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Abstract—SecBus project aims at building a two-level page-
based memory bus protection platform. A trusted Operating
System (OS) dynamically manages security contexts for memory
pages. Via such contexts, an independent hardware module is
driven to execute cryptographic protections. The fact that both
processor and software tool chain are not modified strength-
ens platform realizability and market acceptability. This paper
presents SecBus hardware mechanism. Performance improve-
ment is sustained by such optimization measures as usage of
multiple caches, incoherent-Hash-Tree management and specu-
lative execution. Finally, performance evaluations are made for
various configurations on virtual simulation platform.

I. INTRODUCTION

Nowadays trusted computing is highlighted in computer
society. Commercial commodities [1] whose security is sup-
ported by Trusted Platform Module (TPM) [2] appear in
succession. However as external memory bus still carries crit-
ical data, TPM does not prevent board-level probing attacks.
Their security must be still questioned. While building a
trusted computing platform, memory bus security (confiden-
tiality/integrity) must be considered. Concretely, an adversary
could retrieve critical data from external memory bus or
tamper with it. Confidentiality is compromised in the former
case and integrity in the latter. Successful attacking cases have
the microcontroller DS5002FP [3] and the Microsoft XBox
[4].

Several research programs have addressed this issue during
the past decade. XOM project [5] plans to build process
protection environments in processor against both physical
attacks and malware attacks. However, replay attacks are not
considered at all and untrusted OS [6] has to be still cus-
tomized. Its implementation is complex and heavy. CryptoPage
project [7] is akin to XOM project. Its primary contribution
lies in taking memory space permutation [8] as countermea-
sure against replay attacks. AEGIS project [9] addresses the
building of secure execution environments at instruction flow
level in processor. It is imperative to modify software tool
chain. All three projects require significant modifications on
both processor and OS. In other projects [10], bus protection
is arranged only at hardware level and software aspect is not
exploited for performance improvement.

Unlike most previous works, CPU is not modified at all
in SecBus project and an independent hardware module is
located at the frontend of memory controller. This constraint

is required in many markets: for instance, while embedding
legacy CPU sub-systems into consumer products, CPU modi-
fications are usually believed as unrealistic. Figure 1 denotes
its specific position.
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Fig. 1. SecBus module position

The key assumption in SecBus is that OS is secure and
trusted. With this assumption, memory bus protection could be
still granulated into memory pages without CPU modifications.
SecBus implementation could be at reasonably low expense
and have controlled performance impact. Modifying software
tool chain is circumvented as well. More importantly, one
new approach is revealed to consummate a genuine trusted
computing platform where security tasks are more flexibly
deployed at software level. This is the SecBus long-term goal.
Although trusted OS is a strong hypothesis, some researchers
have been attempting with persistence to effectuate this sort
of work [11][12][13][14][15]. Such experiences anticipate that
rigorous, complete, formal verification is practically achievable
for OSes, at least such microkernels of small scale. Once it
succeeds, SecBus secure platform could well prevent against
software exploits, such as Denial-of-Service (DoS) attacks and
memory exhaustion attacks. Some cases [16][17] demonstrate
the importance of resistance to software attacks. In view of the
compatibility with insecure large commodity OSes, the idea
of virtualization technologies in [18][19] might be a profitable
enrichment to SecBus platform. At present, SecBus project is
dedicated to memory bus protection and this paper describes
SecBus hardware mechanism and performance evaluation.

The rest of this paper is organized as follows: Section 2
recalls some basic concepts. Section 3 describes new cache-
based mechanism for Hash Tree (HT) management. Section 4
presents SecBus hardware model. In Section 5, cycle-accurate
performance evaluation is detailed. The last section states the
future work.



II. REVIEW OF BASIC CONCEPTS

First of all, we briefly review the page-based protection
scheme presented in [20]. As a whole, hierarchical mem-
ory pages are taken not only as the granularity of memory
management in OS but also as the granularity of memory
bus protection. Every page is associated to a security context
which bundles related security parameters. Upon memory ac-
cess, SecBus hardware module hierarchically searches specific
security context by memory address. With assistance of the
context, related cryptographic operations are undertaken. In
this scheme the design of security contexts is crucial.

With respect to cryptographic protection, our primary con-
cern is about the selection of cryptographic primitives. In
SecBus platform a variety of primitives are selectively applied
for performance issues. It is well known that every program
page holds an execution attribute: Read-Write (RW) or Read-
Only (RO). Regardless of this attribute’s value, HT primitive
is always appropriate to integrity protection and block cipher
to confidentiality protection. But, as RO page is written only
once and not sensitive to replay attacks, addressed Message
Authentication Codes (MAC) are more preferable to its in-
tegrity protection than rather costly HT primitive [21][22].
Likewise its confidentiality could be well protected by stream
cipher, One Time Pad, whose benefit consists in parallelizing
mask generations with memory read accesses. In a word,
this attribute is translated into the usage of cryptographic
primitives.

To express this distinction, we define the structure, Security
Policy (SP), which packages a confidentiality mode, an in-
tegrity mode and a secret key. As expected, the confidentiality
mode may be set with any of three choices: None, BlockCipher
and StreamCipher. And the integrity mode holds three similar
options: None, MAC and HashTree. Since this execution
attribute covers whole program linking segment in OS, various
pages in a segment possibly share one common SP. In addition,
for the purpose of integrity protection of program pages, some
auxiliary pages, HT/MAC pages, are allocated in memory
to store either HTs or MAC-sets1. Such pages other than
program pages do not possess this execution attribute so that
SP structure is unsuited for them. Their security contexts need
arranging further.

Another structure, Page Security Parameters Entry (PSPE),
is specific to every memory page. Its role is a bit similar
to page table entry in Memory Management Unit (MMU).
All PSPEs are disposed in a hierarchy of tables, as are page
tables of MMU. As SecBus project takes two page size levels
(4MBytes/4KBytes), PSPE search usually enforces two PSPE
table walks at the basis of physical address. Regarding its
concrete definition, two different formats, master PSPE and
slave PSPE, are shown in Figure 2. Master PSPE is mainly
applied for program pages. Its task is to map physical address
to related SP index and related HT/MAC page. Slave PSPE
works for HT/MAC pages. It is known that the integrity of

1A HT protects the integrity of a RW page; a MAC-set contains all MAC
values on which the integrity of a RO page relies.

HT page relies on root hash value and MAC page on MAC
key. However, Figure 2 denotes that this format only preserves
root hash values for HT pages. In reality no format is defined
for MAC page in that MAC key which is also shareable could
embezzle the enciphering key from relevant RO page’s SP. The
PSPE of MAC page could be of any value. In the end, three
indicative bits are added to facilitate hierarchical PSPE table
walks and differentiate both formats. In summary, the security
context for RW page is composed of SP, master PSPE and
slave PSPE (if integrity is protected), whereas the security
context for RO page is represented by SP and master PSPE.

Search termination bitRoot hash

SP indexReservedBase address (MAC, HT, next page level)

Master PSPE

Slave PSPE

Valid bit

Type bit

Type bit

Search termination bit

Valid bit

Fig. 2. PSPE definition

In SecBus, three memory blocks are particularly allocated
to store all SPs, PSPEs as well as a Master Hash Tree
(MHT). The MHT protects the integrity of all SPs and PSPEs.
Such three blocks form a Master Block which is reserved in
memory and excluded from traditional paging mechanisms
(page allocation/recycling) in OS. The protection of Master
Block is based on the special security context, Master Security
Parameter Group (MSPG). As root of trust, the MSPG is
permanently kept in SecBus hardware module. While reg-
ulating security contexts for memory pages, OS does not
operate straightforward on Master Block. Instead, OS employs
I/O interface commands to steer SecBus hardware module to
configure them. Figure 3 illustrates global memory footprint.
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Fig. 3. Page-based Protection Framework

III. INCOHERENT-HASH-TREE MANAGEMENT

To alleviate performance degradation made by traditional
HT management, we exert much effort on elaborating a cache-
based incoherent-HT management mechanism.

HT primitive behaves as either HT check or HT update.
Both operations are a sequence of hash computation steps
and the terminal (root) ensures all nodes’ integrity. To attain
integrity protection, either of them traverses a whole path until
the root. Assuming some intermediate node is trusted, HT
check can be terminated in advance by this node. This is the
As-Soon-As-Possible (ASAP) policy for HT check. If some
node in HT update is saved in a trusted place, this updating



path can be also ended ahead of schedule. This is the As-
Late-As-Possible (ALAP) policy for HT update. In essence
only one step is walked for protection. Using conventional
write-back cache, HT controller has only the ASAP policy
work. To make both policies run together, such write-back
cache must be personalized. Note that, when an updated node
is cached, this node is tagged as dirty with the implication
that the synchronization between cache and memory is not
done and the residual path is not traversed. HT consistency
is crashed in this case and its settlement converges upon two
knotty issues.

The first is that the cache ought to realize specific context
where requested node lies in. Every HT node holds four
possible contexts: its children’s checking/updating process and
its siblings’ checking/updating process. A dirty node in cache
can be freely involved in its children’s checking/updating
process as well as in its siblings’ updating process, whereas
it is inutile to its siblings’ checking process. Alternatively its
past value has got to be fetched from memory because its
parent node hinges on it yet. It denotes that cache read/write
interface should be characterized with such four contexts and
cache behavior must be customized. As such, HT controller
is capable of emitting more precise commands to cache and
the latter renders appropriate node values. Figure 4 depicts a
4-ary HT as example.
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Fig. 4. a 4-ary hash tree

The second issue is how to evict dirty nodes. Upon cache
write request, incoming node needs to supersede a node in
cache. If this superseded node is dirty, the cache is obligated
to advance its updating process before evicting it to memory.
To do this HT update, the cache has to turn to HT controller
but it is a deadlock between HT controller and cache. For this
reason a peculiar replacement policy is proposed for cache:
new entrants always substitute for clean nodes. Nevertheless,
with the increase of cache writes, dirty nodes grow more and
more and never decrease. In the end, when all cached nodes are
dirty, two new problems are engendered: the performance of
ASAP policy is drastically obliterated because memory nodes
can not be cached and ALAP policy is void of sense because
incoming dirty nodes can not be cached. It signifies that the
cache must strictly control the number of dirty nodes. As soon
as it occcurs too many cache writes, the cache solicits HT
controller to advance the updating process of some dirty nodes.

To restrain the increment of dirty nodes in a regular manner,
a new recursive mechanism is conceived. Upon cache write
request, a clean node in cache is first vacated for incoming
dirty node and then the cache checks whether this number
exceeds preset threshold or not. If exceeded, the cache will

select some dirty node under predefined policy (FIFO, LRU,
etc) and send it back to HT controller. Accordingly, HT
controller will proceed with the updating process of captured
node. Thanks to the ALAP policy, only one updating step
needs walking. In this step, all dirty siblings are involved
together in their parent node update. Related dirty nodes
are subsequently evicted to memory and their dirty bits are
removed. Finally another new cache write request is launched
to conserve this updated parent node (a dirty node is generated
again). This is visibly a recursive process. Indeed when one
or more dirty siblings participate in this updating step, the
recursive process is able to be terminated and even the number
of dirty nodes is diminished.

Up to now, both ASAP policy and ALAP policy can
operate smoothly by the collaboration between HT controller
and characteristic HASH cache. An important point must be
made: dirty nodes received by HT controller are possibly from
different HT pages. To proceed with their updating processes,
HT controller need aggregate their siblings. In some cases,
slave PSPEs (root hash of HT page) are necessitated for
HT check. Bearing it in mind avails to understand SecBus
architecture model in the next section.

IV. SECBUS HARDWARE MODULE

This section illustrates the backbone of SecBus hardware
mechanism. Figure 5 depicts its global functional model.
Roughly, SecBus hardware is partitioned into 5 main func-
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Fig. 5. SecBus hardware model

tional blocks and some registers:
1) Block A: regulate memory accesses from processor and

request services from block B/C
2) Block B: search page security contexts
3) Block C: supervise security protection with scheduling

cryptographic services (encipher, HT check, etc)
4) Block D: execute integrity protection
5) Block E: execute confidentiality protection

Upon memory access from processor, block A first informs
block B to search page security context. After the seeking
ceases, block A delivers the control to block C for security



protection. Under that security context, block C invokes cryp-
tographic services from block D/E. This is the main execution
track in SecBus hardware module. With the use of speculative
execution, the communication between different blocks comes
to be a bit complex. This point is intensively clarified below.
We suppose that every block is attached with a flag holding
two values, idle and busy, which testifies this block’s usability
to others. When a block is activated, its flag alters from
idle to busy. When its task is accomplished, it goes back
to idle. As the necessity of speculative execution, integrity
protection must be enforced on ciphertexts, which makes it
possible that the integrity check of read data is done in parallel
to decryption. As decryption operation is normally much
more rapid than integrity check, CPU execution is judiciously
reinstated witnout the result of integrity check. In other words,
other blocks have been idle already and yet block D might be
busy. And the next memory access from processor could be
forwarded directly to block C to expedite its handling. Upon
write access, block D stays busy as well due to the long HT
updating process. Here the special point is that, to evict dirty
nodes from HASH cache, HT controller perhaps claims slave
PSPEs from block B. Thereby block B/C are deemed to be
busy along with block D and new memory accesses must be
stopped at block A. As soon as HT update is completed, all
of them meanwhile return to idle. This speculative execution
has a prescient positive effect on system performance. In the
following, three chief blocks A/B/C are elucidated in turn.

Block A, SecBus manager, is the memory access controller.
Its function is outlined by two primary stages. At the first
stage, block B is requested to search page security context
and, at the second stage, block C is required for security
protection. Each stage’s prerequisite is that relevant block must
be idle and otherwise this state machine is suspended. This
functional description is simplified quite a lot. In practice,
the fact of on-chip bus burst operation is also reflected in
this controller. A tiny data buffer is imported to keep some
related data in burst operations. This optimization enhances
data throughput because the bit-width of data chunks for
cryptographic primitives is several times bigger than memory
bus width. Besides, a succession of memory accesses often
belong to one same page. After the security context is sought
for the first access and put into registers, it is not mandatory
to make a search again for immediate accesses. This point
effectively reduces the search number.

Block B is the controller which seeks security contexts
for memory pages. Algorithm 1 describes the whole search
process. This process includes two essential steps. One step is
to do two-level PSPE search for physical address. The other is
to search related SP with its index. As the security context for
RW page perhaps contains two PSPEs (master PSPE and slave
PSPE), such two-level PSPE search might be executed for two
times. On the contrary, the security context for either RO page
or HT page contains only one PSPE so that PSPE search is
performed only for one time. After the seeking success, all
security parameters are deposited in registers to bolster the
execution of other parts in SecBus module.

Algorithm 1 Search page security contexts
Require: input: 32-bit memory address & MSPG
Ensure: output: page security context

1: Extract the highest 10 bits from memory address
2: Compute PSPE address at the 1st level
3: Read PSPE from cache
4: if the validity bit is 1 then
5: if the type bit indicates master PSPE then
6: Go to line 20
7: else
8: Go to line 26
9: end if

10: else
11: if this PSPE is at the 1st level then
12: Extract the middle 10 bits from memory address
13: Extract base address at the next level
14: Compute PSPE address at the 2nd level
15: Return to line 3
16: else
17: ERROR!
18: end if
19: end if
20: Extract SP index from master PSPE
21: Read SP from cache
22: if HashTree mode is valid then
23: Extract base address of HT from master PSPE
24: Return to line 1
25: end if
26: Put parameters into associated registers

In block B, both PSPE cache and SP cache are utilized
to accelerate the formation of security contexts. The use of
SP cache has no unusual points but PSPE cache is a bit
exceptional. In most cases, write-back cache is more expected
than write-through cache. But, owing to a deadlock caused
by ALAP policy, PSPE cache must be implemented as write-
through cache. During HT update, HT controller probably
requests block B to seek slave PSPEs. Upon PSPE cache miss,
PSPE cache controller reads it from memory and supersedes
some cached PSPE. If the superseded PSPE is dirty, it will
have to be evicted to memory first. During the evicting process,
block C is requested and further block D is invoked again for a
new HT update (MHT update). This is a deadlock. Fortunately,
with the aid of ALAP policy, slave PSPEs are renewed much
less frequently and this drawback is compensated to the great
extent.

Block C acts as the state machine for the management
of cryptographic operations. While scheduling related cryp-
tographic services according to two security modes in SPs,
synchronous issues ought to be soundly coordinated. This
block normally serves for block A but, when SP/PSPE cache
miss happens, its function is also postulated by block B.
Algorithm 2 presents the frame of this state machine. Here
two respects are accentuated to make it more comprehensible.
The first is at line 2. When a data is written in memory,
some adjacent ones are often wanted to assemble a whole data
chunk aligned for cryptographic operations. It implies that this
algorithm is recursive because memory write accesses trigger
new memory read accesses. At line 15, mask generations
in stream cipher are carried out in parallel to memory read
accesses, which has been mentioned in Section 2.



Algorithm 2 Simplified State Machine
Require: input: memory access & security context

1: if it is write access then
2: Collect whole data chunk {read access!}
3: Request block E for encryption
4: while block E is busy do
5: Please wait...
6: end while
7: while block D is busy do
8: Please wait...
9: end while

10: Request block D for HT update
11: else
12: while block D is busy do
13: Please wait...
14: end while
15: Read whole data chunk
16: Request block D/E for decryption&integrity check {parallel}
17: while block E is busy do
18: Please wait...
19: end while
20: end if

So far, the backbone of SecBus hardware mechanism is
lucidly presented. Other elements which have little impact
on the principal architecture are not unfolded in this paper.
For instance, block cipher, MAC-checker, random number
generator, initialization mechanism, OS interface controller,
. . . . In the next section, the performance of this hardware
model is evaluated.

V. TIMING PERFORMANCE EVALUATION

SecBus module, located in the middle of critical path, has
prompt impact on memory latency and program execution
time. To evaluate timing performance degradation, we use
the cycle accurate simulator, SoC designer [23], which is
based on ARM instruction set. Table I summarizes critical
parameters of this simulation platform. Various standalone
EEMBC benchmarks [24] are respectively tested. Four caches,
SP/PSPE/HASH/MAC, are separately introduced to ameliorate
performance. In reality, according to experimental results,
MAC cache has negligible effect because fetching original
MAC values can be hidden by MAC computations. Thereby
MAC cache will not be considered later. On the contrary, three
others specified in Table II show remarkable effect. To more
accurately assess them, we configure four different simulation
schemes:

1) No caches (the worst case).
2) Use only two caches, SP/PSPE. PSPE cache is write-

back cache.
3) Besides SP/PSPE caches, HASH cache, traditional

write-back cache, is joined and only ASAP policy works.
4) Besides SP/PSPE caches, HASH cache, characteristic

write-back cache, is applied for incoherent-HT manage-
ment. PSPE cache must be write-through cache.

Figure 6 demonstrates general performance overhead in var-
ious schemes compared to the case where memory bus is
unprotected. According to Chart (a), the scheme without
any cache leads to huge degradation. In most cases, perfor-
mance overheads exceed 3000%. In the worst case, it reaches

Processor ARM1176JZF
I-Cache/D-cache 16KB, 32B line, 4-way

write policy write-back
Replacement policy Random
Allocation policy Write-No-Allocate

On-chip Bus AMBA AXI (32 bits)
Bus clock ratio (Fcpu/Fbus) 1

Memory volume 256MB
Memory latency (precharge, active, CAS) 3 cycles

hash function (input/output, time) 256/64 bits, 16-20 cycles
MAC function (input/output, time) 288/64 bits, 20 cycles

block cipher (data chunk, time) 64 bits, 4 cycles

TABLE I
PLATFORM PARAMETERS

SP cache PSPE cache HASH cache
Architecture direct mapped full associative set associative
Write policy write-back write-through/back write-back

Allocation policy write-allocate write-allocate write-allocate
Way number - - 4
Line number 2 16 256

Line size 16B 8B 8B

TABLE II
CACHE PARAMETERS

23753%. Thereby SecBus module without any cache is clearly
unserviceable. Chart (b) denotes that both SP cache and PSPE
cache greatly mitigate performance degradation. With the use
of both policies (ASAP/ALAP), some overheads among the
benchmarks are almost negligible and most are lower than
100%. Even the worst case has only 472% overhead. It must
be pointed out that the benchmark rgbtocmyk which converts
different color spaces generates plenty of memory accesses. It
is definitely unreasonable to assign such strong cryptographic
primitive as HT primitive to protect each memory access. A
more practical way is to execute security protection only at
the beginning/end of conversion process. Here we test it only
to expose the significance of such caches.

Figures 7 and 8 present cache contributions normalized by
the worst case. On the whole, the effect of SP/PSPE caches
is particularly distinguished. On average, the performance is
enhanced by 76.4% and the number of hash computations is
reduced by 78.1%. Afterwards both policies (ASAP/ALAP)
further contribute about 20% so that both indexes are finally
up to 97.8% on average.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present SecBus hardware mechanism
and experimental performance results. As a rule, performance
degradation rests highly on specific applications. The ma-
jority of popular embedded applications acquire acceptable
performance degradations. But current evaluation is only based
on standalone applications and the management of security
contexts in OS has not been implicated. Therefore this con-
clusion is not comprehensive. In the coming future, we will
specify security management in OS, implement it in an OS and
erect a system demonstrator combining software and hardware.
Ultimately this customized OS (at least the part of security
management) will be deeply verified using formal method.
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