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Abstract—Log production is known to be a developer-
dependent, error-prone process. This results in heterogeneous
and inaccurate logs, which can mislead Field Failure Data
Analysis (FFDA). Research papers face logs issues by proposing
manipulation techniques to be applied to the field data source
as it is. This source can however miss important log entries,
decreasing the level of trust on FFDA results.

This paper describes how to improve the field data production
by means of a rule-based logging approach preventing inaccurate
logs. It also presents an experimental evaluation with reference
to the widely used Apache Web Server. Results show that the
rule-based approach significantly improves exiting Web Server
logs through a better coverage of timing failures.

Keywords-Field Failure Data Analysis, Logging Rules, Fault
Injection, Web Server.

I. INTRODUCTION

Log files have been exploited by FFDA to perform system
evaluation and analysis within several domains (e.g., [1], [2],
[3], [4]). The level of trust on FFDA results is strongly tied to
the quality of logged information. Moreover, log production is
a developer-dependent [5], error-prone [1] process. It is left to
the late stages of the development cycle and it lacks a system-
atic approach. Arbitrary semantics, duplicated or misleading
data, and the lack of important error data compromise the
ability of identifying actual failures by collected logs.

Issues raised by traditional logging are exacerbated in the
case of complex systems. These usually integrate many soft-
ware items (e.g., operating system, middleware layers, and
applicative components) executed in a distributed fashion. The
lack of a standardized logging solution across vendors makes
these items log by using specific formats and without any
form of cooperation. The resulting field data source is thus
heterogeneous, inaccurate and highly redundant [1], [6], [7].

Several works address logs issues by proposing manipu-
lation techniques (e.g., filtering, coalescence) to be applied
to the filed data source as it is. Pre-analysis processing is a
must to reduce the amount of useless information [4]. Anyway
logs may miss important failure data [8], [5]. Our experience
with the widely used Apache Web Server makes us claim that
missing log entries can affect FFDA results even more than
useless or redundant ones. In fact we experienced that about
6 out of every 10 actual failures do not leave any trace in
Apache logs.

An exhaustive failure data source is the key to perform
effective FFDA. We claim that this can be achieved only by
improving log production rather than analysis techniques. Our
driving idea is to devote a design effort to logs. We propose
a three-phases approach (i) to define evidences the analyst
expects from logs (ii) to design what and where to log to
achieve the required evidences during the system operational
time (iii) to make available design results in terms of logging
rules to be followed at coding time and which guarantee
exhaustive logs. These are intended to support FFDA analyses
and to ease third-party processing (e.g., error-data extraction,
coalescence).

The paper presents the principles underlying our proposal
and shows its benefits in the context of a practical experience
with the Apache Web Server. The goal of this experimentation
is twofold (i) to evaluate logging capabilities of a widely
used software system (ii) to compare the results with those
achievable with the proposed approach. To this aim, we
instrumented the Apache Web Server in order to use a set
of logging rules designed by focusing on timing failures (e.g.,
component crash or hang [9]). Results show that the proposed
approach significantly increases logs coverage with respect to
this type of failures.

The rest of the paper is organized as follows. After describ-
ing related work (Section II), we present our preliminary log-
design experience (Section III). We then describe the support
tool enabling on-line failure data generation (Section IV) and
the experience with the Apache Web Server (Sections V and
VI). Section VII concludes the work.

II. RELATED WORK

Recent years have been characterized by a proliferation of
FFDA studies on several classes of systems, such as commod-
ity operating systems [1], [5] and supercomputers [10], [4].
These studies typically adopt log files as the primary source
of failure data.

The increasing utilization of FFDA for dependability anal-
ysis also encouraged the realization of software packages for
automating FFDA phases (e.g., data collecting, data coalescing
and analysis). An example is represented by MEADEP [11],
providing a data preprocessor for converting data in various
formats, and a data analyzer for graphical data-presentation



and parameter estimation. In [12] a tool for on-line log analysis
is presented. It defines a set of rules to model and correlate log
events at runtime, leading to a faster recognition of problems.
The definition of rules, however, still depends on the log
contents and analyst skills.

While it is clear that log files can provide useful and detailed
insight into the dependability behavior of real-world systems,
several works underline logs deficiencies, such as inaccuracy
(e.g., non signaled reboots in [5]), or provision of ambiguous
information [1], [6].

Recent contributions started to address these issues. A
proposal for a new generation of log files is provided in [13],
where several recommendations are introduced to improve
log expressiveness by enriching their format. A metric is
also proposed to measure information entropy of log files, in
order to compare different logging solutions. Another proposal
is the IBM Common Event Infrastructure [14], introduced
mainly to save the time needed for root cause analysis. It
offers a consistent, unified set of APIs and infrastructure for
the creation, transmission, persistence and distribution of log
events, formatted according to a well defined format.

In conclusion, all recent research efforts on log-based
dependability analysis mainly address format heterogeneity
issues, while crucial decisions about log semantics and pro-
duction are still left to developers, late in the development
cycle.

III. RULE-BASED LOGGING

We discuss the key aspects of our logging approach, already
described in [15] and how it has been applied to our case
study. After presenting the adopted system model we describe
the principles underlying our proposal.

A. System Model

A model is used to describe the main components of a
system along with the interactions among them. This is a
technology-independent way (i) to understand how to place
logging mechanisms within the source code and (ii) to pur-
sue a formal mean to prove the effectiveness of the logged
information.

Our proposal takes into account two types of components,
i.e., entities and resources. The former is an active unit (i)
encapsulating executable code (e.g., an object module, a shared
library) (ii) providing services. The latter is a passive unit,
such as a file, a shared memory, and a socket. Entities allow
complex services by means of interactions with other entities
or resources of the system.

Proposed definitions provide general concepts, which can
be tailored to designers’ needs. As for example, an entity may
model a whole OS process or package of code, independently
of the process executing it. Furthermore designers can delib-
erately chose to leave un-modelled parts of the system thus
focusing on specific entities (e.g., applicative ones).

B. Approach

The proposed approach consists of three phases (Fig.1).
The requirements specification addresses the question ”which
evidence does the analyst expect from logs?”. During the
design phase we investigate what and where to log to achieve
the identified evidences during the system operational time.
In the last phase loggign rules are provided. This is the
way design results are made available to developers. To this
aim each rule precisely defines what and where to log and it
prevents ambiguous and unstructured events.

Requirements 
specifica0on 

Design 
Logging 
rules 

phase 1 phase 2 phase 3 

Fig. 1: Approach overview.

In this paper the focus is on timing failures. We aim to
design logs, which make it possible find evidence of this type
of failures during operations. Timing failures are the result of
the unexpected suspension/termination of the program control
flow, including infinite loops triggering. It is possible to detect
timing failures by placing logs at specific points within the
execution flow of the system entities. In particular, we focus
on services and interactions by logging (i) a service start (SST)
and service end (SEN) event at the beginning and at the end
of a service, respectively (ii) an interaction start (IST) and
interaction end (IEN) event immediately before and after an
interaction, respectively. Fig.2 sketches how these events can
be used in the context of a C or C++ program.

void service_1(int x){ 

   log(SST);   //LR1 

   [… omissis …]   

   log(SEN);   //LR2 
} 

void service_2(int x){ 

   [… omissis …]                         
   log(IST);   //LR3 
   interaction_2();  

   log(IEN);   //LR4  
   [… omissis …] 
} 

(A) (B) 

Fig. 2: Using logging rules.

If the control flow is modified by a fault (e.g., a bad pointer
manipulation) triggered by service_1 (Fig.2 A) SEN will
likely miss. If interaction_2 (Fig.2 B) fails (e.g., by
never returning the control, as in case of a hang in the called)
we are able to find it out by logs, since IEN is missing.
No other instructions have to exist between IST-IEN. Table
I summarizes logging rules dealing with timing failures.

IV. FAILURE DATA EXTRACTION

We extract failure data by our rule-based logs during the
system operational time. On-line processing is enabled by
sending logs over a delivery broker named Log-Bus, which
eases the gathering tasks in case of distributed systems. Logs



TABLE I: Logging rules.

Rule What Where

LR1 Service Start - SST First instruction of a service
LR2 Service End - SEN Last instruction of a service
LR3 Interaction Start - IST Before the invocation of a service
LR4 Interaction End - IEN After the invocation of a service

are then supplied to an external analysis tool, named on-agent
(Fig.3).
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Time               Event  Entity 
------------------ ------ ------ 
06/03/2009:6000587 SST/08 02 
06/03/2009:6000588 IST/15 02 
06/03/2009:6000591 IEN/15 02 
06/03/2009:6000594 SEN/08 02 
[ ... omissis ... ] 

Time               Error Entity 
------------------ ----- ------ 
06/03/2009:6000453 CoE   02 
06/03/2009:6000457 InE   07 
[ ... omissis ... ] 
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Fig. 3: Logging and Analysis Infrastructure.

Timing failures can be detected by processing in pairs the
start and end events related to the same service or interaction.
To ease the processing task these are logged jointly with a
unique key. For each entity, on-agent keeps constantly updated
the expected duration of the time between the start and end
events of each service or interaction. For instance, let us
consider service 08 and interaction 15 (Fig.4). ∆08 and ∆15

represent their expected duration, respectively.

SST/08 SEN/08 IST/15 IEN/15 

time t1 t2 t3 t4 

Δ08 / τ08  

Δ15 / τ15   

Fig. 4: On-agent internals.

A proper timeout is tuned for each duration. Let τ08 and τ15

(Fig.4) be these timeouts. If a service or interaction exceeds
its currently estimated timeout, an error is raised, otherwise ∆
and τ estimates are updated. Two types of error are generated
by the on-agent tool:

• Interaction Error (InE): it is generated when IST is not
followed by the related IEN within the currently estimated
timeout;

• Computation Error (CoE): it is generated when SST is not
followed by the related SEN within the expected timeout
and no interaction errors have been raised.

An error log is permanently stored for each raised error.
Collected logs are then supplied to the analysis phase.

V. EXPERIMENTS

We present our preliminary experience with the Apache Web
Server1 version 1.3.41. We aim to evaluate logging capabilities
both of traditional logging and of the proposed approach. This
is done by performing a software fault injection campaign,
in order to force failures occurrence, and by evaluating the
coverage of the logs, i.e., the percentage of failures actually
observed on the Web Server for which an evidence is found
in the logs.

A. Software Fault Injection

We inject software faults by means of changes in the source
code of the program. Changes are introduced according to
fault-operators based upon actual faults uncovered in several
open-source projects [16]. Examples are the “missing function
call” operator (OMFC) and the “missing variable initialization
using a value” operator (OMVIV). A full list of fault operators
can be found in [16].

A single fault is introduced in the source code for each
experiment. Code is compiled and the faulty Web Server
version is stored for the experimental campaign. A support
tool2 has been developed to automate the fault injection
process. We inject 8,433 software faults in the main Web
Server source code (i.e., /src/main folder). Table II reports
the experiments breakup both by fault operator and by source
file.

TABLE II: Experiments breakup by fault operator [16] and
source file.

Fault operator Locations Source file Locations

OMFC 819 http protocol.c 1,217
OMIEB 282 http main.c 1,456
OMLC 325 http request.c 567
OMLPA 2,183 http config.c 788
OMVAV 221 http core.c 1,004
OWAEP 361 http vhost.c 276
OWVAV 277 alloc.c 928
OMIA 791 buff.c 487
OMIFS 812 http log.c 245
OMVAE 1,149 util.c 759
OMVIV 65 util script.c 335
OWPFV 1,148 [other] 371

——– ——-
Total 8,433 Total 8,433

B. Web Server Modelling

We identify 6 entities encapsulating the main
processing items composing the Web Server. Each
of them is mapped onto the following source files,
respectively (i) http_protocol.c (ii) http_main.c
(iii) http_request.c (iv) http_config.c (v)

1http://httpd.apache.org/
2http://www.mobilab.unina.it/SFI.htm



http_core.c (vi) http_vhost.c. We identify services
and interactions among them and we instrument the code
according to the proposed rules. We do not model the whole
Web Server, even if we perform a full injection campaign in
its code (Table II). This is done to show that (i) the analyst
can freely chose only the entities he/she is interested in (ii)
the proposed rules enable failures to be logged even if a fault
is activated inside an un-modelled item.

C. Experimental campaign

We deploy a 2-hosts testbed to perform the campaign. Fig.5
depicts the involved components. The Client Machine hosts (i)
on-agent producing our Rule-Based (RB) error logs and, (ii)
httperf i.e., the Web-Server workload generator. We configure
httperf in order to exploit most of the features offered by
the Web Server (i.e., virtual-hosts, multiple methods and file
extensions, cookies).

Test  
Manager 
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HttPerf Apache Web Server  

RB error logs Apache logs 

(1) 

(3) 
(2) 

(4) 

Log Bus 

HOST 1 (Client Machine) HOST 2 (Server Machine) 

Fig. 5: Testbed

The Server Machine hosts (i) the current faulty Web Server
and (ii) the test manager program. The test manager coordi-
nates the experimental campaign (Fig.5). For each experiment
it (1) starts on-agent (2) starts a faulty Web Server version (3)
starts httperf (4) stops the components after a proper timout
(i.e., long enough to enable workload to complete) and collects
experiments data.

Experiments outputs include produced logs (both RB and
Apache error logs) and a label summarizing the experiment
outcome in terms of the web server behavior observed in
response to the injected fault. The outcomes are classified as
follows:

• Crash: unexpected termination of the Web Server;
• Hang: one or more of the HTTP requests, or the Web

Server start/stop phases, are not executed within the
timeout;

• Other: all error conditions that are not classifiable as crash
or hang (e.g., non-timing failures, such as wrong values
delivered to the client);

• No failure: all the requests supplied by the workload
generator are correctly executed.

VI. RESULTS

During the campaign 1,386 (i.e., 101 hangs, 744 crashes,
541 other) out of 8,433 experiments result in a failure outcome.

The Apache logging mechanism leads to 615 out of 1,386
logged failures. The coverage is about 44.4%. Fig.6 depicts
how coverage varies with respect to the outcomes. Apache
error logs often lack entries in case of hang and crash failures.
In fact only 11.9% of hangs and 37.5% of crashes are logged.
Other failures are instead mostly logged (i.e., 59.9%). This is
due to the inherent incapacity of traditional logs at providing
evidence of timing failures. Clearly, after a crash or hang it is
not possible to log any entry. At the same time, there are low
chances that the evidence of an imminent crash or hang can
be found in the log. On the other hand, non-timing failures,
such as value failures, are more often due to errors which are
detected in the code, and then logged.

12  279  324 

89  465  217 

0% 

20% 

40% 

60% 

80% 

100% 

hang  crash  other 

unlogged 

logged 

Fig. 6: Coverage breakup by failure type (Apache)

Overall the proposed RB logs lead to a higher coverage:
849 out of 1,386 failures are logged, hence the coverage is
about 61.3%. Fig.7 depicts how coverage varies with respect
to the outcomes. As opposite from traditional logging, most
of hang and crash failures are logged (i.e., 81.2% and 87.2%
respectively), whereas only 21.8% of other failures are logged.
This is a result of our design-based approach. RB logs have
been designed specifically by focusing on timing failures.
Consequently, most of timing failures are logged, even if only
a fraction of the source code has been instrumented according
to the proposed rules. For the same reason, the coverage of
other types of failures is low if compared to timing failures.
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 118 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 423 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logged 

Fig. 7: Coverage breakup by failure type (Proposed Approach)

To conclude, we perform an in-depth comparison between



Apache and RB logs. This is done by splitting the amount of
each failure outcome into 4 classes: logged both by RB and
Apache, not logged by RB but logged by Apache, logged by
RB but not logged by Apache and, not logged by both RB and
Apache (i.e., RB∧Ap, !RB∧Ap, RB∧!Ap, !RB∧!Ap, respec-
tively). Fig.8 shows the experiments breakup by outcome and
class.
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Fig. 8: Comparison

As we expect, most of timing failures can be logged by
using the RB approach only. Apache logs (Fig.8) provide
further evidence only in 4.9% and 3.1% of cases (hangs and
crashes respectively). Our design-based approach significantly
increases the amount of logged timing failures, +69.3% and
+49.7% for hangs and crashes respectively, thus potentially
leading to more effective FFDA results.

On the other hand, Apache logs represent a better source
for other types of failures, such as value failures. It is also
interesting to note that Apache and RB logs are almost
complementary at covering non-timing failures (only 2.4% of
“other” failures are covered by both Apache and RB logs, i.e.,
there is a small intersection). This suggests that a combined
approach could increase the overall coverage capacity of the
logging mechanism.

VII. CONCLUSION

This paper depicted the key elements of a rule-based logging
approach aimed at overcoming the well known limitations of
traditional logging. Proposed rules focused on timing failures,
such as crashes or hangs.

Experimental results on the widely used Apache Web Server
have shown that (i) RB logging leads to a higher overall cov-
erage with respect to traditional logging; (ii) RB logs exhibit
a good coverage especially with respect to timing failures
whereas traditional logs are more effective on other types of
failures; (iii) RB and traditional logs are complementary with
respect to other types of failures. A combined approach is
promising to increase the coverage of the logging mechanism.
This can be also achieved by extending our set of rules.

Following this objective, future work will be devoted to the
definition of logging rules designed to target non-timing fail-
ures, such as value failures. Also, methods and techniques will
be investigated to avoid manual log production by enabling
tools (e.g., by using model-driven techniques) to automate
logging-code writing.
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