
SensorEar: A Sensor Network Based Eavesdropping
System

Ge Ruan, Soumya Jain and Sencun Zhu
The Pennsylvania State University

Emails: ruan@cse.psu.edu, ssj125@psu.edu, szhu@cse.psu.edu

Abstract— We present a sensor network based eavesdropping
system, SensorEar, which demonstrates a serious threat to an
individual’s privacy. The small size, long battery lifetimes and
easy deployment enable the use of sensor networks in mali-
cious ways. Our system comprises motes which record speech,
compress the data and transmit it over a multi-hop network
in real time. After noise reduction, we are able to hear, with
sufficient clarity, the person’s conversation. In contrast with
the 10 - 100 Hertz sampling of typical applications, audio
recording requires a sampling frequency of several kilohertz.
We address research challenges associated with this high data
volume system, and design solutions including a multi-rate
compression algorithm, communication protocol modifications
and a unique FDMA/TDMA based system architecture. We
have built a complete prototype using commercial off-the-shelf
components. Further, we have chosen the most basic hardware
to make our solutions truly platform independent.

I. I NTRODUCTION

Improvements in wireless communication and processor
technology have enabled the development of low cost, low
power, small sized motes which have sensing, computation
and radio communication capabilities.When deployed as a
network, they can be used in a wide range of civilian and
military applications. Typical deployments are in remote and
inaccessible places to collect data regarding various natural
phenomena, species of animals or environmental conditions.
Sensor networks are also used in industrial and other forms of
monitoring applications.

As an illustration of defense applications, consider a body
wearable sensor network [16], which estimates the locationof
a snipper based on information recorded from the gunshot. In
ecology research, scientists have deployed a sensor network
to identify, track and measure the population of rare birds and
their habitat conditions [10]. Similarly, a sensor networkhas
been used for industrial monitoring [2]. Recently, researchers
have started exploiting the use of sensor networks in our daily
lives. For example, the CodeBlue [15] system outfits patients
with motes, enabling nurses and doctors to continuously
monitor their vital conditions and status remotely. Similarly,
we could use a system to measure and track the performance
of athletes [5]. All of the above mentioned applications show
that sensor networks will enable many previously impossible
research projects and bring more convenience to our lives, at
the same time becoming increasingly pervasive.

The proximity and pervasiveness of sensor networks, how-
ever, raises the very important problem of privacy. In contrast
with the traditional concept of privacy in computer science,

this is a far more direct threat to personal privacy. Imagine
the following scenario. A dishonest student programs a mote
as a recording de- vice (using the microphone sensor) and
places it in his advisors office. Then he drops more motes,
programmed as routers on the path from the recording mote to
his own office. This sensor network enables him to eavesdrop
on all conversations in his advisors office! Another even more
dangerous scenario is where a sensor network deployed for a
valid application, could be used simultaneously for malicious
purposes.

Three main features empower the use of sensor networks in
such malicious ways. Firstly, they are “tiny” and thus difficult
to detect. For example, the MICA2 mote from Crossbow Inc.,
which we use in our project, is just 5 x 3.2 x 0.7 (cm),
weighing only 18 grams (excluding the battery pack). The
Smart Dust project [13], conceptualizes motes to be grain-
sized eventually. Secondly, the typical battery life of a mote is
above one year [3], and thus no “maintenance” is required fora
long time. Thirdly, sensor networks are commercially available
as ready-to-be-deployed kits. The technology currently being
in a development phase, they are somewhat expensive, but in
the future are expected to cost less than $ 1 per mote [13].

In this paper, we prove the seriousness and feasibility of
this “eavesdropping” threat. We present a complete working
system with commercial off-the-shelf products. Further, we
use only the cheapest and lowest capability platforms in
the market. Other contributions are addressing the research
challenges due to the contrast between the high data volume
of audio applications, and relatively very low platform band-
width. We present solutions involving radio stack modification,
a novel multi-rate compression algorithm and a FDMA/TDMA
based multi-hop system architecture for this application.

The rest of this paper is organized as follows. In Section 2,
we outline the related work. We describe the design goals in
Section 3. In Section 4 we explain the challenges faced due
to the platform’s limitations. Section 5 details the solutions
developed, while the implementation is presented in Section 6.
Finally, in Section 7 we analyze the performance from various
perspectives, and in Section 8 discuss the system limitations
and future work.

II. RELATED WORK

To the best of our knowledge, there is no personal privacy
relevant research in the area of sensor networks. Han et al.’s
research in [7] is somewhat close. They detect human presence



by sensing humidity of the environment. However information
about only presence /absence is brief and coarse, and may not
be crucial enough to pose a serious threat.

In 2007, Luo et al. [9] developed a distributed acoustic mon-
itoring system called EnviroMic. Their application is some-
what similar, but the primary objectives and design goals are
very different. Their project is aimed at exploring distributed
storage in sensor networks, where the motes are equipped with
a 512 MB flash memory to store all the sampled data, to be
retrieved later. Our goals are to achieve real time performance,
in which the recorded data is transmitted back as it is being
recorded. Also, they utilize the MICAZ [9] platform, which
has a maximum transmission rate of 250 kbps, while we use
the MICA 2, with a maximum data rate of 19.2 kbps. These
additional restrictions prompted us to develop compression
algorithms and make our system extremely efficient by design
itself. Further, if our prototype works well on MICA2 motes,
then it will work better on more powerful platforms.

In [11], the authors described a real-time voice stream-
capability in wireless sensor networks and summarized their
deployment experiences of voice streaming across a large
sensor network of FireFly nodes in an operational coal mine.
FireFly has several integrated layers including specialized low-
cost hardware, a sensor network operating system, a real-time
link layer and network scheduling. Although achieving the
same technical goal, our work differs from the above one
is that we use the off-the-shelf commercial MICA2 motes
instead of their own FireFly nodes. The radio of FireFly nodes
runs 802.15.4, which has the maximum raw data rate of 250
kbps, while the maximum data rate of MICA2 is only 19.2
kbps. Thus, we are faced with the greater challenge for timely
delivery of voice signals.

III. D ESIGN GOALS

Clear Intelligible Sound The human voice lies in the fre-
quency range of 300Hz to 3200Hz. According to Nyquist’s
Theorem, to achieve a perfect reproduction of the original
sound, from samples, the sampling rate should be at least
twice that of the highest frequency component in the signal.
Telephony applications generally use an 8 kHz sampling
frequency and that is what we aim to achieve.
Real-time SystemThe eavesdropper / computer listening to
the conversation should be able to hear the speech as it is
being spoken, with only a minimal delay for transmission and
processing. This implies that all the sound samples should be
“removed” from the mote system in real time, as opposed to
storing them temporarily (may be in an external flash) and
retrieved later. Assuming an 8 kHz sampling frequency, and
an 8 bits/sample ADC resolution, data is generated at 64 kbps,
and must be transmitted away at the same rate. Further, any
processing, both at the mote as well as at the base station
needs to be fast enough to meet the real time performance
requirements.
Multihop Capability We cannot realistically expect the eaves-
dropper to be within a one-hop range of the recording motes.
The system should have a multi-hop functionality, thus, being

able to transmit over fairly long distances. This implies de-
signing an efficient communication protocol for the sampling
motes, the intermediate routers (relaying motes) and the base
station.

IV. L IMITATION OF THE PLATFORM

We have chosen the MICA2 motes as our operating plat-
form. They are the cheapest, most basic motes available in
the market, with the lowest capabilities in terms of storage,
processing and transmission. This implies that the research
challenges we address here are completely platform indepen-
dent, and will only work better on later generation motes.
Further, while later generation motes today are more powerful,
it is reasonable to expect that the first motes to become truly
‘dust-sized’ will be with low capabilities.

Towards achieving our design goals, the limitations of
MICA 2 pose a lot of non-trivial challenges. Compared to
the MICAZ, TelosB and other later generation motes, MICA
2 is much weaker in several aspects. The limitations of the
hardware and software platforms, which motivate our project
to be more innovative, are detailed below.
Low Level Microphone We use the MTS310 sensor board,
which has a microphone. However, it is designed only to detect
the presence / absence of sound, for example in an application
like [16]. Correspondingly, the default TinyOS microphone-
control module returns only a Boolean variable. Practically,
this implies a lot of distortion and noise in the recorded speech,
while at the same time does not allow us to go below a certain
sampling rate.
Severe Memory Constraints As mentioned before, the
recording motes will generate data at 64 kbps. MICA 2 has
only a 512 KB external flash, which is however fairly slow
in writing - it potentially has a 3 ms stabilizing time after
each write. This implies firstly, that we cannot store the data
temporarily for very long, and secondly any processing that
has to be done on the data, needs to be with algorithms not
requiring a large block of data to operate on.
Low Transmission RateThe maximum data rate provided by
the MICA2 radio (CC1000 radio module) is 19.2 kbps (38.4
kbaud, with Manchester coding). Our ideal data rate required
is 64 kbps. Overcoming this gap is the major challenge of the
project.

V. SOLUTIONS

In this section we present the building blocks of our system.
These techniques enable us to achieve the design goals, and
overcome the limitations of the system.

A. Data Compression

The first solution we develop is the compression of the large
volume of data generated. As mentioned in the design goals
(Section 3.2), this rate is 64 kbps. The maximum data rate
achievable by the MICA 2 radio is only 19.2 kbps. Further,
with the default communication protocol stack, we are able
to achieve only about 4 -5 kbps typically. Towards bridging



this gap, the first building block of our system is a multi-rate
speech compression algorithm.

There are four main objectives which our algorithm here
must meet. Firstly, it must be simple enough to execute with
the mote’s limited resources. Secondly, it must run in linear
time (O(n)) to satisfy the real time constraint of the entire
system. Thirdly, its compression latency must be very low, i.e.,
it should not require the collection of a large block of samples
before it can execute. This is important because of the mote’s
low memory resources, and the real time performance goals
of the entire system. Finally, it must provide a high enough
compression ratio to be able to bridge the gap between the
high data generation rate and low transmission rate.

All generally used compression algorithms make tradeoffs
between the above mentioned objectives. WinZip achieves a
fairly high compression rate, but has a compression latencyof
32 KB - using block sizes below this drastically reduces the
compression rate. Typical audio compression algorithms like
MP3 and AC-3 use the Modified Discrete Cosine Transform
(MDCT) [14], which would be very difficult to run on the
mote’s processor, and do not have linear run times. In cell
phone communication, AMR(Adaptive Multi-Rate Compres-
sion) [20] is widely used in GSM and UMTS. It uses link
adaptation to select from one of eight different bit rates based
on link conditions. Our study found that the complexity of the
AMR algorithm is at least 5 times of our MRC algorithm.

Among the low bit rate speech encoding, the LPC(Linear
Predictive Coding) [21] is one of the most common ones.
It can yield a data stream with very low bit rate (2.4kbps),
but its compression speed is too slow for our application.
According to [21], the codec of LPC uses a bit rate of 2.4
kbit/s, requires 20 MIPS of processing power, 2 kilobytes of
RAM and features a frame size of 22.5 ms. Additionally, the
codec requires a large lookahead time of 90 ms. But according
to [4] and [1], the microcontroller of Mica2 provides 1 MIPS
per MHz while it runs at 7.37 MHz. In other words, the
processing power of Mica2’s CPU is 7.37 MIPS, which is
not enough for LPC.

Thus, instead of using any existing algorithms, we chose
to design our own compression algorithm, which would be
specific to the type of data we are dealing with and make a
balance between the compression rate and compression speed
according to the constraints imposed by the platform.

Algorithm Details Broadly speaking, we use a combination
of different algorithms (RLE [17] and PCM [12]), each yield-
ing a different compression rate - thus the name Multi-Rate
Compression (MRC).

Theoretically, the sampled data can range from 0 to 255.
However, we observe that the majority of them lie between
values of 116 to 122, with 119 corresponding to normal
silence. Firstly, we subtract 119 from the samples. Secondly,
we differentiate the data by taking the difference between
successive samples. We now observe that the majority of
values are between -3 and 3. Figure 1 shows the distribution
for a typical data set. This distribution led us to designing
three different techniques for each ‘mode’ of the data, i.e.one

���������	�
���� ���� �	�
���� ��� �	� 
��� � ���
Fig. 1. Sample Distribution of Data

for 0s, one for absolute values less than value 1, and the other
for absolute values less than 3. The percentage of absolute
values above 3 is small enough to be ignored. We clip them
into the third group by converting them to 3 or -3. For 0s, we
apply RLE, i.e. counting the number of consecutive zeros and
transmitting that value with an identifier. In this case, at most,
we can compress 63 consecutive zeros into 1 byte; or non-
zero values absolute under 1, we apply PCM for these values,
with a 3 level quantification (0,1,2) and compress 4 samples
into one byte; For non-zero values absolute values under 3,
we apply PCM again, with a 7-level quantification (0 through
6) and compress 2 samples into one byte.

The data output from different compression schemes are
mapped into different ranges before transmitting, and this
is used at the receiver to identify which scheme was used,
and run the corresponding decompression algorithm. The
compression rates thus are between a minimum of 2 and a
maximum of 63, and typically we achieve an average rate of
2.5 to 4.

TABLE I

AN EXAMPLE OF MRC

Input 0000 101 31
Status S0 S1 S2

Intermediate Step − (3 − ary)210 (7 − ary)62
Result(Binary) 4(0000 0100) 21(0001 0101) 44(0010 1101)
Mapping(+) 192(1100 0000) 0 (0000 0000) 128(1000 0000)

Output 196(1100 0100) 21(0001 0101) 172(1010 1100)

Table 1 illustrates how MRC works on an input sequence
0,0,0,0,1,0,1,3,1. The input size is 9 bytes, while the output
size is 3 bytes. So the compression rate is 3 here.

This algorithm satisfies all the requirements listed before.

• It is simple and requires no complex functions or pro-
cessing.

• It runs in linear time, i.e. O(n).
• Its compression latency is extremely low - typically 1

byte.
• We achieve a compression rate of 2.5 to 3, which is

enough for our application.

B. Optimization of Radio Protocol Stack

Transmission of the data back to the base station in real
time is the key part of this project and perhaps the most



28 7 29

Preamble Header Data Length

Fig. 2. Default Packet Length

challenging one, because the throughput is the bottleneck
of the whole system. The data sheet of MICA 2 specifies
the maximum transmission rate of the CC1000 radio to be
19.2 kbps. However, in practice we observe that this rate is
never achieved with the default communication protocols. We
could barely get a 4 - 5 kbps data rate in actual experiments.
Thus, our second enabling technique is the optimization of the
communication protocols, to achieve as close of the theoretical
19.2 kbps limit.

We find that the disparity in actual and theoretical data
rates is primarily due to two reasons - overheads and medium
contention. We address both these issues as described below.

Overhead Reduction: The default TinyOS packet length,
as shown in Figure 2, is 36 bytes - 7 header bytes and 29
data bytes. Further, for synchronization a preamble of length
28 bytes is used before every packet. This implies that the
effective payload is only 29 bytes out of 64 bytes per packet,
implying a relatively low efficiency of 45%. To address this
problem, we increased the payload size however to 247 bytes
resulting in an efficiency of 87%, which is much higher. This
achieves a 4 -5 kbps improvement in data rate.

Medium Contention: In TinyOS, CSMA/CA is applied as
the MAC layer protocol. On sensing and finding the channel
busy, the sender waits a random back off time, thus ensuring
a low probability of collision. This timer is set to the sum
of the packet length (247 in our application) and a random
number picked from a uniform distribution between 0 and
127. Compared to the packet size, this waiting time is very
high. Now, in our round robin scheduled system (detailed later
in system architecture), only one mote transmits at a time
implying that we do not need a very conservative MAC layer
collision avoidance protocol. Thus, we reduce the range of
the back off timer, by modifying the radio stack defined in
the CC1000RadioIntM module. We can now achieve a data
rate of about 15 kbps.

This scheme could raise concerns regarding higher chances
of packet collisions. However, we experimented exhaustively
to find that the percentage of packets lost is within 1 %. This
agrees with our previous analysis - that since we have a round
robin scheduling, we are already implementing a medium
sharing mechanism, and the default conservative CSMA/CA
is “overkill”.

C. Collaborative Relaying and Channel Switching

To realize eavesdropping from a long distance, we use a
multi-hop system architecture. Intermediate motes function as
relaying motes forwarding commands from the base-station to
the sampling motes, and the recorded samples back from the
motes to the base-station. The design of these intermediate
relaying layers is an important part of the entire architecture.
Firstly, we note that our effective data rate is at least 15 kbps,
i.e., the sampling layer motes, after their sampling quantum,
send out the compressed data at 15 kbps to the first relaying
layer. The receiving relaying layer mote, now, can only receive
the data, requiring the same amount of time to send it out to
the next relaying layer. This is simply because we are using
the maximum communication throughput (send and receive)
available. This analysis shows that we need to effectively make
the data rate twice that of the existing rate, at the relaying
layers. There are two solutions intuitively. One is to storethe
data for a while, and send it later. This violates our real time
constraints, as well as is not a good solution given that the
external flash is only 512 KB, and thus will fill up quickly. The
other solution is that we use multiple motes forming multiple
paths in the relaying layers. Our prototype uses three motesin
each relaying layer. Each mote listens to and transmits every
third packet, based on the sequence numbers of the packets.
This system is extended similarly to the other routing layers
as well. To avoid collisions between packets sent between the
various layers, we employ FDMA between layers, i.e., each
inter-layer communication uses a different channel. Thus,each
mote listens for packets on a channel from its preceding layer,
then switches to the channel between itself and the next layer
and forwards the received packets. For example, a mote in
the first relaying layer R, listens on Channel 9 to receive a
packet from a sampling layer mote, then switches to Channel
5 to forward it to the next layer, and finally switches back to
Channel 9 to listen again. It is important to note that though
there are multiple motes in each relaying layer, there is only
one base station required. This is because the base station
mote has two communication interfaces: the radio to receive
the data, and the serial RS232 port on the gateway (MIB510)
to forward it. Thus, it has an effective throughput which is
already twice of the motes.

D. Noise Reduction

At the base station we employ Ephraim-Malah MMSE [6]
noise reduction, to remove the background noise. This brings
about considerable improvement in sound quality.

VI. I MPLEMENTATION

A. System Architecture

The architecture of the system is shown in Figure 3. The
system is composed of three layers: the sampling (recording)
layer, the intermediate (multi-hop) relaying layers and the
receiver (base station) layer. The receiving layer comprises
only one mote (the base station), which is connected to a
computer using the gateway (MIB510). Currently three motes
make up the sampling layer. Each sub-layer of relays also has



Fig. 3. System Architecture

three motes - the number of these routing sub-layers determine
the multi-hop range of the system. We currently deploy two
sub-layers in our prototype.

B. Control Flow

In this section, we describe the procedure’s control flow. A
time division based system allows each sampling layer mote to
complete recording, compression and transmission. Each mote
gets a fixed quantum of time, in which it only records speech.
At the end of its quantum, it sends aSampleRequest message,
which triggers the next mote’s recording quantum. In this time,
the first mote is able to compress and transmit its recorded
samples. This synchronized round robin scheduling enables
speech to be recorded continuously and relayed back to the
base station in real time. A natural question arises here - if
the motes are working on fairly fixed schedule, we could have
also set their timers to control these operations. The drawback
with this system is that it becomes very difficult to merge all
the speech parts seamlessly if they are not continuous or some
parts are repeated. We could also increase the reliability of the
system by using acknowledgements for each of the command
messages.
Starting the Recording - Sending a Command to the
Motes A Java program on PC side, complete with a GUI
interface, is used to send commands to the recording motes
via the base station. Parameters to be used - for example the
sampling frequency and sampling numbers are specified here.
This SampleRequest command is transmitted via the routing
layers in a multi-hop fashion, finally reaching and activating
the recording motes. After sending out theSampleRequest
command, we activate the Serial Forwarder program, which
listens to the serial port and waits for the data to arrive on the
base station.
Sampling On receiving theSampleRequest command, the first
mote (say M1) shuts down its radio and starts recording, using
the parameters specified. At the end of its sampling quantum,
M1 sends theSampleRequest command to M2, who starts
sampling. M1 in the mean while compresses its data and
transmits it to the immediate relaying layer.
Compression and TransmissionAfter send aSampleRequest
command to M2, M1 starts compression. The Compression
module takes the original data log as input to the MRC algo-
rithm described earlier and outputs the compressed data log.
This compression takes at most 4 seconds. After compression,

M1 then switches to the channel of the nearest relaying layer
and transmits the compressed data. The relaying layer simply
forwards the data to the next layer.
Starting A New Round Each mote samples for 12 seconds,
takes about 4 seconds to compress the data and about 10
seconds to transmit it. After this, it switches to a waiting
mode. M1, as an example, finishes its ‘work’ and waits for
a SampleRequest command from M3, signaling the start of a
new round.

The complete process can be halted using theStop com-
mand, given from the base station.

C. Parameter Settings

Sampling and Transmission SettingWe set the sampling rate
to 5 kHz. Each mote records 60,000 samples in each “round”,
and logs these into the flash, for compression and transmission.
As detailed in Section 5.4 we optimized the values of the
packet size and the CSMA/CA random back-off delay, to
achieve the very high required data rate. Two experiments were
performed to help determine these parameters and verify out
solutions. The first one was aimed at finding the optimal packet
size, which as shown in Table 2, comes out to be 240 bytes.
Fixing the packet size, we now varied the random back-off
delay and as shown in Table 3, determined that the data rate
is highest when it is 1∼32 bytes. This combination achieves
a data rate of nearly 15 kbps, which is very close to the data
sheet maximum of 19.2 kbps, and a significant improvement
over the typically achieved 4∼ 5 kbps. We do not increase
the data length any further because of two reasons. Firstly,the
default header of TinyOS allows only a maximum size of 256
for the data length. Secondly, the higher the packet size, the
more is the Bit Error Rate. Thus, we keep it at 240, which
gives us the required performance.
Channel Switching SettingCurrently, there are 4 layers in
the whole system. With FDMA between each, there are 4
channels. Each of them has their own channel. We adjust the
frequencies through the interface CC1000Control.

We observe that the frequency synthesizer’s performance
varies in its working range. In other words, some channels
are less reliable than others, thus resulting in packet loss. We
experimentally determined and used the channels most suited
for reliable high data rate transmission. Figure 4 shows the
relation between packet loss rate and channel ID. The channel
ID and their frequency values are shown in Table 4.



TABLE II

DATA LENGTH AND TRANSMISSIONRATE (BACK-OFF DELAY: 1∼32)

Data Length(Bytes) Transmission Rate(kbps)
240 14.8
210 14.4
180 13.8
150 13.2
120 12.2
90 11.1
60 9.1

29(default) 5.9

Fig. 4. Channel Test on Packet Loss Rate

Channels 5, 16, and 17 are obviously better than the others
and thus we pick those three along with the default MICA 2
channel 9. We note that Channel 9’s performance is a little
worse than others and thus employ it at the sampling layer,
where it is only used to receive the command messages. To
scale the system with more hops, these channels could be re-
used with SDMA (Space Division Multiple Access).

VII. PERFORMANCEANALYSIS

We evaluated the performance of our system with respect to
several parameters. To quantify the quality of recorded speech
we use a full input-output objective measure - the Perceptual
Evaluation of Speech Quality (PESQ) [8]. This widely ac-
cepted standard is specified in ITU-T recommendation P.862
and is typically used to evaluate perceptual voice quality in
telecommunications. The algorithm is implemented in C, takes
as input the original speech file and the recorded speech file,
and outputs a Mean Opinion Score out of a maximum 5.

It is important to note that the recorded file has to be
pre-processed before running the PESQ algorithm. This is
primarily to minimize synchronization errors which are caused
mainly due to the poor microphone (introduces “stretching of
sound”) and the occasional packet losses.

A. Compression and Noise Reduction

Compression and noise are two major sources of sound
quality degradation. All sample values greater than +3 or lesser
than -3, are clipped to 3 or -3 respectively. This distortion
is shown in Figure 5. However, the reduction in quality is
tolerable and not drastic, since we observe that quality up to
PESQ 1.0 is intelligible.

TABLE III

BACK-OFFDELAY AND TRANSMISSIONRATE (DATA LENGTH: 240

BYTES)

Back-off Delay(Bytes) Transmission Rate(kbps)
1∼32 14.8
33∼64 13.4
65∼96 12.2
97∼128 11.3
129∼160 10.4
161∼192 9.7
193∼224 9.1
225∼256 8.5
247∼374 8.1

TABLE IV

CHANNEL ID / CHANNEL FREQUENCY(MHZ)

1/906.704 2/907.838 3/908.715 4/909.653
5/910.391 6/911.396 7/912.234 8/913.156
9/914.077 10/914.998 11/915.920 12/916.758
13/917.763 14/918.614 15/919.439 16/920.397
17/921.450 18/922.187 19/923.088 20/924.083

Figure 6 shows the improvement in speech quality achieved
by the noise reduction algorithm - Ephraim-Malah MMSE
[6]. Since, this is primarily intended to remove background
noise it does not reflect accurately upon the PESQ Mean
Opinion Score, because the human ear can “perceive” in-
telligible speech despite background noise. However some
actual listening tests (subjective tests) show that the quality
is improved significantly.

B. Distance

Next, we wish to evaluate if the distance of recording
motes from the speaker plays a significant role in the speech
quality. This is a natural concern, for we wish to optimize the
placement of the recording layer of motes with respect to the
speaker.

From Figure 7, we can see that the quality first increases
and then drops as the distance increases. The increase within
two feet of the sound source is relevant to our compression
algorithm. When the distance is small, the sound is relatively
“louder” to the microphone; thus, the amplitude of the wave
is higher. Since our algorithm truncates samples with large
values, it induces more quality loss. The decrease beyond this

Fig. 5. Effect of Compression Algorithm on PESQ



Fig. 6. Effect of Noise Reduction Algorithm on PESQ

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Distance (feet)

P
E

S
Q

 M
ea

n 
O

pi
ni

on
 S

co
re

Effect of speaker−mote (recording mote) distance on Sound Quality

 

 

Without noise reduction
With noise reduction

Fig. 7. Effect of Distance on PESQ

two feet distance is expected because sound strength falls with
distance. Also, since background noise increases with distance,
we note that the noise reduction algorithm is more effective
in these scenarios.

C. Multi-hop and Channel Switching

In a multi-hop system, the packet loss rate is an important
factor. Besides more chances of collisions, the channel switch-
ing also adds to the possibility of packet losses. For each mote,
the packet loss rate observed is normally less than 0.5 %. We
also observe that the global packet loss rate is normally less
than 5%. Due to occasional interference, sometimes the packet
loss rate can be as big as 30%. In Figure 8, we can see that the
multi-hop system is has a lower sound quality as compared to
the one-hop system, but this is not much.

VIII. D ISCUSSION

A. Limitation of Our System

Though intelligible, the recorded speech is not perfectly
clear. This is mainly because of the 5 kHz sampling frequency
used. Typically telephony applications use at least 8 kHz, in

Fig. 8. Effects of Multi-hop and Channel Switching on PESQ

compliance with the Nyquist Theorem, failing which we see
aliasing, stretching and degradation of speech quality. Other
factors are the fact that the microphone was not designed for
recording purposes, and if the speech is not loud enough (or
motes are further than 4 feet off), background noise causes
significant degradation in quality despite the noise reduction.

Packet losses are also a considerable limitation of the
system. Since each packet is 240 bytes after compression, it
has on an average 600 samples. This implies that packets lost
due to interference or collision causes large gaps in speech.
Further, it makes synchronization also difficult with respect to
applying objective speech quality measures. This packet loss
rate has to be tolerated primarily because the system’s working
is possible only if the motes work at their full capacity in terms
of transmission bandwidth, thus leaving almost no room for
implementing reliable communication protocols.

The range of the motes, i.e., the distance between each layer
is also limited. Because of the rapid and continuous channel
switching, our radio communications are not very robust. For
reliable results, we need to use almost line of sight always.
The packet losses are seen to increase to nearly 30 % when
the distance is increased to about 20 feet with walls also
attenuating the signal.

B. Future Work

Firstly, we are looking into making the transmission pro-
tocol more reliable. It is a non-trivial task because of the
already full bandwidth load of the user data itself. However,
this could help us reduce the packet loss, and hence improve
sound quality.

Secondly, though our main purpose was to demonstrate
the serious privacy threat arising out of sensor networks, this
research also gives insight into high sampling frequency and
data rate applications. We wish to explore this further, possibly
towards image and video capturing, and intelligence in the
form of in-network processing.

Thirdly, the current implementation of SensorEar is on
the MICA2 mote, which is the most basic and cheapest
platform in the market. We can expect dramatic improvement
in sound quality and radio range, if we port the code onto
MICAZ motes. Further, this allows us to explore other system
architectures such as coordinated sampling layers, which might
achieve higher sampling frequencies. With better processing
power, it might be possible to run the noise reduction algo-
rithms on the motes itself, or run more powerful compression
algorithms.

IX. CONCLUSION

This research work demonstrated a serious threat to an
individual’s privacy arising out of the widespread use of sensor
networks, in the form of a real-time eavesdropping system.
We built a complete prototype using commercial off-the-shelf
components, which can record and compress speech and trans-
mit it over a multi-hop network. After noise reduction, we were
able to hear, with sufficient clarity, the person’s conversation.
We addressed multiple challenges arising out of the high



sampling rate and the severe platform limitations, by designing
solutions including a specific compression algorithm, unique
system architecture and optimization of the radio stack. The
performance evaluation showed that it is a reliable and robust
system, and gave speech at a fairly good quality.

Acknowledgement:We thank the reviewers for their valuable
comments. This work was supported in part by grant CAREER
NSF-0643906.

REFERENCES

[1] ATMEL Co., Data sheet of Atmel128L,http://www.atmel.com/
atmel/acrobat/doc2467.pdf .

[2] M. Connolly and O. Fergus. Sensor Network and Food Industry. http:
//www.sics.se/realwsn05/papers/connolly05sensor.
pdf .

[3] Crossbow Inc, Data sheet of MICA2.http://www.xbow.
com/products/Productpdffiles/Wirelesspdf/
MICA2Datasheet.pdf .

[4] Crossbow Inc, MPR-MIB Series Users Manual.http://www.xbow.
com/Support/Support_pdf_files/MPR-MIB_Series_
Users_Manual.pdf .

[5] J. Daniel, N. Davey, and T. Rice. An accelerometer based sensor
platform for insitu elite athlete performance analysis. IEEE Sensors
(2004).

[6] M. Ephraim. Speech Enhancement Using MMSE Short-Time Spectral
Amplitude Estimator. IEEETrans.on ASSP, vol.32, N6, Decemeber
(1984).

[7] J. Han, A. Jain, M. Luk, and A. Perrig. Don’t Sweat Your Privacy.
Proceedings of 5th International Workshop on Privacy in UbiComp
(UbiPriv’07), September (2007).

[8] ITU,PESQ,http://www.itu.int/rec/T-REC-P.862/en .
[9] L. Luo, Q.Cao, C. Huang, J. Stankovic, and M. Ward. EnviroMic:

Towards Cooperative Storage and Retrieval in Audio Sensor Net-
works. 27th International Conference on Distributed Computing Systems
(ICDCS ’07) (2007).

[10] A. Mainwaringet. al. Wireless Sensor Networks for Habitat Monitoring.
WSNA’02, September 28, Atlanta, Georgia, USA (2002).

[11] R. Mangharam, A. Rowe and R. Rajkumar. Voice over SensorNetworks.
27th IEEE Real-Time Systems Symposium (RTSS), Rio de Janeiro,
Brazil, December 2006.

[12] Pulse-code Modulation, http://en.wikipedia.org/wiki/
Pulse-code_modulation .

[13] K. Pister et al. Smart dust: Autonomous sensing and communication
in a cubic millimeter.http://robotics.eecs.berkeley.edu/

˜ pister/SmartDust/ .
[14] J. Princen, A. Johnson, and A. Bradley. Subband/transform coding using

filter bank designs based on time domain aliasing cancellation. IEEE
Proc. Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP)
12, 2161-2164 (1987).

[15] V. Shnayder, B. Chen, K. Lorincz, R. Thaddeus, and M. Welsh. Sensor
Networks for Medical Care. Technical Report TR-08-05, Division of
Engineering and Applied Sciences, Harvard University (2005).

[16] G. Simon,et al. Sensor Network-Based Countersniper System. ACM
SenSys, 4, November 3-5, Baltimore, Maryland, USA (2004).

[17] S. Smith. Chapter 27: ”Data Compression” of The Scientist and Engi-
neer’s Guide to Digital Signal Processing.http://www.dspguide.
com/ .

[18] TinyOS Forum,http://www.tinyos.net/ .
[19] Wikipedia: Audio Freqency.http://en.wikipedia.org/wiki/

Audiofrequency .
[20] Wikipedia:Adapative MultiRate Compression. http://

en.wikipedia.org/wiki/Adaptive_multi-rate_
compression .

[21] Wikipedia: FS-1015. http://en.wikipedia.org/wiki/
FS-1015 .


