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Abstract

Knowledge representation and reasoning systems that are used for cognitive modeling must
capture mental intensions. i.e., senses of linguistic or other semantic constructions, as opposed to
(or, rather, in addition to) references. such as physical objects, of those constructions. A semantic-
network system used for this purpose needs a semantics in which the nodes of a network are terms in
the language of thought of the modeled cognitive agent and represent entities in the agent’s mental
universe. SNePS (“Semantic Network Processing System”) is such a system.

With SNePS as the framework. specific issues studied include how different tvpes of nodes (con-
cepts) are to be interpreted and used by the cognitive agent and the different types of computations
required to support these uses: how nodes come to be distinct or similar. from both inter-agent and
intra-agent perspectives: how (and why) circularity of meaning may be accommodated in a semantic
network: and to what extent the coherence of the cognitive structure of the agent may be maintained
under such circularity.

Non-well-founded set theory, with its legitimization of truly circular structures. is of special
interest to providing a semantics for SNePS in accordance with its design principles. A certain
category of SNePS node, the base node. representing a discrete concept, is given a semantics that is
both influenced by and influences its dominating compound (molecular) nodes, lending a controlled
cyclicity to networks. A semantic function p is defined that assigns a “hyperset”, or non-well-
founded set, formed from the outermost sensory nodes of the cognitive agent, to each other node
of that agent. Investigation shows that this hyperset semantics supports representational principles
of SNePS, such as the conceptual uniqueness of every node, and allows no node to be circular to
the point of vacuity. Further discussion shows how this contribution from SNePS may illuminate
the role that semantic networks and graphical representation in general have to play in artificial

intelligence.
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Chapter 1

The Problem and Its Significance

1.1 Introduction

Is knowledge computational? Assuming so. how is the computation done? These questions are
central to artificial intellizence and to some areas of theoretical computer science: they are affected
by every area of computer science that participates in defining "‘computation’. One way to investigate
possible answers is to ask the questions in terms of a particular knowledge/belief representation
scheme, or cognitive model. To investigate knowledge in terms of such a model is partly to investigate
the semantics of the model. the meanings of the structures in it. If we can formulate the features
of knowledge as we understand it. then a model’s claim to worthiness can be measured by its
incorporation of those features. Conversely. if we can see what semantics are appropriate for the
model, then we see what sort of “knowledge” it can capture. The intent of this chapter is to pose
those questions in terms of a particular cognitive model. the semantic network, and in terms of a

specific semantic network, SNePS (“Semantic Network Processing System”).



1.2 Knowledge and Intensionality

Knowledge as we understand it (so to speak) is no simple matter. Human cognitive capacity does
not shirk at complex interactions among the real, the unreal, and the dubious. Consider the classical

fable of Mentor/Athena and Telemachus. part of the Odyssey:

[n Greek mythology, [Mentor was] the faithful friend of Odysseus, king of Ithaca. who
entrusted to Mentor the care of his household during his absence in the Trojan War.
Mentor was a guardian and tutor of Telemachus. Odysseus’ son, whom the goddess
Athena (assuming Mentor’s form and acting as guide and prudent adviser) accompanied
in the search for Odysseus after the war. [Encyclopedia Americana. 1980, “Mentor” (vol.

18. page 651)]

From direct allusions to the modern use of the term ‘mentor’, we can see that this story and its fellows
have a rich psychological role to play in classically influenced western civilization. Al researchers
would be interested to know. therefore, what sort of mental model can compute things such as the

following:

e robust vet different concepts of Athena and Mentor, where the latter is the former in disguise,

not to be confused with the independent concept of Mentor, the original individual.

o Athena’s perception of Telemachus’s concept of Mentor, necessary for her successful guidance

of him.

o indeed, any respectable concept of Athena at all, who 1s both mythical and a deity, or even of

Telemachus, who is merely mythical.

To require the model to be computational—and stretching the notion of computation to reach cog-
nitive science—is to require the capacity to employ these concepts in thoughts, actions, and in the

development of further concepts. Classical formal systems such as the predicate calculus are not



computational. They are not concerned with the algorithms that would be employed, in this exam-
ple, to answer questions such as: (1) Why does Telemachus follow Mentor? (2) How is the Greek
conception of Athena, and the qualities that she is presumed to embody, enriched by this myth?
(3) How would Telemachus react if Mentor revealed herself to be Athena? (4) What lessons does the
story hold? A computational model must answer these questions in the face of the complications
of non-existence. hypothesis. and meta-conceptualization outlined above. Since human cognition
manages this, viable artificial cognition must also do so.

[t must do so. that is. on the assumption that complex interactions among the real, the unreal,
and the dubious are critical to intelligence. The consensus of the Al community appears to be that
a major goal of artificial intelligence is the achievement of all of the effects of human intelligence, no
matter whether or not the methods that produce these effects are the same as those employed by
humans. Yet sometimes it is not clear if some aspect of human cognition is an effect or a method.
Consider the phenomena above. [s the conceptualization of Telemachus’s concept of Mentor an
integral part of intelligence. and therefore required by Al, or, rather, a method of achieving some
intelligent behavior that could be achieved in some other way, without any such conceptualization?
(Is conceptualization an unnecessary middleman?) The lack of decisive evidence as to whether
conceptualization is a means or an end justifies the working assumption that it is indeed an end,
an assumption that frees us from interminable debate over the utility of capturing this (or various
other) aspects of human cognition. This work makes that assumption.

The use of the knowledge representation and reasoning system SNePS (“Semantic Network Pro-
cessing System”) for cognitive modeling takes as its fundamental constructive principle that repre-
sentation of all concepts (things, propositions, and all other phenomena) is done through nodes in
a network, thereby providing a circumscribed set of meaning-bearing objects as defined in [Shapiro,
1979; Shapiro and Rapaport, 1987; Shapiro and Rapaport, 1991]. [t embraces intensionality, as

opposed to otherwise similar approaches, as discussed briefly in the introduction to [Maida and



Shapiro, 1982] in [Brachman and Levesque. 1985, page 169]. Some other well-known knowledge rep-
resentation systems, like KL-ONE [Brachman and Schmolze, 19871, also incorporate intensionality
(as discussed below).

[ntensionality in philosophy of mind is. very roughly,

that set of features which concerns the meaning of a term as against the things to which

it applies [Lacey, 1976. page 98]

For example. the distinction between Mentor and Athena above is intensional only (not extenstonal,
which would be “the things to which that term applies”). [ntension is close to Frege's sense, and
eztension to his reference.

Intensionality in a knowledge representation system can be described as the treatment of all
concepts as first-class objects [Hirst. 1991]. In programming language theory, a first-class object
is one that is subject to the widest possible variety of operations, including storage and retrieval,
communication as a parameter. binding to a variable. use of its value in computations, and so forth.
Whereas a traditional approach to knowledge would regard imaginary, hypothetical, or contradictory
concepts as somehow pathological. and thus limit their use to special contexts. an intensional model
grants them the full range of considerations. Nodes that represent imaginary, hypothetical, or
contradictory concepts are peers of nodes that represent real (or possible) and extensional objects.
[f something can be talked or thought about, then it is a concept, even if not “in” any cognitive
agent.

The proper interpretation of a SNePS node is therefore an intension, or concept. The arcs that
connect nodes contribute no conceptual semantics; they are “punctuation” only. Furthermore, the
interpretation of a node is affected by connecting nodes (other concepts), which may in turn influence
it. Relief from this circularity is provided by sensory nodes, which are external inputs like lexemes
and mechanical outputs like actions [Shapiro and Rapaport, 1987; Rapaport, 1988b; Shapiro and

Rapaport, 1991].



To say that a node represents a concept is not sufficient. We need to talk about which concept,
how the concept can be described, and how it relates to others, and how it can be distinguished
from them. We need to know something about the meaning of the node in ordinary words suitable
for discourse with other cognitive agents. but we need to find this meaning without subverting
intensionality by placing the burden wholly on reference. We see, then, that the incorporation of
intensionality is not a quick fix motivated by a few cognitive riddles, and that it both illuminates

and complicates semantic Issues.

1.3 Knowledge Representation and Reasoning; SNePS

1.3.1 History

For many years. logic. especially the first-order predicate calculus, was the method of choice for
representing cognitive activity. A growing dissatisfaction with the results led some researchers
to blame the method. as expressed. for example, by Marvin Minsky [Minsky, 1981]. A popular
alternative was the graphical model. instantiated in Al as the “semantic network” with its apparent
greater flexibility and its presumed analogy to neural structure. Undisciplined application of this
approach raised the problems discusssed by William A. Woods, who called on semantic network
modelers to provide a theory grounding their use of the constructs [Woods. 1975].

No matter what the model chosen. standard extensional ways of assigning meanings to the terms
involved have proven unsatisfactory. Their interpretation as external objects and phenomena in the
real world, for example, does not allow direct representation of fictional, imaginary, or impossible
entities.

The development of SNePS has specifically addressed these challenges. The question of what
exactly the structuring devices represent was answered by Stuart C. Shapiro [Shapiro, 1979]: the

labeled. directed arcs mean nothing, since all representation is in the nodes; arcs have structural



significance only. The domain being represented is the intensional world—those things that are
conceivable, regardless of their status in reality (Maida and Shapiro, 1982; Rapaport, 1985b; Shapiro
and Rapaport, 1987; Shapiro, 1991; Shapiro and Rapaport, 1991; Rapaport, forthcoming]. This
perspective defines a mental model relative to a particular cognitive agent at some point in time.
Of particular interest here is that the meaning of a node follows the paradigm given by M. Ross
Quillian in an important early paper [Quillian, 1968], which defines the “full concept” of a word
node as the entire network connected to IL.

But logic is indispensable. and 1t is also an integral facility of SNePS. The treatment of quantifiers
defined by Shapiro [Shapiro. 1979] enables the representation of the predicate calculus within the
mind of the cognitive agent. and therefore its full use for reasoning by that agent. Woods [Woods,
1975] stated that the forerunner of SNePS was unique (at the time) in its correct incorporation of
the facilities of the predicate calculus. SNePS uses generalized logical connectives such as and/or
(which, applied to a set of sentences, specifies how many are true) and thresh (for “threshold”) to do
the work of standard and non-standard inference rules [Shapiro, 1978; Martins and Shapiro, 1988].
The mechanism that allows for inference rules conceptualized as nodes to be used in reasoning is
called node-based inference.

Ernesto Morgado [Morgado, 1986] provided a theoretical grounding for an earlier version of
SNePS in terms of abstract data types. This rigorous mathematical definition, using abstract alge-
bras, gives us recursive definitions of SNePS constructs such as cables and networks. The exploration

of SNePS continues as described below. Fundamental definitions and mechanisms are given in § 2.5.

1.3.2 Relevance to current complementary work in Al

Much of the historical discussion above is manifest in current SNePS research. To serve as a model of
cognition, SNePS must have the capacity to draw conclusions, which involves building new proposi-

tion nodes and/or asserting existent ones. The means available to do this in implementation software



currently include forward and backward inference with the SNePS Inference Package [Shapiro et al..
1982; Hull, 1986] and context-relative belief revision through SNeBR [Martins and Shapiro, 1988].
Some research treats concepts as actions to be taken [Kumar et al.. 1988], leading to the question
whether the act of a cognitive agent is a special semantic manifestation. (In other words, will act
nodes require special interpretation mechanisms?)

Recent work concerning subconscious reasoning and the assertional status of propositional nodes
suggests that a possible semantics of a network is “derived by taking all the atomic formulae con-
junctively, and path-based inference rules are straight-forward conditionals” [Shapiro. 1991, page
3], and considers the inference mechanisms appropriate to this view. Meta-predicates are used to
control deduction. separating. for instance, subconscious from conscious belief. The paper cited
shows that SNePS is not reducible to first-order logic.

Individual nodes are meant to have intensional interpretations. so that everything, including
imaginary and impossible objects. can have a place in a mental model {Shapiro and Rapaport, 1987;
Shapiro and Rapaport. 1991]. An appropriate domain is developed in the work of the philosopher
Alexius Meinong, who called it Aussersewn. Its use for the semantics of semantic network represen-
tation systems in general. and SNePS in particular has been explored in [Rapaport, 1978: Rapaport.
1981: Rapaport. 1985b: Rapaport. forthcoming].

Another welil-known approach to knowledge representation and reasoning with semantic networks
is the KL-ONE family. Dependent on taxonomy and subsumption. it makes properties, rather than
propositions, primary. The basic unit of cognition is the “structured conceptual object”, or simply
“Concept”. the components of which are the “superConcepts” that subsume it, and the “Roles”
and “Structural Description” that together constitute restrictions on the superConcepts. KL-ONE
is also intended to represent intensionally [Brachman and Schmolze. 1985].

Any results derived herein that depend on the intensionality (only) of SNePS nodes would provide

a rigorous distinction between it and non-intensional representations. Indeed, all considerations here

=1



could affect our understanding of the semantic network model in general, insofar as types of semantic
networks contrast with each other, and as semantic networks contrast with other cogniti- mc
For ins.ance. a traditional argument ir 1is area concerns the existence and degree of 1. .ive
differences between the various forms ¢. ntation used in artificial intelligence.  particular,
the claim that a semantic network is redus "-=t-order logic has been re: by Lenhart

Schubert:

All KR schemes I have lately encountered, which ast .- 5 care with a large, general
propositional knowledge base. qualify as semantic nets, appropriately viewed. [Schubert,

1991. page 96: italics his]

He proposes to reserve the term ‘semantic net’ for models that are truly dependent on graph-theoretic
characteristics—topological. dynamic, or other. The study described here seeks such characteristics
of SNePS. The question is of great importance for the entire field of knowledge representation.

Brian Cantwell Smith captures the common view that knowledge must be representational in his
Knowledge Representation Hypothesis. which suggests that success in designing a cognitive model—
perhaps a semantic network: perhaps. indeed, SNePS—is both necessary and sufficient to the en-
deavor of artificial intelligence {Smith. 1982]. From Smith also comes a provocative paper calling for
a new focus, in Al research. on the middle ground betwee:n theory and prototype, to be discussed
later in this chapter. Schank and Rieger take 25 the goal for their knowledge representation offering,
Conceptual Dependency Theory, the capturing of natural-language input to a degree sufficient to
draw appropriate conclusions from it [Schank and Rieger, 1974]. These works, only a tiny sampling
from an active area of research (for a survey, see [Brachman and Levesque, 1985]), show the impor-
tance to artificial intelligence of knowledge/belief representation in general, and of the representation
of knowledge conveyed through natural language in particular.

SNePS has a commitment to natural language as the interface and therefore as a de facto func-

tional definition of the system [Shapiro and Rapaport, 1987; Shapiro and Rapaport, 1991]. The



interpretation and generation of natural languages is a vast and active area of artificial intelligence
research. We need to address the following aspect of it: How might it affect the computational
semantics of an arbitrary node?

One tradition in the study of language acquisition uses a computer as the vehicle, implementing
some algorithm to establish an association between input and output groups of structures, which
are variously considered syntactic and/or semantic. A modern exemplar is Jeffrey Siskind, who
presents an operational syvstem that acquires some semantics along with syntax, building structures
embodying restricted word meanings from a stream of both linguistic and restricted empirical input,
both in symbolic form [Siskind. 1990]. This type of study is complementary, rather than parailel, to

the present concern.

1.4 Some Specific Motivational Questions

Suppose we intend to use a knowledge representation and reasoning system such as SNePS to model
the mind of a cognitive agent. as in [Shapiro and Rapaport, 1987]. Consider a SNePS node n,
and consider its meaning [n]. where “meaning” is to be taken here in the sense of [Shapiro, 1991]
(which is the source of the notation) as an undefined intuitive term. If [n47] is “the trouble with
the New York State Legislature”. then [the trouble with the New York State Legislature] ™" is n47
(employing the standard notation for the inverse function).! The assertion of a proposition node
n, signifving the cognitive agent’s belief in the truth of [r], is given by *!", a unary predicate; so n!
is the agent’s believing in [n]. Some of the particular questions to be addressed are given in the

examples that follow. Let C' and D be any two cognitive agents implemented in SNePS.

1. Suppose [n]is C’s concept of Perdita’s old car. Suppose [m] is D’s concept of Perdita’s old car.

What makes [n] and [m] the same thing, extensionally—the same external object? Remember

1 The inverse function exists because the correspondence between nodes and concepts is one-to-one, as mandated
by the Uniqueness Principle for SNePS, treated in § 2.5.



that n and m themselves are NOT the same thing, since they are different nodes—about as

different as they can be. in completely separate networks.

Logical contradictions are allowed (as required by intensionality); nothing rules out the co-
existence of two proposition nodes p! and (—-p)l. A cognitive agent C can have concepts
regarding belief, assertion. and so forth, naturally represented by nodes. For nodes n and m
in the cognitive agent C. suppose [n] is that C likes Violet, [m] is that C believes that C
likes Violet. and that m is asserted (i.e.. m!) and n is not. (See footnote 7 in [Shapiro and

Rapaport, 1991].) What kind of contradiction is this?

Suppose [n] is C's concept of Hugo's dog and that this interchange takes place between C and

D:

C: She always hated Hugo’s dog.
D: But Hugo doesn’t have a dog.
C: Well, maybe it was Manuel’s dog.

D: Oh. you mean Manuel’s cat.

What happens to [n]?

The semantics of a SNePS node needs to be clearly expressed so that questions of identity of

concepts and results of computations can be resolved. These issues in reconciling human capacity

with the SNePS representation provide the impetus to examine the computations necessary to the

determination of [n].

1.5 Some Broad Motivational Questions

Brian Cantwell Smith has proposed twelve foundational questions to be asked of a reasoning or

inference system, as a means of placing it in the theoretical space of Al [Smith, 1991]. His twelve
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questions provide something of a new manifesto for artificial intelligence. and are worth applying to
any knowledge/belief representation system: here we apply it to SNePS. He claims that traditional
methods for furthering the goals of AI through knowledge representation clump together at a point
somewhat distant from actual knowledge, meaning human knowledge. The implication is that
simulated cognition cannot be achieved in a system lacking the vagaries of human cognition.
Smith answers his twelve questions in terms of (1) the traditional approach of predicate logic,
(2) the CYC system proposed by Dougles B. Lenat and Edward Feigenbaum [Lenat and Feigenbaum,
1991], and (3) his admittedly ill-defined “minimum standard for an Al system,” called embedded
computation. or EC [Smith. 1991, page 239]. The questions appear below. with Smith’s answers
provided in square brackets. followed by preliminary answers for SNePS. to be reviewed in the

conclusion.

1. Does the system focus primarily on explicit representation? [Logic—Yes: CYC—VYes;
EC—No.] Possibly no. because Smith considers compositionality a consequent of “explicit,”
and some aspects of SNePS semantics are apparently not compositional. Such is the topic of

Chapter 6.

]

. Is representational content contextual (situated)? [Logic—No: CYC—No; EC—VYes.]
Yes; SNePS’s cognitive agents rely on indexicals, as opposed to systems that work without

a point of view [Rapaport. 1986].

3. Does meaning depend on use? [Logic—No; CYC—No; EC—Yes.] Yes, insofar as Smith’s
dynamic notion of meaning as “the whole complex of inferential, conversational. social, and
other purposes to which it is put” is the same as the “holistic” view of the meaning of a SNePS

node (see §2.7.2).

4, Is consistency mandated? [Logic—Yes; CYC—No; EC—No.] No: a cognitive agent may

have logically contradictory intensions.
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5. Does the system use a single representational scheme? [Logic—Yes; CYC—Yes; EC—
No.] Maybe yes. insofar as all concepts are in nodes; maybe no, insofar as SNePS users employ

different case frames.

6. Are there only discrete propositions (no continuous representation, images, ...)?
[Logic—Yes; CYC—Yes: EC—No.] Hard to say. Smith wants to have “lots of clouds”, without
counting the clouds. If that’s all it is, then no: a system (such as SNePS) that embraces a

“round square” won't shrink from “lots of cloués” "Cho. 1992).

7. Do the representations capture all that matters? [Logic—Yes: CYC—Yes; EC—No|
Hard to say. Smith apparently wants to capture feedback. instinctual physical reactions,

etc.
8. Are reasoning and inference central? [Logic—Yes, mostly; CYC—Yes; EC—Yes.] Yes.

9. Are participation and action crucial? [Logic—No; CYC—No; EC—Yes.] No. insofar as
this is not required for a use or implementation of SNePS to be judged valid or successful. A
system under current development is aimed at making active capacity available [Kumar et al.,

1988]; that still falls short, however. of making it “crucial”.

10. Is physical embodiment important? [Logic—No; CYC—No; EC—Yes.] Yes, insofar as
sensory nodes are crucial to grounding the meanings o ->-.-:- or — No, insofar as these sensory
nodes are under the control of the user, and not . .ccu to be dependent on the embodying

device.

11.Does the system support “original” semantics? [Logic—No; CYC—No; EC—Yes.] Yes,
because Smith means that the system'’s constructs should mean something regardless of inter-
pretation by outsiders, and SNePS nodes are concepts, structures internal to the agent, and

in need of no observer to confer first-class status.
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12. Room for a divergence between the representational capacities of theorist and agent?
[Logic—No; CYC—No: EC—Yes.] Presumably yes, because a SNePS cognitive agent can have

different concepts than does its creator.

Wherever they stand on the virtues of this analysis. Al researchers would do well to regard
another message from Smith—that providing the two extremes of “broad intuition” and “detailed
proposal” is methodologically bankrupt: it is high time to focus on “the middle ground of conceptual
analysis and carefully laid-out details” [page 253]. It seems clear that this middle ground, once
assumed to be a matter of concentrated architecture and engineering, has proved elusive. Even
Smith himself does not reach it: to define an alternative like embedded computation solely in terms
of its lack of others™ fauits 1s not to offer the “intermediating conceptual structure” for which he
calls [page 252].

The gap between toy Al programs. productive but so small, and the going theories of intelligence,
too general to implement. is discouraging. SNePS is a disciplined attempt to build an down-to-earth
cognitive model, an application of artificial intelligence principles, and this study an attempt to

narrow that gap.
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Chapter 2

Background

2.1 Introduction

An understanding of some formal theories and the fundamentals of SNePS is necessary to under-
standing the non-well-founded set semantics to be proposed. A survey of the relevant areas is

provided in this chapter. along with a discussion of the current issues in SNePS.

2.2 The Meaning of ‘Semantics’

A formal semantics is a relation between two domains. To define a semantic relation, three speci-

fications must be given:
e A class V, called the domain, conventionally regarded as the set of syntactic structures.
o A class Z, called the range, conventionally regarded as the set of semantic structures.

o A relation R C Y x Z, where the Cartesian product Y x Z is the set of ordered pairs {{y,2)|ly e

Yand:€ Z}

Most of the time, semantics is considered to be a function, so instead of R, we would include:
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e A function g : Y

A “syntactic” domain V' may, of course, give rise to several different semantics of interest. specified
by different sets z playing the role of Z.

In the absence of further specification. let us take the syntactic and semantic domains )} and
Z to be classes. although they commonly turn out also to be sets (see Chapter 3). Appropriate
questions about these domains are: Are Y and Z finite? If not, are they countably or uncountably
infinite?

Unqualified references to ‘semantics’ herein, using g, refer to the function version. In its broadest
construal. the semantic relation R or function g is simply a set of ordered pairs. If it is a function,
Lowever. we can further ask: Is u a total function? Is it injective. surjective. bijective? I[s it

compositional (in a sense to be defined)? Is it a computable function?

2.3 Functions

A function f: D — R is a set of ordered pairs. a subset of the Cartesian product D x R, where D
is called the domain and R the range.* A function has the special restriction on the ordered pairs
that if (z.y) € f, then [Vz # y] (z.z) € f. A function is injective if it is one-to-one. that is, if
(z,y) € f, then Vw # z] (w.y) & f.

The critical point is that functions are sets. To say that f(z) =y is to say that (z,y) € f. The
successor function, for example, consists of all ordered pairs (z,z + 1), hence is a countably infinite
set, having the cardinality of the natural numbers A, namely, Rq. There are finite and infinite sets
of ordered pairs over the natural numbers A, so there are 2% functions, the cardinality of the set of
subsets of A’ x A". Other set-theoretical concepts are also useful, such as subsets of functions, and

the use of the binary set operations—union, intersection, and so on—to define new functions.

1 This is the ertensional view of functions, as opposed to the intensional view, under which functions are identified
with the algorithms that compute them.
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A given function f : D —— R is either defined or undefined on every possible argument z € D,
depending on whether f includes an ordered pair (z,y) for some y € R. If f is defined on z, we
write f(z) |, or, to indicate the particular value y of the functic at argument, f(z) | . If f
is undefined on z, we write f(z) [. Soif Yzf(z) I, then f = 0, or, in i.mbda-notation, f = Az. |,
the totally undefined function.

A function is computable (or recursive) if there is a Turing Machine that computes it. A function
that is not defined (does not return a value) on some arguments corresponds to a Turing Machine
that does not halt on those arguments. Even Az. [ s computable. as witnessed by any Turing
Machine that does not give a final value no matter what argument is submitted. Since Turing
Vachines can be enumerated. infinitely, there are Ry of them. and there are, therefore, only ®g
computable functions. This implies that the vast majority of functions—if such terms of magnitude
are meaningful in this realm—are not computable. Note also that every computable function has

Ro distinct Turing Machines that compute it, which can be regarded as its intensional definitions.

2.4 Graph Theory

The abstract mathematical structure on which semantic nets in general rely is the graph, a set of
discrete objects called nodes with connections called arcs between them, or, more specifically, the
directed graph, a set of nodes with unidirectional ar s between them [Harary, 1972]. A directed graph
G is formally defined as V U E, where V is a finite non-empty set of nodes and £ C V x V is a set
of ordered pairs of distinct nodes (u,v), which are the arcs of G. (E is usually a relation that is
not a function.) The node u is called the parent (with respect to v) and the node v the child (with
respect to u).

Two nodes u,v are adjacent if (u,v) € E or (v,u) € E. Sometimes the predicate “(u,v) € E”
will be written simply u — v. A path is an alternating sequence of distinct nodes and distinct

arcs, uy, (w1, u2), u2, (u2, ua),. ... (Un, Un41), Uns1, such that, forall 1 <2< n, (ui, uig1) € E. (We
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sometimes say that u,.; can be reached from u;.) The length of the path is the numbers of arcs n.
A path may be given by the sequence of nodes alone, since that determines the necessary arcs. A
“cycle is a sequence of nodes uy. s, . ... Un, Unsy (where, for all 1 < i < n, (ui,ui4y) € E) such that
n+, = uy but all other nodes are distinct. so a cycle is like a path except that it ends at the node
of origin. An acyclic graph is one that contains no cycles. We will also need a traversal of arcs that
rdoes not respect their direction: a semipath is a sequence of distinct adjacent nodes. Sometimes a
node with no children—1.e.. a node w such that Yv € V, (w, v) € E—is called a leaf, but that term is
usually reserved for frees. connected directed graphs with a distinguished node called the root and
1 unique path to every node. In a directed graph, the number of arcs extending out from a given
node is its outdegree. and the number coming in to the node is its indegree. A leaf. in other words,
or any other node with no cluldren. has outdegree zero. while the root of a tree has indegree zero.
A SNePS network 15 oiten described as “a directed acyclic graph” [Shapiro, 1991, page 137].
(See §2.5 for a presentation of SNePS terminology.) Since SNePS allows more than one arc (nj, ns)
between the same two nodes n; and n» (as long as the arcs are labeled differently), the SNePS
network is therefore, more precisely, a multigraph rather than a simple graph [Harary, 1972: Gibbons.
1985]. From these multigraphs. however. significant simple graphs are easily derived. by, for example.
conflation of arcs (replacing muitiple arcs from node u to node v with a single arc (u. v}), or restriction
to ares with certain labels. vielding simple graphs to which the full machinery of graph theory may

be applied. We formalize the first option in the following definition.

Definition 2.4.1 Given a SNePS nelwork S, its unigraph S’ is the graph consisting of V, the

set of nodes in S. and £’

I

Vo« V. where (z,y) € E' if and only if there 1s at least one arc in S

from node x to node y.

The unigraph S’, then. depicts the raw directed connectivity or adjacency status of S.
A subgraph of G is a graph G~ = V- U E~ such that V- C V|, E~ C E, and Y(u,v) €

E-. u € V&v € V. A subset V™ of the nodes alone suffices to define a subgraph G~, which
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then includes all arcs @ € V'~ x V'~ such that a € E; we call this the subgraph of G induced by V.
We will also have occasion to use subgraphs induced by a set of arcs; the subgraph of G induced by
E-is G- = V- UE~, where a node v isin V™ if and only if there is some arc adjacent to it in the
given E~ [Harary, 1972].

A SNePS network is not necessarily (weakly) connected. which would require that there be a
semipath between every pair of points: though none of the examples used here show this, it is possible
that a SNePS network could include several separate subnetworks. that is, disconnected components.
The way in which each component is connected is the weakest, since all that we can claim is that there
is a semipath between any two nodes (in a component). A component would be strongly connected
if every two nodes are reachable on some path from each other, and unilaterally connected if for any
two points, at least one is reachable from the other. Simple examination of Figure 2.1 ahead will
show that (components of) SNePS networks are neither strongly nor unilaterally connected, since,
for instance, there is no path in either direction between m3 and né (but there is a semipath).

Other graph-theoretic concepts also translate easily between the language of SNePS and the
language of graph theory: for example. a base node has an outdegree of zero, and it is the rules for
building networks (see [Shapiro and Rapaport, 1987]) that make them acyclic. An easy consequence
of these properties is that there must exist. in every network (at least. in S’ form), nodes with
indegree zero [Harary, 1972, Theorem 16.2']. In fact, there is a unique minimal set of such points
that, between them. allow all other nodes to be reached along some path [Harary, 1972, Theorem

16.6], called the point basis. This may be a smaller set than the set of nodes with indegree zero.

2.5 The SNePS Environment

A SNePS network is a propositional semantic network. that is, one in which every proposition
represented in the network is represented by a node (rather than an arc). Arcs are best regarded

as punctuation, having no conceptual semantics. For this reason, it is forbidden to add an arc
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between two existing nodes. Certain arc labels come with SNePS: others necessary for a particular
implementation are to be defined by the user.

Arcs are directed; the node at the origin is called the ‘tail’ node and the node at the arrowhead,
the ‘head’ node. There would be no point in connecting two nodes with multiple instances of
the same arc (arcs with the same label), but there may well be multiple arcs with the same label
emanating from the same tail node but terminating at different head nodes. or multiple arcs with
different labels connecting two nodes. Nodes with no arcs emanating from them (in the graph-
theoretical terms above, with outdegree zero) are called atomic. They include (1) sensory nodes,
which represent the real-worid interface: (2) base nodes. which represent individual concepts; and
(3) variable nodes. which represent arbitrary concepts (individuals or propositions). In this work,
the domain of discourse is SNePSp only, which is SNePS without variable nodes. Nodes that do
have arcs emanating from them, i.e., that dominate others, are called molecular. They include
(1) structured individual nodes and (2) structured proposition nodes. The formal definitions that

will be needed follow [Shapiro. 1991. page 145]:

Definition 1 A wire is an ordered pair (r,n), where r is a SNePS relation. and n is a
SNePS node.

Definition 2 A cable is an ordered pair (r, ns), where r 1s a SNePS relation, and ns is
a nonempty set of SNePS nodes.

Definition 3 A cableset is a2 nonempty set of cables, {{ri,ns1),...,(re,nse)}, such
that i =r; < i=j.

Definition 4 Every cableset is a SNePS node. Every SNePSp node is either a base
node or a cableset.

Definition 5 A molecular node is a cableset.

Definition 6 We will overload the membership relation “€” so the z € s holds just

under the following conditions:
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e If z is any object and s is a set of such objects. then € has its usual meaning. (Note

that this situation obtains if r is a cable and s is a cableset.)
e Ifzisa wire (r;,n) and s is a cable (ro,ns), then £ €s < ry =raAnE ns.
e If zisa wire and s is a cableset. then z € s <= 3(c)[cEsAzT Ec].

e If zisa wire or a cable and s is a base node, then z ¢ s.

Definition 7 An nrn-path from the pode n, to the node ni4y is a sequence

Ny, T1,.... Nk, Tk, Nes1 where the n; are nodes, the r; are SNePS relations, and for each
i, (ri,nis1) is @ wire in n;. We say the the nrn-path ny,ry, ..., ng, Tk, nkyy goes through
n, 1 <i<k.

Definition 8 A node n; dominates a node n- just in case there is an nrn-path from

ny to na.

When a SNePS network is used to model the mind of a cognitive agent, a node representing a
proposition may be asserted. a special status that conveys the agent’s belief in that proposition. A
single cognitive agent may encompass several belief spaces, each of which contains its own assump-
tions and is that agent's view of another cognitive agent; assertions are relative to the belief space.
These mechanism: tllow for sophisticated “conscious” and “subconscious” reasoning, so that, for
example, cognitive agent C, who does not believe 1500 inar2tpan s delicious, has a crack at concoct-
ing a confection pleasing to cognitive azert ot =7rd believe that marzipan is delicious—either
by, crudely put, actively figuring out D’s taste, or by realizing something about D’s taste. (The
definitions sketched above can be found mainly in [Shapiro and Rapaport. 1987], [Shapiro, 1991},
and [Shapiro and Rapaport, 1991].)

An example of a SNePS network is shown in Figure 2.1, the representation in the cognitive
agent CASSIE of the sentence “John believes that the girl next door is sweet,” from [Shapiro and

Rapaport, 1991]. The subnetwork representing the property of “being the girl next door” is not

shown, but will be taken to be rooted at a molecular node m9. Base nodes include b1 and b2, which
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Figure 2.1: Example SNePS network representing “John believes that the girl next door is sweet.”
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represent, respectively, John (that is. the object whose proper name is ‘John’) and the girl next door
(that is, the object that. to John. has the property of being the girl next door). An example of a
molecular node is m6. which represents the proposition that the girl next door is sweet. An exc.aple
of an asserted molecular node is m8, which represents the proposition that [bi] (John) believes [m6}
(that the girl next door is sweet). It is asserted because [bi] is John. and CASSIE holds this belief
about John’s attitude toward [b2], the girl next door. The absence of assertion on the node mé

shows that CASSIE herself has no such commitment to the sweetness of [b2].

2.6 The Semantics of SNePS So Far

The official version of SNePS is the latest release, SNePS-2.1. but by “SNePS” is meant the whole
svstem and all of its parts. implemented and theoretical. comprising any form of study by the
SNePS Research Group—programs. papers. conferences, meetings, and even usage conventions that
have reached the status of implicit rule. Ve include especially, as a formal touchstone. the data
structures and procedures that comprise the SNePS abstract data type constructed by Morgado
[Morgado, 1986, as well as—as implied by the inclusion of “conventions”—SNePS as a dynamic
social and intellectual phenomenon. That is, no feature will be discounted because it is held only
by unwritten consensus, but such situations will be noted. Indeed. a major thrust of the study is
to clarify and legitimize those features. This analysis is nominally directed at full SNePS, although
we are primarily interested in its role as a cognitive agent, such as CASSIE in the research project
SNePS/CASSIE [Shapiro and Rapaport, 1987]. The distinction will be drawn when necessary.

The mechanics of the current implementation of SNePS, SNePS-2.1, are described in [Shapiro
and Group, 1989]. The major constructor is the BUILD command, which adds nodes, and thereby
information. to networks. It also reinforces the Uniqueness Principle (see §2.7) by only constructing

nodes that do not already exist.
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2.6.1 Standard model-theoretic semantics

If SNePS is a formal propositional system. as stated in [Shapiro. 1991], then a truth-functional
semantics is a standard choice, assigning to a proposition node a member of the domain {true,
false}, to an individual node an extensional constant or atom. and to a rule node a function from
closed sentences to {true. false} [Rapaport, 1992a;: Rapaport, 1992b]. But the shortcomings of such

a system, alluded to in §1.3.1, are obvious:

e Intensional individuals are not necessarily extensional (existing in the real world), as witnessed
by Athena. above. by the paradoxical Russell Set. and by “the health benefits of smoking”

(mentioned in advertisements of years past).

e The set {true, false} is inadequate as the range of interpretation of propositions, unless we
accept that ‘The population of the United States in 1990 was 5,062” has exactly the same
meaning as "Apollo was the mother of Pegasus™. In other words (Frege’s. in fact), intensionality

requires the sense of a proposition as well as its referent.
e There is no clear semantics provided for act nodes.

Since the standard approach to propositional semantics does not respect intensionality, it is not

suitable for SNePS.

2.6.2 Formal definitions

Some work has already been done to interpret the set of valid SNePS constructs, but all take slightly

different points of view. According to [Shapiro and Rapaport, 1991, page 221],

The entity represented by a node is determined in one of two ways: it is determined
assertionally by the subnetwork connected to the node via arcs pointing into it; it is
determined structurally by the subnetwork connected to the node via arcs pointing out

of it. ...Once a node is created, it can get new arcs pointing into it, but the set of arcs
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pointing out of it can never change, so the structurally determined nature of a node is

more characteristic of it than its assertionally determined nature.

Shapiro also gives a dynamic belief semantics, through path-based inference [Shapiro, 1991|. The
semantics of acts remains to be specified, and is the subject of current research [Kumar and Shapiro,
1991].

When it is necessary to refer to classes of structures formally, the following terms will be used:

Definition 2.6.1 SNodes: the set of all well-formed SNePS/CASSIE proposition nodes, as spec-
ified by the generation rules SR.1 [Shapiro and Rapaport. 1987], and the assumption that base nodes

are given.

Definition 2.6.2 SNets: the set of all well-formed SNePS networks. as specified by the generation

rules SR.i [Shapiro and Rapaport. 1987], and the assumption that base nodes are given.

2.6.3 Intensionality is incorporated through Aussersein

Let D name the domain of entities represented by SNePS nodes. As discussed in §1.3.2. D can also
be regarded as the Meinongian domain Aussersern—at least, for individual. proposition, and rule
nodes. We would extend the definition of intensionality as first-class treatment of all objects by
noting that, intensionally speaking, not only are all concepts first-class objects. but all first-class
objects are (potential) concepts. The necessary condition for an entity’s membership in D is that it
be a first-class mental object: the sufficient condition is the same. That may be the closest we can
get to circumscribing D in a more rigorous way than describing it in Aussersein terms as “everything

we can talk and think about” [Rapaport. 1978].
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2.7 Fundamental Principles of SNePS

2.7.1 Avowed principles

As described in the previous chapter. certain principles of SNePS stated in the literature are meant

to distinguish SNePS from other cognitive models [Rapaport. 1985a: Shapiro and Rapaport. 1987].

+ Intensionality: SNePS is (or allows) a fully intensional representation of belief: the nodes

represent concepts ( “objects of thought”), not limited to extensional or possible objects.

e The Uniqueness Principie: The relation between the cognitive agent’s concepts and the nodes

in the network is a bijection. a one-to-one correspondence.

e Permanence of Structural Status: No out-arcs may be added to a node. The only way to add
new information about a concept is with nodes that dominate it. In other words. the structural
status of a node rannot be changed: new information can only be added assertionally, a

dichotomy used by \Woods [\Woods. 1975] and formalized for SNePS. as discussed in §2.5.

2.7.2 Articles of Faith

There are also unwritten principles held. or at least proposed. by those who have devoted significant
time and discussion to the studyv and development of SNePS—and which are not fully addressed in

the published literature:

Full embedding

The meaning of a node depends on its full embedding, that is, its location in the entire surrounding
network. Stated conversely, the meaning of a node cannot be determined by an examination of some
proper subset of its neighboring nodes and arcs. As put in [Ehrlich and Rapaport, 1992, page 2],

describing work in progress:
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We take the meaning of a word (for a cognitive agent) to be the location of that word in a
mental semantic network of words. propositions, and other concepts .... We thus adopt
Quine’s view that a cognitive agent’s knowledge and beliefs form an interconnected web,

a change or addition to which can affect other portions linked to it.

Distinctions of concepts

The only necessarily permanent attribute of a node is that it always exists distinct from all others.

The motivation is to reflect a human cognitive phenomenon, illustrated. for example, by the
interchange given between C and D concerning Hugo's dog, which turned out to be about Hugo’s
cat. (See §1.2 above.) Some sort of context for the reference remains fixed, even though there is no
way to tell a priort what attributes will persist. (No phenomenon corresponding to memory loss is

currently provided.) So if everything about a node can change, what does it mean?

Circularity

The semantics of SNePS is circular, notwithstanding its acyclic graph representation. The meanings
of certain directly-connected nodes influence each other.

There is support for the general idea of circular semantics in the Al community. In The Situation
in Logic, Jon Barwise ([Barwise, 1989, pages 194-198] lists “some inherently circular situations” to

justify his claim that “reality is not wellfounded”. Here are simplified versions of two of them:

Example 7: A man forgets to bring a dish to a potluck dinner in honor of a friend,
and admits. “This is a very embarassing situation.” The remark itself, of course, is

part of the situation mentioned.

Example 12:  Players of five-card stud, a poker game in which each player gets one
“down” card (known only to him/herself) and four “up” cards (visible to all), have

an understanding of the situation that integrally involves each player’s conception
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of the situation. There is no neat separation into independent levels of knowledge.

Bernhard Nebel studies the properties of terminological cycles in knowledge representation, con-
structions that “arise when a concept is defined by referring, directly or indirectly, to itself,” such
as dictionary entries [Nebel, 1991]. Most of the well-known knowledge/belief representation systems
either ignore them or explicitly exclude them, but they are useful and common. Nebel says that
these reasons are enough to analyze them. and the difficuity of doing so is not reason enough not to.

When Smith compares traditional logic and the CYC system to his own view of what true artificial
intelligence would be. as discussed in Chapter L, among his criticisms of the first two systems are
their inadequate respect for usage as a determiner of meaning: “the meaning of ‘water’ is as much
determined by the meaning of the discourse as the meaning of the discourse is determined by the
meaning of “water’.” lle then acknowledges that this view “challenges the traditional view that
semantics can be ‘compositionally’ defined on top of a base set of atomic values” [Smith. 1991, pp.

265 fF.].

2.8 The Need for Further Analysis

2.8.1 Semantics of base nodes

While [Shapiro. 1991] addresses the semantics of molecular nodes, especially as regards their asser-
tional (and therefore inferential) status, it does not provide a meaning for base nodes independent

of their syntactic placement.

2.8.2 Semantics of molecular nodes

Somehow we want the meaning of a node to be its location in a network, encompassing both the
structure that dominates the node and that is dominated by it. This notion is simply a wholesale

adoption of the general intuition; 1t is meant to be less formal than the various semantic interpre-
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tations of a node that may be derived later. There are two facets to this characterization: (a) the
entire surrounding network contributes to the meaning, in accordance with the emerging consensus
on this issue mentioned above. and (b) the relative placement of a node among the others maiters;
otherwise. all nodes in a network would have the same meaning, namely, the entire network in ag-
gregate, with no specific perspective. This suggesi= “* -+ *he meaning of a node includes the entire
history of the acquisition of the concept. that, in fact, .a.:ection is always made to concepts in the

context of learning.

2.8.3 Bridling semantic computation

\While the meaning of a node may be taken theoretically as the full network surrounding it, pragmatic
considerations require that we explicitly acknowledge that processing of such a network to derive such
a meaning must be limited. A SCOPE feature would provide a measurement of processing extent—
ie.. to what depth was the search tree expanded?—and a measurement of difference in meaning
between two nodes. The difference between [n] and [m] would be the distance (i.e.. the number of
arcs) that must be traversed outward (in any direction) from n and m until the subnetworks thus

induced differ. i.e.. until there is an arc or node in one subnetwork that is not in the other. If that

distance is z, the nodes are r-equivalent. If the - rire ro-m- ire covered, then we will
say that the nodes are x-equivalent. and r - ...c ineaning: [n] = [m]. The distance
employed in a given processing situatic. -a the SCOPE, and formally defined. for a node

n in a given SNePS network S = V'U L and a given distance d, as follows.

Definition 2.8.1

SCOPE(n,d) = the subgraph induced by Vo U VL U ... 7,

where Vi is the set of nodes on some semipath of length ¢ from n.
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Figure 2.2: SCOPE(m6.1) from network of Figure 2.1

Two examples of subnetworks defined from node mé of Figure 2.1 by different vaiues of SCOPE are
siven in Figures 2.2 and 2.3

For two nodes in the same cognitive agent. +-equivalence is ruled out by the Uniqueness Principle.
What about two nodes in different cognitive agents? If the meaning is only the location in the
network, then two corresponding nodes in C and D might end up at the same place (albeit at
different times) and therefore be x-equivalent. But if the entire history of acquisition is included
in the meaning, then +-equivalence is also effectively ruled out for two nodes in different cognitive
agents, since they would have had to be acquired in absolutely identical contexts. under absolutely
identical histories—virtually impossible for two distinct agents.

The incorporation of a scope feature into inference mechanisms of SNePS would alleviate the
problem of “logical omniscience” —the problem that extant cognitive agents do not know or believe
all the logical consequences of their beliefs—by limiting the range of inference that takes place at
any given time. [t would be complementary to the “subconscious” reasoning provided by path-based
inference [Shapiro, 1991].

SCOPE may be seen as the institutionalization of the distinction between competence and per-
formance. In natural language processing research, competence yields theoretical results such as

grammars for languages of infinite cardinality, and performance explains why human speakers do
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not always act in accordance with ' »se results. When the SCOPE is *. the results obtained are

competence results; with any SCOPE short of that, they are performance results.

2.9 Summary

To provide a semantics for some group of structures is normally to provide meanings for them,
but since ‘meaning’ is not a rigorously defined term, a semantics formally is nothing more than a
mapping from one domain to another. the latter taken to be the set of meanings. Unless otherwise
specified. the mapping is a function. so that a given structure only has one meaning.

Since the task in succeeding chapters is to provide a semantics for SNePS. its properties are of
interest. [t is a graphical model. and graph theory has been reviewed for relevant concepts and
terms. (Axomatic set theory and the non-well-founded variant of it that is to be used extensively
et a chapter of their own. the next one.) SNePS also follows characteristic principles not entailed
by graph theory. such as the classification of nodes into different categories with different structural
constraints and the one-to-one correspondence between concepts and nodes called the Uniqueness
Principle: these have been enumerated.

As a knowledge/belief representation, SNePS incorporates intensionality by conceptualizing as a
node any object of thought, supports the thesis that the full meaning of a node involves the entire
network in which it is embedded, and embraces some degree of circularity in the semantic influence
on each other of adjacent nodes. Given this background, and the SCOPE mechanism defined as a
first attempt at limiting the context of semantic computation. we are ready to proceed toward a

non-well-founded set-theoretic semantics.



Chapter 3

Non-Well-Founded Set Theory

3.1 Introduction

In this chapter, the non-well-founded set theory of Peter Aczel is sketched. Sets are construed as
collections of objects that are sets themselves; in Aczel’s theory a set can even contain itself. The
graphical representation of a set is an important vehicle for the theory. Nodes are construed as sets,
with arcs showing membership and cycles showing sets that somehow contain themselves, either

directly or indirectly (through hereditary membership).

3.2 ZFC Set Theory

Set theory provides a rigorous environment in which to reason about objects, providing the foun-
dation of much of mathematics and other formal studies. According to Cantor (in translation by

Jourdain), where the more modern ‘set’ should be read for ‘aggregate’

By an “aggregate’ we are to understand any collection into a whole M of definite and

separate objects m of our intuition or our thought. [Cantor, 1952, page 85)
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So as not to limit the scope of inquiry, set theorists commonly adopt a homogeneous typing under
which all members of sets are regarded as sets themselves, and as hereditary, so that each set contains
all members of its members. A member of a set S might also be a subset of S. When we need concrete
objects that are not sets, we will call them "atoms’. This simple mechanism permits the standard
<et-theoretic definition of the natural numbers N as 0. {0}, {0, {0}},1{0,{0},{0,{0}}},... . Each
n € N is represented by the set {m € N |m < n}, or, equivalently, n + 1 = nU {n}, where 0 is
\dentified with zero. For example, 0 C {0,{0}} and 0 € {0, {0}}; 0 is both a member and a subset
of 2. The hereditary nature of these sets allows them to be meaningfully depicted as rooted directed
sraphs. with the arrows showing membership. Here are two pictures of the set 3, on the left with

multiple occurrences of the member nodes, and on the right with unique occurrences:

oF

©

We are used to forming sets by the satisfaction of predicates on variables. For example, the set of
Buicks in the parking lot is given by {z |z is a Buick & = is in the parking lot}. It is also convenient
to recognize objects which may be “too big” to be sets, called classes. For ¢ a predicate on z, an
object of the form {z|@(z)}, if the set cannot be formed (if the object is “too big”), is a proper
class—for example, the paradoxical Russell Set {z |z & z}. As Kenneth Kunen puts it, they do not
formally exist and are best thought of as abbreviations for other expressions [Kunen, 1980].

Various axiomatic systems of set theory have been developed; one standard is that called Zermelo-

Frankel Set Theory with the Aziom of Choice, abbreviated ZFC. Its nine axioms follow, as given
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in [Aczel, 1988. page 117] (who has avoided the use of abbreviations; see also [Kunen. 1980] for a
comprehensive discussion with helpful intermediate definitions. and [Partee et al.. 1990, page 218
ff] for a slightly different exposition).

For all sets a and b:

Extensionality: A set is determined by 1ts membership; a and b are equal if : € a implies z € b
and z € b implies = € «.

Yiz:E€a—=z:€b)—a=b
Pairing: Any two sets a and b form a set that is their pair =.

Jzlae:Lbe :]

Union: Sets can be combined into unions: there is a set z that contains all members y of all
members r of a.

3:(¥r € a)(Yy € 1) [y € =]

Powerset: For any set a. there is a set = that contains all of a's subsets.

3z¥z [(Yu € r)(u € a) — £ € 2]

Infinity: There is an infinite set. a set = that contains the empty set and. for every r € :. contains

some y such that r € y.

3z [(3z € :)Vy ~(y € z) & (Vz € 2)(Jy € z)(z € y)]
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Separation (or “Comprehension™): ' Sets can be defined in terms of properties subject to the
existence of a set from which the elements are drawn: given a predicate o, there is a set z

whose membership is drawn from a and depends on o.

IVz(r€zr—r€akd

Collection (or "Replacement™): ! Elements z that correspond. under some property @, to oth-

ers y (antecedently given) can be formulated as a set z.

(Yr€a)3yo — 3z(Vz €a)(Jye:io

Choice: Every non-empty set of disjoint non-empty sets has some choice function, that is, a

selection = of a unique element y from each member set z of a.

(Yrea)dylycr)& (Y, €a)(Vze € a)[Cyly € x1 & ¥y € 1) — 1y = 2]

— 3:(¥Vrea)3ycxr)Vuer)ue:—u=y

Foundation (or "Regularity”): Any non-empty set has a member that 1s disjoint from it; for

every set a # 0, there is a set z € a such that zNa =0, i.e., there is no y € z that is also € a.

dz(z€a)—(Jx €a)Vy € x)~(yEa)

[t is the last axiom. Foundation, that is of interest here. It disallows. for example, the sets below:

a = {a} (3.1)

1These are axiom schemata. defining an axiom for each ¢ (any formula that does not contain a free occurrence
of z).
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b = {s,t}, where s = {t} and t = {s} 3.2)

For the set a defined in equation (3.1), the single member is the ser itself, and a ther re ins
no member disjoint from it. In equation (3.2), bNs = {t},and bNt = {s}. And v it ab. ¢ the
set s itself, where s = {t} and t = {5}7 Although such an s does not seem to vic - the Axiom of
Foundation directly, it cannot be defined under the cumulative conception. If it could, and ¢ could,
then the set {s.t} would exist. but that’s just b, above; the non-well-foundedness of b suffices to
show the non-well-foundedness of s. and also of t.

Kunen points out that the Axiom of Foundation has 1o i".nction in ordinary mathematics. Noth-
ing depends on it. in the sense that the mathematical sets of interest already have that property, so
it is not necessary to establish it independently. The Axiom of Foundation is. however, necessary to

the application of transtinite induction as a proof technique (Kunen, 1980].

3.3 The Anti-Foundation Axiom

In his development of non-well-founded sets, Peter Aczel replaces the Axiom of Foundation with
a strong negation. which he calls the Anti-Feundation Axiom, abbreviated AFA [Aczel, 1988]. To

state it. we must define intermediate terms.

Accessible Pointed Graph: An accessible pointed graph, or apg, is a directed graph with a dis-

tinguished node called the “point” from which every other node can be reached.

Decoration: A decoration of an accessible pointed graph or apg is an assignment of a set to each
node of the graph in such a way that the elements of the set assigned to a parent node are the

sets assigned to its children. A childless node is assigned the empty set.

Picture: A picture of a set is an accessible pointed graph with a decoration in which the set is

assigned to the point (by convention. at the top of the picture).
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Figure 3.1: Accessible pointed graphs that are not well-founded

'a

An accessible pointed graph is well-founded if it contains no cycles. An accessible pointed graph that
is not well-founded depicts a set that is not well-founded, because no such set can be constructed
through the cumulative hierarchy. But consider the structures in Figure 3.1, and suppose that we
want to regard them as valid descriptions of phenomena, circular phenomena.

With appropriate decorations. these are pictures of non-well-founded setsor hypersets. legitimized

by the replacement in ZFC of the Axiom of Foundation by the following:
The Anti-Foundation Axiom: Every graph has a unique decoration.

This statement is the conjunction of a claim of existence and a claim of uniqueness: every graph,
even if it has cycles, has at most one and at least one hereditary assignment of sets to each node.
(The weakest negation of the Axiom of Foundation would simply allow decorations for graphs with
cycles.) Aczel calls the resulting axiom system ZFC~ + AF A, where ZFC™ is ZFC without the
Axiom of Foundation.

By Mostowski’s Collapsing Lemma, every well-founded graph has a unique decoration, with every
childless node assigned the empty set and the same heredity property used to determine the sets
that decorate parent nodes [Barwise and Etchemendy, 1987, page 41]. The introductory examples

given using elements of the natural numbers A" are illustrations.
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Here are some examples of non-well-founded sets. The picture below represents the set z such

that z = {z}, to which Aczel gives the special name Q:

O

Note that writing down its contents in standard set notation is problematic since Q also contains
all members of its children. Because it is its own child, the solitary node would have to be decorated
with something like this: {{{...}}}. If only, as Aczel says, that expression “had an independently
determined meaning!” [Aczel. 1988, page 7] Lacking that, its decoration is a set defined to be “a set
equal to its own singleton” [Barwise and Etchemendy, 1987, page 37]—still awkward. Indeed, that
is the advantage of the picture representation. It obviates the need for distracting and arbitrary
names. Even the name € is unnecessary, of course, but useful, much like node labels in SNePS.

The set Q is the completely circular hereditary set; it doesn’t “bottom out” anywhere. In
Figure 3.2 on the left. for example, the definition of decoration entails that the top node be assigned
a set containing the bottom one, and the bottom node be assigned a set containing the top. As
mentioned, no particular names for the sets are mandated. or even encouraged. But the top node
can be assigned {Q}, as long as its sole child. beneath, is assigned its single member, i.e., Q. But
this is possible since @ = {Q}, and therefore that assignment is consistent with the requirement that
the top node also be assigned Q and {Q} at the same time. The Anti-Foundation Axiom turns this
possible decoration into a mandated decoration. Since the graph can be decorated that way, it must
be. Both of the pictures in Figure 3.2 represent Q. Any graph in which all nodes have at least one
child is a picture of Q [Aczel. 1988, page 7).

Following the development of Barwise and Etchemendy, we now bring in a set of atoms A; a
decoration of a graph then assigns to each childless node either an atom or the empty set. Further
examples can now be constructed using elements from A, which are not sets and hence have no

picture representation with children. no out-arcs. They will be, for a graph G, the domain for a
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Figure 3.2: Other pictures of

function that tags childless nodes with either the empty set or an atom,
tag : {n € G| outdegree(n) =0} — AU {0}

For a graph with no childless nodes. tag is the everywhere-undefined function Az.|. The definition of
decoration is extended so that assignments to other nodes are sets composed from the atoms of their
descendants. For example, take A = {a1,a2} and sets s; = {a1,a2,s2},52 = {aa,51},53 = {51,52}.
Figure 3.3 shows a tagged graph that serves as a picture of the non-well-founded set, or hyperset, s3,
with abbreviated decorations. Since it contains a cycle, full decoration would require infinite labels.
The set s3 is not well-founded because all of its pictures will contain cycles. due to the mutual
membership of s; and s».

Since a hyperset may have several pictures. and they may be cyclic. the general problem of
hyperset equivalence, when those hypersets are known only by apgs, is a difficult one. Fortunately,
the hypersets to be used in conjunction with SNePS networks will be amenable to an extensional
definition of equality, complicated but computable.

Aczel shows that the theory ZFC™ + AF A is consistent, assuming that ZFC itself is, by em-
bedding the universe of well-founded sets into a universe satisfying the new theory, thus producing a
model of it. The status of classes, and of Russell's Paradox, is not affected. The Axiom of Compre-
hension rules out the troublesome z = {z |z ¢ r} as a set for both axiom systems, since existence,

under that axiom. is contingent on membership of the elements in some given set a, unavailable
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Figure $.3: A picture of set s3, showing abbreviated decoration

here.2 Of course. in traditional ZFC'. we can still refer to a proper class of sets that do not contain
themselves: this is what = 15, In ZFC™ + AF A, both z and its benign twin y = {z|z € z} are

proper classes [Barwise and Etchemendy, 1987].

3.4 Solution Lemma

Much of the appeal of Aczel's system ZFC™ + AF 1= in a consequence of the Anti-Foundation
Axiom, the Solution Lemma. which estat st a list of set-defining equations that express

some “unknowns” in terms of hypersets over those unknowns themselves and some “givens” has a
(=)

2The Axiom of Comprehension is sometimes stated in the naive way, without this protection, as for instance, by
Azriel Levy:
IyVr(r € y <> o)

He explains,
According to one view, the axiom of comprehension is basically false, since it represent a mental act of
“collecting” all sets which satisfy ¢(z), and this cannot be done since we can “collect” only those sets
which have been “obtained” at an “earlier” stage of the game...The other possible reaction to Russell's
antinomy is to continue believing in the essential truth of the axiom schema of comprehension. viewing
the Russell antinomy as a mere practical joke played on mankind by the goddess of wisdom. According
to this point of view ...we should use [it] only in order to obtain new sets which are not too “large”
compared to the sets whose existence is already assumed in the construction. ...In our framework of
set theory both approaches lead to the same result ... [Levy, 1979, page 7]
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unique solution in the hypersets of the givens. It is this technique that will be exploited to establish
a semantic theory for circular phenomena such as exist in SNePS. Systems of equations and their
solutions are built up as in algebra [Barwise and Etchemendy, 1987]. The notation is dense, largely
because it ailows for infinite cases that wiil not be necessary for the present purposes. An example

follows the definitions.

Va: Given a set A of atoms. Vi is the universe of all sets. well-founded and non-well-founded,

called a hyperuniverse. with atoms from A.

Vi Given a superset A" 2 A of atoms. the hyperuniverse V4. is all sets with atoms from A’. so

Vit IV

Indeterminates U': The difference in the sets of atoms 1s X = A" — A. and the elements x €
X are the indeterminates over V4, which can be regarded as unknowns ranging over that
hyperuniverse in the sense that they will be mapped to hypersets. A set a € Var is a term

built up from the indeterminates in its transitive closure under hereditary membership.

Equation in It An expression of the form x = a is an equation in X', where x € .V and a €
Var —.X. (The exclusion of X' from the possible right-hand sides rules out equations such as

s = 5. but not. of course. more interesting ones such as s = {081

System of Equations in .U: A system of equations in .V is a family of equations {x = ax [x €

.Y}, one for each indeterminate x € ..

Assignment f for .U: An assignment for .t in V4 is a function f :.¥ — V4 which assigns to
each indeterminate x € .\ an element f(x) from V4. Any such f extends to an FiVa —Vy

with the replacement of each x € .Y by its value f(x).

Solution of an Equation: An assignment f is a solution of an equation x; = a(xy,Xa,...) if

f(x1) = a(f(x1), f(x2),...). Forxy, the notation a(xy, X»,...) indicates any set composed of
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elements from V4., including, possibly, the indeterminates x1,Xa, . ... The only restriction on

the right-hand side is that it can’t be simply x; itself.

Solution of a System of Equations: An assignment f is a solution of a system of equations in

2 if it is a solution of each equation in the system.
The Solution Lemma itself states:

Every system of equations in a collectiow "1determinates over V4 has a

unique solution.

The status of these indeterminates may be confusing. They are treated first as atoms, when
the set of indeterminates .U is given as A’ — A, and later as sets. when thev are assigned sets in
the solution to the system. This is correct. They are atoms in the beginning because they have no
known set structure. The solution f, however, maps them to hypersets; they become, for all intents
and purposes, placeholders for sets. and questions of their ontological status are beside the point.
The thrust of the Solution Lemma is that the elements of X', which have no obvious relationship
to the original hypersets V4 (except possible inclusion of elements from A), which are formulated
antecedently to the introduction of those indeterminates ', still have solutions in V4.

For example (from [Barwise and Etchemendy, 1987]), consider the following system of equations

for ¥ = {x,y}, where M is an arbitrary atom:

x = {Q{x}}

y = {Mxy}

So A, the given set of atoms. is simply {M}, and V4 is all hypersets over {M}. The solution that
we seek, by the definitions above, will be an assignment from these hypersets to the indeterminates
x and y, so far only defined by hypersets from the larger universe V4, that is, hypersets over

A’ = AUX = {x,y,M}. (This larger domain A’ happens to be y itself.) The pictures in Figure 3.4
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Figure 3.4: Pictures of sets defining indeterminates z and y

AN

Figure 3.3: Construction of solution f

show the two sets on the right-hand sides of the equations.

To show the solutions. we replace the indeterminate x with the apg that is its picture (on the
left in Figure 3.4), and the same for y. as in Figure 3.5. Notice that what happens is simply that,
in the first apg, the arc pointing to x moves up to the point—since this is the apg for x—and in the
second. the arcs to x and y are similarly “re-pointed”, the one for x to a new subgraph.

The Anti-Foundation Axiom states that these graphs have unique decorations with the sets
depicted by the top nodes as the solutions to the system of equations. Let a = {M.Q.a}, depicted
by the graph given in Figure 3.6.

Then the solution is:

flx) =9
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“enre 3.6: @ = {M,Q.a}

We show this by substituting tne - for the indeterminates in the equations, in
accordance with the definition of solution ‘nations.
fix) = {Q.{f(x)}}

Ves. because  f(x) = @ = {2 {Q}} = {Q.{f(x)}}
Jty) = {4, £(x), f(¥)}

Yes. because  f(y) = a = {M,Q.a} = {4, f(x), f(¥)}

And how was a derived” —crudely, by conflating the circular subgraph into a single picture of Q.
The derivation of a solution (at least. one that allows for ) will not be pursued in depth vet because
it is not strictly necessary to this discussion. which deals with the ezistence of a solution.

As required. the two objects assigned tn *"° i 1asterminates by the solution f, 2 and the set
shown called a. are members of V4, the hyperus. ¢ over the set of atoms .4 = {M}. The Solution
Lemma tells us that this is the only solution; any other solution to that system of equations will be
equivalent to it.

The proof of the Solution Lemma in the axiomatization ZFC~ + AF A is given by Aczel, who
also shows that the Anti-Foundation Axiom AFA is provable from the Solution Lemma in ZFC™.
Since. then, the Solution Lemma is just a restatement of the Anti-Foundation Axiom, those who find
its establishment of a unique solution too facile may take comfort in viewing the Solution Lemma

as the axiom of interest. rather than as a result.
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3.5 Analogy to a Ring of Polynomials

In [Aczel. 1988, pages 11-12], Aczel mentions that the technique of constructing sets by adjoining
atoms to a given universe has an analogy in ring theory. The reader with mathematical experience
may find the development of the Solution Lemma easier to grasp through its similarity to the
construction of a ring R[] of polynomials from a ring R. The reader without such experience may
he assured of the respectability of the technique.

Let (R.+,-.0,1) be a commutative ring. That means. for all a. b. and c in the set R:

l. a+b€Randa-heR

(a4+b)+c=a+(b+r)

3. a+h=b+a

1. a+0=a=0+a

5. Yadad' [a+a =0 =a +a] (Read a’ as —a.)
3. {a-b)-e=a-(b c)

. d-l=a=1-a

o

a-(b+c}:(a-b]+|[a-c}and(a+b]-c=(a-c)+[b-c]

The properties (2) through (5) can be stated. “R is an abelian group.” and (6) through (7), “Risa
monoid.”

For R[z], the polynomials over R in one unknown z, we take the members to be the infinite
sequences (ag,ay,as,...) for which 3i(a; = 0.j > i]. These a; represent the coefficients of the
increasing powers of r. Since all coefficients are zero beyond some i. the “degree,” these are finite
polynomials. One of the sequences, for example, is (4,17.0,9.803,0,0,0,...), corresponding to the
polynomial 4 + 17z + 9z + 803z*. Identity holds between two polynomials if and only if all of their

coefficients are equal.
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The “+” and “7 operators, and the “0” and “1” elements are defined to provide the other

components of a ring.

1. (ag,ay,...)+(bo,b1,...) =(ag+bo,ar + by,...); this composition is a member of R[z].
2. (ao,a1,...) - (bo,b1,...) = (po,P1-- ) where p; = Zj_i_k:‘. a;bg; this composition is also in
R[z].

]

The zero element 0 = (0.0,...].

1. The one element 1 = (1,0,0....).

These elements and operations can be shown to satisfy the requirements above. so (R[z], +,-,0,1)
is a ring (with R a subring, represented by those polynomials of degree zero) [Jacobson. 1974).

There is a member of R[x] which can be interpreted as the indeterminate x itself. z = (0, 105 D)
The powers of z are also in there. z™ as (0,0,...,1,0,0,...), with the “1” in the a, place. Any
a € Risin R[z] as (a.0,0....), and an individual term az™ as (0,0,.... a,0,0,...), with the a in
the a, place.

Successive adjunction (i.e.. addition) of z1,z2,....Zn forms the ring R[z][za]...[rn], written
Rlzy, 2,.. .. Ia), and consisting of all sums 3" aay...0n 21" -+ -ZR™

If flz) =3, 0.,2" 158 polynomial over R and a € R (or in an overring of R) and commutes with
all elements of R, then replacement of z by a gives fla) = 5, aya”. Given another polynomial in
one indeterminate ¢(z), consider the sum s(z) = f(z) + g(z) and the product p(z) = f(z) -g(x) as
defined above. We want it to be the case that f(a)+9(a) = s(a), and that f(a)-g(a) = p(a) when
the value £ = a. The property for the sum is easily verified directly from the definition of “4+” for

R[z], and for the product:

pe)=% S ajbia’ =) ) arbead T = O ajed) - (3 beat) = fla) - g()
7k j k

v j+k=v
All relations, then, between f(z) and g(z) derived from the ring operations are preserved if =
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is replaced by a member of the ring R[z] which commutes with all elements of R. Furthermore.
the same relations hold when several indeterminates are adjoined [van der Waerden, 1991]. In other
words, the indeterminates ry, s, .... £n, the adjunction of which created a new ring, have solutions
in the original ring R, much as the indeterminates ' can be assigned, by the Solution Lemma,

hypersets over the original atoms .4 that satisfy the equations defining the indeterminates .v.

3.6 Application to Terminological Cycles

Robert Dionne. Eric Mavs, and Frank J. Oles apply the disciplined circularity of non-well-founded
sets to the semantics of a term subsumption language, K-REP [Dionne et al.. 1992]. The stated
motivation is the provision of intensionality in concept descriptions.

Terminological cyeles. as noted by Nebel (cf. § 2.7.2), occur naturally in such a language, intended
to capture word definitions. In K-REP, the concepts—the formal terms of the language—are defined
by a set of equations. possibly involving mutual recursion reflecting interdependent reference. Thus,
concepts are represented by accessible pointed graphs. A “universal concept algebra™ C is derived,
with Aczel's Solution Lemma deployed to guarantee the existence and uniqueness of a solution.
in C, to the system of concept equations constituting the knowledge base. The elements of C
are intensions rather than extensions because they are built from descriptions of the roles of the
concept. The analysis done by Dionne et alia is mathematically very detailed and couched in the
formal terms of a comprehensive representational theory (K-REP), hence is not an obvious analog
to the development undertaken here. but it is encouraging to see the same notion applied to solve a

parallel problem.
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3.7 Summary and Intended Application

Sets that have as their members other sets. possibly themselves, can be used to describe circular
phenomena. As developed by Peter Aczel under the rubric “non-well-founded set theory”, these
sets are denoted by directed graphs, with the directed arcs signifying membership. His theory “lets
us bring to bear all of the familiar set-theoretic techniques to the problem of modeling circular
phenomena.” [Barwise and Etchemendy, 1987, page 58]

Ve have seen that the theory of non-well-founded scis is an extension of classical set theory as it
is commonly used in mathematics (that field having little need for the Axiom of Foundation). The
Anti-Foundation Axiom did not originate with Aczel, although he was apparently “the first to see
that AFA could be obtained from a coherent, intuitive conception of set, rather than just being a
formally consistent axioni. and to Jdemonstrate that it is an important mathematical tool for the
modeling of various kinds of real-world circularity, not just a mathematical curiosity”. [Barwise and
Etchemendy, 1987, page 53]

The purpose here is modelling of the circular semantics of SNePS. and we now turn to that.
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Chapter 4

Circular Semantics in Network

Models

4.1 Introduction

[n this chapter. the hyperset mechanism described in the previous chapter is applied to the problem
of finding a semantics for SNePS that accommodates its goals and development. Alternatives are
considered. and one. in which base nodes are assigned sets of semantic elements that include their
parent molecular nodes. is selected and developed in depth. Finally, the results derived are discussed

in terms of the principles of SNePS.

4,2 Circularity of Meaning

Let us explore the possibility of circularity in a semantic network representation such as SNePS,
the graphical structure of which might nicely accommodate Aczel's theory. To facilitate the focus

on the graphical structure, we will work with the “unigraph” version 5" of a given SNePS network

49



S & SNets (cf. §2.4), in which there 1s at most one arc between nodes. and arcs are not labeled with
relations. Relations will be incorporated into the semantics in §7.2. Node labels will be retained to

enable reference to them. Three questions must be answered:

|. How can the nodes. the meaning-bearing objects of SNePS, be defined as sets or hypersets?
2. Where is the circularity?

3. Which nodes are atomic?

Alternative sets of answers are considered below. All of them treat SNePS arcs as defining
lereditary membership. A node n: is a member of the set assigned to the node n» if there is an arc
from na to ny. In other words. the definition from [Shapiro. 1991] of the membership of a wire (r.n)
in a cableset (molecular node) m will be a sufficient condition for n's membership in m’s hyperset—
but not a necessary condition. as we shall see in the development of answers to question 2. KL-ONE

also allows a set-theoretic interpretation of arcs:

Given two KL-ONE descriptions, an important question to consider is whether one sub-
sumes the other—that is. whether an instance of one is always an instance of the other.
[n semantic nets. this question usually comes down to looking from one node up the
hierarchy to see if another happens to lie on a superset path. In KL-ONE. the subsump-
tion question can also be answered by looking up a hierarchy, with one crucial difference
_..the descriptions must be in their proper places in the network before any conclusions

can be drawn. [Brachman and Schmoize, 1985, page 178]

So there is nothing revolutionary in this treatment of arcs as set membership in a graph S’, and
that will be the answer to question 1. The remaining specifications—the attribution of circular and
atomic qualities—will require more discussion. We first consider rendering all nodes circular, and

then limiting circularity to particular classes of nodes.
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4.3 All Nodes Are Circular

4.3.1 Nodes Are Self-Circular

One uni_form way to incorporate circularity is to add a self-loop, an arc from n to n, to each node n.
Each node then consists of a set as defined above, but which also contains itself. This does not seem
well-motivated cognitively. That’s just as well, since the theoretical results are uninteresting—the
network is a picture of Q. There are no atomic nodes. and all nodes are {2 themselves, so the network

itself (if connected: otherwise. each connected subnetwork in it) has no decoration other than .

4.3.2 All Arcs Are Bi-Directional

Another way to make nodes circular. perhaps more intuitive, is to define the set-inclusion relationship
to go in both directions along an arc; that is. as a molecular node includes its child nodes as members,
so does each child include its parent as a member. This construal, however, leads to the same result
as that above. No nodes are atomic, and since there would be a path from each node to every
other. every node in a cvcle (in each connected component of §'), the entire network (if connected;

otherwise. each connected subnetwork in it) is a picture of Q.

4.4 Circularity Is Granted to Nodes by Type

The problems with the proposals above is that no nodes are left atomic. to form the ground elements
for the semantics of others. There are two obvious choices for atoms, sensory nodes and base nodes,

whichever is left after the other category is determined to be the better choice for the circularity.

4.4.1 Sensory Nodes Are Circular

Sensory nodes form a qualitatively distinct subset of the nodes of a network, providing the interface

to the external world. They have outdegree zero (as do base nodes). Could sensory nodes influence
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their parents? The idea has some appeal. especially in terms of the word ‘sensory’, taken to be
input. But other sensory nodes are actions. output. It is not clear that an act should influence
the meaning of the cognitive structures that caused it, at least not in that cognitive agent ::elf.
(The situation might be different for observing cognitive agents.) Do we want even strictly-input
sensory nodes. such as the words at the heads of LEX arcs, to influence the meanings of the nodes
above? Should they not rather contain those meanings? For cognitive modeling, the latter; the
naked string of letters "cigar 1s a receptacle of meaning, not a generator. Certainly the concept
of cigars affects other closely-related concepts, but that effect is made through the concepts, not
the words—unless all (English) words are onomatopoeic. Act nodes—the other sensory nodes—are
certainly best viewed as receptacies of meaning, also. In short. sensory nodes should not be involved

in circularity.

4.4.2 Base Nodes are Circular

SNePS already has a locus for concepts, the base node. Base nodes need semantics, in fact, semantics
that influence nodes above them. Suppose n43 ‘s * -~ some cognitive agent representing “the
New York State Legislature” . It is not just a ... . .ual sink, but a source—with impact on the
meanings of the molecular nodes that use it. The meaning of something includes. at least. all that
we know about it. For these reasons. we will take base nodes to be the circular structures for the
application of non-well-founded set theory to formalize the semantics of a SNePS network S. The
semantics can be shown—in both a superficial and -~ ense. as we hope to demonstrate—by

a new graphical structure called S* that is der om S’ =(V, E").

Definition 4.4.1 Given a unigraph S'. the stargraph S™ is the graph consisting of the set of nodes
V from S and the set of edges E~. where (z,y) € £E7 if and only if (1) (z,y) € E', or (2) z 15 a base

node and (y,z) € E (or, equivalently, € E').



The three necessary specifications. answers to the introductory questions, are as follows. (To

review SNePS terms, see §2.5.)

1. A (molecular) node in S" will be construed as a set in the standard hereditary sense, so that its
“members” are its immediately subordinate nodes, following the directed arcs formed under
the SR.i rules of [Shapiro and Rapaport, 1987]. Support for this simple view comes from
[Shapiro, 1991, page 146]: “... a node is determined by the arcs emanating from it, not by
the arcs pointing into it.” For the intital development, the arc label will be ignored, but
since it contributes to the meanings of the two nodes connected, eventually (§7.2.4), it will be
incorporated by virtue of the definition of a molecular node as a set of wires (ordered pairs of

arc-label relations and nodes, as described in §2.5).

2. Base nodes will be regarded as circular, both being influenced and influencing their parent
molecular nodes. In other words, the set at a base node will include its parents as members;
base nodes will be assigned non-empty sets in the hereditary construal. Graphically, this will
be pictured by a new graphical structure derived from S’ called S*, in which (unlabeled) ares

are added from base nodes to their parent nodes.

3. Sensory nodes will be regarded as strictly atomic, with no set-theoretic structure. Since a
sensory node is always at the end of some arc in 5" and therefore in S*, it will be a member of
the set at its parent molecular node, contributing simply the lexeme or other sensory datum

associated with it, but its outdgree is zero; it contains nothing.

In analysis of subnetworks, other “childless” nodes will appear, because the full SNePS network
will be circumscribed by some boundary that cuts off the rest of the connections. We will
generalize, then, to the policy that, given some finite network without regard to its place in a
larger one, any node of outdegree zero is treated as an atom. This means that molecular nodes
at the edge of a defined subnetwork will be treated as atomic in the same way that sensory

nodes are. Note that a base node retains its cyclic connection to some parent, even if, in a
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subnetwork. some of its dominating molecular nodes are cut off. so the outdegree of a base

node in S- is always greater than zero.

Molecular nodes could certainly be made circular, also. We elect not to do this, on the grounds
that they already have outgoing arcs that allow a hereditary set-theoretic interpretation, and that
this first plunge into circularity should be predicated on minimal changes to SNePS networks, but
that approach is also explored later (§7.7).

Examples of a SNePS network S and its derived S’ and S* follow.

4.5 SNePS Structures for Non-Well-Founded Sets

Using the approach developed above that locates circularity in base nodes. consider the network
implementing the sentence “Nancy asked Tom whether an inanimate object, such as a table, can exert
a force” [Rapaport. 1988a]. as modeled in some unspecified observer (possibly. but not necessarily,
Nancy or Tom). reproduced in Figure 4.1. Thisis a SNePS network S € SNets. Figure 4.2 shows the
S’ version. Since the orginal does not have multiple arcs between nodes, the only obvious difference
s the lack of arc labels. The non-well-founded set framework version S* is shown in Figure 4.3, with
“backward” arcs from base nodes. \We will now use Aczel’s theory to computer hyperset semantics

for some of the nodes in a restricted portion of the network S.

4.6 Using the Solution Lemma to Compute Semantics

To simplify the discussion. we focus on only a portion of the network S’—the upper-left subgraph,
where Nancy is asking Tom something. Call that subnetwork W’, as shown in Figure 4.4.' (In other
such examples, the truncated subgraph will not be explicitly shown.) This gives the derived graph

W* shown in Figure 4.5. V" is an accessible pointed graph, of which the point is m25, and other

! We are not employing the SCOPE mechanism, just marking off a relatively self-contained piece.
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Figure 4.1: TABLE sentence as a SNePS network S
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Figure 4.3: TABLE sentence
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Figure 4.6: The small derived subnetwork Z*

nodes forms the points of their own apgs. There are three atoms, shown in elliptical nodes—Nancy,
ask-whether, and Tom. The labels on the other nodes are for convenience only, just as they are in
general in SNePS. Decorations for each node are computable according to the hereditary membership
principle. The node labeled m4, for example, has as its decoration the set {Tom}; node m5 has the
set {b2,mé} = {b2, {Tom}}, etc. The more difficult question is what exactly is the set at b2, which
includes only m5 and its other parent m24, both of which themselves include 2?7 Indeed, what is the
full specification of any of those sets, respecting the circularity involved? To work up to the answer,
we take a simpler example first, developing it in some detail, and then tackle the question for b1

and b2.

4.6.1 Simple example

Consider the very small subnetwork Z* shown in Figure 4.6.2

Let us solve for the hypersets at nodes m2 and bi. In other words, let those nodes be the
indeterminates, which means that what we are doing is finding the hypersets that express m2 and
b1 in terms of the givens, the atoms—in this case, just m1. We have truncated the graph, rendering
mi atomic. So A = {m1} and X = {m2,b1}. Recall that A’ is the set of atoms extended by the
indeterminates, that is, A’ = A U X. The solutions will be found in the hyperuniverse V4. The

system of equations from which to start will express each indeterminate in terms of a hyperset

2Which could be defined from W* as SCOPE(m2, 1)
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over V. — X. 3

m2 = {mi bi} (4.1)
51 = {m2} (4.2)
Each right-hand side 15 a hyperset over * = = A and indeterminates .U, as required. The

solution will be an assignment to each indeterminate ~f a hyperset from V4 such that the defining
equations still hold wnen the corresponding values are substituted for the indeterminates. In other
words. under the solution f/  {m2.b1} — Vin1}. these statements (derived from Equations 4.1 and

1.2) will be true. also:

f(m2) = {mi, f(b1)} (4.3)

f(o1) {f(m2)} (4.4)

Let s be the set such that ~ = {m1.{s}}. The proposed solution (obtained. as usual. through simple

inspection) is:

f(m2) = s (4.5)

Il

f(e1) {s} (4.6)

These hyperset assignments under f are given graphically in Figure 4.7. Note that there are su-
perficially similar sets and pictures that are not s. For examples. s # {s} (if so, it would be @),

and

3Recall also that the subtraction of the set of indeterminates A’ from the possible right-hand sides is meant only
to exclude vacuous equations like m2 = m2 from the system: this restriction will be assumed hereafter.
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£(b1) = O
f(m2) = /
v

Figure 4.7: Assignments under proposed solution f to the indeterminates in Z*

ml

[n other words. there is a genuine and substantive structural claim being made.
The proposed solution is tested by evaluating the system of equations under substitution of the

mapped value for the indeterminate:

f(m2) = s (proposed solution)
= {mi.{s}} (definition of s)

= {mi.f(b1)} (definition of f for b1 )

QED Equation 4.3 is verified.
fib1) = {s} (proposed solution)
= {f(m2)} (definition of f for m2)
QED Equation 4.4 is verified.

The solution pictures look very much like the orginal network. There are other pictures of the

solution assignments f(m2) and f(b1), of course,® but any will do; it is the set depicted that is the

i For example, f(b1) is {s}, which could be depicted by the same picture as f(m2), but with the other node as the
point, as below.
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<olution. and its (unique) existence is guaranteed by the Solution Lemma. We now have hypersets

over A = {m1} that can serve as meanings of b1 and m2.

4.6.2 Larger example

Now. using Aczel's framework. let us solve the larger problem in W~, for the circular nodes b1 and

b2 in terms of the others. Since they comprise the indeterminates.

X = {b1.b2},

and

A = {Nancy.ask-whether.m23. Tom}.

The setting is restricted to the subnetwork shown in Figure 4.5. entailing that m23 be taken as
an atom. rather than as a set with its own subordinates/members. The universe V4, then, is all
hypersets over those elements A. The solution sought will be an assignment f of sets from V4 to b1
and b2. The hyperuniverse V4 is all hypersets over AU.Y. We need a system of equations defining

b1 and b2. where each set on the right-hand side is in V:

b1 = {m2.m25} = {{{Nancy},b1},{b1, {{ask-whether}, b2,m23}}}
b2 = ({m24.m5} = {{{ask-vwhether},m23.b2}. {b2, {Tom}}}
/N
E
\_
)
The reader should verify that all members of ¢.. . the other, and vice versa, at every level.
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Figure 4.»: Assignments to indeterminates bl and b2 in V"

As before, what we seek 1= 2 set for bl and a set for b2 such that:

fox) = {{{Nancy}, f(b1)}, {f(b1), {{ask-whether}, f(b2) m23}}} (4.7)

f(b2) = {{{ask-whether} m23, f(b2)},{f(b2), {Tom}}} (4.8)

Learning from experience. we suspect that the solution is pretty much just the relevant subgraphs.
The full network contains the solution. as we would expect. The unlabeled subnetwork rooted at
b1 is the assignment under f to the unknown b1, and the subnetwork rooted at b2, the assignment

under f to the unknown b2. as shown in Figure 4.8. Verification is obvious:

f(b1) = {{{Fancy}.f(b1)}, {f(b1), {{ask-whether}, f(b2),m23}}} (proposed solution)
QED Equation 4.7 is verified.

f(v2) = {{{ask-whether} m23, f(b2)}, {f(b2), {Tom}}} (proposed solution)
QED Equation 4.8 is verified.

Compare the hyperset assignment to b1 given here, in Figure 4.8, to the assignment given in Fig-

ure 4.7 under the solution worked out in the earlier examples. They differ because the context w*
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is wider in this second example; the set of atoms A is larger, and the solutions, of course. are always
hypersets from those atoms. The meaning becomes more refined as the context widens, as we would
hope.

Derivation and verification of the actual solution is tedious and anticlimactic. for reasons to be
explored. The point of the Solution Lemma is that a solution in terms of the original hyperuniverse
Va4 exists. (As discussed in Chapter 3 the existence of the solution is not dependent on non-well-

foundedness: what matters here is that it is not thwarted by non-well-foundedness.)

4.6.3 Cognitive significance

Informal interpretations or ~glosses” of these apgs, in terms of everyday mental life. are not imme-
diately obvious. The best that can be done is to say that this agent’s current concept of Nancy,
embodied in the node bi. includes her name and the activity of asking whether something-or-other,
of somebody else. the somebody-else represented by the node b2, whose name is “Tom”. But that’s
beyond the strict set-representational semantics; all it can do is demonstrate membership in b2 of
a thing known as “asking-whether”. and. at an even more indirect level, a thing known as “Tom”,

etc.

4.7 A Semantic Function p

The techniques described above enable the formulation of a semantic function u for SNePS networks
(as modeled in their S5* form). in which, broadly, the domain of meanings Z is sets with pictures—
the same as the syntactic domain Y. The meaning of a molecular node will be the union of the
meanings of all its children, and the meaning of a base node will be the solution to the equation
expressing it as a hyperset over the union of the meanings of its dominating nodes (in which the base
node itself participates). Both sensory nodes and molecular nodes at the edge of a circumscribed

network will be treated as atomic, not themselves in the domain of g, but contributing their values
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to the meanings of other nodes. The definition of the function u that accomplishes this will require
some axioms. using the definitions of SNodes and SNets from §2.6.2 along with some new ones.
Definition 4.7.1 SNets': the set of unigraphs resulting from the transformation of each S €

SNets into S’, as described tn §2..

Definition 4.7.2 SNets™: the set of graphs resulting from the transformation of each S € SNets

into S*.

Note that the members of SNets™ are not necessarily apgs, since they may not be connected graphs,
and since they may not have unique points. The example S* in Figure 4.3 is not an apg for this

latter reason: there is no unique node (the point) from which every other is reachable.

Definition 4.7.3 Full Network: a SNePS network S € SNels that embodies the complete struc-

ture of a cognitive agent’s mind (not a subnetwork).
Axiom 1 Yn € SNodes. outdegree(n) > 0 or indegree(n) > 0.

In other words, every node in SNodes has at least one arc attached to it, either incoming or outgoing;

there are no isolated nodes. For a statement of this principle, see [Shapiro. 1991}.

Axiom 2 FEvery SNePS network S € SNets 1s finite, with a finite set of nodes V' and a finite set

of arcs E.

Axiom 3 Every full network S € SNeis contains sensory nodes. If S contains more than one

component. then every connected component of S contains sensory nodes.

This is never explicitly stated. but seems reasonable. Science fiction and philosophy aside, a cognitive
agent is not cognitive unless there is some interface to the external world.

The domain of discourse will generally be limited to SNets’. Given a SNePS unigraph S’ € SNets’,

Definition 4.7.4 SENSORY(S'): { sensory nodes of S }

Definition 4.7.5 MOLATOM(S'): { molecular nodes of S’ to be treated as atomic }
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Definition 4.7.6 MOLFULL(S'): { other molecular nodes of S', which therefor have at least
one child and any finite number of parents (including zero) }

Definition 4.7.7 BASE(S'): { base nodes of S', which therefore have no children and at least
one parent }

These classes partition the set of nodes in S'. Note that BASE(S) = BASE(S') = BASE(S*). Ifa
full SNePS network C is under consideration, then MOLATOM(C") will be empty and MOLFULL(C")
will contain all molecular nodes. When the context is clear. the unigraph argument will be omitted;
the previous consequent could be written “MOLATOM will be empty and MOLFULL will contain
all molecular nodes”.

The first step in the formal application of the Solution Lemma to SNePS is a tag function for
nodes (in some given 5') with outdegree zero. Each sensory node s € SENSORY should be assigned
its lexeme or other sensory datum. and each “atomic” molecular node a € MOLATOM its label. In
other words. we assume that a given SNePS network unigraph S’ € SNets’ comes with its own set
of sensory data SA. and. unless 5 is a full network, its own set of molecular node labels £A, that
together will constitute the atoms.

Definition 4.7.8

sensetag : SENSORY(S') — SA
labeltag : MOLATOM(S') — LA
tag = sensetag U labeltag

Next we need to decorate S’ by supplying a set for each node. Closely following the development
given in [Barwise and Etchemendy, 1987, pages 39-40], we do so respecting its given graph-theoretic
structure, ezcept that we decorate base nodes with their parent nodes’ sets. We are decorating S’
as if it were S*, of course, but maintaining as much rigor as possible. The decoration is the function

D, defined for arbitrary nodes s € SENSORY, a € MOLATOM, m € MOLFULL, and b € BASE.
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Definition 4.7.9

D(s) = tag(s)
D(a) = tag(a)
Dim) = {D(c)|S" has an arc from m to c}
Dib) = {D(m)|S' has an arc from m to b}

The result is that every node in 5 forms the point of an accessible pointed graph, which has, by the
Anti-Foundation Axiom. 1 unique decoration. A semantic function u based on the decoration D will
then allow derivation of the semantics of new nodes, “indeterminates”. as hypersets over the atoms
SA U LA already in 5" ['he definition of y has a compositional flavor. as usual for a semantic
function. No semantics 1~ assigned to nodes from SENSORY or MOLATOM, on the principle that
they are best regarded unly as sources of input (either actual or potential), not as meaningful in

their own right.

Definition 4.7.10

p(m) = Dl'_m)
u(b) = [(b). where f is the solution to this system of equations:
b={ D(m)|be D(m)}

m; = { D(m;)}, Vm; such that b € D(m;)

Under this definition, the semantic value of a base node b is influenced by its parent nodes, as well
as vice versa. as desired. The result is a semantic function p, given a SNePS network S € SNets,
and its subsequent transformation into the unigraph S'.

4 : MOLFULL(S') U BASE(S') — Vsauca
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Figure 4.9: Invalid SNePS structure by Axiom 4

There is no claim that u 1s surjective. The class of hypersets Vsau ca may (and. in fact, will) be a
proper superset of the class of hypersets assigned to a node by p.

Before this i can be explored. in the succeeding sections, one more axiom is necessary, more of
an assumption about SNePS than the others in that it is supported by examples of SNePS networks,

but not by any formal or informal statement.

Axiom 4 Given a network S € SNets. every molecular node m € MOLFULL(S) heads a semipath
(m,ny), (ny, na), ... (nk, t), wheret € SENSORY(S) and for every arc (n;,ni+1), either (1) there 1s

an arc from n; 10 gy n S, or (2) ni € BASE(S) and there 1s an arc from niyy lo n; in S.

We already know that every molecular node is the parent of something, but it would be nice to
know that. construed as a hereditary set. it contains atoms. What this axiom rules out is the sort of
structure shown in Figure 4.9. where the molecular node m has no other children than base nodes
that have no other parents than m. This axiom entails the previous Axiom 3, but is worthy of
separate statement for discussion purposes. Its significance is that SNePS contains no conflatable
concepts; there are no base nodes that are nothing more than “restatements” of dominating nodes.

As final preparation for results concerning g, here is an immediate consequence of Axiom 4:

Lemma 1 No node n € MOLFULL(S') U BASE(S') U MOLATOM(S") U SENSORY(S') can be

decorated with Q; ¥Yn € S, p(n) # Q.

Proof: Q can only decorate points of accessible pointed graphs in which every node has a child

[Aczel, 1988, page 7]. Since, by Axiom 4, every m € MOLFULL(S) heads a path to sensory nodes
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{which have no children) that entails set inclusion under the decoration D. then m € MOLFULL(S")
cannot be decorated with Q. and consequently u(m) # €. Since every b € BASE(S’) contains its
parent molecular nodes in the decoration—as shown explicitly in S*—and those parent nodes contain
sensory nodes which have no children. then neither can p(b) be Q. Nodes in MOLATOM(S') and
SENSORY(S’) have no children by definition. so they cannot be decorated with Q. and therefore

will not be assigned € under p. a

4.8 Meaning is Determined by the SNePS Network

1.8.1 SNePS networks as accessible pointed graphs

Recall from §2.5 that Shapiro develops a definition of demznation of one node by another that is
analogous to hereditary set definition. The notion of domination abstracts away multiple arcs be-
tween a parent node and a child node. as does the notion of a unigraph, a correspondence formalized

by the first theorem.

Theorem 2 (Node-Picture Principle) For all molecular nodes m € 5Nodes.

puim) = {p(c) | m dominates c}

Proof: By the definition of x and D. p(m) = {D(c)| S’ has an arc from m to ¢}. By the definition
of “domination” in SNePS (see §2.5), this set is the same as {(c) | m dominates c}. |

The point of Theorem 2 is to show that the meaning of a molecular node is captured by the
subnetwork rooted at that node. The semantics of a network is reflected in its construction; what

vou see is what vou get—as long as what vou see is S*. The apg rooted at a node n € 5* is u(n).
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4.8.2 Unique p-semantics

A qualified analog to the Uniqueness Principle, as discussed in §2.7, holds for the semantic function

4. Nodes with different meanings under p ¢ ‘Ferent nodes and therefore represent different
concepts, with one important exception. It mu. . :od that the notion of “different nodes”
in SNePS relies entirely on the FIND/BUILD mechan.. = . creates networks, which, when some

new concept is presented to it, has one of two effects:

1. If the concept already exists (a node with exactly the right connections is already in the

network). then the new information is added to it.
9 [f such a node does not exist, it is created and assigned an unused unique identifier.

It is these identifiers that appear as labels in all network examples and as elements of p-values

through the subsets MOLATOM and SENSORY.

Theorem 3 (Uniqueness Principle under p) In any C' € SNets' derwed from a full network

C. unless nodes n and m dominated ezactly the same subordinate nodes (in which case the arc labels

daiffered),

n =m if and only 1f p(n) = p(m)
Expressed as an identity claim, this statement 5 ... . distinction claim, and may be more illumi-
nating in the contrapositive form. n = - «(m). “Even in cases where there is a simple

correspondence of objects, as when the numeral 3 stands for the number three, it is really the ob-
ject’s being that and not some other numeral that corresponds to the number’s being that and not
some other number.” [Smith, 1987, page 11]

Proof:
(1) Assume n = m in SNodes. Then, by the recursive rules for well-formed SNePS nodes SR.i,
they are required to have the same identifier. This is impossible for distinct nodes under SNePS

mechanisms—i.e., BUILD does not allow it—and therefore there is only one node under considera-
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tion, and only one value of y.
{2) Assume p(n) = u(m). By the Solution Lemma, this value of y is the only one that satisfies the
systems of equations defining p(n) and p(m). respectively. Those equations depend on the deco-
rations of m and n. which depend on subordinate graphs that are always unique. (Again, BUILD
does not allow a node to be added to a network if it is redundant in its adjacency matrix and arc
labels to any other node.) The Uniqueness Principle for SNePS amounts to the requirement that
the decoration D of the original network S’ be injective: no two nodes can be decorated with the
same set (unliess they differed only in arc labels). a
The exceptional case in the theorem above is not a trivial one, and may easily occur in a single
cognitive agent. See the statement of the problem in §7.2. Furthermore. the dropping of arc labels
in the formation of ' lins hiad the consequence that two networks with the same structure ercept
for arc labels. i.e.. the ~ame adjacency matrix and tags for atoms, will vield the same semantics.
This is unlikely to occur 1l there are any molecular nodes treated as atoms—it is not clear how two
cognitive agents would end up with the same molecular node labels, and certainly two subnetworks of
a single cognitive agent woitld not—but still. a crucial aspect of the meaning of the network is being
neglected. The semantic tunction u as developed here, therefore. can reasonably be called somewhat
sterile in its regard only for connections between nodes. and an aiternative, richer, semantics based

on non-well-founded set principles is sketched in §7.2.

4.9 Contributions to SNePS Research

Even though the semantics of nodes and networks defined by p via hypersets are “on the surface”
(virtually given by the network itself), 4 makes some contributions toward elucidating the principles

of SNePS.

1. Semantics for Base Nodes

A base node must mean something. The theory of SNePS has heretofore been able to provide
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semantics for molecular nodes, as in the SL.i rules of [Shapiro and Rapaport, 1987], but not
for base nodes. The semantic function p provides a complete semantics, assigning me: :ngs,

sets of relationships rooted in the sensory interface, to all SNePS nodes.

Support for the Uniqueness Principle

Since every node in the network represents a unique concept, AFA ensures that every node
in the network—because it has a unique decoration— has a unique meaning, as shown by the
Uniquness Principle under p. The universe of possible concepts is hypersets over whatever

sensory atoms we consider.

Static Semantics

As seen in the example above. we can define the meaning of a node in terms of the meaning
of others. Any base or molecular node is subject to such treatment. Given a full network C €
SNets fixed 1t a certain state in the development of the cognitive agent C, it can be computed
for any node in terms of SENSORY(C'), or in terms of SENSORY(C) U MOLATOM(C), with

whatever selection of molecular nodes to be taken as atoms that suits the purpose.

Dynamic Semantics

If a full network is under study as the cognitive agent C' learns and develops, p can express the
meaning of newly-acquired nodes in terms of the new sensory atoms, if any, and the atomic
nodes of the original network. In the TABLE example, as Nancy and Tom interact. new nodes
are added to the network of the observer. The second sentence incorporated into the model
is “Tom said he didn't think so,” building the additional structure in Figure 4.10 [Rapaport,
1988a]. If one were to need, on the fly, the meaning of node m30, for example, in terms of
the atoms SENSORY(C) U {think}, the answer is computable as p(m30), which would be
#(b2) U p(m29), the latter component p(m29) a brand-new extension to the function u and the

former, p(b2), changed by the incorporation of #(m30). This example is revisited in §6.5.2.
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Figure 4.10: DIDN'T-THINK-SO sentence as an accessible pointed graph
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Intensionality

Insofar as intensionality is a conceptual distinction between extensionally identical concepts,
it is maintained under g even when two nodes are established to be “the same thing” " -ough
the imposition of the EQUIV/EQUIV case frame. For example, consider cognitive agent .., who
learns suddenly that the English King Henry who wrote those lovely madrigals (node h1) is
the same historical personage as the English King Henry who callously disposed of his wives
and enemies (node h2). The situation is dey.. ~d thus (although it is likely that hi and h2

would be base nodes and therefore dominate no subgraphs):
()

- ]
EQUIV_A_/__ EQUIV
~ >N

. ( n2)
Y PN~

Since the two nodes are distinct. pu(h1) # u(h2), although each will exercise a high degree of
influence on the other through components of their meanings that they already shared, such
as the concepts of olden-times. England, and what-fabric-was-used-to-make-a-ruff?. In some
sense, this makes them physically close. It may be a comfort to A to know that these two
concepts do not have the same meaning—but their semantic contribution under g to far-flung
nodes will be virtually indistinguishable. In the actual computation of semantics for nodes
in some given derived subnetwork S’ that encloses two nodes, the smaller the given S’, the
more different the two nodes. in some relative sense. The more restricted the context, the
less they have in common (simply because there are fewer nodes around to be built in to their
meanings). This seems intuitively correct: the more focused on stars and planets is the current

cognitive activity, the sharper the distinction between the Morning Star and Evening Star.
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For every node n and distance d. there is a p(n). by the Solution Lemma. All nodes have
p-semantics no matter how restricted the context, in other words. even if no sensory nodes are
included. Support 1s thereby lent to the principle of intensionality that concepts are meaningful

without regard to extensionality or other relationships to the external world.

Internal Semantics

The semantics is as internal as it could get: The meaning of a node s other nodes, rather
than some property of the concept itself—although the properties (as perceived by the agent)
should eventually h+ mcorporated through sensory nodes. In fact, the meaning of a node in
a network is nothing more nor less than the subnetwork around it—which would be the naive

interpretation anywav.

Meaning is Location

The meaning of a node 1s highly dependent on its location within the surrounding network.
Every arc. every conncetion, matters, since it adds an element to the decoration and thence a
component to the semantics. Yet the meanings of two adjacent nodes (connected by an arc)
are not exactly the <ame and cannot be the same, since the network definitions build in the
structural distinction required. The next chapter investigates computation of u under different

measured scopes and the resulting manifestations of distance between nodes.

Explanation of Degree of Compositionality
Definition of SNePS semantics in terms of non-well-founded sets allows discussion of composi-

tionality in formal terms (see Chapter 6).

Semantics of a Cognitive Agent The semantics of a whole network—that is. the entire
contents of a cognitive agent’s “mind”—can be defined as the union of the semantics of the

point basis (see §2.4). since those nodes dominate all others.

(€'Y =U { g(m) : m € point basis of C' }
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For example. if the network shown in Figure 2.1 were the entire cognitive contents of some

.impoverished) agent C. then

u(C") = {p(m2), p(nT), p(m8)}

In fact. C* would be made up of the three apgs whose points are m2, m7, and m8: all other
nodes would be points of apgs embedded in one or more of those. So cognitive agent C would
be fairly described as one who has no knowledge or beliefs beyond a a few extremely limited

concepts concerning John's attitude toward ' e girl next door.

10. Distinction between SNePS and other intensional semantic nets
The system KL-ONE. while sharing with SNePS much of its philosophy of intensional repre-
sentation. does not allow mutual influence between nodes, or any other hint of circularity. In a
discussion of example Concepts, in which MAMMALisa superConcept of HUMAN, Brachman

and Schmolze state:

Finally, it is important to reiterate that a Concept like MAMMAL does not derive
any of its meaning from the Concept HUMAN. A Concept’s meaning is strictly
determined by its subsuming Concepts plus the information associated specifically

with the Concept. [Brachman and Schmolze, 1985. page 181]

To the developers of KL-ONE, of course, and to the conventional wisdom of knowledge rep-
resentation. strict one-way semantic influence is a virtue. The foregoing chapters are meant to
question that, to demonstrate that not only is semantic circularity desirable. but achievable, and in
a disciplined manner.

Many of the points made above are further discussed and refined in the next chapter, which

proposes a “measured” p.
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Chapter 5

Limited Circular Semantics

5.1 Introduction

In this chapter. a qualified version of the general semantic function g is introduced. which will
provide for recursive computation of the semantics of SNePS nodes within given contexts. and allow

algorithmic analysis.

5.2 Examples of Restricted Semantics

Recall the example SNePS network in which John believes that the girl next door is sweet, as shown
in Figure 2.1. Asked to provide meanings for, say, node mé to increasing levels of elaboration, one
might come up with the straightforward approach given in Figure 5.1, indicating the “distance” or
“degree of elaboration™ with a superscript ¢ attached to u. These are not subnetworks of C per se,
but the actual hypersets to be assigned to m6é under p’: node labels are included for convenience.

And what should be the semantic values of the base node b2, as the SCOPE broadens? These
are shown in Figure 5.2.

We have aiready seen a SCOPE operator used to define subnetworks, of course, in §2.8.3, defined
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u’(m6) = u'(m) = N 42 (m6) = i

| mé
\ v \
@
| (=)

Figure 5.1: Suggestion for qualified p* applied to mé. for 6 = 0.1. and 2

u°(b2) = ' (b2) = \:b? u?(b2) =

-7 being the .
e girl next door S

Figure 5.2: Suggestion for qualified p? applied to b2, for 6 = 0,1, and 2
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by counting off semipaths of a certain length from a given node n. Given a full SNePS network C
and some node n. u (n) will be close to, but not quite the same as. first marking off the subnetwork
of C (actually, its unigraph form C”: see §2.4) from n with SCOPE(n.¢), and then applying p
to that node n in the resulting subnetwork. Note that if we were to compute p'(b2) as p(b2) in
SCOPE (b2, 1). it would be 2. since the definition of p would, via the decoration. include both mé
and m4 in p(b2), as shown n Figure 5.3. The defined subnetwork SCOPE(n, d) also shows nodes
whose meanings are nfluenced by n. not just those whose meanings influence n. The restricted u’,

on the other hand. wiil he defined to provide the semantics shown in Figures 5.1 and 5.2.

5.3 A Qualified Semantic Function .’

Again. we assume that we are given a full SNePS unigraph C”, with nodes partitioned into the classes
SENSORY, MOLATOM. MOLFULL, and BASE. and sensetag and labeltag functions for nodes in
SENSORY and MOLATOM. \We need identifiers for all nodes in C’, however, since the scope § may
leave any node unelaborated. rendering it atomic, so we simply assume a given set of node labels,
N A, and a function

tag : NODES(C') — N A

Our aim is the definition of p®(n) for an arbitrary node n that reflects all and only those semantic

influences within a certain “distance” é of n. as illustrated in Figures 5.1 and 5.2,
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The appropriate definition will again rely heavily on the decoration, now qualified ! 1e super-

script 6 and defined inductively, attached to a node n.

Definition 5.3.1

Base Case : D%(n) = tag(n)

j {D='(c)| C" has an arc from n to c}, if n € MOLFULL(C")
For 6 > 1:D%n) = {D°~'(m) | C" has an arc from m to n}.  ne€ BASE(C")

tag(n), otherwise.

As an example. we decorate m20 from Figure 4.2 to & = 3 according to the definition, paying
particular attention to the treatment of the semantic cycle between m20 and the base node z. The

label or tag is sometimes used to denote the node itself, as in the use of expressions like D°(exert).

D3(m20) = {D*(m19).D*(z)}
= {{D'(m10),D'(%)}, {P!(n20), D' (n22), D} (m17)}}
= {{{D(exert)}, {DP°(m19), D°(m18), D%(m21)}},

{{D°(m19), D°(z)}, {D°(z), D°(m17)}, {D%(2), D°(m15)}}}

{{{exert}, {m19.m18,m21}}, {{m19.2}, {2 mi7}, {z,m15}}}

The decoration can be viewed as the “unfolding” (Aczel’s term [Aczel, 1988, page 5]) of the set
at the point, m20. into a tree apg of height &, as shown in Figure 5.4. Various degrees of conflation of
indentical nodes vield other pictures (including, with unique nodes for every set, that is, an injective
decoration, the subnetwork of Figure 4.2 that is the source itself). One other picture that will be
of interest shortly is the apg shown in Figure 5.5, where each atom has a unique node, that is, the

tag function is injective. Cycles appear as repeated sequences of nodes along paths. This unfolding
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Figure 5.5: A graph picture of m20 (with injective tag function), to a depth of 3
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can be seen as a recursive algorithm for computing the decoration of a node to some depth 4.

Since all SNePS nets are finite by Axiom 2, the unqualified decoration D(n) of a node n € SNodes
(the topic of Chapter 4) can be defined as D*(n), where z is large enough to reach all relevan: nodes
from n.

The definition of the qualified g is different only in its use of the qualified decoration.

Definition 5.3.2

pb(m) = D3 (m)

1’ (b) f(b), where f s the solution to this system of equations:
b = D(b)

m; = { D*~1(m;)}, ¥m; such that b & D*~1(m;)

As an example that can be compared to the result for the unqualified g, let us compute p3(b2),
as was done in §4.6.2. \We will take the full network to be W' again, with m23 € MOLATOM, (Fig-
ure 4.4), and should get the same hyperset assigned to b2 as derived there and shown in Figure 4.8,
since 6 = 3 is sufficiently large to involve all of the structure used there.

Our set of atoms is therefore

A =84 U LA = {m23. ask—whether, Tom}

First, the decoration:

D3(b2) = {D*(m24),D*(ms)}

{{Dl(m23).Dl(m3),’D‘(b2)},{Dl(bz],Dl(m'&]}}

]

{{tag(m23), {D°(ask—whether), }, {D°(m24), D°(m5)}}, { {D°(m24), D°(m5)}, {D°(Tom)}}}

= {{m23, {tag(ask—whether).}, {tag(m24),tag(mb)}}, {{tag(m24),tag(n5)}, {tag(Tom)}}}
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= {{m23,{ask—whether}, {m24.m5}}, {{m24,m5}, {Tom}}}

By the definition, p*(b2) is derived thus:

u2(b2) = f(b). where f is the solution to this system of equations:

b2 = D3b2) = {{m23.{ask—whether}, {m24,m5}}, {{m24.m5}, {Tom}}}
m24 = {D?*m24)} = {m23,{ask—whether}, {m24,m5}}
ms = {D*msi} = {{m24.m5}, {Tom}}
So the set of unknowns is .l' = {b2.m24.m5}. The steps given so far should be familiar. as they parallel

the development in Chapter 4. Next is the development of the solution f and its verification.

As in [Barwise and Etchemendy, 1987. pages 51-52]. we will methodically construct the solution
from the apgs given directly by the equations, as shown in Figures 5.6, 5.7, and 5.8, and then combine
them.

Before continuing, note that. under non-well-founded set theory, any way of coming up with
a solution is as good as any other. As long as verfication can be done, the Solution Lemma (or,
alternatively, the Anti-Foundation Axiom) ensures that we have the “right” hyperset assignments.
Any hypersets that work are the right ones. Those that work, of course. are those that maintain the
relationships among the unknowns given by the system of equations after the assignments to the
unknowns have been substituted for the unknowns. In the current case, the goal is a function, any

function, f : .Y — V4 such that:

f(b2) = {{m23.{ask—whether}, {f(m24), f(m5)}}, {{f(m24), f(m§)}, {Tom}}}  (5.1)

f(m24)

{m23. {ask—whether}, { f(m24), f(m5)}} (5.2)

f(mS)

1l

{{f(m24), f(m5)}, {Tom}} (5.3)

In this chapter, rather than settling for “any solution f that works”, we are attempting to
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make the process algorithmic, through careful development of a particular constructible solution. It
consists of putting together the apgs for the hypersets over A U X' in such a way that an appropriate
assignment to each unknown results. and doing so by following the method emploved (or at least
implied) by [Barwise and Etchemendy, 1987]. After deriving the apg for a hvperset Gx on the
right-hand side of the equations defining an unknown x, “we simply alter these graphs by replacing
all edges terminating in a node tagged with x by an edge terminating in the top node of Gy ...”
[Barwise and Etchemendy, 1987, page 51]. There is mutual membership in the three apgs derived
as solutions— f(m24) includes m5. and f(m5) includes m24. and f(b2) includes both—but we use the
apg f(b2) as the “bed” for the solution because its semantics is the object of this exercise. We
replace each b2 in Equations (or hypersets) 5.2 and 5.3 with the hyperset given by Equation 5.1,
and we replace each m24 in Equations 5.1 and 5.3 with the right-hand side of Equation 5.2, and
similarly for m5. There are no occurrences of b2 to replace (although with a different &, there would
have been), but let us put the hypserset for m24 in place of the node m24 in Figure 5.6 in the most
simple-minded way possible, making the out-arcs to atoms connect to the nodes already there, as
shown in Figure 5.9, and then build in the hyperset for m5 in the same way, as shown in Figure 5.10.
(Critical node labels have been retained for convenience, but the only officially labeled nodes are
atoms in .4.) The result is one diagram that contains the assignments to all three unknowns, each
obtained by making a different labeled node the point of an apg, and each, as required, a hyperset
over the atoms A = {m23, ask—whether, Tom}.

These are not the simplest pictures of the hypersets, but they were simple to derive algorithmi-
cally. Let’s see if verification can be done. The assignments that result follow in written form, taken
from the apg in Figure 5.10. (We are forgoing the use of intermediate names z, etc.. for the hyperset

assignments, as was practiced in Chapter 4, referring to them simply as f(b2), etc.)

f(b2) = {{m23, {ask—whether}, {f(m24), f(n5)}}, {{f(m24), f(m5)}, {Tom}}}
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f(m24) = {m23.{ask—whether}, {f(m24), f(m5)}}

f(m8)

1]

{{f(m24), f(m5)}, {Tom}}

The equations above provide immediate verification of Equations 5.1, 5.2, and 5.3, so the assign-
ments depicted in Figure 5.10 work. The construction made it so. and in fact, guarantees that the
derived solution apgs will be pictures of the correct hypersets, as discussed in the next section.

Figure 5.10 is not a subgraph of any S*. It could not be a SNePS structure, and, fact, it violates
Theorm 3. The decoration 1s not injective, and so the BUILD mechanism could not have created it.

For example, there are easily seen to be two nodes that would be decorated with {Tom}.

5.4 Hpyperset Equivalence

Simpler pictures of the solution depicted in Figure 5.10 also work. Consider the picture of Figure 4.8,

replicated in Figure 5.11. suggesting the solution below.

f(62) = {f(m24). f(m5)} (5.4)
f(m24) = {m23, {ask—whether}, f(b2)} (5.5)
f(m§) = {f(b2), {Tom}} (5.6)
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(an verification be done?”

f62) = {f(m24). f(m5)} by 5.4
= {{m23.{ask—whether}, f(b2)}, {f(b2), {Tom}}} by 5.5,5.6

= {{m23. {ask—whether}, {f(m24), f(m8)}}, {{f(m24), f(m5)}, {Tom}}} by 5.4

QED Equation 5.1 is verified.
f(m24) = {m23. {ask—whether}, f(b2)} by 5.5
=  {m23.{ask—whether}, { f(m24), f(m5)}} by 5.4

QED Equation 5.2 is verified.
fms) = {f(b2).{Tom}} by 5.6
= {{f(m24). f(n5)}, {Tom}} by 5.4

QED Equation 5.3 is verified.

What this shows is that Figures 5.10 and 5.11 (the apg on the right-hand side of Figure 4.8,
which was derived earlier “by inspection™) are pictures of the same hyperset. Not surprisingly, there
are many apgs for the same solution, the same hyperset assignments.

Let us briefly explore the equivalance problem in general, and then return to its manifestations
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Figure 5.12: Four pairwise similar apgs, representing three distinct hypersets.

in the computation of p’. Like any other sets, hypersets are equivalent if they contain exactly
the same members. Yet there are pitfalls in this simple extensionality criterion when circularity
is admitted. It is due to our dependence on the apg as the finite representation of the hyperset.
For example, consider the four apgs G, G2, G3,G4 in Figure 5.12. The pair G; and G2 represent
distinct hypersets, but the pair G3 and G4 are two pictures of one and the same hyperset (Q),
notwithstanding the structural similarity between G, and G3 and between G2 and G4. Recall also
the variation in pictures of Q noted in Chapter 3, and illustrated in Figure 3.2, showing that apgs
with great structural difference can picture the same hyperset. The correlation between graphical
and representational properties of apgs is not at all obvious in general. Extracting some version of
extensionality from the potentially cyclic apgs will require some care.

In terms of difficulty, two extreme cases of detection of hyperset equivalence through apg ex-
amination can be identified: (1) for apgs with no cycles and (2) for apgs with what we might call
“unrestricted” branching and circularity. For (1), two tagged apgs with no cycles. equivalence of

the depicted hypersets is easy to evaluate recursively (as long as the tag function is injective; oth-
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erwise we could have the two different pictures of the set we know as the number 3 shown at the
beginning of Chapter 3). Recall that acyclic apgs are called “well-founded” and depict sets that are
well-founded. for which the extensionality criterion says all there is to say about equality, and “by
a transfinite induction on the membership relation the equality relation between well-founded sets
is uniquely determined.” [Aczel. 1988, page 19)].

For the difficult case (2), including infinite apgs, those that contain €. and others that have no
restrictions on the circularity of the decorations, Aczel’s relaticn "=y’ captures the wide variation
possible in apgs for the same hyperset (over some universe V). To illustrate the problem. consider
the apgs Gs and Gs in Figure 5.13. Both are legitimate apgs, accessible pointed graphs. since the
general definition of a graph allows for infinite sets of nodes V and arcs £ and since every node

is accessible from the point. Both are pictures of the same hwperset, (, like apgs Ga3 and G4 in

Figure 5.12. But there is no clean way to apply the e onality criterion to demonstrate that
that is so, no induction from a base case. To hand’ . problems, the definition of the relation
=y, in very crude terms, is as permissive as - two hypersets are considered equal unless

proven unequal by production of a member of one that is not in the other. It is clear that in all four

apgs, Gs, Ga, Gs, and Gs, production of such a member is impossible; never mind that it is also
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impossible to produce a member of one that is clearly in any of the others.

Aczel’s definition of =y requires the notion of “bisimulation”. Its definition is not inductive; it
has no “basis”. [Maurer and Ralston. 1991, page 185]. (Recall that the notation “Yz|a — r” means
~all children z of a in the given apg of which a is the point”.) A binary relation R is a bisimulation

if and only if aRb = aR*b. where [Aczel. 1988, page 20]:

aRTb = (Yrla — £)(3ylb — y) tRy & (Vylb — w)(3zja — r) xRy

Given any universe V' of hyvpersets. the relation =y on its members is the unique mazimum

bisimulation. That is. by Aczel’s Theorem 2.4 [ibid.], there is one relation =y on V such that:
l. =y is a bisimulation.
2. If R is a bisimulation on V. then Va,b € V,aRb = a=y b.

In fact. =y is the greatest fixed point of the operator ()+ that creates, from a relation R, the

relation aR*b. It is a fixed point because (=y)* is just =y. since (a.b) € (=y)*

= (a.b) € =y
and (a,b) € =y = (a.b) € (=y)". It is the greatest fixed point because for any other relation
Z that is a fixed point (i.e.. Z% = 2), (a,b) € 2 = Z is a bisimulation == (a,0) € =y. Aczel
then shows that a =y b if and only if there is an apg that is a picture of both a and b [Aczel,
1988, page 21, Proposition 2.5]. This gives another way of stating the “permissiveness” of hyperset
equivalence through apgs: Two hypersets are equivalent if they have any picture in common; never
mind demonstrating that all pictures share some property. These considerations should reveal how
difficult it can be to detect hyperset equivalence from apgs in the broadest case. Fortunately, the

case of apgs drawn from SNets* will prove less difficult than this broadest case. though not as easy

as for well-founded apgs.
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5.5 Correctness of the y° Computation

Verification with the system of equations showed that the graph constructed as G3, in Figure 5.10
is a picture of the same hyperset as that depicted by the graph in Figure 5.11. earlier shown to be
1(b2) (in the subnetwork 117, Figure 4.4). But the general problem of proving the correctness of
the algorithm used amounts to proving that, for any case, the resulting graph will be a picture of
the right hyperset, that is. identical to the hyperset given by the subnetwork rooted at that node
in the full network. that 1s. identical to the hyperset depicted in the source SNePS network by the

graph S3, defined below.

Definition 5.5.1 The qraph ., = the subgraph of S* induced by the set of edges E2 C E*. where

¢ € E} < e s a path oriqmating at n of length < 6 tn S*.

Note that .b;", is both “pomted™ and “accessible” and is therefore and apg. The problem, then, is to
show that the hyperset pictured by the graph G? really is the hyperset pictured by g1,
To begin, here 1s the cxplicit algorithm for drawing the graph G%, given 6 and n € SNodes,

embedded in a full network from SNets*:

Delta-Graph Algorithm

Stepl: Using the network containing node n, form the system of equations required by the

definition of u®. using the decoration D®(n) as defined.

Step2: For each equation in the system for an unknown x, draw an apg for the set on the
right-hand side. using unique nodes for atoms, and call it f(x). One of these apgs will
be f(n), of course. and all of them will have nodes of outdegree zero from A U .t labeled

with an injective tag function.

Step3: Let the graph f(n) be g. the goal graph in progress. Select another graph f(x) from
the set and. if there is a node labeled x in g, replace it with the point of f(x). Find any

arcs in f(x) to nodes tagged t such that the node labeled ¢ is already in g and redirect
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those arcs to node ¢ instead of including a new node labeled t: i.e.. keep the tag function

for g injective. When all graphs f(x) have been integrated. let g be G?.

Note that Gi_ will be an apg, and that the only nodes with outdegree zero will be tagged by A,
those tagged by X' having been replaced.

The Delta-Graph Algorithm is easier to perform than it is to explain. The replacement of the
node x by the apg f(x) is unambiguous because. if there is a node labeled x. there will only be one,
by the construction invariant that the tag function is injective. and it will have outdegree zero, since
only such nodes get tagged by D°. There may also be other nodes that depict the same hyperset as
some f(x) being inserted in place of x. but the algorithm does not attempt to detect it. (See §5.8.1
for discussion of that enhancement.) The result is ungainly constructions like Figure 5.10. and that’s
why we have the problem of proving that the hyperset it depicts is the same as that depicted by
Figure 5.11.

Ultimately, the judgment of equivalence will come down to comparison of sensory node tags,
since every graph built as above from an 5 is finite by Axiom 2 and, for every node n € SNodes and
every value of 8. p*(n) will include some atom by Axiom 4. The Delta-Graph Algorithm must be
shown to entail some relation. based on the equivalence of atoms. that, in turn, entails equivalence
of the appropriate hypersets. More precisely, to define equivalence of two hypersets given by apgs
G1, Gy from some S° € SNets*, with points p; and p», we need a relation @ based only the graphical
properties of Gy and (G- that suffices to determine equivalence of the hypersets they picture. Here

it is; the relation @ that follows means “the hyperset H; depicted by G, is identical to the hyperset

H, depicted by G1".
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Figure 3.14: Are tnese pictures of the same hyperset?

Definition 5.5.2 G Q G2 =

tagipy) = tag(p2), f outdegree (py) = outdegree (p2) =10
3 byjectron b = (c1|py — ¢1) — (c2lp2 — ca)

such that [c; Q b(ca2)], otherwise

The relation between the children of the points py and p» can be required to be a bijection
because, by Theorem 3 and Theorem 2 and the derivation of p through the decoration D, it is
impossible to have two children of the same node represent the same hyperset. ( is an inductive
version of =y, and it is appropriate for comparion of G and Sﬂ because they are finite and “ground
out” at atoms.

See. for an example application of @, the two apgs in Figure 5.14, where both Al and A2 are
meant to be atoms, with the same tag, say, the lexeme ‘woodchuck’, and consider whether they are
pictures of the same hyperset.

The computation of the predicate G7 @ Gg starts with the test whether there exists the necessary
bijection b between the children of their points, p; (labeled B1) and p» (labeled D2), and proceeds
recursively as shown in Figure 5.15, with a new bijection sought between new nodes p; and p; at

every level; they are shown by dotted lines. The tree can terminate there, graph theory telling us
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that since B1 and D2 have already been matched and expanded, the graph contains a cycle and
therefore no new information can be extracted. In other words, all necessary bijections have been
constructed.

The important thing about @ is that it is a relation on graphs that provides the answer to the
main question of this section. “llow do we know that the Delta-Graph Algorithm for constructing

G* depicts the right hvperset?” The right hyperset, of course, is the one pictured by S3.
Theorem 4 G5 Q S,

Proof: By induction on ¢:

l. For é=0.G? is the trivial graph (with one node and no edges), decorated with its label, and

sois S5.
9. Assume G3°' () 5,7" Then there is a bijection between descendants of n at every level.

a) Let cg be an arbitrary node of outdegree zero in G*? . It must be the child of some node
g n

S R .
pg that had outdesgree zero in Gy I The new node cg came from either:

i The decoration (Steps 1. 2 of the Delta-Graph Algorithm), in which case the node
ps in S2=! that corresponded to pg by the assumption has a child ¢s in the SNePS
network: or.

ii. Replacement of pg by f(pg) containing the child node c¢s (Step 3 of the algorithm),
which is only possible if the equation defining pg shows that it contains cg, a fact

that must be reflected in Si as ps — €s.

(b) For an arbitrary node of outdegree zero cs in S%, which has parent ps (among others,
possibly), there must be a corresponding cg because the fact that ps — cs must be

reflected in the equations that are; by the Solution Lemma, all satisfied by G
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We can now show that the limited idea of equivalence @ that is adequate for apgs derived from
SNePS networks entails Aczel’s more general criteria for hyperset identity. Let the hypersets pictured
by arbitrary Delta-Graph Algorithm output apgs Gy and Ga be, respectively, /; and H,, unique

by the Anti-Foundation Axiom.
Theorem 5 G Q Gy = Hy =y Ha

Proof: If H, Q Hs, then either both are identical atoms or there is a bijection between the children
of ny and n» for which @ holds: in either case. the conditions for H, =y H» are satisfied. a

Finally, Aczel provides a chain of implications to show that Ay =v H» implies that H, = H,
[Aczel. 1988, pages 20. 21]. and we have the desired proof of identity of the hypersets. and assurance

that the Delta-Graph Algorithm is correct.

5.6 Analysis of ;°-Values

What types of hypersets are returned by the limited u%; how is the restricted circularity manifested?
The decoration procedure in D° reaches out to child nodes one level of arcs at a time. rather than
effectively defining subgraphs induced by a set of nodes. which would include all arcs between parent
and child. This property, in conjunction with Axiom 4 (all base and molecular nodes lead to sensory
nodes) prevents the application of #° to any subnetworks in which all nodes have children. The
difference between p*(b2) in Figure 5.2 and p(b2) under SCOPE of 1 in Figure 5.3 illustrates the
problem avoided. The property is worthy of formalization as a lemma concerning the qualified p’,
similar to Lemma 1.

Lemma 6 Yn € SNodes and V6 > 0, w(n) 20

Proof: Given n, ¢®(n) can only be Q for some § if every node in the hyperset assigned through g,
f(n), has a child. This would be the case if all nodes at some level of decoration D* were identical
to nodes already in the tree at an earlier level. Then replacement of those nodes by their apgs in the

Delta-Graph Algorithm would create cycles at each of them, making each, and therefore the entire
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solution apg, a picture of Q. But this cannot be the case, because subsequent levels of decoration
would not be able to introduce any new elements, and there would therefore be molecular nodes
that did not dominate (in S*) sensory nodes, in contradiction to Axiom 4. a

Quite a strong claim can. in fact, be made about the power of u® to discriminate meanings of
nodes. to the effect that Theorem 3 holds for every value of 6 in a full cognitive unigraph C’ (with

the same necessary exception as in Theorem 3).

Theorem 7 Yn.m € C' where n # m and Y& > 0, unless n and m dominated exactly the same

subordinate nodes (through arcs labeled with different relations),

' (n) # p’(m)

Proof: Assume not: assume that p’(n) = u*(m), for some ¢ and some distinct nodes n and
m in C. Again. by the © ' ‘ion Lemma. there is cniy one way to decorate n and only one way to
decorate m. Those decorations depend on the network structure subordinate to the nodes; if the
decorations are the same. then n and m share all conceptual linkage, impossible for distinct nodes
in SNePS, by its Uniqueness Principle (or by the Theorem 3, the Uniqueness Principle for p). 0O

In other words. it is not necessary to go to any length to determine that the meaning of n, differs
from the meaning of no; it is only necessary to compare their sets of immediate descendants.

The relation Q (and its acceptance as the definition % - 1nvalence) allows the derivation of an
interesting aspect of SNets*—that the apgs contained in 1t are minimum pictures as values of u. The
canonical picture of a hyperset a contains only the nodes and arcs necessary to show the hereditary
membership relations among the elements of a [Aczel, 1988, page 5]. By the Uniqueness Principle
for SNePS, the decoration of any node n € SNodes will be injective, and therefore S%(n) will be
a canonical picture. When there is a discrepancy in size—'size’ being |V| and |E|—between the
solution as expressed in S° and that derived through the computation of u®, the former will be the

smaller (as seen in Figures 5.10 and 5.11).
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5.7 Distance Between Nodes

The qualified D? and p® provide a measure of distance between nodes, and therefore between their
semantic values, and between their respective semantic influences as well. in the sense that every arc
traversed is a set formed: n # {n} # {{n}}, etc.. making an actual count of “levels of influence,”
perhaps, or “indirect reference.” between concepts. Recall the discussion in §2.8.3 of z-equivalence
between node meanings [n] and [m], where z is length of the semipath from n and m that must
be traversed until the induced subnetworks differ. How do the formal results of preceding sections
refine this idea?

First of all. only for distinct cognitive agents does it make sense to ask “when” two node meanings
become different. As established by Theorem 7. any two nodes in the same cognitive agent are
different right away, to any distance greater than (or equal to) zero. If the question is how much
meaning they share. some other metric must be developed.

One version of such a metric might measure the relative semantic influence of two nodes n and
m on a third. Consider node m22 in Figure 4.1, which represents the proposition that a particular
table exerts something called a ‘force’. To use an example the motivation for which is left to the
zenerosity of the reader. we might ask about the relative influence on p(m22) of two concepts—(1)
the particular table in question. node z. and (2) the concept of exertion, node m10 (in the verb form
"exert’). The direct approach is counting the arcs on the set-membership paths used for u (that is,
the paths that appear in the S* version of this network, Figure 4.3) from m22 to z and m10. The
lengths of the (shortest) paths. respectively, are one and four, for a difference in length of three.
Computation of the decoration of m22 yields the same answer, in the form of the difference in the

values of § at which D?(m22) includes z and m10:

D%(m22)

m22

D'(m22) = {m21.z.m17}
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The element z has appeared at level 1.

D*(m22) = {{2.m18.v}, {n20.m22.m17}, {m15}}

D3(m22) = {{2.{m8.w}.{m18 m21.m19}},
{{mlg.z}.{m21.z.m17},{z.m15}},{{rab1e}}}

D¥(m22) = {{2.{{force}‘{m18.m21.m19}},{{m8.w},{2,m18.w.m19},{w.m10}}},

{{{w.mlO}.{m20.m22.m1?}},{{2.m18.w.m20},{m20,m22.m17}.{m15}},
{{m20.m22.m17}. {Table}}}, {{Table}}}

The ¢lement m10 has appeared at level 4.

So z has a “closer” or “stroneer” influence on m22 than does m10.

We can also count the raw distance between nodes in the same agent, leading to another inquiry
about this example (with perhaps even shakier cognitive motivation): What is the distance between
z and m10? The answer is three, obtained once again easily through examination of the network S*.
[t is not clear that there is an interesting semantic use for this number. The fact that the concept of
the exerted force itself. as represented by node y, does not participate in g(m22) may be of interest,
however. (Other molecular nodes in the network embody the concepts that tie that force to this
table.) To complete the distance mechanism, we might define the distance between m22 and y to be
infinity.

Although inappropriate for a single cognitive agent, it still makes sense to ask “when” two nodes
differ in meaning in distinct cognitive agents. If Figure 4.1 shows CASSIE’s mind while observing the
interchange between Nancy and Tom, consider the same network in the mind of another cognitive
agent OSCAR, except that he notices in addition that the table needs polishing. That concept
would be represented as a molecular node dominating z, presumably with other complex siructure
attached to it. CASSIE’s m22 would differ from OSCAR’s m22 at level two, as soon as the table

node z were expanded into its elements in each D?(m22).
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5.8 Algorithmic Analysis

SNePS networks in their derived forms SNets® (and sometimes the acyclic unigraphs SNets') are
graphs consisting of given sets of nodes V, with cardinality |V|, and arcs E. with cardinality |E|.
They could be given as LISP expressions. or matrices, or structured strings. We note that there
are some characteristics of SNets” that distinguish them from graphs with homogeneous (untyped)

nodes and unbounded cyclicity.
1. All cycies are of length two.
2. No sensory node is in a cycle.

3. All base nodes are in cycles.

5.8.1 Complexity of computation of x°

For construction of a graph Gf1 with the Delta-Graph Algorithm, the problem instance consists of
the construction of several apgs and their combination in such a way that all nodes labeled with an
indeterminate are replaced by the apg representing the hypergraph assigned to that indeterminate

by the solution. Each step of the algorithm will be examined for time requirements.

Stepl: All the real work is done in the decoration, for which a recursive algorithm is implicit
in the definition of P?. A bottom-up approach, such as dynamic programming, might
appear to be an efficient choice [Brassard and Bratley, 1988, Chapter 5], but since com-
putation of D*(n) is not necessarily independent of D**1(n), the recursion must go all
the way down to D%(n) in order for D*(n) to be computed. Indeed, the computation
of the decoration at one level of a node n embedded in a unigraph C’ of |V| nodes in-
volves O(|V|) nodes. and there are é levels. The number of recursive steps required in
decoration is therefore O([Vlé). Since é is bounded by the number of nodes |V| in the

sense that DIVI+! cannot add anything to the decoration not already there in DIV!, the
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complexity measure independent of ¢ is O(U/]WI). Explicit decoration as defined by the

algorithm is an exponential task. not polynomial.

Step2: For each equation defining an unknown x, the apg can be drawn as the preorder con-
struction of a tree (starting a subtree with each ‘{’, finishing one with each ‘}"), except
at the bottom level. where the tree property is lost because there may be nodes with
indegree > 1. There are O(|V]) equations in the system, and the last level requires a

search through O(|V']) nodes. making this step o(IV[%).

Step3: The apgs f(x) are inserted. in some order, into the apg f(n). With O(|V|) equations

and searching at the bottom level, again, the time requirement is O(|V°).

What would be the cost of improving the Delta-Graph Algorithm so that it vields smaller graphs
G?*, perhaps the graphs already in the network? The difference between Gj, in Figure 5.10 and
the apg p(b2) of Figure 5.11 is due to the fact that no “minimization” algorithm was employed
in the incorporation of the hypersets in Figures 5.7 and 5.8 into that of Figure 5.6. A search for
an appropriate subgraph that already existed would have revealed that f(m24) and f(m5), with
the addition of backward arcs. would fit into the left and right child nodes. respectively, of f(b2).

Consider an algorithm for the search problem consisting of:
e Instances: Pairs of apgs (f(x), f(y), where x,y € X, the unknowns
e Solutions: {p|pis anode in f(x) and p is the point of an apg « such that f(y) = a}

Note that the solution set for each instance will be either empty or a singleton. Enhancing the
Delta-Graph Algorithm with such a mechanism would maintain the invariant that the decoration is
injective—every hyperset involved would be represented by exactly one node—and would therefore
result in the construction of a smaller G? . Its resource demand, however, would not be trivial. We
have a target apg 71 = V1 U E, and an apg to insert, T» = Vo U Es, and we seek a subset of the

nodes and edges of T, respectively, V and E, such that there is a bijection h : V — V2 satisfying
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the requirement that (h(u).h(v)) € Es = (u.v) € E. This problem is the detection of subgraph
:somorphism, which is NP-complete [Garey and Johnson. 1979. page 202).

And that’s not even the end of the story. The better solution in the example above would not
be detected by incremental incorporation of apgs, since both f(m24) and f(m5) have to be examined
before it is apparent that they picture the same hypersets as the apgs at the right and left child
1odes of f(b2). It is impossible to tell from examination of only f(b2) and f(m24) that the latter
would be depicted by the apg rooted at the left child of f(b2) with the addition of one backward arc
from that node to the pomnt. It is clear {rom the f(m24) apg alone that it includes f(m§). but it is
ot clear that that entails inclusion of Tom. Determination of all such interdependent reiationships
would make the problem intractable were 1t not already. Note that the problem would be obviated
by the retention of labels ou the nodes. but they are not part of the hyperset or its pictures.

Strictly speaking, however, the “best” placement of hyperset assignments into the overall solution
is unnecessary. The mechanically constructed G3, is a picture of the same hyperset as the more
elegant Figure 5.11. For these reasons. the most important result concerning the complexity of the
computation of u’ is that il s already done by the SNePS network 1n the S* form. \We don’t actually
need to compute D?(n). As long as we can count arcs, Theorem 2 assures us that the hyperset that
would be assigned to n in pin) 1s the subgraph 5% rooted at n, to some path length é. The Delta-
Ciraph Algorithm, in other words. is unnecessary to determination of g(n) in a given (full) SNePS
network. There may be a need for it. however. in unanticipated situations involving independently

determined hypersets from Vv,

5.8.2 Complexity of measuring distance

Two distance questions discussed above are open to solution by more straightforward and efficient
algorithms. Given two nodes n.m in the same S, both the question whether m € p(n) and the

measurement of distance between n and m are amenable to standard polynomial search algorithms.
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e Ism € pu(n)? Note that this problem exists because SNePS networks are only weakly connected,
rather than strongly or unilaterally connected. If every S € SNets were strongly conn red,
the answer would be trivially “ves”. That could be the case also if the decoratior ssi ~nin
the derived S* had included further circularity. But under this development, it :mains a real
question. Above. it was pointed out that y ¢ u(m22) in Figure 4.1. For anot! - example using
the same figure. check whether ‘force’ is in u(m19). Yes. But the conce;t of Tom, node b2,
is not. For this decision problem, using breadth-first search (or depth-first search), the entire

S* may have to be traversed for a negative answer.

e What is the distance from n to m (or vice versa)? Again, breadth-first search will give the

answer. the answer heing > if there is no path from n tom in 5°.

Both questions can be answered. therefore. in O{]V]z) steps [Maurer and Ralston. 1991, page 249 ff.].

5.8.3 Complexity of computing the unqualified p

Lastly, note that the discussion of the decoration algorithm above gives a resource bound for the
computation of the unqualified g of Chapter 4—even though, again, that computation is redundant
to the derivation of S°. which contains everything there is to know about pu. Since the number of
nodes |V| bounds the possible semantic influences on a node n, D(n) is the same as DVI(n) and

p(n) is the same as p!*’I(n).

5.9 Summary

Whereas the semantics u(n) will probably be of only theoretical interest in a “life-size” SNePS
network, a semantics u’(n) restricted to interpreting a node in terms of only its neighboring nodes
may be pragmatically applicable (and, of course, would provide p(n) itself for sufficiently large

neighborhoods). Such a ¢ was defined, an algorithm sketched for computing it, and the algorithm
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proved to yield the correct hyperset.
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Chapter 6

Compositionalitv

6.1 Introduction

The foregoing analysis was inspired in large part by the issue whether SNePS is semantically com-
positional. In this chapter. that question is pursued, starting with a look at compositionality in
general. and ending with consideration of the effects of the non-well-founded set semantics y on the

compositionality of SNePS.

6.2 Informal Definitions of Compositionality

The Principle of Compositionality with regard to language is stated by a group of linguists in [Gamut,

1991, page 11] as “two principles of Frege”:
1. The reference of a composite expression is a function of the references of its component parts.
2. The sense of a composite expression is a function of the senses of its component parts.

Some views explicitly require a mapping between the syntactic combining operations. From

Smith, discussing it in more general terms as a “correspondence” relation between abstract domains:
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[Domains] can be defined compositionally, in the sense that what corresponds to (or is
corresponded to by) a whole is systematically constituted out of what corresponds to
(or, again, is corresponded to by) its parts. If the part/whole relation is itself absorbed,
a very strong version of compositional correspondence obtains, where parts of a source

correspond to parts of the target. [Smith, 1987. page 11]

Partee el alia offer the following definition of compositionality (calling it “Frege’s principle”) to
open their comprehensive look at the subject as a linguistic property. followed in the case of formal

languages, and sought in the case of natural languages:

The Principle of Compositionality. The meaning of a complex expression is a func-
tion of the meanings of its parts and of the syntactic rules by which they are combined.

[Partee et al.. 1990. page 318]
with the remarks that follow on its limitations:

_..the exact import of the compositionality principle depends on how one makes precise
the notions of meaning, of part, and of syntactic rule, as well as on the class of functions

permitted to instantiate the “is a function of” requirement.
Fodor and LePore put it this way, also as a property of languages:

A language is compositional iff (idioms aside) the meaning of its syntactically complex
expressions is a function of their syntatic structures together with the meanings of their

syntactic constituents. [Fodor and LePore, 1991, page 332

They provide an enumeration of the manifestations of compositionality in natural language: produc-
tivity, “roughly, the fact that every natural language can express an open ended set of propositions”;
systematicity, “roughly, the fact that any natural language that can express the proposition P will
also be able to express many propositions that are semantically close to P”; and the property that

the structure of sentences is isomorphic to the structure of the propositions they express, in the
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sense that “if a sentence S expresses the proposition that P, then syntactic constituents of S express
the constituents of P.” [ibid.]

In essence., compositionality requires that there be a grammar of meanings, that there exis: -ome
set of primitive meanings and that there be rules for the composition of others from these (and that
these rules correspond closely to the rules of the syntactic grammar). Note that this makes the set

of meanings, i.e.. the semantic range 2. recursively enumerable. (Formalization follows.)

6.3 Compositionality in Natural Language

The question whether any natural language (taking English as our paradigm without apparent loss of
senerality) can be said to he compositional has been the subject of debate for years among linguists.
Barbara Partee surveved. cxplained. and critiqued the various points of view in [Partee, 1984]. Re-
cently (late 1991), a question about the nature of non-compositional semantics generated discussion
on the LINGUIST LIST. an electronic bulletin board, with particular contributions mentioned below

[Linguist List. 1991].

6.3.1 The Troublesome Constructions

For English, the syntactic (lomain Y is words or other constituents (the atoms A) and sentences
(the compound objects ). and the semantic domain Z is the meanings of words, phrases, other
constituents, and sentences. If English has a compositional semantics, then the meaning of a sen-
tence is a function of the meanings of its words. Indeed, this is clearly the case most of the time.
One understands the meaning of the sentence “Violet drove home” by virtue of understanding the
respective meanings of the words “Violet’, ‘drove’, and ‘home’, and the semantic effects of their
grammatical combination in this order.

But the following sentences are not so easy to interpret this way:

S1: Susan dated an occasional sailor. [Linguist List, 1991, Hutchinson (Vol. 2, No. 507)]
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S2:  Fifty is what forty used to be. (G. Steinem, cited by [Wilks, 1984])

These examples are meaningful to English speakers, but not in a way that easily reflects a
combination of the meanings of their words. In sentence S1, it is difficult to formulate a meaning for
‘occasional’ that will allow it to play the role of modifier to the word ‘sailor” without generating a
noun phrase constituent meaning something like "a guy who sails every now and then'—a semantic
item that plays no role in the meaning of the resulting sentence. In sentence 52, although ‘fifty’ and
“forty’ can be pre-defined to include the idea that they are ages, how can the verbs 'is' and ‘used
to be’ come bearing the necessary shades of meaning that allow the strong distinction between the
numeric values to be overridden in this usage but not others? Note that pre-definition is necessary.
A compositional semantics requires that the semantic contribution be unidirectional: All necessary
meaning must be incorporated into the constituents before they are combined into a compound
object; otherwise. of course. the compound is not a function of its components. (See “bottom-up”
versus “top-down” interpretation. [Partee et al.. 1990, pages 286-287].)

Yorick Wilks argues that the principle of compositionality in natural language is either trivial or
false—false for the reasons given in the examples above, or trivialin that nothing is ever taken as
refuting it. To switch languages for a moment, the Spanish sentence “Esto no significa nada” (glossed
as “That means nothing”) contains two constituents that contribute negation. so in a compositional
system, one of them must be taken as having no semantics (requiring an arbitrary choice) [Wilks,
1984].

Consider pluralization in general. In the word ‘dogs’, the constituent that marks that the se-
mantics is plural is the *-s’ suffix. What then is the marker for singular in ‘dog’? One hypothesis
is a zero (empty) morpheme [Linguist List, 1991, Fintel (Vol. 2, No. 523)], a solution with some
respectability. But extrapolation would require a zero morpheme for all unmarked features of words.
In other words, it is not enough to claim that default cases hold unless otherwise specified. Truly

compositional semantic rules, if they are to handle the plural because of some marking, must recog-
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nize the singular by some marking; they must be written to anticipate the distinction. The marking
may indeed be the lack of something, but it must be the lack of something in a pre-defined place.
This is a transformation of the question of compositionality into the . blem of making an exhaus-
tive list of features. If these are the measures that must be taken to preserve compositionality, then
it is not being driven by the data. but vice versa If examples S1 and S2 lead to backward definition
of the relevant words. with the justification tiixt :>ov must have had more to their meanings to start
with than we realized. then Wilks's potiit 1o cuaae . -, "o -le of compositionality stands simply

because no contradiction of it is accepted.

6.3.2 What non-compositionality is not

Some suggested alternatives to compositionality turn out, on formal analysis. to be only flourishes on
the basic notion. Such analysis will help elucidate the critical elements of compositionality and the
nature of a compositional semantic function v for English. The question is what can be said about the
possibility of the existence of a computable v : { English words and sentences } — { Meanings }.

The formal tool is recursive function theory, sketched in §2.3.

Compositionality is not violated by exceptions. Any finite set of exceptions to the composi-
tional semantic function can be built into a more #* - inatory function. Idioms, such as “kick
the bucket”, present no qualitative challe~= 1o semantics that otherwise employs standard
meanings for the three constituent "~ .ong as that semantics recognizes the three-word
string and computes its meaning inacpendently of the individual words in it [Linguist List,
1991, Manaster-Ramer. Coates; (Vol. 2, No. 514)]. Note that this requires the set of base, or

atomic, elements to include both ‘kick’ and ‘kick the bucket’.

Compositional functions can return sets. A function whose range includes sets is still a func-
tion. Every finite set is encodable into a natural number and can therefore be the value of a

function for some argument. Set values can be distinguished from single values; in fact, single
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values would simply be singleton sets. There is nothing formally suspect. that is, about a
semantic function that returns the set {zy, 22} as the value of v(y) for some syntactic object

y. To want to distinguish between z; and z; is to want something besides v.

Compositionality is consistent with a choice of functions selected by some other parameter.
To say that the meaning of a constituent is determined by one of several functions, with the
selection of function being driven by some other parameter of the environment, such as the
context of the sentence. is simply to defer the semantics to some “larger” function that takes
that other parameter as an additional argument [Grandy, 1990], [Partee et al.. 1990, page 290],

[Linguist List, 1991. Nerbonne (Vol. 2. No. 507), Fleck (Vol. 2. No. 523)].

[n fact, this is why both “kick” and ‘kick the bucket’ can be accommodated. Given vy ( ‘fifty’ ) =
49 4+ | (or some other expression that clearly denotes a numeric value) and vo( ‘fifty’ ) = the
human state of being 30 years old. and some other factor, such as category, which switches to
either vy (if category is ‘adjective’) or vy (if category is ‘noun’), the semantic function that
accomodates both of these, correctly, is:

vi( ‘fifty’ ), if category is ‘adjective’:

v( “fifty” . category ) =
vo( ‘fifty’ ), if category is ‘noun’.
Compositionality need not ignore pragmatics. The pragmatics of a sentence—its larger

context—can be part of the input to the compositional semantics. This is the previous case,
where the extra parameter is taken to be contezt of discourse. The problems involved in deter-
mining the scope and values of the relevant inputs is enormous, but they are not different in
kind from those of isolating, into discrete units, the semantic contributions of the constituent

or sentence itself [Partee et al., 1990. pages 293-294], [Linguist List, 1991, Nerbonne (Vol. 2,

No. 507)].
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Compositionality cannot extend only part of the way. Tosay that some linguistic construc-
tions can be interpreted compositionally but others cannot is to beg the question. Composi-
tionality is intended to apply to any sentence with the antecedent guarantee that this 1s a way
to figure out the meaning. If that is only true for some sentences, the problem then becomes
how to (antecedentiyv) tell which are the exceptions and how to interpret them. Should these
problems be solved. then the resulting method s compositional. Partial compositionality is

no help (in the theoretical sense) in determining an algorithm for semantics.

6.3.3 What compositionality is—severe

Compositionality in the fuil sense. that is. without the qualifications considered and rejected above,
is no joke. But compositionality in that sense is all there is. Fodor and Lepore argue that the
claim of compositionality 1= i strong one in that it precludes the concurrent upholding of two other
popular linguistic theses - the rejection of the anayltic/synthetic distinction and the identification
of meaning with inferential role. The argument, using as an example the sentence “Brown cows
are dangerous.” is that the meaning of this sentence has nothing to do with the inferential power
of the words and phrases as such. If the sentence is true, it is true because it is a fact about the
world and not derivable from the meanings of the constituents (so compositionality is threatened),
unless. of course. the meaning 1s taken to be distinct from the strictly analytic inferential power of
the constituents (so the analytic/synthetic distinction returns). [Fodor and LePore, 1991]

In natural language. compositionality is not a choice between well-formed alternatives. That is.
non-compositionality is not a theory [Barbara Partee, personal communication]. [t is not clear what
the implications are. therefore, of a rejection of compositionality. If we understood the universe of
possible semantic systems. then it is the properties of the complement of the compositional set that

we wish to investigate: lacking such an understanding, that formulation gets us no further.
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6.4 Formal Definitions of Compositionality

6.4.1 As in denotational semantics

Some versions of the principle of compositionality are stated in terms of allowance for substitution.

For example, Gamut elaborates the previous definition thus:
These two principles can also be presented as replacement principles.
e If two expressions have the same reference, then substitution of one for the other in
a third expression does not change its reference.
e If two expressions have the same sense, then substitution of one for the other in a

third expression does not change its sense. [Gamut, 1991. page 11]

In denotational semantics, compositionality is critical, allowing the straightforward incremen-
tal interpretation of computational expressions. Consider the Substitution Lemma (with £ for

evaluation and “[.]" for meaning) for the A-calculus, and its paraphrase:

E[LE/I)Edp=¢E[Ed) (p[EME P/T])

This states that the result of evaluating a substituted expression in some environment is
the same as evaluating the original expression in a modified environment. [Stoy, 1977,

page 161]

If we regard substitution of one expression for another (£, for I in Ey) as syntactic manipulation, and
modification of an environment (p) as semantic manipulation, then licensing of substitution amounts

to the same thing as the commutativity of syntactic and semantic transformation as described below.
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S

Figure 6.1: The elements of compositionauty and their arrangement

6.4.2 As a homomorphism between algebras

Compositionality may be formalized as a homomorphism between a pair of algebras G = (V, RY R el
the syntactic algebra. and H = (Z,RI.RY,...), the semantic algebra [Partee et al., 1990, pages
335ff]. These algebras may also be viewed as grammars, G for creating the set of well-formed syntactic
constructs. using operations /¥. and H for creating the set of well-formed semantic constructs, with
rules R™ . Since algebraic operators and grammatical rules can take various numbers of arguments,
we assume that each rule applie- .J that all are applied correctly
(using the set-theoretic implementation of tuples, or sequences, when order matters). For a semantic
function v to be a homomorphism. it must be structure-preserving with respect to corresponding
rules RY and R]Y; that is:

v (R¢(z)) = R (v(z))

In other words, the diagram in Figure 6.1 would be a commutative one, for every pair of corre-
sponding syntactic and semantic recursive rules R7 and R:,".

Is it necessary that each semantic rule Rf be so tightly coupled with a counterpart rule in
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the semantic domain R_;",’ Could compositionality be captured. in other words, by requiring that
every sequence of syntactic combinations R?,R?, ... RY resulting in an object b € V have some
corresponding realization in R}, ... R} resulting in z = v(}), but not necessarily in tandem? No—
unless the correspondence is predictable, unless RI* is antecedently mapped to R?, compositionality
is lost [Partee et al., 1990. page 337]. This is Fodor and Lepore's requirement of isomorphism [Fodor
and LePore, 1991].

The properties of algebras and homomorphisms entail that a semantic function v : ¥ — Z is

compositional if and only 1f it has all of the following Compositional Properties:

CPl: The semantic function v is defined over all y € Y that appear in some interpretable

compound, by the requirement of closure of the operations RY and RT*. Stated rigorously,

v(y) | = Ya€ {j| RE() = y}v(a) I]

CP2: The domain V is partitioned into a non-empty collection A of atomic objects and a

collection B of compound objects: J = AU B.

CP3: The sets V and Z are recursively enumerable, by the existence of the rules RY and R¥®
that produce them. If either of the syntax subsets A or B is recursively enumerable—if,

for instance. the set of linguistic atoms A is finite—then so is the other.

CP4: Forevery r € R¥ and yy,y2 € Y, if y1 = v2, then v(r(y1)) = v(r(y2)); the semantics of a

compound object depends only on its constituents and the method of their combination.

6.4.3 The existence of a compositional function

Many times the question seems to be not whether a particular known function v is compositional as
defined above, but whether a compositional function is available to do what we want. These cases

are those in which the domain Y is known, the range Z is known, and the mapping between the
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two is known (to some degree). Such appears to be the goal in natural language studies. We have
some grasp of both the syntactic algebra ¢ and the semantic algebra H. How they work together to
determine the semantics of sentences is partially known. or guessed. as a compositional function v'.
This is not to say that v/ is partially compositional, but rather. that v’ is fully compositional and ¢’
approximates v: perhaps v’ C v. Visualize two semantic realms. one the commutative diagram shown
in the previous section. with the down-arrows given by the semantic function v’ that is our best
approximation, and the other realm. of indeterm?1s1e structure, comprising a function v : Y — Z,
which is represented by such a diagram on.. . .. 1.ed compositional.

For example, it's not too controversial to maintain that v contains a syntactic rule RY that
somehow allows the construction of “Women generally voted for it” from the syntactic elements
‘women’, ‘voted". ‘generally’. and so forth (other rules in RY having allowed their construction, in
turn. from ‘woman’, ‘vote. etc.), and we assume that there is a corresponding semantic rule RY
that assembles the meanings, the values returned by v for the items ‘women . “voted’, ‘generally’,
and so forth, into a coherent meaning, or v-value, for the whole sentence. Our approximation of
these processes of the true semantic function v, in various natural-language understanding programs
or other linguistic formalisms. is v'. The activities of linguists—including discovery of exceptions,
revision of rules. ongoing discussion. and the consensus that no complete grammar for any natural
language has yet been written—demonstrate that two premises are held in linguistics: (1) v differs
from v, and (2) there is some v whic" "~ the goal.

Call v the “natural” semantic func. .+ and understood by the competent
Anglophone) and v’ the “formal” semantic function (.. _.csented, say, by any large English-language

machine-understanding project), and distinguish these possible relationships between the two:

e The formal function is “conservative,” including only semantic pairings already deemed natu-
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ral, and maybe not all of those.

V(y) =z = vy) ==

e The formal function is “liberal.” including all semantic pairings deemed natural, and possibly
more.

viy)==: = Viy) ==

e The formal function obeys the law of the excluded middle in the natural semantics.

wy) ==&z = ) = V(Y # 0

This is meant to be an example of the successful capture of some particular natural rule of v

in the formal v’. Many similar constraints are possible.

e The formal function corresponds exactly to the natural function.

It is not clear, for any given formal attempt v/, exactly which situation holds. If our v' cannot
accommodate “Susan dated an occasional sailor” because our rules only allow the adjective (‘oc-
casional’) to modify the noun following it (‘sailor’), then is v’ too conservative? Should we add a

syntactic/semantic rule pair:

RY: S — NP VP ADJ NP
'RI‘: Turn the ADJ into an ADV and interpret it as a modifier for the VP, the first NP

as the subject, and the second NP as the object.

And would »’ then become too liberal? It would accept and interpret sentences such as “Susan
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dated an often sailor.” which are (probably) not valid.

6.5 Compositionality in SNePS

The design and development of SNePS is driven. to some extent, by the requirements of natural
language (English) competence [Shapiro and Rapaport, 1991]. In fact. according to Smith, it can

hardly be helped:

So the metaphysical problem for semantical theorists is not one of referring to the world
by using theoretical language, but rather something closer to the opposite: there is no
way of referring to the world except by using language. [Smith. 1987. page 16: emphasis

his]

The considerations given for natural language apply to SNePS, insofar as the meaning of a node is
intended to be expressible. The effects of u on the compositionality of SNePS semantics needs to be

considered.

6.5.1 The elements of compositionality provided by u

Consider the diagram arranging the domains and mappings, the commutativity of which establishes
compositionality, Figure 6.1. Assume that the sets of nodes BASE and SENSORY (those that
make up individual networks in SNets other than the molecular nodes given as the set SNodes)
are provided or generated in such a way that both sets are recursively enumerable, and ignore the
questions of subnetworks defined by SCOPE or by ¢ that would force us to consider, for instance, a
separate set MOLATOMS. We have this correspondence between the elements of compositionality

and the machinery of pu:

Y:  Semantics are provided for all classes of nodes, so the syntactic domain is SNodes U BASE U

SENSORY.
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Z:  The semantic domain is hypersets over the atomic nodes. VSENSORY -

RY:  The syntactic rules that make new SNodes from old, by definition, are the rules SR.i. We are
somewhat at a loss to point to the mechanism that provides new BASE or SENSORY nodes,

relying on the assumption above for that.

RH. The semantic rules that make new hypersets from old are bundled in a single mechanism, the
solving of systems of equations &, one for each indeterminate, or new node. The abbreviation

SO L¢ shall denote this mechanism.

v+ The function v that assigns semantic values to syntactic values is, of course. x. We will abuse
notation to the extent that g can take a set of nodes as arguments and return a set of respective

hyperset values (computed independently of each other).

The result is the diagram shown in Figure 6.2, and the question whether the diagram is commutative

is the question whether. given n € SNodes and a set z of new nodes, this equality holds:

p(SR.i (n.z)) = SOLe(p(n, z)) (6.1)

A reader who has carefully considered the Solution Lemma will expect the answer to be “yes”,
having recognized that the Solution Lemma itself is some guarantee of a form of compositionality.
That sense could be stated as “If you can define new hypersets in terms of old hypersets and each
other, then you get what you would have gotten, definitions in terms of the original contents, if
the new hypersets had been part of the original system; you can build and then interpret, or you
can interpret and then build.” And that expectation is borne out by examination. Traveling first
across the top of Figure 6.2 from left to right, let SR.i (n,z) = y (for one or more node-formation
rules SR.i), creating a new syntactic item y that contains all the proper connections between parts

of the structure dominated by n and the new nodes (and arc labels) included in z. Therefore u(y),
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SR.i

SNodes SNodes
|
H ! H
' '
VsENSORY - VsENSORY
SOL¢

Figure 6.2: Compositionality of p

represented by the traversal down the right side, will reflect all of the connections and relationships.
Now consider the other traversal from the top left to the bottom right, first traveling down the left
side of the diagram in the evaluation of u(n), resulting in a collection of hypersets z, followed by the
solution SOL of a set of equations & that define the unknowns z (in terms of z U z). That solution
will, by the Solution Lemma. result in one or more hypersets that reflect all of the connections and
relationships captured by p(n) and u(z). So p(y) = SOLg(z), verifying Equation 6.1.

There is a troublesome aspect to this. however. The system of equations & used in the solution
step SOLg is not necessarily going to accord with the original hyperset definitions. Some equations
in £ may have to override old ones. The definition of circularity chosen. in effect adding out-arcs
to base nodes, means that new molecular nodes that point into a base node change the semantics
of the base node (and consequently change the semantics of all molecular nodes that use it). An

example follows.
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6.5.2 Example testing compositionality

Recall the interchange regarding the table shown in Figure 4.1 and its extension with the next sen-
tence shown in Figure 4.10. Let us test for the ;;roperty in Equation 6.1 by computing u(b2) after the
new propositional node m32 and its subordinate structure has been added (through some unspecified
SR.i rules), and comparing that to the hyperset that results from solving the system of equations
defining the nodes of the old structure and the nodes of the new structure. No circumscription of
the network is done.

The S* network that results from incorporation of the new sentence’s concepts is shown in
Figure 6.3, and. by earlier results. the hyperset p(b2) is the apg rooted at b2: it is unnecessary
to go through the decoration and solution procedure. So we have the value of the expression on
the left-hand side of Equation 6.1. To obtain the other side, a system of equations £. one for each
unknown in X expressing it in terms of a hyperset from V4 y x, must be written and solved. There
are two problems: What is A7 What is X7

For A, the obvious choice is the atoms already in the network:

A = {Nancy, ask—whether. Tom. inamimate—object, force, 2, exert, table}

But this means that the solution would be hypersets over these elements only, not including the
new sensory data say-that and think. Under strict adherence to the development in §3.4, those
two items, like all the new “unknowns”. should be members of ', but that would entail equations
in £ defining them as hypersets over A U .Y, and there are no such equations. The only reasonable
method of incorporating them is to let A be automatically extended by new sensory items—call
them A+—before computation of the solution. In other words, the step labeled SOL¢ is amplified
by a “preprocessor’ that sets A to 4 U A*. This policy does not violate the theory of non-well-

founded sets—we can define A to suit our convenience—although it somewhat degrades the elegance
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Figure 6.3: S™ of TABLE interchange after Tom's reply
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of its application to SNePS. The whole problem could be avoided by assuming that A consists of all
possible sensory atoms from the start, but such a policy would clash with what we know of cognition
and with SNePS principles. [t is not reasonable to assume that a semantic mechanism has access
to all possible future inputs. Such a policy may be reasonable to explore, but is beyond the present

context. Therefore. for the derivation of the solution:

A = {Nancy, ask—whether. Tom, inamimate—object, force, 2, exert, table.say—that, think}

Now what is .X'? According to the rules. each new node should be considered an unknown and
get a defining equation of its own. so let X' = {m32,m31, m26.1m30.m29. m27} and write equations for

cach node, with each expression on the right being a hyperset from V4 x:

m32 = {b2,m31}
m31 = {m26,m30}
m26 = {say—that}
m30 = {b2,m29}
m29 = {m27,m28}
m28 = {m23,0}

m27 = {think}

But b2 appears on the right-hand side of the equation defining m32 (as it must, since m32—b2), so
it must be in X or A. It does not make sense to treat it as an atom, since we are interested in its

membership structure, so it must be treated as an unknown. The equation that defines it can easily
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be added to &:

b2 = {m24.m5.m32,m30}

This definition of b2. however. contradicts the one already in force:

b2 = {m24.m5}

Definitions of the hypersets already in the network are critical to the assignment of hypersets to m32
and the other new nodes. Assume that they are used as is. except that the original definition of
b2 is replaced with the new one. Then the system & would enable construction of a solution that
looks. of course. exactly like Figure 6.3. since the network is the source of the equations. Therefore
we have verification that:

1 (SR.i(b2,m32)) = SOL (p (b2.m32))

At what cost?—the reconstruction of whichever of the original hypersets are redefined by £.
The solution mechanism requires a second preprocessor that revokes the original definition of any
hyperset that is redefined. This will occur any time that the congnitive agent acquires a new concept
that dominates a base node. where the semantic influence goes both ways. Again. non-well-founded
set theory can accomodate the preprocessing, but its compositonal legitimacy is more dubious. Both
the redefinition of given hypersets and the redefiniton of the original A are instances of the “backward
refinement” that compositionality is, strictly speaking, supposed to avoid. In other words, we see
that g can be shown to be compositional under Equation 6.1, but only with careful qualification of

the mechanism. There is precedent, however, for such an idea, as follows.
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6.6 Compositionality with Qualification

While disavowing any ability to provide one, Fodor and Lepore suggest that a graded notion of

compositionally might solve the problem. Smith makes a similar suggestion:

__.we should license a full range of types of correspondence, kinds of circumstantial
dependence, and varieties of registration (continuous, discrete, compositional), in terms
of which subsequently to characterise pictures, maps, graphs, schedules, models, images,
and so forth, as well as sentences, formulae, and elements of language. [Smith, 1987,

page 14]

Fodor and Lepore ask “But what would a graded notion of compositionality be like? And, in
particular, how would such a notion do what compositionality is required to do; v1z. account for
systematicity, isomorphism and productivity?” [Fodor and LePore, 1991, page 341]. Since they
define systematicity as the ability to express propositions that are semantically close to P given
the ability to express P, then yp provides it in a literal sense. The meaning p(n,) of a node n,
that is physically close, in a network, to another node na, will be semantically close—in terms of set
contents—to g(n2). For isomorphism, they require that if a sentence S expresses the proposition that
P, then syntactic constituents of S express the constituents of P. While the set-theoretic construction
of p(n) for some node n appears to reflect this nicely, their additional statement that the structure
of sentences should be isomorphic to the structure of propositions they express leaves p at a loss if
“structure” is intended to be more than set membership. As for productivity, the ability to express
an unbounded set of propositions, g has that by virtue of the easy generation of non-well- founded
sets from others, with or without new atoms.

In the foregoing example, it appears that the static semantics is compositional, but the dynamic
semantics is not. More investigation is required to elaborate on this conclusion, and measure its

verisimilitude for other formal semantics.
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6.7 Summary

Compositionality of semantics is a strict requirement, best expressed rigorously by the commu:ativity
of a diagram showing that syntactic composition of syntactic units into a syntactic aggregate tollowed
by semantic interpretation is the same as semantic interpretation of syntactic units followed by
composition into a semantic aggregate. Yet, as noted by Partee et alia at the beginning of this
chapter, there are plenty of elements to make precise, and therefore plenty of room for argument.
What are the syntactic units? What is the semantic interpretation? What are the two types of
composition? All these questions, and others, reflect the difficulty of partitioning the semantic
process—even if formally defined—into reasonable discrete steps.

In the case of u. to claim compositionality is to claim that it can be applied to SNePS nodes
cither before or after they are combined into SNePS networks. and that the hypersets returned as
values by u are the same. This is so. as long as the context, the set of atoms, .4. and the set of
equations to solve. £. are adjusted appropriately, a policy which may be criticized as ad hoc in the
the same way that others discussed here are criticized. The use of non-well-founded sets, if nothing
else, gives a richer flavor of compositionality than is found in the world of inductively defined or

well-founded structures.
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Chapter 7

Alternative Semantics and Other

Issues

7.1 Introduction

In this chapter. a variety of issues. nagging questions, and hunches regarding SNePS are briefly
considered, mostly concerning other aspects of semantics and possible extensions to or modifications
of . These alternatives are discussed independently, so the reader should not assume that the

modification of one section builds on that of the previous one.

72 Alternative Semantics to Handle Arc Labels

What is the role of arc labels, and what exactly is the nature of their “punctuation” function? In
[Shapiro and Rapaport, 1987], the two networks given by syntactic rules SR.4 and SR.5 differ only
in that one has an arc labeled PROPERTY and the other has an arc in the same position labeled

PROPER-NAME: the two networks have different semantics, as expressed in the semantic rules SI.4
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and SI.5.

SI.4 m is the Meinongian objective corresponding to the proposition ti © i has the
property j.

SI.5 m is the Meinongian objective corresponding to the propositiocr  :at Meinongian
objectum i's proper name is j. (j Is the Meinongian objectur.. 'hat is t's proper
name; its expression in English is represented by a node at the head of a LEX-arc
emanating from j.)

S

R.4
SR.5
UBVG> PROPERTY 0B JEC'i/C%DPER-NM

[f arcs have no semantic import. but the meaning of a node is the entire network in which it is em-
bedded. in what principled way can the “structural” contribution of an arc be distinguished from the
~semantic” contribution of a node? If arcs make fixed contributions to the meanings of molecular
nodes, they should be involved in the semantic function p. What follows in this section are some
ways it might be done. using the arc labels in their formal sense as the set of relations R given in a

SNePS system.

7.2.1 Nodes capturing relations

The relations are concepts in their own right, and therefore nodes. How could the “nodification”
of R be done in a way that minimizes violation of the SNePS paradigm, explicitly maintaining the

pairwise relations between nodes somewhere else than in the arc label?

1. They are a special type of node with indegree one and outdegree one:
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These are reminiscent of Conceptual Graphs [Sowa, 1984], but do not belong here. Such an
alternative is unprincipled in its violation of the Uniqueness Principle. A SNePS network
cannot contain multiple nodes standing for “PROPERTY”, i.e., multiple nodes n such that [n] =

PROPERTY.

Perhaps they are molecular nodes, one for each possible relation.

A5 )

l‘\f.‘y\l i ™
e

e

Then a node representing a particular relation r has an in-arc from every molecular node that
is currently construed as containing that relation r in its cableset. and an out-arc to every
subordinate node that is currently construed as the node n in a wire (r,n). But where do
they come from? In the SNePS paradigm, molecular nodes are built as bundles of subordinate
concepts. That means that the arc-node stand:mg for PROPERTY would be created before any

use of it is made. i.e.. before any arcs point into it. This does not seem right.

Furthermore, a “crosstalk” problem results. If the original three sets of connections were
mt — j1, m2 — j2, and m3 — j3, each labeled with PROPERTY, the creation of a single
PROPERTY node now has mi also dominating j2 and j3, and so forth. This is certainly not

right.

So maybe arc-nodes r are best thought of this way, dominating both the original parent and

child:
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PROPERTY

But again. what is the cause? Under what circumstances does a cognitive agent build the
molecular node for PROPERTY? And is it to be a unique node? If so. there would be no
distinction between the sets of 0BJECT nodes and the set of PROPERTY nodes, let alone between

the propositions that “m1 has property j1” and “mi has property j2” (crosstalk again).

Perhaps they are not to be “nodified” as molecular nodes at all. but as base nodes.

\‘_‘“/. 5 ‘||

N

PROPERTY

Insofar as they behave as primitives. this is appropriate. Note, again, the incredibly high
degree of connectivity required. All nodes that currently have a PROPERTY out-arc would
dominate the unique PROPERTY node. No SNePS researcher should shrink from an incredibly
high out-degree or in-degree, after consideration of the effects of the Uniqueness Principle on
the node for, say, the concept ‘mother’, but that rampant domination would, again, lead to
the “crosstalk” problem. Computation of semantics under g, treating PROPERTY as a base
node would not distingush the assignment of the property j1 tomi from the assignment of the
property j2 to m1: computation of the meaning of m1 with any other semantics would suffer

the same ambiguity.
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These failed attempts show that “nodifying” relations, to construct from a SNePS network a graph-

ical structure of only nodes and homogeneous connections for Aczel’s theory, does not work.

7.2.2 Case frames

[t is case frames that are considered to be the units of meaning in the semantic interpretation rules

SLi of [Shapiro and Rapaport. 1987]. which give the semantic domain Z as English statements.

SI : { SNePS case frames from SR rules } — { English statements }

Although appealing i 1ts own way. 1t is a different semantics. The question where and how the base
nodes appear would have 1 be clarified in order to make the semantics compositional as seems to
be intended. and it is not clear that g lends itself well to expression as English statements, the range
of the case frame semantics. I'he function g, in its dependence on the notion of the hereditary set,

does not respect case {ranmes as units.

7.2.3 Subgraphs induced by relations

Another approach to the semantic consideration of the relations given by arc labels is to view the
part of the SNePS network labeled by that relation as the semantics of that relation. Given one or
more relations. the subnetwork induced by the arcs labeled with those relations shows the (collective)
meaning of those relations to the cognitive agent. So to see, for example, the semantic contribution
of the relation PROPERTY. extract from the full network all connections made with arcs labelled
PROPERTY. Consider the example SNePS network from Chapter 2, Figure 2.1. The subnetwork
induced by the relation set { OBJECT, ACT } is shown in Figure 7.1. This makes the semantics of
relations as arc labels strictly extensional. To say that Figure 7.1 shows the meanings to this (very
limited) cognitive agent of the relations OBJECT and CLASS is to say that the meaning is simply the

set of instances of the relations.
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Figure 7.1: Subnetwork of Figure 2.1 induced by { OBJECT. ACT }
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Figure 7.2: The small subnetwork Z

Would any such subnetworks be connected graphs? Consider. for example. the MEMBER/CLASS
arcs, corresponding to what appear to be robust and fundamental notions. Perhaps a fully-developed
“mind” implemented in SNePS wouid have these arcs running through the bulk of the concepts.
siving this approach a richer notion of the meaning of an arc than appears in the small example

above. This is a question that must be settled by study of full cognitive agents.

72.4 Relations as constituents of molecular nodes

The definition of a molecuiar node is a set of a wires, and wires are ordered pairs (relation. head-node},

and ordered pairs can be expressed as sets:

(a.6) = {{a}.{a.b}}

These properties can be used to enhance the original u semantics of Chapter 4 to provide a much
richer value for the semantics u(n) of a node n, which treats the relations R as atoms. along with
the sensory data.

Let us return to the examples of §4.5. We take the network context to be the very restricted
7. shown in Figure 7.2. from which Z of Figure 4.6 was derived (through Z’. by ignoring parallel
arcs and arc labels). Instead of the semantically sterile labels for molecular nodes, we use their

definitions, given in §2.5. as sets of wires. which are ordered pairs, and convert the ordered pairs to
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seLs.

mi = {(LEX.Nancy)}
= {{{LEX}, {LEX.Nancy}}}
m2 = {(PROPERNAME.m1), (OBJECT,b1)}

= {{{PROPERNAME}, {PROPERNAME.m1}}, {{OBJECT}, {OBJECT.b1}}}

So for this small example, the set of atoms, extended to include the relations that participate in the
semantics, is A = {Nancy, LEX. PROPERNAME, 0BJECT}. To apply the Solution Lemma to the same
task as before—finding assignments to the selected set of indeterminates, .¥' = {m2,b1}—we need a

system of equations expressing them as hypersets over Au k.

m2 = {{{PROPERNAME}, {PROPERNAME. {{{LEX}, {LEX.Nancy}}}}},
{{OBJECT}, {OBJECT.bi}}} (71}
b1 = {m2} (7.2)

Compare these equations to the system given in Equations 4.1 and 4.2, where the set of atoms was
A = {m1}. In Equations 7.1 and 7.2, m1 no longer exists as an object. having been superseded by
its definition as a set of wires.

As the solution f. of course. we want hypersets over A, that is. hypersets from the universe Vg,

such that the following relationships are maintained:

f(m2) = {{{PROPERNAME}, {PROPERNAME. {{{LEX}, {LEX,Nancy}}}}},
{{0BJECT}, {OBJECT. f(b1)}}} (7.3)
fb1) = {f(m2)} (7.4)

134



o
f(m2) = oo .
T % £(b1)

/_‘\_
/ < i A (
h / \_“/
\ " 1
\ Y

/ .

.w\_,_\\ —

o Hu:

.\\ \

bt \I

i \

Y {
h__./

[ A

', /'""\

"'-"‘\ )
O/ 3T
1/ >
| . Fancy
JADEERNARR el

LEX _

FFigure 7.3: Assignments to A’ under solution f

The proposed solution uses the set

r = {{{PROPERNAME}. {PROPERNAME. { {{LEX}, {LEX.Nancy}}}}}, {{OBJECT}, {OBJECT. {z}}}}

in these assignments to the inderminates .U

f(m2) = =z (7.5)

Il
——
&
——

f(b1) (7.6)

and is shown graphically in Figure 7.3. Compare these results to those using Z°, in Equations 4.5

and 4.6 and Figure 4.7.

135



Verification is tedious but straightforward:

f(m2)

I

(proposed solution)

{{{PROPERNAME}, {PROPERNAME. { {{LEX}, {LEX.Nancy}}}}}, {{OBJECT}, {OBJECT, {z}}}}

(definition of r)

{{{PROPERNAME}. { PROPERNAME. {{{LEX}, {LEX.Nancy}}}}}, {{OBJECT}, {OBJECT, f (b1)}}}
(Equation 7.3 is verified)
f(b1) = {.r}

(proposed solution)

{f(m2)}

(Equation 7.4 is verified)

We have computed the semantics of nodes in a standard SNePS network Z. not the derived Z'.
Giiven a SNePS network C. the set of molecular nodes MOLFULL is not unstructured primitives,
but consists of cablesets. sets of ordered pairs (r.n), and our solution assigns hypersets over the
atoms A = SA U LA U R. We have a new semantic function. to be called p, to note the inclusion
of relations:

e : MOLFULL (C) U BASE (C) — VsaucAuRr)

Even multiple arcs from one (molecular) node m to some other node are not special cases, since
they must have distinct labels and therefore form distinct constituents of m. The definition of the
decoration D, is the same for nodes s € SENSORY, a € MOLATOM, and b6 € BASE (except for

the use of C'), but differs for m € MOLFULL:

Definition 7.2.1

D.(s) = tag(s)
D.(a) = tag(a)
D.(m) = {(r,D(n))|{r,n) € m}
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D.(b) = {D.(m)|C has an arc from m to b}

Since, for full molecular nodes. u depends exclusively on the decoration, the definition of u, is

essentially unchanged.

Definition 7.2.2

pr(m) = Dy(m)
pe(b) = f(b). where f 1s the solution to this system of equations:
b={ D.(m)|beD(m)}

m; = { De(my)}, ¥Ym; such that b € D.(m;)

Notice that this method turns out to be like the subnetworks induced by a set of relations,
discussed in the previous section. All uses of the PROPERNAME relation, for example, show as arcs
with heads at a single node. the atom PROPERNAME, as Figure 7.3 reveals. It is not the derived SNePS
network S* that has this structure, however, only the assigned hypersets.

Though complex. this enhancement of y is significant for reasons of the integrity of the semantics.
[t seems obvious that the two arcs labeled PROPERTY and PROPERNAME in SR.4 and SR.5 above have
something to do with the establishment of distinct meanings for their respective dominating molec-
ular nodes. In fact. they could both occur in the same cognitive agent. as discussed in Chapter 4,
since the BUILD command of SNEPSUL would not judge them to violate the Uniqueness Principle.
In other words. Theorem 3. which states that n = m < u(n) = u(m), would no longer have to be
qualified by the exclusion of the case where n and m dominate exactly the same structure but have
different arc labels. Theorem 2 would no longer hold, however, since the SNePS network itself does
not show the hyperset structure rooted at nodes if relations from the arc labels are to be atoms
along with the sensory nodes.

The treatment given above distinguishes SNePS from other semantic network approaches that
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have explicitly-named relations between nodes, but no way to build them into nodes themselves at
a fundamental level. The definition of the SNePS object “wire” as a node and relation is the key
here. (Of course. any semantic network treatment could have such a defirition added to it.) On
the other hand. the original semantic function u of Chapter 4, which ignores arc labels in favor of
node identifiers and connectivity, shows what participates in the meaning of a node (that is, what
other nodes) without making a commitment as to how. and could be applied (with its handling of
circularity) to any graphically structure -f representation—even those that do not
allow propositions modeiled to have 1. - arguments 10 a single position (see [Shapiro, 1991, page

138ff.] for comparison).

7.3 Acquisition, Reference, and Retention of a Concept

Let us attempt to reconsider some questions of § 1.4 ir light of the foregoing analysis:

e Suppose [n] is C’s concept of Perdita’s old car. Suppose [m] is D’s concept of Perdita’s old

car. What makes [n] and [m] the same thing, the same external object?

o Suppose [n] is C's concept of Hugo's dog and that this interchange takes place between C and

D:

C: She always hated Hugo's dog.
D: But Hugo doesn’t have a dog.
C: Well, maybe it was Manuel’s dog.

D: Oh, you mean Manuel’s cat.
What happens to [n]?

A group of sensory nodes that serve as atoms to two different cognitive agents, or to the same
agent at different times, will define hypersets that have the bulk of their structure in common. Agent

C’s base node (or molecular node) representing Perdita’s old car will be much like D’s, because
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they assign very similar hypersets to the sight. the memory, the words. or whatever other sensory
associations are in effect at the proper times.

How are later references to Perdita’s old car bound to the same node? The BUILD mechanism
searches to some SCOPE. just as a dictionary definition carries out its duty to some reasonable
point.

Since old beliefs are not deleted. a cognitive agent retains its experience, its network grows
larger. and the meaning of a node n expands over time. This is because its dominating network
(corresponding to its assertional status) expands, of course; since arcs cannot be added. its structural
status does not change. \Whatever n was conceived as dominating is what 1t always dominates, even
if virtually all of the logical content is overridden by qualification and contradiction due to further
Jdomination of n. Such a phenomenon changes Hugo's dog into Manuel’s cat: both C and D would
presumably claim that they are “talking about the same thing” throughout.

But the content of the past changes constantly. The node n may participate in the meaning of
many new nodes, and its own contribution in terms of meaning will change, since it is dependent on
its relation to the entire network.

It seems that part of the cognitive significance of a concept, and therefore part of the meaning of
a node. should be the circumstances under which it is acquired. In other words. the full meaning of
concept z to cognitive agent (' will inevitably be different from the full meaning of z to cognitive agent
D. unless they acquire r under exactly the same circumstances. Since that is virtually impossible,
we can conclude that the respective meanings of = are different from agent to agent. This is not
as outrageous as it may seem (see [Fodor and LePore, 1991] for scornful remarks), since the full
meaning of a node is irrelevant to virtually any application, which will necessarily be limited to
calculation of p to some SCOPE short of the full semantics. In other words, C’s concept of Perdita’s
old car and D’s concept of Perdita’s old car will never be *-equivalent, but they will be s-equivalent,

to some SCOPE s. or é-equivalent, to some distance of limited semantics i
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An ontological consequence of this principle would be that all cognitive agents are created with
a context already in place. A graph-theoretic consequence of this principle would be that all SNePS
networks are connected. Since the Uniqueness Principle requires that two instances of the same
concept be represented by the same node, even if conceived at different times under different cir-
cumstances, incorporating this context of acquisition entails that an existing node (representing, say,
the New York State Legislature) be found when the cognitive agent needs it even if it were originally
acquired under quite different circumstances, and that all new contextual elements be built in with
new nodes and arcs.

Accidental juxtaposition of nodes because of circumstances of acquisition may be significant.
Such juxtaposition will affect the SCOPE-wise meaning of a node. But is there such a thing as
~accidental juxtaposition”? SNePS has no provision for connections on that basis. nor does any
developed cognitive model known to this author. But she suspects that accident and coincidence—
like circularity, usually abhorred—should rather be embraced. How can the rich texture of the
world’s semantics be approached without it? The semantic network representaton is a good model
for this, providing a natural way for. say. the scent of lilacs to be forever associated. in some mind,
with certain revelations of the past because of the setting of a family reunion. [t would be interesting

to see how this might play out in “lifesize” examples of SNePS cognitive agents.

7.4 Conscious versus Subconscious Processing

In an avowedly intensional system such as SNePS, the distinction between transparent and opaque
contexts must be known to belief revision processes, in order that assertions be updated correctly.
Suppose the cognitive agent C, with separate nodes for the Morning Star and the Evening Star,
learns that they are physically the same and, indeed, are both the planet Venus, which it knows
as a gaseous mass. Then the correct update would also attach “is a gaseous mass” to the Morning

Star and Evening Star nodes, since that predicate is a transparent context, but would not attach
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“was shining in the sky when we fell in love” (originally attached to the Evening Star) to the other
two nodes, since that predicate is an opaque context.! How much, if any, of this complex processing
need be conscious, or nodebased? (How much is opacity in the eye of the beholder? And should
“transparent vs. opaque context” be a concept represented by a node?)

In fact, the general interaction between conscious and subconscious processing is an intriguing
issue. How much does a cognitive agent know about its own reasoning? Observers of human nature
agree that we use inference rules without being able to formulate them (as we seem to use natural-
language grammars without “knowing” the grammar or even knowing what a grammar is); is the
converse true? What are the semantic processing implications of knowing an inference rule without
using it? Are there any semantic processing implications of adding nodes that represent the same

concepts used in arc labels. such as CLASS. PROPERTY, MAX. etc.”?

7.5 Assertion-Dependent Semantics for Base Concepts

Suppose we wished to consider a more personal meaning for a base node. a meaning that depends
not on its location in the entire cognitive network of asserted and unasserted nodes. but its location
in the web of beliefs held by that cognitive agent. given by asserted nodes.

Let the small SNePS network of Figure 2.1, in which nodes m2, m7 and m8 are asserted, the
others not, be called J. Node m6 represents the proposition that “(the concept represented by) b2
is sweet”, a proposition to which the cognitive agent modeled, CASSIE. has not committed a belief,
but which CASSIE knows John to believe. as shown by m8. In this section. we consider a semantics
for b2 that does not include mé directly, on the theory that if CASSIE doesn't believe it, it is not
part of the meaning, to her, of b2.

The approach will be to trace back from the base node to the nearest dominating asserted

1Or so we claim for the purposes of this example. A transparent context allows substitution of equivalents, while
an opaque context does not.
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nodes. and treat those nodes as the members of the base node’s set for purposes of the decoration
and subsequent computation of p. Applying this to the current example yields {m8,m7} as the
decoration of b2. rather than its immediate parents {m6,m4}. The decorations of m7 and m8 will,
however, still include the unasserted mé and m4. What we are after 1s inclusion of the unasserted
nodes only under the aegis, so to speak. of some beliefs held by CASSIE.

The system of equations to be solved, taking m9 as an atom, is:

b2 = {m8.m7}

m8 = {bl,m3,m6}
m7 = {bl,m3, mé}
b1 = {m2.m7,m8}
m2 = {mi,bi}

mi = {John}

m3 = Ielieve}
mé .. b2}

mé¢ = {b2,m9}

ms = {sweet}

Note that although b2 does not include mé or m4, both mé and m4 include b2. Figure 7.4 shows
the distinction between the old J* derived to show the backward arcs depicting the set membership
of base nodes. and this new approach to the J*. The base node b1 will get the same decoration
under the new approach because its parent molecular nodes are all asserted.

Formalization of belief-semantics for base nodes is accomplished by a revised definition of the

decoration D. to be called Dg, to involve assertion’.

Definition 7.5.1

Da(s) = tag(s)

Da(a) = tag(a)
Da(m) = {Da(c)|S has an arc from m to c}
Da(b) = {Da(m))|m € db(b) in S}

The function db(n), for “dominating beliefs” of a node n, yields a set of molecular nodes.
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Definition 7.5.2

db(n) = {m|m — n and m asserted} U {db(m)|m — n and m not asserted}

The definition of yq is the same as p, except that it uses the decoration D,.

Definition 7.5.3

pa(m) = D,(m)
wa(b) = f(b). where f 1s the solution to this system of equations:
b={ Da(m)|b € Da(m)}

m; = { Da(mg:)}, Ym; such that b € Da(my)

The computation of j4(b2) yields the apgin Figure 7.5.

This semantics seems to have the properties desired, as there is no way to reach mé from b2
without “going through” m8. CASSIE’s semantics of the concept known as the girl next door does
ot include the idea that she is sweet. but does include the idea that John thinks she is sweet. This
is certainly a viable semantics, to be favored over the assertion-independent version of Chapter 4

if semantics is to be completely situated. that is, dependent on only the cognitive agent’s point of

view.

7.6 Assertional Status at a Node vis-a-vis Meaning

A more pointed question, related to the one explored above, is whether a node should be taken to
have the same meaning whether believed or not. Incorporation of the assertional operator ‘!’ as
an added facet of meaning would amount to inclusion of it as an atom in the set constituting the

meaning of the node. But, as discussed above in terms of the arc labels/relations question, p is
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Figure 7.5: Hyperset serving as pq(b2) under assertion-dependent p
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a plain, old-fashioned. static semantics, based only on hierarchical set membership. The current
theory of SNePS supports neglect of the semantic influence of assertion: “...the ‘I’ does not affect
the identity of the node. nor the proposition it represents” [Shapiro, 1991, footnote 2].

Here is the problem: Consider two agents. C and D. with two nodes. n¢ and np, identical (or
at least identical as far as the current scope is defined) except that ne 1s not asserted, and np is.
They both dominate lots of interesting structure and have complicated decorations but it ends up

that u(nc) = p(np). Here is the obvious question, and what seems to be the right answer:

Q. Do nc and np mean the same thing?

A. Yes. except that np is asserted.

[n other words. the best answer is neither an unqualified *no” nor “ves . But any treatment that
includes assertional status as part of the p-semantics will have to incorporate it right there as part
of the meanings of nc and np, before their child nodes are examined. decorations are computed,

etc. So the answer to Q will simply (and immediately) be:
A. No.

This violates what we mean by "meaning’. We could compute the meaning and then handle the
assertional question. but that leaves p just as it is now. The answer to Q, in other words, that is

currently provided by u is:
A. Yes. And you want to know their r sertional statuses? Look elsewhere.

Assertional status of an arbitrary n- . _important to p(n) if assertional status affected the
computation of p(m) for some other t:. ¢ m connected to m. But to make the semantic mechanism
sensitive to the current knowledge/belief status of the agent would be something of a violation of
intensionality, insofar as it might limit the first-class standing of a concept. So p, as developed here,
has nothing to offer in response to Question 2 in § 1.4.

Nevertheless, SNePS researchers may not feel comfortable ignoring assertion in the computation
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of the semantics u. as they might not at ignoring arc labels. If it is not appropriate to build in

assertional status of a node through hypersets, there remains another way, highly SNePS-compatible:

Conceptualize the assertional mechanism. Use nodes to do assertion. How? Here are several possible

degrees, under the SNePS paradigm.

L.

Consider a node standing for ‘belief”. Is it necessary? A cognitive agent should not be required
to “know" about helief. the counterpart of assertion, in order to have beliefs. Although it is a
fundamental notion. there is no evidence that cognitive agents must have that notion before

they can assert propositions. In SNePS, the necessary reasoning is provided by path-based

inference [Shapiro. 1U91]. which does not rely on any conceptualization of its mechanism.
But human coznitive avents do eventually acquire the notion of belief. presumably as a node,
while entertaining wtual beliefs. asserted propositions. also. Shouldn’t the full meaning of
that BELIEF node ~omehow take into account those assertions? The most telling argument
that a node for “helief” must exist in a (fully-developed) cognitive agent is that a cognitive
agent “must be able 1o represent other cognitive agents. both as objects and agents of belief”
[Shapiro and Rapaport. 1091, page 217].

Now consider a node labeled “belief’. Is the lexical assignment necessary? By the Uniqueness
Principle. if there 15 a node standing for ‘belief” at all, it must be the one to which the
label (via LEX arc) is attached. Can we allow conceptualization before the naming of it?
Cognitive verisimilitude would entail that a cognitive agent have a node for the concept ‘belief’
independently of the acquisition of the term. Note that later lexical assignment cannot be
done with the addition of the LEX arc; mechanisms such as EQUIV/EQUIV must suffice. The
semantics g is no different in this regard from any other semantics defined over nodes. The
assignment (somehow) of the word ‘belief’ to the node affects the meaning only insofar as it

then encompasses the word in addition to all pre- existing elaboration.
Now consider a node performing belief. In other words, if assertion is to be conceptualized
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as a node. shouldn’t there be some relationship between it and node-based reasoning? And
even between it and path-based reasoning? Else where would path-based inference come from,
given that its placement in the mind of the cogitive agent would make it a node, and given
that nodes are the only raw material available? And, of course. if it (or any component) is
a node. then by the Uniqueness Principle, that node is also the locus of any concepts about

belief.

4. For a possibility that is speculative well beyond the current SNePS paradigm. consider a
SNePS mechanism that spontaneously creates its own node (or other mechanism) for belief,
independently of any sensory data input. A truly intelligent system would seem to call for it,

but such a capacity is not to be considered here.

Assertion grounds inference and the establishment of a commitment to propositions. Only in
the context of such research in SNePS, not here, can the primary question of Fodor and LePore be
addressed—whether the three properties (1) the inferential role of meaning, (2) the rejection of the
analytic/synthetic distinction. and (3) compositionality, can be maintained simultaneously under

the semantics p.

7.7 Full Location Incorporation

The semantic function p puts circularity, or mutual semantic influence strictly between a base node
and its parent. leaving the semantics of a molecular node more or less dependent only on the nodes
it dominates, the exception being that a base node it dominates may well include another parent
molecular node in its semantics, thereby causing the semantics of the first molecular node to include
the second e=n though neither dominates the other. An obvious extension would have all nodes
influence the meanings of their parents, as would be depicted by the addition of backward arcs

everywhere except between sensory nodes and their parent nodes. Let us call this semantics ut.
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As a variation on the semantic structure of the TABLE sentence shown in Figure 4.1, the result of this
is shown in Figure 7.6. Here. clearly, all nodes participate in the semantics of all other nodes, and the
meaning of a node depends in a direct way on its location in the entire network. The special status
of base nodes is lost. and the question whether one node is a member (at some level) of the hyperset
assigned to another node is vacuous. the only question remaining being the level. or distance, of
that membership. The atoms are still the sensory nodes, and the lack of membership arcs between
them and their parents prevents the entire network from being a picture of Q. Figure 7.7 shows the
hvperset assigned to the node b2 under p™ (to the same restricted scope as W* of Figure 4.5, so

this f(b2) should be compared to that shown in Figure 4.8).

7.8 Conclusions

There are reasonable alternatives to the “plain” non-well-founded set semantics p of Chapter 4 that
incorporate relations (used as arc labels), that depend on the beliefs of the cognitive agent, and
that include the entire surrounding network in the meaning. Unresolved issues include the degree
of influence of context on meaning and the distinction between directed. or conscious, processing of
new nodes and involuntary, or unconscious, acquisition.

The best SNePS semantics based on non-well-founded set theory may well be some combination

of the enhancements noted here. to be determined by further research.
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showing semantics of nodes under u*

7.6:

Figure
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Chapter 8

Conclusions

“Reason, or the ratio of all we have already known, 1s not

the same that it shall be when we know more.”

— William Blake, 1788!

8.1 Introduction

In this chapter. the major points of the work are reviewed and summarized. Additional suggestions
for research are offered. especially to clarify the relationship of SNePS with x to other issues and

theories in artificial intelligence.

8.2 A Formal Semantics for SNePS

SNePS needs a semantics for base nodes and a theoretical foundation providing the circularity in its
semantics that is referred to in [Shapiro and Rapaport, 1991, pages 221-222). The non-well-founded
set theory of Peter Aczel offers a rigorous mathematical development of set-theoretic objects that

may contain themselves. The semantic function p offered herein provides a semantics for SNePS,

L MINOR PROPHECIES. There Is No Natural Religion II
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based on non-well-founded set theory, which incorporates the notion of circularity in base nodes.
Feasibility of actual processing is provided by 1%, which renders nodes out of reach of the search
area atomic, thereby incorporating them in the computation of pu-semantics as placeholders whose
values are not known. or perhaps not yet known.

The expression of the semantic value of a node in SNodes as a hyperset over some set of atoms A
is its expression in terms of complex combinations of direct and indirect references to the particular
sensory data that make up the world as it appears to the cognitive agent. The p-value of a node
for grandmother will be a set not of concepts such as grandparents -house, lilac-eau-de-cologne, and
hlood-being-thicker-than-water, but a set of the sensory stimula that count—the sight of the house.
the voice. the scent of lilacs. the feeling of shock at hearing of a death in the family, and so forth.
There remain no identifiers or other artificial references to intermediate structures.

There is much more to investigate in p, such as formulation of its solutions as the greatest fixed
points of some operator using coinduction, the non-well-founded set counterpart of induction. A
version of Aczel's Special Final Coalgebra Theorem should be developed specifically for SNePS.
[Barwise and Etchemendy, 1987, page 36 ff.]

The reader in search of an appealing informal semantics will be disappointed. Hypersets derived
from SNePS networks seem even farther from English glosses or other paraphrases than are the
SNePS networks themselves. As discussed in the introductory chapter, however, that closeness
between semantic networks and human expression is misleading in that it implies the successful
crossing of a bridge that has not yet been built. The semantic investigation culminating in u is

meant to provide some foundation for it.

8.3 Legitimizing Circularity in Semantics

Shapiro and Rapaport, after describing the circularity of SNePS, refer to sensory nodes as “a major

escape from this circularity” [Shapiro and Rapaport, 1991, page 222]. Evidently, circularity is to be
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acknowledged but held in check, a reasonable attitude. As Smith puts it, “Making interpretation
dependent on use. at least at first blush. therefore gives one every reason to suppose that the notion
of soundness is rendered circular, hence vacuous” [Smith, 1991, page 266). The first challeng: en,
to any semantic theory that embraces circularity is to counteract the instinct to fear it as destructive.

The problem with circula. -he lack of a basis for computation. To say that a set is equal
to itself, is §2, is to say that no .- =+ :oment can be made about that set: it can have no other
properties or attributes or memberst.. -a5. To say, on the other hand, that a set contains
itself and something else is to have circula. . from viciousness. [t is possible to make
meaningful claims about such sets—which claims are the material of Aczel’s theory, of course. The
semantic function g gives us circularity in the form of mutual influence between a molecular and
base node, and grounding in the form of sensory data as atoms. What it does not give is a full

explanation of cognitive phenomena like “thoughts going around in circles”.

8.4 Graphical Semantic Models

In §1.3.2, we saw that Lenhart Schubert calls for a knowledge representation scheme based on seman-
tic networks that is qualitatively different from the predicate calculus. It would make “essential use
of nontrivial graph-theoretic properties” [Schubert. 1991. page 106]. Note that his complaint applies
to well-founded semantic networks. insofar as their semantics depends on recursive enumerability.
But we now have a difference in meaning that depends on “genuine structural difference” between
graphs, since only such a difference suffices to distinguish one hyperset from another [Barwise and
Etchemendy, 1987, page 40].

As for furthering of the theory of SNePS itself, the only result that my come as a surprise to

SNePS researchers is Axiom 4:

Given a network S € SNets, every molecular node m € MOLFULL(S) heads a semipath

(m,ny), (ny,na),. ..(ng,t), where t € SENSORY(S) and for every arc (n;,ni41), either
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(1) there is an arc from n; to niy4y in S, or (2) n; € BASE(S) and there is an arc from

ni4p ton; in S.

Its requirement that base and molecular nodes be assembled to allow a certain type of semipath to

sensory nodes may affect further development of case frames and other structural properties.

8.5 A Limited Semantics

Along with the informal mechanism called SCOPE, in which an arbitrary subnetwork of a SNePS
network is delineated as the context of g, a variant that computes semantics to a given semipath
length 6 was defined as the function 1*. Some semantic network researchers view the measure of
distance between nodes (number of arcs, or, equivalently, length of the nrn-path) as suspect, and
any attribution of signilicance to that distance as a misuse of the network model. (See, for example,
[Brachman et al., 1985. pages 415-416].) But u® explicitly makes this obvious notion of distance
between nodes into a feature of the semantic theory. Any node n that includes two others ¢; and ¢,
that are at different distances away, will have that distance reflected in the nesting of membership
of ¢; and ¢z in n. For example. in Figure 2.1, p(m8) includes both m6 and, through b2, m4, but at

different “generations of descendants” of hereditary membership:

w(m8) = {...m6,...{{me}},...}

The nesting shows that the distance from m8 to mé is one, and the distance from n8 to m4 is three.
This way of incorporating distance is not grafted on independently of the semantics 4, but is inherent
in the hereditary set approach.

The present work does not offer any argument for the utility of such a numerical measurement
of semantic influence, but the material is there. A visual property of graphical models (semantic

networks), which may have been dismissed as accidental, may in this way contribute to its disciplined
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use in cognitive research. There 1s an obvious analogue to connectionist theories here, which should
be explored in further research. Perhaps SNePS with p® is a static version of the phenomenon

manifested dynamically in connectionist network processing, spreading activation.

8.6 Compositionality

The function p is compositional. but with some reservations. The semantics of an expression (a
member of SNodes) is indeed computable from the semantics of its parts and the way they are put
together, but the semantics of some parts have to be redefined. This can be done without obvious
violation of the principle of compositionality by simply defining the semantic combination rules so
that they do so. No means of providing circularity (in base nodes, to which further concepts can be
attached) would escape that necessity.

Little has been said about the “semantic interpretation” rules SLi of [Shapiro and Rapaport,
1987], which offer a semantics of SNodes as English glosses. They are, by contrast. strictly compo-
sitional in that no interpretation done on a node is affected by the addition of others. (They do not

provide circularity.)

8.7 Intensionality

Semantics based on non-well-founded sets supports intensionality by ensuring that different concepts,
represented as mandated by different nodes. also have different meanings. The Uniqueness Principle
for u shows that the meanings of no two distinct nodes, construed as hypersets under p, are the same.
Furthermore, no two distinct hypersets can be assigned to the same node. If their meanings are
closely related in some way, however, two distinct nodes will have a great deal of hyperset composition
in common. Their semantic influence on other nodes will be close, therefore, and furthermore, the

difference between their semantic contributions diminishes, relative to other contributions, as §
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increases in p’.

8.8 Significance for Artificial Intelligence

Theorem 2 makes a virtue of necessity in acknowledging that, except for its addition of virtual
semantic arcs extending from base nodes to dominating molecular nodes, 4 adds nothing to the
SNePS network that was not already visible. The semantic value is more or less the syntactic value,
thinly disguised. Thus this research is open to the charge often leveled at artificial intelligence, that
some piece of work is a futile omphaloskeptic exercise—a charge with some merit.

Such refutation as can be made is left largely to the discussion of contributions above, but since
it is Smith who calls for Al research that positions itself properly along the spectrum of possible
attacks on its problems, it is is fitting to end by reviewing his twelve questions for those which are
affected by the semantics p for SNePS. Recall that the answers for EC (“embedded computation”)

are what he considers to be the goals of knowledge representation through Al

1. Does the system focus primarily on explicit representation? [EC—No.] The Unique-
ness Principle of SNePS establishes a certain explicitness of representation, in that concepts
and nodes are in one-to-one correspondence. It is not entirely clear (to Smith or his reader)
what types of representation are not explicit, but the semantics of SNePS nodes as possibly

infinite sets may qualify.

2. Is representation content contextual (situated)? [EC—Yes.] No change; SNePS cogni-

tive agents were already known to rely on a point of view.

3. Does meaning depend on use? [EC—Yes.] Recall that Smith’s dynamic notion of meaning
“can’t be separated from the whole complex of inferential, conversational, social, and other
purposes to which it is put”. That is certainly true of u(n) for any SNePS node n, through its

inclusion of sensory nodes as atoms. If “use” can be construed as the incorporation of other
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meanings, eventually dependent on sensory data, then “Yes”. If “use” requires a more active

cognitive agent than can be embodied in a semantic network diagram, then “No”.

4. Is consistency mandated? [EC—No.] No change; a cognitive agent may still have logically

contradictory intensions.

5. Does the system use a single representational scheme? [EC—No.] Well ...yes. Ac-
cording to p, SNePS does indeed have a single representational scheme; all nodes stand for
hypersets. On the other hand, his examples of phenomena that resist capture by the Lenat
and Feigenbaum (rame-and-slot system—mass nouns. plurals, images [Srihari and Rapaport,
1990: Cho, 1992]—are easily captured as nodes in SNePS, with any peculiarity of property

provided by, of course. connection to other nodes capturing those peculiarities.

6. Are there only discrete propositions (no continuous representation. images, ...)?
[EC—No.] Sets are relentlessly discrete objects, with membership a relentlessly binary pred-
icate. Hypersets, however, with the ability to contain infinite objects. may be regarded as

analogous to infinite decimal representations of real numbers using the standard discrete ob-

jects, the ten digits.

7. Do the representations capture all that matters? [EC—No.] Does SNePS with p meet

this standard or not? Is it supposed to? According to Smith,

_..the full significance of an intentional action (not just a communicative one) can
crucially involve non-representational pheromena, as well as representational ones.
[This] is a claim that the millenial st at intelligence won't consist solely of
a story about representation. but will inevitably weave that story together with
analyses of other non-representational aspects of an intentional agent. [Smith, 1991,

page 273]
It appears that the “right” answer to this question would only be provided by a proof that
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there are phenomena of intelligence that SNePS with x not only does not. but cannot, capture.
Insofar as SNePS with p is a cognitive representation scheme. its job is to do all and only
representation. and the answer is “Not applicable”. Insofar as SNePS with u is a model of

intelligence in the large, the answer is beyond the scope of the present inquiry.

8. Are reasoning and inference central? [EC—Yes.] Yes. No change, as the assertional mech-

anism, though important, is excluded from p.

9. Are participation and action crucial? [EC—Yes.] This research really sheds no light on
that question (but see the following one). Incorporation of fully-defined act nodes into the
set, subject to g will. however. The door has been left open in a way described by Smith
in his discussion of question 3: *...much of the structure of argument and discourse—even
the raison d'éire of rationality—involves negotiating in an intentional space where meanings
are left fluid by our linguistic and conceptual schemes, ready to be grounded in experience.”
[Smith, 1991, page 267] Grounding in sensory data, and soon, it is to be hoped, in act nodes,

is an important feature of .

10. Is physical embodiment important? [EC—Yes.] It is sensory nodes that serve as atoms
over which to form hypersets that become the meanings of the nodes. The semantics in terms
of the values returned by p are utterly dependent on sense data. We can have well-defined
hypersets without atoms. however. when § does not “reach” any sensory nodes for some use of
p®, so the u® mechanism is still meaningful without any manifestions of physical embodiment.
Both this question and the previous one, however, must be qualified by the possibility that
Smith wants something captured that is, by definition, out of reach of the sensory acquisition

of knowledge.

11. Does the system support “original” semantics? [EC—Yes.| For SNePS with p, very

much so. Nodes have p-semantics without any interpretation from outside the agent, indeed,
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without any outside interpreter at all.

12. Room for a divergence between the representational capacities of theorist and agent?

[EC—Yes.] No change. Still clearly “yes”, as such independence was always a principle of

SNePS.

The author hopes that SNePS with p provides a footing on Smith’s middle ground of “interme-

diating conceptual structure” in Al research. fostering further work there.
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