
On the Complexity of Probabilistic Key
Predistribution Schemes

Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, Mississippi State, MS 39762
Ph: 662-325-8435, Email: ramkumar@cse.msstate.edu

Abstract— Collusion susceptible key predistribution
schemes (KPS) are trade-offs between complexity
and security. Measures of complexity include storage,
computation and bandwidth overhead; a measure of
security is their collusion resistance. Probabilistic KPSs
(P-KPS) have some unique advantages in application
scenarios where hardware assisted protection of secrets
is mandatory. To facilitate a quantitative comparison of
different facets of complexity associated with KPSs we
investigate two generic device models suitable for a wide
range of application scenarios where hardware assisted
protection of secrets is mandatory. We propose a novel
P-KPS, the subset keys and identity tickets (SKIT) scheme,
which demands substantially lower overheads compared
to other P-KPSs for such application scenarios.

I. INTRODUCTION

A communication network is a collection of nodes
with unique labels and credentials. Securing interactions
between two nodes with labels A and B require mech-
anisms which permit the nodes to verify each others
labels and credentials, and establish a pairwise secret
KAB . The secret KAB can be leveraged for privacy and
mutual authentication of messages exchanged between
the nodes.

Any cryptographic security association is at most only
as strong as the mechanism used for protecting secrets
assigned to nodes. In more conventional networks the
secrets assigned to nodes (computers) are protected by
human beings, perhaps by controlling physical access
to the computers. Unfortunately, for a wide variety of
emerging application scenarios nodes may be comput-
ers deployed in an unattended manner. In such cases
there is a need for hardware assisted protection of
secrets assigned to devices. In such scenarios, there are
good reasons to limit the complexity of the trustworthy
hardware security modules (HSMs) which protect and
perform cryptographic computations using such secrets.

Scalable key predistribution schemes (KPS) which
employ only symmetric cryptography are well suited
for securing interactions between nodes equipped with
HSMs. Scalable KPSs require every node to store a
limited set of k secrets, but can nevertheless support
unlimited network sizes N . Irrespective of the network
size N , an n-secure KPS can resist collusions of up to n
nodes pooling their secrets together. More generally, for

an (n, p)-secure probabilistic KPS (P-KPS), an attacker
pooling together secrets of n nodes can determine any
pairwise secret with a probability p.

There are two reasons which render scalable KPSs well
suited for use in conjunction with HSMs. Firstly, due to
the low computational overhead, the use of KPSs can
permit the use of HSMs with low complexity (in general,
lower the complexity of HSMs, higher their reliability).
Secondly, that it may be impractical for attackers to
expose secrets protected by many HSMs can render the
issue of susceptibility to collusions less of a concern.

A. Contributions

Traditionally the measure of the “efficiency” of any
KPS has been regarded as n/k, where k is the number
of keys to be stored by each node to realize a n-secure
KPS. This was a reasonable measure, as for most of the
early deterministic KPSs in the literature, storage and
computational overheads were linear in k (and n, as for
most KPSs k ∝ n). This is however not true for P-KPSs.

For the intended purpose we desire KPSs which can
provide high collusion resistance while keeping the HSM
complexity low. We argue that P-KPSs in general are
better suited than deterministic KPSs for the intended
application. To facilitate a detailed analysis of the over-
head associated with probabilistic KPSs we take an in-
depth look at a generic class of applications where there
is a need for hardware assisted protection of secrets.
We provide two generic device models suitable for a
wide range of emerging application scenarios like sensor
and ad hoc networks, and more generally, large scale
networks of resource limited ubiquitous computers.

This paper introduces a novel P-KPS, the subset keys
and identity tickets (SKIT) scheme. The generic device
models are used to demonstrate that SKIT is substan-
tially more efficient compared to better known P-KPSs
based on subset intersection (SI).

The rest of this paper is organized as follows. Section
II provides an overview of key predistribution schemes.
The novel SKIT scheme is described in Section III.
Section IV outlines the generic device models and pro-
vides an in-depth comparison of complexity of various
KPSs. Section V argues why deterministic KPSs are

ill-suited for the intended application scenario. Several
advantages of probabilistic KPSs in general, and SKIT in
particular are enumerated. Section V-A discusses some
related work. Conclusions are offered in Section V-B.

II. KEY PRE-DISTRIBUTION SCHEMES

In key pre-distribution schemes (KPS) a key distribu-
tion center (KDC) chooses a set of P secrets S. Every
node is assigned a unique identity from a set I. A node
with identity A ∈ I is issued a key-ring SA with k
secrets. Using its key-ring, A can compute KAi = KiA

for all i ∈ I. Likewise, node B can use its key-ring
SB to compute KBi = KiB for all i ∈ I. Thus, both
A and B can independently compute a common secret
KAB = KBA.

KPSs can be broadly classified into non-scalable and
scalable schemes. For non-scalable KPSs the size of the
set I is limited to some value M - or I ≡ ZM =
{0, 1, 2, . . . ,M − 1}. For the non-scalable “basic” KPS,
for a network size of M , the KDC generates

(
M
2

)
pairwise secrets and provides each node with a key-ring
with k = M − 1 secrets.

For scalable KPSs the set I is unlimited. Nevertheless,
using its restricted set of k keys, a node can compute a
practically unlimited number (| I |) of pairwise secrets.
However, unlike non-scalable KPSs, scalable KPSs are
susceptible to collusions. An entity with access to the
secrets of n nodes in the set A may be able to pool the
key-rings together to illegitimately compute Kuv even
when u, v 6∈ A.

Scalable KPSs can be classified into deterministic n-
secure schemes and probabilistic (n, p)-secure schemes.
For the former, an attacker with access to secrets of n
or less nodes cannot compute any illegitimate secret.
However, with access to secrets of more than n nodes
the attacker can compute all secrets. For (n, p)-secure
schemes an attacker with access to secrets of n randomly
chosen nodes can compute a fraction p(n) of all illegit-
imate pairwise secrets. As long as p is sufficiently small
(for example, 2−64) it is computationally infeasible for
an attacker to even determine which pairwise secrets can
be computed using the secrets of n nodes.

A. A Deterministic KPS: Blom’s SKGS

That it is possible to realize unlimited network scales
by sacrificing resistance to collusions was first rec-
ognized by Blom [2]. In [2] and [3] Blom proposed
schemes which rely on finite field arithmetic to generate
the key ring of any node from a set of keys chosen by
the KDC. The scheme based on symmetric polynomials
[2] required each node to store about k ≈ 2n keys
to achieve n-security. The symmetric key generation
scheme (SKGS) [3] which requires every node to store

k = n + 1 keys remains the most storage efficient
scheme.

To realize an n-secure Blom’s SKGS over a finite-field
Zq = {0, 1, . . . , q − 1} the KDC chooses i) a generator
α ∈ Zq; and ii) a (n+1)× (n+1) symmetric matrix D
with P =

(
n+1

2

)
values chosen randomly from Zq . The

P values are the KDC secrets S.
To provide keys to a node with identity A ∈ Zq ,

the KDC computes gA = [gA(0), gA(1), . . . , gA(n)]T ,
where gA(i) = αiA, and provides a set of k secrets
SA = DgA = dA = [sA0 , s

A
1 , . . . s

A
n]T .

Nodes A and B (with secrets dA and dB = [sB0 , · · · sBn]
respectively) can compute KAB = (dA)TgB =
(dB)TgA (as D is a symmetric matrix) as

KAB =
{ ∑n

i=0 s
A
i α

iB mod q by A∑n
i=0 s

B
i α

iA mod q by B (1)

B. Probabilistic Subset Intersection Schemes

One major limitation of schemes that require finite-field
multiplications is the more complex hardware required
for this purpose. This was the motivation for Gong and
Wheeler [4] to propose a key predistribution scheme
which can employ any symmetric block-cipher or hash
function as a building block. In the matrix [4] scheme for
a network size of N , each node will require n

√
N keys to

resist collusion of up to n nodes. The matrix scheme was
the first in the category of subset intersection schemes
where the KDC chooses a set of P secrets and each node
receives a subset of k < P secrets, and all keys common
to two nodes are used to compute pairwise secrets.

Later (in 1995), influenced by the seminal work of
Erdos et al [6], Mitchell and Piper [5] investigated
strategies for subset allocation for a given network size
N , subject to the constraint that “the union of keys
belonging to no n nodes should cover the intersection
of keys of any two nodes.” The scheme in [5] required
every node to receive k = O(n logN) secrets.

Unfortunately, the schemes in [4] and [5] were not truly
scalable as the key allocation strategy is tied to the total
number of nodes N . In other words, for such schemes it
is not possible to add new nodes to the network. In 1995
Dyer et al [7] argued that complex allocation strategies
employed by Mitchell and Piper [5] can be replaced by
random or pseudo-random allocation of subsets. More
importantly, as the allocation strategy is not tied to the
total number of nodes, the approach proposed by Dyer et
al [7] results in a truly scalable scheme (like the earlier
deterministic KPSs) where nodes can be added to the
network at any time, and there is no limit on N - the
total number of nodes.

In 1999 [8] the idea of random subset allocation
was applied for constructing a broadcast authentication
scheme with probabilistic assurances. More recently,

since [9] in 2002, the concept of random subset alloca-
tion has been applied by various researchers for securing
sensor networks [9] - [14].

While different subset intersection schemes differ in
some details regarding how the subsets are generated,
their (n, p)-security does not depend on the specific dis-
tribution strategy. For an (n, p)-secure subset intersection
(SI) scheme [7] with parameters k = ne log(1/p) and
t = n + 1 [15], the KDC chooses P = kt secrets
S = {Ki,j}, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ t − 1. Each
node is provided k secrets.

To provide keys to node A the KDC evaluates k public
pseudo-random functions (PRFs) ai = ft(A, i), 0 ≤ i ≤
k − 1 where 0 ≤ ai ≤ t − 1,∀i. The values ai are
the indices of the k secrets provided to A. Or SA =
{K0,a0 , . . . ,Kk−1,ak−1}.

To compute KAB both A and B evaluate ft(A, i) and
ft(B, i) for 0 ≤ i ≤ k − 1 and determine the indices
i ∈ Zk for which ai = bi. On an average, this will
occur for kf = k/t ≈ e log(1/p) indices. The kf
secrets corresponding to the common indices are XOR-
ed together to derive KAB .

III. SKIT: SUBSET KEYS AND IDENTITY TICKETS

An “identity ticket” is derived as a one way function
of a label and a secret. For example, h(K,A) is an
identity ticket corresponding to a key K and a label A.
While identity tickets are conceptually similar to hashed
message authentication codes (HMACs), unlike HMACs,
identity tickets are treated as secrets. The identity ticket
h(K,A) is privy only to the entity with identity A and
entities who have access to the secret K (and can thus
compute the ticket).

The subset key and identity tickets (SKIT) scheme is
defined by two parameters (m,M). The KDC chooses a
pre-image resistant hash function h() and a PRF fM ().
The KDC chooses a set of k = mM secrets S = {Ki,j},
0 ≤ i ≤ m− 1, 0 ≤ j ≤M − 1. For a node A the KDC
computes ai = fM (A, i), 0 ≤ i ≤ m− 1. A is assigned
i) m secrets SA and ii) mM ITs TA where

SA = {K(0, a0),K(1, a1), . . . ,K(m− 1, am−1)}
TA = {TA(i, j)}, 0 ≤ i ≤ m− 1, 0 ≤ j ≤M − 1
where TA(i, j) = h(Ki,j , A).

,

Two nodes A and B can compute 2m common tickets
of the form TA(i, bi) for 0 ≤ i ≤ m − 1 and TB(i, ai)
for 0 ≤ i ≤ m− 1. More specifically,

1) A evaluates PRF {bi = fM (B, i)} = to choose m
of its mM tickets: TA(i, bi) ∈ TA, 0 ≤ i ≤ m − 1;
A computes m tickets TB(i, ai) ∈ TB using its secrets
SA = {Ki,ai

} (as TB(i, ai) = h(Ki,ai
, B)).

2) B evaluates PRF {ai = fM (A, i)} = to determine
the indices of m tickets TB(i, ai); B employs SB to
compute m tickets TA(i, bi).

All 2m tickets are used to derive the pairwise secret
KAB , by XOR-ing them together:

KAB = {TA(0, b0)⊕ · · · ⊕ TA(m− 1, bm−1}
⊕ {TB(0, a0)⊕ · · · ⊕ TB(m− 1, am−1}(2)

A. (n, p)-Security

The tickets assigned to a node do not reveal any in-
formation about the secrets or the tickets of other nodes
(as h() is pre-image resistant). However, an attacker who
has access to secrets of n nodes may be able to pool their
secrets (not tickets) together to determine all m secrets
of A (SA = {K0,a0 · · ·Km−1,am−1}) and all m secrets
of B (SB = {K0,b0 · · ·Km−1,bm−1}), from which the
required 2m tickets, and hence KAB , can be computed.

A specific node C in the attacker pool is also assigned
the secret K(i, ai) if the fM (A, i) = ai = fM (C, i) =
ci. The probability of such an event is 1/M . The
probability that a particular K(i, ai) is not assigned to
any of the n nodes in the attacker’s pool is then

ε = (1− 1/M)n ≈ e−n/M (3)

(for large M). Thus, the probability that the attackers
pool of secrets can be used to compute KAB (or all 2m
tickets can be computed by the attacker) is

p(n) = (1− ε)2m ≈
(
1− e−n/M

)2m

. (4)

We can rewrite Eq (4) as

k = mM =
n log(1/p)

−2θ log(1− e−θ)
, where θ =

n

M
. (5)

By choosing θ = n/M = log(2) we can maximize
−θ log(1 − e−θ), and thus minimize k = mM . If we
desire p(n∗) ≤ p∗ (or a (n∗, p∗)-secure SKIT scheme)
the choice of parameters m and M that minimize k (the
number of ITs that need to be stored by every node) are

m = log(1/p∗)
2 log 2

M = n∗

log 2

}
⇒ k =

n∗ log(1/p∗)
2 log2 2

. (6)

For SKIT with parameters m = 32 and M = 215

minimizes k = mM to acheive p(n∗ = 22, 500) < p∗ =
2−64). Each node stores m = 32 secrets and mM = 220

(a million) tickets. For 80-bit tickets the storage required
is 10 MB. An attacker who has access to secrets of n∗ =
22, 500 nodes can determine only a fraction p∗ = 2−64

of illegitimate pairwise secrets. An attacker who has
exposed secrets from 42, 200 > n∗ nodes can expose one
in a billion pairwise secrets (or p(42200) ≈ 2−30 > p∗).
Doubling M to 216 (for the same m = 32) will result in
a scheme for which p(45000) ≈ 2−64 (or n∗ is doubled).
The storage requirement mM is doubled to 20 MB. If
we desire a SKIT scheme with p(100000) ≈ 2−64, about
44 MB of storage is required for every node.

Note that the number of PRFs and hash computations
that need to be evaluated by any node (both m), are
independent of the desired collusion resistance n. Only
storage for tickets (mM) limits the achievable collusion
resistance. It is for this reason that we attempt to
minimize mM to achieve a desired (n, p)-secure SKIT
scheme.

IV. COMPLEXITY OF KPSS

For purposes of comparison of different KPSs, we shall
compare the overhead required for an n∗-secure Blom’s
SKGS, (n∗, p∗)-secure SI, and SKIT schemes, designed
to meet the requirement n∗ = 216 and p∗ = 2−64. The
SKGS scheme will require every node to store k = n+
1 = 65, 537 keys. Realizing a (n = 216, p = 2−64)-
secure RPS calls for k ≈ 7, 903, 000 and t ≈ 216. The
(n = 216, p = 2−64)-secure SKIT scheme calls for m =
32 and M = 94, 548. The SI scheme will require every
node to store close to 8 million secrets. For SKIT every
node will need to store m = 32 secrets and a little over
3 million (mM) identity tickets.

From the perspective of storage complexity S, SKGS
is more efficient. Among the two P-KPSs, SKIT is more
than twice as efficient as SI scheme. However, as we
shall see in the reminder of this section, the value k
alone does not provide the “full picture.”

Facilitating any cryptographic authentication scheme
mandates some overhead. In general, the overhead may
take many forms like computation, bandwidth and stor-
age. The costs associated with different types of over-
head will obviously depend on the intended purpose of
the network and the nature of devices that constitute the
network.

A. Application Model

In conventional networks “nodes” are typically per-
sonal computers. Secrets assigned to personal computers
are protected by a person, usually by restricting physical
access to the computer. In contrast, in emerging ubiqui-
tous computing application scenarios where most devices
may be deployed in an unattended manner, the secrets
assigned to a computer will require hardware assisted
protection. The choice of cryptographic authentication
strategies for such networks should thus consider addi-
tional constraints imposed by the need to employ tamper-
resistant hardware security modules (HSM) in devices to
protect and perform computations with secrets.

Some such computers may be sensors entrusted with
the task of monitoring and reporting environmental
parameters like temperature, humidity, and levels of
atmospheric pollutants; various unattended sensors may
be deployed at different locations ranging from rain
forests to street intersections in cities, to homes. Some
devices may be entrusted with the task of simply routing

S Device

(CU)

AD

HSM

(CM ,SM)

AM
F F ′

Passive
External
Storage

AS

Model I

Model II

S

Active
External
Resource

AS

CU
Device

AD

HSM

(CM ,SM)

AM
F ′ F ′

Fig. 1. Generic device model for emerging applications. A node A
includes the device AD and a HSM AM housed in the device. Devices
have access to storage where the key ring is stored - either passive
pluggable storage (Model I) or active external resource, accessed over
a network (Model II). Different facets of complexity (S, CU , F , F ′,
CM , and SM) borne by the three components of a node are also
indicated.

information between computers, by adhering to some ad
hoc routing protocol.

In large-scale networks where proactive mechanisms to
protect secrets are mandatory in any case, KPSs do merit
consideration as an alternative to more conventional
schemes based on asymmetric cryptography. This is
especially true with assurances that i) it is expensive for
attackers to tamper with such HSMs and expose secrets,
and that ii) the collusion resistance n can be increased
to very large extents (or an attacker has to break many
“unbreakable” HSMs).

B. Device Model

A pictorial view of a node, consisting of a device and an
associated HSM, is shown in Figure 1. More specifically,
a node with KPS identity A consists of a device AD
and a HSM AM . The device AD also has access to a
storage device AS . In the figure we distinguish between
two device models:

1) Model I with passive external device AS , and
2) Model II with an active external resource AS .

Model I includes a wide variety of devices that can
support pluggable flash storage AS . For example, AD
can be a mobile phone, and AS is a flash card plugged
into the mobile phone. In this case the HSM could be
the SIM1 card (or a chip inside the SIM card).

In Model II the active external resource is generally
more capable than the device AD. For example, i) AD
can be a sensor device in some home equipment (like a
coffee-maker or microwave) which can access a desktop

1Subscriber Identity Module.

computer AS over a blue-tooth link; ii) AD can be a
sensor in a conventional sensor network, and AS can be
a proxy (shared by many such sensors in the network);
iii) the device AD can be a cardiac sensor which has
infrared/blue-tooth access to a mobile phone AS carried
by the person. More generally, the “link” between AD
and the active external resource AS can even span over
some wide area network like the Internet.

In both Models I and II the external device (active or
passive) is not trusted by the HSM.

In scenarios where it is necessary to employ tamper-
resistant hardware security modules (HSM) to protect
secrets assigned to devices, there are good reasons to
deliberately limit the complexity and the power con-
sumed by such HSMs. Low complexity HSMs can be
more readily verified and certified for integrity. Low-
power modules can be extended unconstrained shielding
from intrusions, as heat-dissipation will not be an issue.
Consequently, low-complexity-low-power HSMs can be
realized at low cost [16] without sacrificing their in-
tegrity. Furthermore, in many scenarios the devices may
themselves be resource limited, and thus unable to house
power-hungry HSMs.

While P-KPSs require more storage compared to deter-
ministic KPSs, this is not a concern for the HSMs. The
secrets to be protected by HSM AM can be encrypted
using a small number of secrets stored inside the HSM
AM , and the encrypted secrets can be stored outside the
HSM in AS . Furthermore, it is not necessary for the
HSM to compute the PRFs, as long as the HSM is able
to verify the PRF computations. Thus, just as storage can
be off-loaded to resources outside the HSM, so can PRF
computations.

To compute any pairwise secret like KAB the HSM
AM will need to perform some computations - some
for verifying the PRF and some for actually computing
the secret KAB using protected secrets. For computing
pairwise secrets facilitated by probabilistic KPSs like
SI schemes or SKIT, the HSMs will only need to
be equipped with a hash function (or a block-cipher),
registers for storing some protected secrets, and sim-
ple control circuitry to reuse the block-cipher/hash for
different types of computations (bulk encryption, PRF,
random number generation, etc.), and some I/O registers
to facilitate exchanges with the device AD.

1) Facets of Complexity: We shall represent by S, the
storage complexity borne by the external resource AS .

In Model I the device AD performs PRF computations
of complexity CU and fetches some encrypted secrets
from AS (flash card). Let F be the number of bytes
fetched from the flash card. The device AD then provides
F ′ bytes to the HSM AM .

In Model II AS performs PRF computations of com-

plexity CU and sends F ′ bytes to AD. These F ′ bytes
are simply relayed by the device AD to the HSM AM .

In both models the HSM complexity remains the same.
In both models the HSM receives F ′ bytes as inputs
(written into the input register of the HSM by the device
AD). For verification of PRFs the HSMs will need to re-
evaluate some PRFs. We shall denote this complexity as
CUM . The HSMs will also need to perform some block-
cipher / hash operations. Let CRM represent the number of
such operation required to compute a specific pairwise
secret. We shall also represent by SM the number of
secrets that need to be stored inside the HSM.

C. KPS Overheads

Any key distribution scheme for scalable networks
requires controlling bodies like i) registration authorities
(RA) who verify/assign credentials and/or unique identi-
ties to nodes, and ii) KDCs which induct the nodes into
the network by providing secrets, and thus enable them
to authenticate themselves to other nodes in the network.

From the perspective of the KDCs and RAs, nodes are
HSMs housed in different types of devices. RAs verify
the integrity of such HSMs, assign a unique identity,
and provide a secret to the HSM. This secret will also
be conveyed by the RA to the KDC(s) to bootstrap the
key distribution process. Let MA be such a unique secret
provided to node A.

Due to the total freedom available in choosing the
secrets the KDC can choose a single master secret
and compute any of the P KPS secrets on demand,
using a secure one-way function. For example, if Ms

is the master secret chosen by the KDC, the KDC can
generate any of the P SI scheme secrets as Ki,j =
h(Ms, i, j). For SKIT, the KDC compute any of the mM
secrets as Ki,j = h(Ms, i, j) and any ticket TX(i, j) as
h(h(Ms, i, j), X).

For inducting a node with identity A the KDC has to
compute the set of k ≈ 8 million secrets SA for SI
schemes, and m = 32 secrets and mM ≈ 3 million
tickets for SKIT. Let T denote the complexity of com-
putations performed by the KDC. For both probabilistic
KPSs T = O(n log(1/p)).

The KDC can provide all k secrets (or secrets and
identity tickets for SKIT) by encrypting them using the
secret MA provided to the KDC and the node by the RA.
More specifically, for SI schemes the HSM stores one
secret MA (or SM = 1); a secret Ki,j in the key ring SA
is stored encrypted as h(MA, i, j)⊕Ki,j . For SKIT it is
convenient2 for the HSMs to store m = 32 secrets in ad-
dition to the secret MA (or SM = 1+32 = 33). A ticket
TA(i, j) is stored encrypted as TA(i, j)⊕ h(MA, i, j).

The sequence of operations performed by A (or more

2For reasons explained later in this paper.

precisely, the HSM AM , the device AD and the external
resource AS) to compute a pairwise secret KAB , and
the facets of complexity associated with each step, are
as follows:
SKIT:

1) CU : This involves computing m = 32 PRFs:
fM (B, i) for 0 ≤ i ≤ m − 1; this is performed by
the device AD in Model I and the external device AS in
Model II.

2) F : In Model I the device AD fetches m = 32
encrypted tickets from pluggable storage AS ; assuming
each ticket is 10 bytes, F ≈= 320 bytes.

3) F ′: In Model II, the external device AS XORs all m
encrypted tickets TA(i, bi)⊕h(MA, i, bi), 0 ≤ i ≤ m−1,
and sends a single 10 byte value EAB : or F ′ = 10 bytes.
The device AD relays EAB to the HSM AM . In Model
I the device AD XORs all m tickets together and sends
the 10 byte value EAB to the HSM.

4) CUM : The HSM computes m = 32 PRFs fM (B, i) =
bi (or CUM amounts to m = 32 PRF computations).

5) CRM : The HSM i) computes h(MA, i, bi), 0 ≤ i ≤
m−1 and XORs the m values together: let this value be
HB (note that HB⊕EAB is simply the XOR of 32 tickets
TA(i, bi), 0 ≤ i ≤ m − 1); ii) computes TB(i, ai) =
h(Ki,ai , B) for 0 ≤ i ≤ m, where the m = 32 secrets
Ki,ai

are stored inside the HSM; iii) XORs the 32 tickets
with HB ⊕ EAB to yield KAB . Thus CRM amounts to
2m = 64 block-cipher/hash evaluations.
SI Scheme:

1) CU involves computation of 2k (about 16 million)
PRFs: computing ft(A, i) and ft(B, i) for 0 ≤ i ≤ k−1,
and determining the subset of kf indices {i1 · · · ikf

} ∈
Zk for which ai = bi. This computation is performed
by the device AD in Model I, and by the active external
resource in Model II.

2) F : In Model I the device fetches kf = 121 encrypted
secrets from storage. Assuming that each secret is 10
bytes, we have F ≈ 10kf = 1210 bytes.

3) F ′: The active external resource in Model II (or the
device AD in Model I) XORs all kf secrets together
(let this 10-byte value be EAB) and sends EAB and kf
indices {i1 · · · ikf

} ∈ Zk to the HSM. As each index
needs log2 k ≈ 23 bits, F ′ ≈ 10 + 121 × 23/8 ≈ 358
bytes.

4) CUM : The HSM performs 2kf = 242 PRF computa-
tions to verify that for the kf indices {i1 · · · ikf

} ∈ Zk
provided by the device, ft(A, i) = ai = ft(B, i) = bi
(CUM amounts to 2kf = 242 PRF evaluations);

5) CRM : The HSM computes h(MA, i, ai) for each
common index i and XORs the kf such values together
to yield a 10-byte value HB . Now HB ⊕ EAB =
KAB . Thus CRM amounts to kf = 121 block-cipher/hash
evaluations.

SKGS:
For SKGS all facets of complexity are proportional

to the desired collusion resistance n. More specifically,
for n∗ = 216-secure SKGS: a) F = k = n + 1
encrypted secrets need to be fetched from storage and
provided to the HSM (or F ′ = F = n + 1; and b)
the HSM computational overhead CM include i) 1 finite-
field exponentiation to compute αB ; ii) n−2 finite-field
multiplications to compute αiB for 0 ≤ i ≤ k − 1; iii)
n+1 decryptions, and iv) n+1 finite-field multiplications
αiB · siA to compute KAB .

D. Comparison

Table 1 provides a quick comparison of various facets
of complexity of KPSs to realize the same (n∗, p∗)-
security. In the table the computational overhead for the
KDC (for computing the key ring) is T ; the external
storage complexity S is indicated in MBs, assuming
80-bit secrets and tickets; CU is the number of PRF
computations performed by the device (in Model I) or
an active external resource (in Model II). The fetch
overheads F and F ′ are indicated in bytes.

The value F ′ is the number of bytes that need to be
provided to the HSM (written into its input register),
and thus will influence the HSM complexity. The com-
putational overhead CM includes both hash evaluations
CRM which employ secrets, and PRF computations CUM
which do not employ secrets. For SKGS CUM is number
of finite-field multiplications in public computations (for
computing αB and αiB for 0 ≤ i ≤ k − 1). CRM is
the number of finite-field multiplications that need to be
performed using KPS secrets (computing αiB · siA, for
0 ≤ i ≤ k− 1). The value SM , is the number of secrets
that need to be stored inside the HSM.

Note that while the complexity facets T , S, CU and F
have no bearing on the complexity of the HSM, F ′, CM
(which includes CUM and CRM), and SM affect the HSM
complexity.

For probabilistic schemes resources outside the HSM
perform some public computations (PRFs) which do not
require the use of secrets. This is done to enable the
external device to choose a small subset of the secrets
in the key ring and provide them to the HSM. Secondly,
in the case of SI, this can also reduce the complexity
of operations performed by the HSM: while the external
resource computes 16 million PRFs, the HSM (which
does not trust the external device) can still verify the PRF
computations by computing a mere 2kf = 242 PRFs.
While SKGS also includes some public computations
(computing αB and αiB for 0 ≤ i ≤ k − 1), there is no
reason for the external devices to compute them (as all
k secrets need to be provided to the device, all of which
will be supplied by the device to the HSM).

TABLE I
COMPARISON OF VARIOUS FACETS OF COMPLEXITY OF SKGS, SI,

AND SKIT FOR n∗ = 216 AND p∗ = 2−64 . THE FIRST FOUR

FACETS (T ,S,F AND CU) DO NOT AFFECT THE HSM. THE

SECOND FOUR FACETS IMPACT THE HSM.
SKGS SKGS-P SI SKIT

T 2.1e9 2.1e9 8e6 3e6
S 0.64 MB – 80 MB 30 MB
F 65537 – 1210 320
CU – – 16,000,000 32

F ′ 65537 – 358 10
CU

M 65537 65537 242 32
CR

M 65537 65537 121 64
SM 1 65537 1 33

The only practical way to employ SKGS is if all
secrets are stored inside the HSM (SKGS-P in the table).
While this will render the fetch overheads F and F ′
less of an issue, it does nothing to relieve the O(n)
computational overheads CM borne by the HSM. For
SKGS the HSM computational overhead CM becomes
comparable to public key schemes even for n of the
order of a few hundreds. Thus, in scenarios where we
desire large collusion resistance n, there is obviously no
reason to even consider SKGS as a possible candidate.

As is clearly evident, every facet of complexity is lower
for SKIT compared to SI scheme - except for the modest
storage required inside the HSM (SM is 33 for SKIT vs
1 for SI). However, if desired, it is also possible to store
the m = 32 secrets outside the HSM (and thus reduce
SM to 1). In this case, for computing any pairwise secret,
m = 32 secrets also need to be fetched (from external
storage) and decrypted inside the HSM. Thus, reducing
SM to 1 will be accompanied by a 320-byte increase in
both F ′ and F . Furthermore, the HSM computational
overhead CM will increase from 64 to 96 (due to 32
additional decryptions). Thus, reducing SM results in F :
320 → 640,F ′ : 10 → 330, CRM : 64 → 96). Clearly,
increasing the storage SM by a small amount is well
worth the reduction in other facets of complexity.

V. DISCUSSIONS AND CONCLUSIONS

Probabilistic KPSs have several advantages over deter-
ministic schemes. Implementation of probabilistic KPSs
requires only a block-cipher, which can be used for
encryption, hashing and PRF generation. Note that a
block cipher (or hash function) is required in any case for
encryption of messages and computing hashed message
authentication codes (HMACs) using pairwise secrets.
Implementation of finite-field arithmetic required for
Blom’s SKGS can be more expensive as additional
circuitry will be required for this purpose. As mentioned
earlier, this was one of the main motivations for KPSs
based on the idea of subset intersection.

Probabilistic KPSs also have low deployment com-
plexity as they lend themselves readily to i) seamless
renewal, and ii) simple strategies for employing multiple
independent escrow (KDCs). For SKGS changing even
one of the P KDC secrets will result in modification of
every secret assigned to every node. Thus, renewal in-
volves replacing all secrets assigned to every node. This
may be very difficult to achieve without interrupting the
regular operation of the deployment. Furthermore, if two
n-secure deterministic schemes are deployed in parallel
(controlled by two independent KDCs; and each node
receives O(n) secrets from each KDC), the resulting
KPS, where shared secrets from both KPSs are used to
establish pairwise secrets, is still only n-secure. Thus
simple strategies for increasing the number of escrows
will result in increase in complexity proportional to the
number of escrows.

On the other hand, two (n, p)-secure KPSs can be
combined to yield an (n, p2)-secure KPS. For example,
(n, p)-secure SI scheme with parameters (k, t) can actu-
ally be s parallel deployments of (n, pi)-secure schemes
with parameters (ki, t) where 1 ≤ i ≤ s,

∏s
i=1 pi = p,

and
∑s
i=1 ki = k. SKIT with parameters (s = m,M)

can actually be s independent deployments under the
control of s KDCs (who agree on a PRF). Thus, parallel
deployments (controlled by independent KDCs) can be
realized without any loss of efficiency. To facilitate
seamless renewal, s − 1 of the s systems can be used
during the finite period required for renewing the secrets
of one of the s systems.

However, the most compelling advantages of proba-
bilistic KPSs are i) the low fetch complexity F and F ′
and ii) computational overhead for the HSM CM . More
specifically, for probabilistic KPSs CM , F and F ′ are all
independent of the desired collusion resistance n. More
specifically, for SI F and F ′ are proportional to log(1/p)
(or kf = k/t); For SKIT while F is proportional to
log(1/p) (the parameter m), F ′ is independent of m.
Irrespective of the desired n and p the value F ′ depends
only on the length of each key. The low fetch complexity
makes it feasible to off-load storage overhead to external
devices. The low computational overhead CM makes it
possible to employ HSMs of very low complexity, which
can be more easily rendered trustworthy.

The primary bottle-neck for SI schemes is the
O(n log(1/p)) complexity CU to be borne by resources
outside the HSM. While external resources can easily
afford tens of MBs of storage, millions of PRF computa-
tions may be an unreasonable demand. SKIT overcomes
this major limitation of SI schemes. Simultaneously,
SKIT demands lower storage overhead, lower fetch
overhead and lower complexity of computations in the
HSM.

A. Related Work
The first probabilistic KPSs was proposed by Leighton

and Micali [17] (1994). The first probabilistic KPS based
on subset intersections was proposed by Dyer et al [7]
(in 1995). Most of the later incarnations of random
subset allocation schemes were in the context of sensor
network applications [9], [10]. In such schemes, due
to random (not pseudo-random) allocation of subsets,
secrets assigned to nodes are not bound to identities.
Thus the schemes in [9] and [10] only cater for privacy
(and not mutual authentication). Several schemes have
also been proposed in the literature with identity-based
allocation of subsets of secrets [11], [12]. The primary
difference between such schemes lies in the choice of
the PRF, which determines how the identity is mapped
to indices of the keys assigned. While the differences in
the choice of PRF affects the public function complexity3

it does not affect the n/k “efficiency.”
Some P-KPSs have also been proposed [13]-[14] which

are essentially combinations of Blom’s schemes and
subset allocation schemes. While inheriting some of the
advantages of probabilistic KPSs they also inherit some
disadvantages of the underlying deterministic scheme,
like the need for finite-field arithmetic, substantially
higher F , F ′ and CM complexity.

B. Conclusions
In application scenarios where there is a need for

hardware assisted protection of secrets, computational
overhead, especially for operations to be performed
inside a trusted boundary is expensive. Reducing the
heat dissipated inside the protected boundary can lead
to improved strategies for shielding the HSM from
intrusions. Lower complexity of circuitry implies better
ability to verify the integrity of HSMs. Furthermore,
we can then afford more real estate to the components
necessary for providing tamper-responsiveness.

While it is well appreciated that KPSs are trade-offs
between complexity and collusion resistance, the vari-
ous facets of complexity, especially when KPSs secrets
are protected by HSMs, have not received attention
thus far in the literature. Probabilistic KPSs are well
suited for devices equipped with HSMs as the collusion
resistance of probabilistic KPSs can be increased to
any extent without affecting the HSM computational
overhead CM . Synergistically, the low computational
overhead improves the ability of HSMs to protect se-
crets, and further alleviates concerns regarding collusion
susceptibility. However, for subset intersection schemes
the PRF complexity CU increases linearly with the de-
sired collusion resistance n. Even while much of this

3The version presented in this paper has the least PRF complexity
(2k). For other approaches the PRF complexity ranges from O(k log k)
to O(k2).

complexity can be off-loaded to external devices, the
PRF complexity remains the bottle neck for achievable
collusion resistance n.

We proposed a novel probabilistic KPS, SKIT, which
has several compelling advantages over SI schemes. For
SKIT even the PRF complexity is independent of n.
More specifically, the PRF complexity is reduced by a
factor of about 8n (for example, if we desire a n = 217-
secure scheme the PRF complexity is lower by a factor
of one million). Only the external storage complexity is
proportional to n, and is less than half of that required
for SI schemes. The complexity of operations CRM and
CUM to be performed inside the HSM are also reduced by
a factor 2. The fetch overheads F and F ′ are reduced
by factors 4 and 36 respectively. The substantially lower
F ′ value is particularly advantageous as F ′ affects the
complexity of the interfaces to the HSM.

REFERENCES

[1] M. Gagne, “Identity-Based Encryption: a Survey,” CryptoBytes,
Vol. 6, No. 1, pp. 10–19, RSA Laboratories, 2003.

[2] R. Blom, “Non-public Key Distribution,” Crypto-82, pp 231–236,
1982.

[3] R. Blom, “An Optimal Class of Symmetric Key Generation Sys-
tems,” Advances in Cryptology: Proc. of Eurocrypt 84, Lecture
Notes in Computer Science, 209, Springer-Verlag, Berlin, pp.
335-338, 1984.

[4] L. Gong, D.J. Wheeler, “A Matrix Key Distribution Scheme,”
Journal of Cryptology, 2(2), pp 51-59, 1990.

[5] C.J. Mitchell, F.C. Piper, “Key Storage in Secure Networks,”
Discrete Applied Mathematics, 21 pp 215–228, 1995.

[6] P. Erdos, P. Frankl, Z. Furedi, “Families of Finite Sets in
which no Set is Covered by the union of 2 Others,” Journal
of Combinatorial Theory, Series A, 33, pp 158–166, 1982.

[7] M. Dyer, T. Fenner, A. Frieze, A. Thomason, “On Key Storage
in Secure Networks,” Journal of Cryptology, 8, 189–200, 1995.

[8] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B.
Pinkas, “Multicast Security: A Taxonomy and Some Efficient
Constructions,” INFOCOMM’99, 1999.

[9] L. Eschenauer, V.D. Gligor, “A Key-Management Scheme for
Distributed Sensor Networks,” Ninth ACM CCS, Washington
DC, pp 41-47, Nov 2002.

[10] H. Chan, A. Perrig, D. Song, “Random Key Pre-distribution
Schemes for Sensor Networks,” IEEE Symposium on Security
and Privacy, Berkeley, California, May 2003.

[11] M. Ramkumar, N. Memon, R. Simha, “Pre-Loaded Key Based
Multicast and Broadcast Authentication in Mobile Ad-Hoc Net-
works,” Globecom-2003.

[12] R. Di Pietro, L. V. Mancini, A. Mei, “Random Key Assignment
for Secure Wireless Sensor Networks,” 2003 ACM Workshop on
Security of Ad Hoc and Sensor Networks, October 2003.

[13] W. Du, J. Deng, Y.S. Han. P.K.Varshney, “A Pairwise Key Pre-
distribution Scheme for Wireless Sensor Networks,” Proceedings
of the 10th ACM Conference on Computer and Communication
Security, pp 42–51, 2003.

[14] D. Liu, P.Ning, “Establishing Pairwise Keys in Distributed Sensor
Networks,” Proceedings of the 10th ACM Conference on Com-
puter and Communication Security, Washington DC, 2003.

[15] M. Ramkumar, N. Memon, “An Efficient Random Key Pre-
distribution Scheme for MANET Security,” IEEE Journal on
Selected Areas of Communication, March 2005.

[16] M. Ramkumar, “Trustworthy Computing Under Resource Con-
straints With the DOWN Policy,” IEEE Transactions on Secure
and Dependable Computing, Jan 2008.

[17] T. Leighton, S. Micali, “Secret-key Agreement without Public-
Key Cryptography,”Advances in Cryptology - CRYPTO 1993, pp
456-479, 1994.

