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Abstract—This paper presents PNETMAP, an algorithm that
maps virtual communication networks of a Cyber Physical
System onto a partially-known, physical network of reconfi-
gurable embedded systems. The paper describes in detail the
algorithm and offers an extensive set of experimental results
on the quality of the produced communication structures for
different network topologies. Experiments use a network of
reconfigurable PSoC devices, from Cypress Semiconductor Inc.
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I. INTRODUCTION

Cyber-Physical Systems (CPS) are envisioned to effec-
tively integrate large-scale data acquisition, processing, and
control to provide performance-efficient and dependable
operation in dynamic conditions [1]. Data acquisition is over
distributed physical areas, and uses a wide range of sensors
that sense with various resolutions physical attributes, like
temperature, humidity, gas composition, light intensity, and
magnetic field. Processing includes local computing based
on the sensed data as well as distributed algorithms for
global decision making [2]. The embedded sensing nodes
are connected through wired and/or wireless networks. CPS
are essential for many modern applications, like urban
transportation systems, intelligent power grid, health care,
homeland security, and many more [1], [3].

CPS originate a new set of challenges, including de-
pendable decision making for large, parallel and distributed
embedded systems. Optimal decision making requires com-
prehensive knowledge of the input and state information
over time [4]. This is hard to offer if data is acquired
from physically distributed areas, pre-processed by resource-
limited embedded nodes, and communicated over slow,
unreliable communication links. Data aggregation helps ef-
ficient decision making under unreliable data acquisition
conditions and tight resource and performance constraints as
it produces more compact models [5] that simplify decision
making and aid inferring properties of their behavior and
performance (e.g., stability and latency). Data aggregation

also helps compensate for noisy or missing data. Exist-
ing methods for wireless sensor networks (WSN) perform
mostly single-level, monotonic aggregation based on basic
functions like average, minimum and maximum [6]–[12].
Their goal is mainly to reduce the amount of transmit-
ted data. In contrast, aggregation for CPS must produce
precise models of the physical environment by combining
data through non-monotonic functions, and organizing the
models in semantic hierarchies based on the application
specifics. Minimum-length communication topologies that
are efficient for WSN might however contribute to creating
imprecise models because valuable information is lost along
the communication paths. For CPS, the communication paths
can serve also as directions along which data aggregation
for model construction is performed. In addition, various
performance constraints must be satisfied regarding model
resolution, timing, and event handling, in addition to tackling
the more traditional metrics, like communication bandwidth
and energy consumption. Thus, data communication for
model construction through aggregation must be dependable
under a wide range of operation conditions and constraints.

This paper presents PNETMAP, a data communication
mapping algorithm for dependable, performance constrained
CPS. PNETMAP is part of a design flow for a goal-
oriented programming model [13], in which virtual spaces
approximate the attributes of physical spaces. A small set
of reference nodes are the link between virtual and physical
spaces. As explained later in more detail, virtual spaces offer
a good compromise between performance-predictable, de-
pendable decision making and reactive response to dynamic
conditions. PNETMAP maps a virtual network configuration
for a virtual space onto a physical network of reconfigurable
embedded nodes while preserving, as much as possible,
the overall trace of the virtual paths and meeting the
performance requirements of the paths, such as bandwidth
and length. PNETMAP operates in two steps: first, an
initial physical path is generated according to the virtual
configuration, and second, the initial path is expanded by
connecting neighboring nodes until a desired path thickness
is achieved. The mapping algorithm is fully distributed. It
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performs only local decisions that involve a node and its
closest neighbors. The two steps combine priority-based
algorithms with backtracking.

The paper has the following structure. Section II of-
fers an overview of the network application and the map-
ping algorithm. Section III gives a detailed presentation
of PNETMAP. Considerations on communication interface,
memory requirements and execution time are given in Sec-
tion IV. Experimental results are presented in Section V.
Finally, conclusions are put forth.

II. APPLICATION ENVIRONMENT AND ALGORITHM
OVERVIEW

Figure 1 shows the general characteristics of the tack-
led applications. Warehouse temperature monitoring is an
illustrative example. Three layers of micro sensors are used
to control macro actuators. The basic layer is a network
of temperature sensors. The acquired information is used
to maintain the temperature within the range [A, B]. An
event occurs if in any point of the monitored region, tem-
perature rises above the limit C. In this case, the reaction
time for handling the event must be less than the timing
constraint D. A second layer of humidity sensors monitors
the air humidity, so that if humidity rises above a certain
level then the temperature of that area is adjusted to the
range [P,Q]. Finally, a third layer of RFID sensors is used
to detect a certain kind of objects, so that the temperature of
their storage space is set to the range [X, Y ]. The application
requires a data sampling precision, expressed in this case as
the maximum time Tlim between two samplings of the same
temperature sensor.

The macro actuators are controlled based on data acquired
through a network of distributed micro sensors, as shown
in Figure 2. This paper considers that the application is
executed on a grid of nodes connected through wired links.
Every node is equipped with sensors. The node architecture

is reconfigurable, thus the performance characteristics of the
sampling modules, processing blocks, and communication
modules can be changed dynamically. The control algo-
rithms adapt dynamically the actuator behavior depending
on the environmental characteristics (e.g., temperature, hu-
midity, and position) and the activity of the other actuators.
For example, the behavior of the control procedure of
actuator A1 in Figure 2 depends on the behavior of actuator
A2 as both actuators act on the same physical entities
(specifically, the mass of air) inside the room. This control
process requires having an accurate representation of the
environmental characteristics over space and time.

The considered programming model [13] assumes two
decision making spaces: (i) the virtual space and (ii) the
physical space. The physical space is a representation of
the real space characteristics, including static and moving
objects, and environmental conditions. Every point in the
space is described by a set of attributes, such as Cartesian
position, temperature, humidity, gas composition, etc. The
virtual space is an approximation of the physical space.
Only a small subset of points (called reference nodes)
are mapped from the physical space to the virtual space.
They establish a one-to-one correspondence between the two
spaces. Reference points have all attributes of the similar
points in the physical space.

Using virtual spaces for description offers several advan-
tages. They offer a good compromise between performance-
predictable decision making and reactive response to dy-
namic conditions. Virtual spaces are used to compute long-
term (strategic) decisions [13]. These decisions define con-
straints that must be constantly met by the short-term
(tactical) decisions at the physical level. Decisions for virtual
spaces are more predictable as they are computed using
comprehensive information over time and space. This infor-
mation captures general trends of the application, and thus
changes less often. In contrast, decisions for physical spaces
are more flexible to the specific conditions during operation
but their overall performance is harder to estimate. Second,
virtual spaces improve the scalability of the approach as
global decisions do not have to consider detailed information
besides that available at the reference points. Some of the
physical information (e.g., global time and position of all
sensors) is costly to obtain at the overall level. Having
virtual spaces reduces the time and resource overhead of
decision making as compared to solutions where data has to
be constantly updated at the global level.

PNETMAP maps a virtual network configuration, rep-
resented by a number of virtual nodes arranged in a grid
pattern and a set of paths defined within this virtual grid,
onto a physical (real) network of embedded nodes. The algo-
rithm explores the unknown network configuration between
two such reference nodes to determine the physical-level
paths while preserving, as much as possible, the overall
trace of the virtual paths. For PNETMAP to generate a
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Figure 3. Virtual to physical mapping. (a) Virtual path with limited number
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point

physical path closely matching a virtual path, it is desirable
to build the virtual paths such that reference nodes are
used wherever the virtual path changes direction. This is
not a hard requirement, however, it helps in having a close
resemblance between the virtual and physical paths. Figure 3
illustrates the difference between virtual and physical paths
with and without this requirement. We call virtual path
segment the part of a virtual path between two consecu-
tive reference points. Virtual path segments are mapped to
physical segments.

Each embedded node can have two different functional-
ities, sensing and aggregation. Hence, two types of nodes
are present in a network: (i) data sensing nodes and (ii) data
aggregation nodes. Data sensing nodes perform data acqui-
sition using different sensor types and transmit this data
throughout the network along the defined paths. In addition
to data sensing functionality, aggregation nodes also perform
data mining methods on both sensed and received data, while
transmitting aggregation results along the physical paths. In
the virtual space, all nodes implement the aggregation func-
tionality. Since the physical network topology is expected to
differ from the virtual grid, PNETMAP assigns real nodes
as aggregation or sensing by using a uniform distribution
of the virtual aggregation nodes on the corresponding path
segments. This implies having the same number of aggre-
gation points on both virtual and physical segments, with
the physical segment having additional sensing points, if the
length of the physical segment is greater than the length of
the virtual segment.

The proposed mapping algorithm operates in two steps:
first, an initial physical path is generated according to the
virtual configuration and second, the initial path is expanded
by connecting neighboring nodes to it until a desired path
thickness is achieved. The thickness of the physical path is
defined here as the grid distance between nodes added in the
second step and the closest node added to the path in the
first step. This two step approach is desirable with respect
to the programming framework [13] in which PNETMAP
is included. Apart from allowing decision making and data
aggregation to cover a wider physical area, it also enables

application specific reconfiguration of the physical paths.
Integrating the two steps into a single flow is avoided due
to the distribution of aggregation nodes along a physical
path segment being known only when an entire segment is
mapped while nodes added in the path expanding step are
preferably linked to data sensing nodes which have a smaller
computational load. Given that the mapping algorithm is
fully distributed, PNETMAP performs only local decisions
that involve the current node and its immediate neighbors.

III. ALGORITHM DETAILS

PNETMAP operates on wired embedded systems net-
works. Both virtual and physical spaces have a grid network
topology. For the physical grid, Cartesian coordinates define
the position of a node with its neighbors being considered
in one of the four directions: up, left, down, and right.
We call physical networks with unavailable nodes (due to
malfunction) partial grid networks and networks with all
available nodes are referred to as full grid networks.

Before PNETMAP is executed, a network discovery pro-
cess is performed by each available node in the physical
grid. This determines the status of its neighbors (on-line or
unavailable) along the four possible directions. An inquiry
signal is transmitted and a reply is expected from on-
line neighbors within a predefined time-out period. This
functionality is not integrated in PNETMAP since in the
goal-oriented programing scheme the network discovery
process is required as a standalone primitive.

A. Initial Path Generation

In step one (initial path generation), PNETMAP uses
sequences of two consecutive reference nodes from the
virtual path to find a similar path segment in the physical
grid. Starting from the first reference node (segment start),
the algorithm advances to any available neighbor in the
direction imposed by the coordinates of the second refe-
rence node (segment end). Since the physical network is
considered to have a structure close to a grid, an available
direction is one for which the neighboring node is on-
line or if it has not been previously explored. For each
node, two constraints are checked before it is added to the
physical path: (i) the total path latency constraint and (ii) the
available data rate constraint. The latency constraint defines
the maximum allowable length of the physical path. The data
rate constraint is used to verify and set the communication
interface rate and data sensing rate of the sensing nodes.
Both latency and rate constraints are propagated along the
mapped path as the algorithm advances. Once a physical
segment is produced, the algorithm sets the participating
nodes as either aggregation or sensing nodes based on the
number of nodes on the corresponding virtual segment.
The aggregation nodes are uniformly distributed along the
physical path.
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Figure 4. Scenarios which require backtracking. (a) No new direction
available; (b) Path cycle generated. Black: node where backtracking is
required

for each vPath segment

currentNode=segmentStart

while currentNode!=segmentEnd

check directions:

if unused direction exists

select an unused available direction d

if constraints(currentNode,d) are met

add currentNode to pPath with direction d

mark direction d as used

currentNode=neighbor in direction d

else

mark direction d as used

else

backtrack:

currentNode=previousNode from pPath

if currentNode=segmentStart & \

no unused directions available

return failed

add segmentEnd to pPath

return success

}

go to check directions

initialPathGeneration(vPath,ref. points){

Figure 5. Initial path generation process pseudocode

There are situations that require the algorithm to backtrack
and use a different set of physical nodes or directions to build
an initial path segment. Such cases are encountered when,
at the present node, some of the imposed constraints are
not met, or its neighbors are not available, thus, rendering
all directions unavailable. The algorithm must backtrack
to select another set of alternatives that might satisfy the
constraints or take a different route to avoid unavailable
nodes. Backtracking is also needed when a cycle is generated
on the initial path, such as when a node is reached that is
already assigned to the same path. The two backtracking
scenarios are shown in Figure 4. Before the algorithm
backtracks, the directions that have been explored without
success are marked as unavailable, therefore preventing sub-
sequent explorations of the same unproductive alternative.

The pseudocode of the initial path generating step is
shown in Figure 5. vPath is the virtual path, and pPath
represents the generated physical path.

The physical topology characteristics, such as the number
and position of the unavailable nodes, determines the length
of the backtracking steps. Since the algorithm moves towards
the segment end, a situation like in Figure 6(a) can be
encountered. In this case, PNETMAP tries to determine a
path segment defined by reference points R1 and R2. The
algorithm advances by applying the forward steps 1, 2, 3,

(b)

(a)

back3back4

R R2

back back2 1

fwd2 fwd3fwd1 fwd4

1

R R2

back back back3 2 1

fwd2 fwd3fwd1

fw
d
5

fwd4

1

Figure 6. Physical network topology impact on backtracking. Black: on-
line node, white hashed: unavailable node. (a) Backtracking length;
(b) Backtracking to segment start with no other alternatives
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Figure 7. Physical network topology impact on path length. Black: on-line
node, white hashed: unavailable node. (a) No unavailable nodes: segment
length 6; (b) Unavailable nodes cluster increases segment length by 33%;
(c) Unavailable nodes cluster increases segment length by 66%

and 4. After step fwd4, the current node does not allow the
advancing in any direction (all neighbors unavailable), so the
method backtracks three times, until another available and
unexplored alternative is found to allow forward advance
(such as fwd5). Figure 6(a) shows how the topology pa-
rameters correlate to the length of backtracking. Note that
backtracking can still fail if the network topology or the
constraints force the algorithm to return to the segment
start and no other unexplored alternatives are available.
Figure 6(b) illustrates such a situation.

Clustering unavailable nodes affects the length of the phy-
sical paths. Three different situations are shown in Figure 7
where the lengths of the physical path segments are affected
by the grid characteristics. Depending on the size and layout
of the unavailable nodes cluster, the length of a segment can
increase by more than 50%, as seen in Figure 7(c).

B. Path Thickening

In step two (path thickening), PNETMAP performs path
expansion for each previously generated path, by trying to
attach neighbors to the path. This is a progressive process,
applied from node to node, until the specified path thickness
is obtained or the unavailable nodes prevent further attach-
ments.
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Figure 8. Initial path expansion process. Black: initial path node, gray: ex-
pansion added node, white hashed: unavailable node; A: aggregation,
S: sensing

The path thickening routine traverses the initial path
and builds for each node a list of the directions that are
not already assigned. The algorithm processes neighbors
only along these directions. For each such neighbor (called
current node), a list of its neighbors is generated by inquiring
all possible directions. Once this list is built, PNETMAP
determines the best connection for the current node based
on a set of priorities. A new node is preferably connected
along the original expansion direction and to a data sensing
node. If such a node is not found, the algorithm checks if any
of the remaining neighbors of the new node are connected
to an initial path data sensing node, and a connection to
this node is produced. If the second priority fails, the new
node is connected in the original expansion direction to a
data aggregation node from the initial path. In the event that
multiple neighbors satisfy the same priorities, the current
node is connected to the neighbor with the least number of
used connections and furthest down the path. The given set
of priorities minimizes the length of parallel path routes,
and ensures that new nodes are most likely connected to
data sensing nodes. This is an advantage since it reduces
the amount of data traffic through aggregation nodes, which
are already involved in performing intensive computations
for data mining.

Once a new node is added to the path, based on the
previous priorities, the algorithm decides if any of the node’s
neighbors (which are already assigned to the current physical
path) can be connected to the current node to improve
the quality of the overall path mapping. If any neighbor
matches the criteria, a signal is transmitted to inform the
node to change its current path connection to the current
node. Any neighbors that are not assigned to this path are
instructed to connect to the current node, and hence get
linked to the physical path. While most of the nodes set
their connections based on the priorities of the expansion
step, this action is required to identify neighbors that might
be otherwise missed. Figure 8 shows such a case. If the
unassigned neighboring nodes are not instructed to connect
to the current node, the path thickening step would never
reach them due to the specific layout of the unavailable
nodes.

The same process is then applied to the next node along
the original path expansion direction, until the set thickness
is achieved. At this point, the algorithm returns to the initial

for each node on initial  pPath

for each direction not used on pPath

while pPath thickness not obtained & \

expandPath(vPath,pPath,thickness){

expandDirection available

currentNode=neighbor in expandDirection

using priority list and constraints

add/reconnect currentNode to pPath

for all other neighbors of currentNode

if neighbor is on pPath

using priority list and constraints

check reconnect to currentNode

else

connect neighbor to currentNode

return to initial pPath node

expandDirection=currentDirection

}

Figure 9. Path thickening process pseudocode
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Figure 10. Impact of aggregation/sensing nodes distribution on generated
path. Black: initial path node, gray: expansion added node; A: aggregation,
S: sensing. (a) Distribution generated by 4 virtual nodes for 4 physical
nodes; (b) Distribution generated by 2 virtual nodes for 4 physical nodes

path, and the next node is analyzed until all nodes are
investigated. Before adding a new node to the path, the
latency and rate constraints are checked.

The pseudocode of path thickening is presented in Fi-
gure 9. A partial PNETMAP result is shown in Figure 10
for different mappings of virtual grids onto the same physical
network. The number of virtual nodes imposes a different
distribution of the aggregation and sensing nodes in the
physical network. The generated results are different since
the priority list used in the thickening process defines a
connection to a data sensing node. The execution times for
the two scenarios in Figure 10 also show small variations
due to the signals that are transmitted in each case.

In contrast to the initial path generation step, path thick-
ening does not backtrack. This is not a limitation since,
based on the priority list, every node and every neighbor
is connected such that the overall result is optimized. This
includes reconnecting nodes to different points, if a higher
priority is satisfied as thickening advances. In fact, this
is similar to backtracking, with the range limited to the
immediate neighbors. As shown in the fallowing sections,
backtracking lengths of one and two solve most situations.
Using a neighbor window for path thickening is similar
to a maximum backtracking length of two. Hence, path
thickening does not require backtracking.



IV. COMMUNICATION, MEMORY AND EXECUTION TIME
CONSIDERATIONS

The considered physical grid network is based on the
embedded PSoC processor from Cypress Semiconductor
Inc. [14]. The communication links in each direction are
implemented using the UART module of PSoC. PNETMAP
uses five basic communication packet types for implement-
ing its functionality: (i) Advance packets contain the coor-
dinates of the segment end reference point and information
about path constraints. (ii) Backtrack packets inform the
receiving node that a backtracking situation was discovered.
(iii) Inquire neighbor packets contain the path ID for which
information is requested. (iv) Reply to inquiry packets tell
the receiving node if the transmitting node is assigned or
not to the inquired path as an aggregation or sensing node.
They contain the total number of connections that the node
is using for the inquired path. (v) Connect packets force the
receiving node to establish a path link to the transmitting
node. Minimizing the communication between nodes (e.g.,
the total number of bytes used by each packet) is done using
bit encoding. This is needed since UART supports only byte-
sized data transmissions.

The memory requirements of PNETMAP have been de-
termined by considering that the memory word is one
byte long. The algorithm uses the following data structure
stored locally by a node: (i) node coordinates - 2 bytes;
(ii) coordinates of reference node (segment end) - 2 bytes;
(iii) list of available connections (directions) - 4 bytes for
a full grid; (iv) for each available connection, a list of
the paths that use the connection - 1 byte for each path;
and (v) for backtracking, a flag is saved for each available
connection to signal if it has been explored or not - 4 bytes
for a full grid. In addition, 4 memory bytes are needed by
the expansion process for storing information about each
neighbor. Given a maximum number of five paths in the
physical grid network, 36 bytes are required by the algorithm
at each node. This memory requirement does not include
any auxiliary locations needed to implement the algorithm’s
functionality.

The execution time for PNETMAP on a real PSoC net-
work was measured with respect to the number of data
bytes that had to be transmitted by the implementation. The
data bytes were transmitted through the UART interface
configured at a rate of 60,000 bps. The resulting time is
converted to equivalent clock cycles for a PSoC device
running at 24 MHz. For this configuration, 0.18 milliseconds
are needed to transmit one byte. The time is equivalent to
4,320 clock cycles.

V. EXPERIMENTS

All experiments described in this section have been per-
formed on a set of three virtual paths, shown in Figure 11.
Path1 and Path3 bound the different virtual grid configu-

path

path

path

1

2

3

Figure 11. Virtual paths configuration used in experiments

rations considered. This includes different numbers of total
virtual nodes and different numbers of reference points.

Experimental results report only the time for transmitting
the required packets through the physical grid. The execution
time of the PNETMAP algorithm on a node is not included.
For the used transmission rate, this approximation is accurate
enough because the algorithm uses only a few if statements.
Implemented efficiently in assembly language, the execution
time of PNETMAP is only a few hundreds of clock cycles,
which is insignificant as compared to the thousands of clock
cycles required to transmit one byte at 60,000 bps. Due
to the same reason, the delay between a node receiving
a packet and sending back a reply was also ignored. This
approximation produces a significant error only for higher
baud rates. Results of the execution times are presented in
both milliseconds and equivalent clock cycles.

Randomly generated configurations have been used plac-
ing unavailable nodes in the physical grid layout. The
network discovery process is performed before the algorithm
is executed in order to identify the unavailable nodes. The
process requires the available nodes to send one byte to
all neighbors. Receiving a reply byte within a time-out
period marks the neighboring node as on-line. Otherwise,
a neighbor is unavailable. The considered time-out period
is the time needed to transmit three bytes. The execution
time of the discovery process is presented in Table I. As
the number of unavailable nodes increases, the number of
time-outs is also higher. However, this does not increase
the execution time since the number of inquiries and replies
reduces, thus causing a decrease in the overall execution
time.

A. Execution Time

This section discusses the execution time of PNETMAP.
Different scenarios have been investigated, including differ-
ent virtual path thickness and various network configurations
for both virtual and physical spaces.

In Table II, the time required to implement a virtual
paths mapping is given for a full and partial grid physical
network (10×10 configuration) for different numbers of
virtual to real reference points. The path thickness set for
the expansion process is ±2 and the virtual topology used
is a 5×5 grid. Experiments suggest that the number of
reference points does not impact the execution time of
the initial path generation step for neither full nor partial
grids. For path thickening, small variations of the execution



Table I
EXECUTION TIME FOR NETWORK DISCOVERY PROCESS

Total # # Off-line # # # Exec. Time Exec. Time
Nodes Nodes Inquiries Replies Time-outs [ms] [clk cyc]

36 0 144 120 24 60.48 1,451,520

36 3 132 98 34 59.76 1,434,240

36 7 116 72 44 57.6 1,382,400

36 14 88 44 44 47.52 1,140,480

81 0 324 288 36 129.6 3,110,400

81 8 292 230 62 127.44 3,058,560

81 16 260 178 82 123.12 2,954,880

81 32 200 112 88 103.68 2,488,320

225 0 900 840 60 345.6 8,294,400

225 22 812 684 128 338.4 8,121,600

225 45 732 552 180 328.32 7,879,680

225 90 552 332 220 277.92 6,670,080

time exist with the change in number of reference points.
This is due to the different aggregation and sensing nodes
distributions generated. Situations similar to the ones shown
in Figure 10 were encountered. The same argument is
consistent for changes in the virtual space architecture. A
maximum variation of 5% in execution time was observed
for virtual networks of different sizes.

The execution times for different physical networks are
shown in Tables III (full grid) and IV (partial grid). A 4×4
virtual network and multiple path thickness settings were
used. Comparing the execution time needed for determining
the initial path and the execution time required to expand
the initial path, more than 50% of the total execution time
is used by the second step. For larger physical networks,
this percentage is much higher. Considering different levels
of path thickness for the same number of available nodes,
the execution time drastically increases as the thickness
increases since more neighbors are explored.

The initial path generation execution time is almost lin-
early related to the number of nodes for full grid networks.
For partial grid networks, the initial process requires more
time, due to the increased path length caused by unavailable
nodes distributions. For an 81-node, 20% partial grid net-
work, a spike in the execution time can be observed. This is
due to the random distribution of unavailable nodes creating
a much longer initial path than for the same full grid network
topology. The path thickening process execution time does
not include such “spikes”. The time is almost linearly related
to the total number of nodes for both full and partial grid
networks. However, the expansion process requires less time
as more nodes are unavailable, in contrast to the initial path
generation process. This is because there are fewer neighbors
that need to be explored by the algorithm.

The experimental results suggest that the critical step
is the path thickening step. Even for an extreme number
of 14 backtracking steps, the ratio between the initial and

thickening steps does not go above 70%. Such high ratios
are only observed for relatively small networks. At the other
extreme, this ratio can be as low as 7% for large full grid
networks and a path thickness of ±4 nodes.

PNETMAP fails in the initial step for two of the tested
scenarios. This is due to the randomly generated unavailable
nodes creating a topology for which PNETMAP does not
find a solution after exploring all possible alternatives for
a path segment. The topologies are similar to the one in
Figure 6(b). To reduce the likelihood of such scenarios,
PNETMAP has to eliminate the reference point (segment
start) from the physical path and search for alternatives that
skip this reference point. One possible solution would be to
consider the last node added before blocking occurs as a new
reference for defining a path segment, and then attempting
to map this configuration.

B. Longest and Shortest Paths

The lengths of the shortest and longest physical paths
generated by PNETMAP for full grid and partial grid
networks are shown in Table V and Table VI. These paths
were determined based on the virtual paths in Figure 11.
The shortest path is considered as the length of the initial
path only, while the longest path also includes the thickening
process.

For full grid networks (Table V), the shortest path length
is equal to the grid distance required to implement the path.
The longest path is imposed by the path thickness. Due to
the nature of the expansion process, an absolute maximum
longest path that can be generated by the algorithm is
equal to the length of initial path + path thickness + one
node. The worst case is reached in few situations, since
the aggregation and sensing nodes distribution dictates the
connections selected by the thickening step, as nodes are
attached further down the path, if possible.



Table II
EXECUTION TIME FOR DIFFERENT NUMBERS OF REFERENCE POINTS (5× 5 VIRTUAL NETWORK AND 10× 10 PHYSICAL NETWORK)

# Ref. # Off-line Total # Initial Path Path Expansion Total Exec. Total Exec.
Nodes Nodes Back Steps Exec. Time [ms] Exec. Time [ms] Time [ms] Time [clk cyc]

7 0 0 29.7 200.88 230.58 5,533,920

7 10 2 35.1 182.7 217.8 5,227,200

7 20 1 36.72 124.92 161.64 3,879,360

11 0 0 29.7 200.88 230.58 5,533,920

11 10 2 35.1 181.98 217.08 5,209,920

11 20 1 36.72 124.38 161.1 3,866,400

15 0 0 29.7 200.88 230.58 5,533,920

15 10 2 35.1 180.18 215.28 5,166,720

15 20 1 36.72 124.38 161.1 3,866,400

Table III
EXECUTION TIME FOR FULL-GRID NETWORKS BASED ON A 4× 4 VIRTUAL NETWORK

Total # Path Initial Path Path Expansion Total Exec. Total Exec.
Nodes Thickness Exec. Time [ms] Exec. Time [ms] Time [ms] Time [clk cyc]

36 ±1 16.74 58.68 75.42 1,810,080

36 ±2 16.74 109.44 126.18 3,028,320

36 ±4 16.74 186.3 203.04 4,872,960

49 ±1 19.98 70.92 90.9 2,181,600

49 ±2 19.98 133.02 153 3,672,000

49 ±4 19.98 235.62 255.6 6,134,400

81 ±1 26.46 95.76 122.22 2,933,280

81 ±2 26.46 180.36 206.82 4,963,680

81 ±4 26.46 344.16 370.62 8,894,880

100 ±1 29.7 106.56 136.26 3,270,240

100 ±2 29.7 200.88 230.58 5,533,920

100 ±4 29.7 384.12 413.82 9,931,680

225 ±1 45.9 170.28 216.18 5,188,320

225 ±2 45.9 322.92 368.82 8,851,680

225 ±4 45.9 622.8 668.7 16,048,800

For partial grid networks (Table VI), the length of both
shortest and longest path depends on the distribution of
unavailable nodes. There are cases with an increase in
shortest path length of up to 106% for 14 backtracking
steps. This was obtained for an 81-node, 20% partial grid
network. For the same case, a spike in the initial step
execution time was also observed. For the longest path, the
same dependency on the path thickness and distribution of
aggregation and sensing nodes is valid as for the full grid.
In addition, the distribution of the unavailable nodes also
influences the length by reducing the number of nodes that
are added to the path during the thickening step.

C. Algorithm Backtracking

A set of 150 experiments were performed on different
partial grid networks with randomly generated unavailable
nodes in an effort to establish a distribution of the lengths of
backtracking and the directions that resolve a backtracking
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Figure 12. Relative overall backtracking length

situation.
Figure 12 presents the observed backtracking length dis-

tribution. Clearly, the dominant backtracking length used is
one, fallowed by length two. These two cases account for



Table IV
EXECUTION TIME FOR PARTIAL-GRID NETWORKS BASED ON A 4× 4 VIRTUAL NETWORK

Total # # Off-line Path Total # Initial Path Path Expansion Total Exec. Total Exec.
Nodes Nodes Thickness Back Steps Exec. Time [ms] Exec. Time [ms] Time [ms] Time [clk cyc]

36 3 ±2 1 19.44 86.94 106.38 2,553,120

36 3 ±4 1 19.44 128.52 147.96 3,551,040

36 7 ±2 0 18.9 45 63.9 1,533,600

36 7 ±4 0 18.9 59.94 78.84 1,892,160

36 14 ±2 FAIL - - - -

36 14 ±4 FAIL - - - -

81 8 ±2 3 31.32 155.34 186.66 4,479,840

81 8 ±4 3 31.32 261.54 292.86 7,028,640

81 16 ±2 14 45.9 122.94 168.84 4,052,160

81 16 ±4 14 45.9 175.32 221.22 5,309,280

81 32 ±2 6 36.18 53.46 89.64 2,151,360

81 32 ±4 6 36.18 79.42 115.6 2,774,400

225 22 ±2 5 55.08 312.12 367.2 8,812,800

225 22 ±4 5 55.08 523.08 578.16 13,875,840

225 45 ±2 7 59.4 264.42 323.82 7,771,680

225 45 ±4 7 59.4 385.74 445.14 10,683,360

225 90 ±2 FAIL - - - -

225 90 ±4 FAIL - - - -

Table V
PATH LENGTHS FOR FULL-GRID NETWORKS BASED ON A 4× 4

VIRTUAL NETWORK

Total # Path Shortest Longest
Nodes Thickness Path Path

36 ±1 11;11;11 12;11;12

36 ±2 11;11;11 13;12;13

36 ±4 11;11;11 15;13;13

49 ±1 13;13;13 14;14;14

49 ±2 13;13;13 15;15;15

49 ±4 13;13;13 17;13;17

81 ±1 17;17;17 18;18;18

81 ±2 17;17;17 19;19;19

81 ±4 17;17;17 21;17;21

100 ±1 19;19;19 20;20;20

100 ±2 19;19;19 21;21;21

100 ±4 19;19;19 23;21;23

225 ±1 29;29;29 30;30;30

225 ±2 29;29;29 31;31;31

225 ±4 29;29;29 33;33;33

more than 90% of the total 560 backtracking situations. The
average number of backtracking locations per test case was
four. Assuming a worst case scenario of only length three
solving four such cases, an increase in execution time of
only 6 ms results. This is less than 10% of the smallest
total execution time. Further improving the backtracking of
PNETMAP does not significantly reduce the execution time
due to the dominance of the path thickening step on the total

Table VI
PATH LENGTHS FOR PARTIAL-GRID NETWORKS BASED ON A 4× 4

VIRTUAL NETWORK

Total # # Off-line Path Shortest Longest
Nodes Nodes Thickness Path Path

36 3 ±2 15;11;11 16;12;12

36 3 ±4 15;11;11 16;12;12

36 7 ±2 15;11;11 16;11;12

36 7 ±4 15;11;11 16;11;11

36 14 ±2 FAIL FAIL

36 14 ±4 FAIL FAIL

81 8 ±2 23;17;17 24;19;19

81 8 ±4 23;17;17 25;19;21

81 16 ±2 35;21;17 36;21;19

81 16 ±4 35;21;17 37;21;22

81 32 ±2 25;21;17 29;25;19

81 32 ±4 25;21;17 29;25;21

225 22 ±2 39;31;29 39;33;31

225 22 ±4 39;31;29 40;35;33

225 45 ±2 45;31;29 46;33;31

225 45 ±4 45;31;29 48;35;33

225 90 ±2 FAIL FAIL

225 90 ±4 FAIL FAIL

execution time, especially for large networks.
The distribution of directions which solve the backtrack-

ing situations is shown in Figure 13. The close resemblance
of this distribution to a uniform distribution proves that
using a preference-based selection of directions is not ad-
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Figure 13. Relative overall backtrack solving direction

visable for backtracking. The added complexity of such an
implementation does not compensate the small, if any at all,
improvement in execution time.

VI. CONCLUSION

This paper presents PNETMAP, a data communication
mapping algorithm for dependable, performance constrained
CPS. PNETMAP is part of a design flow for goal-oriented
programming, in which virtual spaces approximate the
attributes of physical spaces. PNETMAP maps a virtual
network structure for a virtual space onto a physical network
of embedded nodes while preserving, as much as possi-
ble, the overall trace of the virtual paths and meeting the
performance requirements of the paths, such as bandwidth
and length. PNETMAP executes two steps, first, an initial
physical path is generated according to the virtual configura-
tion, and second, the initial path is expanded by connecting
neighboring nodes.

Experiments performed on a network of reconfigurable
PSoC devices running at 24 MHz indicate that the execution
time of the path thickening step is the larger part of the total
execution time. It can be as high as hundreds of milliseconds.
However, doubling the baud rate would reduce this time by
50% allowing for adaptation of the algorithm performance to
the application requirements. Path length is affected by the
distribution of unavailable nodes in the physical grid and
can increase by as much as 106%. This distribution also
increases the execution time of the initial path generation
process but decreases it for path thickening.

Since the path thickening step is the longer to execute,
future work will focus on reducing it by developing more
efficient neighbor interrogation mechanisms. Adaptations for
wireless nodes will also be explored.
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