
An Experimental Analysis of Open Source Software Reliability*

Cobra Rahmani, Harvey Siy, Azad Azadmanesh
College of Information Science & Technology

University of Nebraska-Omaha
Omaha, U.S.

E-mail: (crahmani, hsiy, azad) @unomaha.edu

Abstract — Arrival failure times for five popular open
source projects are analyzed and compared. The projects
considered are Eclipse, Apache HTTP Server 2, Firefox,
MPlayer OS X, and ClamWin Free Antivirus. The black-box
reliability analysis of the projects is a 3-step approach that
consists of bug-gathering, bug-filtering, and bug-analysis.
Additionally, the reliabilities of multiple release versions of
Eclipse are compared. It is projected that the future release of
the projects under the same operational environment to follow
similar reliability patterns. The results exhibit that Weibull
distribution is a powerful analytical tool to be used in
reliability growth modeling of such products.

Keywords- Open source software (OSS); Software reliability
model; Software architecture; Reliability growth model; Weibull
distribution

I. INTRODUCTION
Open Source Software (OSS) in general refers to any

software whose source code is freely available for
distribution. The success and benefits of OSS can be
attributed to many factors such as code modification by any
party as the needs arise, promotion of software reliability
and quality due to peer review and collaboration among
many volunteer programmers from different organizations,
and the fact that the knowledge-base is not bound to a
particular organization, which allows for faster development
and the likelihood of the software to be available for
different platforms. Eric Raymond in [17] states that “with
enough eye balls, all bugs are shallow”, which suggests that
there exists a positive relationship between the number of
people involved, bug numbers, and software quality. Some
examples of successful OSS products are Apache HTTP
server and the Mozilla Firefox internet browser.

As software products have become increasingly
complex, software reliability is a growing concern, which is
defined as the probability of failure free operation of a
computer program in a specified environment for a
specified period of time [14], [16]. Reliability growth
modeling has been one approach to address software
reliability concern, which dates back to early 1970’s [3], [7],
[19]. Reliability modeling enables the measurement and
prediction of software behaviors such as Mean Time To

* This research is funded in part by Department of Defense (DoD)/Air
Force Office of Scientific Research (AFOSR), NSF Award Number
FA9550-07-1-0499, under the title “High Assurance Software”.

Failure (MTTF), future product reliability, testing period,
and planning for product release time.

Software reliability growth models generally fall into
two major classes: time between failures and fault count
models. The main input parameter to the “time between
failures” models is the intervals of successful operations. As
the failures occur and fixed, it is expected that these
intervals to increase. The pattern of these intervals is
reflected by a probability distribution model whose
parameters are estimated from simulation, testing, and
operation profiles. Some examples that belong to this class
of reliability modeling are Jelinski-Moranda and Littlewood
models [7], [10].

The “fault count” class labeled as such because the input
parameter of study is the number of faults in a specified
period of time rather than the times between failures.
Normally the failure rate, defined as the number of failures
per hour, is used as the parameter of a Probability
Distribution Function (PDF). Like the first class, as the fault
counts drop, the reliability is expected to increase [8], [9],
[16]. Examples of this class are Goel-Okumoto and Musa-
Okumoto models [4], [14].

This study is concerned with the “fault count” of five
popular OSS products: Eclipse, Apache 2, Firefox, MPlayer
OS X, and ClamWin Free Antivirus. These projects are
selected because of their high number of downloads, length
of project operation, and sufficient number of bug reports.
MPlayer OS X and ClamWin Free Antivirus are two
projects, which can be found in sourceforge.net [20].
MPlayer OS X, launched in 2002, is a project based on
MPlayer, which is a movie player for Linux with more than
six million downloads. ClamWin Free Antivirus was
launched in 2004 that has had more than 19 million
downloads. Eclipse, Apache 2, and Firefox are the other
three OSS projects, which use Bugzilla [1] as their bug-
repository system. Bugzilla is a popular bug-repository
system that allows users to send information about a
detected bug such as bug description, severity, and reporting
time.

Additionally, these projects are well-known and well-
established, which have been in operation for more than
four years. For software projects that have not been in
operation long enough, the failure data collected may not be
sufficient to provide a decent picture of software quality,
which may lead to anomalous reliability estimates [12],
[21]. The following table reflects on the number of years
that these projects have been in operation.

TABLE I. RELEASE DATES OF THE OSS PROJECTS

Project Name First official release date

Firefox 11/09/2004

Eclipse 11/07/2001

Apache 2 03/10/2000

ClamWin Free Antivirus 03/26/2004

MPlayer 09/20/2002

The Weibull distribution function is employed for the

reliability analysis of the aforementioned OSS projects.
Weibull distribution is widely utilized in lifetime data
analysis because of its flexibility in modeling different
phases of bathtub reliability, i.e. decreasing, constant, and
increasing failure rates. The function has been particularly
valuable for situations for which the data samples are
relatively small, such as in maintenance studies [13].

The rest of the paper is organized as follows. Section 2
provides some definitions and background information.
Section 3 concentrates on failure data analysis and the
reliability modeling process. Section 4 concludes the paper
with a summary.

II. BACKGROUND
White-box and black-box models are two approaches for

predication of software reliability. The white-box models
attempt to measure the quality of a software system based
on its structure that is normally architected during the
specification and design of the product. Relationship of
software components and their correlation are thus the focus
for software reliability measurement [2], [5], [22], [23]. In
the black-box approach, the entire software system is treated
as a single entity, thus ignoring software structures and
components interdependencies. These models tend to
measure and predict software quality in the later phases of
software development, such as testing or operation phase.
The models rely on the testing data collected over an
observed time period. Some popular examples are: Yamada
S-Shape, Littlewood-Verrall, Jelinski-Moranda, Musa-
Okumoto, and Goel-Okumoto [4], [10], [11], [14], [24].
This study is concentrated on the black-box reliability
approach to measure and compare the reliability of the
selected OSS projects.

A fault or bug is a defect in software that has the
potential to cause the software to fail. An error is a
measured value or condition that deviates from the correct
state of software during operation. A failure is the inability
of the software product to deliver one of its services.
Therefore, a fault is the cause for an error, and software that
has a bug may not encounter an error that leads to a failure.
Failure behavior can be reflected in various ways such as
Probability Density Function (PDF) and Cumulative
Distribution Function (CDF). PDF, denoted as f(t), shows
the relative concentration of data samples at different points
of measurement scale, such that the area under the graph is
unity. CDF, denoted as F(t), is another way to present the
pattern of observed data under study. CDF describes the

probability distribution of the random variable, T, i.e. the
probability that the random variable T assumes a value less
than or equal to the specified value t. In other words,

)()()()()(' tFtfdxxftTPtF t =⇒∫=≤= ∞−

Therefore, f(t) is the rate of change of F(t). If the random

variable T denotes the failure time, F(t), or unreliability, is
the probability that the system will fail by time t.
Consequently, the reliability R(t) is the probability that the
system will not fail by time t [16], i.e.:

)(1)()()()(tFtRdxxftTPtR t −=⇒∫=>= ∞

This paper will show that the relative frequency of

failure times follows the Weibull PDF:

βα
β

β

α
β)/(

1

)(tettf −
−

= (1)

where α is the scale parameter and β represents the shape
parameter of the distribution. The effect of the scale
parameter is to squeeze or stretch the distribution. The
Weibull PDF is monotone decreasing if 1≤β . The smaller
β , the more rapid the decrease is. It becomes bell shaped
when 1>β , and the larger β , the steeper the bell shape will
be. Furthermore, it becomes the Rayleigh distribution
function when 2=β and reduces to the exponential
distribution function when 1=β . Figure 1 shows the
Weibull PDF for several values of the shape parameter when

1=α [8].

Figure 1. Weibull PDF for several shape values when α =1.

The reliability function of Weibull distribution is [15]:

 (2)

βα)/()(tetR −=

0
0
0.5

1
1.5
2

2.5

3

3.5

4

1 2 3
t

β = 0.5
β = 1
β = 2
β = 4
β = 10

β = 0.5

β = 10

β = 1
β = 4

β = 2

f(t)

III. BUG REPORT ANALYSIS

The approach to the reliability estimates of the selected
OSS projects consists of three steps: bug-gathering, bug-
filtering, and bug-analysis. In the bug-gathering step, the
online bug-repository systems are used to collect the failure
data. Quality estimation of an OSS product depends on
sufficient error reports and the accuracy of reports provided
by the customers using the product. Although the collected
reports may differ among bug-repository systems, the
following fields are often common:

• Bug-ID - A unique identification for each bug
reported.

• Bug-Time - The actual time of bug reported.
• But-Resolution – The state of a bug determined by

the organization, such as whether the bug reported
is valid, deleted, or fixed.

• Bug-Reporter – Information about the user
submitting the bug report.

• Product – The specific product name or component
in which a bug is detected.

Bugs reported may be duplicates, provide incomplete
information, or may not represent real defects. Therefore,
during the bug-filtering, such noises are removed from the
bugs gathered in the first step. Finally, in the third step, the
filtered data is organized into bug-frequencies for fixed time
periods, which are set at two weeks. Observing the volume
of bug-reports and the varying years of operations among the
products, the choice of two-week periods provides sufficient
number of failure frequencies that captures the pattern of bug
reports. The bug-frequencies are then plotted against the time
periods for further analysis in terms of graph fitting,
comparison among the products, and reliability.

A. Bug Gathering and Filtering
The duration for which the failure data is collected for

the five OSS projects are listed in Table II.

TABLE II. DURATIONS OF COLLECTED FAILURE DATA
1

Project name Start date End date
Firefox 03/19992 10/2006
Eclipse 10/20013 12/2007
Apache 2 03/2002 12/2008
ClamWin Free Antivirus 03/2004 08/2008
MPlayer 09/2002 06/2006

Table III illustrates a portion of a bug report stored at

Sourceforge.net bug tracker. In the table, “Request ID” is
Bug-Id; “Summary” is a short description of the problem
reported; “Open Date” is the same as Bug-Time; “Priority”
shows the level of bug severity, which is a value in the
inclusive range of 1 – 9; “Status” is Bug-Resolution; and

1 The start date of collected bug reports is the earliest date wherein a bug is
reported.
2 The failure data collected prior to the official release date of Firefox are
obtained from Mozilla bug reports.
3 This date is prior to the official release date.

“Assigned To” is the person or the team that will be
assigned to look into this specific bug. The “Status” field
may carry different values such as “Open”, “Closed”, or
“Deleted”. The “Open” value is an indication that the bug
has not been fixed yet; “Closed” reflects that the bug has
been fixed, and “Deleted” means that the bug reported is not
a valid one.

TABLE III. A PORTION OF A BUG REPORT AT SOURCEFORGE.NET
Request
ID

Summary Open
date

Priority Status Assigned
to

1570891 can't set a
playback
position in
FLV
videos

2006-
10-04
18:43

5 Open Nobody

1565875 mencoder
mp3lame
option

2006-
09-26
17:39

5 Open Nobody

1565868 mencoder
-oac copy

2006-
09-26
17:28

5 Open Nobody

1564167 Use
second
monitor
bug

2006-
09-23
18:16

5 Open Nobody

1531952 screen
resizing

2006-
07-31
19:37

5 Open Nobody

The bug reports extracted from Bugzilla are initially in

XML format. A Java program is developed to gather the
relevant data from the XML format for further data filtering
and analysis. Figure 2 shows a portion of a bug report in
XML stored at Bugzilla.

<bug>
 <bug_id>366101</bug_id>
 <creation_ts>2007-01-05 16:41 PST</creation_ts>
 <short_desc>nsIFile.initWithPath should accept

"c:/mozilla" as native path (forward slashes should be treated
as backslashes)</short_desc>

 <delta_ts>2007-01-05 16:57:22 PST</delta_ts>
 <reporter_accessible>1</reporter_accessible>
 <cclist_accessible>1</cclist_accessible>
 <classification_id>3</classification_id>
 <classification>Components</classification>
 <product>Core</product>
 <component>XPCOM</component>
 <version>Trunk</version>
 <rep_platform>PC</rep_platform>
 <op_sys>Windows XP</op_sys>
 <bug_status>NEW</bug_status>
 <priority>--</priority>
 <bug_severity>normal</bug_severity>
 …
 <who name="David Hyatt">hyatt@mozilla.org</who>
 <bug_when>2000-04-13 16:16:07 PST</bug_when>
…
 <bug_status>VERIFIED</bug_status>
 <resolution>WORKSFORME</resolution>

</bug>

Figure 2. A portion of a bug report in XML at Bugzilla.

The fields in Figure 2 are self explanatory, like
“Bug_id” is Bug-ID and “Who_name” is Bug-Reporter. The
“Resolution” field is Bug-Resolution, which may hold
different values:

• FIXED – This bug is a valid one and it is fixed.
• INVALID – This bug was not a valid one.
• WONTFIX – This bug will not be fixed.
• WORKSFORME – This bug cannot be reproduced.
• INCOMPLETE – Information provided is not

sufficient for producing the bug.
• LATER – This bug will not be fixed in this

version.
• REMIND – This bug will not probably be fixed in

this version
• DUPLICATE – This is a duplicate bug reported

earlier.

The bug reports collected are then filtered out. For the
two projects from Sourcefoge.net, the bug reports with the
status value of “Deleted” are discarded. For the failure data
collected from Bugzilla, those bug reports with the
following “Resolution” values are accepted and the rest are
discarded: FIXED, WONTFIX, LATER, and REMIND.

B. Bug Analysis
In the bug-analysis step, the frequency of bugs in two-

week periods is calculated. Therefore, the x-axis and y-axis
represent the biweekly time and the corresponding bug
frequency, respectively. For instance, x-axis in Figure 3
contains 116 points, which is equivalent to about 4.4 years of
collected failure data for ClamWin operation. Figures 3-74
show the bug frequency plots for the five OSS projects.

Figure 3. Filtered bug frequency for ClamWin Free Antivirus project.

4 In these figures and the follow up figures, the frequencies of bug reports
are connected to form smoother plots. The purpose is to better visualize the
trend of bug reports.

Figure 4. Filtered bug frequency for MPlayer OS X project.

Figure 5. Filtered bug frequency for Apache 2 project.

0

200

400

600

800

1000

1200

1400

1600

1800

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

Biweekly Time

Bu
g

Fr
eq

ue
nc

y

V2.0

V2.1

V3.0 V3.1

V3.2

V3.3

Figure 6. Filtered bug frequency for Eclipse project.

0

10

20

30

40

50

60

70

80

90

100

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

Biweekly Time

B
ug

 F
re

qu
en

cy

Figure 7. Filtered bug frequency for Firefox project.

It is observed that the bug frequencies for three of these

projects, i.e. Apache 2, MPlayer OS X, and ClamWin Free
Antivirus, appear to follow a pattern that can be represented
by the Weibull distribution function. As an example, Figure
8 shows this pattern that is visually superimposed on the bug
frequencies for Apache 2.

Figure 8. A curve fitted onto bug frequencies for Apache 2.

This pattern is supported by large body of empirical

studies in that software projects follow a life cycle pattern
described by Rayleigh distribution function, a special kind of
Weibull distribution with shape parameter 2=β . This is
considered a desirable pattern since the bug arrival rate
stabilizes at a very low level. In closed source software, the
stabilizing behavior is usually an indicator of ending test
effort and releasing the software to the field [8]. This pattern
also is supported by Musa-Okumoto model in that the simple
bugs are caught easily at the beginning of testing phase. The
remaining bugs tend to be more difficult to detect because,
for example, they are not exercised frequently. Therefore,
the rate of undetected bugs drops exponentially as testing
continues [9].

On a quick glance at Figure 6, Eclipse does not seem to
follow this pattern. When bug reports are scrutinized in more
detail, it is found that the versions separately follow a similar
pattern. Figure 9 illustrates the bug frequencies for individual
Eclipse releases superimposed in one diagram, rather than
lumping the bug frequency for all versions as in Figure 6.

0

200

400

600

800

1000

1200

1400

1600

1800

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

Biweekly Time

Bu
g

Fr
eq

ue
nc

y

Eclipse V2.0

Eclipse V2.1

Eclipse V3.0

Eclipse V3.1

Eclipse V3.2

Eclipse V3.3

 Figure 9. Filtered bug frequencies of Eclipse for different versions.

In this figure, the peak in each version shows the official
release time for that version. In reality, the users started
using the unofficial (beta) version and reporting the bugs
before the official release of the version. For example,
Eclipse V2.1 is officially released in March of 2003, but
customers started downloading it in February 2003. In other
words, the bug reports for version 2.1 are mixed with those
of an earlier version. When the bug reports are correctly
extracted based on the version numbers, each version seems
to follow the same pattern as those of Apache 2, MPlayer OS
X, and ClamWin Free Antivirus. A similar argument could
be true for Firefox because of multiple peaks in Figure 7.
However, the Firefox bug reports lack the version numbers.
As seen in Figure 2, the bug reports contain the phrase
“Trunk” for all versions. Therefore, the different versions of
Firefox are treated as one unified version.

Figure 10 shows the bug frequencies for Eclipse V2.0
extracted from Figure 9. It is this version that will be used in
reliability analysis of Eclipse because of its high bug reports
in comparison to other versions. However, all versions of
Eclipse will later be compared against each other.

0

200

400

600

800

1000

1200

1400

1600

1800

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

Biweekly Time

Bu
g

Fr
eq

ue
nc

y

Figure 10. Filtered bug frequencies of Eclipse V2.0

The R Project is a freely available package that is used

for a wide variety of statistical computing and graphics
techniques. R is able to apply the Maximum Likelihood
Estimation (MLE) technique [16] for estimating the
parameters of Weibull distribution. Since R requires time-
domain data, the relative frequency of bug reports needs to
be converted to occurrence times of failure. Therefore, each
bug report is mapped to its corresponding biweekly period.
For example, 4 bugs reported in the 1st biweekly and 3 bugs
reported in the 2nd biweekly periods are converted to:
1,1,1,1,2,2,2. This further illustrates that the total number of
failures at the kth position in the list is k, which implies that
the input provided to R is cumulative.

The computed shape and scale for each OSS product is
listed in Table IV. As indicated previously, the effect of the
scale parameter is to squeeze or stretch the PDF graph. The
greater the value, the greater the stretching. Therefore, the
larger the value, the flatter the curve of PDF will be, which
implies lower rate of failure. The correlation coefficient is a
measure of strength of the match between the fitted curve
and the bug frequencies pattern. The closer the coefficient
value is to one, the stronger the match is.

TABLE IV. PARAMETER ESTIMATES FOR SELECTED PRODUCTS
Project name Scale Shape Correlation

Coefficient

Apache 2 67.93 1.17 0.95
Firefox 172.68 10.77 0.99
MPlayer 31.5 1.33 0.99
ClamWin
Antivirus

31.36 1.23 0.99

Eclipse V2.0 49.88 0.94 0.90
Eclipse V2.1 61.06 1.72 0.91
Eclipse V3.0 76.82 3.64 0.91
Eclipse V3.1 91.14 6.14 0.93
Eclipse V3.2 120.19 8.99 0.96
Eclipse V3.3 144.82 15.74 0.94

Figure 11 shows the fitted graphs for the five projects.

From the figure, the estimated PDFs are good representations
of failure behavior. Among these, Eclipse versions have the
lowest coefficient values. After some experimental analysis,
the reason is due to a sharp increase of bug reports over a
short period of time (about 10 biweeklies) in comparison to
the measurement scale, which is about 160 biweekly periods.
Since the increase and span of failures are correspondent to
the shape and scale parameters, respectively, the estimates
are favored toward the scale to cover a larger span of time.
This implies the peak of the fitted graphs were pushed down,
cutting off a portion of bug reports.

0

2

4

6

8

10

12

14

16

18

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

Biweekly Time

B
ug

 F
re

qu
en

cy

Filtered Bug Pattern
Fitted PDF

Figure 11a. Estimated PDF for ClamWin Free Antivirus project.

0

5

10

15

20

25

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Biweekly Time

B
ug

 F
re

qu
en

cy

Filtered Bug Pattern
Fitted PDF

Figure 11b. Estimated PDF estimation for MPlayer project.

0

10

20

30

40

50

60

1 9 17 25 33 41 49 57 65 73 81 89 97 105113 121 129137 145 153161169

Biweekly Time

B
ug

 F
re

qu
en

cy

Filtered Bug Pattern
Fitted PDF

Figure 11c. Estimated PDF estimation for Apache project.

0

200

400

600

800

1000

1200

1400

1600

1800

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

Biweekly Time

B
ug

 F
re

qu
en

cy

Filtered Bug Pattern

Fitted PDF

Figure 11d. Estimated PDF for Eclipse V2.0.

0

10

20

30

40

50

60

70

80

90

100

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

Biweekly Time

B
ug

 F
re

qu
en

cy

Filtered Bug Pattern
Fitted PDF

Figure 11e. Estimated PDF estimation for Firefox.

Reliability of the projects can be calculated by inserting
the shape and scale parameters from Table IV into the
Weibull reliability function in (2). Figure 12 exhibits the
reliability graphs for the five OSS products. They all show a
reliability of 0.90 and 0.80 over 4 and 8 biweekly periods,
which are about 2 and 4 months of operation, respectively.
Among these products, Firefox has the highest reliability.
More accurate reliability estimate of Firefox would have
been possible if version numbers were available. On the
other hand, the figure shows that MPlayer, which almost
completely overlaps ClamWin, has the least reliability. After

MPlayer and ClamWin, the graph of Eclipse V2.0 shows the
next lowest reliability. Eclipse V2.0 could have performed
worse if it were not for the future releases. More specifically,
with a new release, the customers opt not to use the older
versions. Hence, the number of downloads and bug reports
would be reduced. Although this may not change the shape
of the graph, it would likely reduce the steepness of the
graph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 21 41 61 81 101 121 141 161 181 201

Biweekly Time

R
el

ia
bi

lit
y

Apache
Firefox
ClamWin
MPlayer
Eclipse V2.0

Figure 12. The reliability diagrams for the five OSS products

Table V shows the individual reliabilities for different

time periods for each OSS project.

TABLE V. RELIABILITY ESTIMATES FOR VARIOUS BIWEEKLY PERIODS

Project / Biweekly periods 5 10 15 20 25

Apache 2 0.95 0.90 0.84 0.79 0.73

Firefox 1.00 1.00 1.00 1.00 0.99

MPlayer 0.92 0.80 0.69 0.58 0.48

ClamWin Antivirus 0.90 0.78 0.67 0.56 0.47

Eclipse V2.0 0.89 0.80 0.72 0.65 0.59

Figure 13 compares the reliabilities for different versions

of Eclipse. As expected, as higher versions are released their
reliabilities are improved. The latter three versions show a
reliability of at least 0.90 for up to 60 biweekly periods,
which is over two years of operation. The figure further
indicates that the latest version, i.e. V3.3, has a reliability of
0.99 for 108 biweekly periods.

IV. CONCLUSION
Bug reports are the source for deeper understanding of

failure distribution, classifying failures, and building
accurate dependability models. The quality of bug analysis
heavily depends on comprehensive and accurate recording
of bug reports. The lack of a commonly accepted data
format for archiving bug reports and efficient algorithms for
data filtering adds to the complexity of failure data analysis.

In this experiment, two different trends of bug reports
for the five OSS projects are visually discernible. The first
group of products, i.e. Apache 2, MPlayer OS X, and
ClamWin Free Antivirus, show the trend of a peak followed

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 21 41 61 81 101 121 141 161 181 201

Biweekly Time

R
el

ia
bi

lit
y

V2.0
V2.1
V3.0
V3.1
V3.2
V3.3

Figure 13. The reliability diagrams for different versions of Eclipse OSS

by a long decreasing tail, which is a good candidate to be
fitted by the Weibull distribution function. The second
group, which encompasses Eclipse and Firefox, shows
multiple peaks instead of one particular peak. These
products are more complex to analyze and to be modeled.
The complexity can be explained by different factors such
as coinciding of multiple versions and enclosure of different
components or partial products in the main product.
Although, it is likely that a PDF can be fitted, the chances
for lower coefficient values for such products is higher, and
the reliability growth estimates can be obscured. On the
other hand, estimating reliability with least overlap among
versions can provide a good sense of software quality over a
period of time.

Although higher reliability is provided by later versions,
care must be exercised when comparing them against
products started from scratch. This is due to the fact that the
reliability of later versions could be bloated as the result of
borrowing many components from the earlier versions with
detected and fixes of many prior defects. When analyzing
Eclipse, the bug reports include the version numbers so that
their associated bug reports can be extracted. But the same
could not be said about Firefox. Hence, Firefox was treated
as one composite version.

Because of time invested in collecting and mining the
failure data, one avenue of future research is to investigate
the reliability growth of these products with respect to some
models of Non-Homogeneous Poisson Process (NHPP). The
main issue in NHPP models is the determination of an
expected value for the number of failures up to a point in
time [6], [16].

REFERENCES
[1] Bugzilla, http://www.bugzilla.org.
[2] R.C. Cheung, “A user-oriented software reliability model”, IEEE

Transactions on Software Engineering, vol. 6, no. 2, March 1980, pp.
118-125.

[3] J.De.S Coutinho, “Software reliability growth”. IEEE Symposium on
Computer Software Reliability, 1973, pp. 58-64.

[4] A.L. Goel and K. Okumoto, “A time-dependent error-detection rate
model for software reliability and other performance measure”, IEEE
Transactions on Reliability, vol. R-28, 1979, pp. 206-211.

[5] S.S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Reliability simulation of
component-based software systems”, Proceedings of 9th Int’l
Symposium on Software Reliability Engineering, 1998.

[6] IEEE Reliability Society, “IEEE recommended practice on software
reliability”, IEEE Std 1633-2008, June 2008.

[7] Z. Jelinski and P.B. Moranda,”Software reliability research”, in
Statistical Computer Performance Evaluation, W. Freiberger, Ed.,
New York: Academic Press, 1972, pp. 465-484.

[8] H.S. Kan, Metrics and Models in Software Quality Engineering, 2nd
Ed., Addison-Wesley, 2003.

[9] I. Koren and C.M. Krishna, Fault-Tolerant Systems, Morgan
Kaufmann, 2007.

[10] B. Littlewood and J.L. Verrall, “A bayesian reliability model with a
stochastically monotone failure rate”, IEEE Transactions on
Reliability, vol. R-23, June 1974, pp. 108-114.

[11] B. Littlewood and J.L. Verrall, “A bayesian reliability growth model
for computer software”, Applied Statistics, vol. 22, 1973, pp. 332-
346.

[12] A. Mockus, T.R. Fielding, and J.D. Herbsleb, “Two case studies of
open source software development: Apache and Mozilla”, ACM
Transactions on Software Engineering and Methodology, vol. 11, no.
3, July 2002, pp. 309-346.

[13] T.R. Moss, The Reliability Data Handbook, ASME Press, 2005.
[14] J.D. Musa and K. Okumoto, “A logarithmic poisson execution time

model for software reliability measurement”, 7th Int’l Conference on
Software Engineering (ICSE), 1984, pp. 230-238.

[15] K. Neubeck, Practical Reliability Analysis, Prentice Hall, 2004.
[16] H. Pham, Software Reliability. Springer-Verlag, 2000.
[17] E.S. Raymond, “The cathedral and the bazaar: musings on linux and

open source by an accidental revolutionary, 2nd Ed., O’Reilly, 2001.
[18] R Project, http://www.r-project.org/.
[19] M.L. Shooman, “Probabilistic models for software reliability

prediction”, in Statistical Computer Performance Evaluation, W.
Freidberger, Ed., New York: Academic Press, 1972, pp. 485-502.

[20] SourceForge, http://sourceforge.net.
[21] Y. Zhou and J. Davis, “Open source software reliability model: an

empirical approach”, Proceedings of the 5th Workshop on Open
Source Software Engineering, May 2005, pp. 1-6.

[22] W.L. Wang, Y. Wu and M.H. Chen, “An architecture-based software
reliability model”, Proceedings of Pacific Rim Int’l Symposium on
Dependable Computing, 1999.

[23] S. Yacoub, B. Cukic and H.H. Ammar, “A software-based reliability
analysis approach for component-based software”, IEEE Transactions
on Reliability, vol. 53, no. 4, Dec 2004.

[24] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth
modeling for software error detection”, IEEE Transactions on
Reliability, Vol. R-32, 1083, pp. 475-478.

