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Abstract— We present a sensor network based eavesdropping this is a far more direct threat to personal privacy. Imagine
system, SensorEar, which demonstrates a serious threat to an the following scenario. A dishonest student programs a mote
individual's privacy. The small size, long battery Ilfetlme§ and _as a recording de- vice (using the microphone sensor) and
easy deployment enable the use of sensor neworks in mali- laces it in his advisors office. Then he drops more motes
cious ways. Our system comprises motes which record speech,p : p X !
compress the data and transmit it over a multi-hop network p_rogramm(-?d as routers on the path from the r(_acordlng mote to
in real time. After noise reduction, we are able to hear, with his own office. This sensor network enables him to eavesdrop
sufficient clarity, the person’s conversation. In contrastwith  on all conversations in his advisors office! Another evenenor
the 10 - 100 Hertz sampling of typical applications, audio yangerous scenario is where a sensor network deployed for a

recording requires a sampling frequency of several kilohetz. . s . -
We address research challenges associated with this high tda valid application, could be used simultaneously for malisi

volume system, and design solutions including a multi-rate PUrPOSES.
compression algorithm, communication protocol modificatons Three main features empower the use of sensor networks in

and a uniqgue FDMA/TDMA based system architecture. We such malicious ways. Firstly, they are “tiny” and thus diific
have built a complete prototype using commercial off-thesself 4 gatact. For example, the MICA2 mote from Crosshow Inc.,
components. Further, we have chosen the most basic hardware ° . . . L
to make our solutions truly platform independent. Wh!Ch_We use In our project, 'S_JUSt 5 x 3.2 x 0.7 (cm),
weighing only 18 grams (excluding the battery pack). The
|. INTRODUCTION Smart Dust project [13], conceptualizes motes to be grain-
Improvements in wireless communication and processsized eventually. Secondly, the typical battery life of ateng
technology have enabled the development of low cost, Iabove one year [3], and thus no “maintenance” is required for
power, small sized motes which have sensing, computatilmmg time. Thirdly, sensor networks are commercially aafalié
and radio communication capabilities.When deployed asaa ready-to-be-deployed kits. The technology currentipde
network, they can be used in a wide range of civilian and a development phase, they are somewhat expensive, but in
military applications. Typical deployments are in remotel a the future are expected to cost less than $ 1 per mote [13].
inaccessible places to collect data regarding variousralatu In this paper, we prove the seriousness and feasibility of
phenomena, species of animals or environmental conditiottsis “eavesdropping” threat. We present a complete working
Sensor networks are also used in industrial and other fofmssystem with commercial off-the-shelf products. Furthee w
monitoring applications. use only the cheapest and lowest capability platforms in
As an illustration of defense applications, consider a bodlye market. Other contributions are addressing the researc
wearable sensor network [16], which estimates the locaifon challenges due to the contrast between the high data volume
a snipper based on information recorded from the gunshot.dhaudio applications, and relatively very low platform blan
ecology research, scientists have deployed a sensor rketwwidth. We present solutions involving radio stack modifizat
to identify, track and measure the population of rare bimts aa novel multi-rate compression algorithm and a FDMA/TDMA
their habitat conditions [10]. Similarly, a sensor netwtiks based multi-hop system architecture for this application.
been used for industrial monitoring [2]. Recently, reskars  The rest of this paper is organized as follows. In Section 2,
have started exploiting the use of sensor networks in ody daie outline the related work. We describe the design goals in
lives. For example, the CodeBlue [15] system outfits patierBection 3. In Section 4 we explain the challenges faced due
with motes, enabling nurses and doctors to continuoudly the platform’s limitations. Section 5 details the salus
monitor their vital conditions and status remotely. Simijla developed, while the implementation is presented in Sedio
we could use a system to measure and track the performaRaeally, in Section 7 we analyze the performance from vagiou
of athletes [5]. All of the above mentioned applicationsvghoperspectives, and in Section 8 discuss the system limiisitio
that sensor networks will enable many previously impossiband future work.
research projects and bring more convenience to our lites, a
the same time becoming increasingly pervasive.
The proximity and pervasiveness of sensor networks, how-To the best of our knowledge, there is no personal privacy
ever, raises the very important problem of privacy. In castir relevant research in the area of sensor networks. Han gt al’
with the traditional concept of privacy in computer scienceesearch in [7] is somewhat close. They detect human presenc

Il. RELATED WORK



by sensing humidity of the environment. However informatioable to transmit over fairly long distances. This implies de

about only presence /absence is brief and coarse, and maysigiing an efficient communication protocol for the sangplin

be crucial enough to pose a serious threat. motes, the intermediate routers (relaying motes) and tee ba
In 2007, Luo et al. [9] developed a distributed acoustic momstation.

itoring system called EnviroMic. Their application is some

what similar, but the primary objectives and design goaés ar V. LIMITATION OF THE PLATFORM

very different. Their project is aimed at exploring distried We have chosen the MICA2 motes as our operating plat-
storage in sensor networks, where the motes are equipped Wiy, They are the cheapest, most basic motes available in
a 512 MB flash memory to store all the sampled data, t0 B¢ market, with the lowest capabilities in terms of storage

retrieved later. Our goals are to achieve real time perfo®a qcessing and transmission. This implies that the rebearc
in which the recorded data is transmitted back as it is beigs|ienges we address here are completely platform indepen
recorded. Also, they utilize the MICAZ [9] platform, whichgent and will only work better on later generation motes.

has a maximum transmission rate of 250 kbps, while we Uggher, while later generation motes today are more pawerf

the MICA 2, with a maximum data rate of 19.2 kbps. Thesg s reasonable to expect that the first motes to become truly
additional restrictions prompted us to develop compressiqyst-sized’ will be with low capabilities.

algorithms and make our system extremely efficient by designyvards achieving our design goals, the limitations of
itself._ Fu_rther, if our prototype works well on MICA2 motes,y;,ca 2 pose a lot of non-trivial challenges. Compared to
then it will work better on more powerful platforms. the MICAZ, TelosB and other later generation motes, MICA

In [11], the authors described a real-ime voice stream-js myuch weaker in several aspects. The limitations of the
capability in wireless sensor networks and summarized thel,.qware and software platforms, which motivate our projec
deployment experiences of voice streaming across a laigé,e more innovative, are detailed below.

sensor network of I_:ireFIy nodes in an opgrational.coal MiNEyw Level Microphone We use the MTS310 sensor board,
FireFly has several integrated layers mchdlng speadlipw- which has a microphone. However, it is designed only to detec
C_OSt hardware, a sensor network operating systeml, a_mal'“the presence / absence of sound, for example in an apptficatio
link layer ar_1d network schedullng. Although achieving thﬁke [16]. Correspondingly, the default TinyOS microphene
same technical goal, our work differs from the above ong, o1 module returns only a Boolean variable. Practicall
is that we use the off-the-shelf commercial MICA2 mmeﬁﬂsimpliesalot of distortion and noise in the recordecdese

instead of their own FireFly nodes. _The radio of FireFly rode e at the same time does not allow us to go below a certain
runs 802.15.4, which has the maximum raw data rate of 29 mpling rate.

kbps, while the maximum data rate of MICA2 is only 19.
kbps. Thus, we are faced with the greater challenge foryimer
delivery of voice signals.

evere Memory Constraints As mentioned before, the
cording motes will generate data at 64 kbps. MICA 2 has
only a 512 KB external flash, which is however fairly slow
I1l. DESIGN GOALS in writing - it potentially has a 3 ms stabilizing time after
each write. This implies firstly, that we cannot store theadat

Clear Intelligible Sound The human voice lies in the fre- : :

) ~ temporarily for very long, and secondly any processing that
quency range of .300HZ to 3200Hz. Acco_rdmg to Nng|§tﬁ s to be done on the data, needs to be with algorithms not
Theorem, to achieve a perfect reproduction of the 0r|g|nffa(fl

) uiring a large block of data to operate on.
sound, from samples, the sampling rate should be at le % 9 9 P

. . ) ) w Transmission RateThe maximum data rate provided by
twice that of the highest frequency component in the signal. MICA?2 radio (CC1000 radio module) is 19.2 kbps (38.4
Telephony applications generally use an 8 kHz sampli : :

nk% . . . .
. . . aud, with Manchester coding). Our ideal data rate require
frequency and that is what we aim to achieve. 9) d

Real-time SystemThe eavesdropper / computer listening t(l)sr;icktbps' Overcoming this gap is the major challenge of the

the conversation should be able to hear the speech as iP is
being spoken, with only a minimal delay for transmission and V. SOLUTIONS

processing. This implies that all the sound samples shosild b

“removed” from the mote system in real time, as opposed toIn this section we present the building blocks of our system.
storing them temporarily (may be in an external flash) anthese techniques enable us to achieve the design goals, and
retrieved later. Assuming an 8 kHz sampling frequency, afyercome the limitations of the system.

an 8 bits/sample ADC resolution, data is generated at 64,kbps )

and must be transmitted away at the same rate. Further, AhyPata Compression

processing, both at the mote as well as at the base statioihe first solution we develop is the compression of the large
needs to be fast enough to meet the real time performancdume of data generated. As mentioned in the design goals
requirements. (Section 3.2), this rate is 64 kbps. The maximum data rate
Multihop Capability We cannot realistically expect the eavesachievable by the MICA 2 radio is only 19.2 kbps. Further,
dropper to be within a one-hop range of the recording motasith the default communication protocol stack, we are able
The system should have a multi-hop functionality, thusnbei to achieve only about 4 -5 kbps typically. Towards bridging



this gap, the first building block of our system is a multierat
speech compression algorithm.

There are four main objectives which our algorithm here
must meet. Firstly, it must be simple enough to execute with
the mote’s limited resources. Secondly, it must run in linea
time (O(n)) to satisfy the real time constraint of the entire
system. Thirdly, its compression latency must be very laav, i
it should not require the collection of a large block of sa@spl
before it can execute. This is important because of the mote’
low memory resources, and the real time performance goals
of the entire system. Finally, it must provide a high enough
compression ratio to be able to bridge the gap between the
high data generation rate and low transmission rate.

All generally used compression algorithms make tradeoffs
between the above mentioned objectives. WinZip achieved®4 0S, one for absolute values less than value 1, and the othe
fairly high compression rate, but has a compression lateficyfor absolute values less than 3. The percentage of absolute
32 KB - using block sizes below this drastically reduces thélues above 3 is small enough to be ignored. We clip them
compression rate. Typical audio compression algorithixes [iint0 the third group by converting them to 3 or -3. For Os, we
MP3 and AC-3 use the Modified Discrete Cosine Transfor@PPly RLE, i.e. counting the number of consecutive zeros and
(MDCT) [14], which would be very difficult to run on the transmitting that value with an identifier. In this case, @tst
mote’s processor, and do not have linear run times. In céff Can compress 63 consecutive zeros into 1 byte; or non-
phone communication, AMR(Adaptive Multi-Rate Compres?€r0 values absolute under 1, we apply PCM for these values,
sion) [20] is widely used in GSM and UMTS. It uses link/Vith & 3 level quantification (0,1,2) and compress 4 samples
adaptation to select from one of eight different bit ratesei INt0 Oné byte; For non-zero values absolute values under 3,
on link conditions. Our study found that the complexity of thWe apply PCM again, with a 7-level quantification (O through
AMR algorithm is at least 5 times of our MRC algorithm. 6) and compress 2 samples into one byte.

Among the low bit rate speech encoding, the LPC(Linear The data output from different compression schemes are
Predictive Coding) [21] is one of the most common one§apped into different ranges before transmitting, and this
It can yield a data stream with very low bit rate (2.4kbpsfS Used at the receiver to identify which scheme was used,
but its compression speed is too slow for our applicatioR"d run the corresponding decompression algorithm. The
According to [21], the codec of LPC uses a bit rate of 2.80mpression rates thus are between a minimum of 2 and a
kbit/s, requires 20 MIPS of processing power, 2 kilobytes ghaximum of 63, and typically we achieve an average rate of
RAM and features a frame size of 22.5 ms. Additionally, th&-> t0 4.

Absvalue< 1 Absvalue<3 Abs value>3
19% 2% 1%

Fig. 1. Sample Distribution of Data

codec requires a large lookahead time of 90 ms. But according TABLE |
to [4] and [1]_, thfe microcontroller of Mica2 provides 1 MIPS AN EXAMPLE OF MRC
per MHz while it runs at 7.37 MHz. In other words, the
1 i 1 i i i | 0000 101 31
processing power of Mica2’s CPU is 7.37 MIPS, which is put_ i 9 -
not enough for LPC. Intermediate Step - (B—ary)2l0 (7 —ary)62
. . .. . Result(Binary) 4(0000 0100) 21(0001 0101) 44(0010 1101)
Thus, instead of using any existing algorithms, we chose Mapping(r) ___102(1100 0000) 0 (0000 0000) __128(1000 0000)
Output 196(1100 0100)  21(0001 0101)  172(1010 1100)

to design our own compression algorithm, which would be
specific to the type of data we are dealing with and make a ) )
balance between the compression rate and compression sped@ble 1 illustrates how MRC works on an input sequence
according to the constraints imposed by the platform. 0,0,0,0,1,0,1,3,1. The input size is 9 bytes, while the outp
Algorithm Details Broadly speaking, we use a combinatiof$ize is 3 bytes. So the compression rate is 3 here.
of different algorithms (RLE [17] and PCM [12]), each yield- This algorithm satisfies all the requirements listed before
ing a different compression rate - thus the name Multi-Rates It is simple and requires no complex functions or pro-
Compression (MRC). cessing.
Theoretically, the sampled data can range from 0 to 255.« It runs in linear time, i.e. O(n).
However, we observe that the majority of them lie between e Its compression latency is extremely low - typically 1
values of 116 to 122, with 119 corresponding to normal byte.
silence. Firstly, we subtract 119 from the samples. Segpndl « We achieve a compression rate of 2.5 to 3, which is
we differentiate the data by taking the difference between enough for our application.
successive samples. We now observe that the majority of .
values are between -3 and 3. Figure 1 shows the distributiBn Optimization of Radio Protocol Stack
for a typical data set. This distribution led us to designing Transmission of the data back to the base station in real
three different techniques for each ‘mode’ of the data,dree time is the key part of this project and perhaps the most



Preamble  Header Data Length C. Collaborative Relaying and Channel Switching

To realize eavesdropping from a long distance, we use a
multi-hop system architecture. Intermediate motes famcts
relaying motes forwarding commands from the base-station t
NN the sampling motes, and the recorded samples back from the

7 29 motes to the base-station. The design of these intermediate
relaying layers is an important part of the entire architezt
Firstly, we note that our effective data rate is at least 1jaskb
i.e., the sampling layer motes, after their sampling quantu
send out the compressed data at 15 kbps to the first relaying
layer. The receiving relaying layer mote, now, can only iexe
the data, requiring the same amount of time to send it out to
challenging one, because the throughput is the bottlengble next relaying layer. This is simply because we are using
of the whole system. The data sheet of MICA 2 specifighe maximum communication throughput (send and receive)
the maximum transmission rate of the CC1000 radio to kailable. This analysis shows that we need to effectiveliten
19.2 kbps. However, in practice we observe that this ratetlse data rate twice that of the existing rate, at the relaying
never achieved with the default communication protocols. Wayers. There are two solutions intuitively. One is to stihre
could barely get a 4 - 5 kbps data rate in actual experimendsta for a while, and send it later. This violates our reaktim
Thus, our second enabling technique is the optimizatiohef tconstraints, as well as is not a good solution given that the
communication protocols, to achieve as close of the thatet external flash is only 512 KB, and thus will fill up quickly. The
19.2 kbps limit. other solution is that we use multiple motes forming mutipl

We find that the disparity in actual and theoretical dat%aths in the relaying layers. Our prototype uses three mtes

rates is primarily due to two reasons - overheads and medi r?\Ch relaying layer. Each mote listens to and transmitsyever

contention. We address both these issues as described. bel0\ packet, _based on the_ sequence numbers of the packets.
This system is extended similarly to the other routing layer

Overhead Reduction The default TinyOS packet length,as well. To avoid collisions between packets sent between th
as shown in Figure 2, is 36 bytes - 7 header bytes and ¢&ious layers, we employ FDMA between layers, i.e., each
data bytes. Further, for synchronization a preamble oftfengnter-layer communication uses a different channel. Teash
28 bytes is used before every packet. This implies that theote listens for packets on a channel from its precedingJaye
effective payload is only 29 bytes out of 64 bytes per packghen switches to the channel between itself and the next laye
implying a relatively low efficiency of 45%. To address thisind forwards the received packets. For example, a mote in
problem, we increased the payload size however to 247 byiRg first relaying layer R, listens on Channel 9 to receive a
resulting in an efficiency of 87%, which is much higher. Thigacket from a sampling layer mote, then switches to Channel
achieves a 4 -5 kbps improvement in data rate. 5 to forward it to the next layer, and finally switches back to

Medium Contention: In TinyOS, CSMA/CA is applied as Channel 9 to listen again. It is important to note that though
the MAC layer protocol. On sensing and finding the channi]ére are multiple motes in each relaying layer, there iy onl
busy, the sender waits a random back off time, thus ensuriAge base station required. This is because the base station
a low probability of collision. This timer is set to the sumrmote has two communication interfaces: the radio to receive
of the packet length (247 in our application) and a randofi€ data, and the serial RS232 port on the gateway (MIB510)
number picked from a uniform distribution between 0 anf forward it. Thus, it has an effective throughput which is
127. Compared to the packet size, this waiting time is vefjréady twice of the motes.
high. Now, in our round robin scheduled system (detailegrlatp. Nojse Reduction
in system architecture), only one mote transmits at a time

implying that we do not need a very conservative MAC layer At the base station we employ Ephraim-Malah MMSE [6]

7 . noise reduction, to remove the background noise. This brin
collision avoidance protocol. Thus, we reduce the range g 9 9

the back off timer, by modifying the radio stack defined iﬁg out considerable improvement in sound quality.

the CC1000RadiolntM module. We can now achieve a data VI. IMPLEMENTATION
rate of about 15 kbps. A. System Architecture

This scheme could raise concerns regarding higher chance$he architecture of the system is shown in Figure 3. The
of packet collisions. However, we experimented exhaulstivesystem is composed of three layers: the sampling (recording
to find that the percentage of packets lost is within 1 %. Thiayer, the intermediate (multi-hop) relaying layers ané th
agrees with our previous analysis - that since we have a rouedeiver (base station) layer. The receiving layer conapris
robin scheduling, we are already implementing a mediuonly one mote (the base station), which is connected to a
sharing mechanism, and the default conservative CSMA/Gmputer using the gateway (MIB510). Currently three motes
is “overkill”. make up the sampling layer. Each sub-layer of relays also has

28

Fig. 2. Default Packet Length
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Fig. 3. System Architecture

three motes - the number of these routing sub-layers determM1 then switches to the channel of the nearest relaying layer
the multi-hop range of the system. We currently deploy twand transmits the compressed data. The relaying layer wimpl
sub-layers in our prototype. forwards the data to the next layer.

Starting A New Round Each mote samples for 12 seconds,

takes about 4 seconds to compress the data and about 10

_ In this section, we describe the procedure’s control flow. 8econds to transmit it. After this, it switches to a waiting
time division based system allows each sampling layer noote o qe. M1, as an example, finishes its ‘work’ and waits for

complete recording, compression and transmission. Eatl mg SampleRequest command from M3, signaling the start of a
gets a fixed quantum of time, in which it only records speeche\ round.

At the end of its quantum, it sendsSampleRequest message,  The complete process can be halted using Stup com-
Whlch triggers t_he next mote’s recording quantum. !n thiset mand, given from the base station.

the first mote is able to compress and transmit its recorded ]

samples. This synchronized round robin scheduling enabfes Parameter Settings

speech to be recorded continuously and relayed back to S&mpling and Transmission SettingMVe set the sampling rate
base station in real time. A natural question arises here -téf5 kHz. Each mote records 60,000 samples in each “round”,
the motes are working on fairly fixed schedule, we could hawnd logs these into the flash, for compression and transinissi
also set their timers to control these operations. The daalvb As detailed in Section 5.4 we optimized the values of the
with this system is that it becomes very difficult to merge apacket size and the CSMA/CA random back-off delay, to
the speech parts seamlessly if they are not continuous oe sahieve the very high required data rate. Two experiments we
parts are repeated. We could also increase the reliabflityeo performed to help determine these parameters and verify out
system by using acknowledgements for each of the commasadutions. The first one was aimed at finding the optimal piacke
messages. size, which as shown in Table 2, comes out to be 240 bytes.
Starting the Recording - Sending a Command to the Fixing the packet size, we now varied the random back-off
Motes A Java program on PC side, complete with a GUdlelay and as shown in Table 3, determined that the data rate
interface, is used to send commands to the recording moiesighest when it is 432 bytes. This combination achieves
via the base station. Parameters to be used - for example gheata rate of nearly 15 kbps, which is very close to the data
sampling frequency and sampling numbers are specified hesleeet maximum of 19.2 kbps, and a significant improvement
This SampleRequest command is transmitted via the routingover the typically achieved 4 5 kbps. We do not increase
layers in a multi-hop fashion, finally reaching and actmgti the data length any further because of two reasons. Fitistly,
the recording motes. After sending out tiSampleRequest default header of TinyOS allows only a maximum size of 256
command, we activate the Serial Forwarder program, whifbr the data length. Secondly, the higher the packet siz, th
listens to the serial port and waits for the data to arrivelen tmore is the Bit Error Rate. Thus, we keep it at 240, which
base station. gives us the required performance.

Sampling On receiving theSsampleRequest command, the first Channel Switching Setting Currently, there are 4 layers in
mote (say M1) shuts down its radio and starts recordinggusithe whole system. With FDMA between each, there are 4
the parameters specified. At the end of its sampling quantuchannels. Each of them has their own channel. We adjust the
M1 sends theSampleRequest command to M2, who starts frequencies through the interface CC1000Control.

sampling. M1 in the mean while compresses its data andWe observe that the frequency synthesizer's performance
transmits it to the immediate relaying layer. varies in its working range. In other words, some channels
Compression and TransmissionAfter send aSampleRequest  are less reliable than others, thus resulting in packet \es
command to M2, M1 starts compression. The Compressierperimentally determined and used the channels mostsuite
module takes the original data log as input to the MRC algéer reliable high data rate transmission. Figure 4 shows the
rithm described earlier and outputs the compressed data logjation between packet loss rate and channel ID. The channe
This compression takes at most 4 seconds. After compressiih and their frequency values are shown in Table 4.

B. Control Flow



TABLE Il TABLE Il

DATA LENGTH AND TRANSMISSIONRATE (BACK-OFF DELAY: 1~32) BACK-OFFDELAY AND TRANSMISSIONRATE (DATA LENGTH: 240
BYTES)
Data Length(Bytes)  Transmission Rate(kbps)
240 14.8 Back-off Delay(Bytes)  Transmission Rate(kbps)
210 14.4 1~32 14.8
150 13.2 6596 12.2
120 12.2 97~128 11.3
90 111 129160 10.4
60 9.1 161~192 9.7
225256 8.5
5 . 247~374 8.1

TABLE IV
CHANNEL ID / CHANNEL FREQUENCY(MHZ)

=) 1/906.704  2/907.838  3/908.715  4/909.653
o3 5/910.391  6/911.396  7/912.234  8/913.156
9/914.077 10/914.998 11/915.920 12/916.758

13/917.763 14/918.614 15/919.439 16/920.397
I I 17/921.450 18/922.187 19/923.088 20/924.083
I A m

Channel 1D

sk

Packet Loss Rate(%)
o

Figure 6 shows the improvement in speech quality achieved

Fig. 4. Channel Test on Packet Loss Rate by the noise reduction algorithm - Ephraim-Malah MMSE
[6]. Since, this is primarily intended to remove background
noise it does not reflect accurately upon the PESQ Mean

Channels 5, 16, and 17 are obviously better than the othQrB_m_ion Score, becau_se the human ear can “perceive” in-
and thus we pick those three along with the default MICA ?Ihglble_ spgech despite pac!(ground noise. Howeve_r some
channel 9. We note that Channel 9's performance is a "tﬁgual listening tests (subjective tests) show that thditgua

worse than others and thus employ it at the sampling lay&t,mpProved significantly.
where it is only used to receive the command messages. é’o :

. ._Distance
scale the system with more hops, these channels could be re-

used with SDMA (Space Division Multiple Access). Next, we wish to evaluate if t_he_ _distance (_)f recording
motes from the speaker plays a significant role in the speech

quality. This is a natural concern, for we wish to optimize th
We evaluated the performance of our system with respectglacement of the recording layer of motes with respect to the
several parameters. To quantify the quality of recorde@dpe speaker.
we use a full input-output objective measure - the PercéptuaFrom Figure 7, we can see that the quality first increases
Evaluation of Speech Quality (PESQ) [8]. This widely acand then drops as the distance increases. The increasa withi
cepted standard is specified in ITU-T recommendation P.8o feet of the sound source is relevant to our compression
and is typically used to evaluate perceptual voice quatity algorithm. When the distance is small, the sound is relgtive
telecommunications. The algorithm is implemented in Cesak“louder” to the microphone; thus, the amplitude of the wave
as input the original speech file and the recorded speech fite higher. Since our algorithm truncates samples with large
and outputs a Mean Opinion Score out of a maximum 5. values, it induces more quality loss. The decrease beyasd th
It is important to note that the recorded file has to be
pre-processed before running the PESQ algorithm. This is
primarily to minimize synchronization errors which are sad
mainly due to the poor microphone (introduces “stretchifg o

VIl. PERFORMANCEANALYSIS

Effect of Compression Algorithm on Sound Quality

—a— With Compression
—=— Without Compression

N
n

sound”) and the occasional packet losses. 2'\"//-\\"\' e
A. Compression and Noise Reduction
I - ]

Compression and noise are two major sources of sound
quality degradation. All sample values greater than +3 sgde
than -3, are clipped to 3 or -3 respectively. This distortion e T T
is shown in Figure 5. However, the reduction in quality is Time (seconds)
tolerable and not drastic, since we observe that qualityoup t
PESQ 1.0 is intelligible.

PESQ Mean Opinion Score
n

I
n

>

<
[N

Fig. 5. Effect of Compression Algorithm on PESQ



Effect of Noise Reduction on Sound Quality

compliance with the Nyquist Theorem, failing which we see
aliasing, stretching and degradation of speech qualitheOt
\e\\.,/- y factors are the fact that the microphone was not designed for
recording purposes, and if the speech is not loud enough (or
motes are further than 4 feet off), background noise causes
significant degradation in quality despite the noise reiduact
Packet losses are also a considerable limitation of the
system. Since each packet is 240 bytes after compression, it
has on an average 600 samples. This implies that packets lost
due to interference or collision causes large gaps in speech
Further, it makes synchronization also difficult with resip®

—&— Without noise reduction
—®— With noise reduction

N
n

N,

N

N
n

PESQ Mean Opinion Score

-

S
n

2 3 4 5 6
Time (seconds)

Fig. 6. Effect of Noise Reduction Algorithm on PESQ

el speser ot exoring mote) decnee on Sound Qualy applying objective speech quality measures. This paclss lo
o i rate has to be tolerated primarily because the system’simgrk

G N

, ] is possible only if the motes work at their full capacity inntes
Nk of transmission bandwidth, thus leaving almost no room for
1 implementing reliable communication protocols.

The range of the motes, i.e., the distance between each layer
| is also limited. Because of the rapid and continuous channel
Distance (eet) switching, our radio communications are not very robust. Fo
reliable results, we need to use almost line of sight always.
The packet losses are seen to increase to nearly 30 % when
the distance is increased to about 20 feet with walls also

] . attenuating the signal.
two feet distance is expected because sound strength figls w

distance. Also, since background noise increases witantis, B. Future Work
we note that the noise reduction algorithm is more effective Firstly, we are looking into making the transmission pro-

PESQ Mean Opinion Score

o
o

15 2

Fig. 7. Effect of Distance on PESQ

in these scenarios. tocol more reliable. It is a non-trivial task because of the
C. Multi-hop and Channel Switching already full bandwidth load of the user data itself. Hoyvever
this could help us reduce the packet loss, and hence improve

In a multi-hop system, the packet loss rate is an importa,ggund quality.
factor. Besides more chances of collisions, the channétkwi Secondly ';hough our main purpose was to demonstrate

ing also adds to the possibility of packet losses. For eadiem he serious privacy threat arising out of sensor netwotiis, t

the packet loss rate observed is normally less than 0.5 %. Rearch also gives insight into high sampling frequenay an

also observe that the globa_l packet loss rate i_s normally 1685 rate applications. We wish to explore this furthersjing
than 5%. Due to occasional interference, sometimes thegpa wards image and video capturing, and intelligence in the
loss rate can be as big as 30%. In Figure 8, we can see thatf 1 of in-network processing

multi-hop system is has a lower sound quality as compared tOThirdIy, the current implementation of SensorEar is on

the one-hop system, but this is not much. the MICA2 mote, which is the most basic and cheapest

VIIl. DISCUSSION platform in the market. We can expect dramatic improvement

o in sound quality and radio range, if we port the code onto

A L|m|tat|9n of Our System _ MICAZ motes. Further, this allows us to explore other system
Though intelligible, the recorded speech is not perfectlychitectures such as coordinated sampling layers, whightm
clear. This is mainly because of the 5 kHz sampling frequengyhieve higher sampling frequencies. With better proogssi

used. Typically telephony applications use at least 8 kHz, hower, it might be possible to run the noise reduction algo-

rithms on the motes itself, or run more powerful compression

Effect of Multi-hop routing and Channel Switching on Sound Quality algo rithms.
—&— Single hop
§2s e IX. CONCLUSION
3
Q *i ///\ o _ Th_is resea_rch wor_k_ demonstrated_ a serious threat to an
% 15 \ ) = |nd|V|duaI’s_pr|vacy arising out of the widespread use ofsw
5 1 N\ networks, in the form of a real-tllme eavesdrppplng system.
4os We built a complete prototype using commercial off-thelshe
0 components, which can record and compress speech and trans-

N
IN

6 12 14 16

8 10
Time (seconds) mit it over a multi-hop network. After noise reduction, wenee
able to hear, with sufficient clarity, the person’s conviosa

Fig. 8. Effects of Multi-hop and Channel Switching on PESQ | o .
We addressed multiple challenges arising out of the high



sampling rate and the severe platform limitations, by desiy
solutions including a specific compression algorithm, ueiq
system architecture and optimization of the radio stacle Th
performance evaluation showed that it is a reliable andsbbu
system, and gave speech at a fairly good quality.
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