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Abstract

An interlinguamachinetransation is atwo-stage operation: from source languageto an interlingua,
and from the interlingua to the target language. The idea of translating natural-language texts using an
interlingua, an intermediate common language, is based on the belief that while languages differ greatly
in surface structures, they share a common deep structure.

| propose a way of automatically translating texts using SNePS as an interlingua. The representa-
tion of the meaning of the source-language input is intended to be language-independent, and this same
representation is used to synthesize the target-language output. As an interlingua, SNePS fulfills the re-
quirements of being formal, language-independent, and a powerful medium for representing meaning;
thus, it can handle ambiguities.

SNePS can be used to tranglate texts automatically as follows. The user inputs a sentence of the
source language to a generalized augmented-transition-network (GATN) parser-generator. The parser
fragment of the GATN parser-generator updates an existing knowledge base containing semantic net-
works to represent the system’s understanding of the input sentence. The node newly built to represent
the proposition is then passed to the generator fragment of the GATN parser-generator, which generates
a sentence of the target language expressing the proposition in the context of the knowledge base.

The parsing of Chinese relies more on semantic information than syntactic relations because, first,
the word order is determined primarily by semantic factors rather than syntactic ones, second, thereisa
lack of morphological inflections and syntactic clues. A series of noun phrases and verb phrases can be
juxtaposed without syntactic glues such as function words or variation of verb formsto makethelinking.
These linguistic properties cause lexical and structural ambiguities. Besides being an adequate interlin-
guarepresentation, SNePS is also acomputational environment particularly suitable for processing Chi-
nese because it provides the facilities for building, retrieving, and deducing semantic information that
guides the parsing and resolves ambiguities.



Chapter 1

| ntroduction

Thisprojectisastudy onthedesign of aninterlinguamachinetranslation system. The systemtakessingle
Chinese sentences as input and produces SNePS semantic networks to represent their meanings. The
semantic-network representati ons resulting from analyzi ng the input sentences are called the interlingua.
Taking the interlingua as input, the generator produces English sentences that are the tranglations of the

input Chinese sentences.

Some characteristics of Chinese, such as the lack of morphological inflection and linking devices
to identify grammatical relations between words, cause ambiguities and difficulties in analyzing Chi-
nese sentences. An inference mechanism operating on the knowledge base and a set of inferencerulesis
needed to resolve the ambiguities by checking whether the noun phrase in question meets the constraints
of semantic role under the subcategorization frame of the verb. The ambiguitieswe are trying to resolve
includethosearising from relative clauses, a sequenceof nouns, serial verb constructions, and two differ-
ent functions of 4% de for genitive marker and rel ative clause marker. The subcategorization information

for verbsis encoded in the lexicon. The knowledge baseis a SNePS semantic network that represents a



variety of concepts such as objects, their properties, and propositions.

The result of the source language analysis is a SNePS semantic network that represents the propo-
sition of the Chinese input. The representations for propositions of various grammatical constructions
are proposed e.g., indicative clause, relative clause, purpose clause, XCOMPlement and interrogatives
etc. Because both the knowledge base and the interlingua are SNePS semantic networks, the interlin-
gua not only serves as the basis for the generation of the English translation but also becomes part of
the knowledge base. That isto say, every input sentence translated also updates the current state of the
knowledge base. For ambiguity resolution, the knowledge base built in the system initialization stage
providesthe background knowledge and the interlingua representations built in the course of tranglation
provide the contextual knowledge. Because different contextual knowledge may give different disam-
biguating results, the previous trandlations can affect the current one or, in other words, the results of

trandating identical inputs may not always be the same depending on their previousinputs.

In generation, the SNePS semantic network representing the proposition of the input Chinese sen-
tence is mapped onto the English syntactic structure. For example, an object’s properties are realized
as a sequence of adjectives according to the English adjective ordering. Complements to the verbs are
realized in different forms according to the patterns of the verbs. For example, the complements can be
that-clauses, infinitives, gerundized, or in genitive form etc. Inferenceisused in lexical selection. For
example, if the generator infers that the head noun of the rel ative clause is animate then who is selected

for the relative pronoun; which otherwise.

The paper is organized asfollows. The second chapter providestypological, syntactic, and morpho-
logical descriptions of Chinese. The difficulties in analyzing Chinese will be addressed there. Chapter

3 gives an overview of the SNePS architecture on which the translation system is built. The syntax and



semantic of the semantic-network representations used for the interlingua and knowledge base in this
project are explained. Chapter 4 describes the parsing grammar and analysis process. The generation
grammar and process are illustrated in chapter 6. In chapter 7, the project is summarized, directions of
extensionsand improvementsare suggested. An annotated samplerun that illustrates the translation pro-

cessesis given in the appendix.



Chapter 2

Characteristics of Chinese

Inthis Chapter, we will describe some special featuresof Chinesethat are different from those of English.

Then, we will discuss what difficulties these features cause in the transl ation processes.

2.1 Typological description

2.1.1 Morphological structure

Chinese characters most nearly correspond to morphemes. Many of the Chinese characters also happen
to be words. Chinese has been classified as an isolating language whose words are typically composed
of asingle morphemewithout inflection. Compared to inflecting languages, Chinese has few affixes and
very little morphological complexity. For example, Chinese does not mark nounsfor caset, number, and
definiteness. Chinese verbs do not have agreement morphemes to highlight certain properties of subjects

or objects such as gender, number etc. Chinese verbs are not i nflected for tense either, though they have

IIn thisthesis, the term case all refer to the semantic case.



aspect suffixes.

2.1.2 Word structure

Inwritten Chinese, there are no delimiters such as spacesto mark the word boundary. A word can consist
of one or more morphemes. Two or more words can form a compound word e.g. a nominal compound.
All the morphemes in a sentence run together without a break. For clarity of explanation, the Chinese
sample sentences in this thesis have been morphologically broken down and spaces are inserted among
words. For example, sentence (2.1) in section 2.2, instead of being displayed like this:

k= # * X H X.

Zhanglsanl jiaol Yinglwen2 Ri4wen2.

Zhanglsanl teach English Japanese
Zhanglsanl teaches English and Japanese.

The usual way to writeit is:

e = # kL H L.

Zhangl sanl jiaol Yingl wen2 Ri4 wen2.

It ismore or less like reading the “English trandation”: ZhanglsanlteachesEnglishandJapanese.

2.1.3 Word order

It is primarily semantic factors rather than syntactic ones which determine word order in Chinese. The
“basic” word order is difficult to establish in Chinese; however, a sample text count yields more SVO?

than SOV sentences.[Li and Thompson, 1981]

Chinese can be termed a topic-prominent language because the “topic” in Chinese grammar plays
an important role.[Li and Thompson, 1981] The topic, occurring in sentence-initial position, is what the

sentenceis about. It aways refers to something definite or that the hearer already knows about.

2S stands for “subject,” O for “object,” and V for “verb.”



2.1.4 Modifier precedesthe modified

Chinese exhibits more features of an SOV language than those of an SV O language, although the sample
text containsmore SV O sentencesthan SOV ones.[Li and Thompson, 1981] According to Greenberg[Green-
berg, 1963], there are some word order parameters that should correlate with the verb and object order.

The following properties of Chinese are characteristics of SOV languages.

¢ Relative clauses and Genitive phrases precede the head noun.

e Certain aspect markers follow the verb.

e Adpositional phrases and certain adverbials precede the verb.

e Question particles are at the end of a sentence.

e “Wh"-phrase occupies the same position in the sentence as the phraseiit replaces.
¢ Articlesare absent.

e Suffixes rather than prefixes are used.

The following properties are characteristics of SV O languages:

Prepositions exist

The negative markers, some aspect markers, modals, and “want” precede the verb.

The copula precedes the predicate.

There is no case on subject/object.



2.2 Linking

In Chinese, phrases and clauses can hold together simply side by side without conjunctions, function
words, variation of verb forms, or the like to identify the connections between words asin English. For

example, conjoined noun phrases follow each other without conjunctions.

= # * X H X.

Zhanglsanl jiaol Yinglwen2 Ri4wen2.

Zhanglsanl teach English Japanese

Zhanglsanl teaches English and Japanese. (2.1

Another example is the serial-verb construction in which two or more verb phrases or clauses are

juxtaposed without any marker indicating what the relationship is between them. [Li and Thompson,

1981]

k= 2 % * 5.

Zhanglsanl chil wan3fan4 du2 shul

Zhanglsanl eat  dinner read book

Zhanglsanl ate dinner and read books. (2.2)
k= (EREY Fw LR * x.

Zhanglsanl xianglxin4 Li3si4 xi3huanl Lao3wang2.

Zhanglsanl Dbelieve Li3si4 like Lao3wang?2

Zhanglsanl believed that Li3si4 liked Lao3wang?2. (2.3
ik = 7 3 %  Fw  #%

Zhanglsanl mai3 shul gei3 Li3si4 du2
Zhanglsanl buy book give Li3si4 read
Zhanglsanl bought booksto give Li3si4 to read. (2.9



k= # Fw % F.

Zhanglsanl quan4 Li3si4 du2 shul.

Zhanglsanl persuade Li3si4 read book

Zhanglsanl persuaded Li3si4 to read books. (2.5

Comparing these Chinese sample sentenceswith their English translation, we can seethat whilethere
areno grammatical linkersin the Chinese serial verb construction, they can befound in the English trans-
lation. For example, in (2.2), the coordinating conjunction and conjoins two verb phrases. The subor-
dinating conjunction that in (2.3) introduces the second clause that serves as the object of the first verb.

Thetoinfinitivein (2.4) and (2.5) links two verb phrases together.

2.3 Difficultiesin processing Chinese

2.3.1 Word segmentation

Because Chinese characters follow one another without delimiters to mark word boundaries, grouping
charactersinto words and deciding whether a certain character should belong to aword or alarger com-
pound word add complexity to parsing Chinese. Consider how it will look like if one were asked to read

the following “English sentence”: Thisisasentencewithoutthespacesplacedbetweenwords.

2.3.2 Theimportance of semanticsin parsing Chinese

Semanticsplaysimportant rolein parsing Chinese. Syntax doesnot provide as muchinformationin pars-
ing Chinese as in parsing English. In fact, the grammatical characteristics of Chinese make a pure syn-
tactic parser almost impossible. The characteristics discussed in the previous section will be examined

to see what ambiguities and difficulties they cause and why semantics isimportant in parsing Chinese.



Ambiguitiesfrom a series of nouns

Two or more consecutive nounsin a sentence can cause structural ambiguity. Those nouns may form a
nominal compound or aconjoined noun phrase without conjunction. Part of them may be conjoined into
a noun phrase or combined into a nominal compound while the others remain as individual nouns. To
parse the sentence successfully, the parser has to segment those nouns into noun phrases correctly. The
following sample* sentences’ show why syntax alone does not provide enough information to divide se-
guences of nouns into noun phrases properly. All five sentences share the same form, i.e. one preverbal
noun and four consecutive postverbal nouns. To facilitate the comparison, the Chinese characters are
omitted, only their English glosses are juxtaposed in the table below. These pseudo English sentences
resemble their Chinese counterparts in most ways, for example, in the absent of morphological inflec-
tions, conjunction, or genitive marker etc. These pseudo sentences help demonstrate what ambiguities

would occur if syntactic markers were left out.

Noun Verb Noun Noun Noun Noun

John teach Math English Physics Linguistics.

John teach Mary Mark Paul Linguistics.

John teach Mary English Physics Linguistics.

John teach Mary Mark Math Linguistics.

John teach Mary brother Math Linguistics.

Actual English sentences corresponding to each are listed below:

¢ John taught Math, English, Physics, and Linguistics.

e John taught Mary, Mark, and Paul Linguistics.



¢ John taught Mary English, Physics, and Linguistics.

e John taught Mary and Mark Math and Linguistics.

e John taught Mary’s brother Math and Linguistics.

As we can see, punctuation and conjunction markers group the nounsinto phrasesin English. With the
help of syntactic markers, the computer parser isableto dividethe nounsinto grammatical unitse.g. indi-
rect object and direct object. However, even in the absence of syntactic markers, we human “ parser” can
till identify which nouns should belong to the direct object and which nouns should be the indirect ob-
ject, becausein addition to syntactic information, semantic information is also available to disambiguate
sentences. Dueto itslack of syntactic marking, the parsing of Chinese relies more on semantic informa-
tion e.g., the properties and taxonomic features of nouns, what semantic roles a verb subcategorizesfor

and the semantic constraints on these roles.

A sequence of preverbal nouns could be a conjunction of houns or a nominal compound acting as
the subject, a sentence-initial topical direct object followed by the subject, or the subject and objectin a
SOV sentence. Their surface structures are the samei.e. consecutive nouns followed by a verb phrase.

To determine their grammatical functions, the parser again hasto rely on semantic information.

k= E2E % @ ® X 7.
Zhangl Sanl Wang2Wu3 jiaol guo4 Yinglwen2 le5
Zhanglsanl Wang2wu3 teach EXP English LE
Zhanglsan1 and Wang2wu3 taught English. 3 (2.6)
®& X k= # ] E2E2 7.
Yinglwen2 ZhanglSanl jiaol guo4 Wang2Wu3 Ile5
English Zhanglsanl teach EXP Wang2wu3 LE

SEXP denotes experiential aspect.
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Zhanglsanl taught Wang2wu3 English. 2.7)

Sentences 2.6 and 2.7 have the same sentence form, namely: noun noun verb EXP noun LE.
In sentence 2.6, the two preverbal nouns form a conjoined noun phrase, Zhanglsanl and Wang2wu3. In
sentence 2.7, thefirst noun, 3% s English, is the direct object acting as the topic; and, the second noun

fk = Zhanglsanlis the subject.

In sentence 2.8, thefirst noun, Z book, isthetopic. Itisalso the direct object. The second noun, &

= Zhanglsanl, isthe subject.

£ k= e 4 ¢ 7.
shul ZhanglSanl vyi3jingl ma3 le5
book Zhanglsanl aready buy LE
Zhanglsanl has already bought the books. (2.8)

In (2.9), thefirst noun isthe subject and the second noun is the direct object. This SOV structureis used
in a contrary-to-expectation situation. For instance, the teacher tells the students not to buy some books
sincethey are available fromthelibrary. If Zhanglsanl has already bought the books, the other students
will explain the situation to the teacher using the SOV sentence structure.

* = £ 4 ¢ 7.
Zhangl Sanl shul vyi3jingl ma3 le5
Zhanglsanl book already buy LE
Zhanglsanl has already bought the books. (2.9
Sentence 2.9 has exactly the same surface pattern asthat of (2.8). Only semantic information can tell the

difference between the two.

11



Ambiguitiesfrom a series of verb phrases

Sentences 2.2,2.3,2.4, and 2.5 all havethe sameform, that is; noun verb noun verb noun; but, the
relationsthat hold between the two verbs are different. The two verbs phrases may describe two separate
events. For example, in (2.2), two actions, eating dinner and reading books, which follow each other. In
(2.4), the first event, buying books, is done for the purpose of achieving the second event, giving Li3si4
the books to read. One verb phrase may be the subject or object of another. For example, in (2.3), the
second clause, Li3si4 liked Lao3wang?2, is the object of the first verb, believe. Sometimes the first verb
controlswherethe second verb phraseget its missing subject. For example, in (2.5), thefirst verb “ object-
controls’ the second verb phrase. That is, the second verb phrase, read books, getsits unexpressed subject

from the object of thefirst verb.

Althoughthereare no grammatical markerssuch asthosefoundin Englishto distinguishtherelations
between verbs, the semanti c and subcategori zationinformation of theverbshelp clarify their relationship.
For example, the verb 4g 1% believe takes a clause as object and the verb #; persuadeis an object control

verb.

Another problem in parsing seria-verb construction is how to resolve the referential relations be-
tween the expressed subject/object of thefirst verb and the unexpressed subject/object of the succeeding
verbs. More specifically, what are the subject and the object for the verb 2% read in (2.2), (2.4), and
(2.5)? For example, in (2.4), the missing object of the third verb #% read refersto the the second verb #-
give'smissing direct object, whichin turn refersto & books, the object of thefirst verb buy. Themissing

subject of the third verb #% read refersto Li3si4, the indirect object of the second verb & give.

12



! v

Li3s4 mai3 shul gei3 Zhanglsanl du2.
Li3si4 buy boqk give Zhanglsanl read
Li3si4 bought a book to give Zhanglsanl to read. (2.10)

The noun book is linked semantically to the verb read two layers down in the serial-verb sentence. The
coreferential relations between the arguments of the first verb with the missing arguments of a verb em-
bedded oneor morelayersdownin asentenceisakind of long-distancedependencyi.e., two grammatical
elements are non-locally dependent on each other. The phenomenon of long-distance dependencies ex-
istsin Englishtoo. For example, resolving referential rel ation for amissing grammatical argument isalso
aproblemin English purpose clause and control sentence. Assigning the correct grammatical functionto
the head noun of arelative clause is another kind of long-distance dependency problem in both Chinese

and English. The resolution of this problem again can use semantic role information.

R = & F v X A &K F v ) 5.

Zhangl Sanl g@ei3 Li3si4 Wang2wu5 xi3huanl Li3si4 de5 gou3

Zhanglsanl give Li3si4 Wang2wu3 like Li3s4 DE dog

Zhanglsanl gave Li3si4 and Wang2wu3 the dog that liked Li3si4. (2.11)
ik = & Fw I a o Fvw W R

Zhangl Sanl g@ei3 Li3s4 Wang2wu5 jied Li3si4 de5 gou3
Zhanglsanl give Li3si4 Wang2wu3 lend Li3si4 DE dog
Zhanglsanl gave Li3si4 the dog that Wang2wu3 lent Li3si4. (2.12)

Sentences (2.11) and (2.12) are almost identical except for thetwo verbs, & #: likeand % lend. The
verb like subcategorizesfor a subject and an object; the verb lend for a subject, aindirect object and an
direct object. In the relative clauses, the subject is missing for the verb like; the direct object is missing

13



for the verb lend. Therefore, the head noun %7 dog refers to different missing grammatical functionsin
the relative clauses; in (2.12), the head noun refers to the missing direct object; in (2.11), the head noun

refers to the missing subject.

Besides resolving the referential relation between the head noun and the missing functionin the rel-
ative clause, the verb’s semantic-rol e subcategorization information helps establish the boundary of the
relative clause. In English, we have to decide where the relative clause ends while, in Chinese, we have
to decide wherethe clause starts. Although therelative clause marker ¢4 de marksthe end of the relative
clause, thereis nothing to mark the beginning of therelative clause. From the surface structure, the parser
isnot abletotell whether it isparsing an element inthemain clauseor oneintherelative clause. However,
with the subcategorization information of the verb, the parser can judge which elements should belong
to the relative clause and which elements belong to the main clause. For example, because the verb ##
lend in the relative clause of (2.12) needsthe propername £ z Wang2wu3 to fill its agent case-role but
theverb & #: like does not need Wang2wu3 to fill its case frame, the propername Wang2wu3 belongsto
themain clausein (2.11) but it belongsto the relative clausein (2.12). That isto say, the relative clause

starts from the verb & #: likein (2.11); but, the propername £ £ Wang2wu3in (2.12).

(2.11) and (2.12) are also examples of Chinese serial nouns. Native speakers of Chinese would put
a #» and between two propernames Li3si4 and Wang2wu3 for (2.11). However, since the conjunctionis
optional in Chinese, the parser still has to use semantic information to rule out the possibility that these

two propernames are conjoined in (2.12).

14



2.4 A computational environment suitablefor the process-
ing of Chinese

From the discussion above, we know that semantic information is essential to the computational under-
standing of Chinese. The parsing of Chinese should be semantically driven instead of being syntax-
oriented. Therefore, the computational environment suitable for parsing Chinese is one that provides
semantic information and facilities for utilizing semantic information efficiently e.g. performing infer-
encewithit. Inthe next section, wewill discussthefeatures of SNePS, the Semantic Network Processing

System, and show SNePS provides a platform that is particularly suitable for parsing Chinese.

15



Chapter 3

An Overview of the SNePS/CASSIE

Architecture

CASSIE, the Cognitive Agent of the SNePS System—an Intelligent Entity, is a particular computational
model of a cognitive agent. CASSIE uses SNePS (Semantic Network Processing System) [Shapiro,
1979, Shapiro and Rapaport, 1987, Shapiro and Rapaport, 1992] as the knowledge-representation sys-
tem, SNIP (the SNePS Inference Package) as the reasoning system, and SNaL PS (the SNePS Natural
Language Processing System) to interact with other cognitive agents such as native speakers. Therehave
been anumber of CA SSIE projectsdoneby the SNePS Research Group, and all theinputsto her arein En-
glish. (For adescription of the CASSIE projects, pleaserefer to [Shapiro, 1989]) In thisproject, CASSIE
is able to understand one more language, Chinese, thus becoming multilingual. Since CASSIE can un-
derstand Chinese and then expressesit in English, sheisaChinese-English translator too. Our version of
CASSIE is being implemented in the SNePS-2.3 knowledge-representation and reasoning system, writ-

ten in Common Lisp and running on Sun SPARCs under the UNIX operating system environment. In

16



this chapter, | describe the systems that make up CASSIE.

3.1 SNePS

A semantic network is a data structure, typically consisting of labeled nodes and |abeled, directed arcs,
that have associated with them facilities for representing information, for retrieving information fromiit,
and for performing inferencewithit. A SNePS semantic network can be considered asalabel ed, directed
graph [Rapaport, 1991] wherein each node represents a concept, and arcs between nodes represent non-
conceptual or structural relations. [Shapiro and Rapaport, 1991] The meaning of a node is determined

by the structure of the entire network connected to it.

SNePS is an intensional, propositional semantic-network formalism. It is intensional, because the
objectsof CASSIE’sthought may befictional object (e.g., Sherlock Holmes), non-existent objects(e.g., a
golden mountain), orimpossible objects(e.g., around sguare), and objectsnot substitutablein intensional
contexts (e.g., the morning star and the evening star). The fact that SNePS is an intensional semantic
network is embodied in the Unigueness Principle: there is a one-to-one correspondence between nodes

and represented concepts. This principle guarantees that nodes represent intensional objects.

It is propositional in that unlike structured-inheritance networks such as KL-ONE, which represent
taxonomic inheritance hierarchies by arcs, SNePS represents all information, including propositions,
by nodes. For example, a structured-inheritance semantic network might represent the proposition that

Socratesis aman and man ishuman asin Figure 3.1. One important feature of such networksis that the

e G
ISA ISA

Figure 3.1: An|SA network representation.
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propertiesare allowed to be “inherited,” so that the fact that Socratesis human does not have to be stored

at the Socrates node.

The information represented in the structured-inheritance semantic network of Figure 3.1 could be

represented in the propositional semantic network asin Figure 3.2. Now thereisanodearbitrarily labeled

SUPERCLASS

LEX

man human

Socrates

Figure 3.2: A SNePS propositional semantic network.

M3, which can represent the proposition that Socrates is a man; and, another node arbitrarily labeled M5,
which represents the proposition that man is human. The advantage of propositional semantic networks
as a knowledge-representation system over structured-inheritance networks is that propositions about

propositions can be represented without limit.

3.1.1 Typesof nodes

In SNePS, two types of nodes, atomic and molecular, are distinguished. Every node has an identifier,

which uniquely identifiesit. Atomic nodes, which have only arcs pointing to them, include:

e sensory nodes, which represent CASSIE’s interfaces with the external world (e.g., utterances)

e base nodes, which represent some particul ar entity whose properties are assertionally determined

by the arcs coming into it. And
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e variable nodes, which represent arbitrary individuals, and propositions.

Molecular and pattern nodes, which have arcs emanating from them, are structurally determined by
the arcs pointing out of them and the nodes they go to. Molecular nodes represent structured individu-
als and propositions, including atomic propositions and rules. Pattern nodes are molecular nodes which
dominatevariablenodes. Molecular nodeswith an exclamation mark at theend of itsidentifier represents

CASSIE's believes and are called asserted nodes.

3.1.2 SNePSasaknowledge representation system

SNePS provides a user interface, the SNePS User Language (SNePSUL ), to build, access and retrieve
information from the network. Using SNePSUL, we can define a set of relations: individual arc labels
and setsof arc labels (or caseframes) that will be used to represent various objects and information about

them. Below, | give examples of the network representation of afew simple propositions.

Representation of subclass/superclass

SUBCLASS ::

SUPERCLASS

LEX LEX

Figure 3.3: Superclass/Subclass

The subclass/superclass case frame represents the subset relation between two classes. In Figure 3.3, M3

represents the proposition that the class of canary is a subclass of the class of bird.
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MEMBER
PROPERNAME
O0BJECT CLASS
LEX LEX

Figure 3.4: Member/Class

Representation of classsfmember ship

Figure 3.4 illustrates the SNePS representation M4 of the individual Lucy denoted by node B1 being a
member of the class girl. Two kinds of 1SA relations, set membership (member/class) and class inclu-
sion (superclass/subclass), are differentiated. For example, The proposition, A canary is a bird, is rep-
resented with the superclass/subclass arcsas shown in Figure 3.3 while the proposition, Lucy isa
girl, isrepresented with themember/class arcs as shown in Figure 3.4 since a proper name designates

a specific member of aclass.

Representation of object/propername

Figure 3.4 illustrates the SNePS representation M2 of the individual B1 being named Lucy.

Representation of object/property

In Figure 3.5, M4 represents the proposition that Lucy has the property of being rich.

Representation of ability

In Figure 3.6, M3 represents the proposition that the bird hasthe ability to f1y.
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who isnamed John.

PROPERNAME

Figure 3.5: Object/Property

ABILITY ::: HAS-ABILITY

LEX LEX

Figure 3.6: Has-ability/ability

Representation of possessive relations

Representation of kinship relations

Representation of part/whole

21

PROPERTY

LEX

Figure 3.7 illustrates the network representation of John’s book: M7 represents that B1 is a book of B2,

Therepresentation illustrated in Figure 3.8 is used in our SNePS network to expressthat Tom is a son of

John: M11 representsthat B1 (who is named Tom) is ason of B2 (who is named John).

Figure 3.9 illustrates the network representation of a trunk being a part of an elephant.



M7!
ECT

OBJECT REL POSKESSOR 0BJ PRORERNAME
al () [w ()
LEX

LEX

o ]

Figure 3.7: Possessor/Rel/Object

PROPERNAME O0BJECT ARG1
() O

LEX LEX

PROPERNAME

Figure 3.8: kinship relations

Representation of propositional relations

One advantage of SNePS as apropositional semantic network isthat propositions about propositions can

be represented without limit. Nodes are connected together to form propositions, which in turn can be

PART : WHOLE

LEX LEX

Figure 3.9: Part/Whole
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connected together to form propositions of even higher levels. Inthissection, we show how propositional

relations are represented.

e Representation of information in a sentence

O0BJECT

ACT

MEMBER

EXPERIENCER
B1
0BJECT 0BJECT
O0BJECT
M9! M5

PROPERTY PROPERNAME

<:E%:>
teach

LEX LEX

Li3si4

S
o

Zhanglshanil English

Figure 3.10: Young Li3si4 taught Zhanglsanl English.

LEX PROPERNAME CLASS

‘< ‘ = oo

LEX

Ly

Figure 3.10 illustrates the SNePS network representation of the information that can be linguis-
tically expressed as Young Li3si4 taught Zhanglsanl English.! Five basic cases are used to rep-
resent the valence structure of a sentence. Detailed descriptions of these cases are deferred to the

next chapter.

e Representation of information in an indicative clause
Figure 3.11 illustrates an example of an indicative clause. Here, M10 represents the proposition

that John B3 believed another proposition M6, related to M10 by a COMP arc.

LIn this and the following examples, the default tense is the past tense. Since there is no tense in
Chinese sentences, their English trandlation will default to the past tense.
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@
AGENT
PROPERNAME @

0BJECT ACT

LEX

believe

COMP

M6

OBJECT
AGENT M2!' N PROPERNAME

ACT O0BJECT

LEX

0BJECT G;

@ Mary
LEX

PROPERNAME

love

LEX

e

Figure 3.11: John believed that Tom loved Mary.

e Representation of main/relative clauses

Therelation between amain clauseand arelative clause can berepresented in SNePS by main/relc

arcs.? For instance, the sentence Mary liked the flower that John bought, consisting of a main

clause Mary liked the flower and a relative clause John bought the flower, can be represented (as

in Figure 3.12) by a molecular node M301 that dominates both the propositional node M300 for

the main clause, and the propositional node M284 for the relative clause viamain and relc-o

arcs, respectively. The relc-o arc specifies that the head noun of the relative clause plays the

Object role of themain clause. We can usethe relc-a arc for the Agent role, therelc-e arc

for the Experiencer role, the relc-1 arc for the Locative role, and the relc-b arc for the

2Thisrepresentationisfar from being adequateasit mixesthe syntactic information with the semantic
information. Further studies are needed to come up with a better way of representing relative clauses.
One possible improvement could be to propose the new/presupposed case frame in place of the current
main/relc one, since the relative clause usually represent a presupposed information whereas the main

clause gives new proposition.
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301

MAIN
@ M300 @
PROPERNAME OBJECT CLASS

OBJEC EXPERIENCER /
ACT MEMBER

B11 B8

LEX LEX
l LEX $ l

Mary 1ike flower
0BJECT

@ BENEFACTIVE
PROPERNAME /o0 A
ACT

= e

LEX

RELC-0

284!

LEX

John bI;y

Figure 3.12: Mary liked the flower which John bought.

Benefactive role.

Representation of X COM Plement

There is a class of verbs that must take (i.e., subcategorize for) an embedded complement,
XCOMP, which is anon-finite clause without an overt subject. Either the subject or the object of
the matrix verb must functionally control the lower subject of the non-finite clause. Figure 3.13
illustrates the SNePS representation of the knowledge associated with the proposition John per-

suaded Tomto study linguistics.

Representation of purpose clauses
There is another type of verb that does not subcategorize for an XCOMP. When taking an em-

bedded complement, the second verb serves as the goal, purpose or intention of the first verb.
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XCOMP

M10!
AGENT
PROPERNAME @ OBJECT
M6
ACT AGENT O0BJECT

0BJECT M21

CLASS
B3

ACT MEMBER
LEX M9 B1 B2
John LEX
LEX y
@ Linguistics

LEX

persuade PROPERNAME

study

LEX

a

Figure 3.13: John persuaded Tom to study linguistics.

Figure 3.14 illustrates how the idea expressed by the English phrase John bought books to read

can be represented in SNePS.

Please notice that while the propositions for main clauses are asserted, those for complements are not.
The three M6s in Figure 3.11, 3.13, and 3.14 are not asserted because they are not CASSIE's believes.
I n the sentence John believes that Tomloved Mary, the sentential complement Tomloved Mary is John's
belief but not CASSIE's. In Figure 3.13, CASSIE believes that John persuaded Tom to do something;
however, whether Tom really does it is not certain. In Figure 3.14, CASSIE believes that John bought

books. It is also not certain whether he reads them or not.
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PROPERNAME @
AGENT/ INTENT OB

OBJECT
<::::> B2 <:§;:§E:>:> Bi
AGEN 0BJECT
LEX
MEMBER
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John @
<:%%:> b
CLASS wy
LEX
read

LEXL

book

Figure 3.14: John bought booksto read.

3.2 SNIP

SNePS comes with an “inference engine”, SNIP, the SNePS Inference Package. In our machine trans-
lation system, SNIP is a component of the source text disambiguation process. When parsing Chinese,
the parser performs semantic role checking and resolves ambiguities by reference to the knowledge base.
However, not al semantic information is explicitly stored in the knowledge base. Some semantic infor-

mation has to be inferred from the existing information.

SNIP provides for node-based reasoning, path-based reasoning, and interactions with SNeBR
(SNePS Belief Revision) [Martins and Shapiro, 1988]. Cognitively, node-based reasoning represents
conscious reasoning, following explicit “rules’ stated in the form of networks. Path-based reasoning, on

the other hand, can be thought of as subconscious reasoning; it is a generalization of the notion of “in-
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heritance” found in many other semantic-network systems. [Shapiro, 1978] It is often the case that we
combine both types of reasoning. For example, we are given arule stating that “if X isan animal, then
X hasahead,” and we know that Clydeis an elephant and that all elephants are animals. We would like
to know whether Clyde has a head. If we were to do explicit rule-based reasoning only, this informa-
tion would not enable us to conclude that Clyde has a head. Our subconscioustell us that since Clyde
is an elephant and elephants are animals, Clyde is an animal. Thisimplicit (subconscious) reasoning is

expressed in SNePS as the path-based inference rule.

(define-path class (compose class

(kstar (compose subclass- superclass))))

We can now go back to explicit reasoning to infer that since Clyde is an animal, Clyde has a head.

The primary advantage that path-based inference has over node-based inferenceis efficiency. Inor-
der to infer that a relation exists between two nodes, one has only to check whether a specified path of
arcs goes from one node to the other. Path-based reasoning is just arrow-chasing, while node-based rea-
soning involves pattern-matching and unification. However, the advantage of node-based inference is

that it is more general, since relationships are not restricted to being binary.

3.2.1 Node-based inference

In SNePS' propositional semantic network, all information is stored as nodes. The sentences parsed and
new conceptsinferred by the system are also stored asnodes. In order to carry out node-based reasoning,
we must store rules for deductive inference in the network. Every rule is stored in the system as arule
node. An example of arule nodefollows. User input followsthe ‘** prompt, and subsequent lines show

SNePS' output. Sometiming and other irrelevant information has been edited out for ease of readability.
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* (describe (assert forall ($x $y $z)°
gant ((build member *x class xy)*
(build member *y class *z))
cq (build member *x class *z)))
(M1! (FORALL V1 V2 V3)
(&ANT (P1 (CLASS V2) (MEMBER V1))
(P2 (CLASS V3) (MEMBER V2)))
(CQ (P3 (CLASS V3) (MEMBER V1))))

Therule node, M1, represents the proposition that if something is a member of a class and this class
is contained in another class, then that thing is also a member of that another class. Thisrule usesthe
universal quantifiers. The three universally quantified variables, x, y, and z, are represented by variable
nodes, V1, V2, and V3 respectively. The antecedents and the consequent of this rule are represented by
pattern nodes, (P1, P2) and P3 respectively. The antecedents, (P1, P2), canberead as. Vi isa
member of the class V2 and V2 is a subclass of the class V3. The consequent P3 can be read as. V1
isalso a member of V3. (Note: For simplicity, in this example, | do not distinguish member-class and

superclass-subclass. Superclass-Subclassis represented asmember-class.)

When trying to infer a consequent of arule, SNIP tries to find i nstances of the pattern nodes repre-
senting the antecedents. If a match succeeds, then SNIP adds the node representing the consequent to
the network. A sample run of the node-based inference follows. Natural language input is on the lines
beginningwiththe“:” prompt. System output isonthe other lines. Slight editing isdoneto removeextra

inference reports that are irrelevant.

: Elephants are animals.
I understand that the object, elephant, is a(n) animal.

: A circus elephant is an elephant.

3The $ macro creates a new variable node.

4¢x>  jsamacro command function which returns the set of nodesin the value of the
SNePSUL variable.[Shapiro and Group, 1994]
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I understand that the object, circus elephant, is a(n) elephant.
: Are circus elephants animals?
I know
((M6! (CLASS (M2 (LEX (elephant))))
(MEMBER (M5 (LEX (circus elephant))))))
I know
((M4! (CLASS (M3 (LEX (animal))))
(MEMBER (M2 (LEX (elephant))))))
Since
((M1! (FORALL (V1 <-- M5) (V2 <-- M2) (V3 <-- M3))
(%XANT (P1 (CLASS (V2 <-- M2)) (MEMBER (V1 <-- MBE)))
(P2 (CLASS (V3 <-- M3)) (MEMBER (V2 <-- M2))))
(CQ (P3 (CLASS (V3 <-- M3)) (MEMBER (V1 <-- M5))))))
and ((P1 (CLASS (V2 <-- M2)) (MEMBER (V1 <-- M5))))
and ((P2 (CLASS (V3 <-- M3)) (MEMBER (V2 <-- M2))))
I infer ((P3 (CLASS (V3 <-- M3)) (MEMBER (V1 <-- M5))))

I know
((M7! (CLASS (M3 (LEX (animal))))
(MEMBER (M5 (LEX (circus elephant))))))

Yes.

In the above output, M6 represents the proposition that a circus elephant is an elephant. M4 repre-
sents the proposition that elephants are animals. From nodesM1, M4, and M6, SNePS s able to deduce
(using node-based inference) that circus elephants are animals (node M7). Notice that node M7 was not
in the original network. This node has just been created by node-based inference. Thiswas done by the
network-match function. The inference is node-based, because it proceeds according to the existence of
instances of patternsof nodes: P1, whichisin antecedent position of arule, matchesM6 with the substitu-
tionVi/circus elephant g%, V2/elephants; P2, which isalso in antecedent position of therule,
matches M4 with the substitution {V2/elephants, V3/animals}. Thuswe may infer an instance,

node M7 of the pattern P3 with the substitution {V1/circus elephants, V3/animals}.

5This notation reads: substitute circus elephants for Vi1
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3.2.2 Path-baseinference

Path-based inference allows the existence of a“virtual” arc between two nodesto beinferred whenever a
path of arcsexists betweenthose nodes. That is, apath of arcscan bedefined asa“virtual” arc. Then, this
“virtual” arc is treated like areal arc in network pattern-matching to allow property inheritance within
generalization hierarchies. The structural inheritance networks have automatic inheritance features; in a

SNePS propositional semantic network, inheritance is generalized to path-based inference.

We can, for example, implement the inference involved in the previous example as an instance of

path-based inference as follows:

(define-path member (compose member (kstar (compose class- ! member))))

MEMBER

SN * CLAS

S ) EMBER
CLASS

MEMBER
LEX

LEX -
animal

LEX

elephant

circus elephant

Figure 3.15. The dashed line is a virtual member arc composed of the sequence of arcs
member/class-/member from node M4 to node M5. Note: “/" represents composition of arcs.
An arc appended with “ -” representsa conversearc.

Thisrule hasthe following interpretation: avirtual member arc is equivalent to a path of arcs consisting
of amember arc followed by zero or more occurrences of converse class arcs followed by amember
arc. Using the previous example, a virtual member arc can be inferred since there exists a path of arcs:
themember arc, from node M4 to node M2, followed by the converse class arc, from node M2 to node
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M6, followed by the member arc, from node M6 to node M5. Following along this virtual member arc to
node M5, SNePS derives a new node M7 from the previous example. However, the way M7 is derived is
very different from the previous derivation. Rather than relying on the existence of instances of patterns

of nodes, this relies on the existence of a sequence of arcsi.e., a path from one node to another.

During parsing, we use path-based inference to deduce whether a case slot satisfies the required se-
lectional restrictions. For an example on how path-based inferenceis used for case-role checking, please
refer to section 4.4.1. Besides property inheritance, a path can be defined to help the parser find certain

kind of nodesin the network.

After asemantic network isbuilt for asentencejust parsed, we need to find appropriate nodes among
the network and assert them. To assert a node is to make CASSIE believeit. An asserted node has an
exclamation point appended to its identifier. Let uslook at the semantic network in Figure 3.12. Not
all molecular nodes are asserted. For example, nodes M300!, M284!, and M278! are asserted whereas
nodesM207 and M301 are not. Basically, nodes representing the propositions that CASSIE believes are
asserted. Therefore, the molecular nodes representing the main proposition e.g. M300!, relative clauses
e.g. M284!, and attributive propositions e.g. M278! are asserted. The molecular nodes representing
structured individuals e.g. M207, and the propositions for complements e.g. M6 in Figure 3.11 and Fig-
ure 3.13 are not asserted. The following paths allow SNIP to search the network generated by the final

parse so that the appropriate propositions can be found, asserted, and described.

(define-path describe_assert
(compose
(or member (compose (or (compose property property-)
(compose propername propername-)
(compose adposition adposition-))
object))

(kplus (or agent- object- benefactive- experiencer- locative-))
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(kstar (compose (kstar (compose
(or relc-a- relc-o- relc-e-
relc-b- relc-1-)
main))

(kstar (or comp- intent- xcomp-))))))

(define-path relative-clauses
(kstar (compose
(kplus (compose
(or relc-a- relc-o- relc-e-
relc-b- relc-1-)
main))

(kstar (or comp- intent- xcomp-)))))

In order to handle a variety of network structures and because any network can be nested inside an-
other network, the pathslook complicated. For example, wedo not assert the node representing acomple-
ment; however, the nodes, embedded inside it, representing attributive propositions and relative clauses
will still be found and asserted. We are not going to explain the paths above, because complicated illus-
trations would be involved to properly explain them and a huge semantic network needsto be drawn on
the paper. Interested readers can refer to the SNePS User’s M anual ([ Shapiro and Group, 1994]) for the

description of the path defining notations such as compose, and, or, kstar, and kplus.

We could have asserted the nodes al ong the way of parsing a sentence as other CASSIE projectsdid.
When parsing a sentence, the parser has the knowledge of currently what grammatical component e.g.
the main clause, arelative clause, or a complement, is being parsed; therefore, right after building the
SNePS representation for it, the parser can decide whether to assert it or not. However, in this project,
we are trying to analyze complicated Chinese sentence structures such as relative clauses, serial nouns,

serial-verb construction, which could be highly ambiguous; therefore, our parsing hereinvolves alot of
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backtrackingsin which some nodes can be generated from invalid parses. The fact that we do not assert
nodesuntil thefinal parseisavailable preventstemporary nodesgeneratedin theinvalid parsefrom being

asserted. Asaresult, CASSIE will not have false belief.

(define-path head_noun
(and

(or agent- object- experiencer- benefactive- locative-)

(or (agent- (kstar (or xcomp- intent-)) main- relc-a)
(object- (kstar (or xcomp- intent-)) main- relc-o)
(experiencer- (kstar (or xcomp- intent-)) main- relc-e)
(benefactive- (kstar (or xcomp- intent-)) main- relc-b)

(locative- (kstar (or xcomp- intent-)) main- relc-1))))

During generation, the path-based inference rule above hel pslocate the base node that representsthe
head noun of arelative clause. For example, Figure 3.12 depi ctsthe network that representsthe sentence,
Mary liked the flower which John bought. Node M284 represents the proposition for the relative clause,
John bought the flower. The head noun of the relative clause is the flower represented by the node BS.
Thisnode needsto befound and translated first. Instead of itsoriginal surfaceform flower, itisgenerated
into the relative pronoun which. The noun phrase the flower appended with the relative clause, which

John bought, becomes the flower which John bought.

Between B9/John and B8/flower, the generator has to find which node represents the head noun. We
find it using aSNePSUL command likethis: (find head_noun M284), whichreturnsB8. Thevirtual
arc head noun is a path from the node representing the head noun to the node M284 representing the
relative clause. The decision about which relative pronouns we choose is also based on the result of the
path-based inference. We deduce whether the head noun of the relative clause is a human being. If yes,

then we use who; otherwise, we use which.
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3.3 SNaLPS

The SNePS Natural Language Processing System consists of a Generalized Augmented Transition Net-
work (GATN)[Shapiro, 1982, Shapiro and Group, 1994, Shapiro, 1989] grammar interpreter and com-
piler for user-defined grammarsfor natural or formal languageinterfacing, an English morphological an-
alyzer for handling morphological inflections, and an English morphological synthesizer for constructing
inflected words. In this project, since we parse Chinese input, the English morphological analyzer is not

used.

3.3.1 Grammar automata

Chomsky [Chomsky, 1963] identified four typesof grammars: type-0, type-1, type-2, and type-3. Type-0
grammars have the greatest generative power, while type-3 grammars are the most constrained and thus

are the least powerful.

Finite-state automata

A finite-state grammar correspondsto atype-3 grammar in Chomsky’s hierarchy. The number of distin-
guishable statesisfinite. The language processing starts from an initial state. During language process-
ing, the system is in any one of afinite number of states, and the only thing that matters is which state
we arein. The portion of a sentence that we have already processed is not relevant to the correct contin-
uation of the process. At the end of the process, if we can reach aterminal state, then the input string is

accepted. Finite-state grammars provide a simple mechanism for language analysis and synthesis.
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Recursive transition networ ks

Recursive transition networks (RTN) are the extension of finite-state grammars. RTN grammars are the
equivalent of type-2 grammars in Chomsky’s hierarchy. An RTN is like a finite-state grammar except
that RTNs can have registers and labeled arcs whose |abel's are the same as state names. Since they are
implemented on push-down automataallowing non-terminal symbolsto be the arc labels, they are more
powerful than finite-state grammars. Non-terminal symbols, such as NP, name the subnetworks of the
grammar. When an PUSH arc with anon-terminal symbol is encountered, the subnetwork named by the
non-terminal symbol is pushed onto the stack, and the parse continues at the subnetwork. It isrecursive,
because any subnetwork can call any subnetwork, including itself, recursively without limit. When a
final state in a subnetwork is reached, the subnetwork is popped out from the stack through the POP arc
and control is handed back to the calling state. A sentenceis said to be accepted if afinal state at the top

level isreached, and the input buffer is empty.

Besides PUSH and POP arcs, there are CAT arcs, which are matched against the lexical category of
any sense of the current word; WRD arcs, which compare the current word to the word list; and JUMP

arcs, which succeed without consuming the input buffer.

The RTN formalism also provides a backtracking mechanism. If parsing fails at some arc, the sys-
tem backtracks to the point where the previous choice was made, takes an alternative arc, and parsing
proceedsfrom there. Backtracking assures a complete search. If thereisaplausible reading of the input
sentence, the system is guaranteed to find it. If there are multiple readings, the system will find all of
them. However, backtracking can be very costly. It is up to the grammar writer to order the arcs care-
fully and put proper constraints on the tests of an arc so as to minimize unnecessary backtrackings and

enhance efficiency.
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Augmented transition networks

Anaugmentation of the RTN isthe augmented transition networks (ATN). ATNsare RTNsextended with
the abilities to test and to perform actions[Allen, 1987]. With this extension, ATN grammars are able to
deal with certain forms of rel ationships between constituents; thus, they are context-sensitive grammars,
or type-1 grammarsin Chomsky’shierarchy. Thetest part of anarc controlsthetransition. If thetest fails,
returning nil, the arc can not be reached; otherwise, destination of the parsing proceeds as the grammar
specifies. In actions, information about the sentence being examined are saved in registers, and parse
trees are built. Actions also provide the means for passing information, stored in the registers, between
different levels. Whenever a subnetwork is pushed, a new set of registers in the form of an associative
list of key/value pairsis created. The value recorded in aregister can be any grammatical information
or semantic-network nodes. When the subnetwork pops back, some values of the registers are recorded
in the registers of the higher-level networks. Thelinguistic features at the lower-level networks can then
be accessed at the higher-level networks to check for grammatical dependency or agreement in number,
gender or, person. Also, the semantic nodes built at the lower levels can be connected together at the

higher levels to form bigger semantic networks.

Generalized augmented transition networks

Generalized augmented transition networks (GATN; [ Shapiro, 1982]) allow asingle ATN interpreter and
grammar to be used both for standard ATN parsing and for generation. It is made possible by supplying
consistent semantics for both parsing and generation grammars. In fact, in a GATN, both parsing and
generation areforms of parsing. During parsing, we parse natural-language surface stringsinto semantic

networks; during generation, we“ parse” semantic networksinto natural-language surface strings. With a
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GATN, we canwrite grammarsfor parsing into, and generating from, semantic networks. Inthis manner,
we can express in natural language the concepts represented by the semantic-network nodes. Usually a
single lexicon may be used for both parsing and generating a single language; however, in this machine-

trand ation project, two lexicons are used, one for parsing Chinese and the other for generating English.

3.3.2 Theorganization of the lexicon

All the grammatical or functional information in a sentence comes from the words in it. The lexicon
thus plays an essential role. A lexicon consists of several lexical entries. A lexical entry contains not
only static syntactic information such asthe lexeme, syntactic category, and grammatical constraints but
also functional control®. The encoding of alexical entry is composed of two parts: alexeme and feature
lists. Inour system, thelexeme of each Chineselexical entry isastring of Chinese character(s). A feature
listisalist of feature-valuepairs, each of which comprisesafeature name and one or more corresponding
values. For example, the syntactic category of alexical entry isrepresented as afeature-value pair whose

featureis ctgy and whose value is the syntactic category of the lexeme.

("g&" ((ctgy . v) (3.1)
(case_frame (Agent animal)
(Object stuff power title time nonhuman)
(Benefactive animal))
(surface_arguments . ("AVBOD" "OAVB"))
(benefactive . positive)

(sense . "give™")))

("53 2" ((ctgy . n) (3.2)
(superclass . knowledge)

(sense . "linguistics")))

6The functional control hereisaLFG notion.
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Thefirst lexical entry is the lexeme #-. Its syntactic category ctgy isv, averb. The value of the

case_frame featureis an associative list, which associates each case role with its semantic constraints.

((Agent animal)
(Object stuff power title time nonhuman)

(Benefactive animal))

Thefillersof theAgent roleandtheBenefactive rolesshould belongtotheclassof animal. Thefiller
of the Object role should be something in the classes of stuff, power, title, time, Or nonhuman.
The surface_arguments hasthelist ("AVBO" "OAVB") asitsvalue. Thislist of possible surface
orderings of the semantic cases carries the syntactic as well as the semantic constraints for the verb.
The capital letter V is the abbreviation for Verb, A for the Agent role, O for the Object role, and B for
the Benefactive role. While the Agent role must precede the verb and the Benefactive role always fol-
lows the verb. The Object role can be either in sentenceinitial or sentence final positions. The value of
the feature benefactive isbinary, positive or negative. The feature sense gives the lexeme's
meaning in English. The second entry is anoun entry. Its superclass feature showsthat this noun is

under the class knowledge.

A description of the standard lexical features and their val ues can be found in the SNePS 2.3 User’s
Manual [Shapiro and Group, 1994]. | will only describe the additional features and their values used in

this project.

Multi-char acter words and multi-wor d phrases

Inaddition to ausual lexical entry, acompound, multi-character lexeme, hasitslast character asthe head
of another lexical entry whose lexical category ismulti-end. The compound hasthe multi-head
feature, whose valueis alist of the rest of the characters (before the last one) that form the compound.
For example, the compound, & Z % linguistics, has two lexical entries as follows:
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("7 %" ((ctgy . n)
(superclass . knowledge)
(sense . "linguistics")))

("&" ((ctgy . multi-end) (multi-head . ("Z&" "Z"))))

Beyond the word level, multi-character lexical entries also facilitate the analysis of multi-word phrases
such as “Dian4d Gil Gonl shen2 si4” (Electrical Engineering Department). In fact, this algorithm is
modified fromthe SNalL PS built-infunction get-senses, which can handle English multi-word phrases

such as Sate University of New York.

To show how the system establishes the word or phrase boundary, let us examine the following sen-

tence:

& = * Fw  ETH

Zhanglsanl jiaol Li3si4 Yu3yang2xue2

Zhanglsanl teach Li3si4 linguistics

Zhanglsanl teaches Li3si4 linguistics. 3.3

The parser takes the words of the input sentences from right to left. The last character, 5 xue2, can be
found in several lexical entries. For example:

(2" ((ctgy . v) (3.4)
(case_frame (Agent human person)
(Experiencer human person)
(Object knowledge))
(surface_arguments . ("ACV0"))
(sense . "learn"))) ;‘C’ denotes Agent/Experiencer coreferential

H

("%" ((ctgy . multi-end) (multi-head . ("Z&" "Z")))) (3.5)
The second lexical entry is then mapped to its multi-character counterpart:

("% %" ((ctgy . n) 3.6

(superclass . knowledge)

(sense . "linguistics")))
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Both senses, 3.4 and 3.6, will betested accordingly. The parser first takes the string, £+ learn, asaverb.
When the input sentence is exhausted, the parser will get the word segmentation as follows:
k= # Fw  ET F (3.7

Zhanglsanl jiaol Li3si4 Yu3yang2 xue2
Zhanglsanl teach Li3si4 language learn

This path provesto be wrong, since no parse can be produced. Then the parser backtracks and tests the

second sense, & & 4 linguistics. Following this path, the parser getsthe following word segmentation:
= # 32w BTY (3.8)

Zhanglsanl jiaol Li3si4 Yu3yang2xue2
Zhanglsanl teach Li3si4 linguistics

This time, the parse succeeds with the reading Zhanglsanl teaches Li2si4 linguistics.

It isnot the case that the parser parses sentence after sesgmenting the whole sentence. Morphological
and syntactical parsing are mingled together. SNaL PS embeds the above morphological analysiswithin
the cat arc, so backtracking is fully enforced over all possible word segmentations. If there are several

valid segmentations, the parser will return as many parses.

Noun and proper name (NPR) entries

Thesuperclass, property, ability,andpart featuresindicatethelexeme’s parent, properties,
abilities, and parts respectively.
("Zvw" ((ctgy . npr) (3.9)

(superclass . man)
(sense . "Li3si4")))

("445" ((ctgy . n) (3.10)

(superclass . food)

41



(property . liquid)

(sense . "milk")))

("B" ((ctgy . n) (3.11)
(superclass . animal)
(ability . fly)
(sense . "bird")))

("F A" ((ctgy . n) (3.12)
(superclass . equipment)
(part antenna screen)

(sense . "television")))
The example 3.9 indicates the Chinese npr, 4 3, isaman’s propername. 3.10 shows that the noun 4-
5 meaningmilk isakind of food withtheproperty of the1iquid. 3.11 showsthat % meaning the
birdisananimal withtheabilitytofly. Thenounentry & 4 televisonin 3.12isan equipment

with the parts antenna and screen.

Unlike other featureswhose values are accessed from the lexicon viathe SNaL PS get £ (get feature)
function, these pieces of information are retrieved from the SNePS semantic network by the SNePSUL
find command or via SNIP's path-based inference. Before parsing starts, we read the KB file (Knowl-
edge base; Appendix A) and build the SNePS knowledge base according to this specially formatted file.
The semantic network thus built is an inheritance hierarchy, and it forms the trunk and branches of the
hierarchy. Then, we open the Chinese 1exicon file, read the above feature/value pairs in the noun and
NPR entries, and extend the knowledge base. The nodes so built are automatically attached to the inher-
itance hierarchy. They form the leaves of the inheritance hierarchy. Let ustake a mini version of the KB

file for illustration:

(noun (concrete abstract))
(concrete (animate inanimate))

(animate (plant (animal (property mobile))))
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(animal (human nonhuman))

(human (woman man))

The system starts off by processing this file and building the following semantic networks as the back-

ground information:

(M3! (SUPERCLASS (M2 (LEX noun))) (SUBCLASS (M1 (LEX concrete)))
(M5! (SUPERCLASS (M2 (LEX noun))) (SUBCLASS (M4 (LEX abstract)))
(M7! (SUPERCLASS (M1 (LEX concrete))) (SUBCLASS (M6 (LEX animate)))
(M9! (SUPERCLASS (M1 (LEX concrete))) (SUBCLASS (M8 (LEX inanimate)))
(M11! (SUPERCLASS (M6 (LEX animate))) (SUBCLASS (M10 (LEX plant)))
(M13! (SUPERCLASS (M6 (LEX animate))) (SUBCLASS (M12 (LEX animal)))
(M15! (OBJECT (M12 (LEX animal))) (PROPERTY (M14 (LEX mobile))))
(M17! (SUPERCLASS (M12 (LEX animal))) (SUBCLASS (M16 (LEX human)))
(M19! (SUPERCLASS (M12 (LEX animal))) (SUBCLASS (M18 (LEX nonhuman)))
(M21! (SUPERCLASS (M16 (LEX human))) (SUBCLASS (M20 (LEX woman)))
(M23! (SUPERCLASS (M16 (LEX human))) (SUBCLASS (M22 (LEX man)))

Then the Chinese lexicon is processed. The information in the lexicon is added to the knowledge base.
For example, the following semantic network built according to the lexical feature (superclass .
man) in example 3.9 will be attached to the inheritance hierarchy above through the node (M22 (LEX
man)).

(M25! (SUPERCLASS (M22 (LEX man))) (SUBCLASS (M24 (LEX Li3si4)))

In apure ISA hierarchy, to represent common properties among various objects, one has to invent
avirtual superclass. For example, cars, ships, and dogs are subordinated under a virtual class such as
movable-objects. Therefore, there will be as many top level superclasses as the number of properties or
attributes. Our taxonomy contains more than just a superclass-subclass relation. The knowledge base
is also composed of semantic features such as locative, relations such as partship and kinship, proper-
ties such as edible, and abilities such as flying. Rather than being subordinated under the superclass,
movable-object, as the pure | SA hierarchy does, cars, dogs, and any hew members are tagged with the
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property mobile. Since SNePS is a propositional semantic network system, any knowledge needed to
enforce the semantic restriction can be utilized. By inference, path-based or node-based, all properties,
relations, abilities, and features can be inherited down or up the hierarchy just as propertiesin an inher-

itance semantic networks can be.

By inheritance, common features are passed on from superclassto subclass. Features do not need to
be stored with every object in the knowledge base. Rules and paths can be defined and SNePS is able to
derivethefeatures. Therefore, we only haveto record new or uniquefeaturesfor the objectsin thelexical
entries. The inheritance mechanism ensures knowledge consistency, saves memory space, and provides
an efficient mode of representation. That SNIPisableto supply information that is not specifically stored
in the memory simulates a desirable property of human cognition i.e., the capability of using the mem-
ory inferentially. From a cogpnitive point of view, SNePS provides a framework in which the semantic
information is stored as networked concepts and a mechanism to use these concepts for inferences. As
a computer model for natural-language understanding, CASSIE uses the semantic network to represent

linguistic properties such as word features and their relations efficiently.

The knowledge base is dynamic. A modifiable knowledge base is essential to natural-language un-
derstanding [Rapaport, 1988]. Taxonomic hierarchies should also be acquired by intelligent systems
through natural-language interaction. Since both the inheritance hierarchy and the intermediate result
of tranglations are part of the semantic network, we can expand or revise the noun hierarchy through
natural-language interaction with SNePS. The newly asserted properties can be passed down through
the hierarchy immediately. The dynamics of the knowledge base are reflected in that the same Chinese

input may be trandated into different English sentence(s) due to a change of the knowledge base.

For example, consider the following Chinese input:



Fw B AR iF - KX 0 F (3.13)
Li3si4 gei3 Zhidcheng2 er2zi2 vyil ben3 shul.
Li3si4 give Zhidcheng2 son one CL book

Before CASSIE istold that Zhi4cheng2 hasason, this Chinese sentencewill betrandated as: Li3si4 gave
Zhi4cheng2 and son a book. Thisson is an arbitrary one whose relations with Li3si4 or Zhi4cheng2 are
unspecified. This son can belong to Li3si4, Zhidcheng2, or an unspecified third person. After we tell
CASSIE the fact that Zhi4cheng?2 has a son, this Chinese sentence will also be trandlated as Li3si4 gave
Zhi4cheng2's son a book, in addition to thefirst tranglation. The “son” in Zhidcheng2 has a son and the
“son” in Zhi4cheng2's son are denoted by the same SNePS base node. That our trandations vary with a

change in the knowledge base is one of the most notable characteristics of the system developed here.

Verb entry

The case_frame template, an association list, indicates, for each predicate, possible slots in its frame
structure and associates each case role with itsfiller constraints. The case frame utilizes the case system

proposed by Walter Cook [Cook, 1989]. The verb # teach, asin the following sentence:

k= # Fw  EX

Zhanglsanl jiaol Li3si4 Yinglwen2

Zhanglsanl teach Li3si4 English

Zhanglsanl teaches Li3si4 English. (3.14)

would have the following entry:

("#" ((ctgy . ) (3.15)
(case_frame (Agent animal)
(Object knowledge skill)
(Experiencer animal))
(surface_arguments . ("AVED" "AVO" "OAVE"))

(sense . "teach")))
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The verb # teach subcategorizes for an Agent, an Object and an Experiencer. The Agent, who does
the teaching, should be an animal. The Object of the teaching should be some knowledge or skills. The
Experiencer, who undergoesthe cognitive process, should be an animal aswell. Note that we can specify
more than one selectional restriction for acaseroleasinthecaseof (Object knowledge skill) in
our example. The parser will check an argument against them one by one. If the argument meets any

one of thesefiller constraints, then this argument is assigned the corresponding case role.

Theselectional restrictionsarenot limited to the object’ scategories. They canincludeany properties,

features, abilities, and other attributes. For example,

("s" ((ctgy . v) (3.16)
(case_frame (Agent can_fly)
(Object aircraft)
(Locative property_locative))
(surface_arguments . ("AV" "AVOQ" "AVL" "ALV"))
(sense . "fly")))

The verb # fly requiresits Agent to be capable of flying and its Locative role to have the property of

locative.

("er" ((ctgy . v) (3.17)
(case_frame (Agent animal)
(Object food meal property_edible))
(surface_arguments . ("AVO" "AOV" "QAV" "UQOV"))

(sense . "eat")))
The Object role of the verb vz, eat should be the food, meal, or something edible.

Thefeature surface_arguments describesthe predicate-argument structure. The argument struc-
ture provides two types of information: the legal order of the surface realizations of its case frame and

the number of arguments required by the predicate.
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Chineseisarelatively free-word-order language. In other words, averb may be realized with differ-
ent orderingsof its caseroles. However, Chinese word order isnot so free asto allow every distribution.
The possible case sequences of averb are specified in the feature surface_arguments. Thesyntactic
orders of the case roles are abbreviated. For the verb # teach, three grammatical orders, i.e., AVEQ,
AV0, and DAVE, are allowed. “AVEQ” is the abbreviation of Agent Verb Experiencer Object,
“AVO” of Agent Verb Object,and“OAVE” of Object Agent Verb Experiencer. Besidesthe
different orderings of semantic cases, averb may have different numbers of semantic cases. For exam-
ple, for the verb fly, we can say Dumbo flies or Dumbo fliesin the sky. Sometimes, different numbers of
arguments represent different senses. For example, the fly in Mary flies a fighter means something dif-
ferently from fliesin Dumbo flies. The second fly means to move in the air by flapping the body parts,

e.g., wings or, in this example, ears, while the first fly meansto operate an aircraft.

The values, “AV”, “EV”, or “BV” tell the parser that the predicate needs one argument syntacti-
cally; the values, “AVO” and “AVL" imply that the number of argumentsis two; “AVEQO” implies that
the number of argumentsis three and so on. When case checking is performed, the parser first checks
if the number of the elementsin the argument stack ” matches the number of arguments implied by the
value of surface_arguments. If the number matches, then the parser goes on mapping the syntactic
arguments onto the corresponding semantic case roles. The sentenceis accepted when the mapping suc-
ceeds. Finally, the case roles of the syntactic arguments are assigned according to the mapping. This
feature of the lexical entries of English verbsalso guidesthe generation of English sentences. For exam-
ple, thevalue“AVO” tellsthe generator first to generate anoun phrase for the Agent role, then the verb,

and at last a noun phrase for the Object role.

’For adiscussion on how the argument stack is filled, please refer to section 4.3
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Surface_arguments aso hasto specify covert caserolesthat are not realized in the surface string.
Covert case roles include the unspecified Agent in a passive sentence and coreferential case roles. For
example, the “U” in “UOV” stands for the unspecified Agent in a passive sentence. “C” denotes the
covert Experiencer coreferential with the Agent, asin the sentence John studieslinguistics. Since Johnis
the agent who initiates the action of studying and heis also the experiencer who undergoes the cognitive
process of learning; therefore, the verb study has “ACVO” as the value of its surface_arguments.
The parser hasto be notified so that when the parser checksthe syntactical well-formedness of the surface
string, those covert case roles will not conflict with the surface structure and will be built in the semantic
network. Therefore, the sentence John studies linguistics will have the following SNePS representation:

(M2! (PROPERNAME (M1 (LEX John))) (OBJECT B1))
(M4! (CLASS (M3 (LEX linguistics))) (MEMBER B2))
(M6! (AGENT B1)

(EXPERIENCER B1)

(ACT (M5 (LEX study)))

(OBJECT B2))

We see, from above, that the covert Experiencer roleis represented explicitly with an EXPERIENCER arc.
EXPERIENCER arc and AGENT arc point to the same node B1 because the two roles, Agent and Experi-

encer, are coreferential .

The feature Xcomp defines the coreferential relation between the missing subject of the controlled
non-finite clause, designated by XCOMP, and its antecedent. Three types of relation are defined, namely
ObjControl, SubjControl and NoObj. Basically, these are the same as the functional control proposed by
L exical-Functional Grammar (LFG) [Kaplan and Bresnan, 1982]. ObjControl stands for “Object Con-
trol,” SubjControl for “Subject Control,” and NoObj for “No Object.” Object Control means that the
object of the main verb functionally controls the subject of the predicate of the subordinate clause. As
for both Subject Control and No Object, the subject of the matrix verb and the subject of the controlled
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clause are coreferential. The difference between the two relationsis that the main verb has an object for

Subject Control, while in the latter case no object is found in the main clause.

Consider the sentence whose control verb #; persuade would have the following entry:

k= i Fw ok

Zhanglsanl quan4 Li3s4 qud

Zhanglsanl persuade Li3si4 go

Zhanglsanl persuaded Li3si4 to go. (3.18)

(" ((ctgy . v) (3.19)
(case_frame (Agent human person)
(Object human person))
(Xcomp ObjControl)
(surface_arguments . ("AV0"))

(sense . "persuade")))

Thevalueof thefeature Xcomp being “ ObjControl” meansthat the object of the main clause Zhanglsanl
controls the unexpressed subject in the controlled clause. The subject of go is therefore to be identified
with Li3si4. Theverb #, persuade subcategorizesfor an Agent, an Object, and an Xcomp. TheAgentand

Object roleshavethe propertiesof human (being) or person(or pronoun) astheir selectional restrictions.

The SNePS network representation for the control sentence roughly corresponds to an LFG f-
structure representation. There are some differences in the actual representations. Compare the f-

structure in LFG and the semantic-network representation in SNePS:

f-structurein LFG:

SUBJ PRED ’Zhanglsanl’
PRED ’persuade<(1SUBJ) (10BJ) (1XCOMP)>’
0BJ PRED ’Li3si4’
XCOMP SUBJ [~0BJ]
PRED ’go<(1SUBJ)>’
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SNePS semantic network representation:

(M2! (PROPERNAME (M1 (LEX Zhanglsan1))) (OBJECT B1))
(M4! (PROPERNAME (M3 (LEX Li3si4))) (OBJECT B2))

(M8! (AGENT B1)
(ACT (M5 (LEX persuade)))
(OBJECT B2)
(XCOMP (M7 (AGENT B2)
(ACT (M6 (LEX g0))))))

The major difference between these two representationsis that instead of using syntactical notation, e.g.,
SUBJand OBJ, asin LFG, this SNePS representation uses case rolesto denote the coreferential relation.
The syntactic notationsin f-structure are language dependent; thus, it isnot “ deep” enough to capturethe
underlying structure of a sentence. In this respect, this representation goes one step further to represent
thereferential relation between the controller and the controlled with semantic casesthat are found to be

universal across languages.

Now we come to see another sentence:

k= S Fw X F

Zhanglsanl xiang3yao4 Li3si4 ma3 shul

Zhanglsanl want Li3si4 buy  book

Zhanglsanl wanted Li3si4 to buy books. (3.20)

f-structurein LFG:

SUBJ PRED ’Zhanglsanl’
PRED ’want<(1SUBJ) (10BJ) (tXCOMP)>’
0BJ PRED ’Li3si4’
XCOMP SUBJ [~0BJ]
PRED ’buy<(1SUBJ) (10BJ)>’
0BJ PRED ’book’
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SNePS semantic network representation:

(M2! (PROPERNAME (M1 (LEX Zhanglsan1))) (OBJECT B1))
(M4! (PROPERNAME (M3 (LEX Li3si4))) (OBJECT B2))
(M6! (CLASS (M5 (LEX book))) (MEMBER B3))

(M10! (EXPERIENCER B1)
(ACT (M7 (LEX want)))
(0OBJECT B2)
(XCOMP (M9 (AGENT B2)
(BENEFACTIVE B2)
(ACT (M8 (LEX buy)))
(0BJ B3))))

This example shows that the controller is not necessarily the Agent. It can be any role, i.e., Agent, Ex-
periencer, or Benefactive, in the subject position of the main clause. And the controlled element is not
limited to onerole. Being coreferential, both the Agent and the Benefactive of the X COM P are controlled
by the Object role of the matrix verb #& £ want. The Object Control in this project can be defined as:
The caserolesin the object position of the main verb functionally controls the case roles in the subject
position of the lower clause. Similarly, Subject Control and No Object can be defined as: The caseroles
in the subject position of the main verb functionally controls the case rol esin the subject position of the

embedded nonfinite clause. The verb 7% & want in the example above has the following lexical entry:

("Aaz" ((ctgy . v) (3.21)
(case_frame (Experiencer animal)
(Object noun))
(surface_arguments . ("EVO" "QEV" "EV"))
(Xcomp ObjControl NoObj)

(sense . "want")))
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We may find it redundant to use two names for similar referential relations, i.e., Subject Control and
NoObject. The above lexical entry shows that if we use SubjControl in place of NoObj then the parse
cannot decide whether the controller of the XCOMP isin the subject position or in the object position of
the higher clause. NoObj is a special case of subject control, occurring only when the object of the verb

is not present, asin the sentence:

k= A2 *

Zhanglsanl xiang3yaod qu4

Zhanglsanl want go

Zhanglsanl wanted to go. (3.22)

f-structurein LFG:

SUBJ PRED ’Zhanglsanl’
PRED ‘’want<({SUBJ) (1XCOMP)>’
XCOMP SUBJ ["SUBJ]

PRED ’go<({SUBJ)>’

SNePS semantic network representation:
(M2! (PROPERNAME (M1 (LEX Zhanglsanl))) (OBJECT B1))
(M6! (EXPERIENCER B1)

(ACT (M3 (LEX want)))

(XCOMP (M5 (AGENT B1)
(ACT (M4 (LEX go))))))

The feature obl is used in generation to specify the marker of the oblique function. For example, the
verb give hasthe feature pair (obl . "to") asin the sentence “John gave the money to Mary,” and

theverb steal hasthefeaturepair (obl . "from") asinthe sentence" John stole money from Mary.”
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The generator consults this feature to know which preposition to use when generating a prepositional
phrase. For example, the verb congratulatehas*” on” asthe value of thisfeature, asin the sentence Li3si4

congratulated Zhanglsanl on getting a job.

("adorn" ((ctgy . v)
(case_frame (Agent human person)
(Benefactive animal)
(Object jewelry flower))
(Vpattern V+N+P+N)
(prep . "with")
(surface_arguments . ("AVBO" "AVB"))))

The feature vpattern tells the generator the pattern of the verb or how to generate its XCOMP. A
verb with the “V+N+P+N" pattern, e.g., adorn, will have an object followed by a prepositional phrase,
as in the sentence Mei3hua2 adorned herself with jewels. The verb pattern “gerund” tells the genera-
tor to gerundize the XCOMP, as in the sentence Li3si4 considered changing jobs. If the generator finds
the feature prep in this verb lexical entry, then the value specified by the feature prep will be gener-
ated first, and then the XCOMP is gerundized. For example, insist requires a preposition “on,” asin the
sample sentence Li3si4 insisted on paying bills. If it is an object-control sentence, then the generator
will turn the object into the genitive and then gerundize the XCOMP, as in the sentence Li3si4 disliked
Zhanglsanl's stealing money. Ancther kind of object-control verb does not possessivize the object be-
fore gerundizing the XCOMP; instead, it puts a preposition before the gerundized X COMP. For exampl e,
theverb congratulate hasthe verb pattern “V+N+P+Ving” and requiresthe preposition“on”. Rather than
saying * Li3si4 congratulated Zhanglsanl'sgetting a job, we generate Li3si4 congratulated Zhanglsanl
on getting a job. Noted the difference between these two verb patterns: V+N+P+Ving and gerund with
the feature prep. The latter is for sentences like: Officersinsisted on soldier’s obeying orders instead

of being: * Officersinsisted soldier on obeying orders. Thereisaclass of verbs called perceptive verbs,
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such as see or hear, which can be followed by either object + infinitive (without to) or object + -ing. For

example:
Mary saw John cross the road. (3.23)
Mary saw John crossing the road. (3.24)

Thereisadifferencein meaning between the two sentences. Theformer meansthat Mary saw the whole
action of John’scrossing theroad. Thelatter meansMary saw apart of the action. Since both correspond
to one Chinese trandlation, we do not make the distinction in this project. Thus, al perceptive verbswill
have the same verb pattern, “perception,” and all will be followed by the gerundized verb phrase. The
other class of object-control verb does not gerundize the XCOMP. They turn the XCOMP into a that-
clause and keep the infinitive form (without to) of the verb. For example, the verb suggest has the verb

pattern “clause,” asin the sentence Li3si4 suggested that Zhanglsanl study linguistics.



Chapter 4

The Parsing of Chinese

4.1 Parsingstrategies

4.1.1 Lefttoright vsright to left

The default parsing order for a GATN is from left to right. For this project, we take the words of the
input sentencesfrom right to left. Thisdecisionisbased on the observation that in Chinese the modifiers
precede the modified. The genitive noun occursto the left of the possessed noun. Adjectivesand relative
clauses precede the head noun they modify. If we parse asentencefrom left to right, first we haveto hold
the modifiersin aregister; after seeing the head noun, then we start to process the modifiers in the hold
register. By parsing sentences from right to left, we can identify the head noun first and build a SNePS
base node to represent the entity. Aswe encounter its modifiers, we build the SNePS network represen-
tationsfor them, e.g., the object/property case framefor the adjectives, and simply connect them to
the base node. The right-to-left parsing scheme processes | eft-branching structures, such as Chineserel-
ative clauses, in a straightforward manner; however, it may have difficulty in processing right-branching
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structures. Our bottom-up parsing strategy, which is also motivated by Chinese grammatical character-
istics, overcomesthe difficulty. We will discussthe bottom-up strategy in the next section. Right-to-left

parsing is done by reversing the input string before we start the parsing.

4.1.2 Top-down vs. bottom-up strategy

Top-down parsing is goal-directed. Two key operations here are predict and match. It begins at the top
level Sentence network and predicts the lower-level constituent structures (e.g., rewriting S to the non-
terminal symbols NP and VP). These intermediate constituents are further expanded to constituents of
even lower level. The process repeats until it reaches a pre-terminal symbol such as noun. This pre-
terminal symbol isthen used to matched the lexical categories of the lexical item at the front of the input
buffer, say saw. The match succeeds by taking the noun sense of saw. The procedure continues testing
therest of the hypotheses against the input sentence until every element of theinput sentenceis assigned

avalue.

A bottom-up parser, which is data-driven, does the opposite. Two key operations here are shift and
reduce. It shiftstheinput tokensonto astack, assignsthem pre-terminal symbols(e.g., noun, verb), com-
bines, i.e. reduces, these symbols into non-terminal symbols (e.g., NP, VP), and then assembles these

non-terminal symbols into the highest sentence structure, S.

Top-down parsing requires prediction. Consider two rules as follows:

A — bca
A — abc | acb | bac | bca

To predict isto select one of the right-hand sides and replace the left-hand side with it. Given an input

string, say bcea, for thefirst rule, the parser predicts just once to get the match, whereas, for the second
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rule, the parser has to select four timesto find the match. The top-down method will be more efficient if
there are less right-hand sides to select from. Therefore, a top-down parser is more suitable for parsing
languages with fixed word order such as English. However, in Chinese since word order is relatively
loosening, furthermore, phrases and clauses can hold together in simple juxtaposition without grammat-
ical linkingsto indicate the syntactic relationship between them, there are much more possibilities lying
ahead of the parser. To put it another way, there are fewer syntactic cluesfor atop-down parser to predict
what would be the next constituent to parse. Thus, a top-down parser cannot efficiently parse Chinese.
In view of this, at sentence and clause levels, we adopt a bottom-up strategy, which only shifts the con-
stituents parsed (e.g., NP, PP) onto a stack and the decision on what rule appliesis postponed to the | atest
possible moment so that decision can be based on thefullest possibleinformation. For example, the good
moment would be the time after the verb is parsed because the verb provideslexical information on how

its arguments are ordered.

The bottom-up strategy also makeit easy for aright-to-left parser to parse right-branching construc-
tions such as sentential complements. Right-branching structures lead a right-to-left-ordered top-down
parser into an endless right-recursion. Consider the processing of the indicative clause, e.g., John be-

lieves Mary saw Pat, whose phrase-structure rules can be described as follows:

S — NP VP
NP — S | noun

VP — verb | verb NP

First, S is replaced with NP and VP, which in turn is replaced with verb and NP. Then, NP is replaced
with S, which againisreplaced with NP and VP. The recursion goeson and oninfinitely. The ATN parser
cannot tell that the clause Mary saw Pat is an indicative clause until it finds the verb believes. However,

bottom-up parsing allows the parser to “look ahead” an arbitrary distance. Before the verb believe is
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encountered, the parser pushesthe constituentsin the clause Mary saw Pat onto an argument stack. When
theverb believesisrecognized, the elementsin the stack are retrieved for semantic case checking and are
reduced to a semantic node representing the proposition that Mary saw Pat. The nodeisthen returned to

the higher sentence-level in which the node becomes the indicative clause of the matrix verb believes.

However, bottom-up processing requiresmore run-timememory to implement the stack. When pars-
ing languages with fixed word order, it is better to employ the top-down method. Chinese word order
within the phrase level (e.g., NP, PP, VP) isfixed; therefore, our parser switches to the top-down mode

intheNP, PP, and, VP subnetworks of the argument network.

4.2 The sentence network

The parsing process starts from the sentence state S, in which the parser does some initial setups such
as variable initialization, selecting or switching back to the Chinese lexicon, input-string reversal, and

setting sentence mood.

e Variableinitialization: In order to facilitate the parsing process, we keep some variablesfor book-

keeping and table look-up. When parsing a new sentence, we have to reset these variables.

e Selecting Chinese lexicon: There are two lexicons: one is the Chinese lexicon for parsing; the
other is the English lexicon for generation. In parsing a Chinese sentence, we select the Chinese
lexicon. When generating an English sentence, we switch to the English lexicon. We switch the

lexicon back to the Chinese lexicon before parsing each new sentence.

e |nputstringreversal: The GATN interpreter takestheinput string from left to right. Sincewewant
to parsethe sentencein theright-to-left direction, wefirst reversetheinput sentence. Onreversing
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the input string, we JUMP to the SP (Sentence Parsing) state to find the mood of the sentence.

e Setting sentence mood: The mood of the input sentenceis partly determined by the end punctu-
ation. A period indicates the declarative mood. A gquestion mark sets the interrogative mood. If
both the question mark and the Chinese question marker mal isfound at the end of the sentence,

then the sentence mood is set to Yes-No-Q mood (Yes-No Interrogative mood).

After these initializations, the sentence network calls the argument network, ARGS, to find out the
arguments or constituents (including the verbs) of the input sentence. After PUSHing down to the argu-
ment network, the parser arrives at the ARGS state. Themood of the sentenceis sent down to the ARGS

State.

4.3 Theargument network

Because of the relatively free word order of Chinese, the parser operates in the bottom-up mode at the
ARGS state. There arethree subnetworksin theargument network, namely, the NP network (noun phrase),
the PP network (adposition network), and the VP network. Without making any hypothesisor prediction,*
the ARGS network callsits three subnetworksin the order of NP network then Verb network and then PP
network to search for the predicate of the sentence or the arguments of the predicate. If any one of these
three subnetworks succeeds, whatever popped back fromit, an NP, a PP, or averb, is stored in the argu-

ment stack. The parser then loops to the ARGS state to invoke its three subnetworksin the same order to

Inthe ARGS state, we arrange the PUSH arcsin the order of NP network then V network, and then PP
network. If it traversesone arc successfully, the parser will skip theremaining arcsin astate. Intheinput
sentence, there are higher percentages of noun phrases than the combination of the verb phrases and the
adposition phrases. The way we order the arcs makes parsing more efficient, since the parser will waste
less time on taking wrong arcs.
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search for the next constituent on the remaining input string. The parser iterates over the three subnet-
worksin the ARGS state until all of them fail to find any constituents or the input string is exhausted. All
the arguments and the predicate successively recognized are pushed onto the argument stack. The parser
then JUMPsto the S/END (sentence end) state where the argumentsin the stack will be tested against the
case frame of the predicate for their semantic well-formedness. If the case checking procedure proves
the argument stack semantically well-formed, then each argument is assigned a proper case. According
to the result of case assignment, the SNePS node representing the input sentenceis built and stored in the
* register. Then, the generation of the English tranglation begins from the G network taking the content

of the * register asitsinput.

In the following subsections, we discussthe three subnetworks, the NP network, the PP network, and
the Verb network, of the argument network. Before we go over these subnetworks, | will talk about the

word-segmentation problem, which is relevant to al three subnetworks.

4.3.1 Theword segmentation problem

Since there are no delimiters between two Chinese words, the parser has to find word boundaries while
parsing. In Chinese, the differences among one-character words, multi-character words, and noun com-
pound are not clear[ Tang, 1989]. Therefore, we must determine the boundaries of compound words and
multi-character words. Right before the parser triesto find out the lexical category of the current word,
the GATN interpreter callsthe function GET-SENSES to search for all possibleword boundariesfrom the
current point of the input string. The function will return as many words as the number of word bound-
ariesfound. Then the parser beginsgoing through the network. If later it fails, then the parser backtracks

to take the next word and tries again. The word-segmentation mechanismis built in with the CAT arc, al
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possible word boundariesin the input string will be tried through backtracking. For an example on how

the function GET-SENSES finds out the word boundaries, please refer to section 4.3.3.

4.3.2 Theverb network

We put the verb network in the ARGS state, although the verb is the predicate rather than the argument
of asentence or aclause. Like the arguments of sentences, i.e., noun phrases etc., the Chinese verb can
also appear in sentenceinitial, middleor final positions. Dueto the free word order among the arguments
and the predi cate, together with the noun phrase network and the adposition network, weincludethe verb

network in the argument state where the parser operates in bottom-up mode.

Besides parsing the main verb of a sentence, the Verb network also parses the modality of the verb,

i.e., auxiliary, time, aspect, negation, etc.

auxiliary: yinglgail (should), hui4 (will), kei3yi3 (can)

time: tianltianl (everyday), zuo2tianl (yesterday), jinltianl (today)

aspect: guo4 (experiential suffix), zhe (durative suffix), 1€? (perfective suffix), zai4 (progressive

prefix)

negation: bu4, mei2

Our Verb network is built according to the network diagram in Figure 4.1. The negative mei2 does not
occur with the future tense. When the parser sees the negative mei2, atest is performed on the tense

register. If it is set to the value future, the Verb network blocks.

2\When |e appearsin the sentence-final position, it is a perfective particle.
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wrd "jinltianl” " zuo2tian:
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wrd " zhe”

wrd "tian1tianl”

Figure 4.1: Verb Network

There are no tensesin Chinese comparable with those found in European languages. However, what
the Chinese aspects express can correspond semantically to English tenses or aspect. Like the English
past tense, guo4 indicates the action took placein the past. le indicating completion is roughly equal to
the English perfect aspect. zhe signalsacontinuing action. It issimilar to the English progressive aspect.
When parsing a Chinese aspect, the parser setsthe TENSE register to the English tense comparableto the
Chinese aspect. Later on when the parser builds the SNePS representation, we will have a TENSE arc

pointing to the value of the TENSE register.

The way we handle Chinese aspect is far from being satisfactory though. There have been exten-
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sive researches done in the SNePS Research Group on building SNePS language-independent temporal
structures for English narrative. It would be better if our parse could utilize them to build similar case
framesthat capture the meaning of the Chinese aspects. Sincethisprojectisto build aprototype machine

trang ation system, the above issue is not our top concern. We leave it to further research.

4.3.3 Thenoun phrase network

car adj

cat classifier cat det push ARGS
cat n cat num wrd "de"

I WA W

cat npr Jump
Jump

Figure 4.2: The Noun Phrase Network

The noun-phrase network, (NP network), is initiated through a PUSH arc from the ARGS state. The NP
network tries to find deixis, numerals, classifiers, and one or more adjectives, aswell as the head nouns.
Since the word order within the Chinese noun phraseisfixed, the parser returnsto top-down mode, when
entering the NP network. Scanning the input from right to left, the parser first tries to identify the head

noun, which can be anoun or a proper name.

We usethe CAT arc to find out the lexical category of the current word. If it isanoun, then the parser
builds a member/class case frame to represent it; the parser builds an object/propername case frame for
aproper name or avariable node for aquestion pronoun; if the current word does not belong to any noun
category, then the NP subnetwork blocks and is popped back to the ARGS state, where the Verb network

and the PP network will be called to see if the current word is averb or an adposition.
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After identifying the head noun, the parser goes on to find the modifiers of the head noun. We build
the object/property case frame for each adjective or object/quant case frame for the numeral. We aso
point the object arcsto the base node which representsthe intensional entity denoted by the head noun.
Notice that the case frames are only built but are not asserted. All nodes thus built are not in CASSIE's
belief space until afinal valid parseisfound, at which time, we use path-based inference to walk down

the sentence node tree to assert them. Before we reach the end of the NP network, where the parser

Relative clause starts here.
= & Fw ¥ ® F
Zhanglsanl xi3huanl Li3si4 mai3 de5 shul
Zhanglsanl like Li3si4  buy DE book

Zhanglsanl liked the books which Li3si4 bought.

Figure 4.3: An example of de as arelative clause marker.

S & Fwo #F
Zhanglsanl xi3huanl Li3si4 de5 shul
Zhanglsanl like Li3s4 DE book

Zhanglsanl liked Li3si4’s books.

Figure 4.4: An example of de as a genitive noun phrase marker.

pops back to the ARGS state, we check if the current word is a 44 de, the relativizer (as in Figure 4.3)
or the genitive-noun-phrase marker (asin Figure 4.4). The parser first tests whether the rest of the input
sentence can form arelative clause of the head noun just found. If it isnot arelativizer, then it should be
agenitive-phrase marker; then, the NP network recursively calls itself to retrieve the genitive noun. The
SNePS nodes representing the relative clause, the genitive, or the head noun and al relevant syntactic
information are stored in the NP register, which will be sent up to the argument-level network and pushed

into the argument stack when the NP network pops back to it.
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Parsing relative clauses

After therelativizer deisidentified by the NP network, it callsits parent, the argument network, to find the
relative clause. Since relative clause possesses every element that constitutes a sentence, the argument
network, normally used to parse a sentence, is reused to parse the relative clause. Our grammar isatruly
recursive network grammar in which a network calls its subnetworks, which in turn can call its parent

network; therefore, deeply embedded relative clauses can be parsed without any problems.

There are two differences in parsing relative clauses and sentences. First, the relative clause is a
“sentence” inside the whole sentence. The top sentence spans the whole input string, while a relative
clauseispart of theinput string. That is, we cantell weareat theend of asentencewhen no moreelements
are found in the input string; however, this cannot serve as a clue for arelative clause. We do not know
whether we are still parsing a constituent in the relative clause or whether we have already passed the
relative clause and have started parsing a constituent in the higher-level clause or sentence. Our right-to-
left parsing does not have any problem identifying arelative clause; however, we still haveto find away
to tell where this relative clause starts® so that we will not mistake a constituent at some higher level for
onein thisrelative clause and so that we can pop back from arelative clause at the right place and return

to the higher level.

Second, the syntactic structure of the relative clause is different from the canonical sentence struc-
ture. The head noun of arelative clauseisat the right end of the clause. Before we can do role assignment
on the arguments of arelative clause, we must insert the head noun into the argument stack in the proper

place so that syntactic well-formedness can be met.

To decide the starting point of arelative clause, we follow this algorithm: When we push down the

3|n Chinese, the relative clause comes before the relative clause marker. So we have to find where
the relative clause starts.
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argument network to find the arguments of the relative clause, we send down the head noun and therelc
register, whose value is true, to the lower-level argument network. The relc register informs the parser
that this level of the argument network is for parsing relative clauses and is thus different from the top-
level argument network, whichisfor parsing thewhole sentence. Unlikethetop-level argument network,
which is popped back when the input string isempty, the argument network for relative clausesis popped
back when the case assignment for the argumentsin the rel ative clause succeeds. We start to do case as-
signment as soon asthe predicate of therelative clauseisfound. The predicate providesenoughinforma-
tion for usto judgeif at this point we have picked up enough argumentsfor this relative clause. We also
do semantic checking on these arguments to know whether this relative clause is grammatical and, more
importantly, whether an argument belongs to this relative clause. An argument that does not fit in the
predicate’s case frame may belong to a clause at some other level. With this method, we are able to han-
dle any long-distance dependency that occursin the case of sentences deeply embedded within relative
clauses whose arguments are separated by arguments at other clause levels. If therole-assignment
procedure finds there are insufficient arguments or the argument found does not fit the predicate’s case
frame, then the argument network goesonto takeonemore. Werepeattherole-assignment eachtime
when anewly parsed argument is pushed onto the argument stack, until the role-assignment proce-
dure succeeds. When it succeeds, we know we have reached the starting point of therelative clause; thus,
the SNePS node representing the proposition of the relative clause can be built. Then the lower-level ar-
gument network together with the SNePS node is popped back to the NP network where this argument

network was called.

To decide the syntactic position of the head noun in arelative clause, we use the following rules: If

the relative clause starts with a predicate or adposition phrase then the head noun is the subject of the
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relative clause. In this case, we put the head noun on top of the argument stack for this relative clause.

For example,

mai3 shul de Zhanglsanl

buy book DE Zhanglsanl
Zhanglsanl who bought books. 4.0

Zai4 vyil geb yin2hang2 zuo4 shi4 de5 Zhanglsanl
in one CL bank do thing DE Zhanglsanl
Zhanglsanl who worked in a bank. (4.2)

When thisrelative clauseistransformed into the canonical sentence structure, the head noun Zhanglsanl

is the subject of these relative clauses:

Zhanglsanl mai3 shul
Zhanglsanl buy  book
Zhanglsanl bought books. 4.3

Zhanglsanl zai4 vyil ge5 vyin2hang2 zuo4 shi4
Zhanglsanl in one CL bank do thing
Zhanglsanl worked in a bank. (4.9

If the last argument of the relative clause is an adposition phrase, then we insert the head noun right in

front of the adposition phrase.

John qi2 dao4 xue2qgiao4 de nad4 tai2 danlchel
John ride to school DE Det CL bicycle
the bicycle that John rode to school (4.5

The underlying representation of thisrelative clauseis:
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John qi2 nad4 tai2 danlchel dao4 xue2qiaod

John ride Det CL bicycle to school
John rode the bicycle to school. (4.6)

In all other cases, we append the head noun to the bottom of the argument stack. For example,

Zhanglsanl mai3 de shul

Zhanglsanl buy DE book
the book that Zhanglsanl bought 4.7

Zhanglsanl gei3 Li3s4 de shul
Zhanglsanl give Li3si4 DE book

the book that Zhanglsanl gave Li3si4 (4.8
The underlying representations of these relative clauses correspond to these canonical sentence struc-

tures:

Zhanglsanl mai3 shul

Zhanglsanl buy  book
Zhanglsanl bought the book. (4.9

Zhanglsanl g@ei3 Li3s4 shul

Zhanglsanl give Li3si4 book
Zhanglsanl gave Li3si4 the book. (4.10)

Note that although we can relativize the direct object, it sounds odd to relativize the indirect object.

* Zhanglsanl gei3 shul de Li3s4
Zhanglsanl give book DE Li3si4
Li3si4 whom Zhanglsanl gave book to (4.11)

Since the head noun cannot be the indirect object, it is safe to append the head noun to the end of a di-

transitive relative clause.
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Par sing the genitive construction

The Chinese character ¢4 de can serve as a genitive marker, arelativizer, or an adjectival marker. When
our right-to-left parser encounters the Chinese character 4% de, the parser first looks up the dictionary
to see whether the next few charactersin the input buffer can form an adjective. If not, the parser tests
whether this 4 de is arelativizer, using the method described in the preceding section. If thistry fails
i.e., it does not mark a relative clause, we test whether it is a genitive marker. The Chinese genitive
construction hasthis order:

genitive noun + #% de + possessed noun

The noun phrase preceding de is the possessor and the noun following de is the possessed. We have

parsed the possessed noun and ¢4 de. Now we PUSH to the noun phrase network to get the genitive noun.

Both the genitive construction of Chinese and that of English areleft branching asin Mary'sfriend’s
father’s books. Our right-to-left parser is capable of handling deep left-branching structure. After recog-
nizing thefirst genitive noun, the parser loops to the same state to look for another genitive marker de. If
it isfound, we PUSH to the noun phrase network again to get the next genitive noun. The parser iterates

over the same state until no other genitive marker is found.

On collecting all genitive nouns and the possessed noun, the parser builds the SNePS representa-
tion for this noun phrase. The semantic relations between the genitive noun and the possessed noun in-
clude possession (John’sbook), kinship relations (John’sfather), part-whole relations (John’sarm), loca-
tion (John’s birthplace) and various other abstract relati ons (John's birthday, John’s success, etc). In our
implementation, the default relation for the genitive construction is the possession relation. The parser
builds the kinship-argl-arg2 case frame for the genitive construction with a kinship semantics, the part-

whol e case frame for that with a part-whole semantics and possessor-rel-object for that with apossession
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semantics.

We use the SNePS Inference Package (SNIP) to deduce which meaning relation holds between the
two nouns. In the knowledge base, the kinship terms, e.g., father, mother, daughter, son, etc are linked

to the kinship property like the following:

(M145! (OBJECT (M142 (LEX father)))  (PROPERTY (M144 (LEX kinship))))
(M148! (OBJECT (M146 (LEX mother)))  (PROPERTY (M144 (LEX kinship))))
(M151! (OBJECT (M149 (LEX daughter))) (PROPERTY (M144 (LEX kinship))))
(M154! (OBJECT (M152 (LEX son))) (PROPERTY (M144 (LEX kinship))))

We can deduce from the knowledge base whether a noun is a kinship term. If the possessed noun is a
kinship term, then we build the kinship-argl-arg2 case frame for the genitive construction as the onein
Figure 3.8. We can also deduce whether the genitive noun and the possessed noun are in a part-whole
relation. If yes, then we build the part-whole case frame for them as the one in Figure 3.9. If al the

deductionsfail, then we build the possessor-rel-object case frame asthe onein Figure 3.7.

Par sing conjoined NPswithout conjunction

The noun-phrase network only takes care of the syntactic parse. Because there is no conjunction present
in case of conjoined noun phrases, at the syntactic level, the parser is unable to determine the boundary
of noun phrases. The segmentation of serial nouns® is again relegated to the case assignment procedure

at the higher-argument network.

When the argument network calls the NP network, the argument stack is sent down to the NP net-
work. If the NP network finds that the element on top of the argument stack is a noun phrase and the

current word is a noun, then the NP network concatenates the current word with the noun phrase. The

“Please refer to section 2.3.2 for discussions and examples on the serial nouns.
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argument stack containing the concatenated NP is then lifted up to the argument network where whether
this concatenated NP meets its predicate’s semantic case requirementsis judged. For the two comple-
ments of give, the concatenated NP will fails the case-checking. Let us trace the parse of the “ Chinese”

sentence John teach Mary Allen linguistics.

Theargument network callsthe NP network again and again to form concatenated NPs. The elements

in the argument stack accumulate in this manner:

(linguistics)
(Allen linguistics)

(Mary Allen linguistics)

((teach) (Mary Allen linguistics))

((John) (teach) (Mary Allen linguistics))

Thisisasimplified argument stack. In the real implementation, thereis syntactic and semantic informa-
tion, such as lexical category, included with each surface substring. The case-assignment procedure at
the end of the argument network performs syntactic and semantic checking on this stack. The predicate

# teach hasthelexical entry.

("#" ((ctgy . v) (4.12)
(case_f (Agent animal)
(Object knowledge skill)
(Experiencer animal))
(surface_arguments . ("AVEQO" "AVO" "QAVE"))

(sense . "teach")))
Thelexica entry illustrates that its lexical category ctgy isaverb. The case_frame feature spec-
ifies that the predicate subcategorizes for an Agent role with animal selectional restriction, an Object
rolewith knowledge or skill properties, and an Experiencer role with animal property. The
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surface_arguments feature reveals the correlation between the semantic subcategorization and the
syntactic structure. The value of the surface_arguments featureisalist of possible surface distribu-
tions among the predicate and its case frame. The first member of the list AVED indicates one possible
ordering: Agent + Verb + Experiencer + Object. The second member of the list AVD indicates another
ordering of theroles: Agent + Verb + Object. The other legitimate ordering is 0AVE: Object + Agent +
Verb + Experiencer. The surface_arguments alsoimplicitly specify the number of argument required
by the predicate. For example, AV and EV means the predicate needs one argument, AVO and OAV two

arguments and AVEQ and OAVE three arguments.

We take the surface arguments one by one to match the stack. The first match fails due to the mis-
match between the number of elements, three, in the stack and the number four, in the surface argument
“AVEQ”. The next match succeeds, since both the stack and the surface argument “ AV O” havethreeele-
ments. This match completes the syntactic checking. Next we perform the semantic case checking. The
string “AVO” means the predicate should be preceded by an Agent and followed by an Object. Thefirst
element of the stack, John, an animal, satisfies the verb teach’s requirement for Agent, i.e., John is an
animal. Thethird element of the stack, (Mary Allen linguistics), does not satisfy the semantic constraint
imposed on the Object role. The case assignment fails, and the parser backtracks to the next arc in the
noun-phrase network, where Mary will be taken as a single noun phrase. The argument stack will be;
((John) (teach) (Mary) (Allen linguistics))

This time, the surface argument “AVEQO” will match the stack syntactically, i.e., John matches A, teach
V, Mary E and (Allen linguistics) O. However, the last element of the stack, (Allen linguistics), still does
not satisfy the semantic constraint for the Object role. The propername, Allen, is not either aknowledge

or skill, although the noun linguistics is a knowledge. The case assignment fails again, and the parser
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backtracks. The argument stack is now:

((John) (teach) (Mary Allen) (linguistics))

Thisstack, matching the surfaceargument “ AVEQO”, issyntactically well-formed. Itsthird element, (Mary
Allen), meets the semantic restriction of the Experiencer role of teach because both Mary and Allen are
animals. The last argument, (linguistics), being the knowledge, is alegal dot filler for the Object role.

Therefore, the semantic well-formedness of this argument stack is aso granted. The SNePS representa-

tion is then built and generation follows.

Par sing noun compounds

Two or more nouns may be put together to form a compound. For example,

H A A
ning2 meng2 liang2 gaol

lemon jelly

lemon jelly (4.13)

The way we handle noun compounds is the same as the way we handle multi-character words. Every
word and compound has its own lexical entry. The function GET-SENSES looks up the lexical entries
in the lexicon for words and noun compounds. Because the interpreter can only see current character
from the window of the input string, and we parse sentences from the end, to enable GET-SENSES to
retrieve the lexical entries of compound, each multi-character lexical entry should haveitslast character
as a separate entry whose lexical category is multi-end. The GET-SENSES function uses the multi-end
lexical entries as the key to find the whole compound. For example, to find the current word (or noun
compound) in the string 7k = vz, # #2 ’x #£, the GATN interpreter looks for thislexical entry:

("#£" ((ctgy . multi-end) (multi-head . ("/&"))) (4.14)
((ctgy . multi-end) (multi-head . ("#" "£" "%"))))
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With the feature pair, (multi-head . ("’x")), the GATN interpreter identifies the two-character
word % #£ jelly. Through the feature pair, (multi-head . ("A&" "#" ";x")), the noun com-
pound # 42 % % lemon jelly isretrieved. After the word boundaries are determined, there are separate

entries for the words identified. For example, the two-character word /% #2 jelly hasthe lexical entry:

(A" ((ctgy . n) (4.15)
(superclass . food)

(sense . "jelly")))
The noun compound #& 42 /% #£, lemon jelly, has the entry:

("#EAZ T A" ((ctgy . n) (4.16)
(superclass . food)

(sense . "lemon jelly")))
The character #% isalso aword by itself:

("#£" ((ctgy . n) (4.17)
(superclass . food)

(sense . "cake")))
Therefore, when the interpreter points at the last character #2 of the input string 7& = vf 48 42 % 2,
three possible senses are available for disambiguation: two words, #% cake and /x 4% jelly, and one for

the noun compound, #& 42 % #£ lemon jelly.

Part-whole/kinship relationswithout genitive marker

The Chinese genitive marker DE between two nouns can be used to denote possessive, part-whole, and
kinship relations. In colloquial Chinese, sometimes the genitive marker DE isleft out. The DE in a pos-
sessive phraseisusually preserved, whilethat in part-whole/kinship relationsismorelikely to be omitted.
Without the genitive, the two nouns can be two independent nouns or one noun phrase. Natural language
users can make a judgment based on discourse context and background knowledge. For example:
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diand shi4 bingl xiangl
television  refrigerator
television and refrigerator (4.18)

diandshi4 de tianlxiand
televison DE antenna

television’s antenna (4.19)°

diand shi4 tianl xian4
television  antenna
television’s antenna * *‘television and antennd (4.20)

Zhanglsanl de e2z?2
Zhanglsanl DE son
Zhanglsanl'sson (4.21)

Zhanglsanl er2z?2
Zhanglsanl son
Zhanglsanl'sson (4.22)

Without the genitive marker, there is no syntactic clue to help group the nouns. We have to use the se-
mantic information to find the relation between them. The semantics here is based on our knowledge
base. We search the knowledge base; if the two nounsin question are connected through a part-whole

path, then they are in a part-whole relation and therefore can be combined into one noun. For example,

diand shi4 tianl xian4 (4.23)
televison antenna

Parsing these two nouns, we use the SNePSUL find command to find out whether there exists a part-

whol e relation between them:

SThisphrasesoundsabit awkward. television antenna soundsbetter. Asfor now, our parser translates
all part-whole relation with the genitive construction. This needsimproving in future implementations.
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(find (lex- whole- part lex) television)

Thiscommand will return “antenna’ asthe result of the search, since we have already built the following

node in the knowledge base:

(M222!' (PART (M221 (LEX antenna screen)))
(WHOLE (M219 (LEX television))))

Based on this semantic information, we decide that the two words, “television” and “antenna’ are
actually one noun “television’s antenna.” The same method is applied to other relations, such as the
kinship relation. Since our parsing is based on semantic information, if the knowledge base changes

over the trand ation process, the parse results may change. For example,

Zhanglsanl er2z2 (4.24)
Zhanglsanl son

Our parser will translate this as “ Zhanglsanl and son.” Then we input the Chinese sentence:

Zhanglsanl you3 er2z2 (4.25)
Zhanglsanl have son

this sentencewill get translated as“ Zhanglsanl has sons.” The SNePS representationsfor it are built as

follows:

(M7! (OBJECT B2) (PROPERNAME (M8 (LEX Zhanglsani))))
(M10! (CLASS (M9 (LEX son))) (MEMBER B1))
(M11! (ARG1 B1) (ARG2 B2) (KINSHIP (M9 (LEX son))))

“Zhanglsanl” now is connected with “son” viathe argl-arg2-kinship caseframe. Notice that
both this representation and our knowledge base are SNePS representations. The newly-created SNePS
representation built along with the parsing processis integrated into the knowledge base; therefore, our

knowledge base grows with the trandation process. The new knowledge base becomes the reasoning
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Figure 4.5 Zhanglsanl has sons.

space for future inferences. For identical inference requests, different reasoning space may result in dif-
ferent answers. Based on the responses to the inference, the parser builds the interlingua representation
for the input. As aresult, our tranglations are not always fixed. We may get different English outputs
for identical Chinese inputs. The translation changes according to the context. Thisis how the context

affects our trandation.

Now we ask CASSIE to translate sentence4.24 again. Thistime becausetheknowledge, Zhanglsanl
has sons, isin the knowledge base, through the SNePS f ind command, the parser isableto infer that the
two nouns, “Zhanglsanl” and “son,” are in the kinship relation. Thus, besides the conjunctive reading

of “Zhanglsanl and son,” we get another reading, “Zhanglsan1’s son.”

4.3.4 Theadposition phrase network

The adposition phrase in Chineseis usually concerned with time, location, direction, or purpose, and is

usually composed of a preposition and/or postposition and a noun phrase.

Here we use the CAT arc to recognize the preposition and the postposition. To find the noun phrase,

we simply PUSH to the noun network. If either the preposition or the postposition is present with the
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noun phrase, we have found an adposition phrase. The adpos register is set to the preposition or the

postposition.

Sometimes both the preposition and the postposition are present in a Chinese adposition phrase. The
adpos register is set to the meaning jointly conveyed by the two Chinese adpositions. For example, the
adpos register for the Chinese adposition phrase zai4 ... xia4 is set to the meaning expressed by the En-
glish preposition under. The preposition and postposition are stored in separateregisters, PREP and POST

respectively. The parser looks up atable to find the meaning corresponding to both registers.

4.4 Semantic case checking and role assignment

Case checking is particularly important in parsing Chinese. Because Chinese word order is relatively
free, syntactic parsing alone does not impose enough constraintson the grammaticality of asentence. Our
parser traversesthe ATN arcstoidentify the syntactic argumentsand to perform syntactic checking within
each argument. Case checking is then implemented to enforce case agreement among these syntactic

items. Finally, before the generator takes control of the task, the parser assigns them proper case roles.

Therole assignment isafunction placed near the end of the parsing process. Thisfunctionisinvoked
asthe test of a POP arc where the input buffer is exhausted, all the arguments have been collected, and
the argument network is about to POP back to the sentence network. The function checks each argument
against theverb’'scaseframe until al the case slotsare successfully filled. If the role assignment succeeds
i.e., thetest returnstrue, the SNePS node representing thi s sentenceis built and popped up to the sentence
network. The parser passesthe node to the generation part of the grammar asthe input and the generation
process follows. Otherwise (the test fails), the POP arc is blocked and the parser beginsto backtrack for
the correct sense to fill out the case frame.
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4.4.1 Mapping predicate argumentsto caseroles

Inthissection, | will demonstratetherole-assignment procedure by tracing the Chinese sentence &4

g % 3] /K 4 pi Tweety flew to Buffalo.

At the end of the argument network, the parser identifies the verb # fly and two arguments. & »#

Tweety and 7K 4 3% Buffalo. They are stored in the argument stack like the following:

((NP  # 7 Tweety) (Verb #& fly) (PP % to (NP K23k Buffalo)))

First, the lexical information for the verb is retrieved:

("#" ((ctgy . v)
(case_frame (Agent can fly)
(Object aircraft)
(Locative property_locative))
(surface_arguments . ("AV" "AVQ" "ALV" "AVL"))
(sense . "fly")))

Therearefour possible syntactic orderingsamong the verb and its arguments; namely, “ Agent Verb”,
“Agent Verb Object”, “ Agent Locative Verb”, and “ Agent Verb Locative’. We check each ordering one
after one against the argument stack. Thefirst ordering, “ Agent Verb”, fails the preliminary test because
the number of arguments, one, is not equal to that, which is two, in the argument stack. The second

ordering “ Agent Verb Object” istaken for further consideration because both argument numbersaretwo.

Now we want to check whether the first item in the argument stack, the propername # »# Tweety,
canfill therole of being an Agent. The case_frame lexical feature of #¢ fly specifiesthat the casefiller
for the Agent role should be someone who can fly (can_f1y). TheRole-assignment function calls
SNePS deduce to infer whether Tweety can fly. Theinference couldfail if we had not told SNePS what
#4 v Tweety is. Suppose previously our system has been asked to translate the sentence, & "% 2 — &
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4 # E Tweety isa canary. Thetwo factsthat a canary is abird and birds can fly are in our knowledge
base and have been built in the SNePS semantic network. Through inheritance and path-based inference,

SNePS is able to deduce that Tweety can fly. Therefore, Tweety can fill the Agent case slot.

Our semantic restriction for a case role includes diverse properties, features, and relations. One ad-
vantage of our taxonomy over apure | SA oneisthe simplicity of specification. In an I1SA taxonomy, in-
stead of listing (Agent can_fly) aswehave, onehasto list all the classesthat meet the constraint, for
example, (Agent bird airplane fighter bee butterfly ...). Itisalsolessefficientwhen
the case checking function has to check through all the items to determine whether one argument can fill
therole. We simply need to deduce whether one specific item hasthe ability to fly. The other advantage
is the ease of lexicon maintenance. When some categories have to be added to, or removed from, the
semantic restrictions for arole, in an |SA taxonomy one has to adjust all the lexical entries affected by
the changes. In large lexicons, one cannot be sure whether all the adjustments have been made accord-
ingly. In our case, we just add or remove the properties for these specific categories in the knowledge
base. Moreimportantly, because our knowledge base and the trandlation results are all SNePS semantic
networks, the adjustments can be made through natural language. The change of the knowledge base
made by the previous trandation (natural language) will take effect immediately in the current transla-
tion process. In most other systems, the contextual knowledge of the texts previously translated is not
utilized. Thisis one reason that our system claimsto have real world knowledge in the sense that it has
an ever-changing knowledge acquired from context as opposed to a fixed knowledge predefined in the

lexicon found in other systems.

Having successfully identified the Agent role, now we are going to check the Object role. The verb

# fly needsan aircraft sensetofill itsobject role. Our parser deduceswhether 7K 4 3% Buffaloisan

80



aircraft. Because Buffalo isnot an aircraft, theinferencefails. The second ordering “ Agent Verb Object”

is now ruled out.

Thethird ordering “Agent Locative Verb” is eliminated from consideration because the verb fly oc-
curs second in the argument stack, while the ordering specifies that it should be in the sentence final

position.

The Agent role in the last ordering “Agent Verb Locative’ isfilled by &t »f Tweety immediately
without further verification. When working on the second ordering, we have already called the SNePS
deduce to infer whether Tweety can fill the Agent role. The results of the previousinferences are stored
in ahash table,® so that the same deduction will never be madetwice. Two hash tables, argument-1list
and infer-1ist, are utilized to reduce the queries for knowledge base. The argument-1ist isused
to store the constructions of arguments, well-formed or ill-formed, created by the parser. Therefore, in
casethe parser backtracks, the parser can check thelists. | f the syntactic construct hasbeen parsed before,
then the result of the role assignment is returned directly; thus, duplication of efforts is avoided. The
infer-1list isused to store a noun’s superclasses obtained from querying the knowledge base. Given
that each verb usually has more than one case ordering, and each case role could have many candidates
for acasefiller, thereisagood chancethat acandidatewill be checked over and again. Before making the
inference, welook up the hashtablefirst. If theanswer isnot inthe hash, theinferenceismade; otherwise,
we reuse the answer. This also facilitates the parsing in situations where identical noun phrases tend to

recur when we trand ate a narrative.

Thefeature-value pair, (Locative property_locative), specifiesthat theLocativerolefor #

fly should havethe 1ocative property. In our taxonomy, 7K 4 3% Buffalois aplace and all placeshave

®Hash table is a data structure whose elements can be located efficiently using memory access func-
tions called hashing functions.
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thelocative property. By property inheritance and path-based inference, the parser infersthat 7K 4 %,
Buffalo has the locative property; therefore, it can fill the Locative role. Now all slots have been filled.
Each argument is assigned a semantic role as in the following list:

(( Agent #rek Tweety)
( Locative 7K 4 3% Buffalo))

From this, the SNePS semantic network is then built. The semantic node representing the propositionis

stored in aregister and is returned to the higher (sentence) level for the generator.

442 Covert caseroles

From the example above, we see that the role-assignment function first checks the argument num-
ber and the verb position. If both are fine, it then deduces whether the argument string conforms to the
semantic restrictions imposed by the case frame. Because making deductions is generally more costly

than number checking, the preliminary test facilitates the case checking procedure.

The unspecified Agent in a passive sentence and coreferential case roles are covert caseroles. They
arespecifiedinthe surface_arguments lexical feature but do not really exist in theinput string. Some
care hasto be taken before we can go on for the case checking procedure; otherwise, the rol e assignment
will fail because the number of arguments does not match that in the surface_arguments lexical fea-

ture.

The surface_arguments, UOV, “Unspecified_Agent Object Verb”, signifies one pattern of Chi-
nese passive sentences. At the start of the role-assignment procedure, the parser pushes a dummy
string, “#unspecified”, for the unspecified Agent role, into the argument stack so that the argument num-
ber will agreewith that inthe surface_arguments. Thestring “#unspecified” alwaysfillsthe unspec-
ified Agent role.
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As an example of covert coreferential role, the letter Cin ACVO “Agent Experiencer Verb Object”
denotes the covert Experiencer coreferential with the Agent as that in the sentence John studies linguis-
tics. We duplicate acopy of the Agent roleincluding its surface string, the SNePS node representing this

Agent etc., and put it in the position of the Experiencer role.

4.4.3 Roleassignment for relative clauses

Role assignment for relative clauses also needs some pretreatment. Usually the head noun of a Chinese
relative clause is not in the canonical position. The head noun is marked by the relativizer 44 DE and
always appears at the end of arelative clause. First, the rel ative clause hasto be transformed to the con-
ventional clause through head noun relocation. Then, we can perform case checking on relative clauses

the same way aswe do it on other sentences.

v l
& wTE 8 k=
verb  object DE head noun
study linguistics DE  Zhanglsanl
Zhanglsanl who studied linguistics (4.26)
v l
#%  EB % #mT$ 8 K=
prep phrase verb  object DE head noun
in theUS study linguistics DE  Zhanglsanl
Zhanglsanl who studied linguisticsin US (4.27)
v !
= ¥ EE Y S I ¥ 2
subject verb prep  phrase DE  head noun
Zhanglsanl ride to school DE bicycle
the bicycle which Zhanglsanl rode to school (4.28)
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v l

= B 8 B
subject verb DE head noun
Zhanglsanl ride DE hicycle

the bicycle which Zhanglsanl rode

vl
= % 3w I 4
subject verb DO DE head noun
Zhanglsanl give Li3si4 DE  book

the book which Zhanglsanl gave Li3si4

v l
*x ik = & E3 %  Fw
subject verb 10 DE head noun
Zhanglsanl give book DE Li3si4

Li3si4 to whom Zhanglsanl gave books

(4.29)

(4.30)

(4.31)

In Chinese, preverbal adposition phrases follow the subject (as in 4.27) and postverbal adposition

phrases follow the object (asin 4.28). If arelative clause begins with an adposition phrase (4.27), it is

apreverbal adposition phrase and the missing subject becomes the head noun of the relative clause. We

check the relative clause's argument stack. If the relative clause starts with a verb or adposition phrase

i.e., the subject ismissing (4.26, 4.27), then the head noun is moved to the top of the argument stack to

serveasthe subject. Otherwise (4.29, 4.30), the head noun shoul d be appended to the end of the argument

stack to serve asthe object, but, with one exception. Given that postverbal adposition phrasesfollow the

object, if apreposition phrase appears at the end of the argument stack (4.28) then the head noun should

be inserted in front of the preposition phrase rather than being appended to it. In addition, because the

indirect object of Chinese ditransitive verb is not relativized (4.31), that is, the head noun cannot be the
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indirect object, we can safely append the head noun to the end of argument stack to serve as the direct

object (4.30).

444 Parsingthe serial-verb construction

As summarized by [Li and Thompson, 1981], the serial-verb construction is ”a sentence that contains
two or more verb phrases or clauses juxtaposed without any marker indicating what the relationship is
between them.” In English, there exist syntactic markers such as conjunctions (and, but), markers of
subordinate clauses (because, if), infinitive markers (to), prepositions (for, on) to mark the interrelation
of verb phrases in the same sentence. The absence of markers in the Chinese serial-verb construction
resultsin ambiguities like those found in the following pseudo English multiple-verb sentences with the

omission of syntactic and morphological markers.

Noun Verb Noun Verb Noun
1. John eat dinner read book
2. John believe May read book
3. John buy book give Mary
4. John persuade Mary read book

5. John promise Mary read book

Their corresponding English sentences are as follows:
1. John eats dinner and reads books.
2. John believesthat Mary read books.
3. John buysbooksto give Mary.
4. John persuades Mary to read books.

5. John promises Mary to read books.
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All theabove" sentences’ sharethe samesentencepattern, i.e., (noun verb noun verb noun). How-
ever, therel ations between thetwo verbsare all different. In sentence (1), the coordinate conjunctionand
and the tense inflection (-s) indicates that the two verb phrases represent two independent events. In sen-
tence (2), the complementizer that indicatesthe second verbisthe predicate of theindicative clause of the
first verb. In sentence (3), the infinitive to indicates the purpose of John's buying booksis to give them
to Mary. In the last two sentences, the first verb is a control verb and the second verb is* controlled” by
thefirst onei.e., in LFG terms, the first verb subcategorized for an X COMP, a non-finite clause without
an overt subject. In sentence (4), “Mary”, the object of the first verb, functionally becomes the subject

of the XCOMP; whilein sentence (5), “ John” becomes the subject of the XCOMP.

From the examples above, we see that the syntactic and morphological markers help clarify the sen-
tencesin English. However, we can a so observe that native speakers of Chinese are still able to under-
stand corresponding sentences without any markers. The markers serve as clues for machine parsers.
For traditional parsers that solely depend on syntactic and morphological information, the markers are
the only clues. Native speakers or our parser draw on semanti ¢ information to cope with the deficiency

of the syntactic and morphological information.

In this project, we classify the Chinese serial verb construction into four types namely indicative
clause, control construction, infinitives of purpose and coordinate compound sentences. The semantic
rel ationships between the verbs in the Chinese serial verb construction are very complicated. The clas-

sification here is certainly not complete.

e Indicative clause: The first verb subcategorizes for an indicative clause. For example, sentence

Q).

e Control construction: Thefirst verbisacontrol verb, i.e., thefirst verb stipul ateswhere the subject
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of the second verb comesfrom. Sentence (4) and (5) are exampl esof thisconstruction. In sentence
(4), thefirst verb quand “ persuade” is an object control verb that identifiesits object to the subject
of the second verb. Sentence (5) is a subject control sentence. The missing subject of the second

verb is the subject of thefirst verb.

¢ Coordinate compound sentence: Two or more clauses, each standing for a separate event, are con-
joined by the coordinate conjunction and. All clauses except for thefirst one, are without subject

and they share their subject with the first clause.

e Infinitives of purpose: Thefirst act is done in order to achieve the second. For example, in sen-

tence (3), the act of John’s buying booksis done for the purpose of giving themto Mary.

To determine which type of serial verb construction a sentence belongsto, our parser draws on lex-
ical and case information. First, we make a dictionary lookup to check whether the first verb contains
lexical information that decidesthetype of serial verb construction. Two typesof serial verb construction

namely indicative clause and control construction are lexically-determined.

In the lexicon, the verb subcategorizing for an indicative clause has aletter S inits
surface_arguments feature. For example, thesurface_arguments of theverbbelieveisAVS, which

means the Verb follows an Agent role and precedes a Sentential complement.

Thereisan Xcomp lexical feature for control verbs. For example, the verb persuade hasan (Xcomp
ObjControl) feature-value pair in its lexical entry. The value 0bjControl means persuade, which
subcategorizes for an Xcomplement, is an object control verb. The subject control verb, for example

promise, hasthe (Xcomp SubjControl) feature-value pair initslexical entry.

If thetype of serial-verb construction cannot be determined from the lexical information, then we use
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the role-assignment procedure | describe below to find out the type of the serial-verb construction

involved. Let ustake the following Chinese sentence as examples.

Zhanglsanl mai3 shul du2
Zhanglsanl buy book read
Zhanglsanl bought booksto read. (4.32)

First, the role assignment is performed on the first verb phrase.

Zhanglsanl mai3 shul (4.33)
Zhanglsanl buy  book

The role assignment succeeds because the case dots of the verb “mai3” buy can be properly filled. The
verb buy requires an Agent and an Object. “Zhanglsanl” is assigned the Agent role; “shul” book the
Object role. And then we go on to do role-assignment on the second verb phrase. At first, itisonly a
verb “du2” read; then, it getsits unexpressed subject from that of the first verb phrase. The second verb
phrase is now “ Zhanglsanl read” . The role assignment fails because the required Object role for the
verb read ismissing. The parser then takes the Object of the first verb phrase as that of the second verb

phrase. It now becomes:

Zhanglsanl du2 shul (4.34)
Zhanglsanl read book

This time the role assignment succeeds. When the second verb phrase misses two case role values that

are shared with thefirst verb phrase's arguments, this sentenceis an infinitives of purpose.

If the second verb does not require an Object role, i.e., thereisonly amissing subject then the parser
is not able to tell whether this sentence is an instance of the coordinate compound or the infinitives of

purpose. For now, this kind of sentenceswill al be parsed into coordinate compound. For example,
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Zhanglsanl chil anglmian2yao4 shuidjiaocd (4.35)
Zhanglsanl eat  deeping pill sleep

Zhanglsanl chil ping2guo3 shuidjiaocd (4.36)
Zhanglsanl eat  apple sleep

The two sentences above will be translated into:

Zhanglsanl ate a leeping pill and slept.

Zhanglsanl ate an apple and slept.

The first sentences, however, could be better translated as:

Zhanglsanl ate a deeping pill to sleep.

The second verb in acoordinate compound either already hasits own Object or doesnot require an Object
role. The only syntactic clueto identify an infinitive of purposeisthe missing Object in the second verb
phrase. Thereisno clueto theinfinitives of purposewhen the second verb phrase does not require an Ob-
jectrole. Itistherefore easy to confuse this kind of infinitives of purposewith the compound sentences.
The sentence below is another example:

Zhanglsanl hui2 jial  shui4jiaod (4.37)
Zhanglsanl go home dleep

This sentence can mean “ John went home and slept.” or “ John went home to sleep.” The decision on
one over the other has to be based on the context and real world knowledge. It involves inferences at
the narrative level which are beyond our current working level, the sentence. Therefore, we do not take
pains to solve this problem here. As of now this kind of sentences will all get trandated into English
coordinate compound’. However, because SNePS has the capability to make inferences on all already
built networks which to a great extent constitute the context, this task could become one of the focuses

of our further research.

’It would be better if both translations are given.
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To perform case-checking and role-assignment on infinitives of purpose, we haveto obtain the unex-
pressed grammatical functionsfirst. In the succeeding verb phrase(s), besides the missing subject, some
have a missing object or direct abject e.g. sentence (3). In the absence of control relations between the
arguments of thefirst verb and the arguments of the succeeding verb(s), the following are somerulesfor
the parser to obtain the unexpressed functions. The missing subject will get its function from the subject
of thefirst verb; the missing object or direct object from the object of thefirst verb. However, if the first
verb isaditransitive verb, the undergoer will be the controller of the missing object; and the beneficiary
the controller of the missing subject.

Zhanglsanl g@ei3 Li3si4 gian2 yongd.

Zhanglsanl give Li3si4 money use
Zhangshan gave Lisi money to use. (4.38)

Zhanglsanl toul Li3si4 qgian2 yong4

Zhanglsanl stole Li3si4 money use

Zhangshan stole Lisi money to use. (4.39)
L et us take the above two sentencesfor examples. The undergoer in both sentencesis the money. 1t will

fill thefunction of the missing object. The beneficiary of the money, i.e. the object of 4.38 and the subject

of 4.39, will fill the missing subject.

A right-to-left parser may find difficulty in parsing the serial-verb construction, because some crit-
ical parsing information are stored in the first verb phrase, which is located at the left of the sentence.
For example, the lexical features of the first verb decide whether the sentence is an instance of senten-
tial complement, a control construction or other types of seria-verb construction. And the arguments of
the first verb provide grammatical functionsfor the missing arguments of the succeeding verb. Parsing
sentences from the end, our right-to-left parser is at a disadvantage since it hasinsufficient information.
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Our bottom-up parsing strategy compensates for this disadvantage by pushing all the constituentsonto a
stack, postponing case-checking and role-assignment until enough information isavailablei.e., after the

first verb phraseis parsed.

4.5 Parsinginterrogative sentence

The question mark “?’ marks the interrogative sentences. Two types are handled here, namely, yes-
no questions and wh-questions. If the question marker, mal, is found at the end of a question, itisa
yes-no question. If successfully parsed, it will be represented by a molecular node, either asserted or
unasserted. A wh-guestion isaquestion sentencethat containsawh-pronoune.g. # who and 4+ & what.
A variable node is used to represent the wh-pronoun. Wh-questions, yes-no questions, and declarative
sentences are al represented by molecular nodes. However, because a node that governs variable nodes
is a pattern node, the molecular nodes for wh-questions are pattern nodes, whereas molecular nodes for

yes-no questions and declarative sentences are constant nodes.

Parsing interrogative sentences and parsing declarative sentences require different treatments of the
noun objects. When parsing declarative sentences, a new base node is created to represent every noun
being parsed. When parsing interrogative sentences, a new base node is created only when the noun is
first being introduced because an interrogative is a query to the existing knowledge base as opposed to a
declarative which is to build new knowledge. The parser deduces whether in the knowledge base there
exist nodesthat represent the noun objects. If yes, then the parser reusesthelatest node. And for reason of
efficiency, on entering the parser, one variable node is created for human wh-pronoun, who, and another
variable node for the nonhuman wh-pronoun, what. The parser reuses these two variable nodes when

parsing the wh-pronoun in a wh-question.
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In SNePS, the meaning of anodeis structurally determined by the arcs emanating from it. The two
variable nodes just mentioned are the only two nodes that carry semantic information by themselves.
The use of two variable nodes instead of one or many is meant to load each variable node with specific
semantic information. For some verbs, both humans and nonhumans are qualified for a case role; for
example, the agent role of the verb move. Both Who moves? and What move? are possible. We designate
one variable node for human and the other for nonhuman objects so that when generating we have the

clue about what is meant in the source language.

Being aquery to CASSIE'sknowledge, theinterrogativeitself should not be committedto CASSIE's
belief space. Hence, the molecular node representing the interrogative is simply built whereas the node
for its declarative counterpart is built and then asserted. This does not mean that all nodes built for the
interrogative are unasserted. Given the SNePS Uniqueness Principle that no two nodes represent the
same proposition, before SNePS builds a node, it searches for CASSIE's belief space. If there exists a
node in the current context that represents the same proposition; then, SNePS retrieves that node rather
than building anew one. That is, the retrieved node could have already been asserted if it isthe result of

the SNIP inference or the parsing of the previous declarative input.

Besidestrandating theinterrogative, the parser uses SNePS | nference Package (SNIP) to DEDUCE the
answer. For ayes-no question, if the molecular nodewhichisjust built to represent the question hasbeen
asserted, the answer to the question is an affirmative; “1 don’t know”, otherwise. For the answer to awh-
guestion, the parser deduces on the pattern node that represents the question. The variable nodes under
the pattern nodewill unify with any nodesthat match the caseframestructure. SNIP returnsthe nodesthat
matchesthe pattern of casestructure. If both human and nonhuman can satisfy the caserole constraintsin

the wh-pronoun position, the nodes returned by SNIP inference have to be further distinguished between

92



theses two classes. Let'slook at the following examples.

xE &R & #BTE
Dadhua2 xi3huanl niand yu3yan2 xue2
Dadhua2 like study Linguistics

Daghua? liked to study Linguistics.

KE &R AR
Dadhua2 xi3huanl Mei3hua2
Daghua2 like Mei3hua2

Dadhua2 liked Mei3hua2.

X # B8N R k.
Dadhua2 xi3huanl binglgi2lin2
Dadhua2 like ice cream

Dadhua2 liked ice cream.

The simplified case frames of these three sentences are as follows:

((ACT *“like") (EXPERIENCER “Dadhua2’) (X COMP “study Linguistics’))
((ACT *“like’) (EXPERIENCER “Dadhua2’) (OBJECT “Mei3hua2’))

((ACT “like”) (EXPERIENCER “Dadhua2’) (OBJECT “ice cream’”))

After CASSIE trandates these three sentences, we ask the question:

PR & .
Dad hua2 xi3huanl shei2
Dadhua2 like whom
Whom did Dadhua2 like?

The parsing of this question results in the pattern structure below:

((ACT “like”) (EXPERIENCER “Dadhua2”) (OBJECT HUMAN-VARIABLE))
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SNIP then mapsthis pattern structure against the case frames of the previousinputs. The pattern matches
that of examples 4.41and 4.42. HUMAN-VARIABLE can unify with “Mei3hua2” and “ice cream”. Since
Zf “whom” is a human wh-pronoun, SNIP deduces again which candidate is human. “Mei3hua2” is

human; therefore, input 4.41 becomesthe final answer.
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Chapter 5

Generation of English from the

Semantic Networ k

51 Oveview

The sentencegenerationishere, in asense, another form of parsing. When generating English sentences,
instead of parsing natural languageinto SNePS semantic network, the parser * parses’ the SNePS seman-
tic network into another natural language. The Generalized Augmented Transition Networks (GATN
[Shapiro, 1982]) allows a single grammar to be written for both parsing and generating, which are ac-
tualy two sub-networksin a GATN grammar. The semantic networks, outputs of parsing the sentence

sub-network S, are inputs to the generation sub-network G.

The differences between parsing natural language and parsing SNePS semantic network are as fol-
lows. Parsing a natural language sentence consists in resolving it into syntactic and/or semantic com-

ponents while parsing semantic networks consists in taking the resolved grammatical components and
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assemble them into a natural language sentence. There are ambiguities in natural language. Resolving
grammatical componentsinvolves the resolution of ambiguities, which is nondeterministic. Backtrack-
ings may occur. On the other hand, parsing semantic network is deterministic. For one thing, semantic
networksareformal and unambiguous. Furthermore, with the resolved grammatical componentsin hand,
either stored in the registers or built as semantic networks, constructing a sentence from its grammatical
components does not incur backtrackings. Because it is better informed and thus spared backtrackings,
parsing semantic networkstakes amuch smaller portion of processing time than parsing natural language

does.

For thisMT system, lexical information plays a very important role in both parsing and generating.
Asdescribed before, at the end of sentence parsing, the verb lexical features, surface_arguments and
case_frame are used by the role-assignment procedure to check whether the sentence is syntac-
tically and semantically grammatical. When generating a sentence, the parser first consults the lexicon
then putsthe verb and its argumentsin the order specified by the surface_arguments feature. Unlike
thetypical ATN grammarswhosetransition diagramsdepict all possible sentence structuresthey can han-
dle, in this grammar, there are no presumed structures at the clause or sentence level. The sub-networks
in our grammar only describe how phrasal constituents, e.g. NP, PP, VP, should look like. The overall
orderings among them are prescribed in the lexicon. The state-arc design is used for processing phrases.

At the clause or sentence level, LISP procedures based on lexical information are used.

There are several sub-networks for sentence parsing, e.g. NP network, Verb Network, and PP net-
work ...etc. However, there is only one sub-network G for sentence generation. The G network iterates
over itself until the whole semantic network representing the sentence to be generated is traversed. As

we can see, the sentence generation relies even more on LISP procedures than on the ATN states and
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arcs. The reasonsthe LISP procedures are used in preference to the ATN states and arcsis that parsing
semantic networks is much more informed and deterministic than parsing natural languages. The ATN
state-arc design, equipped with recursive and backtracking mechanisms, is good for resolving grammat-
ical components and ambiguities; however, the generator has no need of resolving anything because all
the syntactic and semantic information of the sentence to generate are in hand. Furthermore, the ATN
built-in backtracking mechanism so useful for parsing natural languagesis of no help in parsing formal
and unambiguouslanguageslike semantic networks. Not being much good at parsing semantic networks,
the state-arc design putsthe overhead of interpreting the ATN arcsand states on theinterpreter. The LISP

procedures spare it the overhead.

Two arcs emanate from the G sub-network. Each arc process one of the two types of SNePS nodes:
atomic nodesand molecular nodes. All SNePS nodes can be categorized into these two types. To bemore
precise, the molecular nodes here refer to one specific kind of molecular nodes, the structured proposi-
tion nodes; and, the atomic nodesrefer to all three kinds of atomic nodes, i.e. sensory nodes, base nodes,
and variable nodes. The structured proposition nodesinclude both the constant nodes and pattern nodes.
Constant nodes represent the propositions of the sentences or clauses. Pattern nodes represent the propo-
sitions of the interrogative sentences. Base nodes represent individual objects. Variable nodes represent
arbitrary individuals. Both base nodes and variable nodes represent the head noun of a noun phrase or
prepositional phrase. The sensory nodes hererepresent the verb strings. The molecular nodesin question
correspond to the sentence or clauselevel whereasthe atomi ¢ nodes correspond to the phrase or argument
level.! To put it another way, the arc processing the molecular nodes is to handle the whole sentence or

clause structure; and, the arc processing the atomic nodesis to handle the phrase or arguments.

In the input buffer, different node types represents different syntactic constituents. Molecular node
represents a sentence or a clause. Base node represents a phrase. Sensory node representsaverb. There-
fore, the node typetells the parser which syntactic constituent it is dealing with.
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Althoughthe G sub-network simply iterates over itself again and again, it still hasthe recursive power
to handle deeply embedded syntactic structure. One of the characteristics of the ATN grammar is the
ability to call any sub-networkswithin any sub-networksrecursively to handle embedded syntactic struc-
tures. Our generator does not utilize this recursive characteristic of the ATN grammar; instead, the struc-
tural propertiesof SNePS semantic networksprovideit with the capacity to generate embedded structures
recursively. SNePSisapropositional semantic network inwhich propositionsabout another propositions
are alowed to be represented in a nested fashion. Therefore, the structure of SNePS is, in nature, recur-

sive. Propositions are related to each other through the links of arcs and path-based inference.

The G sub-network acceptsamolecular node as the main proposition of the input statement. The arc
handling molecular nodes gets activated at that time. It finds all the nodes along the arcs emanating from
the molecular node. They include several atomic nodes (for verb, NP or PP etc) and, in some cases, the
other molecular nodes (for SCOMP, XCOMP, infinitivesetc). Thesenodesareto be arrangedin syntactic
order. The arc labels provide the semantic case information; the GATN registers provide those informa-
tion not represented on the semantic networks such as the sentence mood and the determination of anoun
phrase etc; and, the English lexicon provides syntactic information. The surface_arguments lexical
feature in the verb entry specifies what the syntactic order of these cases should be. The atomic nodes,
each representing one case role, take the place of the main molecular node in the input buffer. And then,

the parser loops back to the G sub-network.

From now on, the parser consumes one node at a time from the input buffer and processesit. This
time an atomic node isretrieved. The other arc handling atomic nodes gets to processit. Atomic nodes
are to be synthesized into English strings. If the atomic node is a base node representing the head noun

of anoun phrase, then the parser will also find out whether thereis arelative clause modifying this noun
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through path-base inference. If a molecular node is found representing the noun’s relative clause, then
this molecular node is pushed onto the front of the input buffer. Control returns to the G sub-network.
Again, themolecular nodeis consumed. The arc handling molecular nodes expandsit into several nodes
in the way we describe in the previous paragraph. The newly expanded atomic nodes are pushed onto
the input buffer. If another level of relative clause is found while processing a relative clause, another
molecular nodeis pushed onto the front of theinput buffer. After the nodesfor therelative clauseare syn-
thesized into English strings, the generator continues processing the nodes for the main sentence. From
mol ecular nodeto atomic nodes, then from atomic node to molecular node, and then from molecular node
to atomic nodes, inthisway over and over, our generator capturestherecursive nature of the SNePS struc-
ture. Therefore, with one G sub-network and two arcs emanating from its start state, the generator can
produce complex sentence structures and deeply embedded clauses. The LISP proceduresin the action

part of each arc do abig chunk of the work needed for node expanding, ordering, and sentence synthesis.

5.2 Generation of simple sentences

At the beginning of the generation, the lexicon is switched from Chinese to English. In the input buffer,
there may be one or several molecular nodes representing the proposition(s) of the input Chinese sen-
tence. Multiple molecular nodes represent a sentence with conjoined clauses. We first describe the gen-
erating process with one single molecular node in the input buffer. We will discuss the generation of

conjoined clauses later. The G Network takes one node out of the input buffer and starts to processit.

Following the arcs emanating from the node, its immediate subordinate atomic nodes are retrieved
and each of them is paired with the label of the arc coming to them. Because the arc labels illustrate

the predicate-argument (semantic) structure, the arc-node pairs give a semantic mapping between nodes
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and the predicate-argument structure. This semantic structure will be further mapped onto the syntactic

structure.

The parser first searchesthe arc-node pairsfor the predicate. Using the key ACT, the arc label for the
verbs, the atomic node for the predicate is retrieved. The syntactic structure among the predicate and its
argumentsisdesignated in the surface_arguments feature of the predicate’slexical entry. The parser
looks up the lexicon for this feature then arranges the nodes in the order specified init. After these nodes

are pushed onto the input buffer, the parser loops TO G.

The parser again takes one node at atime from the input buffer and startsto processit. Thistime, it
is an atomic node that represents either the verb predicate or a noun argument. The parser finds the En-
glish expressions for the nodes and synthesizes them into surface strings. The synthesis module assigns
inflections for case, number, and definiteness of nominals, and tense, aspect, mood, and voice of verbs
based on the information derived from the SNePS node structure, registers, together with the syntactic
and morphological requirementsof English. When all the atomic nodesin theinput buffer are exhausted,
the generation process ends and the English output representing the proposition of the input nodes are
displayed on the terminal. Since the input nodes represent the proposition of the Chinese input, this En-

glish output is the translation of the correspondent Chinese inpui.

Let's take an examplefor illustration:

At A £ k= * 7.
Nei4 ben3 shul Zhanglsanl du2 Ie5.
thaa CL book Zhanglsanl read LE

Zhanglsanl read that book. (5.0
Thefollowing SNePS semantic networks are built for the above sentence. NodeM265!, representing the
main proposition of the above Chineseinput, is stored in the input buffer for English generation. M259!
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and M261! are not in the input buffer but is connected with M265! through arc and node as shown in

Figure5.1.

(M259! (CLASS (M165 (LEX book))) (MEMBER B1))
(M261! (OBJECT B2) (PROPERNAME (M207 (LEX Zhanglsanl))))
(M265! (ACT (M264 (LEX read) (TENSE PAST))) (AGENT B2) (OBJECT B1))

@ ‘

AGENT % OBJECT %
OBJECT ACT MEMBER

PROPERNAME

B2

LEX
\|/ LEX TENSE

Zhanglsanl book
read PAST

Figure 5.1: Zhanglsanl read that book.

Thegeneration startsin the G sub-network with theinput buffer being (M265) . The generator takesM265
out of theinput buffer. The arc handling the molecular nodeis followed since M265 isamolecular node.
Each immediate subordinate atomic node of M265 is paired with the label of the arc coming to it. The

list of arc-node pairslookslikethis: ((ACT read) (AGENT B2) (OBJECT B1)).

Then the generator looks up the features in the lexical entry for the verb read. The value of its
surface_arguments featureis ("AvV0"), which means, for the English verb read, thereis exactly one
possible surface realization of the <Agent, 0bject> predicate-argument structure. That is, the verb
read follows the agent role B2 and precedes the object role B1. According to this specification, the
nodes are arranged into the order of B2, read, and then B1. These three nodes are pushed onto

the input buffer. The generator loops TO G with the input buffer being (B2 read B1).
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The node B2 is popped out from the front of the input buffer. After handling B2, the generator loops
back TO state G, consuming another node and processit until the input buffer is empty. B2 and the sub-
sequent nodes read and B1 are all taken care of by the same arc from state G that deals with the atomic
nodes. From B2, following the path, (OBJECT- PROPERNAME LEX) 2, the parser FINDS the sensory
node, Zhangisani. It iSWORDIZEG® into the propername "Zhangisan1" and is added to the register

SENTENCE that collects the surface string being built.

Thegenerator loopsback TO G takingthe second noderead, asensory nodefor averb. To determine
thetense of the verb, the generator followsthe path, (LEX- TENSE).A PAST nodeisfound at the end of
the path. Therefore, the node read isVERBIZEd* into thethird person singular past tense, whichis read.
Thisisaddedto SENTENCE, forming (" Zhanglsanl" "read"). Thegenerator|loopsTO stateG, taking
thelast node, B1, and emptying theinput buffer. FromB1, following the path, (MEMBER- CLASS LEX),
the sensory node book isfound. To synthesize a noun object, the generator has to determine its number
first. Because the register DET contains that, a singular determiner, the noun should be singular. The
generator addsthe determiner “that” and the noun “book” to SENTENCE, whichisnow ("Zhanglsanl"
"read" "that" "book"). Seeing an empty input buffer, the POP arc at state G adds a period to the
end of SENTENCE and POPs the contents of SENTENCE, which is finally printed by the system, and the

interaction is complete.

20BJECT- is the converse of OBJECT. In SNePS, arc labels ending in the character ‘- are reserved
for this reverse arc or converse relation labeling.

SWORDIZE isaL|SPfunction that doesthe morphological synthesisfor nouns. It returnsthesingular
or plural form of astring, symbol, or node. The singular form will use the ROOT form or lexeme itself.
Its pluralization operates on the ROOT form according to an extensive set of rules built into it.

4VERBIZE is a LISP function that does morphological synthesis for averb. Its parameters are the
person, number, tense, aspect, and the verb to be used.
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5.3 Generation of coordinate compound sentences

A coordinate compound sentence comprises severa independent clauses that are conjoined by coordi-
nating conjunctions e.g. and, for example, John ate an apple, read a book, and slept. The first clause
sharesits subject with the other clauses. Usually a sentenceis represented by one SNePS node; however,
a coordinate compound sentence is represented by as many nodes as the independent clausesit hasi.e.
each individual clause is represented by a different node. Therefore, the generation of coordinate com-
pound sentencesis generating from multiple nodesinstead of from one single node as we usually do for

other types of sentences.

Let's take an example for illustration:

= o RR #  F miE

Zhanglsanl chil ping2guo3 du2 shul shui4jiao4.

Zhanglsanl eat  apple read book dleep

Zhanglsanl ate an apple, read a book and slept. (5.2

Thefollowing SNePS semantic networksare built for theabovesentence. Nodes, M420! M421! M423!,
representing the main proposition of the above Chinese input, are stored in the input buffer for English

generation. The G sub-network starts with an input buffer of (M420! M421! M423!). Thesethree

(M261! (DBJECT B2) (PROPERNAME (M207 (LEX Zhangisani))))
(M418! (CLASS (M257 (LEX apple))) (MEMBER B51))

(M420! (ACT (M419 (LEX eat))) (AGENT B2) (OBJECT B51))
(M417! (CLASS (M207 (LEX book))) (MEMBER B50))

(M421! (ACT (M272 (LEX read))) (AGENT B2) (OBJECT B50))
(M423! (ACT (M422 (LEX sleep))) (AGENT B2))

Figure 5.2: Zhanglsanl ate an apple, read a book, and slept.

nodes represent the three independent clauses in the above sample sentence. The arc that deals with
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molecular nodes expands these three molecular nodes into their immediate atomic nodes. M420! isfirst
expandedto (B2 eat B51) intheorderof (AGENT VERB OBJECT) accordingtothesurface_arguments
featureof theverb eat. Inthe samemanner, the second molecular node, M421!, isexpandedto (B2 read
B50) in (AGENT VERB OBJECT) order; and then, the last node, M423!, is expanded to (B2 sleep)
in (AGENT VERB) order. Before all these atomic nodes get conjoined into one sequence, some form
of conjunction will replace the first node B2 in the second and the last clauses becauseit isidentical in
all three clauses and should be shared with the first clause. A comma replaces the node B2 in the sec-
ond clause; and, a comma followed by the coordinate conjunction, and, replaces B2 in the last clause.
At last, the conjoined atomic nodes are stored in the input buffer, which contains (B2 eat B51 ","

read B50 ", and" sleep). Thegenerator loops TO the state G.

Now the arc dealing with atomic nodes takes controls. In the same way we described in the previ-
ous example, English strings are found and synthesized to express these atomic nodes. Through the path
(0OBJECT- PROPERNAME LEX), the propername "Zhanglsanl" isfound to expressB2. Through the
path (MEMBER- CLASS LEX), the nouns, apple and book, are found to expressB51 and B 50 respec-
tively. Since Chinese does not have number and definiteness markers, these two English nouns default
to singular and indefinite. And since thereis no tense marker in Chinese either, the three English verbs
eat, read, and sleep, default to the past tense. The two strings“,” and “, and” are spliced onto the noun

in front of it. Thus, the sentence Zhanglsanl ate an apple, read a book, and slept. is generated.

5.4 Generation of complementized clauses

Three types of complementized clause are dealt with, namely, indicative clause, control constructions,

and purpose clauses. Coordinate compound and indicative clauses comprise finite clauses whereas con-
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trol construction and purpose clauses compriseinfinitive clauses. They areall represented as serial-verb

constructionsin Chinese.

Anindicative clauseis an embedded finite clause with all its subject and object surfacing. Itisasen-
tence per seexcept that it isembedded under another sentence. Control constructionsand purpose clauses
areinfinitive clauses without overt subject (and object in some case); the missing subject is shared with
its parent clause. The generations of an indicative clause and a sentence are similar; however, generat-
ing infinitive clauses is more complicated. When generating infinitive clauses, care has to be taken to
determine whether its subject (and object) should be shared with the parent clause or they should sur-
face. If shared, then it has to be further decided from where the embedded infinitive clause acquire its
unexpressed grammatical functions; from the subject, from the object, or from the indirect object of the

parent clause.

54.1 Generation of indicative clauses

There are a group of verbs that require an indicative clause, for example, think, believe, tell etc. These
verbs take a subject, sometimes an object and an indicative clause. The generation of indicative clauses
follows the regular processes for the generation of a sentence. No particular care is taken. Hereis an

example of operation:

k= (REY Fuw A, T £

Zhanglsanl xianglxind Li3si4 qinl le5 Mei3hua2.

Zhanglsanl Dbelieve Li3si4 kiss LE Mei3hua2

Zhanglsanl believed that Li3si4 kissed Mei3hua2. (5.3

The semantic network representation for this sentence is built asfollows:

(M261! (OBJECT B2) (PROPERNAME (M207 (LEX Zhangisan1))))
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(M262! (DBJECT B3) (PROPERNAME (M208 (LEX Li3si4))))

(M401! (DBJECT B46) (PROPERNAME (M400 (LEX Mei3hua2))))
(M402 (ACT (M354 (LEX kiss))) (AGENT B3) (OBJECT B46))
(M405! (ACT (M404 (LEX believe))) (AGENT B2) (COMP (M401)))

M405! COMP
AGENT
PROPERNAME @
M402

OBJECT ACT AGENT OBJECT M401!

PROPERNAME
B2
ACT UBJECT
LEX \L M400 B3 B46 @

LEX
Zhanglsanl OBJECT @@
LEX
@ Mei3hua2
LEX

believe | PROPERNAME
@ kiss

Li3si4

LEX

Figure 5.3: Zhanglsanl believed that Li3si4 kissed Mei3hua2.

The node M405 representing the proposition of the whole sentence is first expanded to (B2 believe
M401). Thenthefirst node, B2, issurfaced asthe propername " Zhangisan1". Thesecondnodebelieve
issynthesizedintoitspasttense "believed". Thethird nodeM40 1, being amolecular node, isexpanded
to (B3 kiss B46). Now theinput buffer contains (B3 kiss B46) withtheregister SENTENCE being

"Zhanglsanl" "believed"

Thefirst node, B3, issurfaced asthe propername "Li3si4". Thesecond node, theverbkiss, issyn-
thesized into its past tense "kissed". Thelast node, B46, is surfaced as the propername "Mei3hua2".
Since the input buffer is empty, the generation is done. The contents of SENTENCE, ("Zhanglsanl"

"believed" "Li3sid" "kissed" "Mei3hua2"),isfinaly printed to the screen.
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5.4.2 Generation of the control construction

Incontrol constructions, themainverb, e.g. persuaded, subcategorizesfor aninfinitiveclausei.e. XCOMP.
The main verb controlsfrom where, either the subject or the object, the XCOMP acquiresits missing sub-
ject. Therefore, when generating the embedded clause XCOMP, the subject is omitted and the verb takes

the infinitive form. Let uslook at an example of such operation:

k= i Fw9 & EacR 3

Zhanglsanl quan4 Li3s4 niand yu3yan2xue2.

Zhanglsanl persuade Li3si4 study Linguistics

Zhanglsanl persuaded Li3si4 to study Linguistics. (5.9

(M261! (OBJECT B2) (PROPERNAME (M207 (LEX Zhanglsani))))
(M262! (OBJECT B3) (PROPERNAME (M208 (LEX Li3si4))))
(M408! (MEMBER B53) (CLASS (M407 (LEX Linguistics))))

(M427! (ACT (M411 (LEX persuade))) (AGENT B2) (OBJECT B3)
(XCOMP (M425 (ACT (M339 (LEX study)))
(AGENT B3)
(EXPERIENCER B3)
(OBJECT B53))))

The nodeM427!, representing the input sentence, is first expanded to its immediate subordinate atomic
nodes, (B2 persuade B3). Then following the arc XCOMP, the subordinate molecular node, M425, is
retrieved and added to the previouslist, (B2 persuade B3). ThesenodesreplaceM427! intheinput

buffer, which becomes (B2 persuade B3 M425).

Thefirst node, B2, surfacesasthepropername " Zhanglsanl1". Theverb, persuade, issynthesized
into the past tense, "persuaded". B3 surfacesasthe propername "Li3si4". Theinput buffer now has

only (M425) left with SENTENCE being ("Zhanglsanl" "persuaded" "Li3si4").

107



XCOMP

M427!
AGENT BJECT
PROPERNAME - OBJEC
M425

0BJECT ACT AGENT OBJECT M408!

CLASS
B2
ACT MEMBER
LEX M411 B3 B53 @
Zhanglsanl ey
OBJECT @9
LEX ‘
@ Linguistics
LEX
persuade PROPERNAME
@ study
LEX \L

Li3si4

Figure 5.4: Zhanglsanl persuaded Li3si4 to study Linguistics.

Being amolecular node, M425 isexpandedto (study B3 B3 B53). They are to be arranged ac-
cording to the order, ACV0O, which isthe surface_argument lexical feature of the verb study. ACVO
meansthe AGENT should gofirst, followed by the EXPERIENCER Coreferential with the agent, then VERB,
and then OBJECT. After sorting, the order of these atomic nodesis. B3 B3 study B53, which are
AGENT, EXPERIENCER, VERB, and OBJECT respectively. Becausecoreferential rolesnever surface
together, the second B3, an EXPERIENCER coreferential with the AGENT, is dropped. Note that before a
molecular nodeis expanded, it is examined whether it represents the proposition of the main sentence or
that of an embedded clause. The generator FINDs that M425 is an XCOMPlement governed by the main

proposition M427 through the path XCOMP.

The generator loop TO state G with the input buffer being (B3 study B53). Knowing that the

nodesintheinput buffer arederived from M425, an XCOMPlement, the generator dropsthe XCOMPlement's
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subject node, B3, and addsthe string "to" to SENTENCE. The second node, study, is synthesized to its
infinitiveform "study" becausethelast stringin SENTENCE isthe "to" indicating ato-infinitiveisto be
formed. Thelast node, B53, isgeneratedtothenoun, "Linguistics". "study" and"Linguistics"
are appended to the register SENTENCE making it ("Zhanglsanl" "persuaded" "Li3si4" "to"

"study" "Linguistics").

5.4.3 Generation of the purpose clause

The generation of the purpose clauseis similar to that of the control construction except that, in addition
to the constantly unexpressed subject, the object and/or the indirect object of the purpose clause may be
omitted as well. The generator FINDs whether a given grammatical function of the embedded purpose
clauseis shared with its parent clause. If shared, the grammatical function is omitted from the purpose

clause. The example 5.5 below illustrates the generation of the purpose clause.

The main proposition M481! isfirst expanded to (buy B3 B3 B62). The surface_argument
lexical feature of theverb buy, ADVO, dictatesthat the AGENT goesfirst, followed by D (theBENEFACTIVE
coreferential with the agent), then the VERB, and then the 0BJECT. The sorted node list, (B3 B3 buy
B62), are AGENT, BENEFACTIVE, VERB, and OBJECT respectively. The second B3, being coref-
erentia to the first node, is dropped. M479 is aso found subordinate to the root node M481! through
the arc INTENT. That is added to the input buffer, forming (B3 buy B62 M479). B3, buy, and B62

surface. The resulting strings, ("Li3si4" "bought" "a book"), areputin SENTENCE.

M479isexpandedto (give B3 B2 B62). Itissortedinto (B3 give B2 B62),whichare AGENT,
VERB, BENEFACTIVE,and0BJECT respectively. Thenfollowingthearc INTENT, another purposeclause,

M477,isfound onelayer down. Itisappendedtotheinput buffer, makingit (B3 give B2 B62 M477).
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Fw 7 - = £
Li3si4 ma3 shul gei3 Zhanglsanl du2
Li3si4 buy book give Zhanglsanl read
Li3si4 bought a book to give Zhanglsanl to read.

M481!
PROPERNAME @ AGENT,
BENEFACT INTENT OBJECT

OBJECT
B3 <— M479 |——=
AGEN B62
BJECT
LEX ENEFACTI
l ACT INVENT OBJECT | MEMBER | LEX
Li3sid
M45T7 B2 |- | wa77
| AGEN
buy
LEX OBJECT ACT CLASS
give @ M272 @
PROPERNAME LEX LEX

@ read book
LEX\L

Zhanglsanl

Figure 5.5: Li3si4 bought a book to give Zhanglsanl to read.

(5.5)

The generator FINDs an INTENT arc pointing to M479, that is, M479 represents the proposition of

a purpose clause; therefore, its case roles are examined to determine whether an individual role should

be shared with the parent clause or should surface. An individual role is found to be shared with the

parent clause if, besides an arc from it to the parent clause, there exists a path, (INTENT- (OR AGENT

OBJECT EXPERIENCER BENEFACTIVE) ), that links the atomic node representing the case role to the

molecular node representing the purpose clause. Let's take B62 for example. Besides the OBJECT arc

110



that links M479 with B62, thereisapath (INTENT- OBJECT) that goesfrom M479 to B62. Therefore,
B62 is shared with the parent node and should not surface in the purpose clause. B3 is also shared; so,
it does not surface either. The verb give is synthesized to the to-infinitive form, "to give". B2 gets
surfacedto the propername "Zhanglsan1" sincethereisno path going fromM479 toit in addition to the
arc BENEFACTIVE, meaning it is not shared with the parent clause. The SENTENCE isnow ("Li3si4"

"bought" "a book" "to give" "Zhanglsanl").

The last node M477 is expanded to (B2 read B62). Because M477 is a purpose clause again,
in the same manner described above, B2 is found shared with the parent purpose clause, M479; and,
B62 with the main clause, M481!. Therefore, neither B2 or B62 surface. Only the verb read is syn-
thesizedto ("to read"),whichisaddedto SENTENCE, forming ("Li3si4" "bought" "a book"

"to give" "Zhanglsanl" "to read").

5.4.4 Verb patternsin the complementized clauses

Not all verbsin the complementized clauses carry the to-infinitive form. Some are in the gerund form;

some are preceded by a preposition. For example:
(5.6) John enjoys playing badminton.
(5.7) Maryinsists on paying the bill.

Some complementized clauses are in the form of a that-clause whose subject surfaces rather than being

left unexpressed. For example:
(5.8) Mark assuresthat he will pay the hill.

(5.9) * Mark assuresto pay the bills.
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Which pattern a particular verb licensesis specified in the verb’slexical entry. The generator forms
the sentences according to the pattern the verb licenses. For example, the value of the Vpattern lexica
feature of the verb suggestis that-clause. The Vpattern for insist, consider, and enjoy is gerund.
For those verbs preceded by the preposition, in addition to Vpattern, there is alexical feature prep.

For example, the verb insist hasaprep lexical feature whose valueis on.

5.5 Generation of thereative clause

Whenever anoun phraseis generated, the generator checksto see whether thereisarelative clause mod-
ifying it. If yes, then the node representing the proposition of the relative clauseis pushed onto the input
buffer and then the relative clause is generated. The path through which the generator FINDsthe relative

clauseisasfollows:

(and (or (relc-a- main (kstar (or xcomp intent)) Agent)
(relc-o- main (kstar (or xcomp intent)) Object)
(relc-e- main (kstar (or xcomp intent)) Experiencer)
(relc-b- main (kstar (or xcomp intent)) Benefactive)
(relc-1- main (kstar (or xcomp intent)) Locative))

(or Agent Object Benefactive Experiencer Locative))

The node representing the noun phrase is at the end of the path. If amolecular node is found at the be-

ginning of the path, that node represents the relative clause of the noun phrase.

The head noun of the relative clause should be replaced by the relative pronoun and then moved to
the front of the clause. However, in this implementation, the relative pronoun is generated right after
generating the head noun; then, the head noun in the relative clause is simply omitted. The generator

INFERswhether the noun phraseisahuman being. If the noun phraseishuman then therelative pronoun,
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"who",isused; "which" otherwise. The generator is able to FIND the node representing the head noun

of the relative clause through the following path:

(and

(or agent- object- experiencer- benefactive- locative-)

(or (agent- (kstar (or xcomp- intent-)) main- relc-a)
(object- (kstar (or xcomp- intent-)) main- relc-o)
(experiencer- (kstar (or xcomp- intent-)) main- relc-e)
(benefactive- (kstar (or xcomp- intent-)) main- relc-b)

(locative- (kstar (or xcomp- intent-)) main- relc-1)))

The node representing the relative clauseis at the end of the path. The node representing the head noun,

if found, is at the beginning of the path. Let uslook at an example of relative clause generation:

£ 3 & k= & £ 3.
jijaol yinglwen3 de5 Zhanglsanl xi3huanl Mei3hua2.
teach English DE Zhanglsanl like Mei3hua2
Zhanglsanl who taught English liked Mei3hua2. (5.10)

(M261! (OBJECT B2) (PROPERNAME (M207 (LEX Zhanglsanil))))
(M308! (MEMBER B30) (CLASS (M307 (LEX English))))

(M375! (ACT (M229 (LEX teach))) (AGENT B2) (OBJECT B30))
(M366! (OBJECT B36) (PROPERNAME (M191 (LEX Mei3hua2))))

(M377 (MAIN (M376! (ACT (M354 (LEX like))) (EXPERIENCER B2) (OBJECT B36)))
(RELC-E (M375!)))

Themain proposition, representing thewholesentence, M376! isfirst expandedto (B2 like B36).

Thefirst node, B2, representsthe propername "Zhanglsanl". When generating it, the generator FINDsS
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Figure 5.6: Zhanglsanl who taught English liked Mei3hua2.

thenodeM375! that representsthe proposition of therelative clausemodifying "Zhanglsanl". There-
fore, the relative pronoun "who" is generated and appended to the register SENTENCE, which now con-
tains ("Zhanglsanl" "who"). M375! is pushed onto the front of the input buffer, which becomes

(M375! 1like B36).

The generator loops TO the state G. M375 isexpanded to (B2 teach B30). ThenodeB2 isfound
representing the head noun of therelative clause, thus, it isomitted; making theinput buffer (teach B30
like B36). Thenodeteach isVERBIZEdto "taught". B30 surfacesto "English". Now therel-
ative clauseis completed with the register SENTENCE containing ("Zhanglsanl" "who" "taught"
"English"). The generator continues processing the rest of theinput buffer, (1ike B36). They sur-
faceto"liked" and"Mei3hua2", whichareaddedtothe SENTENCE makingit ("Zhanglsanl" "who"

"taught" "English" "like" "Mei3hua2").
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5.6 Generation of interrogative sentences

The generation of interrogative sentencesis similar to that of declarative sentences except that when the
subject is not awh-pronoun, it requires fronting the auxiliary verb and, in wh-question, fronting the wh-
pronoun. Inthecase of auxiliary verb fronting, if no auxiliary verbisavailable, oneismadeand movedto
the beginning of the sentence; then, themain verb bearstheroot form. Inthe case of wh-pronounfronting,
the auxiliary verb fronting should apply first. Let's look at three examples of interrogative sentences
generation:
i # #*?
shei2 jiaol Yingl wen2?

who teach English
Who taught English? (5.11)

(M278! (CLASS (M211 (LEX English))) (MEMBER B10))
(P10 (ACT (M279 (LEX teach))) (AGENT V1) (OBJECT B10))

CENC
0BJECT
AC

T MEMBER

Vi @%E% B10

LEX
LEX

teach

AGENT

English

Figure 5.7: Who taught English?

The register MOOD contains WH-QUESTION, which means the sentence to be generated is an inter-
rogetive. The main proposition P10 is expanded to (teach V1 B10). These three nodes are ordered
accordingtotheverb teach’slexical feature SURFACE_ARGUMENTS whosevalueisAVO,i.e. AGENT: V1

115



VERB:teach OBJECT:B10. BecausethevariablenodeV1, representing the human wh-pronounwho®,
isin subject position, neither wh-pronoun fronting nor auxiliary verb fronting are applied. V1, teach,
andB10 surfaceas "Who", "taught", and "English" respectively. A question mark is attached to the

end of SENTENCE making it ("Who" "taught" "English?").

Here is a second example:

R = & e A E?
Zhanglsanl jianglyao4 chil She2 mo5?
Zhanglsanl  will eat  what
What will Zhanglsanl eat? (5.12)

(M261! (OBJECT B2) (PROPERNAME (M207 (LEX Zhanglsani))))

(P56 (ACT (M272 (LEX eat) (TENSE FUTURE))) (AGENT B2) (OBJECT V2))

AGENT 0BJECT
PROPERNAME OBJECT

o) "
LEX
l LEX / \TENSE

\

Zhanglsanl

future

Figure 5.8: What will Zhanglsanl eat?

The main proposition P56 is expanded to (eat B2 V2). According to the SURFACE_ARGUMENTS
of eat, these nodes are arranged into the order (B2 eat V2), which are AGENT, VERB, and OBJECT
respectively. The generator goes on to surface each node. B2 surfaces to the subject "Zhanglsanl".

The verb eat surfacesto "will" "eat" because of the TENSE arc indicating future tense. Because

SAnother variable node V2 represents the nonhuman wh-pronoun, what.
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the subject, "Zhanglsan1" is not a wh-pronoun, the auxiliary "will" is moved to the beginning of
SENTENCE, ("will" "Zhanglsanl" "eat"). For the same reason, the variable node V2 represent-
ing the nonhuman wh-pronoun, "what", ismoved to the front of the SENTENCE. Then the question mark

isattached to the end of SENTENCE, which now contains("What" "will" "Zhanglsanl" "eat?").

Let'slook at an example of yes-no question:

Fw G = v%?

Li3si4 xi3huanl Zhanglsanl mal?

Li3si4 like Zhanglsanl Q

Did Li3si4 like Zhanglsanl? (5.13)

(M261! (OBJECT B2) (PROPERNAME (M207 (LEX Zhanglsani))))
(M262! (OBJECT B3) (PROPERNAME (M208 (LEX Li3si4))))

(M543! (ACT (M541 (LEX like))) (EXPERIENCER B3) (OBJECT B2))

PRGPERNAME DBJECT
OBJECT / EXPERIENCER
ACT

o [
LEX @ LEX
LEX $
Zhanglsanl like Li3si4

Figure 5.9: Did Li3si4 like Zhanglsanl?

Thisexampleis an interrogative sentence because the register MOOD hasthe value YES-NO-Q. Themain
proposition M543! is expanded into three nodes which are arranged in syntactic order as (B3 like
B2). Because the subject "Li3si4", represented by the node B3, is not a wh-pronoun, auxiliary verb

fronting is required. Since no auxiliary verb is available and the default tense for the sentence is the
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past tense, the auxiliary verb "did" is built and moved to the front of SENTENCE. The node like is
VERBIZEd to the root form, " 1ike". The last node B2 surfacesto "Zhanglsanl" then a question

mark is attached to it. Thefinal SENTENCE is("Did" "Li3si4" "like" "Zhanglsanl?").

Although question answering is not part of the translation of the interrogatives, it is done to show
CASSIE’'sunderstanding of the questions. The parser INDUCE the answer to theinterrogative using SNIP
and stores the node representing the answer in the register ANSWER. After generating the interrogative,
the generator prints the answer. If the register ANSWER is empty, it means there is no answer available,
thestring ” | don’t know” is printed to the screen; otherwise, the nodein the register ANSWER surfacesin
the same way as generating all other sentences. For the answer to yes-no questions, an additional string

"Yes, " isadded in front of it.
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Chapter 6

Conclusion

The objective of this thesis has been to construct a Chinese-English machine translation system using
SNePS as an interlingua. Most of the effort has been devoted to the design of unambiguous interlingua
representations for various kinds of concepts and relations, and solving some difficult problemsin pars-
ing such as Chinese word segmentation, long-distant dependencies, and the disambiguation of Chinese

sentences.

The parsing is lexicon-driven. In the lexicon, semantic case information integrated with syntactic
information specifies meaning relations between predicates and their arguments. The lexical informa-
tion further supplies syntactic information for sequencing predicates and their arguments. There have
been two advantages with the lexicon-driven design. First, semantic case information together with the
SNePS built-in inference mechanism have proved effectivein resolving many kinds of ambiguities such
as those occurring in the serial-verb constructions and sequences of nouns. Second, since most syntac-
tic structures are captured in the definition of the verb, the size of the grammar is significantly reduced.

However, something still needs improvement. For instance, the possible semantic case orders of verbs
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areencoded on anindividual base; however, these orders should generalize acrossverbs. It would benice

to represent this generalization by classifying verbs according to the ordering of their semantic cases.

A bottom-up parsing design is implemented to handle two-way branching constructions and the rel-
atively free word order in Chinese. The parser shifts the constituents parsed onto a stack holding off
decisions on what rules applies until enough information is available. Based on adequate information,
the bottom-up parser avoids endlessrecursion and reduces costly backtrackings. It isbeyond the scope of
the this project to construct a grammar which can translate most sentence patternsin Chinese. However,
besides simple sentences, the parser is able to analyze interrogatives, relative clauses, and the Chinese
seria-verb constructions. An annotated sample run in the appendix demonstratesthat the systemis able

to deliver satisfactory results of trandation.

There are several directions in which the present research can be extended.

e Inthisproject, we are primarily concerned with difficulties arising from processing either mono-
lingual componentsi.e, parsing Chinese or generating English. Some problems concerning con-
trastive aspects or the interface between Chinese and English have been given provisional solu-
tions or simply ignored for the present. In Chinese and English, there are different ways of ex-
pressing, for example, number, definiteness, determination, and temporal references and so on.
Lexical or structural equivalences are not easy to come by. For example, Chinese does not reg-
ister number with the noun phrases; so, their English equivalents will default to the plural form.
However, in some cases, the single form is preferred over the plural one. Systematic studies of

these cross-linguistic differences are required for better quality of translation.

e Inauseful natural language application to our machine-translation research, a Chinese generator
can bebuilt to allow multilingual interfacesto adatabase or expert system. The annotated sample
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run in the appendix will show the query-answering capability of our system by responding to the
Chineseinterrogativeswith English answersin addition to the English transl ations of theinterrog-
atives. A Chinese generator would enable the user to make queries using Chinese and have the
answers translated back into Chinese. There have been many CASSIE projects using an English

interface. With this additional Chinese interface, those projects are becoming multilingual.
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Appendix A

Knowledge basefile

(noun (concrete abstract))
(concrete (animate inanimate color sound smell power))

(abstract (knowledge society emotion symbol time event))

(animate ((animal (property edible mobile))
(plant (property edible))))
(inanimate ((place (property locative))
(institution (property locative))
(celestial (property locative))
(object (property locative))
(stuff (property locative))
authority phenomenon activity))
(knowledge (language theory fact))

(society (culture politics education economy))

(animal (human nonhuman))

(plant (flower tree produce grain))

(stuff (supply machinery stationery
(building (property locative))))

(activity (meal sports))

(human ((body (part head hand foot))

woman man family person title profession))
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(supply ((food (property edible))
clothing money jewelry commodity cultural_material))
(machinery ((transportation (property mobile))

part equipment tool))

(man ((father (property kinship))
(son (property kinship))))
(woman ((mother (property kinship))
(daughter (property kinship))))

(person (1st_pronoun 2nd_pronoun 3rd_pronoun))

(transportation (vehicle boat

(aircraft (ability fly))))
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Appendix B

Annotated samplerun

This appendix presents an interaction running the Chinese-English trandation system described in this
thesis. This sample run is produced using the unix script command that can record the dribble of a
demo session. In addition to giving the romanized representation for the Chinese input sentences and
their word-for-word English gloss, annotations are provided to comment on or explain various phenom-
ena. Some line breaks are changed so that long lines can fit the width of the pages. Annotations are
preceded by semicolons’; ; ;’. SNePS Command follows the “** prompt; and, LISP command follows

the ‘—=->" prompt. After the GATN parser isinvoked, Chinese input sentencesfollowsthe‘:’ prompt.
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>/projects/snwiz/bin/acl-sneps

Allegro CL 4.3 [SPARC; R1] (5/20/96 16:11)

Copyright (C) 1985-1996, Franz Inc., Berkeley, CA, USA. All Rights Reserved.
;; Optimization settings: safety 1, space 0, speed 3, debug 3.

;; For a complete description of all compiler switches given the

;; current optimization settings evaluate (EXPLAIN-COMPILER-SETTINGS).

SNePS-2.3/SNeRE [PL:2 1996/02/21 20:38:33] loaded.
Type ‘(sneps)’ or ‘(snepslog)’ to get started.
USER(1): (sneps)
Welcome to SNePS-2.3/SNeRE [PL:2 1996/02/21 20:38:33]
Copyright (C) 1984, 1988, 1989, 1993, 1994, 1995 by Research Foundation of
State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!
Type ‘(copyright)’ for detailed copyright information.
Type ‘(demo)’ for a list of example applications.
11/26/1997 14:20:21
* (demo "MTdemo")
File MTdemo is now the source of input.
CPU time : 0.00
* (resetnet t)
Net reset
CPU time : 0.02
* (define agent object experiencer Benefactive locative lex member class
superclass subclass part whole has-ability ability property propername
main relc-a relc-o relc-e relc-b relc-1 comp xcomp intent quant
adposition argl arg2 kinship possessor rel modifier tense aspect)
(AGENT OBJECT EXPERIENCER BENEFACTIVE LOCATIVE LEX MEMBER CLASS
SUPERCLASS SUBCLASS PART WHOLE HAS-ABILITY ABILITY PROPERTY PROPERNAME
MAIN RELC-A RELC-0 RELC-E RELC-B RELC-L COMP XCOMP INTENT QUANT
ADPOSITION ARG1 ARG2 KINSHIP POSSESSOR REL MODIFIER TENSE ASPECT)
CPU time : 0.02

* ;;; Define some useful paths for path-base inference.

;55 Path for going down the node tree to assert propositions e.g.,
;55 main clauses as well as the relative clauses. This way, propositions will
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;55 only be built. They won’t be asserted until we get the final valid parse;
;5 S0, proposition nodes built by invalid parses or backtracking will not be
;;; asserted.
(define-path describe_assert
(compose
(or member (compose (or (compose property property-)
(compose propername propername-)
(compose adposition adposition-)) object))
(kplus (or agent- object- benefactive- experiencer- locative-))
(kstar (compose (kstar (compose
(or relc-a- relc-o- relc-e- relc-b- relc-1-)
main))
(kstar (or comp- intent- xcomp-))))))
DESCRIBE_ASSERT implied by the path
(COMPOSE
(OR MEMBER
(COMPOSE
(OR (COMPOSE PROPERTY PROPERTY-)
(COMPOSE PROPERNAME PROPERNAME-)
(COMPOSE ADPOSITION ADPOSITION-))
0BJECT))
(KPLUS
(OR AGENT- OBJECT- BENEFACTIVE- EXPERIENCER- LOCATIVE-))
(KSTAR
(COMPQOSE
(KSTAR
(COMPOSE
(OR RELC-A- RELC-0- RELC-E- RELC-B- RELC-L-)
MAIN))
(KSTAR (OR COMP- INTENT- XCOMP-)))))
DESCRIBE_ASSERT- implied by the path
(COMPOSE
(KSTAR
(COMPOSE (KSTAR (OR COMP INTENT XCOMP))
(KSTAR
(COMPOSE MAIN-
(OR RELC-A RELC-0 RELC-E RELC-B RELC-L)))))
(KPLUS
(OR AGENT OBJECT BENEFACTIVE EXPERIENCER LOCATIVE))
(OR MEMBER-
(COMPOSE OBJECT-
(OR (COMPOSE PROPERTY PROPERTY-)
(COMPOSE PROPERNAME PROPERNAME-)
(COMPOSE ADPOSITION ADPOSITION-)))))

CPU time : 0.02
* (define-path relative-clauses

(kstar (compose
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(kplus (compose (or relc-a- relc-o- relc-e- relc-b- relc-1-) main))
(kstar (or comp- intent- xcomp-)))))
RELATIVE-CLAUSES implied by the path
(KSTAR
(COMPOSE
(KPLUS
(COMPOSE
(OR RELC-A- RELC-0- RELC-E- RELC-B- RELC-L-)
MAIN))
(KSTAR
(OR COMP- INTENT- XCOMP-))))
RELATIVE-CLAUSES- implied by the path
(KSTAR
(COMPOSE
(KSTAR (OR COMP INTENT XCOMP))
(KPLUS
(COMPQOSE MAIN-
(OR RELC-A RELC-0 RELC-E RELC-B RELC-L)))))

CPU time : 0.02

* ;;; Path for going down the node tree to describe every clause,
;33 relative clause as well as the main clause.
;55 Only propositions from the final valid parse will be described.
(define-path main-clauses
(compose main
(kstar (compose
(kstar (compose
(or relc-a- relc-o- relc-e- relc-b- relc-1-)
main))
(kstar (or comp- intent- xcomp-))))))
MAIN-CLAUSES implied by the path
(COMPOSE
MAIN
(KSTAR
(COMPOSE
(KSTAR
(COMPOSE
(OR RELC-A- RELC-0- RELC-E- RELC-B- RELC-L-)
MAIN))
(KSTAR (OR COMP- INTENT- XCOMP-)))))
MAIN-CLAUSES- implied by the path
(COMPOSE
(KSTAR
(COMPOSE
(KSTAR (OR COMP INTENT XCOMP))
(KSTAR
(COMPOSE
MAIN-
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(OR
RELC-A RELC-0 RELC-E RELC-B RELC-L)))))
MAIN-)

CPU time : 0.01

* ;;; Paths to allow porperties to be inherited down or up the hierarchy.
;55 Note: In this project, objects (class membership relation) and
;33 classes of objects (the superclass relation) are distinguished.
(define-path class (compose class (kstar (compose subclass- superclass))))
CLASS implied by the path (COMPOSE CLASS

(KSTAR (COMPOSE SUBCLASS- SUPERCLASS)))
CLASS- implied by the path (COMPOSE

(KSTAR (COMPOSE SUPERCLASS- SUBCLASS))

CLASS-)

CPU time : 0.00

* (define-path subclass
(compose subclass (kstar(compose superclass- subclass))))
SUBCLASS implied by the path (COMPOSE SUBCLASS
(KSTAR (COMPOSE SUPERCLASS- SUBCLASS)))
SUBCLASS- implied by the path (COMPOSE
(KSTAR (COMPOSE SUBCLASS- SUPERCLASS))
SUBCLASS-)

CPU time : 0.00

* (define-path part (compose part (kstar (compose whole- ! part))
(kstar (compose subclass- ! superclass))))
PART implied by the path (COMPOSE PART (KSTAR (COMPOSE WHOLE- ! PART))
(KSTAR (COMPOSE SUBCLASS- ! SUPERCLASS)))
PART- implied by the path (COMPOSE
(KSTAR (COMPOSE SUPERCLASS- ! SUBCLASS))
(KSTAR (COMPOSE PART- ! WHOLE)) PART-)

CPU time : 0.00

* (define-path whole
(compose whole (kstar (compose superclass- ! subclass))))
WHOLE implied by the path (COMPOSE WHOLE
(KSTAR (COMPOSE SUPERCLASS- ! SUBCLASS)))
WHOLE- implied by the path (COMPOSE
(KSTAR (COMPOSE SUBCLASS- ! SUPERCLASS))
WHOLE-)

CPU time : 0.00

* (define-path object
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(or object
(compose ! property property- ! object
(kstar (compose superclass- ! subclass)))))
OBJECT implied by the path (OR OBJECT
(COMPOSE ! PROPERTY PROPERTY- ! OBJECT
(KSTAR

(COMPOSE SUPERCLASS- ! SUBCLASS))))
OBJECT- implied by the path (OR OBJECT-

(COMPOSE

(KSTAR

(COMPOSE SUBCLASS- ! SUPERCLASS))
OBJECT- ! PROPERTY PROPERTY- !))

CPU time : 0.00

* (define-path can
(compose has-ability

(or (kstar (compose subclass- ! superclass))

; ;obsevered ability

(compose member- ! class
(kstar (compose subclass- ! superclass)))

(kstar (compose superclass- ! subclass))

; ;inherited ability

(compose (kstar (compose superclass- ! subclass))
class- ! member))))

CAN implied by the path (COMPOSE HAS-ABILITY
(OR (KSTAR (COMPOSE SUBCLASS- ! SUPERCLASS))
(COMPOSE MEMBER- ! CLASS
(KSTAR (COMPOSE SUBCLASS- ! SUPERCLASS)))
(KSTAR (COMPOSE SUPERCLASS- ! SUBCLASS))
(COMPOSE
(KSTAR (COMPOSE SUPERCLASS- ! SUBCLASS))
CLASS- ! MEMBER)))
CAN- implied by the path (COMPOSE
(OR (KSTAR (COMPOSE SUPERCLASS- ! SUBCLASS))
(COMPOSE
(KSTAR (COMPOSE SUPERCLASS- ! SUBCLASS))
CLASS- ! MEMBER)
(KSTAR (COMPOSE SUBCLASS- ! SUPERCLASS))
(COMPOSE MEMBER- ! CLASS
(KSTAR
(COMPOSE SUBCLASS- ! SUPERCLASS))))
HAS-ABILITY-)

CPU time : 0.01

-=> ;;; Define some pieces of advice to allow the GATN interpreter
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;33 to read BIGS encoded inputs.
;3; Escape punctuation chars e.g.,”[{},:,
;55 1n the second byte of Chinese BIGS encoding.
(excl:advise parser::convertline :before b5 nil
(let ((line (car excl:arglist))) ;; Modify the argument list.
(if (or (equal "" line) (lisp::find (schar line 0) ’(#\~ #\;))) nil
(setf (car excl:arglist)
(with-output-to-string (s)
(map nil #’(lambda (n) (if (lisp::find n ",:'QO{3}>/#°1")
(format s ""A"A" "\\" n);; put escape char
(format s ""a" n))) line))))
;;; Do a scavenge gc before parsing.

(excl:gc)))
PARSER: CONVERTLINE
--> (excl:compile-advice ’parser::convertline)
PARSER: CONVERTLINE
--> ;;; Loading the GATN grammar.
(atnin "grammar.b5")

State S processed.

State SP processed.

State ARGS processed.

State V processed.

State V/POSTVERB processed.

State V/V processed.

State V/PREVERB processed.

State V/NEGATIVE processed.

State V/END processed.

State S/END processed.

State G processed.

State G1 processed.

State NP processed.

State NP/ADJ processed.

State NP/CL processed.

State NP/QUANT processed.

State NP/DET processed.

State NP/DE processed.

State NP/END processed.

State PP processed.

State PP/NP processed.

State PP/PREP processed.

State PP/END processed.

; While compiling ROLE-ASSIGNMENT:

Warning: PARSER::GET-SENSES, :0PERATOR was defined in
/projects/snwiz/Install/Sneps-2.3.2-acl4.3/nlint/parser/parser.lisp
and is now being defined at the top level

Atnin read in states: (NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL NIL NIL NIL PP/END PP/PREP PP/NP PP NP/END
NP/DE NP/DET NP/QUANT NP/CL NP/ADJ NP G1 G
S/END V/END V/NEGATIVE V/PREVERB V/V V/POSTVERB
V ARGS SP S)
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--> ;;; Two lexicons, one for parsing Chinese and another for generating English.
;33 Make sure we always start with the Chinese lexicon, even on interrupted or
;;; aborted generation which doesn’t switch English lexicon back to Chinese.
(and (boundp ’*lexicon*ch) (setq englex:*lexicon* *lexiconx*ch))
NIL
--> ;;; Load English lexicon; then, map it into the hashtable, *lexicon*eng.
;35 (Create a hashtable for English lexicon if none exists.)
(progl
(lexin "lexicon.english")
(or (boundp ’*lexicon*eng) (setq *lexicon*eng (make-hash-table :test ’equal)))
(maphash #’(lambda (k v) (setf (gethash k *lexicon*eng) v)) englex:*lexiconx))
undefined- (NIL)
("Li3si4" "Zhanglsanl" "Wang2wu3" "Lao31i3" "Lao3zhangl" "Lao3wang2"
"Mei3hua2" "Taipei" "Tweety" "Dumbo" "Clyde" "she" "English"
"Japanese" "language" "Linguistics" "television" "antenna"
"refrigerator" "meeting" "school" "yin2hang2" "janitor" "bank" "book"
"cow" "milk" "table" "money" "rock" "well" "job" "bird" "canary"
"elephant" "son" "bowl" "bill" "officer" "soldier" "order" "bicycle"
"jewel" "dinner" "eat" "break" "fly" "sleep" "believe" "work" "drink"
"promise" "represent" "attend" "persuade" "study" "fall" "teach"
"give" '"steal" "attempt" "rob" '"come" "go" "run" "buy" "adorn
"read" "like" "dislike" "kiss" "insist" "pay" "obey" "consider"
"change" '"decide" '"congratulate" "get" "suggest" "see" "ride"
"remember" "put" "to" "in" "on" "fast" "beautiful" "big" "red" "new"
"Chinese" "wooden" "round" "young" "smart" "happy" "one")
--> ;;; Load Chinese lexicon for parsing.
(lexin "lexicon.b5")
undefined- (NIL)
CE R T A A Y T L A
T ET VRN UERTCURY KT MY R UK ML EN TE
R Y M A T Y Tk B0 B0 L B0 R g
R G S SO T ARy SR ST Y
A R L RS SR ST L L A e
n%n n%n né»n "%5(" "E] 5(" qu u—‘;_-—:—u u-—:—u II—';_—%—E_}_!,II Ilé_}_!.ll
VALY Y VR Y R KT VY VR U UL AR R g
S TR T %z" P s e R O
S S Y S ST L L2 A U
R UK VAN VEEET URE UAT U RN N CH st v
SR A T Y Y TR T TR TR T M VR 1 g
S AR AR R U T MR R R AT CEN T
CRRECINE K-y U S -3 AN AN S LR Uy X
R R S "ET'"?QJL”"*” "1 ?V'”fﬂ”'ﬁivi" "éﬂ'”ﬁ"
B UG AR VRN NREN MG Mget MEEY MEM NN et MR EN wEe vk
A S - A M R L L i R
T K e S S L R S SRR
AR Mt ongn on ononn)
--> (defsnepscom isa ((who what) assert)
"Assert subclass WHO is a superclass WHAT."

n Ilusell
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#! ((describe
(assert subclass (build lex “who) superclass (build lex ~“what)
:context KB))))

--> ;;; Read the file KB and build the knowledge base according to it.
;35 The KB is a hierarchical structure including features, properties,
;55 and other relations which can be inherited down or up the hierarchy.
;33 For efficiency reason, we create a KB context.
;55 Deductions for parsing will work in the KB context; whereas,
;33 deductions on interrogatives will work in the default context.
(with-open-file (KB "KB" :direction :input)
(set-context nil KB)
(set-default-context KB)
(let (stream superclass)
(loop (when (null (setq stream (read KB nil nil))) (return))
(setq superclass (car stream))
(dolist (subclass (second stream))
(cond
((atom subclass) #!((isa “subclass ~superclass)))
(t (let*x ((obj #!((find subclass-
“#!((isa “(car subclass) ~superclass)))))
(features (cdr subclass))
(property (assoc ’property features))
(ability (assoc ’ability features))
(part (assoc ’part features)))
(if property
(dolist (property (cdr property))
(setq property (string-downcase (symbol-name property)))
#! ((describe (assert object ~obj
property (build lex “property))))))
(if ability
(dolist (ability (cdr ability))
(setq ability (string-downcase (symbol-name ability)))
#!((describe (assert has-ability ~obj
ability (build lex ~ability))))))
(if part
(dolist (part (cdr part))
(setq part (string-downcase (symbol-name part)))
#!((describe (assert whole “obj
part (build lex “part)))))))))))))

((ASSERTIONS NIL) (RESTRICTION NIL) (NAMED (KB DEFAULT-DEFAULTCT)))
((ASSERTIONS NIL) (RESTRICTION NIL) (NAMED (KB DEFAULT-DEFAULTCT)))
(M3! (SUBCLASS (M1 (LEX CONCRETE))) (SUPERCLASS (M2 (LEX NOUN))))

(M5! (SUBCLASS (M4 (LEX ABSTRACT))) (SUPERCLASS (M2 (LEX NOUN))))

(M7! (SUBCLASS (M6 (LEX ANIMATE))) (SUPERCLASS (M1 (LEX CONCRETE))))
(M9! (SUBCLASS (M8 (LEX INANIMATE))) (SUPERCLASS (M1 (LEX CONCRETE))))
(M11! (SUBCLASS (M10 (LEX COLOR))) (SUPERCLASS (M1 (LEX CONCRETE))))
(M13! (SUBCLASS (M12 (LEX SOUND))) (SUPERCLASS (M1 (LEX CONCRETE))))
(M15! (SUBCLASS (M14 (LEX SMELL))) (SUPERCLASS (M1 (LEX CONCRETE))))
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(M17!
(M19!
(M21!
(M23!
(M25!
(M27!
(M29!
(M31!
(M33!
(M35!
(M37!
(M38!
(M40!
(M42!
(M44!
(M45!
(M47!
(M48!
(M50!
(M51!
(M53!
(M54!
(M56!
(M58!
(M60!
(M62!
(M64!
(M66!
(M68!
(M70!
(M72!
(M74!
(M76!
(M78!
(M80!
(M82!
(M84!
(M86!
(M88!
(M90!
(M92!
(M94!
(M95!
(M97!
(M99!
(M101!
(M103!
(M105!
(M107!
(M109!
(M111!
(M113!
(M115!
(M117!
(M119!
(M121!

(SUBCLASS (M16 (LEX POWER))) (SUPERCLASS (M1 (LEX CONCRETE))))
(SUBCLASS (M18 (LEX KNOWLEDGE))) (SUPERCLASS (M4 (LEX ABSTRACT))))
(SUBCLASS (M20 (LEX SOCIETY))) (SUPERCLASS (M4 (LEX ABSTRACT))))
(SUBCLASS (M22 (LEX EMOTION))) (SUPERCLASS (M4 (LEX ABSTRACT))))
(SUBCLASS (M24 (LEX SYMBOL))) (SUPERCLASS (M4 (LEX ABSTRACT))))
(SUBCLASS (M26 (LEX TIME))) (SUPERCLASS (M4 (LEX ABSTRACT))))
(SUBCLASS (M28 (LEX EVENT))) (SUPERCLASS (M4 (LEX ABSTRACT))))
(SUBCLASS (M30 (LEX ANIMAL))) (SUPERCLASS (M6 (LEX ANIMATE))))
(0OBJECT (M30 (LEX ANIMAL))) (PROPERTY (M32 (LEX edible))))

(0OBJECT (M30 (LEX ANIMAL))) (PROPERTY (M34 (LEX mobile))))
(SUBCLASS (M36 (LEX PLANT))) (SUPERCLASS (M6 (LEX ANIMATE))))
(0OBJECT (M36 (LEX PLANT))) (PROPERTY (M32 (LEX edible))))
(SUBCLASS (M39 (LEX PLACE))) (SUPERCLASS (M8 (LEX INANIMATE))))
(0OBJECT (M39 (LEX PLACE))) (PROPERTY (M41 (LEX locative))))
(SUBCLASS (M43 (LEX INSTITUTION))) (SUPERCLASS (M8 (LEX INANIMATE))))
(OBJECT (M43 (LEX INSTITUTION))) (PROPERTY (M41 (LEX locative))))
(SUBCLASS (M46 (LEX CELESTIAL))) (SUPERCLASS (M8 (LEX INANIMATE))))
(0BJECT (M46 (LEX CELESTIAL))) (PROPERTY (M41 (LEX locative))))
(SUBCLASS (M49 (LEX OBJECT))) (SUPERCLASS (M8 (LEX INANIMATE))))
(OBJECT (M49 (LEX OBJECT))) (PROPERTY (M41 (LEX locative))))
(SUBCLASS (M52 (LEX STUFF))) (SUPERCLASS (M8 (LEX INANIMATE))))
(0OBJECT (M52 (LEX STUFF))) (PROPERTY (M41 (LEX locative))))
(SUBCLASS (M55 (LEX AUTHORITY))) (SUPERCLASS (M8 (LEX INANIMATE))))
(SUBCLASS (M57 (LEX PHENOMENON))) (SUPERCLASS (M8 (LEX INANIMATE))))
(SUBCLASS (M59 (LEX ACTIVITY))) (SUPERCLASS (M8 (LEX INANIMATE))))
(SUBCLASS (M61 (LEX LANGUAGE))) (SUPERCLASS (M18 (LEX KNOWLEDGE))))
(SUBCLASS (M63 (LEX THEORY))) (SUPERCLASS (M18 (LEX KNOWLEDGE))))
(SUBCLASS (M65 (LEX FACT))) (SUPERCLASS (M18 (LEX KNOWLEDGE))))
(SUBCLASS (M67 (LEX CULTURE))) (SUPERCLASS (M20 (LEX SOCIETY))))
(SUBCLASS (M69 (LEX POLITICS))) (SUPERCLASS (M20 (LEX SOCIETY))))
(SUBCLASS (M71 (LEX EDUCATION))) (SUPERCLASS (M20 (LEX SOCIETY))))
(SUBCLASS (M73 (LEX ECONOMY))) (SUPERCLASS (M20 (LEX SOCIETY))))
(SUBCLASS (M75 (LEX HUMAN))) (SUPERCLASS (M30 (LEX ANIMAL))))
(SUBCLASS (M77 (LEX NONHUMAN))) (SUPERCLASS (M30 (LEX ANIMAL))))
(SUBCLASS (M79 (LEX FLOWER))) (SUPERCLASS (M36 (LEX PLANT))))
(SUBCLASS (M81 (LEX TREE))) (SUPERCLASS (M36 (LEX PLANT))))
(SUBCLASS (M83 (LEX PRODUCE))) (SUPERCLASS (M36 (LEX PLANT))))
(SUBCLASS (M85 (LEX GRAIN))) (SUPERCLASS (M36 (LEX PLANT))))
(SUBCLASS (M87 (LEX SUPPLY))) (SUPERCLASS (M52 (LEX STUFF))))
(SUBCLASS (M89 (LEX MACHINERY))) (SUPERCLASS (M52 (LEX STUFF))))
(SUBCLASS (M91 (LEX STATIONERY))) (SUPERCLASS (M52 (LEX STUFF))))
(SUBCLASS (M93 (LEX BUILDING))) (SUPERCLASS (M52 (LEX STUFF))))
(0OBJECT (M93 (LEX BUILDING))) (PROPERTY (M41 (LEX locative))))
(SUBCLASS (M96 (LEX MEAL))) (SUPERCLASS (M59 (LEX ACTIVITY))))
(SUBCLASS (M98 (LEX SPORTS))) (SUPERCLASS (M59 (LEX ACTIVITY))))
(SUBCLASS (M100 (LEX BODY))) (SUPERCLASS (M75 (LEX HUMAN))))
(PART (M102 (LEX head))) (WHOLE (M100 (LEX BODY))))

(PART (M104 (LEX hand))) (WHOLE (M100 (LEX BODY))))

(PART (M106 (LEX foot))) (WHOLE (M100 (LEX BODY))))

(SUBCLASS (M108 (LEX WOMAN))) (SUPERCLASS (M75 (LEX HUMAN))))
(SUBCLASS (M110 (LEX MAN))) (SUPERCLASS (M75 (LEX HUMAN))))
(SUBCLASS (M112 (LEX FAMILY))) (SUPERCLASS (M75 (LEX HUMAN))))
(SUBCLASS (M114 (LEX PERSON))) (SUPERCLASS (M75 (LEX HUMAN))))
(SUBCLASS (M116 (LEX TITLE))) (SUPERCLASS (M75 (LEX HUMAN))))
(SUBCLASS (M118 (LEX PROFESSION))) (SUPERCLASS (M75 (LEX HUMAN))))
(SUBCLASS (M120 (LEX F0OOD))) (SUPERCLASS (M87 (LEX SUPPLY))))
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(M122! (OBJECT (M120 (LEX FOOD))) (PROPERTY (M32 (LEX edible))))

(M124! (SUBCLASS (M123 (LEX CLOTHING))) (SUPERCLASS (M87 (LEX SUPPLY))))
(M126! (SUBCLASS (M125 (LEX MONEY))) (SUPERCLASS (M87 (LEX SUPPLY))))
(M128! (SUBCLASS (M127 (LEX JEWELRY))) (SUPERCLASS (M87 (LEX SUPPLY))))
(M130! (SUBCLASS (M129 (LEX COMMODITY))) (SUPERCLASS (M87 (LEX SUPPLY))))
(M132! (SUBCLASS (M131 (LEX CULTURAL_MATERIAL))) (SUPERCLASS (M87 (LEX SUPPLY))))
(M134! (SUBCLASS (M133 (LEX TRANSPORTATION))) (SUPERCLASS (M89 (LEX MACHINERY))))
(M135! (OBJECT (M133 (LEX TRANSPORTATION))) (PROPERTY (M34 (LEX mobile))))
(M137! (SUBCLASS (M136 (LEX PART))) (SUPERCLASS (M89 (LEX MACHINERY))))
(M139! (SUBCLASS (M138 (LEX EQUIPMENT))) (SUPERCLASS (M89 (LEX MACHINERY))))
(M141! (SUBCLASS (M140 (LEX TOOL))) (SUPERCLASS (M89 (LEX MACHINERY))))
(M143! (SUBCLASS (M142 (LEX FATHER))) (SUPERCLASS (M110 (LEX MAN))))

(M145! (OBJECT (M142 (LEX FATHER))) (PROPERTY (M144 (LEX kinship))))

(M147! (SUBCLASS (M146 (LEX SON))) (SUPERCLASS (M110 (LEX MAN))))

(M148! (OBJECT (M146 (LEX SON))) (PROPERTY (M144 (LEX kinship))))

(M150! (SUBCLASS (M149 (LEX MOTHER))) (SUPERCLASS (M108 (LEX WOMAN))))
(M151! (OBJECT (M149 (LEX MOTHER))) (PROPERTY (M144 (LEX kinship))))

(M153! (SUBCLASS (M152 (LEX DAUGHTER))) (SUPERCLASS (M108 (LEX WOMAN))))
(M154! (OBJECT (M152 (LEX DAUGHTER))) (PROPERTY (M144 (LEX kinship))))
(M156! (SUBCLASS (M155 (LEX 1ST_PRONOUN))) (SUPERCLASS (M114 (LEX PERSON))))
(M158! (SUBCLASS (M157 (LEX 2ND_PRONOUN))) (SUPERCLASS (M114 (LEX PERSON))))
(M160! (SUBCLASS (M159 (LEX 3RD_PRONOUN))) (SUPERCLASS (M114 (LEX PERSON))))
(M162! (SUBCLASS (M161 (LEX VEHICLE)))

(SUPERCLASS (M133 (LEX TRANSPORTATION))))

(M164! (SUBCLASS (M163 (LEX BOAT)))

(SUPERCLASS (M133 (LEX TRANSPORTATION))))

(M166! (SUBCLASS (M165 (LEX AIRCRAFT)))

(SUPERCLASS (M133 (LEX TRANSPORTATION))))

(M168! (ABILITY (M167 (LEX fly))) (HAS-ABILITY (M165 (LEX AIRCRAFT))))
NIL

--> ;;; The lexicon also provides some knowledge. Read it to expand the KB.
(with-open-file (KB "lexicon.b5" :direction :input)
(let (stream)
(loop (when (null (setq stream (read KB nil nil))) (return))
(if (member (rest (assoc ’ctgy (second stream))) ’(n npr pronoun))
(let* ((features (second stream))
(object (rest (assoc ’sense features)))
(superclass (rest (assoc ’superclass features)))
(part (rest (assoc ’part features)))
(kinship (rest (assoc ’kinship features)))
(property (rest (assoc ’property features)))
(ability (rest (assoc ’ability features))))
(if kinship
(progn #!((assert object #B2 propername (build lex “object)))
(dolist (rel kinship)
#! ((describe (assert argl #B1l arg2 *B2
kinship (build lex “rel)))))))
(if superclass #!((isa “object ~superclass)))
(if property #!((describe (assert object (build lex ~object)
property (build lex ~“property)))))
(if ability
#! ((describe
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(M170!
(M172!
(M174!
(M176!
(M178!
(M180!
(M182!
(M184!
(M186!
(M188!
(M190!
(M192!
(M194!
(M196!
(M198!
(M200!
(M202!
(M204!
(M206!
(M208!
(M210!
(M212!
(M214!
(M216!

(if

))))

(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS

(assert has-ability (build lex ~object)
ability (build lex ~(string-downcase

part

#! ((describe

(symbol-name ability)))))))

(assert whole (build lex ~“object)
part (build lex ~(mapcar

)

(M169
M171
(M173
(M175
M177
(M179
(M181
(M183
(M185
(M187
(M189
(M191
(M193
(M195
(M197
(M199
(M201
(M203
(M205
(M207
(M209
(M211
(M213
(M215

(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX
(LEX

#’ (lambda (n)
(string-downcase
(format nil ""A" n))) part))))))

Li3si4))) (SUPERCLASS (M110 (LEX MAN))))
Lao31i3))) (SUPERCLASS (M110 (LEX MAN))))
Zhanglsan1))) (SUPERCLASS (M110 (LEX MAN))))
Lao3zhang1))) (SUPERCLASS (M110 (LEX MAN))))
Wang2wu3))) (SUPERCLASS (M110 (LEX MAN))))
Lao3wang2))) (SUPERCLASS (M110 (LEX MAN))))
Zhid4cheng2))) (SUPERCLASS (M110 (LEX MAN))))
Dadwei3))) (SUPERCLASS (M110 (LEX MAN))))
Bao3min2))) (SUPERCLASS (M110 (LEX MAN))))
jian4zheng4))) (SUPERCLASS (M110 (LEX MAN))))
wei3jian4))) (SUPERCLASS (M110 (LEX MAN))))
Taipei))) (SUPERCLASS (M39 (LEX PLACE))))
xinglhua2))) (SUPERCLASS (M110 (LEX MAN))))
Dad4hua2))) (SUPERCLASS (M110 (LEX MAN))))
Guo2hua2))) (SUPERCLASS (M110 (LEX MAN))))
Mei3hua2))) (SUPERCLASS (M108 (LEX WOMAN))))
who))) (SUPERCLASS (M159 (LEX 3RD_PRONOUN))))
she))) (SUPERCLASS (M108 (LEX WOMAN))))
meeting))) (SUPERCLASS (M59 (LEX ACTIVITY))))
school))) (SUPERCLASS (M43 (LEX INSTITUTION))))
bank))) (SUPERCLASS (M43 (LEX INSTITUTION))))
janitor))) (SUPERCLASS (M75 (LEX HUMAN))))
rock))) (SUPERCLASS (M49 (LEX OBJECT))))
book)))

(SUPERCLASS (M131 (LEX CULTURAL_MATERIAL))))

(SUBCLASS (M217 (LEX cow))) (SUPERCLASS (M77 (LEX NONHUMAN))))
(SUBCLASS (M219 (LEX milk))) (SUPERCLASS (M120 (LEX FOOD))))
(DOBJECT (M219 (LEX milk))) (PROPERTY (M221 (LEX LIQUID))))

(M218!
(M220!
(M222!
(M224!
(M226!
(M228!
(M230!
(M232!
(M234!
(M236!
(M238!
(M240!

(M242!
(M244!

(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS
(SUBCLASS

(M223
(M225
(M227
(M229
(M231
(M233

(LEX
(LEX
(LEX
(LEX
(LEX
(LEX

table))) (SUPERCLASS (M52 (LEX STUFF))))
English))) (SUPERCLASS (M18 (LEX KNOWLEDGE))))
Japanese))) (SUPERCLASS (M18 (LEX KNOWLEDGE))))
language))) (SUPERCLASS (M18 (LEX KNOWLEDGE))))
linguistics))) (SUPERCLASS (M18 (LEX KNOWLEDGE))))
television))) (SUPERCLASS (M138 (LEX EQUIPMENT))))

(PART (M235 (LEX antenna screen))) (WHOLE (M233 (LEX television))))
(SUBCLASS (M237 (LEX antenna))) (SUPERCLASS (M138 (LEX EQUIPMENT))))
(SUBCLASS (M239 (LEX refrigerator)))

(SUPERCLASS (M138 (LEX EQUIPMENT))))

(SUBCLASS (M241 (LEX well))) (SUPERCLASS (M49 (LEX OBJECT))))
(SUBCLASS (M243 (LEX work))) (SUPERCLASS (M59 (LEX ACTIVITY))))
(M246! (SUBCLASS (M245 (LEX job))) (SUPERCLASS (M59 (LEX ACTIVITY))))
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(M248! (SUBCLASS (M247 (LEX bird))) (SUPERCLASS (M30 (LEX ANIMAL))))

(M249! (ABILITY (M167 (LEX fly))) (HAS-ABILITY (M247 (LEX bird))))

(M251! (SUBCLASS (M250 (LEX canary))) (SUPERCLASS (M247 (LEX bird))))
(M253! (SUBCLASS (M252 (LEX elephant))) (SUPERCLASS (M30 (LEX ANIMAL))))
(M255! (SUBCLASS (M254 (LEX son))) (SUPERCLASS (M110 (LEX MAN))))

(M257! (SUBCLASS (M256 (LEX bowl))) (SUPERCLASS (M129 (LEX COMMODITY))))
(M259! (SUBCLASS (M258 (LEX bill))) (SUPERCLASS (M125 (LEX MONEY))))

(M261! (SUBCLASS (M260 (LEX officer))) (SUPERCLASS (M118 (LEX PROFESSION))))
(M263! (SUBCLASS (M262 (LEX soldier))) (SUPERCLASS (M118 (LEX PROFESSION))))
(M265! (SUBCLASS (M264 (LEX order))) (SUPERCLASS (M55 (LEX AUTHORITY))))
(M267! (SUBCLASS (M266 (LEX bicycle))) (SUPERCLASS (M161 (LEX VEHICLE))))
(M269! (SUBCLASS (M268 (LEX jewel))) (SUPERCLASS (M127 (LEX JEWELRY))))
(M271! (SUBCLASS (M270 (LEX dinner))) (SUPERCLASS (M96 (LEX MEAL))))

NIL

--> (parse)
ATN parser initialization...
Trace level = 0.

Beginning at state ’S’.

Input sentences in normal English orthographic convention.
Sentences may go beyond a line by having a space followed by a <CR>
To exit the parser, write “end.

Enter Lisp Read/Eval/Print loop. Type to continue

--> ;;; Create variable nodes for wh-questions.

;33 Set context back to the default context.

(progn (setq *infertrace* nil *parse-trees* T *all-parses* nil)
(set-default-context DEFAULT-DEFAULTCT)
(values ($ ’who) ($ ’what)))

((ASSERTIONS NIL) (RESTRICTION NIL) (NAMED (DEFAULT-DEFAULTCT)))
(V1)
(V2)
__> -~

;55 All the three following sentences mean "Zhanglsanl read book."
;35 Nei4 Dben3 shul Zhangl sanl du2 1le5. (CL: classifier;

;3; that CL  book Zhanglsanl read LE LE: perfective aspect)
MAFER=ZFT.

(M272! (OBJECT B1) (PROPERNAME (M173 (LEX Zhanglsan1))))
(M274! (CLASS (M215 (LEX book))) (MEMBER B4))
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(M278! (ACT (M277 (LEX read) (TENSE PAST))) (AGENT B1) (OBJECT B4))
Zhanglsanl read that book.

Time (sec.): 0.1

;55 Zhangl sanl nei4 ben3 shul du2 1leb.
;55 Zhanglsanl that CL book read LE
REZAARAERT.

(M279! (CLASS (M215 (LEX book))) (MEMBER B5))
(M281! (ACT (M277 (LEX read) (TENSE PAST))) (AGENT B1) (OBJECT B5))

Zhanglsanl read that book.

Time (sec.): 0.06

;55 Zhangl sanl du2 1le5 nei4 ben3 shul.
;55 Zhanglsanl read LE that CL book

REZHFTAAE.

(M282! (CLASS (M215 (LEX book))) (MEMBER B7))
(M284! (ACT (M277 (LEX read) (TENSE PAST))) (AGENT B1) (OBJECT B7))

Zhanglsanl read that book.
Time (sec.): 0.07
;;; For an interrgative, besides its English translation,
;55 the system answers the query. The answer follows the ’CASSIE:’ prompt.
;33 Shei2 du2 shul?
;33 who read book
Wk ET
(P2 (ACT (M285 (LEX read))) (AGENT V1) (OBJECT B7))
Who read that book?
CASSIE: Zhanglsanl read that book.
Time (sec.): 0.29
;53 No parse due to the wrong use of pronoun.
;55 "read" requires a human agent; however, "what" is for non-human.
;33 She2 mob5 du2 shul?

I what read book

B % E7
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3

3

Time (sec.): 0.21

1

;35 Zhangl sanl du2 she2 mob57?

;3 Zhanglsanl read what

= AT BT

(P5 (ACT (M285 (LEX read))) (AGENT B1) (OBJECT V2))

What did Zhanglsanl read?

CASSIE: Zhanglsanl read that book.
CASSIE: Zhanglsanl read that book.
CASSIE: Zhanglsanl read that book.

Time (sec.): 0.3

;5 Zhangl sanl du2 1leb5 nei4 ben3 shul
;3 Zhanglsanl read LE that CL book

A I
Did Zhanglsanl read that book?

CASSIE: Yes, Zhanglsanl read that book.

Time (sec.): 0.22

mal?

Q

(Q= question marker)

;;; Ambiguities in a sequence of nouns without conjunctions.

;3 Noun Verb Noun Noun

;; John teach English Japanese

;; John teach Mary Japanese

;3 Noun Noun Verb Noun

;; English John teach Mary

;; Noun Verb Noun Noun Noun Noun
;3 John teach Mary Allen  Pat Linguistics (conjoined nouns)
;5 John teach Mary English AI Linguistics (conjoined nouns)
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;35 John teach Mary Jane English Linguistics (conjoined nouns)
;33 John teach Mary brother AI Linguistics (kinship relation)
;55 John give Mary brother TV antenna (part-whole relation)

;55 Zhangl sanl jiaol Yingl wen2 Ri4 wen2.
;33 Zhanglsanl teach English Japanese
RZHELA L.
(M290! (CLASS (M227 (LEX Japanese))) (MEMBER B9))
(M291! (CLASS (M225 (LEX English))) (MEMBER B10))
(M293! (ACT (M292 (LEX teach))) (AGENT B1) (OBJECT B10 B9))
Zhanglsanl taught English and Japanese.
Time (sec.): 0.09

;35 Shouldn’t reply "Zhanglsanl taught Japanese English."
;33 Zhangl sanl jiaol shei2 Ri4 wen2.

;55 Zhanglsanl teach who Japanese

e = # G H L7
(P8 (ACT (M292 (LEX teach))) (AGENT B1) (EXPERIENCER V1) (OBJECT B9))
Whom did Zhanglsanl teach Japanese?
CASSIE: I don’t know.
Time (sec.): 0.32
;33 Reduction Inference.
;55 Shei2 jiaol Ri4 wen2?
;35 wWho teach Japanese
Ak B L7
(P10 (ACT (M292 (LEX teach))) (AGENT V1) (OBJECT B9))
Who taught Japanese?

CASSIE: Zhanglsanl taught Japanese.

Time (sec.): 0.28

ERE NS ]

;55 Zhangl sanl jiaol Li3 si4 Ri4 wen2.
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;55 Zhanglsanl teach Li3si4 Japanese
R=Z#AFvwH L.

(M295! (CLASS (M227 (LEX Japanese))) (MEMBER B11))
(M296! (OBJECT B12) (PROPERNAME (M169 (LEX Li3si4))))

(M297! (ACT (M292 (LEX teach))) (AGENT B1) (EXPERIENCER B12)
(DBJECT B11))

Zhanglsanl taught Li3si4 Japanese.
Time (sec.): 0.1
;35 Same question. Last time, CASSIE answered "I don’t know."

;55 Zhangl sanl jiaol shei2 Ri4 wen2.
;55 Zhanglsanl teach who Japanese

fe = &R L7

(P12 (ACT (M292 (LEX teach))) (AGENT B1) (EXPERIENCER V1) (OBJECT B11))
Whom did Zhanglsanl teach Japanese?

CASSIE: Zhanglsanl taught Li3si4 Japanese.

Time (sec.): 0.41

;55 Yingl wen2 Zhangl sanl jiaol Li3 si4 1eb.
;35 English Zhanglsanl teach Li3si4 LE

AXR=Z#FwT.
(M299! (CLASS (M225 (LEX English))) (MEMBER B14))
(M301! (ACT (M300 (LEX teach) (TENSE PAST))) (AGENT B1)
(EXPERIENCER B12) (OBJECT B14))
Zhanglsanl taught Li3si4 English.
Time (sec.): 0.09
;;; Answer not only "English" but also
;33 "Japanese" inferred from previous inputs
;35 Zhangl sanl jiaol Li3 si4 she2 mob5?

;55 Zhanglsanl teach Li3si4 what
= & Fw A B

(P13 (ACT (M292 (LEX teach))) (AGENT B1) (EXPERIENCER B12) (OBJECT V2))
What did Zhanglsanl teach Li3siéd?

CASSIE: Zhanglsanl taught Li3si4 English.
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CASSIE: Zhanglsanl taught Li3si4 Japanese.

Time (sec.): 0.4

;55 Shei2 jiaol Li3 si4 Yingl wen27?
;33 who teach Li3si4 English
A F e R L7

(P15 (ACT (M292 (LEX teach))) (AGENT V1) (EXPERIENCER B12) (OBJECT B14))

Who taught Li3si4 English?

CASSIE: Zhanglsanl taught Li3si4 English.

Time (sec.): 0.47

;55 Li3 si4 Zhangl sanl jiaol
;55 Li3si4  Zhanglsanl  teach
Fuorfk = KR

Yingl wen2.
English

(M303! (CLASS (M225 (LEX English))) (MEMBER B15))
(M304! (ACT (M292 (LEX teach))) (AGENT B1 B12) (OBJECT B15))

Li3si4 and Zhanglsanl taught English.
Time (sec.): 0.06
;55 Li3 si4 jiaol she2 mob?

;33 Li3si4d teach what
F v H A BT

(P16 (ACT (M292 (LEX teach))) (AGENT B12) (OBJECT V2))

What did Li3si4 teach?

CASSIE: Li3si4 taught English.

Time (sec.): 0.23

;;; Four NPs juxtaposed without conjunctions or markers among them
;35 Should be able to assign each of them a proper role.
;55 Zhangl sanl jiaol Li3 si4 Wang2 wu3 Guo2 hua2 Yu3 yang2 xue2.

;;; Zhanglsanl teach Li3si4 Wang2wu3 Guo2hua2  Linguistics
K=Z—#HFEFwWE B EEZT L.

=

141



(M306! (CLASS (M231 (LEX linguistics))) (MEMBER B16))

(M307! (OBJECT B17) (PROPERNAME (M197 (LEX Guo2hua2))))

(M308! (OBJECT B18) (PROPERNAME (M177 (LEX Wang2wu3))))

(M309! (ACT (M292 (LEX teach))) (AGENT B1) (EXPERIENCER B12 B17 B18)
(OBJECT B16))

Zhanglsanl taught Li3si4, Wang2wu3d and GuoZhua2 linguistics.
Time (sec.): 0.24
;33 Should NOT answer:
;33 "Zhanglsanl taught Li3si4 Wang2wu3, Guo2hua2 and Linguistics."

;55 Zhangl sanl jiaol Li3 si4 she2 mob?
;55 Zhanglsanl teach Li3si4 what

= % Fw At R?
What did Zhanglsanl teach Li3si4?
CASSIE: Zhanglsanl taught Li3si4 linguistics.
CASSIE: Zhanglsanl taught Li3si4 English.
CASSIE: Zhanglsanl taught Li3si4 Japanese.
Time (sec.): 0.48
;53 Transpose the NPs and leave out one NP from the previous input string.
;53 Showing true understanding. Not just surface string matching.
;53 Zhangl sanl jiaol Li3 si4 Guo2 hua2 she2 mob?

;55 Zhanglsanl teach Li3si4 Guo2hua?2 what
= KB EFw A R

(P17 (ACT (M292 (LEX teach))) (AGENT B1) (EXPERIENCER B12 B17)
(OBJECT V2))

What did Zhanglsanl teach GuoZhua2 and Li3si4?
CASSIE: Zhanglsanl taught GuoZhua2 and Li3si4 linguistics.
Time (sec.): 0.41

;35 Chinese adjective is a state verb. No copula "be".
;55 Lao3 1i3 gaol xing4.
;55 Lao3li3 happy
% & & HE.

(M312! (OBJECT B19) (PROPERNAME (M171 (LEX Lao31i3))))
(M314! (OBJECT B19) (PROPERTY (M313 (LEX happy))))
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Lao31i3 is happy.

Time (sec.): 0.04

;55 Shei2 gaol xing4d?
;55 who happy
i = 7

(P18 (OBJECT V11) (PROPERTY (M313 (LEX happy))))
Who is happy?

CASSIE: Lao31i3 is happy.

Time (sec.): 0.14

HHH preposition Locative postposition
;55 Shi2 tou2 diao4 dao4 =zhed4 geb jing3 1i3.
N stone fall to det CL well in
& SR 4 e 8ot

(M315! (CLASS (M241 (LEX well))) (MEMBER B20))

(M319! (ADPOSITION (M318 (LEX into))) (OBJECT B20))

(M320! (CLASS (M213 (LEX rock))) (MEMBER B21))

(M323! (ACT (M322 (LEX fall))) (LOCATIVE B20) (OBJECT B21))

Rocks fell into the well.

Time (sec.): 0.42

HE prep postposition
;33 Li3 si4 ba3 shul fan4 zai4 zhuol xia4.

;53 Li3si4 BA  book put at table under
FurjeF Ak T.

(M324! (CLASS (M223 (LEX table))) (MEMBER B22))

(M327! (ADPOSITION (M326 (LEX under))) (OBJECT B22))

(M329! (CLASS (M215 (LEX book))) (MEMBER B24))

(M333! (ACT (M332 (LEX put))) (AGENT B12) (LOCATIVE B22) (OBJECT B24))
Li3si4 put books under that table.

Time (sec.): 0.46

;53 Li3 sid4 lai2 dao4 Tai2 bei3.
;55 Li3si4 come to Taipei
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(M334! (OBJECT B25) (PROPERNAME (M191 (LEX Taipei))))
(M336! (ADPOSITION (M335 (LEX to))) (OBJECT B25))
(M339! (ACT (M338 (LEX come))) (AGENT B12) (LOCATIVE B25))

Li3si4 came to Taipei.
Time (sec.): 0.44

;33 One relative clause embedded in another.
;;; Both the NPs for agent and object contain relative clauses.
;5; The agent and experiencer roles for the verb, study, are coreferential.
;55 Zaid yil geb yin2 hang2 zuo4 shi4 deb Da4 hua2 xi3 huanl nian4d
;55 1n one CL bank do  thing DE  Da4hua2 like study
;55 yu3d yan2 xue2 deb Guo2 hua2 mai3 de shul.
;55 Linguistics DE  Guo2hua2 buy DE book
KRR FOREERLSETFORETGF.

(M341! (CLASS (M231 (LEX linguistics))) (MEMBER B27))
(M343! (ACT (M342 (LEX study))) (AGENT B17) (EXPERIENCER B17)
(0BJECT B27))
(M348! (OBJECT B28) (PROPERNAME (M195 (LEX Da4hua2))))
(M349! (CLASS (M243 (LEX work))) (MEMBER B29))
(M355! (CLASS (M209 (LEX bank))) (MEMBER B32))
(M358! (ADPOSITION (M357 (LEX in))) (OBJECT B32))
(M359! (ACT (M243)) (AGENT B28) (LOCATIVE B32) (OBJECT B29))
(M340! (CLASS (M215 (LEX book))) (MEMBER B26))
(M362
(MAIN (M361! (ACT (M360 (LEX like))) (EXPERIENCER B28) (OBJECT B26)))
(RELC-E (M359!))
(RELC-0
(M345! (ACT (M344 (LEX buy))) (AGENT B17) (BENEFACTIVE B17)
(OBJECT B26))))
(M347 (MAIN (M345!))
(RELC-B
(M343! (ACT (M342 (LEX study))) (AGENT B17) (EXPERIENCER B17)
(OBJECT B27))))

Da4hua2 who worked in a bank liked the books
which Guo2hua2 who studied linguistics bought.

Time (sec.): 0.47

;;; Relative clause combined with serial-verb construction may lead to
;53 the garden-path problem.
;55 Dad4 hua2? xi3 huanl nian4 yu3 yan2 xue2 deb Guo2 hua2 mai3 de shul.
;55 Dadhua2 like study Linguistics DE  Guo2hua2 buy DE book
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;55 "Dadhua2 liked the books which Guo2Zhua2 who studied Linguistics bought."

;55 Dad4 hua2? xi3 huanl nian4 yu3 yan2 xue2 deb Guo2 hua2.
;33 Dadhua?2 like study Linguistics DE Guo2hua?2
;55 "Dadhua2 liked Guo2hua2 who studied Linguistics."

;55 Da4 hua2 xi3 huanl nian4 yu3 yan2 xue2.

;55 Dadhua2 like study Linguistic

;55 "Dadhua2 liked studying Linguistics."

;55 Take a segment of the previous input to test if CASSIE gets confused.
;55 Zaid yil geb5 yin2 hang2 zuo4 shi4 deb Da4 hua2

;55 1in ome CL bank do  thing DE Da4hua2

;55 x13 huanl nian4 yu3 yan2 xue2 mal?

;55 like study Linguistics Q

B FRARFOREERALE S SN

(M359! (ACT (M243 (LEX work))) (AGENT B28) (LOCATIVE B32) (OBJECT B29))
(M366 (ACT (M360 (LEX 1ike))) (EXPERIENCER B28)
(XCOMP

(M363 (ACT (M342 (LEX study))) (AGENT B28) (EXPERIENCER B28)

(OBJECT B27))))

Did Da4hua2 who worked in a bank like to study linguistics?
CASSIE: I don’t know.

Time (sec.): 0.88

;33 "Who did Dadhua2 who worked in a bank like?" Should answer "I don’t know."

;55 Zai4 yil geb yin2 hang2 zuo4 shi4 de5 Da4 hua2 =xi3 huanl shei2?
HEEE § ¢ one CL bank do thing DE Dadhua2 like who

0 — FEATHRE G K EE BRHT
(P28 (ACT (M360 (LEX 1like))) (EXPERIENCER B28) (OBJECT V1))
Whom did Dadhua? who worked in a bank like?

CASSIE: I don’t know.

Time (sec.): 1.04

;55 Zaid yil geb yin2 hang2 zuo4 shi4 deb Da4 hua2 xi3 huanl she2 mob57
;55 in one CL bank do thing DE Da4dhua2 like what

W — KA AT E 8 K E & A BT
(P34 (ACT (M360 (LEX like))) (EXPERIENCER B28) (0BJECT V2))

What did Da4hua2 who worked in a bank like?
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CASSIE: Da4hua2 who worked in a bank liked the books
which Guo2hua2 who studied linguistics bought.

Time (sec.): 1.45

;55 Nian4 yu3d yan2 xue2 deb Guo2 hua2 xi3 huanl nian4 yu3 yan2 xue2 mal?
;55 study Linguistics DE Guo2hua2 like study Linguistics Q

SHRITFHREERLEZT N

(M343! (ACT (M342 (LEX study))) (AGENT B17) (EXPERIENCER B17) (OBJECT B27))
(M343! (ACT (M342 (LEX study))) (AGENT B17) (EXPERIENCER B17) (OBJECT B27))
(M370 (ACT (M360 (LEX like))) (EXPERIENCER B17) (XCOMP (M343!)))

Did GuoZ2hua2 who studied linguistics like studying linguistics?
CASSIE: I don’t know.

Time (sec.): 0.49

;35 Zaid yil geb yin2 hang2 zuo4 shi4 deb Da4 hua2 xi3 huanl Mei3 hua2.
;55 in one CL bank do thing DE Da4dhua2 like Mei3hua2
B — KRATHMFH R E L BREE.

(M373! (CLASS (M243 (LEX work))) (MEMBER B34))

(M378! (CLASS (M209 (LEX bank))) (MEMBER B37))

(M380! (ADPOSITION (M357 (LEX in))) (OBJECT B37))

(M381! (ACT (M243)) (AGENT B28) (LOCATIVE B37) (OBJECT B34))
(M372! (OBJECT B33) (PROPERNAME (M199 (LEX Mei3hua2))))
(M383

(MAIN (M382! (ACT (M360 (LEX 1like))) (EXPERIENCER B28) (OBJECT B33)))
(RELC-E (M381!)))

Dad4hua2 who worked in a bank liked Mei3hua2.

Time (sec.): 0.3

;33 The answer shouldn’t include "books'".

;33 The inference returns "books and Mei3hua2" but "books" is filtered out.
B — K AT R F 0 R E & B GET

Whom did Da4hua2 who worked in a bank like?

CASSIE: Da4dhua2 who worked in a bank liked Mei3huaZ2.

Time (sec.): 2.08
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;;; Showing adjective ordering in English generation.
;55 Two DEs: the DE as relative clause marker and the DE as adjective marker.
;55 Jiaol Li3 si4 Yingl wen2 deb Lao3 zhangl xi3 huanl Wang2 wu3 mai3 deb
;;; teach Li3si4 English DE Lao3zhangl 1like Wang2wu3 buy DE
;55 xinl de hong2 se4 da4 Zhangl mué4 zhi4 yuan2 =zuol.
;5; new DE red big CL wooden round table

AFWEILHWEREBREIZAGH G ERKRALE L.

(M396! (OBJECT B39) (PROPERNAME (M175 (LEX Lao3zhangl))))

(M397! (CLASS (M225 (LEX English))) (MEMBER B40))

(M398! (ACT (M292 (LEX teach))) (AGENT B39) (EXPERIENCER B12)
(0OBJECT B40))

(M384! (CLASS (M223 (LEX table))) (MEMBER B38))

(M386! (OBJECT B38) (PROPERTY (M385 (LEX round))))

(M388! (OBJECT B38) (PROPERTY (M387 (LEX wooden))))

(M390! (OBJECT B38) (PROPERTY (M389 (LEX big))))

(M392! (OBJECT B38) (PROPERTY (M391 (LEX red))))

(M394! (OBJECT B38) (PROPERTY (M393 (LEX new))))

(M400

(MAIN (M399! (ACT (M360 (LEX like))) (EXPERIENCER B39) (OBJECT B38)))
(RELC-E (M398!))

(RELC-0
(M395! (ACT (M344 (LEX buy))) (AGENT B18) (BENEFACTIVE B18)

(OBJECT B38))))

Lao3zhangl who taught Li3si4 English liked
the big new round red wooden tables which Wang2wu3 bought.

Time (sec.): 0.4

Enter Lisp Read/Eval/Print loop. Type to continue
--> ;;; The node type can determine the mood of a sentence.
;5; Surface an unasserted molecule node, we get a Yes-No question
;;; because CASSIE has doubts about it.
;55 "Did Dadhua2 who worked in a bank like to study Linguistics?"
(SURFACE
(full-describe
(find act (build lex like)
experiencer (find (object- propername lex) Dad4hua2) = D
xcomp (find act (build lex study) agent (* ’D) experiencer (* ’D))))
= unasserted)

(M366 (ACT (M360 (LEX like))) (EXPERIENCER B28)

(XCOMP
(M363 (ACT (M342 (LEX study))) (AGENT B28) (EXPERIENCER B28)
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(OBJECT B27))))
Did Da4hua2 who worked in a bank like to study linguistics?

--> ;;; To assert an unasserted molecule node is to make her believe it.
;55 S0 now we will get a declarative sentence.
(SURFACE (describe (! (* ’unasserted))))

(M366! (ACT (M360 (LEX like))) (EXPERIENCER B28)

(XCoMP
(M363 (ACT (M342 (LEX study))) (AGENT B28) (EXPERIENCER B28)
(OBJECT B27))))

Da4hua2 who worked in a bank liked to study linguistics.

--> ;;; To surface a pattern node, we get a wh-question.
;55 The choice of wh-words is determined by
;;; the role the variable node plays in a semantic network.
;55 "WHO" is used when agent is a variable node.
#! ((surface
(full-describe
(build act (build lex teach) Agent ~(* ’who)
experiencer (find (object- propername lex) Li3si4)
object “(car (find (member- class lex) English)) = E))))

(P43 (ACT (M292 (LEX teach))) (AGENT V1) (EXPERIENCER B12) (OBJECT B10))
Who taught Li3si4 English?
NIL
NIL
-=-> ;;; "WHAT" is used when the object role is a variable node and
;;; the selectional restriction of object role is non-human.
;353 "What did Dad4hua2 who worked in a bank like?"
#! ((surface
(full-describe
((build act (build lex like) experiemncer ~(* ’D) object ~(x ’what))))))

(P34 (ACT (M360 (LEX 1like))) (EXPERIENCER B28) (OBJECT V2))

What did Da4hua2 who worked in a bank like?

NIL

NIL

-=-> ;;; "WHOM" is used when the syntactical object is a variable node and

;33 1ts role requires the human feature.

#! ((surface

(full-describe (build act (build lex teach)

Agent (find (object- propername lex) Zhanglsanl)
experiencer ~(* ’who) object “(* ’E)))))

(P44 (ACT (M292 (LEX teach))) (AGENT B1) (EXPERIENCER V1) (OBJECT B10))
Whom did Zhanglsanl teach English?

NIL

NIL

148



-=>

;;; Passive voice
;33 Wan3 da3po4 1leb.
;33 bowl break LE
B AT BT .

(M401! (CLASS (M256 (LEX bowl))) (MEMBER B41))
(M403! (ACT (M402 (LEX break) (TENSE PAST))) (AGENT B42) (OBJECT B41))

Bowls were broken.

Time (sec.): 0.09

Enter Lisp Read/Eval/Print loop. Type to continue

--> ;;; The voice of a sentence can be affected by the node structure.
#! ((surface (describe “(car (find act (build lex read tense past) agent B1))
= active)))

(M278! (ACT (M277 (LEX read) (TENSE PAST))) (AGENT B1) (OBJECT B4))
Zhanglsanl read that book.

NIL

NIL

--> ;;; By taking away the node for the agent role

;33 an active sentence will turned into a passive sentence.

(erase (describe (find (propername lex) Zhanglsanl)))

(M272! (OBJECT B1) (PROPERNAME (M173 (LEX Zhanglsanl))))
(M272 0OBJECT (B1) PROPERNAME (M173))
node dismantled.

--> #! ((surface (describe ~(x ’active))))

(M278! (ACT (M277 (LEX read) (TENSE PAST))) (AGENT B1) (OBJECT B4))
That book was read.

NIL

NIL

__> ~=

;;; Parsing sentential complement
;55 Zhangl sanl xiangl xin4 Li3 si4 xi3 huanl Lao3 wang2 mai3 de shul.
;55 Zhanglsanl believe Li3si4 1like Lao3wang2 buy DE book
R FOERELITNTE.

(M404! (CLASS (M215 (LEX book))) (MEMBER B43))
(M405! (OBJECT B44) (PROPERNAME (M179 (LEX Lao3wang2))))
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(M409! (OBJECT B45) (PROPERNAME (M173 (LEX Zhanglsani))))
(M408
(MAIN (M407 (ACT (M360 (LEX like))) (EXPERIENCER B12) (OBJECT B43)))
(RELC-0
(M406! (ACT (M344 (LEX buy))) (AGENT B44) (BENEFACTIVE B44)
(OBJECT B43))))
(M411! (ACT (M410 (LEX believe))) (AGENT B45) (COMP (M407)))

Zhanglsanl believed that Li3si4 liked the books which Lao3wang2 bought.
Time (sec.): 0.3
;35 Sentential complement is not asserted.

;55 Li3 si4 xi3 huanl Lao3 wang2 mai3 de shul mal?
;55 Li3si4 like Lao3wang?2 buy DE Dbook Q

Fw kLR E
(M406! (ACT (M344 (LEX buy))) (AGENT B44) (BENEFACTIVE B44)
(OBJECT B43))
(M407 (ACT (M360 (LEX like))) (EXPERIENCER B12) (0OBJECT B43))
Did Li3si4 like the books which Lao3wang2 bought?
CASSIE: I don’t know.
Time (sec.): 0.57
;55 Relative clauses inside the sentential complement are asserted though.
;55 Lao3 wang2? mai3 shul mal?
;53 Lao3wang?2 buy book Q
¥ E R % 7
Did Lao3wang2 buy books?
CASSIE: Yes, Lao3wang2 bought books.
Time (sec.): 0.53
;33 The whole sentence is also asserted.
;33 Zhangl sanl xiangl xin4 Li3 si4 xi3 huanl Lao3 wang2 mai3 de shul mal?

;53 Zhanglsanl believe Li3si4 1like Lao3wang2 buy DE book Q
Rt FwE ik E R e)FH?

Did Zhanglsanl believe that Li3si4 liked the books which Lao3wang2 bought?

CASSIE: Yes, Zhanglsanl believed that
Li3si4 liked the books which Lao3wang2 bought.

Time (sec.): 0.76
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;;; Handle two-way branching
;33 Mixed deep right-branching (Scomp and Xcomp) and
;3; left-branching (relative clause).
;55 Zhangl sanl xiangl xin4 Mei3 hua2 xiangl xin4
;33 Zhanglsanl believe Mei3hua?2 believe
;55 Wang2 wu3 quan4d Li3 si4 mai3 Lao3 wang2 mai3 de shul.
;55 Wang2wu3 persude Li3si4 buy Lao3wang2 buy DE book

Rz EAE MBI AHETOE LI OE.

(M412! (CLASS (M215 (LEX book))) (MEMBER B46))
(M413! (ACT (M344 (LEX buy))) (AGENT B44) (BENEFACTIVE B44) (OBJECT B46))
(M420
(MAIN
(M418 (ACT (M417 (LEX persuade))) (AGENT B18) (OBJECT B12)
(XCOMP
(M414 (ACT (M344 (LEX buy))) (AGENT B12) (BENEFACTIVE B12)
(OBJECT B46)))))
(RELC-0
(M413! (ACT (M344)) (AGENT B44) (BENEFACTIVE B44) (OBJECT B46))))
(M422! (ACT (M410 (LEX believe))) (AGENT B45)
(COMP (M421 (ACT (M410)) (AGENT B33) (COMP (M418)))))

Zhanglsanl believed that Mei3hua2 believed that
Wang2wu3 persuaded Li3si4 to buy the books which Lao3wang2 bought.

Time (sec.): 0.46

;33 Serial verb construction:
;55 A sentence containing two or more VPs or clauses.
;55 No syntactical markers to indicate the relationship among them.
;33 Noun Verb Noun Verb Noun

;;; John eat dinner read book (Two independent events)
;35 John believe Mary read book (Sentential complement)
;35 John persuade Mary read book (Object control)

;35 John promise Mary read book (Subject control)

;35 John buy book give Mary (Intention)

;35 Zhangl sanl chil wan3 fan4 du2 shul shui4 jiao4.
HE Zhanglsanl eat dinner read book sleep
R Z v R R E R R

(M424! (CLASS (M270 (LEX dinner))) (MEMBER B48))

(M426! (ACT (M425 (LEX eat))) (AGENT B45) (OBJECT B48))
(M423! (CLASS (M215 (LEX book))) (MEMBER B47))

(M427! (ACT (M285 (LEX read))) (AGENT B45) (OBJECT B47))
(M429! (ACT (M428 (LEX sleep))) (AGENT B45))
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Zhanglsanl ate dinners, read books and slept.
Time (sec.): 0.32

;5 Object control:
;33 The controller of Xcomp’s subject is the object of the matrix verb.
;53 The Xcomp is a non-finite clause without an overt subject.
;55 The agent and experiencer of the verb ’study’ are coreferential.
;55 Zhangl sanl quan4d Li3 si4 nian4 yu3 yan2 xue2.
;3; Zhanglsanl  pursuade Li3si4  study Linguistics

;;; f-structure in Lexical Functional Grammar (LFG)
;55 SUBJ PRED ’Zhanglsanl’

I PERS 3

33 NUM SING

;;; PRED ’PERSUADE<(SUBJ) (0BJ) (XCOMP) >’

;53 0OBJ PRED ’Li3sié4’

I PERS 3

I NUM SING

;33 XCOMP SUBJ [“0BJ]

A PRED ’STUDY<(SUBJ) (0BJ)>’

I 0BJ PRED ’Linguistics’

HE PERS 3

A NUM SING

R=bFwLET S

(M430! (CLASS (M231 (LEX linguistics))) (MEMBER B50))
(M433! (ACT (M417 (LEX persuade))) (AGENT B45) (OBJECT B12)
(XCoMP

(M431 (ACT (M342 (LEX study))) (AGENT B12) (EXPERIENCER B12)
(OBJECT B50))))

Zhanglsanl persuaded Li3si4 to study linguistics.

Time (sec.): 0.21

;5 Shei2 jiangl yao4 niand4 yu3 yan2 xue2?
;33 wWho will study Linguistics
WA ELET T

(P49 (ACT (M364 (LEX study) (TENSE FUTURE))) (AGENT V1)
(EXPERIENCER V1) (OBJECT B50))

Who will study linguistics?
CASSIE: Li3si4 will study linguistics.

Time (sec.): 0.97

152



;35 Subject control:
;33 The subject of the matrix verb controls the subject of the Xcomp.
;33 In LFG, the Chinese verb 33 "promise"
;;; subcategorizes for a subject, an object and an Xcomp.
;35 Zhangl sanl xu3 nuo4 Li3 si4 nian4 yu3 yan2 xue2.
;55 Zhanglsanl  promise Li3si4  study Linguistics
R —HFrwhiEzd P,

(M435! (CLASS (M231 (LEX linguistics))) (MEMBER B51))
(M439! (ACT (M438 (LEX promise))) (AGENT B45) (OBJECT B12)
(XCOMP
(M436 (ACT (M342 (LEX study))) (AGENT B45) (EXPERIENCER B45)
(OBJECT B51))))

Zhanglsanl promised Li3si4 to study linguistics.
Time (sec.): 0.23

;35 Both comp and Xcomp (infinitive clauses) are not asserted.
;55 Li3 si4 qi4 tu2 qiang3 yil jial yin2 hang?2.
;33 Li3si4d attempt rob one CL bank
F v b B — KR AT.

(M440! (CLASS (M209 (LEX bank))) (MEMBER B52))
(M447! (ACT (M446 (LEX attempt))) (AGENT B12)
(XCOMP (M443 (ACT (M442 (LEX rob))) (AGENT B12) (OBJECT B52))))

Li3si4 attempted to rob a bank.

Time (sec.): 0.23

;55 Zhangl sanl toul Li3 si4 qian2 yong4.
;33 Zhanglsanl steal Li3si4 money use

e = far F v A

(M449! (CLASS (M448 (LEX money))) (MEMBER B53))

(M455! (ACT (M454 (LEX steal))) (AGENT B45) (BENEFACTIVE B12)
(INTENT (M451 (ACT (M450 (LEX use))) (AGENT B45) (OBJECT B53)))
(OBJECT B53))

Zhanglsanl stole money from Li3si4 to use.

Time (sec.): 0.27

;55 Shei2 jiangl yao4 yong4 gian2.
;35 who will use money
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(P51 (ACT (M452 (LEX use) (TENSE FUTURE))) (AGENT V1) (OBJECT B53))
Who will use money?

CASSIE: Zhanglsanl will use money.

Time (sec.): 1.09

;55 Zhangl sanl gei3 Li3 si4 qian2 yong4.
;55 Zhanglsanl give Li3si4 money use
R 2R,

(M457! (CLASS (M448 (LEX monmey))) (MEMBER B54))

(M461! (ACT (M460 (LEX give))) (AGENT B45) (BENEFACTIVE B12)
(INTENT (M458 (ACT (M450 (LEX use))) (AGENT B12) (OBJECT B54)))
(OBJECT B54))

Zhanglsanl gave money to Li3si4 to use.

Time (sec.): 0.25

;55 Shei2 jiangl yao4 yong4 gian2.
i35 who will use money

WA B R 87

(P53 (ACT (M452 (LEX use) (TENSE FUTURE))) (AGENT V1) (OBJECT B54))
Who will use money?

CASSIE: Li3si4 will use money.

Time (sec.): 1.2

;55 Zhangl sanl gei3 Li3 si4 yil ben3 shul du2.
;33 Zhanglsanl give Li3si4d one CL book read

Rt Fw—KEHR.

(M463! (CLASS (M215 (LEX book))) (MEMBER B55))

(M468! (ACT (M460 (LEX give))) (AGENT B45) (BENEFACTIVE B12)
(INTENT (M465 (ACT (M285 (LEX read))) (AGENT B12) (OBJECT B55)))
(OBJECT B55))

Zhanglsanl gave a book to Li3si4 to read.
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Time (sec.): 0.29

;55 Wang2 wu3 mai3 shul songd4 Li3 si4.
;55 Wnaglwu3  buy  book give Li3siéd
FAEREE S

(M469! (CLASS (M215 (LEX book))) (MEMBER B56))
(M473! (ACT (M344 (LEX buy))) (AGENT B18) (BENEFACTIVE B18)
(INTENT
(M470 (ACT (M460 (LEX give))) (AGENT B18) (BENEFACTIVE B12)
(OBJECT B56)))
(OBJECT B56))

Wang2wu3 bought books to give Li3si4.

Time (sec.): 0.24

;5; Shei2 song4 Li3 si4 shul?
;53 who give Li3si4  book
HiE F e T

(P55 (ACT (M460 (LEX give))) (AGENT V1) (BENEFACTIVE B12) (OBJECT B56))
Who gave books to Li3siéd?
CASSIE: Wang2wu3 gave books to Li3si4.

Time (sec.): 2.05

;33 Zhangl sanl qu4 mai3 shul.
;53 Zhanglsanl go buy  book
R=xHZF.

(M474! (CLASS (M215 (LEX book))) (MEMBER B57))

(M478! (ACT (M477 (LEX go))) (AGENT B45)

(INTENT
(M475 (ACT (M344 (LEX buy))) (AGENT B45) (BENEFACTIVE B45)
(OBJECT B57))))

Zhanglsanl went to buy books.
Time (sec.): 0.23
;;; A series of three verb phrases in a row; deep right-branching

;55 Li3 si4 mai3 shul gei3 Zhangl sanl du2.
;55 Li3si4 buy book give Zhanglsanl read
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FwH Fk =R

(M479! (CLASS (M215 (LEX book))) (MEMBER B58))

(M484! (ACT (M344 (LEX buy))) (AGENT B12) (BENEFACTIVE B12)

(INTENT
(M482 (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B45)
(INTENT (M480 (ACT (M285 (LEX read))) (AGENT B45) (OBJECT B58)))
(OBJECT B58)))

(OBJECT B58))

Li3si4 bought books to give Zhanglsanl to read.

Time (sec.): 0.34

;53 Zhangl sanl du2 she2 mo57
;53 Zhanglsanl read what

R = kAT B

(P56 (ACT (M285 (LEX read))) (AGENT B45) (OBJECT V2))
What did Zhanglsanl read?

CASSIE: Zhanglsanl read books.

CASSIE: Zhanglsanl read books.

Time (sec.): 1.06

;55 Li3 si4 gei3 shei2 shul
;55 Li3dsi4 give who  book
FwaifET
(P58 (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE V1) (OBJECT B58))
Whom did Li3si4 give books to?
CASSIE: Li3si4 gave books to Zhanglsanl.
Time (sec.): 2.7
;55 The agent and benefactive roles of the verb ’buy’ are coreferential.
;;; Benefactive role does not surface.
;33 Wan2 wu3 mai3 shul du2.
;55 Wan2wu3  buy  book read
IER T H.

(M486! (CLASS (M215 (LEX book))) (MEMBER B59))
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(M489! (ACT (M344 (LEX buy))) (AGENT B18) (BENEFACTIVE B18)
(INTENT (M487 (ACT (M285 (LEX read))) (AGENT B18) (OBJECT B59)))
(OBJECT B59))

Wang2wu3 bought books to read.
Time (sec.): 0.25

;;; Agent and Benefactive of the verb ’adorn’ are also coreferential.
;;; Benefactive role surfaces in English but does not surface in Chinese.
;3; Mei3 hua2 shenl shi4 zhul bao3.

;33 Mei3hua?2 adorn jewels

£EFHAR.

(M490! (CLASS (M268 (LEX jewel))) (MEMBER B61))
(M492! (ACT (M491 (LEX adormn))) (AGENT B33) (BENEFACTIVE B33)
(OBJECT B61))

Mei3hua2 adorned herself with jewels.

Time (sec.): 0.18

;55 Li3 si4 yan4 wué4 Zhanglsanl toul gian2.
;55 Li3si4 dislike Zhanglsanl steal momey

Fw R ER = MK

(M493! (CLASS (M448 (LEX monmey))) (MEMBER B62))
(M498!'" (ACT (M497 (LEX dislike))) (EXPERIENCER B12) (0OBJECT B45)
(XCOMP (M494 (ACT (M454 (LEX steal))) (AGENT B45) (OBJECT B62))))

Li3si4 disliked Zhanglsanl’s stealing money.

Time (sec.): 0.27

;55 Li3 si4 jianl chi2 yao4 fu4 zhang4.
;55 Li3si4d insist want pay bill
FuRF MK

(M499! (CLASS (M258 (LEX bill))) (MEMBER B63))
(M505! (ACT (M504 (LEX insist))) (AGENT B12)
(XCOMP (M501 (ACT (M500 (LEX pay))) (AGENT B12) (OBJECT B63))))

Li3si4 insisted on paying bills.

Time (sec.): 0.3

157



;55 Junl guanl jianl chi2 yao4 shi4 bingl fu2 cong2 ming4 ling4.
- officer insist want soldier obey order

ErRFRZLIERRG A

(M506! (CLASS (M264 (LEX order))) (MEMBER B65))

(M507! (CLASS (M262 (LEX soldier))) (MEMBER B66))

(M508! (CLASS (M260 (LEX officer))) (MEMBER B67))

(M513! (ACT (M504 (LEX insist))) (AGENT B67) (OBJECT B66)

(XCOMP (M510 (ACT (M509 (LEX obey))) (AGENT B66) (OBJECT B65))))

Officers insisted on soldier’s obeying orders.

Time (sec.): 0.39

;35 Li3 si4 kao3 1lu4 huand gongl zuo4.
;33 Li3si4d consider change job

Ew X Rk

(M514! (CLASS (M245 (LEX job))) (MEMBER B68))
(M520! (ACT (M519 (LEX consider))) (EXPERIENCER B12)
(XCOMP (M516 (ACT (M515 (LEX change))) (AGENT B12) (OBJECT B68))))

Li3si4 considered changing jobs.

Time (sec.): 0.29

;735 Li3 si4 jue2 ding4 huan4 gongl zuo4.
;55 Li3si4 decide change job
Fw ik kA

(M521! (CLASS (M245 (LEX job))) (MEMBER B69))
(M525! (ACT (M524 (LEX decide))) (EXPERIENCER B12)
(XCOMP (M522 (ACT (M515 (LEX change))) (AGENT B12) (OBJECT B69))))

Li3si4 decided to change jobs.

Time (sec.): 0.3

;55 Li3 si4 gongl xi3 Zhangl sanl de2 dao4 gongl zuo4.
;55 Li3si4  congratulate Zhanglsanl get job

FwREKR=ZF P A
(M526! (CLASS (M245 (LEX job))) (MEMBER B70))

(M532! (ACT (M531 (LEX congratulate))) (AGENT B12) (BENEFACTIVE B45)
(XCOMP (M528 (ACT (M527 (LEX get))) (BENEFACTIVE B45) (OBJECT B70))))
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Li3si4 congratulated Zhanglsanl on getting jobs.

Time (sec.): 0.31

;35 Li3 si4 jian4 yi4 Zhangl sanl nian4 yu3 yan2 xue2.
;55 Li3si3 suggest  Zhanglsanl study Linguistics
PO RKEZALET S

(M533! (CLASS (M231 (LEX linguistics))) (MEMBER B71))
(M537! (ACT (M536 (LEX suggest))) (AGENT B12) (BENEFACTIVE B45)
(XCOMP
(M534 (ACT (M342 (LEX study))) (AGENT B45) (EXPERIENCER B45)
(OBJECT B71))))

Li3si4 suggested that Zhanglsanl study linguistics.

Time (sec.): 0.3

;55 Li3si4 jian4 Zhangl sanl qi2 yil tai2 danl chel.
;35 Li3si4 see Zhanglsanl ride one CL bicycle

FW AR -6 % .

(M538! (CLASS (M266 (LEX bicycle))) (MEMBER B72))
(M545! (ACT (M544 (LEX see))) (EXPERIENCER B12) (OBJECT B45)
(XCOMP (M541 (ACT (M540 (LEX ride))) (AGENT B45) (OBJECT B72))))

Li3si4 saw Zhanglsanl riding a bicycle.

Time (sec.): 0.41

;35 Li3 si4 ji4 de2 jian4 guo4 Zhangl sanl.
;35 Li3si4 remember see ASP Zhanglsanl
2w iF LBk =,

(M548! (ACT (M547 (LEX remember))) (EXPERIENCER B12)
(XCOMP (M546! (ACT (M544 (LEX see))) (EXPERIENCER B12) (OBJECT B45))))

Li3si4 remembered seeing Zhanglsanl.

Time (sec.): 0.28

;55 Li3 si4 jian4 Zhangl sanl mal?
;;; Li3si4  see Zhanglsanl Q
Fvw ik =97
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(M546! (ACT (M544 (LEX see))) (EXPERIENCER B12) (OBJECT B45))

Did Li3si4 see Zhanglsanl?
CASSIE: Yes, Li3si4 saw Zhanglsanl.

Time (sec.): 0.16

;35 Li3 si4 dalying4 Zhangl sanl ji4 de2 qu4 mai3 shul.
;;; Li3si4  promise  Zhanglsanl remember go buy  book
FOEABKRZRTERE.

(M549! (CLASS (M215 (LEX book))) (MEMBER B73))

(M554! (ACT (M438 (LEX promise))) (AGENT B12) (OBJECT B45)
(Xcomp

(M551 (ACT (M547 (LEX remember))) (EXPERIENCER B12)
(XCcoMP

(M550 (ACT (M344 (LEX buy))) (AGENT B12) (BENEFACTIVE B12)
(OBJECT B73))))))

Li3si4 promised Zhanglsanl to remember to buy books.

Time (sec.): 0.39

;33 Shei2 mai3 shul?

;53 who buy book

R E?

(P60 (ACT (M344 (LEX buy))) (AGENT V1) (BENEFACTIVE V1) (OBJECT B73))
Who bought books?

CASSIE: I don’t know.

Time (sec.): 1.9

Enter Lisp Read/Eval/Print loop. Type "~ to continue

--> (setq *all-parses* t)
T
__> ~ =

;53 The following sentences are to demonstrate the parser’s ability to
;55 distinguish three kinds of possessive relations:
;55 1. kinship 2. object possession 3. part-whole.
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;353 and three kinds of DEs:

;335 1. possessive marker 2. relative cluase marker 3. adjectival marker.

;33 There are two possible readings for this exmaple:
;3; 1 Li3sié4 liked the sons who kissed Dadwei3.

;33 2 Li3siéd liked to kiss Dadwei3’s sons.

;55 Li3 si4 xi3 huanl qinl Da4 wei3 deb er2 zi2.
;55 Li3si4 like kiss Dadwei3 DE son

FUEBRARXGHLT.

(M555! (CLASS (M254 (LEX son))) (MEMBER B74))

(M556! (OBJECT B75) (PROPERNAME (M183 (LEX Dadwei3))))

(M560

(MAIN (M559! (ACT (M360 (LEX like))) (EXPERIENCER B12) (OBJECT B74)))
(RELC-0 (M558! (ACT (M557 (LEX kiss))) (AGENT B74) (OBJECT B75))))

Li3si4 liked the sons who kissed Dadwei3.
Try next parse? y

(M565! (ARG1 B74) (ARG2 B75) (KINSHIP (M254 (LEX somn))))
(M564! (ACT (M360 (LEX like))) (EXPERIENCER B12)
(XCOMP (M561 (ACT (M557 (LEX kiss))) (AGENT B12) (OBJECT B74))))

Li3si4 liked to kiss Dad4wei3’s sons.
Try next parse? n
Time (sec.): 0.85

;55 Object possession:
;55 Syntactically, it could be read as:
;33 "Li3si4 liked the book which kissed Dadweil."
;5 The parser rules out this reading by checking semantic roles.
;33 Correct reading: "Li3si4 liked to kiss Dad4wei3’s books."
;55 This sentence further illustrates why Chinese language processing
;55 should be knowledge-based or semantic-driven.
;55 Li3 si4 xi3 huanl qinl Da4 Wei3 deb shul.
;35 Li3sié like kiss Dadweid DE book
FwEaRkAKXFEYHSE.
(M571! (DBJECT B77) (POSSESSOR B75) (REL (M215 (LEX book))))
(M566! (CLASS (M215 (LEX book))) (MEMBER B77))
(M569! (ACT (M360 (LEX like))) (EXPERIENCER B12)
(XCOMP (M567 (ACT (M557 (LEX kiss))) (AGENT B12) (OBJECT B77))))
Li3si4 liked to kiss Dadweid’s books.

Try next parse? y
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Time (sec.): 1.2

;33 Kinship relations mixed with object possessive relations.
;53 The parser discards the wrong reading:
;35 "Li3si4 liked the book which bought Bao3min2’s son."
;55 Correct reading: "Li3si4 liked to buy Bao3miin2’s son’s books."
;33 Li3 si4 xi3 huanl mai3d Bao3 min2 deb er2 zi2 deb shul.
;53 Li3si4d like buy Bao3min2 DE son DE book

FWUEBRAKRRGL T HE.

(M580! (OBJECT B80) (POSSESSOR B74) (REL (M215 (LEX book))))
(M581! (ARG1 B74) (ARG2 B82) (KINSHIP (M254 (LEX son))))
(M573! (CLASS (M215 (LEX book))) (MEMBER B80))
(M579! (ACT (M360 (LEX like))) (EXPERIENCER B12)
(XCoMP
(M577 (ACT (M344 (LEX buy))) (AGENT B12) (BENEFACTIVE B12)
(OBJECT B80))))

Li3si4 liked to buy Bao3min2’s son’s books.
Try next parse? y
Time (sec.): 2.07

;55 There is ambiguity, when the relative marker and
;;; the possessive DEs mix together.
;53 Ambiguity over what the head of the relative clause is.
;35 Two parsers: 1. Jian4zheng4’s sons who bought books.
HIH 2. son of Jian4zheng4 who bought books.
;5; Note: instead of being "Jian4zheng4 who bought books’s son", we have
HIHH "son of Jian4zheng4 who bought books."
;335 Li3 si4 xi3 huanl mai3 shul de jian4 zheng4 de er2 zi2.
;55 Li3sid like buy book DE Jian4zhang4 DE  son
FOEBRAFGREGLT.

(M586! (OBJECT B88) (PROPERNAME (M187 (LEX jiandzheng4))))
(M587! (CLASS (M215 (LEX book))) (MEMBER B89))

(M588! (ACT (M344 (LEX buy))) (AGENT B88) (BENEFACTIVE B88)
(OBJECT B89))

(M597! (ARG1 B87) (ARG2 B88) (KINSHIP (M254 (LEX son))))
(M585! (CLASS (M254 (LEX son))) (MEMBER B87))

(M596! (ACT (M360 (LEX like))) (EXPERIENCER B12) (OBJECT B87))

Li3si4 liked the sons of jian4zheng4 who bought books.
Try next parse? y

(M597! (ARG1 B87) (ARG2 B88) (KINSHIP (M254 (LEX son))))

162



(M598! (CLASS (M215 (LEX book))) (MEMBER B93))

(M600 (MAIN (M596!))

(RELC-0
(M599! (ACT (M344 (LEX buy))) (AGENT B87) (BENEFACTIVE B87)
(OBJECT B93))))

Li3si4 liked jian4zheng4’s sons who bought books.
Try next parse? n
Time (sec.): 12.98

;5; The parser is able to distinguish among three kinds of DE:
;53 Adjectival, possessive and relative cluase marker all in one sentence.
;55 Two possible readings: son of zhanglsanl who studied chinese language.
HHH zhanglsanl’s son who studied chinese language.
;35 Li3 si4 xi3 huanl nian4 Zhonl guo2 de yu3 yan2 de xingl hua2 de er2 zi3.
;55 Li3si4d like study Chinese language DE Xinglhua2 DE son
FOUERLSTRMETHAEYGLT.

(M602! (OBJECT B95) (PROPERNAME (M193 (LEX xinglhua2))))
(M603! (CLASS (M229 (LEX language))) (MEMBER B96))

(M605! (OBJECT B96) (PROPERTY (M604 (LEX Chinese))))

(M606! (ACT (M342 (LEX study))) (AGENT B95) (EXPERIENCER B95)
(0OBJECT B96))

(M606! (ACT (M342 (LEX study))) (AGENT B95) (EXPERIENCER B95)
(OBJECT B96))

(M627! (ARG1 B94) (ARG2 B95) (KINSHIP (M254 (LEX son))))
(M601! (CLASS (M254 (LEX son))) (MEMBER B94))

(M626! (ACT (M360 (LEX like))) (EXPERIENCER B12) (OBJECT B94))

Li3si4 liked the sons of xinglhua2 who studied Chinese language.
Try next parse? y

(M627! (ARG1 B94) (ARG2 B95) (KINSHIP (M254 (LEX son))))

Li3si4 liked the sons of xinglhua2 who studied Chinese language.
Try next parse? y

(M627! (ARG1 B94) (ARG2 B95) (KINSHIP (M254 (LEX son))))
(M614! (OBJECT B100) (PROPERTY (M604 (LEX Chinese))))
(M619! (OBJECT B104) (PROPERTY (M604)))

(M625! (DBJECT B108) (PROPERTY (M604)))

(M631! (CLASS (M229 (LEX language))) (MEMBER B112))
(M632! (DBJECT B112) (PROPERTY (M604)))

(M634 (MAIN (M626!))

(RELC-0
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(M633! (ACT (M342 (LEX study))) (AGENT B94) (EXPERIENCER B94)
(OBJECT B112))))

Li3si4 liked xinglhua2’s sons who studied Chinese language.
Try next parse? n

Time (sec.): 6.27

Enter Lisp Read/Eval/Print loop. Type to continue
--> (setq *all-parses* nil)

NIL

__> ~ =

;73 Kinship relationship in the dative construction.
;55 Li3 si4 gei3 weid jian4 deb er2 zi2 yil ben3 shul.
;55 Li3si4 give Wei3jian4 DE son one CL book

FwaERGLT - AZ.

(M641! (ARG1 B116) (ARG2 B115) (KINSHIP (M254 (LEX son))))
(M635! (CLASS (M215 (LEX book))) (MEMBER B113))

(M639! (CLASS (M254 (LEX somn))) (MEMBER B116))

(M640! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B116)
(OBJECT B113))

Li3si4 gave a book to wei3djian4d’s sons.
Time (sec.): 0.75

;33 possessive relations
;35 Li3 si4 xi3 huanl Zhangl sanl de shul.

;5 Li3sié like Zhanglsanl DE book
FwE k=%,

(M644! (DBJECT B117) (POSSESSOR B45) (REL (M215 (LEX book))))
(M642! (CLASS (M215 (LEX book))) (MEMBER B117))
(M643! (ACT (M360 (LEX like))) (EXPERIENCER B12) (OBJECT B117))
Li3si4 liked Zhanglsanl’s books.
Time (sec.): 0.91
;5 ; kinship and possessive relation; three levels of left-branching
;35 Li3si4 xi3 huanl wei3 jiand deb er2 zi2 deb5 shul.

;55 Li3si4 like Wei3jian4 DE son DE Dbook
FwE Rk BRGLTHE.
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(M652! (OBJECT B118) (PDSSESSOR B116) (REL (M215 (LEX book))))
(M641! (ARG1 B116) (ARG2 B115) (KINSHIP (M254 (LEX somn))))
(M645! (CLASS (M215 (LEX book))) (MEMBER B118))

(M651! (ACT (M360 (LEX like))) (EXPERIENCER B12) (OBJECT B118))

Li3si4 liked wei3jian4’s son’s books.
Time (sec.): 2.53

;5; Ambiguity arsing from a sequence of nouns
;33 Two nouns side by side can be two different nouns or
;5; they can form one noun compound.
;55 Li3 sid gei3 Zhi4 cheng2 Wang2 wu3 yil ben3 shul.
;55 Li3si4 give Zhidcheng2 Wang2wu3 one CL book
Fwg it i s —KE.

(M653! (CLASS (M215 (LEX book))) (MEMBER B121))

(M655! (OBJECT B122) (PROPERNAME (M181 (LEX Zhi4cheng2))))

(M656! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B122 B18)
(OBJECT B121))

Li3si4 gave a book to Zhid4cheng2 and Wang2wu3.

Time (sec.): 0.51

Enter Lisp Read/Eval/Print loop. Type to continue
--> (setq *all-parses* t)

T

__> ~ =

;33 The structure is similar to the previous one;
;55 but, in this one, the second noun is a kinship term.
;55 Li3 si4 gei3 Zhi4 cheng2 er2 zi2 yil ben3 shul.
;55 Li3si4 give Zhidcheng?2 son one CL ©book
Tk ERALT—-KE.
(M657! (CLASS (M215 (LEX book))) (MEMBER B123))
(M660! (CLASS (M254 (LEX son))) (MEMBER B125))
(M661! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B122 B125)
(0OBJECT B123))

Li3si4 gave a book to sons and Zhidcheng?2.

Try next parse? y
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Time (sec.): 0.75

;5; The interlingual becomes a part of the knowledge base.
;;; Expand knowledge base while translating text.
;33 Zhid cheng?2 youd er2 zi2.
;33 Zhidcheng2 have son

& p AT LT
(M666! (ARG1 B128) (ARG2 B122) (KINSHIP (M254 (LEX son))))
Zhi4cheng2 has sons.
Try next parse? n
Time (sec.): 0.15
;53 The compound noun is turned into the kinship relationship.
;33 Therefore, there are two parses now.
;55 Li3 sid gei3 Zhi4 cheng2 er2 zi2 yil ben3 shul.

;55 Li3si4 give Zhidcheng?2 son one CL book

(M667! (CLASS (M215 (LEX book))) (MEMBER B129))
(M670! (CLASS (M254 (LEX son))) (MEMBER B131))
(M671! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B122 B131)
(0BJECT B129))
Li3si4 gave a book to sons and Zhidcheng?2.
Try next parse? y
(M665! (CLASS (M254 (LEX son))) (MEMBER B128))
(M672! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B128)
(OBJECT B129))
Li3si4 gave a book to Zhidcheng2’s sons.

Try next parse? n

Time (sec.): 0.91

Enter Lisp Read/Eval/Print loop. Type ~~ to continue

--> (setq *all-parses* nil)
NIL
-—>
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;33 A serial of four nouns without syntactical markers to link them.
;5; The parser is able to assign a proper role to each of them.
;55 Li3 sid gei3 Wang2 wu3 Zhangl sanl dian4 shi4 bingl xiangl.
;55 Li3si4 give Wang2wu3 Zhanglsanl television refrigerator
FwWbEARZERAA.

(M673! (CLASS (M239 (LEX refrigerator))) (MEMBER B132))

(M674! (CLASS (M233 (LEX television))) (MEMBER B133))

(M675! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B18 B45)
(OBJECT B132 B133))

Li3si4 gave televisions and refrigerators to Wang2wu3 and Zhanglsanl.
Time (sec.): 0.47

;55 Nouns that can form compound should be semantically close.
;55 Both "Wang2wu3" and "Zhanglsanl" from previous sentences are human, so
;35 they can form compound, same for "television" and "refrigerator".
;35 School (inanimate) and janitor (animate) are in different categories,
;53 so they can’t form compound nouns; therefore, there is no parse.
;55 Zhangl sanl gei3 nei4 weid xue2 xiao4 gongl you3 dian4 shi4 tianl xian4
;55 Zhanglsanl give Det CL school janitor television antenna
Fwa Az EFR T RETRRB

Time (sec.): 1.0

;33 Part-whole relation.
;5 Expand knowledge base with natural language interface.
;55 Xue2 xiao4 you3 gongl you3.
HH school have  janitor
PR AT TR

(M722! (PART (M211 (LEX janitor))) (WHOLE (M207 (LEX school))))
Schools have janitors.
Time (sec.): 0.17

;55 The fact that the antenna is a television part
;;; 1s specified in the lexicon and is built as a semantic network
;;; at the initialization stage.
;55 The knowledge can be used for the inference now.
;55 Zhangl sanl gei3 nei4 weid xue2 xiao4 gongl you3 dian4 shi4 tianl xian4
;55 Zhanglsanl give Det CL school janitor  television antenna

EFWO ML ER ZATHARE.
(M733! (PART B173) (WHOLE (M207 (LEX school))))

(M734! (PART B168) (WHOLE (M233 (LEX television))))
(M723! (CLASS (M237 (LEX antenna))) (MEMBER B168))
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(M730! (CLASS (M211 (LEX janitor))) (MEMBER B173))
(M732! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B173)
(OBJECT B168))

Li3si4 gave television’s antennas to that school’s janitor.
Time (sec.): 1.21

;35 A series of nouns appear as the head of a relative clause
;55 Zhangl sanl xi3 huanl Li3 si4 gei3 Wang2 wu3 deb5 dian4 shi4 binl xianl.
;55 Zhanglsanl like Li3si4 give Wang2wu3 DE television refrigerator
RZERFTOBEIZGTRAKA.

(M735! (CLASS (M239 (LEX refrigerator))) (MEMBER B174))
(M736! (CLASS (M233 (LEX television))) (MEMBER B175))
(M739
(MAIN
(M738! (ACT (M360 (LEX 1like))) (EXPERIENCER B45) (OBJECT B174 B175)))
(RELC-0
(M737! (ACT (M460 (LEX give))) (AGENT B12) (BENEFACTIVE B18)
(OBJECT B174 B175))))

Zhanglsanl liked the televisions and the refrigerators
which Li3si4 gave Wang2wu3.

Time (sec.): 0.68

;35 Jinl sil queéd feil.
I cannary fly
& E R

(M740! (CLASS (M250 (LEX canary))) (MEMBER B176))
(M742! (ACT (M167 (LEX fly))) (AGENT B176))

Canaries flew.
Time (sec.): 0.34
;35 That birds can fly and canaries are birds is defined in the lexicon.
;53 ’Canary’ inherits the ability from its superclass, bird.
;33 Therefore, the parser infers that a canary can fly.
;55 Jinl sil que4 neng2 feil mal?
H canary can fly Q
X TR L

(M743 (ABILITY (M167 (LEX fly))) (HAS-ABILITY (M250 (LEX canary))))

Can a canary fly?
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CASSIE: Yes, a canary can fly.

Time (sec.): 0.37

;55 Tweety neng2 feil mal?
;55 Tweety can  fly Q
TR

(M746! (OBJECT B177) (PROPERNAME (M745 (LEX Tweety))))
(M747 (ABILITY (M167 (LEX fly))) (HAS-ABILITY B177))

Can Tweety fly?
CASSIE: I don’t know.

Time (sec.): 0.22

;55 Tweety shi4 yil zhil jinl sil que4.
;35 Tweety is one CL cannary
Mok R — G e HE.
(M750! (CLASS (M250 (LEX canary))) (MEMBER B177))
Tweety is a canary.
Time (sec.): 0.22
;35 Tweety, a member of the canary, inherits ability from its class.
;55 Tweety neng2 feil mal?
;35 Tweety can fly Q
i o e A 07
Can Tweety fly?
CASSIE: Yes, Tweety can fly.

Time (sec.): 0.15

;55 Dad4 xiang4 neng2 feil mal?

;53 elephant can fly Q

X % & R w57

(M752 (ABILITY (M167 (LEX fly))) (HAS-ABILITY (M252 (LEX elephant))))

Can an elephant fly?
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CASSIE: I don’t know.

Time (sec.): 0.3

;55 Dumbo shi4 yil zhil Da4 xiang4.
;;; Dumbo is one CL  elephant

RA-EXE.

(M757! (OBJECT B180) (PROPERNAME (M756 (LEX Dumbo))))
(M758! (CLASS (M252 (LEX elephant))) (MEMBER B180))

Dumbo is an elephant.
Time (sec.): 0.35

;;; member-class relationship
;55 Clyde shi4 yil zhil Da4 xiang4.
;55 Clyde is one CL  elephant
FTREEX-GTXE.

(M762! (OBJECT B182) (PROPERNAME (M761 (LEX Clyde))))
(M763! (CLASS (M252 (LEX elephant))) (MEMBER B182))

Clyde is an elephant.
Time (sec.): 0.36

;55 Add more knowledge to the knowledge base.
;55 Dumbo neng2 feil.

;55 Dumbo can fly
I+ fiE A

(M764 (ABILITY (M167 (LEX fly))) (HAS-ABILITY B180))
Dumbo can fly.
Time (sec.): 0.09
;;; Observed ability can go up the inheritance hierarchy.
;55 Dad4 xiang4 neng2 feil mal?
;55 elephant can fly Q@
X % f& R w57

Can an elephant fly?

CASSIE: Yes, an elephant can fly.

170



Time (sec.): 0.49
;;; Observed ability can only go up but not up then down the hierarchy.
;3; Clyde neng2 feil mal?
;;; Clyde can fly Q
TR @ g A g7
(M766 (ABILITY (M167 (LEX £1y))) (HAS-ABILITY B182))
Can Clyde fly?

CASSIE: I don’t know.

Time (sec.): 0.13

;35 Dumbo neng2 feil mal?

;55 Dumbo can fly Q

F R fe e 057

Can Dumbo fly?

CASSIE: Yes, Dumbo can fly.
Time (sec.): 0.15

“end

ATN Parser exits...

__> ~ =

CPU time : 85.42

End of MTdemo demonstration.
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