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Wireless Sensor Network (WSN)Wireless Sensor Network (WSN)
We live in a cyber-physical world that weWe live in a cyber physical world that we 
need to understand, serve, and control

Communication
(Wireless)

Broadcast sensory data

Computation
Sensory Data: A/D conversion, Broadcast sensory data,

Dissemination, RoutingCompression, Filtering, 
Aggregation, Analysis

Control
(Sensing / Actuation)
Sensing the physical world: 

temperature, humidity, pressure, 
light, velocity, sound, image
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WSN ApplicationsWSN Applications
Monitoring and Control
- Habitat
- Environment

Ecos stem- Ecosystem
- Agricultural
- Structural
- Traffic
- Manufacturing

H l h- Health

Security and Surveillance
- Infrastructure Security
- Border and Perimeter Control

Target Tracking
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- Target Tracking
- Intrusion Detection



WSN ApplicationsWSN Applications

Sensor networks are deployed in unmonitored 
t i i hi h d it d l lterrain in high density and large scale

Post-deployment access and control is an issue

Micaz Tmote SunSPOT

Multi-modal functioning which require 
reprogramming/data dissemination

Change applications
TroubleshootTroubleshoot

Security is critical in many applications

Wireless Sensing Devices embedded in 
our environment gathering data on physical
phenomena !
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Security Challenges in WSNsSecurity Challenges in WSNs

Limited resources Limited defense capability

– Energy (battery power), wireless bandwidth, 
computational power, storage, radio communication 
range (connectivity), sensing range (coverage)

– Public key too costly to authenticate packets with 
digital signatures and to disclose key with each packet

– Storing one-way chain of keys requires more memory 
d t ti f t dand computation for message en-route nodes
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Security Challenges in WSNsSecurity Challenges in WSNs

Uncertain, unattended / hostile environment
– Uncertainty in sensing accuracy, wireless links, 

mobility, topology control, deployment (density), . . .

– Faulty prone nature vs. compromises (insider attacks)Faulty prone nature vs. compromises (insider attacks)

Distributed control No global knowledge

In-network processing: data fusion to exploit spatio-
temporal redundancy Loss of integrity, confidentiality

Multiple-attacking angles
Single level defense mechanism highly vulnerable
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– Cryptographic technique is not the panacea



Node Compromises / Replications and Intrusions

Threats to WSNsThreats to WSNs
Node Compromises / Replications and Intrusions
– Physical capture
– Sophisticated analysis: differential timing / energy analysis

Revealed Secrets
– Cryptographic keys, codes, commands, etc.

Enemy’s Puppeteers
– Trojans in the network with full trust

Discredit normal nodes

Compromised Node
Report false data

Infect other nodesForge command

Selective packet dump

S. K. Das

False routing info
Forge command



Att k t lti l ibl l l t b d f d d

Need for MultiNeed for Multi--level Solutionlevel Solution

Attacks at multiple possible levels to be defended

– Model the propagation of node compromises
E t j i di M d liE.g., trojan virus spreading

– Detect compromised nodes & forged data

Modeling

Detection
E.g., abnormal reports

– Revoke revealed secrets Revocation

E.g., broadcast confidentiality

– Self-correct and purge false data
Self-correction

E.g., average temperature calculation Purge

S. K. Das



MultiMulti--Level, Integrative FrameworkLevel, Integrative Framework

Highly Assured
Network Operation

Compromise Process
Modeling Contain Outbreak

Epidemic Theory Architectural 
Components

Theoretical 
Foundations

Topology Control

Revoke Revealed Secrets

Detect CompromiseInformation Theory

Cryptography

Trust / Belief Model
Key Management

Topology Control

Self-Correct 
Tampered Data

P

Digital Watermarking

Secure Aggregation

Secure Routing

Node Compromise Purge 
Tampered Data

Uncertainty Characterized
Resource Limited Environment

p
DoS Defense

Intrusion Detection

Game Theory
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Resource Limited Environment
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Modeling Compromises: Epidemic DefenseModeling Compromises: Epidemic Defense

Premise: Node compromises in WSN broadcast protocols
– Capture node deployment, key distribution, topology

Research Objectives:

M d l d l di f d i– Model and analyze spreading process of node compromises

– Characterize network-wide propagation rate and outbreak 
transition point of compromise processtransition point of compromise process

– Study impact of infectivity duration of compromised nodes

– Capture time dynamics of the spread

– Identify critical parameters to prevent outbreaks

S. K. Das



System ModelSystem Model

Random Pair-wise Key Pre-distribution
–A set of keys randomly chosen from a key pool

Physical Topology Virtual Key-Sharing Topology

S. K. Das



Sensor Network Model
Modeled as undirected geometric random graphModeled as undirected geometric random graph

– N nodes uniformly randomly distributed 

– Unit Disk Model with transmission radius

– is the probability of existence of an edge between nodes 
d t di t
)( uvdα

d

cR

u and v at distance 

Node density

uvd

N
=σ cR– Node density             

A = area of the terrain

A
=σ c

u v
A = area of the terrain

uvd
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Sensor Topology ModelSensor Topology Model
N

denotes the node density of the network

N = total number of nodes R = sensing radius

2R
N

=ρ

N =  total number of nodes,  R = sensing radius

p = probability of existence of a physical link

N
rp ρ2

=

r = average communication range between nodes

Probabilit for l nodes ithin comm nication range

N

Probability for l nodes within communication range

( ) lNlNl −)1()(
S. K. Das
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Sensor Topology ModelSensor Topology Model
q = prob of sharing pair wise key between neighboring nodesq = prob. of sharing pair-wise key between neighboring nodes

Probability of sharing at least one key with exactly k
neighbors given l nodes within its range:

( ) klkl
k qqlkp −−= )1()(

Probability of having k neighbors sharing at least one key:

( )k qqp )()(

∑
∞

=
kl

lkplpkp )()()(
=kl

( ) ( )∑
∞

−− −−= klkl
k

lNlN
l qqppkp )1()1()(
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Infection Spread Model

cR

Source Node
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Inoperative R(t) Infective I(t) Susceptible S(t)



Epidemic Theoretic FrameworkEpidemic Theoretic Framework

Model infection spread in a population of susceptibles

- Random graph based spatial model
Diff i l i b d l d l- Differential equation based temporal model

Design spread model using network characteristicsg p g

- Local interactions based on transmission range
- Number of contacts determined by degree distribution of the 

key sharing network

Estimate the rate of infection (β) based on cR(β)

- Rate of communication paradigm of the broadcast protocol
- Infectivity potential (ρ) of the data

c

S. K. Das



Epidemic AnalysisEpidemic Analysis

When nodes do not recover, transmissibility (T) is 
expressed only in terms of the infection probability, \beta

N d i t d b i t i ibilitNode recovery is captured by expressing transmissibility 
as a function of average duration of infectivity, τ

tδ

Average cluster size as epidemic attains outbreak proportions

βτeT −= 1
t

t
tT δτ

δ
βδ )1(lim1

0
−=−

→

Average cluster size as epidemic attains outbreak proportions

)1(1
)1(1 '

1

'
0

TG
TGs
−

+=

Average Epidemic size after outbreak results

)(1

)(1 0 uGS −=
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Epidemic Size with infection probabilityEpidemic Size with infection probability
q = prob. of sharing pair-wise key between neighboring nodes

1

q p g p y g g

p = probability of existence of physical link
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Epidemic Size with infectivity durationEpidemic Size with infectivity duration
q = prob. of sharing pair-wise key between neighboring nodes

1

q p g p y g g

p = probability of existence of physical link
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Deluge : Data Propagation RateDeluge : Data Propagation Rate

Analytical Simulation

S. K. Das

Model captures rate of data propagation over dissemination protocols



Simulation StudySimulation Study

Capture the time dynamics of the spread of compromise

Observe duration and nature of gradual recovery processObserve duration and nature of gradual recovery process 

Observe effects of various network parameters

– Average node degree of key sharing network
– Average infection rate
– Average duration of infectivity

S. K. Das



Simulation ResultsSimulation Results
Under both scenarios – no node recovery and node recovery

1

1.2
Dynamics of the Infected, Susceptible and Revoked nodes
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Developing Belief / Trust ModelDeveloping Belief / Trust Model
Premise: False data injection from compromised nodesPremise: False data injection from compromised nodes
–Cryptographic techniques ineffective

Objectives: Trust model to identify and purge false dataObjectives: Trust model to identify and purge false data. 
Reduce uncertainty in data aggregation / fusion.

Solution:Solution:
–Information theoretic (relative entropy) measure to quantify 

reputation / opinion of data, leading to higher confidence
Belief, disbelief, uncertainty, relative atomicity

–Josang’s belief model to define and manage trust 
propagation through intermediate nodes along the routepropagation through intermediate nodes along the route

–Identify malicious nodes by learning and outlier classification
– purge false data to achieve secure aggregation

S. K. Das

p g gg g

W. Zhang, S. K. Das and Y. Liu, “A Trust Based Framework for Secure 
Data Aggregation in Wireless Sensor Networks, IEEE SECON, Oct 2006. 



Sensor Network ModelSensor Network Model

Base Station 
(Sink)

cluster head
aggregator
sensor nods
(cluster member)
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Josang’s Belief ModelJosang’s Belief Model
Opinion: ω = (b, d, u, a), b + d + u = 1Opinion:  ω  (b, d, u, a), b  d  u  1

b: belief
d: disbelief 
u: uncertainu: uncertain 
a: relative atomicity
b, d, u, a ∈ [0,1]

Expected Opinion: O = E(ω) = b + au

Cluster head’s opinion about aggregator:H
AωA

)5.0,02.0,03.0,95.0(
1
=H

Aω

96.002.0*5.095.0
1

=+=H
AO

Aggregator’s opinion about its report X:A
Xω

)9.0,312.0,0,688.0(1 =A
Xω
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969.0312.0*9.0688.01 =+=A
XO



Belief Propagation: Subjective LogicBelief Propagation: Subjective Logic
Belief discounting (recommendation)Belief discounting (recommendation)
Cluster head’s opinion about X as a result of aggregator’s opinion:
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Belief decreases, uncertainty increases



Belief ConsensusBelief Consensus
Cluster head’s opinion about X via A1: ),,,( 1:1:1:1:1: AH

X
AH

X
AH

X
AH

X
AH

X audb=ωC us e ead s op o abou a 1

Cluster head’s opinion about X via A2:
Cluster head’s consensus opinion about X:
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More evidences, belief in the result increases



Aggregator: Compute Sensor Reputation
Outlier exclusion: Too far from median outlierOutlier exclusion: Too far from median outlier
High density Normal distribution N(µ, σ)

Red: 68% of data within [ σ +σ]Red: 68% of data within [µ- σ, µ+σ]
Green: 95% of data within [µ- 2σ, µ+2σ]
Yellow: 99.7% of data within [µ- 3σ, µ+3σ]

Each sampling independent

Id l d f i l 680])[|P (

N(µ, σ)

– Ideal node frequency: in long run,
– Actual node frequency: learn from observation

– Measure difference in ideal and actual frequencies: Kullback Leibler distance

68.0]),[|Pr( =+−∈ σσ xxxp ii

]),,[|Pr( σσ +−∈ xxxq ii

Reputation:

;
)(
)(log)()||( ∑=

xq
xpxpqpD p(x), q(x) prob. mass function for ideal/actual node freq.

D(.) also called relative entropy measure

r = 1
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The shorter the distance, more trustworthy, higher reputation



Sensor Node’s Reputation: Example

Two sensors s and sTwo sensors, s1 and s2

– Time t1: 63.0,65.0 1
2

1
1

== t
s

t
s ff

0029.0
68.0
65.0log*65.0

)68.01(
)65.01(log*)65.01()||( 11

1
=+

−
−

−=t
ideal

t
s ffD

949.0
002901

1)( 1
1 =

+
=tsr

– Time t2:
0029.01 +

30.0,68.0 2
2

2
1

== t
s

t
s ff

Time Sensor 
node

Actual 
freq.

Ideal freq. KL-
distance

Reputation

t1 s1 0.65 0.68 0.0029 0.949
0 63 0 68 0 0081 0 918s2 0.63 0.68 0.0081 0.918

t2 s1 0.68 0.68 0 1
s2 0.30 0.68 0.436 0.602
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Reputation changes with time based on behavior



Aggregator: Reputation Classification

Classify reputation to identify malicious nodes
– Traditional system: threshold based classification
– Online unsupervised learning, K-mean algorithm
– No prior K available, how to dynamically decide K?

K=1 K=2 K=3 K=4

Determining K

Time Sensor node ReputationEx:
1 groupTime Sensor node Reputation

t1 s1 0.949
s2 0.918

t s 1

1 group

2

S. K. Das

t2 s1 1
s2 0.602

2 groups



Aggregator: Opinion Formulation

Degree of trust in aggregation result
Trustworthy

),,,( A
X

A
X

A
X

A
X

A
X audb=ω

Trustworthy
Nodes whose data close to mean

Uncertain
N d h d t t l tNodes whose data not close  to mean
Uncertain nodes’ reputation
- how much contribution to expected opinion?

How much to 
trust?

Formulation
belief: percentage in (          )
disbelief: 0 (after excluding outlier)

σ±x

uncertain: percentage out of above range
relative atomicity: reputation of nodes fall out the range
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Trust FrameworkTrust Framework

Josang’s trust model:
Represent belief in result

Cryptography not enough Reputation-based
trust model

at
io

n

Trust propagation

Statistical analysis:
Robust estimation

classification analysis

Intrusion detection:
Compromised nodes

Information theory
re

pu
ta

O li i d l i

High redundancy

Online unsupervised learning:
Identify compromised nodes

Purge false data
Relative entropy: reputation
Shannon’s entropy: Kulback-
Leibler distance

Result: Robustness and Reliability under Attack
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Simulation Results: ReputationSimulation Results: Reputation

Case 
No.

Misbehaving 
time (%)

False 
data type

1 0 N/A

2 100 Obvious
0.8

1

2 100 Obvious 

3 100 Tricky

4 66 Obvious

5 66 Tricky

0.4

0.6

R
ep

ut
at

io
n

0.2

0.4R
e

Case 1
Case 2
Case 3
Case 4

0
0 5 10 15 20 25 30

Node ID

Case 4
Case 5

No malicious nodes, all nodes’ reputation close to 1

Reputation of malicious nodes significantly lower than legitimate ones
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Reputation of malicious nodes proportional to amount of true data they send



Test case
1

Simulation Result: OpinionSimulation Result: Opinion

Case 
No.

Misbehaving 
time (%)

False 
data type

1 0 N/A

Test case

0.97

0.98

0.99

n 2 100 Obvious 

3 100 Tricky

4 66 Obvious

5 66 Tricky
0.95

0.96

0.97

O
pi

ni
on

Case 1 5 66 Tricky

0.93

0.94

0 5 10 15 20 25 30 35 40

Case 1
Case 2
Case 3
Case 4
Case 5

False data sneaking into aggregation (Cases 2, 4) may affect result 
“pollute” legitimate node’s reputation

0 5 10 15 20 25 30 35 40

Time

pollute  legitimate node s reputation

Low opinion or polluted reputation result from low reputation nodes

Detection/blocking malicious nodes opinion / confidence increases

S. K. Das

g p

Opinion correctly represents the belief in the result



Cooperative Malicious Nodes (10%)Cooperative Malicious Nodes (10%)
Scenario: Malicious nodes behave “good” at first 1/3Scenario: Malicious nodes behave good  at first 1/3 
experiment, then they all send same data each time

Evolution of Reputation Aggregation Result
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Malicious nodes can be identified as long as they misbehave.
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Aggregation result robust to cooperative malicious nodes of 
different fractions



- Integrated multi-level security framework in wireless

ConclusionsConclusions
Integrated multi level security framework in wireless 

sensor networks.

- Epidemic theory modeling to control spread of infectedEpidemic theory modeling to control spread of infected 
nodes and outbreak.

- Information theory based reputation to detect intrusion- Information theory-based reputation to detect intrusion 
of malicious nodes.

- Belief / trust model to ensure secure information- Belief / trust model to ensure secure information 
aggregation by effectively filtering false data.

Distributed key sharing and collaboration to revoke- Distributed key sharing and collaboration to revoke 
reveals secrets.

Digital watermarking technique to self correct

S. K. Das

- Digital watermarking technique to self-correct 
compromised data.



“A t h t l t h l h i

EpilogueEpilogue

“A teacher can never truly teach unless he is 
still learning himself. A lamp can never light 
another lamp unless it continues to burn its 
own flame. The teacher who has come to the 
end of his subject, who has no living traffic 
with his knowledge but merely repeats hiswith his knowledge but merely repeats his 
lesson to his students, can only load their 
minds he cannot quicken them”minds, he cannot quicken them”.

Rabindranath Tagore (1861Rabindranath Tagore (1861--1941)1941)

S. K. Das

Rabindranath Tagore (1861Rabindranath Tagore (1861 1941)1941)

(Indian Poet, Nobel Laureate,1913)(Indian Poet, Nobel Laureate,1913)
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