL RELATIONS OF RELATION ONTOLOGY

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix C

Formulas

C.1 In Order of Appearance

Axiom 1. ∃t(exists at(x,t)) [p. 41]

Definition 1. subclass of(A,B) =def ∀xt(member of(x,A,t) →

member of(x,B,t)) [p. 42]

Axiom 2. A=B ↔ (subclass of(A,B) ∧ subclass of(B,A)) [p. 42]

Theorem 1. subclass of(A,A) [p. 43]

Theorem 2. subclass of(A,B) ∧ subclass of(B,C) →

subclass of(A,C) [p. 43]

Axiom 3. ¬∀xt(member of(x,A,t) → exists at(x,t)) [p. 43]

Definition 2. Instantiated(A) =def ∃xt(member of(x,A,t) ∧

exists at(x,t)) [p. 44]

Definition 3. Empty(A) =def ¬∃xt(member of(x,A,t)) [p. 44]

Definition 4. Members Exist(A) =def ∀xt(member of(x,A,t) →

exists at(x,t)) [p. 44]

167

168 APPENDIX C. FORMULAS

Definition 5. Rigid(A) =def ∀x (∃t(member of(x,A,t)) →

∀t1(exists at(x,t1) → member of(x,A,t1))) [p. 46]

Definition 6. Non-Rigid(A) =def ¬Rigid(A) [p. 47]

Theorem 3. Non-Rigid(A) ↔ ∃x (∃t(member of(x,A,t)) ∧

∃t1(exists at(x,t1) ∧ ¬member of(x,A,t1))) [p. 47]

Theorem 4. Rigid(A) ⊕ Non-Rigid(A) [p. 48]

Theorem 5. ∃AB(Rigid(A) ∧ Non-Rigid(B) ∧ subclass of(A,B))

Theorem 6. ∃AB(Rigid(A) ∧ Non-Rigid(B) ∧ subclass of(B,A))

Axiom 4. Type(A) → Instantiated(A) [p. 52]

Definition 7. Partial(A) =def Instantiated(A) ∧

∃xt(member of(x,A,t) ∧ ¬exists at(x,t)) [p. 52]

Axiom 5. Type(A) → Members Exist(A) [p. 52]

Theorem 7. Type(A) → ¬Partial(A) [p. 52]

Axiom 6. Type(A) → Rigid(A) [p. 53]

Theorem 8. Type(A) → ¬Empty(A) [p. 53]

Theorem 9. Non-Rigid(A) → ¬Type(A) [p. 59]

Definition 8. instance of(x,A,t) =def member of(x,A,t) ∧ Type(A) [p. 55]

Theorem 10. Type(A) ∧ member of(x,A,t) → exists at(x,t) [p. 55]

Theorem 11. instance of(x,A,t) → exists at(x,t) [p. 55]

Theorem 12. Type(A) → ∃xt(instance of(x,A,t)) [p. 55]

Theorem 13. ∃xt(member of(x,A,t) ∧ ¬instance of(x,A,t)) →

¬Type(A) [p. 56]

Axiom 7. Type(A) ∧ Type(B) → ∀t(¬instance of(A,B,t)) [p. 106]

C.1. IN ORDER OF APPEARANCE 169

Definition 9. is a(A,B) =def ∀xt(instance of(x,A,t) →

instance of(x,B,t)) [p. 57]

Theorem 14. is a(A,B) → Type(A) ∧ Type(B) [p. 57]

Axiom 8. A=B ↔ (is a(A,B) ∧ is a(B,A)) [p. 57]

Theorem 15. is a(A,B) → subclass of(A,B) [p. 57]

Theorem 16. is a(A,B) → Rigid(A) ∧ Rigid(B) [p. 58]

Theorem 17. Non-Rigid(A) → ∀B(¬is a(A,B) ∧ ¬is a(B,A)) [p. 58]

Axiom 9. Type(A) → is a(A,Entity) [p. 58]

Theorem 18. is a(A,Entity) → Type(A) [p. 58]

Theorem 19. is a(A,B) → is a(A,Entity) ∧ is a(B,Entity) [p. 59]

Axiom 10. exists at(x,t) → ∃A(instance of(x,A,t)) [p. 59]

Theorem 20. ∃A(instance of(x,A,t)) → instance of(x,Entity,t) [p. 59]

Theorem 21. member of(x,A,t) ∧ exists at(x,t) →

∃B(member of(x,B,t) ∧ Rigid(B)) [p. 59]

Theorem 22. (Non-Rigid(A) ∧ Members Exist(A)) →

∃B(subclass of(A,B) ∧ Rigid(B)) [p. 164]

Theorem 23. subclass of(A,Entity) → Members Exist(A) [p. 60]

Axiom 11. ∃t(instance of(x,Occurrent,t)) →

∀t1(instance of(x,Occurrent,t1)) [p. 60]

Theorem 24. ∃t(instance of(x,Occurrent,t)) → ∀t1(exists at(x,t1)) [p. 60]

Theorem 25. is a(A,Occurrent) → ∀x (∃t(instance of(x,A,t)) →

∀t(instance of(x,A,t))) [p. 74]

Definition 10. immediate is a(A,B) =def is a(A,B) ∧ A 6=B ∧

∀C (is a(A,C) ∧ is a(C,B) → A=C ⊕ C=B) [p. 61]

170 APPENDIX C. FORMULAS

Theorem 26. immediate is a(A,B) → ∃xt(instance of(x,B,t) ∧

¬instance of(x,A,t)) [p. 61]

Axiom 12. ∃xt(instance of(x,A,t) ∧ instance of(x,B,t)) →

is a(A,B) ∨ is a(B,A) [p. 62]

Theorem 27. is a(A,B) ∧ is a(A,C) → is a(B,C) ∨ is a(C,B) [p. 62]

Theorem 28. ∃xt(instance of(x,A,t)) ∧

subclass of(A,B) ∧ subclass of(A,C) →

¬is a(B,C) ∨ ¬is a(C,B) →

¬Type(B) ∨ ¬Type(C) [p. 106]

Theorem 29. immediate is a(A,B) → (immediate is a(A,C) ↔

B=C) [p. 63]

Theorem 30. (instance of(x,A,t) ∧ instance of(x,B,t) ∧

immediate is a(A,C) ∧ immediate is a(B,C)) →

A=B [p. 63]

Theorem 31. (∃A(is a(A,B) ∧ is a(A,C)) ∧

∃D(immediate is a(B,D) ∧

immediate is a(C,D))) → B=C [p. 64]

Definition 11. disjoint fromclass(A,B) =def ∀xt(member of(x,A,t) →

¬member of(x,B,t)) [p. 64]

Definition 12. disjoint fromtype(A,B) =def ∀xt(instance of(x,A,t) →

¬instance of(x,B,t)) [p. 64]

Theorem 32. disjoint fromtype(A,B) → Type(A) ∧ Type(B) [p. 64]

Definition 13. Heterogeneous(A) =def ∃xBCt(member of(x,A,t) ∧

member of(x,B,t) ∧ member of(x,C,t) ∧

disjoint fromtype(B,C)) [p. 66]

Theorem 33. Heterogeneous(A) → Instantiated(A) [p. 66]

C.1. IN ORDER OF APPEARANCE 171

Theorem 34. disjoint fromtype(A,B) → disjoint fromclass(A,B) [p. 66]

Theorem 35. ¬∀A(¬disjoint fromclass(A,A)) [p. 66]

Theorem 36. ¬∀A(disjoint fromclass(A,A)) [p. 67]

Theorem 37. ∀A(¬disjoint fromtype(A,A)) [p. 67]

Theorem 38. disjoint fromclass(A,B) → disjoint fromclass(B,A) [p. 67]

Theorem 39. disjoint fromtype(A,B) → disjoint fromtype(B,A) [p. 67]

Theorem 40. subclass of(A,B) ∧ subclass of(A,C) ∧

disjoint fromclass(B,C) → Empty(A) [p. 68]

Theorem 41. disjoint fromtype(A,B) ∧ is a(C,A) →

disjoint fromtype(C,B) [p. 68]

Theorem 42. disjoint fromtype(A,B) ∧ is a(C,A) ∧ is a(D,B) →

disjoint fromtype(C,D) [p. 68]

Theorem 43. immediate is a(A,C) ∧ immediate is a(B,C) ∧ A 6=B →

disjoint fromtype(A,B) [p. 68]

Theorem 44. (is a(A,B) ∨ is a(B,A)) ⊕ disjoint fromtype(A,B) [p. 69]

Theorem 45. ¬∀ABC (disjoint fromtype(A,B) ∧

disjoint fromtype(B,C) →

disjoint fromtype(A,C)) [p. 70]

Theorem 46. ¬∀ABC (disjoint fromtype(A,B) ∧

disjoint fromtype(B,C) →

¬disjoint fromtype(A,C)) [p. 70]

Axiom 13. depends on(x,y,t) →

instance of(x,DependentContinuant,t) ∧

instance of(y,IndependentContinuant,t) [p. 72]

Theorem 47. depends on(x,y,t) → exists at(x,t) ∧ exists at(y,t) [p. 72]

172 APPENDIX C. FORMULAS

Axiom 14. ∃t(depends on(x,y,t)) → ∀t1(exists at(x,t1) →

exists at(y,t1)) [p. 72]

Axiom 15. ∃tt1(depends on(x,y,t) ∧ depends on(x,z,t1)) → y=z [p. 73]

Axiom 16. generically depends on(x,A,t) →

instance of(x,GenericallyDependentContinuant,t) ∧

is a(A,IndependentContinuant) [p. 73]

Axiom 17. is a(A,Occurrent) ↔ ∀x (∃t(part of(x,A,t)) →

∀t(part of(x,A,t))) [p. 74]

Axiom 18. exists at(x,t) → ∀y(part of(y,x,t) → exists at(y,t)) [p. 75]

Axiom 19. located in(x,y,t) →

instance of(x,Continuant,t) ∧

instance of(y,SpatialRegion,t) [p. 75]

Axiom 20. participates in(x,y,t) →

instance of(x,Continuant,t) ∧

instance of(y,Process,t) [p. 75]

Definition 14. Depends On(A,B) =def

∀xt(instance of(x,A,t) →

∃y(instance of(y,B,t) ∧

depends on(x,y,t))) [p. 76]

Definition 16. Has Part(B,A) =def

∀yt(instance of(y,B,t) →

∃z (instance of(z,A,t) ∧ part of(z,y,t))) [p. 76]

Definition 17. exemplifies(x,A,t) =def

∃y(depends on(y,x,t) ∧

instance of(y,A,t)) ∧

is a(A,SpecificallyDependentContinuant) [p. 79]

C.1. IN ORDER OF APPEARANCE 173

Definition Schema 1. Unified Under(A,ω,p) =def

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀z (p(z,x,t) ↔

ω(z,y,t))))) ∧

∀wvt(p(w,v,t) → part of(w,v,t)) ∧

¬∀wvt(part of(w,v,t) → p(w,v,t)) [p. 87]

Metatheorem 1. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀zw(ω(y,z,t) ∧ ω(z,w,t) → ω(y,w,t))))) [p. 88]

Metatheorem 2. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀zw(ω(y,z,t) → ω(z,y,t))))) [p. 88]

Metatheorem 3. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) → ω(y,y,t)) [p. 88]

Metatheorem 4. Unified Under(A,ω,p) →

∀xyt(member of(x,A,t) ∧ member of(y,A,t) →

exists at(x,t) ∧ exists at(y,t) →

∃z (p(z,x,t) ∧ p(z,y,t)) →

∀w(p(w,x,t) ↔ p(w,y,t)))) [p. 89]

Definition 18. Necessary-IP(A,P) =def ∀xytt1((member of(x,A,t) ∧

174 APPENDIX C. FORMULAS

exists at(x,t) ∧ member of(y,A,t1) ∧ exists at(y,t1)) →

(x=y → confirms(P,x,y,t,t1))) [p. 95]

Axiom 21. (Necessary-IP(A,P) ∧ ∃xytt1(confirms(P,x,y,t,t1))) →

∃pwvt2t3(member of(w,A,t2) ∧ exists at(w,t2) ∧

member of(v,A,t3) ∧ exists at(v,t3)) ∧

confirmed(P,p,w,v,t2,t3)) [p. 95]

Axiom 22. confirmed(P,p,w,v,t2,t3) → ∃t(instance of(p,P,t)) [p. 96]

Axiom 23. confirmed(P,p,w,v,t2,t3) →

∃p1p2(matches(result of procedure(p1,w,t2), result of procedure(p2,v,t3)) ∧

part of(p1,p) ∧ part of(p2,p)) [p. 96]

Definition 19. Sufficient-IP(A,P) =def ∀xytt1((member of(x,A,t) ∧

exists at(x,t) ∧ member of(y,A,t1) ∧ exists at(y,t1)) →

[p. 98] (confirms(P,x,y,t,t1) → x=y))

Definition 20. IP(A,P) =def Necessary-IP(A,P) ∨ Sufficient-IP(A,P) [p. 99]

Definition 21. N&S-IP(A,P) =def Necessary-IP(A,P) ∧ Sufficient-IP(A,P) [p. 99]

Axiom 24. IP(A,P) → ∃B(Rigid(B) ∧ IP(B,P) ∧

subclass of(A,B)) [p. 100]

Theorem 48. (Non-Rigid(A) ∧ IP(A,P)) → ∃B(Rigid(B) ∧ IP(B,P) ∧

A 6=B ∧ subclass of(A,B)) [p. 100]

Definition 22. supplies-IP(A,P) =def IP(A,P) ∧ Rigid(A) ∧

(∀B(IP(B,P) → subclass of(B,A)) [p. 100]

Theorem 49. supplies-IP(A,P) ∧ IP(B,P) ∧ subclass of(A,B) → A=B [p. 100]

Axiom 25. IP(A,P) ∧ ¬supplies-IP(A,P) →

∃B(A 6=B ∧ subclass of(A,B) ∧ supplies-IP(B,P)) [p. 101]

Theorem 50. IP(Entity,P) → supplies-IP(Entity,P) [p. 101]

C.1. IN ORDER OF APPEARANCE 175

Theorem 51. ∃A(IP(A,P)) → ∃B(supplies-IP(B,P)) [p. 101]

Theorem 52. (Non-Rigid(A) ∧ IP(A,P)) →

∃B(supplies-IP(B,P) ∧ subclass of(A,B)) [p. 101]

Theorem 53. (Necessary-IP(A,P) ∧ subclass of(B,A)) →

Necessary-IP(B,P) [p. 101]

Theorem 54. Sufficient-IP(A,P) ∧ subclass of(B,A) →

Sufficient-IP(B,P) [p. 102]

Theorem 55. Sufficient-IP(A,P) ∧ is a(B,A) → Sufficient-IP(B,P) [p. 102]

Theorem 56. Necessary-IP(A,P) ∧ is a(B,A) → Necessary-IP(B,P) [p. 102]

Definition 23. Compatible-IP(P,Q) =def ∃A(IP(A,P) ∧ IP(A,Q)) [p. 103]

Definition 24. Incompatible-IP(P,Q) =def ¬Compatible-IP(P,Q) [p. 103]

Theorem 57. Incompatible-IP(P,Q) ↔ ∀A¬(IP(A,P) ∧ IP(A,Q)) [p. 103]

Theorem 58. (Necessary-IP(A,P) ∧ Necessary-IP(B,Q) ∧

Incompatible-IP(P,Q)) →

(Type(A) ∧ Type(B)) →

disjoint fromtype(A,B) [p. 106]

Axiom 26. instance of(x,ObjectAggregate,t) →

∃yz (part of(y,x,t) ∧ part of(z,x,t) ∧

instance of(y,Object,t) ∧

instance of(z,Object,t) ∧ y 6=z) [p. 106]

Axiom 27. member of aggregate(x,y,t) → part of(x,y,t) [p. 108]

Axiom 28. ¬∀xyt(part of(x,y,t) → member of aggregate(x,y,t)) [p. 108]

Axiom 29. N&S-IP(A, ME) ↔

∀xyt((member of(x,A,t) ∧

member of(y,A,t)) →

(x=y ↔ ∀z (member of aggregate(z,x,t) ↔

member of aggregate(z,y,t)))) [p. 108]

176 APPENDIX C. FORMULAS

C.2 In Order of Type

C.2.1 Definitions

Definition 1. subclass of(A,B) =def ∀xt(member of(x,A,t) →

member of(x,B,t)) [p. 42]

Definition 2. Instantiated(A) =def ∃xt(member of(x,A,t) ∧

exists at(x,t)) [p. 44]

Definition 3. Empty(A) =def ¬∃xt(member of(x,A,t)) [p. 44]

Definition 4. Members Exist(A) =def ∀xt(member of(x,A,t) →

exists at(x,t)) [p. 44]

Definition 5. Rigid(A) =def ∀x (∃t(member of(x,A,t)) →

∀t1(exists at(x,t1) → member of(x,A,t1))) [p. 46]

Definition 6. Non-Rigid(A) =def ¬Rigid(A) [p. 47]

Definition 7. Partial(A) =def Instantiated(A) ∧

∃xt(member of(x,A,t) ∧ ¬exists at(x,t)) [p. 52]

Definition 8. instance of(x,A,t) =def member of(x,A,t) ∧ Type(A) [p. 55]

Definition 9. is a(A,B) =def ∀xt(instance of(x,A,t) →

instance of(x,B,t)) [p. 57]

Definition 10. immediate is a(A,B) =def is a(A,B) ∧ A 6=B ∧

∀C (is a(A,C) ∧ is a(C,B) → A=C ⊕ C=B) [p. 61]

Definition 11. disjoint fromclass(A,B) =def ∀xt(member of(x,A,t) →

¬member of(x,B,t)) [p. 64]

Definition 12. disjoint fromtype(A,B) =def ∀xt(instance of(x,A,t) →

¬instance of(x,B,t)) [p. 64]

Definition 13. Heterogeneous(A) =def ∃xBCt(member of(x,A,t) ∧

member of(x,B,t) ∧ member of(x,C,t) ∧

disjoint fromtype(B,C)) [p. 66]

C.2. IN ORDER OF TYPE 177

Definition 14. Depends On(A,B) =def

∀xt(instance of(x,A,t) →

∃y(instance of(y,B,t) ∧

depends on(x,y,t))) [p. 76]

Definition 16. Has Part(B,A) =def

∀yt(instance of(y,B,t) →

∃z (instance of(z,A,t) ∧ part of(z,y,t))) [p. 76]

Definition 17. exemplifies(x,A,t) =def

∃y(depends on(y,x,t) ∧

instance of(y,A,t)) ∧

is a(A,SpecificallyDependentContinuant) [p. 79]

Definition 18. Necessary-IP(A,P) =def ∀xytt1((member of(x,A,t) ∧

exists at(x,t) ∧ member of(y,A,t1) ∧ exists at(y,t1)) →

(x=y → confirms(P,x,y,t,t1))) [p. 95]

Definition 19. Sufficient-IP(A,P) =def ∀xytt1((member of(x,A,t) ∧

exists at(x,t) ∧ member of(y,A,t1) ∧ exists at(y,t1)) →

[p. 98] (confirms(P,x,y,t,t1) → x=y))

Definition 20. IP(A,P) =def Necessary-IP(A,P) ∨ Sufficient-IP(A,P) [p. 99]

Definition 21. N&S-IP(A,P) =def Necessary-IP(A,P) ∧ Sufficient-IP(A,P) [p. 99]

Definition 22. supplies-IP(A,P) =def IP(A,P) ∧ Rigid(A) ∧

(∀B(IP(B,P) → subclass of(B,A)) [p. 100]

Definition 23. Compatible-IP(P,Q) =def ∃A(IP(A,P) ∧ IP(A,Q)) [p. 103]

Definition 24. Incompatible-IP(P,Q) =def ¬Compatible-IP(P,Q) [p. 103]

178 APPENDIX C. FORMULAS

C.2.2 Definition Schema

Definition Schema 1. Unified Under(A,ω,p) =def

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀z (p(z,x,t) ↔

ω(z,y,t))))) ∧

∀wvt(p(w,v,t) → part of(w,v,t)) ∧

¬∀wvt(part of(w,v,t) → p(w,v,t)) [p. 87]

C.2. IN ORDER OF TYPE 179

C.2.3 Axioms

Axiom 1. ∃t(exists at(x,t)) [p. 41]

Axiom 2. A=B ↔ (subclass of(A,B) ∧ subclass of(B,A)) [p. 42]

Axiom 3. ¬∀xt(member of(x,A,t) → exists at(x,t)) [p. 43]

Axiom 4. Type(A) → Instantiated(A) [p. 52]

Axiom 5. Type(A) → Members Exist(A) [p. 52]

Axiom 6. Type(A) → Rigid(A) [p. 53]

Axiom 7. Type(A) ∧ Type(B) → ∀t(¬instance of(A,B,t)) [p. 106]

Axiom 8. A=B ↔ (is a(A,B) ∧ is a(B,A)) [p. 57]

Axiom 9. Type(A) → is a(A,Entity) [p. 58]

Axiom 10. exists at(x,t) → ∃A(instance of(x,A,t)) [p. 59]

Axiom 11. ∃t(instance of(x,Occurrent,t)) →

∀t1(instance of(x,Occurrent,t1)) [p. 60]

Axiom 12. ∃xt(instance of(x,A,t) ∧ instance of(x,B,t)) →

is a(A,B) ∨ is a(B,A) [p. 62]

Axiom 13. depends on(x,y,t) →

instance of(x,DependentContinuant,t) ∧

instance of(y,IndependentContinuant,t) [p. 72]

Axiom 14. ∃t(depends on(x,y,t)) → ∀t1(exists at(x,t1) →

exists at(y,t1)) [p. 72]

Axiom 15. ∃tt1(depends on(x,y,t) ∧ depends on(x,z,t1)) → y=z [p. 73]

Axiom 16. generically depends on(x,A,t) →

instance of(x,GenericallyDependentContinuant,t) ∧

is a(A,IndependentContinuant) [p. 73]

180 APPENDIX C. FORMULAS

Axiom 17. is a(A,Occurrent) ↔ ∀x (∃t(part of(x,A,t)) →

∀t(part of(x,A,t))) [p. 74]

Axiom 18. exists at(x,t) → ∀y(part of(y,x,t) → exists at(y,t)) [p. 75]

Axiom 19. located in(x,y,t) →

instance of(x,Continuant,t) ∧

instance of(y,SpatialRegion,t) [p. 75]

Axiom 20. participates in(x,y,t) →

instance of(x,Continuant,t) ∧

instance of(y,Process,t) [p. 75]

Axiom 21. (Necessary-IP(A,P) ∧ ∃xytt1(confirms(P,x,y,t,t1))) →

∃pwvt2t3(member of(w,A,t2) ∧ exists at(w,t2) ∧

member of(v,A,t3) ∧ exists at(v,t3)) ∧

confirmed(P,p,w,v,t2,t3)) [p. 95]

Axiom 22. confirmed(P,p,w,v,t2,t3) → ∃t(instance of(p,P,t)) [p. 96]

Axiom 23. confirmed(P,p,w,v,t2,t3) →

∃p1p2(matches(result of procedure(p1,w,t2), result of procedure(p2,v,t3)) ∧

part of(p1,p) ∧ part of(p2,p)) [p. 96]

Axiom 24. IP(A,P) → ∃B(Rigid(B) ∧ IP(B,P) ∧

subclass of(A,B)) [p. 100]

Axiom 25. IP(A,P) ∧ ¬supplies-IP(A,P) →

∃B(A 6=B ∧ subclass of(A,B) ∧ supplies-IP(B,P)) [p. 101]

Axiom 26. instance of(x,ObjectAggregate,t) →

∃yz (part of(y,x,t) ∧ part of(z,x,t) ∧

instance of(y,Object,t) ∧

instance of(z,Object,t) ∧ y 6=z) [p. 106]

Axiom 27. member of aggregate(x,y,t) → part of(x,y,t) [p. 108]

C.2. IN ORDER OF TYPE 181

Axiom 28. ¬∀xyt(part of(x,y,t) → member of aggregate(x,y,t)) [p. 108]

Axiom 29. N&S-IP(A, ME) ↔

∀xyt((member of(x,A,t) ∧

member of(y,A,t)) →

(x=y ↔ ∀z (member of aggregate(z,x,t) ↔

member of aggregate(z,y,t)))) [p. 108]

182 APPENDIX C. FORMULAS

C.2.4 Theorems

Theorem 1. subclass of(A,A) [p. 43]

Theorem 2. subclass of(A,B) ∧ subclass of(B,C) →

subclass of(A,C) [p. 43]

Theorem 3. Non-Rigid(A) ↔ ∃x (∃t(member of(x,A,t)) ∧

∃t1(exists at(x,t1) ∧ ¬member of(x,A,t1))) [p. 47]

Theorem 4. Rigid(A) ⊕ Non-Rigid(A) [p. 48]

Theorem 5. ∃AB(Rigid(A) ∧ Non-Rigid(B) ∧ subclass of(A,B))

Theorem 6. ∃AB(Rigid(A) ∧ Non-Rigid(B) ∧ subclass of(B,A))

Theorem 7. Type(A) → ¬Partial(A) [p. 52]

Theorem 8. Type(A) → ¬Empty(A) [p. 53]

Theorem 9. Non-Rigid(A) → ¬Type(A) [p. 59]

Theorem 10. Type(A) ∧ member of(x,A,t) → exists at(x,t) [p. 55]

Theorem 11. instance of(x,A,t) → exists at(x,t) [p. 55]

Theorem 12. Type(A) → ∃xt(instance of(x,A,t)) [p. 55]

Theorem 13. ∃xt(member of(x,A,t) ∧ ¬instance of(x,A,t)) →

¬Type(A) [p. 56]

Theorem 14. is a(A,B) → Type(A) ∧ Type(B) [p. 57]

Theorem 15. is a(A,B) → subclass of(A,B) [p. 57]

Theorem 16. is a(A,B) → Rigid(A) ∧ Rigid(B) [p. 58]

Theorem 17. Non-Rigid(A) → ∀B(¬is a(A,B) ∧ ¬is a(B,A)) [p. 58]

Theorem 18. is a(A,Entity) → Type(A) [p. 58]

Theorem 19. is a(A,B) → is a(A,Entity) ∧ is a(B,Entity) [p. 59]

C.2. IN ORDER OF TYPE 183

Theorem 20. ∃A(instance of(x,A,t)) → instance of(x,Entity,t) [p. 59]

Theorem 21. member of(x,A,t) ∧ exists at(x,t) →

∃B(member of(x,B,t) ∧ Rigid(B)) [p. 59]

Theorem 22. (Non-Rigid(A) ∧ Members Exist(A)) →

∃B(subclass of(A,B) ∧ Rigid(B)) [p. 164]

Theorem 23. subclass of(A,Entity) → Members Exist(A) [p. 60]

Theorem 24. ∃t(instance of(x,Occurrent,t)) → ∀t1(exists at(x,t1)) [p. 60]

Theorem 25. is a(A,Occurrent) → ∀x (∃t(instance of(x,A,t)) →

∀t(instance of(x,A,t))) [p. 74]

Theorem 26. immediate is a(A,B) → ∃xt(instance of(x,B,t) ∧

¬instance of(x,A,t)) [p. 61]

Theorem 27. is a(A,B) ∧ is a(A,C) → is a(B,C) ∨ is a(C,B) [p. 62]

Theorem 28. ∃xt(instance of(x,A,t)) ∧

subclass of(A,B) ∧ subclass of(A,C) →

¬is a(B,C) ∨ ¬is a(C,B) →

¬Type(B) ∨ ¬Type(C) [p. 106]

Theorem 29. immediate is a(A,B) → (immediate is a(A,C) ↔

B=C) [p. 63]

Theorem 30. (instance of(x,A,t) ∧ instance of(x,B,t) ∧

immediate is a(A,C) ∧ immediate is a(B,C)) →

A=B [p. 63]

Theorem 31. (∃A(is a(A,B) ∧ is a(A,C)) ∧

∃D(immediate is a(B,D) ∧

immediate is a(C,D))) → B=C [p. 64]

Theorem 32. disjoint fromtype(A,B) → Type(A) ∧ Type(B) [p. 64]

184 APPENDIX C. FORMULAS

Theorem 33. Heterogeneous(A) → Instantiated(A) [p. 66]

Theorem 34. disjoint fromtype(A,B) → disjoint fromclass(A,B) [p. 66]

Theorem 35. ¬∀A(¬disjoint fromclass(A,A)) [p. 66]

Theorem 36. ¬∀A(disjoint fromclass(A,A)) [p. 67]

Theorem 37. ∀A(¬disjoint fromtype(A,A)) [p. 67]

Theorem 38. disjoint fromclass(A,B) → disjoint fromclass(B,A) [p. 67]

Theorem 39. disjoint fromtype(A,B) → disjoint fromtype(B,A) [p. 67]

Theorem 40. subclass of(A,B) ∧ subclass of(A,C) ∧

disjoint fromclass(B,C) → Empty(A) [p. 68]

Theorem 41. disjoint fromtype(A,B) ∧ is a(C,A) →

disjoint fromtype(C,B) [p. 68]

Theorem 42. disjoint fromtype(A,B) ∧ is a(C,A) ∧ is a(D,B) →

disjoint fromtype(C,D) [p. 68]

Theorem 43. immediate is a(A,C) ∧ immediate is a(B,C) ∧ A 6=B →

disjoint fromtype(A,B) [p. 68]

Theorem 44. (is a(A,B) ∨ is a(B,A)) ⊕ disjoint fromtype(A,B) [p. 69]

Theorem 45. ¬∀ABC (disjoint fromtype(A,B) ∧

disjoint fromtype(B,C) →

disjoint fromtype(A,C)) [p. 70]

Theorem 46. ¬∀ABC (disjoint fromtype(A,B) ∧

disjoint fromtype(B,C) →

¬disjoint fromtype(A,C)) [p. 70]

Theorem 47. depends on(x,y,t) → exists at(x,t) ∧ exists at(y,t) [p. 72]

Theorem 48. (Non-Rigid(A) ∧ IP(A,P)) → ∃B(Rigid(B) ∧ IP(B,P) ∧

A 6=B ∧ subclass of(A,B)) [p. 100]

C.2. IN ORDER OF TYPE 185

Theorem 49. supplies-IP(A,P) ∧ IP(B,P) ∧ subclass of(A,B) → A=B [p. 100]

Theorem 50. IP(Entity,P) → supplies-IP(Entity,P) [p. 101]

Theorem 51. ∃A(IP(A,P)) → ∃B(supplies-IP(B,P)) [p. 101]

Theorem 52. (Non-Rigid(A) ∧ IP(A,P)) →

∃B(supplies-IP(B,P) ∧ subclass of(A,B)) [p. 101]

Theorem 53. (Necessary-IP(A,P) ∧ subclass of(B,A)) →

Necessary-IP(B,P) [p. 101]

Theorem 54. Sufficient-IP(A,P) ∧ subclass of(B,A) →

Sufficient-IP(B,P) [p. 102]

Theorem 55. Sufficient-IP(A,P) ∧ is a(B,A) → Sufficient-IP(B,P) [p. 102]

Theorem 56. Necessary-IP(A,P) ∧ is a(B,A) → Necessary-IP(B,P) [p. 102]

Theorem 57. Incompatible-IP(P,Q) ↔ ∀A¬(IP(A,P) ∧ IP(A,Q)) [p. 103]

Theorem 58. (Necessary-IP(A,P) ∧ Necessary-IP(B,Q) ∧

Incompatible-IP(P,Q)) →

(Type(A) ∧ Type(B)) →

disjoint fromtype(A,B) [p. 106]

186 APPENDIX C. FORMULAS

C.2.5 Metatheorems

Metatheorem 1. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀zw(ω(y,z,t) ∧ ω(z,w,t) → ω(y,w,t))))) [p. 88]

Metatheorem 2. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) →

∀zw(ω(y,z,t) → ω(z,y,t))))) [p. 88]

Metatheorem 3. Unified Under(A,ω,p) →

∀x (∃t(member of(x,A,t)) →

∀t(exists at(x,t) →

∀y(p(y,x,t) → ω(y,y,t)) [p. 88]

Metatheorem 4. Unified Under(A,ω,p) →

∀xyt(member of(x,A,t) ∧ member of(y,A,t) →

exists at(x,t) ∧ exists at(y,t) →

∃z (p(z,x,t) ∧ p(z,y,t)) →

∀w(p(w,x,t) ↔ p(w,y,t)))) [p. 89]

Appendix D

BFO Upper Ontology

Formulas

187

188 APPENDIX D. BFO UPPER ONTOLOGY FORMULAS

D.1 Taxonomic Axioms

Axiom 30. immediate is a(Continuant,Entity)

Axiom 31. immediate is a(Occurrent,Entity)

Axiom 32. immediate is a(IndependentContinuant,Continuant)

Axiom 33. immediate is a(DependentContinuant,Continuant)

Axiom 34. immediate is a(SpatialRegion,Continuant)

Axiom 35. immediate is a(MaterialEntity,IndependentContinuant)

Axiom 36. immediate is a(Object,MaterialEntity)

Axiom 37. immediate is a(ObjectAggregate,MaterialEntity)

Axiom 38. immediate is a(GenericallyDependentContinuant,DependentContinuant)

Axiom 39. immediate is a(SpecificallyDependentContinuant,DependentContinuant)

Axiom 40. immediate is a(Quality,SpecificallyDependentContinuant)

Axiom 41. immediate is a(RealizableEntity,SpecificallyDependentContinuant)

Axiom 42. immediate is a(Role,RealizableEntity)

Axiom 43. immediate is a(Disposition,RealizableEntity)

Axiom 44. immediate is a(Capability,RealizableEntity)

Axiom 45. immediate is a(Function,RealizableEntity)

Axiom 46. immediate is a(ProcessualEntity,Occurrent)

Axiom 47. immediate is a(SpatioTemporalRegion,Occurrent)

Axiom 48. immediate is a(TemporalRegion,Occurrent)

Axiom 49. immediate is a(Process,ProcessualEntity)

Axiom 50. immediate is a(TemporalInstant,TemporalRegion)

Axiom 51. immediate is a(TemporalInterval,TemporalRegion)

D.2. DISJOINTNESS THEOREMS 189

D.2 Disjointness Theorems

Theorem 59. disjoint from(Continuant,Occurrent)

Theorem 60. disjoint from(IndependentContinuant,DependentContinuant)

Theorem 61. disjoint from(IndependentContinuant,SpatialRegion)

Theorem 62. disjoint from(SpatialRegion,DependentContinuant)

Theorem 63. disjoint from(Object,ObjectAggregate)

Theorem 64. disjoint from(GenericallyDependentContinuant,SpecificallyDependentContinuant)

Theorem 65. disjoint from(Quality,RealizableEntity)

Theorem 66. disjoint from(Disposition,Role)

Theorem 67. disjoint from(ProcessualEntity,SpatioTemporalRegion)

Theorem 68. disjoint from(ProcessualEntity,TemporalRegion)

Theorem 69. disjoint from(SpatioTemporalRegion,TemporalRegion)

Theorem 70. disjoint from(TemporalInstant,TemporalInterval)

190 APPENDIX D. BFO UPPER ONTOLOGY FORMULAS

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix E

BFO-Rigidity Decision Tree

Wizard Menu Choice

Screenshots for Person

191

192 APPENDIX E. INTRODUCING PERSON CLASS

Figure E.1: Enter Class Screen for Person

Figure E.2: Enter Example Screen For Person

193

Figure E.3: Categorize Example Screen for Person

Figure E.4: Homogeneity Screen for Person

194 APPENDIX E. INTRODUCING PERSON CLASS

Figure E.5: Example Existence and Membership Screen For Person

Figure E.6: All Members Existence and Membership Screen For Person

195

Figure E.7: Rigidity (By Example) Screen For Person

Figure E.8: Rigidity (All Members) Screen For Person

196 APPENDIX E. INTRODUCING PERSON CLASS

Figure E.9: Pick Root Class Screen for Person

Figure E.10: Asserted Axiom(s) Screen for Person

Appendix F

BFO-Rigidity Decision Tree

Wizard Menu Choice

Screenshots for Reactant

(Prior to Restrictions)

197

198 APPENDIX F. INTRODUCING REACTANT CLASS

Figure F.1: Enter Class Screen for Reactant

Figure F.2: Enter Example Screen for Reactant

199

Figure F.3: Categorize Example for Reactant

Figure F.4: Homogeneity Screen for Reactant

200 APPENDIX F. INTRODUCING REACTANT CLASS

Figure F.5: Example Existence and Membership Screen For Reactant

Figure F.6: All Members Existence and Membership Screen for Reactant

201

Figure F.7: Rigidity (By Example) for Reactant

Figure F.8: Implicit Relation for Reactant

202 APPENDIX F. INTRODUCING REACTANT CLASS

Figure F.9: Pick Root Screen for Reactant

Figure F.10: Further Restriction Screen (1) for Reactant

Appendix G

BFO-Rigidity Decision Tree

Wizard Menu Choice

Screenshots for Restricting

Reactant to Compound

203

204 APPENDIX G. INTRODUCING COMPOUND CLASS

Figure G.1: Enter Class Screen for Compound

Figure G.2: Enter Example Screen for Compound

205

Figure G.3: Categorize Example for Compound

Figure G.4: Homogeneity Screen for Compound

206 APPENDIX G. INTRODUCING COMPOUND CLASS

Figure G.5: Example Existence and Membership for Compound

Figure G.6: All Members Existence and Membership for Compound

207

Figure G.7: Rigidity (By Example) for Compound

Figure G.8: Rigidity (All Members) for Compound

208 APPENDIX G. INTRODUCING COMPOUND CLASS

Figure G.9: Pick Root Class Screen for Compound

Figure G.10: Further Restriction Screen (2) for Reactant

Appendix H

BFO-Rigidity Decision Tree

Wizard Menu Choice

Screenshots for for

Restricting Reactant to

Element

209

210 APPENDIX H. INTRODUCING ELEMENT CLASS

Figure H.1: Enter Class Screen for Element

Figure H.2: Enter Example Screen for Element

211

Figure H.3: Categorize Example Screen for Element

Figure H.4: Homogeneity Screen for Element

212 APPENDIX H. INTRODUCING ELEMENT CLASS

Figure H.5: Example Existence Screen for Element

Figure H.6: All Members Existence Screen for Element

213

Figure H.7: Rigidity (By Example) Screen for Element

Figure H.8: Rigidity (All Members) Screen for Element

214 APPENDIX H. INTRODUCING ELEMENT CLASS

Figure H.9: Pick Root Class Screen for Element

Figure H.10: Further Restriction Screen (3) for Reactant

215

Figure H.11: Asserted Axiom(s) Screen for Reactant

Figure H.12: Description Screen for Reactant

216 APPENDIX H. INTRODUCING ELEMENT CLASS

THIS PAGE INTENTIONALLY LEFT BLANK

Bibliography

Andersen, W. and Menzel, C. (2004). Modal Rigidity in the OntoClean Methodology. In Varzi, A. C.

and Vieu, L., editors, Formal Ontology in Information Systems, pages 119–127, Amsterdam.

IOS Press.

Armstrong, D. (1980). A Theory of Universals: Volume 2: Universals and Scientific Realism.

Cambridge University Press, Cambridge; New York.

Arp, R. and Smith, B. (2008). Nature Proceedings,

<http://hdl.handle.net/10101/npre.2008.1941.1>.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel Schneider, P. F., editors (2003).

The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge

University Press, Cambridge ; New York.

Barnett, D. (2004). Some Stuffs Are Not Sums of Stuff. The Philosophical Review, 113(1):89.

Bittner, T. and Donnelly, M. (2004). The Mereology of Stages and Persistent Entities. In de Md-

maras, R. L. and Saitta, L., editors, In Proceedings of the 16th European Conference on Arti-

ficial Intelligence, pages 283–287, Valencia. IOS Press.

Bittner, T. and Donnelly, M. (2005). Computational ontologies of parthood, componenthood, and

containment. In Kaelbling, L. P. and Saffiotti, A., editors, International Joint Conference on

Artificial Intelligence, volume 19, page 382.

Bittner, T. and Donnelly, M. (2007). A Temporal Mereology for Distinguishing between Integral

Objects and Portions of Stuff. In Holte, R. and Howe, A., editors, Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence, pages 287–292, Vancouver. AAAI Press.

Brachman, R. J., McGuinness, D. L., Patel-Schneider, P. F., Resnick, L. A., and Borgida, A.

(1991). Living with CLASSIC: When and how to use a KL-ONE-like language. In Sowa, J.,

editor, Principles of Semantic Networks, pages 401–456. Morgan Kaufmann.

Brand, M. (1977). Identity Conditions for Events. American Philosophical Quarterly, 14(4):329–

337.

217

218 BIBLIOGRAPHY

Bunge, M. (1979). A World of Systems. D. Reidel, Dordrecht.

Campbell, N. A. and Reece, J. B. (2007). Biology: AP Edition. Pearson, Saddle River, New Jersey,

8th edition.

Carrara, M. (2004). Identity and Modality in OntoClean. Applied Ontology, 1(1):128–139.

Cocchiarella, N. B. (2001). Logic and Ontology. Axiomathes, 12:117–150.

Corcho, O., Fernández-López, M., Pérez, A. d. M. G., and Vicente, O. (2002). WebODE: An

Integrated Workbench for Ontology Representation, Reasoning, and Exchange. In Gómez-Pérez,

A. and Benjamins, V. R., editors, EKAW ’02: Proceedings of the 13th International Conference

on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web ,

pages 138–153, London, UK. Springer-Verlag.

Dumontier, M. and Hoehndorf, R. (2010). Realism for Scientific Ontologies. In Galton, A. and

Mizoguchi, R., editors, International Conference on Formal Ontology in Information Systems,

pages 387–399, Toronto. IOS Press.

Fernandez, M., Gómez-Pérez, A., and Juristo, N. (1997). Methontology: from Ontological Art

towards Ontological Engineering. In Proceedings of the AAAI97 Spring Symposium Series

on Ontological Engineering, pages 33–40, Stanford, CA. American Association for Artificial

Intelligence.

Fernandez-Lopez, M., Gómez-Pérez, A., and Informatica, F. (2002). The integration of OntoClean in

WebODE. In Gmez-Prez, A. and Benjamins, V. R., editors, In Proc. of the EON2002 Workshop

at 13th EKAW, Siguenza, Spain.

Frege, G. (1950). The Foundations of Arithmetic. Blackwell, Oxford.

Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. (2001). Understanding top-level ontolog-

ical distinctions. In A. Gómez Pérez, M Gruninger, H. S. and Uschold, M., editors, Proceedings

of the 2001 IJCAI Workshop on Ontologies and Information Sharing.

Gómez-Pérez, A. (1995). Some ideas and examples to evaluate ontologies. In Proceedings of the

11th Conference on Artificial Intelligence for Applications, pages 299–305, Los Angeles. IEEE.

Gómez-Pérez, A., Corcho, O., and Fernandez-Lopez, M. (2004). Ontological Engineering: with

examples from the areas of Knowledge Management, e-Commerce and the Semantic Web.

First Edition (Advanced Information and Knowledge Processing). Springer, London.

Grenon, P. (2003a). BFO in a Nutshell: A Bi-categorial Axiomatization of BFO and Comparision

with DOLCE. Technical report, Universitat Leipzig, Faculty of Medicine, Institute for Formal

Ontology and Medical Information Science (IFOMIS).

BIBLIOGRAPHY 219

Grenon, P. (2003b). Nuts in BFO’s Nutshell: Revisions to the Bi-categorical Axiomatization of

BFO. Technical report, Universitat Leipzig, Faculty of Medicine, Institute for Formal Ontology

and Medical Information Science (IFOMIS).

Grenon, P. (2003c). Spatio-temporality in Basic Formal Ontology: SNAP and SPAN, Upper-Level

Ontology, and Formalization. Technical report, Universitat Leipzig, Faculty of Medicine, Institute

for Formal Ontology and Medical Information Science (IFOMIS).

Guarino, N. (1998). Formal Ontology and Information Systems. In Angele, J. and Sure, Y., edi-

tors, International Conference on Formal Ontology in Information Systems, Trento, Italy. IOS

Press.

Guarino, N. and Welty, C. (2000a). A Formal Ontology of Properties. In Dieng, R. and Corby, O.,

editors, Proceedings of 12th International Conference on Knowledge Engineering and Knowl-

edge Management, Berlin. Springer Verlag.

Guarino, N. and Welty, C. (2000b). Identity, Unity, and Individuality: Towards a Formal Toolkit for

Ontological Analysis. In Horn, W., editor, Proceedings of the European Conference on Artificial

Intelligence, pages 219–223, Amsterdam. IOS Press.

Guarino, N. and Welty, C. (2001). Identity and Subsumption. In Green, R., Bean, C. A., and

Hyon, editors, The Semantics of Relationships: an Interdisciplinary Perspective, pages 111–

126, Dordrecht, The Netherlands. Kluwer.

Guarino, N. and Welty, C. (2002). Evaluating ontological decisions with OntoClean. Communica-

tions of the ACM, 45(2):61–65.

Guarino, N. and Welty, C. (2009). An overview of OntoClean. In Staab, S. and Studer, R.,

editors, Handbook on Ontologies, International Handbooks on Information Systems, pages 201–

220. Springer, Berlin, 2nd edition.

Guarino, N. and Welty, C. A. (2004). An overview of OntoClean. In Staab, S. and Studer, R.,

editors, Handbook on Ontologies, pages 151–159, Berlin. Springer Verlag.

Hirst, G. (1991). Existence assumptions in knowledge representation. Artificial Intelligence, 49(1-

3):199–242.

Hughes, G. E. and Cresswell, M. J. (1996). A New Introduction to Modal Logic. Routledge, London;

New York.

Jacobs, W. (1994). Caulerpa. Scientific American, 271(6):100–105.

Kant, I. (1933). Critique of Pure Reason, trans. Macmillan, London.

Kaplan, A. N. (2001). Towards a Consistent Logical Framework for Ontological analysis. In Welty, C.

and Smith, B., editors, International Conference on Formal Ontology in Information Systems,

pages 244–255, New York, NY. ACM.

220 BIBLIOGRAPHY

Kifer, M., Lausen, G., and Wu, J. (1990). Logical Foundations of Object-Oriented and Frame-Based

Languages. Journal of the ACM, 42:741–843.

Knublauch, H., Fergerson, R. W., Noy, N. F., and Musen, M. A. (2004). The Protégé OWL Plugin:

An Open Development Environment for Semantic Web Applications. In Sheila A. McIlraith,

Dimitris Plexousakis, F. v. H., editor, 3rd International Semantic Web Conference, pages 229–

243, New York. Springer Verlag.

Lakoff, G. (1990). Women, Fire, and Dangerous Things. Univ. of Chicago Press, Chicago; London.

Little, E. and Vizenor, L. (2006). Principles for the development of upper ontologies in higher-level

information fusion applications. In Bennett, B. and Fellbaum, C., editors, Formal Ontology in

Information Systems, pages 309–320, Amsterdam.

Lowe, E. J. (1989a). Kinds of Being: A Study of Individuation, Identity, and the Logic of Sortal

Terms. Blackwell Publishers, Oxford.

Lowe, E. J. (1989b). What is a Criterion of Identity? The Philosophical Quarterly, 39(154):1–21.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Oltramari, A. (2003). WonderWeb deliv-

erable D18 ontology library. Technical report, IST Project 2001-33052 WonderWeb: Ontology

Infrastructure for the Semantic Web.

Meinong, A. (1904). Über Gegenstandstheorie. Alexius Meinong Gesamtausgabe, 2:481–535.

Mungall, C. (2007). OBO Relation Ontology. http://www.obofoundry.org/ro/.

Neuhaus, F. and Smith, B. (2008). Modelling Principles and Methodologies–Relations in Anatom-

ical Ontologies. In Albert Burger, D. D. and Baldock, R., editors, Anatomy Ontologies for

Bioinformatics, pages 289–306, London. Springer.

Oltramari, A., Oltramari, R., Gangemi, A., Guarino, N., and Masolo, C. (2002). Restructuring

WordNet’s top-level: The OntoClean approach. In Rodrguez, M. G. and Araujo, C. P. S.,

editors, Third International Conference on Language Resources and Evaluation, pages 17–26,

Las Palmas, Canary Islands. European Language Resources Association.

Oltramari, A. and Vetere, G. (2008). Lexicon and Ontology Interplay in Senso Comune. In OntoLex

2008 of the 6th International Conference on Language Resources and Evaluation, page 24,

Morocco. European Language Resources Association.

Parsons, T. (1980). Non-Existent Objects. Yale University Press, New Haven.

Phillips, G. J. (2001). Green fluorescent protein–a bright idea for the study of bacterial protein

localization. FEMS Microbiol Lett, 204(1):9–18.

Quine, W. V. (1981). What Price Bivalence. Journal of Philosophy, 78(2):90–95.

BIBLIOGRAPHY 221

Quinton, A. (1957). Properties and classes. In Proceedings of the Aristotelian Society, volume 58,

pages 33–58, London. Harrison & Sons, Ltd.

Randell, D., Cui, Z., and Cohn, A. (1992). A Spatial Logic based on Regions and Connection.

In Third International Conference on Knowledge Representation and Reasoning, volume 92,

pages 165–176, Cambridge. Morgan Kaufmann.

Rapaport, W. (1978). Meinongian theories and a Russellian Paradox. Noûs, 12(2):153–180.

Rector, A. (2003). Modularisation of Domain Ontologies Implemented in Description Logics and

related formalisms including OWL. In Third International Conference on Knowledge Capture,

volume 23, page 25, Banff.

Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang, H., and

Wroe, C. (2004). OWL pizzas: Practical experience of teaching OWL-DL: Common errors &

common patterns. pages 63–81. Springer.

Rector, A., Rogers, J., and Bittner, T. (2006). Granularity, scale and collectivity: When size does

and does not matter. Journal of Biomedical Informatics, 39(3):333–349.

Russell, B. (1905). On Denoting. Mind, 14(56):479–493.

Ruttenberg, A. (2009). From Basic Formal Ontology to the Information Artifact Ontology. Pre-

sented at the International Conference on Biomedical Ontologies, Buffalo, NY.

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and

Erlich, H. A. (1988). Primer-directed enzymatic amplification of dna with a thermostable dna

polymerase. Science, 239(4839):487–91.

Schlick, M. (1965). About the concept of wholeness. Reprinted in Logic of the Social Sciences,

pages 213–224.

Schulz, S., Hanser, S., Hahn, U., and Rogers, J. (2006). The Semantics of Procedures and Diseases

in SNOMED CT. Methods of Information in Medicine, 45(4):354–8.

Simon, J., Dos Santos, M., Fielding, J., and Smith, B. (2006). Formal ontology for natural lan-

guage processing and the integration of biomedical databases. International Journal of Medical

Informatics, 75(3-4):224–231.

Simon, J. and Smith, B. (2004). Using philosophy to improve the coherence and interoperability of

applications ontologies: a field report on the collaboration of ifomis and l&c.

Simons, P. (1987). Parts: A Study in Ontology. Clarendon Press, Oxford.

Smith, B. (1998). The basic tools of formal ontology. In Formal Ontology in Information Systems

(Frontiers in Artificial Intelligence and Applications, pages 19–28, Amsterdam, Oxford, Tokyo,

Washington, DC. IOS Press.

222 BIBLIOGRAPHY

Smith, B. (2003). The Logic of Biological Classification and the Foundations of Biomedical Ontology.

In Westerstahl, D., editor, International Conference on Logic, Methodology and Philosophy of

Science. Elsevier-North-Holland.

Smith, B. (2005). Against Fantology. Experience and Analysis, 34:153–172.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L. J., Eilbeck, K.,

Ireland, A., Mungall, C. J., Leontis, N., Rocca-Serra, P., Ruttenberg, A., Sansone, S.-A., Scheuer-

mann, R. H., Shah, N., Whetzel, P. L., and Lewis, S. (2007). The OBO foundry: coordinated

evolution of ontologies to support biomedical data integration. volume 25, pages 1251–1255.

Nature Publishing Group.

Smith, B. and Ceusters, W. (2010). Ontological realism: A methodology for coordinated evolution

of scientific ontologies. Applied Ontology, 5(3):139–188.

Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall, C., Neuhaus, F.,

Rector, A. L., and Rosse, C. (2005). Relations in biomedical ontologies. Genome Biol, 6(5).

Smith, B., Kusnierczyk, W., Schober, D., and Ceusters, W. (2006). Towards a reference terminology

for ontology research and development in the biomedical domain. In KR-MED 2006, Formal

Biomedical Knowledge Representation, Proceedings of the Second International Workshop on

Formal Biomedical Knowledge Representation: ”Biomedical Ontology in Action”, volume 222

of CEUR Workshop Proceedings. CEUR-WS.org.

Smith, B. and Rosse, C. (2004). The role of foundational relations in the alignment of biomedical

ontologies. Studies in Health Technology and Informatics, 107(Pt 1):444–8.

Spear, A. (2007). Ontology for the Twenty First Century: An Introduction with Recommendations.

Technical report, University at Buffalo.

Strawson, P. F. (1959). Individuals: An Essay in Descriptive Metaphysics. Methuen, London.

Sure, Y., Angele, J., and Staab, S. (2003). OntoEdit: multifaceted inferencing for ontology engi-

neering. Journal on Data Semantics, 2800:2003.

The Gene Ontology Consortium (2008). The gene ontology project in 2008. Nucleic acids research,

36(Database issue).

Welty, C. (2006). OntOWLClean: Cleaning owl ontologies with OWL. In Proceedings of FOIS-2006,

pages 347–359. IOS Press.

Welty, C. and Andersen, W. (2005). Towards OntoClean 2.0: A framework for Rigidity. Applied

Ontology, 1(1):107–116.

Welty, C. and Guarino, N. (2001). Supporting ontological analysis of taxonomic relationships. Data

Knowledge Engineering, 39(1):51–74.

BIBLIOGRAPHY 223

Whitehead, A. N. and Russell, B. (1957). Principia Mathematica, volume 3. Cambridge University

Press, Cambridge.

Williamson, T. (1990). Identity and Discrimination. Blackwell, Oxford.

Zemach, E. (1970). Four ontologies. The Journal of Philosophy, 67(8):231–247.

Zimmerman, D. (1995). Theories of masses and problems of constitution. The philosophical review,

104(1):53–110.

	Acknowledgements
	Abstract
	I Introduction
	Introduction
	Clarification of Terms
	Background
	Ontology
	Ontological Engineering
	Domain Ontology
	BFO
	Introduction
	Theory

	OntoClean
	Introduction
	Rigidity
	Identity
	Unity
	Dependence

	OntoClean-Related Work
	Original OntoClean Application
	WebODE
	OntoEdit
	TMEO Method

	II Integration
	The Theory of Classes
	Introduction
	Unifying Properties and Types
	Formal System
	Existence
	Formal Theory of Classes
	Integrating Rigidity
	Introduction

	Rigid
	Non-Rigid
	Anti-Rigid
	Discussion

	BFO Theory of Types
	Formal Theory
	Relation Ontology
	Applying BFO Distinctions to Properties

	Integrating Unity and Identity with BFO
	Integrating Unity with BFO
	Introduction
	Reformulating OntoClean's Notion of Unity for the Formal Theory of Classes

	Integrating Identity with BFO
	Introduction
	Redefining OntoClean's Notion of Identity for the Formal Theory of Classes

	Unity and Identity of Material Entities
	Introduction
	Object
	Object Aggregate
	Amounts of Matter

	Discussion

	III Method
	Evaluating Candidate Types
	Introduction
	Violations of the Disjointness Principle
	Applying Type Criteria

	Implementation
	Introduction
	Demonstration
	Rigid Example
	Non-Rigid Example

	IV Discussion and Future Directions
	Introduction
	Restricted Domain Modeling
	Non-Rigidity and Canonicity
	Status of Classes that are Not Types
	Introduction
	Constraints of the Disjointness and Single Inheritance Principles
	Modeling Classes that are not Types
	Rigid Classes That are Not Types
	Non-Rigid Processes

	Heterogeneity and Other Type-Level Relations
	Experimental Work with Information Artifacts
	External Dependence
	Implementation Advances
	Conclusions
	Appendices
	BFO Type immediate˙is˙a Hierarchy (Partial View)
	Instance-Level Relations of Relation Ontology
	Formulas
	In Order of Appearance
	In Order of Type
	Definitions
	Definition Schema
	Axioms
	Theorems
	Metatheorems

	BFO Upper Ontology Formulas
	Taxonomic Axioms
	Disjointness Theorems

	Introducing Person Class
	Introducing Reactant Class
	Introducing Compound Class
	Introducing Element Class
	Bibliography

