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Abstract—Modern society depends on several critical in-
frastructures like power, water, oil and gas generation and
distribution. These infrastructures have evolved to become
largely controlled by computers and interconnected by com-
puter networks, which lets them exposed to the same types
of threats as Internet systems. Therefore, research about
mechanisms to improve the protection of these infrastruc-
tures is extremely important. Byzantine fault-tolerant (BFT)
replication algorithms tackle this problem by allowing critical
services, like storage and processing of monitoring data, to
continue to operate correctly even if some of their components
are compromised by malicious attackers. This paper proposes
a novel BFT algorithm that requires fewer replicas, fewer
communication steps and analytically seems to have better
throughput and latency than others in literature. The main
idea is to provide an efficient BFT algorithm suitable to WANs,
to be applied in the construction of highly-resilient services for
critical infrastructures, tolerating even the physical destruction
of some servers.

I. INTRODUCTION

Critical infrastructures consist of physical and information
technology facilities, networks and services whose disrup-
tion would have a serious impact on the health, safety or
economic well-being of populations. Often, these infrastruc-
tures are indirectly connected to the Internet, thus exposed to
the same types of threats as home-banking, online shops or
personal computers [9]. However, they have a much higher
socio-economic value than most Internet systems. Some of
them, for instance nuclear plants, are even safety-critical
because their failure may cause human deaths and serious
harm to the environment. Therefore, using mechanisms that
raise the protection of these infrastructures to a new level is
a fundamental issue.

Critical infrastructures usually rely on data for several
important purposes. For instance, both real-time and stored
monitoring data is critical for the right commands to be
done by human operators at the right moment. If this data
is unavailable or modified with the malicious intent of
making the operators do wrong operations, the physical in-
frastructure may not function correctly or even be physically
damaged. Therefore, critical infrastructures require highly-
resilient fault-, intrusion- and disaster-tolerant services that
function correctly even under harsh cyber-attacks that man-
age to corrupt some of the computers involved.

A mechanism that allows attaining this objective are
Byzantine fault-tolerant algorithms. The basic idea under-

lying these algorithms is to allow a system to continue to
operate correctly even if some of its components exhibit
arbitrary behavior, e.g., because there are crashes or in-
trusions by malicious attackers [1], [2], [3], [4], [5], [7],
[10], [11]. Byzantine fault-tolerant systems are usually built
using replication techniques. The state machine approach is
a generic replication technique to implement fault-tolerant
services. It was first defined as a means to tolerate crash
faults [8] and later extended for Byzantine/arbitrary faults
[2]. The algorithms of the latter category are usually called
simply BFT. These algorithms typically require 3 f + 1
replicas to tolerate f Byzantine servers, e.g., 4 replicas to
tolerate one faulty [2].

For tolerating attacks and intrusions, these replicas can not
be identical and share the same vulnerabilities. Otherwise,
causing intrusions in all the replicas would be almost the
same as in a single one. There has to be diversity among the
replicas, i.e., replicas shall have different operating systems,
different application software, etc. In order to tolerate
natural disasters and large-scale attacks like distributed
denial-of-service, there should be also diversity in terms of
geographical location, i.e., replicas have to be deployed in
different sites connected by a wide-area network (WAN).

Current BFT algorithms perform well on local area net-
works (LANs) but their time complexity limits their ability
to scale to WANs, which typically have lower bandwidth,
higher and heterogeneous latencies, and exhibit partitions.
Furthermore, these algorithms usually rely on a primary
replica that is in charge of defining the order in which
requests are executed. In large scale environments, the
primary replica of these leader-based algorithms becomes
a bottleneck that limits the system throughput [6].

In order to deal with these limitations, this paper in-
troduces the Efficient Byzantine Algorithm for Wide Area
networks (EBAWA), a BFT state machine replication algo-
rithm for large-scale environments. EBAWA is based on a
previous work, Spinning, a BFT algorithm that constantly
rotates the primary [11]. Spinning changes the primary after
every batch of pending requests is accepted for execution.
Recently Amir et al. described two attacks against the per-
formance of BFT leader-based algorithms that can degrade
their performance to let them barely usable [1]. The rotation
of the primary lets Spinning mostly unaffected by this kind
of performance attacks, which makes it ideal to run in WANs



where detecting a faulty primary takes much longer than in
LANs (communication delays are larger). EBAWA also uses
a rotating primary with the purpose of avoiding these attacks
and for load balancing.

On another note, recently some algorithms that require
only 2 f +1 replicas instead of the above mentioned 3 f +1
were published [5], [3]. This reduction from 3 f + 1 to
2 f + 1, e.g., from 4 to 3 replicas to tolerate a faulty one,
is possible with a hybrid system model, i.e., by extending
the system model with a trusted/trustworthy component that
constrains the power of faulty processes to have certain
behaviors. The above mentioned need of diversity involves
additional considerable costs per replica, in terms not only of
hardware but especially of software development, acquisition
and management. Then, reducing the number of replicas
has a significant impact in the system cost. We have pro-
posed a minimal trusted/trustworthy service to be used by
BFT algorithms to support this reduction of the number of
replicas [10]. This Unique Sequential Identifier Generator
service (USIG) contains a monotonic counter plus a few
cryptographic functions that are used to associate sequence
numbers to certain operations done by the replicas.

The EBAWA algorithm exploits the USIG service in order
to constrain the behavior of faulty replicas and use only
2 f +1 replicas. EBAWA can be seen as a modification of the
Spinning algorithm that requires only 2 f +1 replicas, unlike
Spinning that requires 3 f + 1. The main idea of this paper
is to combine the best attributes of Spinning with the USIG
service and other mechanisms in order to obtain an efficient
BFT algorithm suitable for WANs. Mao et. al [7] explore the
use of a trusted service [3] and a rotating primary in order to
reduce latency in BFT algorithms. This work goes one step
further by proposing a novel BFT algorithm that requires
fewer replicas, fewer communication steps and analytically
seems to have better throughput and latency than others in
literature.

As mentioned before, critical infrastructures depend on
services as storage of critical information from the moni-
toring systems, which if modified by cyber-criminals may
impair the normal operation of the infrastructure. EBAWA
allows the implementation of highly-resilient services in
WANs, like storage of critical monitoring data, DNS or PKI
services, even if there are cyber-attacks, intrusions or the
physical destruction of some of the service replicas.

II. SYSTEM MODEL

We model the system as a set of n servers P =
{s0, ...,sn−1} interconnected by a network that together pro-
vide a Byzantine fault-tolerant service to a set of clients. The
network can drop, reorder and duplicate messages, but these
faults are masked using common techniques like packet re-
transmissions. Messages are kept in a message log for being
retransmitted. We do not make assumptions about processing
or communication delays, except that these delays do not

grow indefinitely. This weak assumption has to be satisfied
only to ensure the liveness of the system, not its safety.
An attacker may have access to the network and be able to
modify messages, so messages contain digital signatures or
message authentication codes (HMACs). Servers and clients
know the keys they need to check these signatures/HMACs.

Correct servers/clients always follow their algorithm.
Faulty servers/clients can deviate arbitrarily from their algo-
rithm, even by colluding with some malicious purpose. This
class of unconstrained faults is usually called Byzantine or
arbitrary. We assume that at most f out of n servers can
be faulty for n = 2 f +1. For simplicity of presentation, we
consider the tight case (n = 2 f + 1) and not the generic
case (n ≥ 2 f + 1), but the generalization is trivial. Each
server contains a local trusted/tamperproof component that
provides the USIG service. Therefore, the fault model we
consider is hybrid. The Byzantine model states that any
number of clients and any f servers can be faulty. However,
the USIG service is tamperproof, i.e., always satisfies its
specification, even if in a faulty server.

The USIG Service. The Unique Sequential Identifier Gen-
erator (USIG) is a service provided locally in each server by
a module that has to be built to be trusted/trustworthy (or
secure) [10]. There is no communication among the modules
in different servers. The service assigns to messages (i.e.,
arrays of bytes) identifiers with the guarantee that (1) it will
never assign the same identifier to two different messages
(uniqueness), (2) it will never assign an identifier that is
lower than a previous one (monotonicity), and (3) it will
never assign an identifier that is not the successor of the
previous one (sequentiality). The main components of the
service are a counter and cryptographic mechanisms. The
interface of the service has two functions:

createUI(m) – returns a USIG certificate that certifies
that the unique identifier UI contained in the certificate
was created by this tamperproof component for message m.
The unique identifier includes the value of the monotonic
counter, which is incremented whenever createUI is called.

verifyUI(UI,m) – verifies if the unique identifier UI is
valid for message m, i.e., if the USIG certificate matches the
message and the rest of the data in UI.

The USIG certificate contains a HMAC obtained using the
message and a secret key owned by this USIG but known by
all the others, for them to be able to verify the certificates
generated. The service properties (e.g., uniqueness) are
based on the secretness of the shared keys. Therefore both
functions createUI and verifyUI must be implemented
inside the tamperproof component. The implementation of
the service is based on an isolated, tamperproof component
that we assume can not be corrupted. More details about the
USIG implementation can be found in [10].
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Figure 1. Normal operation, communication pattern between the
servers in the (a) Spinning and (b) EBAWA algorithms.

III. THE EBAWA ALGORITHM

In the state machine approach, each server maintains a set
of state variables that are modified by a set of operations.
Clients of the service issue requests with operations through
a replication algorithm which ensures that (1) all correct
servers execute the same requests in the same order (safety);
(2) all correct clients’ requests are eventually executed
(liveness). This section presents EBAWA in terms of the
modifications carried out in the Spinning algorithm in order
to reduce the number of replicas from 3 f +1 to 2 f +1 with
the assistance of the USIG service.

EBAWA follows a message exchange pattern similar to
Spinning (see Figure 1). In comparison with Spinning,
EBAWA has one less communication step and needs fewer
replicas. Like Spinning, in EBAWA the servers/replicas
move through successive configurations called views. Each
view has a primary that changes in a round-robin fashion.
The primary is the server sp , v mod n, where v is the current
view number. Notice that in the EBAWA algorithm only one
request is executed per view (a simplification of presentation
removed later) and each message exchanged by the servers
has a unique identifier assigned by the USIG service.

Clients and servers can be scattered geographically. To
tolerate natural disasters, servers have to be in different sites
, while clients can be in the same sites of servers or some-
where else. Nevertheless, there is a notion of proximity: a
client is nearer to certain servers than others. This proximity
is not necessarily physical but in terms of communication
latency. Clients typically send requests only to the nearest
server. Servers have to communicate among themselves.

We now explain the algorithm. The servers run in two
modes: normal operation and merge operation.

Clients. Clients have a list of servers that contains at least
the f + 1 nearest servers, ordered from the nearest to the
farthest. A client c issues a request m for the execution of
an operation m by sending a message 〈REQUEST,c,seq,m〉σc

to the first server of the list.
The seq field is the request identifier that is used to ensure

exactly-once semantics: the servers do not execute a request
of the client with a seq lower than the last executed in order
to avoid executing the same request twice. If the client does
not receive enough replies during a time interval, it resends
the client request to the next in the server list. In case the

request has already been processed, the server resends the
reply. σc is the signature of the message.

Servers – normal operation. A request m is sent by the
primary si to all servers in a message 〈PREPARE,si,v,UIi,m〉
where UIi is obtained by calling function createUI. Each
server s j resends the request to all others in a message
〈COMMIT,v,s j,UIi,UI j〉. Each message sent, either a PRE-
PARE or a COMMIT has a unique identifier UI obtained by
calling the createUI function, so no two messages can have
the same identifier. Servers check if the identifier of the
messages they receive are valid for these messages using
the veri f yUI function. A request m is accepted by a server
if the server receives f + 1 valid COMMIT messages from
different servers for m.

A correct server s j multicasts a COMMIT message in
response to a PREPARE message received from si only if
s j already accepted request m′ sent by si with counter value
cv′ = cv−1, where cv is the counter value in UIi (to prevent
a faulty primary from creating “holes” in the sequence of
messages) and si is the primary of view v. This message
ordering mechanism imposes a FIFO order: no correct server
processes a message 〈...,si, ...,UIi, ...〉 sent by any server si
with counter value cv in UIi before it has processed message
〈...,si, ...UIi

′, ...〉 sent by si with counter value cv−1.
In order to reduce the communication steps and com-

putation overhead, we borrow from Mencius [6] the idea
of SKIP messages. Servers without pending client requests
can skip their turns by sending a SKIP message, with the
format 〈SKIP,si,v,UIi〉. To avoid that a faulty primary sends
to the same view a SKIP message and a PREPARE message to
different subgroups of backups, the SKIP message has also
an unique identifier.

Servers – merge operation. The objective of this operation
is to force servers to agree on which requests of the previous
views were accepted and have to be executed by all correct
servers. The main problem is when some of the messages
were lost or not sent, and some of the correct servers accept
the requests, but other correct servers do not.

The USIG service strongly constrains what a faulty pri-
mary can do. However, a faulty primary can still prevent
progress by not assigning sequence numbers to some re-
quests. Therefore, a server waits a maximum time interval
Tacc to accept the request or skip that view. If in a view v a
server does not receive enough COMMIT messages to accept
the request neither a SKIP message during Tacc, then it sends
a MERGE message for view v to all servers.

When s j receives at least f + 1 MERGE messages for a
view v, if v is higher or equal to its current view, it sends
〈MERGE,s j,v,Clast ,P,O,UI j〉 to all servers, where Clast is a
commit certificate of the last accepted request. The field P
contains valid PREPARE messages with view number greater
than Clast .v and less or equal to v. O contains all signed
messages sent by the server since the last accepted request.



Correct servers only consider MERGE messages that are
consistent with the system state: (1) the commit certificate
Clast contains f +1 valid UI identifiers; (2) the counter value
(cvi) in UI j is cv j = cv+1, where cv is the highest counter
value of the UIs signed by the replica in O; if O is empty
the highest counter value will be the UI in Clast signed by
the replica when it accepted the request; and (3) there are
no holes in the sequence number of messages in O.

If the server did not send a MERGE message before, it
changes the state to merge and increments the view number.
The verification that v is higher or equal to its current view
is needed to prevent faulty servers from doing a merge
operation of a past view. When si receives f + 1 MERGE
messages from view v − 1 and it is the primary of the
view v, it sends 〈PREPARE-MERGE,si,v,VP,M,UIi〉 to all
servers. VP is a vector of digests of prepared requests taken
from the P field of the MERGE messages, ordered by view
number. To compute V P, the primary starts by selecting the
most recent (valid) commit certificate received in MERGE
messages. Next, it picks in MERGE messages the PREPARE
messages in P sets with v greater than the view number in
the commit certificate and v lower than v. If the primary have
been sent before its PREPARE or SKIP message to view v it
adds the message to V P. M is a merge certificate composed
by the f + 1 MERGE messages received. This certificate is
used by the recipients of the message to verify if the primary
computed VP correctly, i.e., if it is valid.

When a server s j receives a valid message
〈PREPARE-MERGE,si,v,VP,M,UIi〉 from si it evaluates
if: (i) the sender is the primary of v; (ii) VP is valid (using
the merge certificate M to do the same computation as
the primary). (iii) the UIi of the message is valid. If the
PREPARE-MERGE message is valid a replica changes its
state to normal and sends a COMMIT message. Server
increments the view v′ after all prepared requests in VP that
have not been executed before, are executed. If a replica
detects that there is a hole in the sequence number of the
last request that it executed and the first request in VP,
it requests to other replicas the commit certificates of the
missing requests to update its state. If due to the garbage
collection the other replicas have deleted these messages,
there is a state transfer.

Other issues. As Spinning, EBAWA uses checkpoints only
for state transfer purposes. Also, if a server is faulty it
can periodically impair the performance of the service by
delaying sending some of the messages it has to send.
To circumvent this problem, we use Spinning’s blacklist
mechanism. Servers that cause merge operations are put in a
blacklist and do not become the primary. Also like Spinning,
the timeouts of the merge operation have to be increased and
decreased depending on the network delays.

There are several optimizations to the algorithm that we
do not have space to discuss in detail. Servers can batch

all pending requests in a single PREPARE message, instead
of sending that message for a single request. Servers can
send PREPARE or SKIP messages together with COMMIT
messages, doing the two communication steps together.

IV. EVALUATION

This section provides an analytical comparison of
EBAWA with other BFT algorithms in the literature. Table I
presents a summary of the characteristics of the algorithms.
EBAWA and A2M-PBFT-EA require only 2 f +1, instead of
the usual 3 f +1 replicas (lines “Model” and “Total replicas”
in the table).

The number of communication steps is an important
metric for distributed algorithms, for the delay of the com-
munication tends to have a major impact in the latency of
the algorithm (line “Latency”). This is specially important
in WANs, where the communication delay can be as much
as a thousand times higher than in LANs. When compared
with other BFT algorithms, EBAWA and MinBFT run in the
minimum known number of communication steps. However,
MinBFT is vulnerable to performance degradation attacks,
something that can be disastrous in WANs. The reason is
that the timeouts used to detect if the primary is misbehaving
have to be higher than the round trip time plus a margin to
compensate delay variations that are common in WANs.

EBAWA, Spinning, Prime and Aardvark mitigate perfor-
mance degradation attacks (line “Resilience”). Prime intro-
duces a pre-order phase with three communication steps
before the global order (based on PBFT) that, together
with the constant monitoring of the performance of the
primary, make the system able to detect performance attacks.
Aardvark follows the same communication pattern than
PBFT and proposes a constant monitoring of the throughput
sustained during a view plus the periodic change of primary
through the execution of a view change operation. As in
Spinning, EBAWA rotates the primary after each request,
which has shown to be more efficient and resilient than the
solutions of Prime and Aardvark.

In EBAWA, servers process less messages than the servers
of other algorithms, which means less network I/O and
less cryptographic operations (line “Throughput”). Figure 2
illustrates these costs for different values of f and b (size of
batch), comparing the number of cryptographic operations
done by the primary per client request for different BFT
algorithms. Signatures based on public-key cryptography
are known to be much slower to create and verify than
HMACs, so it is important to notice that Prime and Aardvark
use public-key signatures, while EBAWA does not. EBAWA
potentially has the best latency and throughput of all BFT
algorithms in the table due to the reduced number of replicas,
communication steps and the load balancing between the
servers provided by the rotating primary.



PBFT [2] Aardvark [4] Spinning [11] Prime [1] A2M-PBFT-EA[3] MinBFT [10] EBAWA (this paper)
Model Tamperproof no no no no A2M USIG USIG

component
Cost Total replicas 3 f +1 3 f +1 3 f +1 3 f +1 2 f +1 2 f +1 2 f +1

Throughput HMAC ops at 2+ 8 f +1
b 2+ 8 f +1

b
2+ 8 f +1

b +3 f (2+ 5 f +1
b )

3 f +1 2+8 f + 13 f
b 2+ 2 f +4

b 2+ f +3
b

2+ 1+( f +2)
b +2 f (1+ 1+( f +1)

b )
2 f +1

bottleneck server (*) (*)
Latency Communication 5 / 4 5 5 8 5 4 4

steps
Resilience Performance vulnerable tolerant tolerant tolerant vulnerable vulnerable tolerant

degr. attacks

Table I
COMPARISON OF BFT ALGORITHMS. b AND c ARE RESPECTIVELY THE SIZE OF THE BATCH OF REQUESTS AND COMMITS. IN THE ALGORITHMS THAT
USE A TAMPERPROOF COMPONENT, SOME HMACS ARE DONE INSIDE THIS COMPONENT. THE STAR (*) INDICATES SIGNATURES INSTEAD OF HMACS.

V. CONCLUSION

Nowadays critical infrastructures are essentially physical
processes controlled by computers connected by networks.
They are usually as vulnerable as any other networked
computer system, but their failure has a high socio-economic
impact and some of them are even safety-critical. Therefore,
critical infrastructures require highly-resilient services that
function correctly even under harsh cyber-attacks that man-
age to corrupt some of the computers involved. We show
a BFT algorithm that can be used to implement highly-
resilient services in WANs, like storage of critical moni-
toring data, DNS or PKI services, that remains operational
even in presence of intrusions or the physical destruction of
some of the service replicas. EBAWA mitigates performance
attacks by changing the primary after every batch of pending
requests is accepted for execution. This mode of operation
limits the number of messages exchanged between the
servers, avoids that the primary replica becomes a bottleneck
and consequently improves the system throughput. All these
attributes make EBAWA ideal for highly-resilient services
for critical infrastructures.
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