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Abstract — Arrival failure times for five popular open 
source projects are analyzed and compared. The projects 
considered are Eclipse, Apache HTTP Server 2, Firefox, 
MPlayer OS X, and ClamWin Free Antivirus. The black-box 
reliability analysis of the projects is a 3-step approach that 
consists of bug-gathering, bug-filtering, and bug-analysis. 
Additionally, the reliabilities of multiple release versions of 
Eclipse are compared. It is projected that the future release of 
the projects under the same operational environment to follow 
similar reliability patterns. The results exhibit that Weibull 
distribution is a powerful analytical tool to be used in 
reliability growth modeling of such products.  

Keywords- Open source software (OSS); Software reliability 
model; Software architecture; Reliability growth model; Weibull 
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I.  INTRODUCTION  
Open Source Software (OSS) in general refers to any 

software whose source code is freely available for 
distribution. The success and benefits of OSS can be 
attributed to many factors such as code modification by any 
party as the needs arise, promotion of software reliability 
and quality due to peer review and collaboration among 
many volunteer programmers from different organizations, 
and the fact that the knowledge-base is not bound to a 
particular organization, which allows for faster development 
and the likelihood of the software to be available for 
different platforms. Eric Raymond in [17] states that “with 
enough eye balls, all bugs are shallow”, which suggests that 
there exists a positive relationship between the number of 
people involved, bug numbers, and software quality.  Some 
examples of successful OSS products are Apache HTTP 
server and the Mozilla Firefox internet browser.  

As software products have become increasingly 
complex, software reliability is a growing concern, which is 
defined as the probability of failure free operation of a 
computer program in a specified environment for a 
specified period of time [14], [16]. Reliability growth 
modeling has been one approach to address software 
reliability concern, which dates back to early 1970’s [3], [7], 
[19]. Reliability modeling enables the measurement and 
prediction of software behaviors such as Mean Time To 

                                                           
* This research is funded in part by Department of Defense (DoD)/Air 
Force Office of Scientific Research (AFOSR), NSF Award Number 
FA9550-07-1-0499, under the title “High Assurance Software”. 

Failure (MTTF), future product reliability, testing period, 
and planning for product release time. 

Software reliability growth models generally fall into 
two major classes: time between failures and fault count 
models. The main input parameter to the “time between 
failures” models is the intervals of successful operations. As 
the failures occur and fixed, it is expected that these 
intervals to increase. The pattern of these intervals is 
reflected by a probability distribution model whose 
parameters are estimated from simulation, testing, and 
operation profiles. Some examples that belong to this class 
of reliability modeling are Jelinski-Moranda and Littlewood 
models [7], [10].  

The “fault count” class labeled as such because the input 
parameter of study is the number of faults in a specified 
period of time rather than the times between failures. 
Normally the failure rate, defined as the number of failures 
per hour, is used as the parameter of a Probability 
Distribution Function (PDF). Like the first class, as the fault 
counts drop, the reliability is expected to increase [8], [9], 
[16]. Examples of this class are Goel-Okumoto and Musa-
Okumoto models [4], [14].  

This study is concerned with the “fault count” of five 
popular OSS products: Eclipse, Apache 2, Firefox, MPlayer 
OS X, and ClamWin Free Antivirus. These projects are 
selected because of their high number of downloads, length 
of project operation, and sufficient number of bug reports. 
MPlayer OS X and ClamWin Free Antivirus are two 
projects, which can be found in sourceforge.net [20]. 
MPlayer OS X, launched in 2002, is a project based on 
MPlayer, which is a movie player for Linux with more than 
six million downloads. ClamWin Free Antivirus was 
launched in 2004 that has had more than 19 million 
downloads.   Eclipse, Apache 2, and Firefox are the other 
three OSS projects, which use Bugzilla [1] as their bug-
repository system. Bugzilla is a popular bug-repository 
system that allows users to send information about a 
detected bug such as bug description, severity, and reporting 
time. 

Additionally, these projects are well-known and well-
established, which have been in operation for more than 
four years. For software projects that have not been in 
operation long enough, the failure data collected may not be 
sufficient to provide a decent picture of software quality, 
which may lead to anomalous reliability estimates [12], 
[21]. The following table reflects on the number of years 
that these projects have been in operation. 



TABLE I.  RELEASE DATES OF THE OSS PROJECTS 

Project Name First official release date 

Firefox 11/09/2004 

Eclipse 11/07/2001 

Apache 2 03/10/2000 

ClamWin Free Antivirus 03/26/2004 

MPlayer 09/20/2002 

 
The Weibull distribution function is employed for the 

reliability analysis of the aforementioned OSS projects. 
Weibull distribution is widely utilized in lifetime data 
analysis because of its flexibility in modeling different 
phases of bathtub reliability, i.e. decreasing, constant, and 
increasing failure rates. The function has been particularly 
valuable for situations for which the data samples are 
relatively small, such as in maintenance studies [13].  

The rest of the paper is organized as follows. Section 2 
provides some definitions and background information. 
Section 3 concentrates on failure data analysis and the 
reliability modeling process. Section 4 concludes the paper 
with a summary.  

II. BACKGROUND 
White-box and black-box models are two approaches for 

predication of software reliability. The white-box models 
attempt to measure the quality of a software system based 
on its structure that is normally architected during the 
specification and design of the product. Relationship of 
software components and their correlation are thus the focus 
for software reliability measurement [2], [5], [22], [23]. In 
the black-box approach, the entire software system is treated 
as a single entity, thus ignoring software structures and 
components interdependencies. These models tend to 
measure and predict software quality in the later phases of 
software development, such as testing or operation phase. 
The models rely on the testing data collected over an 
observed time period. Some popular examples are: Yamada 
S-Shape, Littlewood-Verrall, Jelinski-Moranda, Musa-
Okumoto, and Goel-Okumoto [4], [10], [11], [14], [24]. 
This study is concentrated on the black-box reliability 
approach to measure and compare the reliability of the 
selected OSS projects.  

A fault or bug is a defect in software that has the 
potential to cause the software to fail. An error is a 
measured value or condition that deviates from the correct 
state of software during operation. A failure is the inability 
of the software product to deliver one of its services. 
Therefore, a fault is the cause for an error, and software that 
has a bug may not encounter an error that leads to a failure.  
Failure behavior can be reflected in various ways such as 
Probability Density Function (PDF) and Cumulative 
Distribution Function (CDF). PDF, denoted as f(t), shows 
the relative concentration of data samples at different points 
of measurement scale, such that the area under the graph is 
unity. CDF, denoted as F(t), is another way to present the 
pattern of observed data under study.  CDF describes the 

probability distribution of the random variable, T, i.e. the 
probability that the random variable T assumes a value less 
than or equal to the specified value t.  In other words, 
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Therefore, f(t) is the rate of change of F(t). If the random 

variable T denotes the failure time, F(t), or unreliability, is 
the probability that the system will fail by time t. 
Consequently, the reliability R(t) is  the probability that the 
system will not fail by time t [16], i.e.:  
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This paper will show that the relative frequency of 

failure times follows the Weibull PDF:   
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where α is the scale parameter and β  represents the shape 
parameter of the distribution. The effect of the scale 
parameter is to squeeze or stretch the distribution. The 
Weibull PDF is monotone decreasing if 1≤β . The smaller 
β , the more rapid the decrease is. It becomes bell shaped 
when 1>β , and the larger β , the steeper the bell shape will 
be. Furthermore, it becomes the Rayleigh distribution 
function when 2=β  and reduces to the exponential 
distribution function when  1=β . Figure 1 shows the 
Weibull PDF for several values of the shape parameter when 

1=α  [8]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Weibull PDF for several shape values when α =1. 

 
The reliability function of Weibull distribution is [15]: 
 
                                                                 (2) 
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III. BUG REPORT ANALYSIS 

The approach to the reliability estimates of the selected 
OSS projects consists of three steps: bug-gathering, bug-
filtering, and bug-analysis. In the bug-gathering step, the 
online bug-repository systems are used to collect the failure 
data. Quality estimation of an OSS product depends on 
sufficient error reports and the accuracy of reports provided 
by the customers using the product. Although the collected 
reports may differ among bug-repository systems, the 
following fields are often common: 

• Bug-ID - A unique identification for each bug 
reported. 

• Bug-Time - The actual time of bug reported. 
• But-Resolution – The state of a bug determined by 

the organization, such as whether the bug reported 
is valid, deleted, or fixed. 

• Bug-Reporter – Information about the user 
submitting the bug report. 

• Product – The specific product name or component 
in which a bug is detected.  

Bugs reported may be duplicates, provide incomplete 
information, or may not represent real defects. Therefore, 
during the bug-filtering, such noises are removed from the 
bugs gathered in the first step. Finally, in the third step, the 
filtered data is organized into bug-frequencies for fixed time 
periods, which are set at two weeks. Observing the volume 
of bug-reports and the varying years of operations among the 
products, the choice of two-week periods provides sufficient 
number of failure frequencies that captures the pattern of bug 
reports. The bug-frequencies are then plotted against the time 
periods for further analysis in terms of graph fitting, 
comparison among the products, and reliability. 

A. Bug Gathering and Filtering 
The duration for which the failure data is collected for 

the five OSS projects are listed in Table II.  

TABLE II.  DURATIONS OF COLLECTED FAILURE DATA
1 

Project name Start date End date 
Firefox 03/19992 10/2006 
Eclipse 10/20013 12/2007 
Apache 2 03/2002 12/2008 
ClamWin Free Antivirus 03/2004 08/2008 
MPlayer 09/2002 06/2006 
 
Table III illustrates a portion of a bug report stored at 

Sourceforge.net bug tracker. In the table, “Request ID” is 
Bug-Id; “Summary” is a short description of the problem 
reported; “Open Date” is the same as Bug-Time;  “Priority” 
shows the level of bug severity, which is a value in the 
inclusive range of 1 – 9; “Status” is Bug-Resolution; and 
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“Assigned To” is the person or the team that will be 
assigned to look into this specific bug. The “Status” field 
may carry different values such as “Open”, “Closed”, or 
“Deleted”. The “Open” value is an indication that the bug 
has not been fixed yet; “Closed” reflects that the bug has 
been fixed, and “Deleted” means that the bug reported is not 
a valid one.  

TABLE III.  A PORTION OF A BUG REPORT AT SOURCEFORGE.NET 
Request 
ID 

Summary Open 
date 

Priority Status Assigned 
to 

1570891  can't set a 
playback 
position in 
FLV 
videos  

2006-
10-04 
18:43  

5  Open Nobody 

1565875  mencoder 
mp3lame 
option  

2006-
09-26 
17:39  

5  Open Nobody 

1565868  mencoder 
-oac copy  

2006-
09-26 
17:28  

5  Open Nobody 

1564167  Use 
second 
monitor 
bug  

2006-
09-23 
18:16  

5  Open Nobody 

1531952  screen 
resizing  

2006-
07-31 
19:37  

5  Open Nobody 

 
The bug reports extracted from Bugzilla are initially in 

XML format. A Java program is developed to gather the 
relevant data from the XML format for further data filtering 
and analysis. Figure 2 shows a portion of a bug report in 
XML stored at Bugzilla. 

 
<bug> 
          <bug_id>366101</bug_id> 
          <creation_ts>2007-01-05 16:41 PST</creation_ts> 
          <short_desc>nsIFile.initWithPath should accept                       

&quot;c:/mozilla&quot; as native path (forward slashes should be treated 
as backslashes)</short_desc> 

          <delta_ts>2007-01-05 16:57:22 PST</delta_ts> 
          <reporter_accessible>1</reporter_accessible> 
          <cclist_accessible>1</cclist_accessible> 
          <classification_id>3</classification_id> 
          <classification>Components</classification> 
          <product>Core</product> 
          <component>XPCOM</component> 
          <version>Trunk</version> 
          <rep_platform>PC</rep_platform> 
          <op_sys>Windows XP</op_sys> 
          <bug_status>NEW</bug_status> 
          <priority>--</priority> 
          <bug_severity>normal</bug_severity> 
  …  
          <who name="David Hyatt">hyatt@mozilla.org</who> 
          <bug_when>2000-04-13 16:16:07 PST</bug_when> 
… 
          <bug_status>VERIFIED</bug_status> 
          <resolution>WORKSFORME</resolution> 
 
</bug> 

 
Figure 2. A portion of a bug report in XML at Bugzilla. 



The fields in Figure 2 are self explanatory, like 
“Bug_id” is Bug-ID and “Who_name” is Bug-Reporter. The 
“Resolution” field is Bug-Resolution, which may hold 
different values: 

• FIXED – This bug is a valid one and it is fixed. 
• INVALID – This bug was not a valid one. 
• WONTFIX – This bug will not be fixed. 
• WORKSFORME – This bug cannot be reproduced. 
• INCOMPLETE – Information provided is not 

sufficient for producing the bug. 
• LATER – This bug will not be fixed in this 

version. 
• REMIND – This bug will not probably be fixed in 

this version 
• DUPLICATE – This is a duplicate bug reported 

earlier.  

The bug reports collected are then filtered out. For the 
two projects from Sourcefoge.net, the bug reports with the 
status value of “Deleted” are discarded. For the failure data 
collected from Bugzilla, those bug reports with the 
following “Resolution” values are accepted and the rest are 
discarded: FIXED, WONTFIX, LATER, and REMIND. 

B. Bug Analysis 
In the bug-analysis step, the frequency of bugs in two-

week periods is calculated. Therefore, the x-axis and y-axis 
represent the biweekly time and the corresponding bug 
frequency, respectively. For instance, x-axis in Figure 3 
contains 116 points, which is equivalent to about 4.4 years of 
collected failure data for ClamWin operation.  Figures 3-74 
show the bug frequency plots for the five OSS projects. 

 

 
 

Figure 3. Filtered bug frequency for ClamWin Free Antivirus project. 
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Figure 4. Filtered bug frequency for MPlayer OS X project. 
 

 
 

Figure 5. Filtered bug frequency for Apache 2 project. 
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Figure 6. Filtered bug frequency for Eclipse project. 
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Figure 7. Filtered bug frequency for Firefox project. 



 
It is observed that the bug frequencies for three of these 

projects, i.e. Apache 2, MPlayer OS X, and ClamWin Free 
Antivirus, appear to follow a pattern that can be represented 
by the Weibull distribution function. As an example, Figure 
8 shows this pattern that is visually superimposed on the bug 
frequencies for Apache 2. 

 

 
 

Figure 8. A curve fitted onto bug frequencies for Apache 2.  
 
This pattern is supported by large body of empirical 

studies in that software projects follow a life cycle pattern 
described by Rayleigh distribution function, a special kind of 
Weibull distribution with shape parameter 2=β . This is 
considered a desirable pattern since the bug arrival rate 
stabilizes at a very low level. In closed source software, the 
stabilizing behavior is usually an indicator of ending test 
effort and releasing the software to the field [8]. This pattern 
also is supported by Musa-Okumoto model in that the simple 
bugs are caught easily at the beginning of testing phase. The 
remaining bugs tend to be more difficult to detect because, 
for example, they are not exercised frequently.  Therefore, 
the rate of undetected bugs drops exponentially as testing 
continues [9]. 

On a quick glance at Figure 6, Eclipse does not seem to 
follow this pattern. When bug reports are scrutinized in more 
detail, it is found that the versions separately follow a similar 
pattern. Figure 9 illustrates the bug frequencies for individual 
Eclipse releases superimposed in one diagram, rather than 
lumping the bug frequency for all versions as in Figure 6. 
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   Figure 9. Filtered bug frequencies of Eclipse for different versions. 
 

In this figure, the peak in each version shows the official 
release time for that version. In reality, the users started 
using the unofficial (beta) version and reporting the bugs 
before the official release of the version. For example, 
Eclipse V2.1 is officially released in March of 2003, but 
customers started downloading it in February 2003. In other 
words, the bug reports for version 2.1 are mixed with those 
of an earlier version. When the bug reports are correctly 
extracted based on the version numbers, each version seems 
to follow the same pattern as those of Apache 2, MPlayer OS 
X, and ClamWin Free Antivirus. A similar argument could 
be true for Firefox because of multiple peaks in Figure 7. 
However, the Firefox bug reports lack the version numbers. 
As seen in Figure 2, the bug reports contain the phrase 
“Trunk” for all versions. Therefore, the different versions of 
Firefox are treated as one unified version.  

Figure 10 shows the bug frequencies for Eclipse V2.0 
extracted from Figure 9. It is this version that will be used in 
reliability analysis of Eclipse because of its high bug reports 
in comparison to other versions. However, all versions of 
Eclipse will later be compared against each other. 
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Figure 10. Filtered bug frequencies of Eclipse V2.0 
 
The R Project is a freely available package that is used 

for a wide variety of statistical computing and graphics 
techniques. R is able to apply the Maximum Likelihood 
Estimation (MLE) technique [16] for estimating the 
parameters of Weibull distribution. Since R requires time-
domain data, the relative frequency of bug reports needs to 
be converted to occurrence times of failure. Therefore, each 
bug report is mapped to its corresponding biweekly period. 
For example, 4 bugs reported in the 1st biweekly and 3 bugs 
reported in the 2nd biweekly periods are converted to: 
1,1,1,1,2,2,2. This further illustrates that the total number of 
failures at the kth position in the list is k, which implies that 
the input provided to R is cumulative. 

The computed shape and scale for each OSS product is 
listed in Table IV. As indicated previously, the effect of the 
scale parameter is to squeeze or stretch the PDF graph. The 
greater the value, the greater the stretching. Therefore, the 
larger the value, the flatter the curve of PDF will be, which 
implies lower rate of failure. The correlation coefficient is a 
measure of strength of the match between the fitted curve 
and the bug frequencies pattern. The closer the coefficient 
value is to one, the stronger the match is. 



TABLE IV.  PARAMETER ESTIMATES FOR SELECTED  PRODUCTS 
Project name Scale Shape Correlation 

Coefficient 

Apache 2 67.93 1.17 0.95 
Firefox 172.68 10.77 0.99 
MPlayer  31.5 1.33 0.99 
ClamWin 
Antivirus 

31.36 1.23 0.99 

Eclipse V2.0 49.88 0.94 0.90 
Eclipse V2.1 61.06 1.72 0.91 
Eclipse V3.0 76.82 3.64 0.91 
Eclipse V3.1 91.14 6.14 0.93 
Eclipse V3.2 120.19 8.99 0.96 
Eclipse V3.3 144.82 15.74 0.94 

  
Figure 11 shows the fitted graphs for the five projects. 

From the figure, the estimated PDFs are good representations 
of failure behavior. Among these, Eclipse versions have the 
lowest coefficient values. After some experimental analysis, 
the reason is due to a sharp increase of bug reports over a 
short period of time (about 10 biweeklies) in comparison to 
the measurement scale, which is about 160 biweekly periods. 
Since the increase and span of failures are correspondent to 
the shape and scale parameters,  respectively,  the estimates 
are favored toward the scale to cover a larger span of time. 
This implies the peak of the fitted graphs were pushed down, 
cutting off a portion of bug reports. 
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Figure 11a. Estimated PDF for ClamWin Free Antivirus project. 
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Figure 11b. Estimated PDF estimation for MPlayer project. 
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Figure 11c. Estimated PDF estimation for Apache project. 
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Figure 11d. Estimated PDF for Eclipse V2.0. 
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Figure 11e. Estimated PDF estimation for Firefox. 
 

Reliability of the projects can be calculated by inserting 
the shape and scale parameters from Table IV into the 
Weibull reliability function in (2). Figure 12 exhibits the 
reliability graphs for the five OSS products. They all show a 
reliability of 0.90 and 0.80 over 4 and 8 biweekly periods, 
which are about 2 and 4 months of operation, respectively.  
Among these products, Firefox has the highest reliability. 
More accurate reliability estimate of Firefox would have 
been possible if version numbers were available. On the 
other hand, the figure shows that MPlayer, which almost 
completely  overlaps ClamWin, has the least reliability. After 



MPlayer and ClamWin, the graph of Eclipse V2.0 shows the 
next lowest reliability.  Eclipse V2.0 could have performed 
worse if it were not for the future releases. More specifically, 
with a new release, the customers opt not to use the older 
versions. Hence, the number of downloads and bug reports 
would be reduced. Although this may not change the shape 
of the graph, it would likely reduce the steepness of the 
graph. 
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Figure 12. The reliability diagrams for the five OSS products 
 
Table V shows the individual reliabilities for different 

time periods for each OSS project. 

TABLE V.     RELIABILITY ESTIMATES FOR VARIOUS BIWEEKLY PERIODS 

Project / Biweekly periods 5 10 15 20 25 

Apache 2 0.95 0.90 0.84 0.79 0.73 

Firefox 1.00 1.00 1.00 1.00 0.99 

MPlayer 0.92 0.80 0.69 0.58 0.48 

ClamWin Antivirus 0.90 0.78 0.67 0.56 0.47 

Eclipse V2.0 0.89 0.80 0.72 0.65 0.59 

 
Figure 13 compares the reliabilities for different versions 

of Eclipse.  As expected, as higher versions are released their 
reliabilities are improved. The latter three versions show a 
reliability of at least 0.90 for up to 60 biweekly periods, 
which is over two years of operation. The figure further 
indicates that the latest version, i.e. V3.3, has a reliability of 
0.99 for 108 biweekly periods. 

IV. CONCLUSION 
Bug reports are the source for deeper understanding of 

failure distribution, classifying failures, and building 
accurate dependability models. The quality of bug analysis 
heavily depends on comprehensive and accurate recording 
of bug reports. The lack of a commonly accepted data 
format for archiving bug reports and efficient algorithms for 
data filtering adds to the complexity of failure data analysis. 

In this experiment, two different trends of bug reports 
for the five OSS projects are visually discernible. The first 
group of products, i.e. Apache 2, MPlayer OS X, and 
ClamWin Free Antivirus, show the trend of a peak followed 
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Figure 13. The reliability diagrams for different versions of Eclipse OSS 
 

by a long decreasing tail, which is a good candidate to be 
fitted by the Weibull distribution function. The second 
group, which encompasses Eclipse and Firefox, shows 
multiple peaks instead of one particular peak. These 
products are more complex to analyze and to be modeled. 
The complexity can be explained by different factors such 
as coinciding of multiple versions and enclosure of different 
components or partial products in the main product. 
Although, it is likely that a PDF can be fitted, the chances 
for lower coefficient values for such products is higher, and 
the reliability growth estimates can be obscured. On the 
other hand, estimating reliability with least overlap among 
versions can provide a good sense of software quality over a 
period of time. 

Although higher reliability is provided by later versions, 
care must be exercised when comparing them against 
products started from scratch. This is due to the fact that the 
reliability of later versions could be bloated as the result of 
borrowing many components from the earlier versions with 
detected and fixes of many prior defects. When analyzing 
Eclipse, the bug reports include the version numbers so that 
their associated bug reports can be extracted. But the same 
could not be said about Firefox. Hence, Firefox was treated 
as one composite version.  

Because of time invested in collecting and mining the 
failure data, one avenue of future research is to investigate 
the reliability growth of these products with respect to some 
models of Non-Homogeneous Poisson Process (NHPP). The 
main issue in NHPP models is the determination of an 
expected value for the number of failures up to a point in 
time [6], [16].  
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