AREA-EFFICIENT GRID DRAWINGS OF GRAPHS

By

Adrian Rusu

August, 2003

A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF STATE
 UNIVERSITY OF NEW YORK AT BUFFALO
 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
 FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
(C) Copyright 2003
by

Adrian Rusu

To my son, wife, and mother, Alex, Amalia, and Olimpia, for their endless trust, support, encouragement, and love, and in the everlasting memory of my father, Ioan

Acknowledgments

I would like to express my deep appreciation to my major advisor, Dr. Ashim Garg, for his clear guidance, encouragement, wise counsel, and unwavering support over the past few years. His influence has been invaluable in my development as a researcher. It is his continuous help, motivation, and insightful advice that made this dissertation possible. I also want to show my respects to him for his incredible enthusiasm for research. Many thanks for supporting me as a Research Assistant when I needed it most.

Many thanks to Dr. Xin He and Dr. Jinhui Xu for being in my dissertation committee. My thanks to Dr. Xin He also for presenting several research problems which sparked my interest in algorithms and graph theory. His input into my academic career is greatly appreciated. I would also like to express my deep appreciation to Dr. Giuseppe Liotta for serving as the outside reader of my dissertation and for his invaluable comments.

During my graduate studies at University at Buffalo, I had the pleasure to make many good friends including Dr. Ramazan Aygun, Mr. Guru Prasad, Dr. Cristian Nastase, Mr. Catalin Tomai, Mr. Samik Sengupta, Mr. Huaming Zhang; Dr. Camil Nichita, Dr. Florin Nichita,

Dr. Cezar Joita, and Mr. Dragos Bontea, teammates in the intramural soccer team, winner of five championships; Mr. Alex Eisen, Mr. Surya Kompalli, Mr. Dahai Xu, Ms. Fran Johnson, Mr. John Santore, and Dr. Vishal Anand, colleagues in the CSEGSA.

I would like to thank the Department of Computer Science and Engineering in the State University of New York at Buffalo for first offering me a Teaching Assistantship and later a position as Instructor.

Next, I would like to offer my thanks to many people at the University at Buffalo: the faculty, for providing a propitious teaching and research environment; the office staff, for providing a friendly face; my students, for being very active and challenging; and to Ms. Helene Kershner for her advice, support, and trust.

Special thanks to my wife, Amalia, for her great support from every aspect of everyday life and research, and to my son, Alex, for being such a good boy. I hope I will be a person that they will be proud of.

For their love and inspiration, which has guided me through every crucial stage in my life, I would like to thank my mother, Olimpia, and my father, Ioan, who is gone but never forgotten. I know you are watching over me.

The research in this thesis has been supported by NSF CAREER Award No. IIS-9985136, NSF CISE Research Infrastructure Award No. 0101244, and by The Mark Diamond Research Fund Grant No. 13-Summer-2003 from the Graduate Student Association of the State University of New York.

Abstract

The visualization of relational information is concerned with the presentation of abstract information about relationships between various entities. It has many applications in diverse domains such as software engineering, biology, civil engineering, and cartography. Relational information is typically modeled by an abstract graph, where vertices are entities and edges represent relationships between entities. The aim of graph drawing is to automatically produce drawings of graphs which clearly reflect the inherent relational information.

This thesis is primarily concerned with problems related to the automatic generation of area-efficient grid drawings of trees and outerplanar graphs, which are important categories of graphs.

The main achievements of this thesis include:

1. An algorithm for producing planar straight-line grid drawings of binary trees with optimal linear area and with user-defined arbitrary aspect ratio,
2. An algorithm for producing planar straight-line grid drawings of degree- d trees with n nodes, where $d=O\left(n^{\delta}\right)$ and $0 \leq \delta<1 / 2$ is a constant, with optimal linear area and with user-defined arbitrary aspect ratio,
3. An algorithm which establishes the currently best known upper bound, namely $O(n \log n)$, on the area of order-preserving planar straight-line grid drawings of ordered trees,
4. An algorithm which establishes the currently best known upper bound, namely $O(n \log \log n)$, on the area of order-preserving planar straight-line grid drawings of ordered binary trees,
5. An algorithm for producing order-preserving upward planar straight-line grid drawings of ordered binary trees with optimal $O(n \log n)$ area,
6. An algorithm which establishes the trade-off between the area and aspect ratio of order-preserving planar straight-line grid drawings of ordered binary trees, in the case when the aspect ratio is arbitrarily defined by the user, and
7. An algorithm for producing planar straight-line grid drawings of outerplanar graphs with n vertices and degree d in $O\left(d n^{1.48}\right)$ area. This result shows for the first time that a large category of outerplanar graphs, namely those with degree $d=O\left(n^{\delta}\right)$, where $0 \leq \delta<0.52$ is a constant, can be drawn in sub-quadratic area.

All our algorithms are time-efficient. More specifically, algorithms 1 and 2 run in $O(n \log n)$ time each, and algorithms $3,4,5,6$, and 7 run in $O(n)$ time each.

List of Figures

Abstract

1.1.1 Two diagrams that represent a simple class hierarchy; vertices represent classes of geometric shapes, and edges describe the is-a relation. Each vertex represents a class, and a directed edge between two vertices represents the class-subclass relationship. Diagram (a) is more difficult to follow than diagram (b). 2

1.2.1 Grid drawings of the same graph: (a) polyline; (b) planar; (c) straight-line. In (a) we label each vertex and edge bend by their integer coordinates.
2.1.1 Various kinds of drawings of the same tree: (a) straight-line, (b) polyline, and (c) orthogonal. Also note that the drawings shown in Figures (a) and (b) are upward drawings, whereas the drawing shown in Figure (c) is not. The root of the tree is shown as a shaded circle, whereas other nodes are shown as black circles.
2.3.1 Rotating a drawing Γ by 90°, followed by flipping it vertically. Note that initially node u^{*} was located at the bottom boundary of Γ, but after the rotate operation, u^{*} is on the right boundary of Γ.
2.4.1 Drawing T in all the seven subcases of Case 1 (when the separator (u, v) is not in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, d \neq u^{*}$, (b) $T_{A}=\emptyset$, $T_{C}=\emptyset$, (c) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, d=u^{*}$, (d) $T_{A} \neq \emptyset, T_{C}=\emptyset, r \neq e$, (e) $T_{A} \neq \emptyset$, $T_{C}=\emptyset, r=e$, (f) $T_{A}=\emptyset, T_{C} \neq \emptyset, d \neq u^{*}$, and (g) $T_{A}=\emptyset, T_{C} \neq \emptyset, d=u^{*}$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. Here, x is the same as f if $T_{\beta} \neq \phi$ and is the same as the root of T_{α} if $T_{\beta}=\phi$. In Subcases (a) and (c), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is the same as r, or if $A<1(A \geq 1)$, then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.
2.4.2 Drawing T in all the eight subcases of Case 2 (when the separator (u, v) is in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{B} \neq \emptyset, v \neq u^{*}$, (b) $T_{A}=\emptyset, T_{B}=\emptyset$, $v \neq u^{*}$, (c) $T_{A}=\emptyset, T_{B} \neq \emptyset, v \neq u^{*}$, (d) $T_{A} \neq \emptyset, T_{B}=\emptyset, v \neq u^{*}$, (e) $T_{A} \neq \emptyset$, $T_{B} \neq \emptyset, v=u^{*}$, (f) $T_{A}=\emptyset, T_{B}=\emptyset, v=u^{*},(\mathrm{~g}) T_{A}=\emptyset, T_{B} \neq \emptyset, v=u^{*}$, and (h) $T_{A} \neq \emptyset, T_{B}=\emptyset, v=u^{*}$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Subcases (a), (d), (e), and (h), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is same as r, or if $A<1(A \geq 1)$, then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.
2.4.3 Drawing of the complete binary tree with 63 nodes constructed by Algorithm DrawTree, with $A=1$ and $\varepsilon=0.2$.
2.4.4 Drawing T_{α}, when: (a) $u \neq a$ and $T_{1} \neq \emptyset$, (b) $u \neq a$ and $T_{1}=\emptyset$, and (c) $u=a$. For each case, we first show the structure of T_{α} for that case, then its drawing when $A<1$, and then its drawing when $A \geq 1$. For simplicity, we have shown Γ_{1} and Γ_{2} as identically sized boxes, but in actuality, their sizes may be different.
2.4.5 Drawing T_{B} when: (a) $T_{\beta} \neq \emptyset$, and (b) $T_{\beta}=\emptyset$. Node y shown here is either node u or v. For each case, we first show the structure of T_{B} for that case, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Case (a), for simplicity, w is shown to be in the interior of Γ_{β}, but actually, it is either same as f, or if $A<1(A \geq 1)$, then is placed on the bottom (right) boundary of Γ_{β}. For simplicity, we have shown Γ_{β} and Γ_{α} as identically sized boxes, but in actuality, their sizes may be different.
2.5.1 Performance of the algorithm, as given by the value of c, for drawing a randomly-generated binary tree T with different values of A and ε, where $c=$ area of drawing/number of nodes n in $T:$ (a) $\varepsilon=0.9$, (c) $\varepsilon=0.75$, (e) $\varepsilon=0.5$, (g) $\varepsilon=0.25$, and (i) $\varepsilon=0.1$. Figures (b), (d), (f), (h), and (j) contain the projections on the $X Z$-plane of the plots shown in Figures (a), (c), (e), (g), and (i), respectively, and show for each ε, the ranges for the values of c for different values of A for each n.
2.5.2 Performance of the algorithm, as given by the value of c, for drawing a complete binary tree T with different values of A and ε, where $c=$ area of drawing/number of nodes n in T : (a) $\varepsilon=0.9$, (c) $\varepsilon=0.75$, (e) $\varepsilon=0.5$, (g) $\varepsilon=0.25$, and (i) $\varepsilon=0.1$. Figures (b), (d), (f), (h), and (j) contain the projections on the $X Z$-plane of the plots shown in Figures (a), (c), (e), (g), and (i), respectively, and show for each ε, the ranges for the values of c for different values of A for each n.
3.1.1 Various kinds of drawings of the same tree: (a) straight-line, (b) polyline, and (c) orthogonal. Also note that the drawings shown in Figures (a) and (b) are upward drawings, whereas the drawing shown in Figure (c) is not. The root of the tree is shown as a shaded circle, whereas other nodes are shown as black circles.
3.3.1 Rotating a drawing Γ by 90°, followed by flipping it vertically. Note that initially node u^{*} was located at the bottom boundary of Γ, but after the rotate operation, u^{*} is on the right boundary of Γ.
3.4.1 Drawing T in all the seven subcases of Case 1 (when the separator node u is not in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, g \neq u^{*}, 0 \leq i \leq d-3$, (b) $T_{A}=\emptyset, T_{C}=\emptyset, 0 \leq i \leq d-3$, (c) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, g=u^{*}, 0 \leq i \leq d-3$, (d) $T_{A} \neq \emptyset, T_{C}=\emptyset, r \neq e, 0 \leq i \leq d-3$, (e) $T_{A} \neq \emptyset, T_{C}=\emptyset, r=e, 0 \leq i \leq d-3$, (f) $T_{A}=\emptyset, T_{C} \neq \emptyset, g \neq u^{*}, 0 \leq i \leq d-3$, and (g) $T_{A}=\emptyset, T_{C} \neq \emptyset, g=u^{*}$, $0 \leq i \leq d-3$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. Here, x is the same as f if $T_{\beta} \neq \phi$, and is the same as the root of T_{α} if $T_{\beta}=\phi$. In Subcases (a) and (c), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is the same as r, or if $A<1(A \geq 1)$, then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.
3.4.2 Drawing T in all the eight subcases of Case 2 (when the separator node u is in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, \nu \neq u^{*}, 1 \leq j \leq d-2$, (b) $T_{A}=\emptyset, T_{C} \neq \emptyset, v \neq u^{*}, j=0$, (c) $T_{A}=\emptyset, T_{C} \neq \emptyset, v \neq u^{*}, 1 \leq j \leq d-2$, (d) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, \nu \neq u^{*}, j=0$, (e) $T_{A} \neq \emptyset, T_{B} \neq \emptyset, v=u^{*}, 1 \leq j \leq d-2$, (f) $T_{A}=\emptyset, T_{B}=\emptyset, v=u^{*}, j=0,(\mathrm{~g}) T_{A}=\emptyset, T_{B} \neq \emptyset, v=u^{*}, 1 \leq j \leq d-2$, and (h) $T_{A} \neq \emptyset, T_{B}=\emptyset, v=u^{*}, j=0$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Subcases (a) and (d), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is same as r, or if $A<1(A \geq$ 1), then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.
3.4.3 Drawing of the complete binary tree with 63 nodes constructed by Algorithm DrawTree, with $A=1$ and $\varepsilon=0.2$.
3.4.4 Drawing T_{α}. Here, we first show the structure of T_{α}, then its drawing when $A<1$, and then its drawing when $A \geq 1$. For simplicity, we have shown $\Gamma_{1}, \ldots, \Gamma_{j}$ as identically sized boxes, but in actuality, their sizes may be different.
3.4.5 Drawing T_{B} when: (a) $T_{\beta} \neq \emptyset$, and (b) $T_{\beta}=\emptyset$. For each case, we first show the structure of T_{B} for that case, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Case (a), for simplicity, w is shown to be in the interior of Γ_{β}, but actually, it is either same as f, or if $A<1$ $(A \geq 1)$, then is placed on the bottom (right) boundary of Γ_{β}. For simplicity, we have shown Γ_{β} and Γ_{α} as identically sized boxes, but in actuality, their sizes may be different.
4.1.1 (a) A binary tree T. (b) An order-preserving upward planar straight-line grid drawing Γ of T. Here, the circle-shaped node is the root of T, the square-shaped nodes are left children of their respective parents, and the triangle-shaped nodes are right children of their respective parents.
4.3.1 (a) A binary tree T with spine $v_{0} v_{1} \ldots v_{13}$. (b) The order-preserving planar upward straight-line grid drawing of T constructed by Algorithm BT-Ordered-Draw. 87
4.4.1 (a) A binary tree T with spine $v_{0} v_{1} \ldots v_{12}$. (b) A schematic diagram of the drawing $D(T)$ of T constructed by Algorithm BT-Ordered-Draw. Here, v_{0} is a left-knee, v_{1} is an ordinary-left, v_{2} is a switch-right, v_{3} is a right-knee, v_{4} is an ordinary-right, v_{5} is a switch-left, v_{6} is a left-knee, v_{7} is a switchright, v_{8} is a right-knee, v_{9} is an ordinary-right, v_{10} is a switch-left, v_{11} is a left-knee, and v_{12} is an ordinary-left node. For simplicity, we have shown $D_{0}, D_{1}, \ldots, D_{9}$ with identically sized boxes but in actuality they may have different sizes.
4.4.2 (a,b) Placement of v_{i}, v_{i+1}, and D in the case when v_{i} is a left-knee node: (a) v_{i+1} is the only child of v_{i} or s is the left child of v_{i},(b) s is the right child of v_{i}. (c, d) Placement of v_{i}, v_{i+1}, and D in the case when v_{i} is an ordinary-left node: (c) v_{i+1} is the only child of v_{i}, (d) s is the right child of v_{i} (e,f) Placement of v_{i}, v_{i+1}, D, and D in the case when v_{i} is a switch-right node. (e) v_{j} does not have a left child, (f) v_{j} has a left child s^{\prime}. Here, D^{\prime} is the drawing of the subtree rooted at s^{\prime}.92
4.5.1 (a) A tree T with spine $v_{0} v_{1} \ldots v_{5}$. (b) An $O(n \log n)$ area planar straight-line grid drawing of T. In this drawing, v_{0} is left-knee node, v_{1} is switch-right node, v_{2} is right-knee node, v_{3} is switch-left node, v_{4} is left-knee node, v_{5} is switch-right node. 98
4.5.2 (a) $s_{1}, s_{2}, \ldots, s_{k}$ is the sequence of the children of v_{i} that come after v_{i+1} in the counterclockwise order of the children of v_{i}. (b) Placement of v_{i}, $s_{1}, s_{2}, \ldots, s_{k}$, and $D_{1}, D_{2}, \ldots, D_{k}$ in the case when v_{i} is a left-knee node. (c) s_{1}, \ldots, s_{k} is the sequence of the children of v_{i} that come after v_{i+1} in the counterclockwise order of the children of $v_{i} . s_{1}^{\prime}, \ldots, s_{k}^{\prime}$ is the sequence of the children of v_{i} that come before v_{i+1} in the counterclockwise order of the children of $v_{i} . s_{1}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}$ is the sequence of the children of v_{i-1} that come before v_{i} in the counterclockwise order of the children of v_{i-1}. (d) Placement of $v_{i}, v_{i+1}, s_{1}, \ldots, s_{k}, D_{1}, \ldots, D_{k}, s_{1}^{\prime}, \ldots, s_{k}^{\prime}, D_{1}^{\prime}, \ldots, D_{k}^{\prime}, s_{1}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}$, $D_{1}^{\prime \prime}, \ldots, D_{k}^{\prime \prime}$ in the case when v_{i} is a switch-right node.
4.6.1 Drawings of the tree with $n=57$ nodes of Figure 4.3.1(a) constructed by Algorithm BDAAR with $A=\sqrt{m}=\sqrt{57}=7.55$ and using: (a) Corollary 4.4.1, and (b) Corollary 4.5.1, respectively.
4.6.2 Case $k=0$: (a) s_{0} is the left child of v_{0} and s_{1} is the left child of v_{1}. (b) s_{0} is the right child of v_{0} and s_{1} is the left child of v_{1}. (c) s_{0} is the left child of v_{0} and s_{1} is the right child of v_{1}. (d) s_{0} is the right child of v_{0} and s_{1} is the right child of v_{1}.
4.6.3 Case $k>0$: Here $k=4, s_{0}, s_{1}$, and s_{3} are the left children of v_{0}, v_{1}, and v_{3} respectively, s_{2} is the right child of $v_{2}, T_{0}, T_{1}, T_{2}$, and T_{3} are the subtrees rooted at v_{0}, v_{1}, v_{2}, and v_{3} respectively. Let s_{4} be the root of T^{*}. (a) s_{4} is left child of v_{4}. (b) s_{4} is the right child of v_{4}.
5.3.1 (a) An outerplanar graph G. Here, $H, K_{1}, K_{2}, K_{1}^{\prime}, K_{2}^{\prime}, L_{1}, L_{2}, M_{1}, N_{1}, N_{2}$, $N_{3}, N_{4}, Q_{e 1}, Q_{e 2}, Q_{e 4}$, and $Q_{e 5}$ are subgraphs of G, and are themselves outerplanar graphs. (b) The dual tree T_{G} of G. The edges of T_{G} are shown with dark lines. Note that $v_{0} v_{1} \ldots v_{12}$ is a spine of $T_{G}114$
5.3.2 (a) A path P and its corresponding graph H. (b) A beam drawing of H. . . 115
5.4.1 The drawing of the outerplanar graph of Figure 5.3.1(a) constructed by Algorithm OpDraw.116

List of Tables

2.2.1 Bounds on the areas and aspect ratios of various kinds of planar grid drawings of an n-node binary tree. Here, α is a constant, such that $0 \leq \alpha<1$. . 14
3.2.1 Bounds on the areas and aspect ratios of various kinds of planar grid drawings of an n-node tree. Here, α is a constant, such that $0 \leq \alpha<1$. 52
4.2.1 Bounds on the areas and aspect ratios of various kinds of planar straightline grid drawings of an n-node tree. Here, α and ε are user-defined constants, such that $0 \leq \alpha<1$ and $0<\varepsilon<1 .[a, b]$ denotes the range $a \ldots b$. . 85

Contents

Acknowledgments iv
Abstract vi
1 Introduction 1
1.1 Graph Drawing 1
1.2 Graph Drawing Conventions 4
1.2.1 Grid Drawings 4
1.2.2 Planar Drawings 5
1.2.3 Straight-line Drawings 6
1.3 Contributions and Outline of This Thesis 6
2 Planar Straight-line Grid Drawings of Binary Trees with Linear Area and Ar- bitrary Aspect Ratio 9
2.1 Introduction 9
2.2 Previous Results 13
2.3 Preliminaries 15
2.4 Binary Tree Drawing Algorithm 17
2.4.1 Split Tree 20
2.4.2 Assign Aspect Ratios 23
2.4.3 Draw Partial Trees 24
2.4.4 Compose Drawings 25
2.4.5 Proof of Correctness 29
2.5 Experimental Results 39
3 Planar Straight-line Grid Drawings of General Trees with Linear Area and Arbitrary Aspect Ratio 47
3.1 Introduction 47
3.2 Previous Results 51
3.3 Preliminaries 52
3.4 Tree Drawing Algorithm 56
3.4.1 Split Tree 59
3.4.2 Assign Aspect Ratios 63
3.4.3 Draw Partial Trees 64
3.4.4 Compose Drawings 65
3.4.5 Proof of Correctness 70
4 Area-Efficient Order-Preserving Planar Straight-line Grid Drawings of Or-
dered Trees 80
4.1 Introduction 80
4.2 Previous Results 83
4.3 Preliminaries 86
4.4 Drawing Binary Trees 88
4.5 Drawing General Trees 93
4.6 Drawing Binary Trees with Arbitrary Aspect Ratio 100
5 Area-Efficient Planar Straight-line Grid Drawings of Outerplanar Graphs 109
5.1 Introduction 109
5.2 Previous Results 111
5.3 Preliminaries 112
5.4 Outerplanar Graph Drawing Algorithm 116
6 Conclusion and Open Problems 124
Bibliography 127

Chapter 1

Introduction

1.1 Graph Drawing

Graph drawing is concerned with the automatic generation of geometric representations of relational information, often for visualization purposes. The typical data structure for modeling relational information is a graph whose vertices represent entities and whose edges correspond to relationships between entities. Visualizations of relational structures are only useful to the degree that the associated diagrams effectively convey information to the people that use them. A good diagram helps the reader understand the system, but a poor diagram can be confusing (see Figure 1.1.1) [11].

The method for laying out data-flow diagrams due to Knuth [24] was one of the first graph drawing algorithms used for visualization purposes [11]. Graph drawing has seen extensive

(a)

(b)

Figure 1.1.1: Two diagrams that represent a simple class hierarchy; vertices represent classes of geometric shapes, and edges describe the is-a relation. Each vertex represents a class, and a directed edge between two vertices represents the class-subclass relationship. Diagram (a) is more difficult to follow than diagram (b).
research in the last few years. For more results see [11].

The automatic generation of drawings of graphs finds many applications, such as

- software engineering (data flow diagrams, subroutine-call graphs, program nesting trees, object-oriented class hierarchies),
- databases (entity-relationship diagrams),
- information systems (organization charts),
- real-time systems (Petri nets, state-transition diagrams),
- decision support systems (PERT networks, activity trees),
- VLSI (circuit schematics),
- artificial intelligence (knowledge-representation diagrams),
- logic programming (SLD-trees).

Further applications can be found in other science and engineering disciplines, such as

- medical science (concept lattices),
- biology (evolutionary trees),
- chemistry (molecular drawings),
- civil engineering (floor plan maps),
- cartography (map schematics).

The usefulness of a drawing of a graph depends on its readability, i.e. its capability of conveying the information contained in the graph quickly and clearly.

Graph drawing algorithms are methods that produce graph drawings which are easy to read. Algorithms for drawing graphs are typically based on some graph-theoretic insight into the structure of the graph. The input to a graph drawing algorithm is a graph G that needs to be drawn. The output is a drawing Γ which maps each vertex of G to a distinct point in the 2D space and each edge (u, v) of G to a simple Jordan curve with endpoints u and v.

1.2 Graph Drawing Conventions

In this thesis we consider planar straight-line grid drawings. Now we explain the properties of these drawings and the motivation behind using them.

(a)

(b)

(c)

Figure 1.2.1: Grid drawings of the same graph: (a) polyline; (b) planar; (c) straight-line. In (a) we label each vertex and edge bend by their integer coordinates.

1.2.1 Grid Drawings

A grid drawing is one in which each vertex is placed at integer coordinates (see Figure 1.2.1(a)). Grid drawings guarantee at least unit distance separation between nodes, and the integer coordinates of nodes allow such drawings to be rendered on displays, such as computer screen, without any distortions due to truncation and round-off errors. We assume that the plane is covered by horizontal and vertical channels, with unit distance between two consecutive channels. The meeting point of a horizontal and a vertical channel is called a grid-point. The smallest rectangle with horizontal and vertical sides parallel to the X and Y axis, that covers the entire grid drawing, is called the enclosing rectangle. The area of a grid drawing is defined as the number of grid points contained in its enclosing
rectangle. Drawings with small area can be drawn with greater resolution on a fixed-size page. The aspect ratio of a grid drawing is defined as the ratio of the length of the longest side to the length of the shortest side of its enclosing rectangle. Giving the users control over the aspect ratio of a drawing allows them to display the drawing in different kinds of displays surfaces with different aspect ratios.

The optimal use of the screen space is achieved by minimizing the area of the drawing and by providing user-controlled aspect ratio.

1.2.2 Planar Drawings

A planar drawing is a drawing in which no two edges cross (see Figure 1.2.1(a)). Planar drawings are normally easier to understand than non-planar drawings, i.e. drawings with edge-crossings. Planarity is also an important graph theoretic concept, which has been widely studied. Necessary and sufficient conditions for a graph to be planar have been given in [25] and [45]. Linear time algorithms for recognizing planar graphs have been given in [23] and [2]. It has also been shown that every planar graph admits a straight-line planar drawing [44], [15], and [36]. Algorithms for planar straight-line grid drawings of planar graphs with $O\left(n^{2}\right)$ area have been developed independently in [9] and [33]. Extensive research has been done on various kinds of planar drawings. For example, $[5,12,13,16,27$, 28, 31, 37,39-41] provide important results. For more results on planar drawings see [10, 11].

1.2.3 Straight-line Drawings

It is natural to draw each edge of a graph as a straight line between its end-vertices. The so called straight-line graph drawings have each edge drawn as a straight line segment (see Figure 1.2.1(c)). Straight-line drawings are easier to understand than polyline drawings, i.e. drawings in which edges have bends (more than one line segment).

The experimental study of the human perception of graph drawings has concluded that minimizing the number of edge crossings and minimizing the number of bends increases the understandability of drawings of graphs [29,30,38]. Ideally, the drawings should have no edge crossings, i.e. they should be planar drawings, and should have no edge-bends, i.e. they should be straight-line drawings.

1.3 Contributions and Outline of This Thesis

As mentioned in Section 1.2, planar straight-line drawings are easier to understand than non-planar polyline drawings (see Figure 1.1.1). In this thesis, we study the problem of constructing area-efficient planar straight-line grid drawings of trees and outerplanar graphs. We now outline the structure of this thesis and summarize the principal results obtained: (Note that each chapter is self-contained)

- In Chapter 1 (this Chapter), we give an overview of graph drawing, providing the motivation for the results presented in the reminder of this thesis.
- In Chapter 2, we show that a binary tree admits a planar straight-line grid drawing with optimal linear area and user-defined arbitrary aspect ratio.
- In Chapter 3, we extend the result in Chapter 2 by showing that a degree- d tree with n nodes, where $d=O\left(n^{\delta}\right)$ and $0 \leq \delta<1 / 2$ is a constant, admits a planar straight-line grid drawing with optimal linear area and user-defined arbitrary aspect ratio.
- An ordered tree T is one with a pre-specified counterclockwise ordering of the edges incident on each node. Ordered trees arise commonly in practice. Examples of ordered trees include binary search trees, arithmetic expression trees, BSP-trees, B-trees, and range-trees. An order-preserving drawing of T is one in which the counterclockwise ordering of the edges incident on a node is the same as their prespecified ordering in T. Ordered trees are generally drawn using order-preserving planar straight-line grid drawings, as any undergraduate textbook on data-structures will show. In Chapter 4, we develop several area-efficient algorithms for constructing order-preserving planar straight-line grid drawings of ordered trees. In particular, we show that:
- An ordered tree admits an order-preserving planar straight-line grid drawing with $O(n \log n)$ area,
- An ordered binary tree admits an order-preserving planar straight-line grid drawing with $O(n \log \log n)$ area,
- An ordered binary tree admits an order-preserving upward planar straight-line grid drawing with optimal $O(n \log n)$ area,
- In the case when the aspect ratio is arbitrarily defined by the user, we establish the trade-off between the area and aspect ratio of order-preserving planar straight-line grid drawings of ordered binary trees.
- An outerplanar graph is a planar graph for which there exists an embedding with all vertices on the exterior face. In Chapter 5, we show that an outerplanar graph with n vertices and degree d admits a planar straight-line grid drawing with $O\left(d n^{1.48}\right)$ area. This result implies that if $d=O\left(n^{\delta}\right)$, where $0 \leq \delta<0.52$ is a constant, then the graph can be drawn in sub-quadratic area.
- In Chapter 6, we summarize the main achievements of this thesis and identify several open problems in grid drawing.

Note that all algorithms presented in this thesis are time-efficient. The algorithms presented in Chapters 2, and 3 run in $O(n \log n)$ time and the algorithms presented in Chapters 4 and 5 run in $O(n)$ time, where n is the number of vertices in the graph that needs to be drawn.

Chapter 2

Planar Straight-line Grid Drawings of

Binary Trees with Linear Area and

Arbitrary Aspect Ratio

2.1 Introduction

Trees are very common data-structures, which are used to model information in a variety of applications such as Software Engineering (hierarchies of object-oriented programs), Business Administration (organization charts), and Web-site Design (structure of a Website). A drawing Γ of a tree T maps each node of T to a distinct point in the plane, and
each edge (u, v) of T to a simple Jordan curve with endpoints u and $v . \Gamma$ is a straightline drawing (see Figure 2.1.1(a)), if each edge is drawn as a single line-segment. Γ is a polyline drawing (see Figure 2.1.1(b)), if each edge is drawn as a connected sequence of one or more line-segments, where the meeting point of consecutive line-segments is called a bend. Γ is an orthogonal drawing (see Figure 2.1.1(c)), if each edge is drawn as a chain of alternating horizontal and vertical segments. Γ is a grid drawing if all the nodes and edgebends have integer coordinates. Γ is a planar drawing if edges do not intersect each other in the drawing (for example, all the drawings in Figure 2.1.1 are planar drawings). Γ is an upward drawing (see Figure 2.1.1(a,b)), if the parent is always assigned either the same or higher y-coordinate than its children. In this chapter, we concentrate on grid drawings. So, we will assume that the plane is covered by a rectangular grid. Let R be a rectangle with sides parallel to the X - and Y-axes. The width (height) of R is equal to the number of grid points with the same $y(x)$ coordinate contained within R. The area of R is equal to the number of grid points contained within R. The aspect ratio of R is the ratio of its width and height. R is the enclosing rectangle of Γ, if it is the smallest rectangle that covers the entire drawing. The width, height, area, and aspect ratio of Γ is equal to the width, height, area, and aspect ratio, respectively, of its enclosing rectangle. T is a binary tree if each node has at most two children. We denote by $T[v]$, the subtree of T rooted at a node v of $T . T[v]$ consists of v and all the descendents of v. Γ has the subtree separation property [3] if, for any two node-disjoint subtrees $T[u]$ and $T[v]$ of T, the enclosing rectangles of the drawings of $T[u]$ and $T[v]$ do not overlap with each other. Drawings with subtree separation property are more aesthetically pleasing than those without subtree separation property. The subtree

Figure 2.1.1: Various kinds of drawings of the same tree: (a) straight-line, (b) polyline, and (c) orthogonal. Also note that the drawings shown in Figures (a) and (b) are upward drawings, whereas the drawing shown in Figure (c) is not. The root of the tree is shown as a shaded circle, whereas other nodes are shown as black circles.
separation property also allows for a focus+context style [32] rendering of the drawing, so that if the tree has too many nodes to fit in the given drawing area, then the subtrees closer to focus can be shown in detail, whereas those further away from the focus can be contracted and simply shown as filled-in rectangles.

Planar straight-line drawings are more aesthetically pleasing than non-planar polyline drawings. Grid drawings guarantee at least unit distance separation between the nodes of the tree, and the integer coordinates of the nodes and edge-bends allow the drawings to be displayed in a display surface, such as a computer screen, without any distortions due to truncation and rounding-off errors. Giving users control over the aspect ratio of a drawing allows them to display the drawing in different kinds of display surfaces with different aspect ratios. The subtree separation property makes it easier for the user to detect the subtrees in the drawing, and also allows for a focus+context style [32] rendering of the drawing. Finally, it is important to minimize the area of a drawing, so that the users can display a tree in as small drawing area as possible.

We, therefore, investigate the problem of constructing (non-upward) planar straight-line grid drawings of binary trees with small area. Clearly, any planar grid drawing of a binary tree with n nodes requires $\Omega(n)$ area. A long-standing fundamental question, therefore, has been that whether this is a tight bound also, i.e., given a binary tree T with n nodes, can we construct a planar straight-line grid drawing of T with area $O(n)$?

In this chapter, we answer this question in affirmative, by giving an algorithm that constructs a planar straight-line grid drawing of a binary tree with n nodes with $O(n)$ area in $O(n \log n)$ time. Moreover, the drawing can be parameterized for its aspect ratio, i.e., for any constant α, where $0 \leq \alpha<1$, the algorithm can construct a drawing with any userspecified aspect ratio in the range $\left[n^{-\alpha}, n^{\alpha}\right]$. Theorem 2.4.1 summarizes our overall result. In particular, our result shows that optimal area (equal to $O(n)$) and optimal aspect ratio (equal to 1) is simultaneously achievable (see Corollary 2.4.1). It is also interesting to note that the drawings constructed by our algorithm also exhibit the subtree separation property.

We have also implemented our algorithm, and experimentally evaluated its performance for randomly-generated binary trees with up to 50,000 nodes, and for complete binary trees with up to $65,535=2^{16}-1$ nodes. Our experiments show that it constructs area-efficient drawings in practice, with area at most 10 times the number of nodes in the tree.

An earlier version of this algorithm was presented in [18]. The algorithm presented here (will appear in [21]) achieves a better area bound in practice then the version given in [18].

2.2 Previous Results

Previously, the best-known upper bound on the area of a planar straight-line grid drawing of an n-node binary tree was $O(n \log \log n)$, which was shown in [3] and [35]. This bound is very close to $O(n)$, but still it does not settle the question whether an n-node binary tree can be drawn in this fashion in optimal $O(n)$ area. Thus, our result is significant from a theoretical view-point. In fact, we already know of one category of drawings, namely, planar upward orthogonal polyline grid drawings, for which $n \log \log n$ is a tight bound [17], i.e., any binary tree can be drawn in this fashion in $O(n \log \log n)$ area, and there exists a family of binary trees that requires $\Omega(n \log \log n)$ area in any such drawing. So, a natural question arises, if $n \log \log n$ is a tight bound for planar straight-line grid drawings also. Of course, our result implies that this is not the case. Besides, our drawing technique and proofs are significantly different from those of [3] and [35]. Moreover, the drawing constructed by the algorithms of [3] and [35] has a fixed aspect ratio, equal to $\theta\left(\log ^{2} n /(n \log \log n)\right)$, whereas the aspect ratio of the drawing constructed by our algorithm can be specified by the user.

We now summarize some other known results on planar grid drawings of binary trees (for more results, see [11]). Let T be an n-node binary tree. [17] presents an algorithm for constructing an upward polyline drawing of T with $O(n)$ area, and any user-specified aspect ratio in the range $\left[n^{-\alpha}, n^{\alpha}\right]$, where α is any constant, such that $0 \leq \alpha<1$. [26] and [43] present algorithms for constructing a (non-upward) orthogonal polyline drawing of T with $O(n)$ area. [3] gives an algorithm for constructing an upward orthogonal straight-line drawing of T with $O(n \log n)$ area, and any user-specified aspect ratio in the range $[\log n / n, n / \log n]$.

It also shows that $n \log n$ is also a tight bound for such drawings. [35] gives an algorithm for constructing an upward straight-line drawing of T with $O(n \log \log n)$ area. If T is a Fibonacci tree, (AVL tree, complete binary tree), then $[6,42]$ ([8], [6], respectively) give algorithms for constructing an upward straight-line drawing of T with $O(n)$ area.

Table 2.2.1 summarizes these results.

Tree Type	Drawing Type	Area	Aspect Ratio	Reference
Fibonacci	Upward AVtraight-line	$O(n)$	$\theta(1)$	$[6,42]$
AVL	Upward Straight-line	$O(n)$	$\theta(1)$	$[8]$
Complete Binary	Upward Straight-line	$O(n)$	$\theta(1)$	$[6]$
General Binary	Upward Orthogonal Polyline	$O(n \log \log n)$	$\theta\left(\log ^{2} n /(n \log \log n)\right)$	$[17,35]$
	Non-upward) Orthogonal Polyline	$O(n)$	$\theta(1)$	$[26,43]$
	Upward Orthogonal Straight-line	$O(n \log n)$	$\left[\log ^{2} n / n, n / \log n\right]$	$[3]$
	Upward Polyline	$O(n)$	$\left[n^{-\alpha}, n^{\alpha}\right]$	$[17]$
	Upward Straight-line	$O(n \log \log n)$	$\theta\left(\log ^{2} n /(n \log \log n)\right)$	$[35]$
	(Non-upward)	$O(n \log \log n)$	$\theta\left(\log ^{2} n /(n \log \log n)\right)$	$[3]$
	$O(n)$	$\left[n^{-\alpha}, n^{\alpha}\right]$	this chapter	

Table 2.2.1: Bounds on the areas and aspect ratios of various kinds of planar grid drawings of an n-node binary tree. Here, α is a constant, such that $0 \leq \alpha<1$.

2.3 Preliminaries

Throughout this chapter, by the term drawing, we will mean a planar straight-line grid drawing. We will assume that the plane is covered by an infinite rectangular grid. A horizontal channel (vertical channel) is an infinite line parallel to $X-(Y-)$ axis, passing through the grid-points.

Let T be a tree, with one distinguished node v, which has at most one child. v is called the link node of T. Let n be the number of nodes in $T . T$ is an ordered tree if the children of each node are assigned a left-to-right order. A partial tree of T is a connected subgraph of T. If T is an ordered tree, then the leftmost path p of T is the maximal path consisting of nodes that are leftmost children, except the first one, which is the root of T. The last node of p is called the leftmost node of T. Two nodes of T are siblings if they have the same parent in $T . T$ is an empty tree, i.e., $T=\phi$, if it has zero nodes in it.

Let Γ be a drawing of T. By bottom (top, left, and right, respectively) boundary of Γ, we will mean the bottom (top, left, and right, respectively) boundary of the enclosing rectangle $R(\Gamma)$ of Γ. Similarly, by top-left (top-right, bottom-left, and bottom-right, respectively) corner of Γ, we mean the top-left (top-right, bottom-left, and bottom-right, respectively) corner of $R(\Gamma)$.

Let R be a rectangle, such that Γ is entirely contained within $R . R$ has a good aspect ratio, if its aspect ratio is in the range $\left[n^{-\alpha}, n^{\alpha}\right]$, where $0 \leq \alpha<1$ is a constant.

Let r be the root of T. Let u^{*} be the link node of $T . \Gamma$ is a feasible drawing of T, if it has the following three properties:

- Property 1: The root r is placed at the top-left corner of Γ.
- Property 2: If $u^{*} \neq r$, then u^{*} is placed at the bottom boundary of Γ. Moreover, we can move u^{*} downwards in its vertical channel by any distance without causing any edge-crossings in Γ.
- Property 3: If $u^{*}=r$, then no other node or edge of T is placed on, or crosses the vertical and horizontal channels occupied by r.

Theorem 2.3.1 (Separator Theorem [43]) Every n-node binary tree T contains an edge e, called a separator edge, such that removing e from T splits T into two trees T_{1} and T_{2}, with n_{1} and n_{2} nodes, respectively, such that for some x, where $1 / 3 \leq x \leq 2 / 3, n_{1} \leq x n$, and $n_{2} \leq(1-x) n$. Moreover, e can be found in $O(n)$ time.

Let v be a node of tree T located at grid point (i, j) in Γ. Let Γ be a drawing of T. Assume that the root r of T is located at the grid point $(0,0)$ in Γ. We define the following operations on Γ (see Figure 2.3.1):

- rotate operation: rotate Γ counterclockwise by δ degrees around the z-axis passing through r. After a rotation by δ degrees of Γ, node v will get relocated to the point ($i \cos \delta-j \sin \delta, i \sin \delta+j \cos \delta$). In particular, after rotating Γ by 90°, node v will get relocated to the grid point $(-j, i)$.

Figure 2.3.1: Rotating a drawing Γ by 90°, followed by flipping it vertically. Note that initially node u^{*} was located at the bottom boundary of Γ, but after the rotate operation, u^{*} is on the right boundary of Γ.

- flip operation: flip Γ vertically or horizontally. After a horizontal flip of Γ, node v will be located at grid point $(-i, j)$. After a vertical flip of Γ, node v will be located at grid point $(i,-j)$.

2.4 Binary Tree Drawing Algorithm

Let T be a binary tree with a link node u^{*}. Let n be the number of nodes in T. Let A and ε be two numbers such that $0<\varepsilon<1$, and A is in the range $\left[n^{-\varepsilon}, n^{\varepsilon}\right]$. A is called the desirable aspect ratio for T.

Our tree drawing algorithm, called DrawTree, takes ε, A, and T as input, and uses a simple divide-and-conquer strategy to recursively construct a feasible drawing Γ of T, by performing the following actions at each recursive step (as we will prove later, Γ will fit inside a rectangle with area $O(n)$ and aspect ratio A):

- Split Tree: Split T into at most five partial trees by removing at most two nodes and their incident edges from it. Each partial tree has at most $(2 / 3) n$ nodes. Based on

Figure 2.4.1: Drawing T in all the seven subcases of Case 1 (when the separator (u, v) is not in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, d \neq u^{*}$, (b) $T_{A}=\emptyset, T_{C}=\emptyset$, (c) $T_{A} \neq \emptyset$, $T_{C} \neq \emptyset, d=u^{*}$, (d) $T_{A} \neq \emptyset, T_{C}=\emptyset, r \neq e$, (e) $T_{A} \neq \emptyset, T_{C}=\emptyset, r=e$, (f) $T_{A}=\emptyset, T_{C} \neq \emptyset$, $d \neq u^{*}$, and $(\mathrm{g}) T_{A}=\emptyset, T_{C} \neq \emptyset, d=u^{*}$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. Here, x is the same as f if $T_{\beta} \neq \phi$ and is the same as the root of T_{α} if $T_{\beta}=\phi$. In Subcases (a) and (c), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is the same as r, or if $A<1(A \geq 1)$, then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.
the arrangement of these partial trees within T, we get two cases, which are shown
in Figures 2.4.1 and 2.4.2, and described later in Section 2.4.1.

- Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio A_{k} to each partial tree T_{k}. The value of A_{k} is based on the value of A, and the number of nodes

Figure 2.4.2: Drawing T in all the eight subcases of Case 2 (when the separator (u, v) is in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{B} \neq \emptyset, v \neq u^{*}$, (b) $T_{A}=\emptyset, T_{B}=\emptyset, v \neq u^{*}$, (c) $T_{A}=\emptyset$, $T_{B} \neq \emptyset, v \neq u^{*}$, (d) $T_{A} \neq \emptyset, T_{B}=\emptyset, v \neq u^{*}$, (e) $T_{A} \neq \emptyset, T_{B} \neq \emptyset, v=u^{*}$, (f) $T_{A}=\emptyset, T_{B}=\emptyset$, $v=u^{*},(\mathrm{~g}) T_{A}=\emptyset, T_{B} \neq \emptyset, v=u^{*}$, and (h) $T_{A} \neq \emptyset, T_{B}=\emptyset, v=u^{*}$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Subcases (a), (d), (e), and (h), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is same as r, or if $A<1(A \geq 1)$, then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.
in T_{k}.

- Draw Partial Trees: Recursively construct a feasible drawing of each partial tree T_{k} with A_{k} as its desirable aspect ratio.
- Compose Drawings: Arrange the drawings of the partial trees, and draw the nodes and edges, that were removed from T to split it, such that the drawing Γ of T thus
obtained is a feasible drawing. Note that the arrangement of these drawings is done based on the cases shown in Figures 2.4.1 and 2.4.2. In each case, if $A<1$, then the drawings of the partial trees are stacked one above the other, and if $A \geq 1$, then they are placed side-by-side.

Figure 2.4.3: Drawing of the complete binary tree with 63 nodes constructed by Algorithm DrawTree, with $A=1$ and $\varepsilon=0.2$.

Figure 2.4 .3 shows a drawing of a complete binary tree with 63 nodes constructed by Algorithm DrawTree, with $A=1$ and $\varepsilon=0.2$.

We now give the details of each action performed by Algorithm DrawTree:

2.4.1 Split Tree

The splitting of tree T into partial trees is done as follows:

- Order the children of each node such that u^{*} becomes the leftmost node of T.
- Using Theorem 2.3.1, find a separator edge (u, v) of T, where u is the parent of v.
- Based on whether, or not, (u, v) is in the leftmost path of T, we get two cases:
- Case 1: The separator edge (u, v) is not in the leftmost path of T. We get seven subcases: (a) In the general case, T has the form as shown in Figure 2.4.1(a). In this figure:
* r is the root of T,
* T_{2} is the subtree of T rooted at v,
* c is the sibling of v, T_{1} is the subtree rooted at c,
* w is the parent of u,
* a is the last common node of the path $r \leadsto v$ and the leftmost path of T,
* f is the right child of a,
* if $u \neq a$ then T_{α} is the subtree rooted at u, otherwise $T_{\alpha}=T_{2}$,
* T_{β} is the maximal tree rooted at f that contains w but not u,
* T_{B} is the tree consisting of the trees T_{α} and T_{β}, and the edge (w, u),
* e is the parent of a, and d is the left child of a,
* T_{A} is the maximal tree rooted at r that contains e but not a,
* T_{C} is the tree rooted at d, and
* $d \neq u^{*}$.

In addition to this general case, we get six special cases: (b) when $T_{A}=\emptyset$ and $T_{C}=\emptyset\left(\right.$ see Figure 2.4.1(b)), (c) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, d=u^{*}$ (see Figure 2.4.1(c)),
(d) $T_{A} \neq \emptyset, T_{C}=\emptyset, r \neq e\left(\right.$ see Figure 2.4.1(d)), (e) $T_{A} \neq \emptyset, T_{C}=\emptyset, r=e($ see

Figure 2.4.1(e)), (f) $T_{A}=\emptyset, T_{C} \neq \emptyset, d \neq u^{*}$ (see Figure 2.4.1(f)), and (g) $T_{A}=\emptyset$, $T_{C} \neq \emptyset, d=u^{*}$ (see Figure 2.4.1(g)). (The reason we get these seven subcases is as follows: T_{2} has at least $n / 3$ nodes in it because of Theorem 2.3.1. Hence $T_{2} \neq \phi$, and so, $T_{B} \neq \phi$. Based on whether $T_{A}=\phi$ or not, $T_{C}=\phi$ or not, $d=u^{*}$ or not, and $r=e$ or not, we get totally sixteen cases. From these sixteen cases, we obtain the above seven subcases, by grouping some of these cases together. For example, the cases $T_{A}=\phi, T_{C}=\phi, d \neq u^{*}, r=u^{*}$, and $T_{A}=\phi, T_{C}=\phi, d \neq u^{*}$, $r \neq u^{*}$ are grouped together to give Case (a), i.e., $T_{A}=\phi, T_{C}=\phi, d \neq u^{*}$. So, Case (a) corresponds to 2 cases. Similarly, Cases (c), (d), (e), (f), and (g) correspond to 2 cases each, and Case (b) corresponds to 4 cases.) In each case, we remove nodes a and u, and their incident edges, to split T into at most five partial trees $T_{A}, T_{C}, T_{\beta}, T_{1}$, and T_{2}. We also designate e as the link node of T_{A}, w as the link node of T_{β}, and u^{*} as the link node of T_{C}. We arbitrarily select any node of T_{1} that has at most one child, and any node of T_{2} that has at most one child, and designate them as the link nodes of T_{1} and T_{2}, respectively.

- Case 2: The separator edge (u, v) is in the leftmost path of T. We get eight subcases: (a) In the general case, T has the form as shown in Figure 2.4.2(a). In this figure,
* r is the root of T,
* c is the right child of u,
* T_{B} is the subtree of T rooted at c,
* e is the parent of u,
* T_{A} is the maximal tree rooted at r that contains e but not u,
* T_{C} is the tree rooted at v, and
* $v \neq u^{*}$.

In addition to the general case, we get the following seven special cases: (b) $T_{A}=\emptyset, T_{B}=\emptyset, v \neq u^{*}\left(\right.$ see Figure 2.4.2(b)), (c) $T_{A}=\emptyset, T_{B} \neq \emptyset, v \neq u^{*}$ (see Figure 2.4.2(c)), (d) $T_{A} \neq \emptyset, T_{B}=\emptyset, \nu \neq u^{*}\left(\right.$ see Figure 2.4.2(d)), (e) $T_{A} \neq \emptyset, T_{B} \neq \emptyset$, $v=u^{*}($ see Figure 2.4.2(e) $)$, (f) $T_{A}=\emptyset, T_{B}=\emptyset, v=u^{*}($ see Figure 2.4.2(f)), (g) $T_{A}=\emptyset, T_{B} \neq \emptyset, v=u^{*}\left(\right.$ see Figure 2.4.2(g)) , and (h) $T_{A} \neq \emptyset, T_{B}=\emptyset, v=u^{*}$ (see Figure 2.4.2(h)). (The reason we get these eight subcases is as follows: T_{C} has at least $n / 3$ nodes in it because of Theorem 2.3.1. Hence, $T_{C} \neq \phi$. Based on whether $T_{A}=\phi$ or not, $T_{B}=\phi$ or not, and $v=u^{*}$ or not, we get the eight subcases given above.) In each case, we remove node u, and its incident edges, to split T into at most three partial trees T_{A}, T_{B}, and T_{C}. We also designate e as the link node of T_{A}, and u^{*} as the link node of T_{C}. We arbitrarily select any node of T_{B} that has at most one child and designate it as the link node of T_{B}.

2.4.2 Assign Aspect Ratios

Let T_{k} be a partial tree of T, where for Case $1, T_{k}$ is either $T_{A}, T_{C}, T_{\beta}, T_{1}$, or T_{2}, and for Case $2, T_{k}$ is either T_{A}, T_{B}, or T_{C}. Let n_{k} be number of nodes in T_{k}.

Definition: T_{k} is a large partial tree of T if:

- $A \geq 1$ and $n_{k} \geq(n / A)^{1 /(1+\varepsilon)}$, or
- $A<1$ and $n_{k} \geq(A n)^{1 /(1+\varepsilon)}$,
and is a small partial tree of T otherwise.

In Step Assign Aspect Ratios, we assign a desirable aspect ratio A_{k} to each nonempty T_{k} as follows: Let $x_{k}=n_{k} / n$.

- If $A \geq 1$: If T_{k} is a large partial tree of T, then $A_{k}=x_{k} A$, otherwise (i.e., if T_{k} is a small partial tree of T) $A_{k}=n_{k}^{-\varepsilon}$.
- If $A<1$: If T_{k} is a large partial tree of T, then $A_{k}=A / x_{k}$, otherwise (i.e., if T_{k} is a small partial tree of T) $A_{k}=n_{k}^{\varepsilon}$.

Intuitively, this assignment strategy ensures that each partial tree gets a good desirable aspect ratio, and so, the drawing of each partial tree constructed recursively by Algorithm DrawTree will fit inside a rectangle with linear area and good aspect ratio.

2.4.3 Draw Partial Trees

First, we change the desirable aspect ratios assigned to T_{A} and T_{β} in some cases as follows: Suppose T_{A} and T_{β} get assigned desirable aspect ratios equal to m and p, respectively, where m and p are some positive numbers. In Subcase (d) of Case 1 , and if $A \geq 1$, then in Subcases (a) and (c) of Case 1, and Subcases (a), (d), (e), and (h) of Case 2, we change the
value of the desirable aspect ratio of T_{A} to $1 / m$. In Case 1 , if $A \geq 1$, we change the value of the desirable aspect ratio of T_{β} to $1 / p$. We make these changes because, as explained later in Section 2.4.4, in these cases, we need to rotate the drawings of T_{A} and T_{β} by 90° during the Compose Drawings step. Drawing T_{A} and T_{β} with desirable aspect ratios $1 / m$ and $1 / p$, respectively, compensates for this rotation, and ensures that the drawings of T_{A} and T_{β} used to draw T have the desirable aspect ratios, m and p, respectively.

Next we draw recursively each nonempty partial tree T_{k} with A_{k} as its desirable aspect ratio, where the value of A_{k} is the one computed in the previous step. The base case for the recursion happens when T_{k} contains exactly one node, in which case, the drawing of T_{k} is simply the one consisting of exactly one node.

2.4.4 Compose Drawings

Let Γ_{k} denote the drawing of a partial tree T_{k} constructed in Step Draw Partial Trees. We now describe the construction of a feasible drawing Γ of T from the drawings of its partial trees in both Cases 1 and 2.

In Case 1 , we first construct a feasible drawing Γ_{α} of the partial tree T_{α} by composing Γ_{1} and Γ_{2} as shown in Figure 2.4.4, then construct a feasible drawing Γ_{B} of T_{B} by composing Γ_{α} and Γ_{β} as shown in Figure 2.4.5, and finally construct Γ by composing Γ_{A}, Γ_{B} and Γ_{C} as shown in Figure 2.4.1.
Γ_{α} is constructed as follows (see Figure 2.4.4): (Recall that if $u \neq a$ then T_{α} is the subtree
of T rooted at u, otherwise $T_{\alpha}=T_{2}$)

- If $u \neq a$, and $T_{1} \neq \emptyset$ (see Figure 2.4.4(a)), then, if $A<1$, place Γ_{1} above Γ_{2} such that the left boundary of Γ_{1} is one unit to the right of the left boundary of Γ_{2}. Place u in the same vertical channel as v and in the same horizontal channel as c. If $A \geq 1$, place Γ_{1} one unit to the left of Γ_{2}, such that the top boundary of Γ_{1} is one unit below the top boundary of Γ_{2}. Place u in the same vertical channel as c and in the same horizontal channel as v. Draw edges (u, c) and (u, v).
- If $u \neq a$, and $T_{1}=\emptyset$ (see Figure 2.4.4(b)), then, if $A<1$, place u in the same horizontal channel and at one unit to the left of v; otherwise (i.e. $A \geq 1$), place u in the same vertical channel and at one unit above v. Draw edge (u, v).
- Otherwise (i.e., if $u=a$), Γ_{α} is the same as Γ_{2} (see Figure 2.4.4(c)).
Γ_{B} is constructed as follows (see Figure 2.4.5): Let y be the root of T_{α}. Note that $y=u$ if $u \neq a$, and $y=v$ otherwise.
- if $T_{\beta} \neq \emptyset$ (see Figure 2.4.5(a)) then, if $A<1$, then place Γ_{β} one unit above Γ_{α} such that the left boundaries of Γ_{β} and Γ_{α} are aligned; otherwise (i.e., if $A \geq 1$), first rotate Γ_{β} by 90° and then flip it vertically, then place Γ_{β} one unit to the left of Γ_{α} such that the top boundaries of Γ_{β} and Γ_{α} are aligned. Draw edge (w, y).
- Otherwise (i.e., if $\left.T_{\beta}=\emptyset\right), \Gamma_{B}$ is same as Γ_{α} (see Figure 2.4.5(b)).
Γ is constructed from Γ_{A}, Γ_{B}, and Γ_{C} as follows (see Figure 2.4.1): Let x be the root of T_{B}. Note that $x=f$ if $T_{\beta} \neq \emptyset$, and $x=y$ otherwise.
- In Subcase (a), as shown in Figure 2.4.1(a), if $A<1$, stack Γ_{A}, Γ_{B}, and Γ_{C} one above the other, such that they are separated by unit vertical distance from each other, and the left boundaries of Γ_{A} and Γ_{C} are aligned with each other and are placed at unit horizontal distance to the left of the left boundary of Γ_{B}. If $A \geq 1$, then first rotate Γ_{A} by 90°, and then flip it vertically. Then, place Γ_{A}, Γ_{C}, and Γ_{B} from left-to-right in that order, separated by unit horizontal distances, such that the top boundaries of Γ_{A} and Γ_{B} are aligned, and are at unit vertical distance above the top boundary of Γ_{C}. Then, move Γ_{C} down until u^{*} becomes the lowest node of Γ. Place node a in the same vertical channel as d and in the same horizontal channel as r and x. Draw edges $(e, a),(a, x)$, and (a, d).
- In Subcase (b), for both $A<1$ and $A \geq 1$, place node r one unit above and left of the top boundary of Γ_{B} (see Figure 2.4.1(b)). Draw edge (r, x).
- The drawing procedure for Subcase (c) is similar to the one in Subcase (a), except that we also flip Γ_{C} vertically (see Figure 2.4.1(c)).
- In Subcase (d), as shown in Figure 2.4.1(d), if $A<1$, first flip Γ_{B} vertically, and then flip it horizontally, so that its root x gets placed at its lower-right corner. Then, first rotate Γ_{A} by 90°, and then flip it vertically. Next, place Γ_{A} above Γ_{B} with unit vertical separation, such that their left boundaries are aligned, next move node e (which is the link node of T_{A}) to the right until it is either to the right of, or aligned with the right
boundary of Γ_{B} (since Γ_{A} is a feasible drawing of T_{A}, by Property 2, as given in Section 2.3, moving e will not create any edge-crossings), and then place u^{*} in the same horizontal channel as x and one unit to the right of e. If $A \geq 1$, first rotate Γ_{A} by 90°, and then flip it vertically. Then flip Γ_{B} vertically. Then, place Γ_{A}, u^{*}, and Γ_{B} left-to-right in that order separated by unit horizontal distances, such that the top boundaries of Γ_{A} and Γ_{B} are aligned, and u^{*} is placed in the same horizontal channel with the bottom boundary of the drawing among Γ_{A} and Γ_{B} with greater height. Draw edges $\left(u^{*}, e\right)$ and $\left(u^{*}, x\right)$.
- In Subcase (e), as shown in Figure 2.4.1(e), if $A<1$, first flip Γ_{B} vertically, then place Γ_{A} and Γ_{B} one above the other with unit vertical separation, such that the left boundary of Γ_{A} is at unit horizontal distance to the left of the left boundary of Γ_{B}. If $A \geq 1$, then first flip Γ_{B} vertically, place Γ_{A} to the left of Γ_{B} at unit horizontal distance, such that their top boundaries are aligned. Next, move Γ_{B} down until its bottom boundary is at least one unit below the bottom boundary of Γ_{A}. Place u^{*} in the same vertical channel as r and in the same horizontal channel as x. Draw edges $\left(r, u^{*}\right)$ and $\left(u^{*}, x\right)$. Note that, since Γ_{A} is a feasible drawing of T_{A}, by Property 3 (see Section 2.3), drawing (u^{*}, r) will not create any edge-crossings.
- The drawing procedure in Subcase (f) is similar to the one in Subcase (a), except that we do not have Γ_{A} here (see Figure 2.4.1(f)).
- The drawing procedure in Subcase (g) is similar to the one in Subcase (f), except that we also flip Γ_{C} vertically (see Figure 2.4.1(g).

In Case 2, we construct Γ by composing Γ_{A}, Γ_{B}, and Γ_{C}, as follows (see Figure 2.4.2):

- The drawing procedures in Subcases (a) and (c) are similar to those in Subcases (a) and (f), respectively, of Case 1 (see Figures 2.4.2(a, c)).
- The drawing procedure in Subcase (b) is similar to that in Case (b) of drawing T_{α} (see Figure 2.4.4(b)).
- In Subcase (d), as shown in Figure 2.4.2(d), if $A>1$, we place Γ_{A} above Γ_{C}, separated by unit vertical distance such that the left boundary of Γ_{C} is one unit to the right of the left boundary of Γ_{A}. Place u in the same vertical channel as r and in the same horizontal channel as v. If $A \geq 1$, then first rotate Γ_{A} by 90°, and then flip it vertically. Then, place Γ_{A} to the left of Γ_{C}, separated by unit horizontal distance, such that the top boundary of Γ_{C} is one unit below the top boundary of Γ_{A}. Then, move Γ_{C} down until u^{*} becomes the lowest node of Γ. Place u in the same vertical channel as v and in the same horizontal channel as r. Draw edges (u, v) and (u, e).
- The drawing procedures in Subcases (e), (f), (g), and (h) are similar to those in Subcases (a), (b), (c), and (d), respectively, (see Figures 2.4.2(e,f,g,h)), except that we also flip Γ_{C} vertically.

2.4.5 Proof of Correctness

Lemma 2.4.1 (Planarity) Given a binary tree T with a link node u^{*}, Algorithm DrawTree will construct a feasible drawing Γ of T.

Figure 2.4.4: Drawing T_{α}, when: (a) $u \neq a$ and $T_{1} \neq \emptyset$, (b) $u \neq a$ and $T_{1}=\emptyset$, and (c) $u=a$. For each case, we first show the structure of T_{α} for that case, then its drawing when $A<1$, and then its drawing when $A \geq 1$. For simplicity, we have shown Γ_{1} and Γ_{2} as identically sized boxes, but in actuality, their sizes may be different.

(a)

(b)

Figure 2.4.5: Drawing T_{B} when: (a) $T_{\beta} \neq \emptyset$, and (b) $T_{\beta}=\emptyset$. Node y shown here is either node u or v. For each case, we first show the structure of T_{B} for that case, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Case (a), for simplicity, w is shown to be in the interior of Γ_{β}, but actually, it is either same as f, or if $A<1(A \geq 1)$, then is placed on the bottom (right) boundary of Γ_{β}. For simplicity, we have shown Γ_{β} and Γ_{α} as identically sized boxes, but in actuality, their sizes may be different.

Proof: We can easily prove using induction over the number of nodes n in T that Γ is a feasible drawing:

Base Case $(n=1): \Gamma$ consists of exactly one node and is trivially a feasible drawing.

Induction $(n>1)$: Consider Case 1. By the inductive hypothesis, the drawing constructed of each partial tree of T is a feasible drawing.

Hence, from Figure 2.4.4, it can be easily seen that the drawing Γ_{α} of T_{α} is also a feasible drawing.

From Figure 2.4.5, it can be easily seen that the drawing Γ_{B} of T_{B} is also a feasible drawing.
Note that because Γ_{β} is a feasible drawing of T_{β} and w is its link node, w is either at the
bottom of Γ_{β} (from Property 2, see Section 2.3), or at the top-left corner of Γ_{β} and no other edge or node of T_{β} is placed on, or crosses the vertical channel occupied by it (Properties 1 and 3, see Section 2.3). Hence, in Figure 2.4.5(a), in the case $A<1$, drawing edge (w, x) will not cause any edge crossings. Also, in Figure 2.4.5(a), in the case $A \geq 1$, drawing edge (w, x) will not cause any edge crossings because after rotating Γ_{β} by 90° and flipping it vertically, w will either be at the right boundary of Γ_{β} (see Property 2), or at the top-left corner of Γ_{β} and no other edge or node of T_{β} will be placed on, or cross the horizontal channel occupied by it (see Properties 1 and 3).

Finally, by considering each of the seven subcases shown in Figure 2.4.1 one-by-one, we can show that Γ is also a feasible drawing of T :

- Subcase (a): See Figure 2.4.1(a). Γ_{A} is a feasible drawing of T_{A} and e is the link node of T_{A}. Hence, e is either at the bottom of Γ_{A} (from Property 2), or is at the top-left corner of Γ_{A}, and no other edge or node of T_{A} is placed on, or crosses the horizontal and vertical channels occupied by it (from Properties 1 and 3). Hence, in the case $A<1$, drawing edge (e, a) will not create any edge-crossings, and Γ will also be a feasible drawing of T. In the case $A \geq 1$ also, drawing edge (e, a) will not create any edge-crossings because after rotating Γ_{A} by 90° and flipping it vertically, e will either be at the right boundary of Γ_{A} (see Property 2), or at the top-left corner of Γ_{β} and no other edge or node of T_{A} will be placed on, or cross the horizontal channel occupied by it (see Properties 1 and 3). Thus, for the case $A \geq 1$ also, Γ will also be a feasible drawing of T.
- Subcase (b): See Figure 2.4.1(b). Because Γ_{B} is a feasible drawing of T_{B}, it is straightforward to see that Γ is also a feasible drawing of T for both the cases when $A<1$ and $A \geq 1$.
- Subcase (c): See Figure 2.4.1(c). The proof is similar to the one for Subcase (a).
- Subcase (d): See Figure 2.4.1(d). Γ_{A} is a feasible drawing of T_{A}, e is the link node of T_{A}, and $e \neq r$. Hence, from Property $2, e$ is located at the bottom of Γ_{A}. Rotating Γ_{A} by 90° and flipping it vertically will move e to the right boundary of Γ_{A}. Moving e to the right until it is either to the right of, or aligned with the right boundary of Γ_{B} will not cause any edge-crossings because of Property 2. It can be easily seen that in both the cases, $A<1$ and $A \geq 1$, drawing edge $\left(e, u^{*}\right)$ does not create any edge-crossings, and Γ is a feasible drawing of T.
- Subcase (e): See Figure 2.4.1(e). Γ_{A} is a feasible drawing of T_{A}, e is the link node of T_{A}, and $e=r$. Hence, from Properties 1 and 3, e is at the top-left corner of Γ_{A}, and no other edge or node of T_{A} is placed on, or crosses the horizontal and vertical channels occupied by it. Hence, in both the cases, $A<1$ and $A \geq 1$, drawing edge $\left(e, u^{*}\right)$ will not create any edge-crossings, and Γ is a feasible drawing of T.
- Subcase (f) : See Figure 2.4.1(f). It is straightforward to see that Γ is a feasible drawing of T for both the cases when $A<1$ and $A \geq 1$.
- Subcase (g) : See Figure 2.4.1(g). Γ_{C} is a feasible drawing of T_{C}, u^{*} is the link node of T_{C}, and u^{*} is also the root of T_{C}. Hence, from Properties 1 and $3, u^{*}$ is at the top-left corner of Γ_{C}, and no other edge or node of T_{C} is placed on, or crosses the
horizontal and vertical channels occupied by it. Flipping Γ_{C} vertically will move u^{*} to the bottom-left corner of Γ_{C} and no other edge or node of T_{C} will be on or crosses the vertical channel occupied by it. Hence, drawing edge $\left(r, u^{*}\right)$ will not create any edge-crossings, and Γ will be a feasible drawing of T.

Using a similar reasoning, we can show that in Case 2 also, Γ is a feasible drawing of T.

Lemma 2.4.2 (Time) Given an n-node binary tree T with a link node u^{*}, Algorithm DrawTree will construct a drawing Γ of T in $O(n \log n)$ time.

Proof: From Theorem 2.3.1, each partial tree into which Algorithm DrawTree would split T will have at most $(2 / 3) n$ nodes in it. Hence, it follows that the depth of the recursion for Algorithm DrawTree is $O(\log n)$. At the first recursive level, the algorithm will split T into partial trees, assign aspect ratios to the partial trees and compose the drawings of the partial trees to construct a drawing of T. At the next recursive level, it will split all of these partial trees into smaller partial trees, assign aspect ratios to these smaller partial trees, and compose the drawings of these smaller partial trees to construct the drawings of all the partial trees. This process will continue until the bottommost recursive level is reached. At each recursive level, the algorithm takes $O(m)$ time to split a tree with m nodes into partial trees, assign aspect ratios to the partial trees, and compose the drawings of partial trees to construct a drawing of the tree. At each recursive level, the total number of nodes in all the trees that the algorithm considers for drawing is at most n. Hence, at each recursive level, the algorithm totally spends $O(n)$ time. Hence, the running time of the algorithm is
$O(n) \cdot O(\log n)=O(n \log n)$.

In Lemma 2.4.4 given below, we prove that the algorithm will draw the tree in $O(n)$ area. Note that the proof given below is different from the one given in [18], which used Theorem 6 of [43]. We believe that the proof given below is more straight-forward, and easier to understand.

Lemma 2.4.3 Let R be a rectangle with area D and aspect ratio A. Let W and H be the width and height, respectively, of R. Then, $W=\sqrt{A D}$ and $H=\sqrt{D / A}$.

Proof: By the definition of aspect ratio, $A=W / H . D=W H=W(W / A)=W^{2} / A$. Hence, $W=\sqrt{A D} . H=W / A=\sqrt{A D} / A=\sqrt{D / A}$.

Lemma 2.4.4 (Area) Let T be a binary tree with a link node u^{*}. Let n be the number of nodes in T. Let ε and A be two numbers such that $0<\varepsilon<1$, and A is in the range $\left[n^{-\varepsilon}, n^{\varepsilon}\right]$. Given T, ε, and A as input, Algorithm DrawTree will construct a drawing Γ of T that can fit inside a rectangle R with $O(n)$ area and aspect ratio A.

Proof: Let $D(n)$ be the area of R. We will prove, using induction over n, that $D(n)=O(n)$. More specifically, we will prove that $D(n) \leq c_{1} n-c_{2} n^{\beta}$ for all $n \geq n_{0}$, where $n_{0}, c_{1}, c_{2}, \beta$ are some positive constants and $\beta<1$.

We now give the proof for the case when $A \geq 1$ (the proof for the case $A<1$ is symmetrical). Algorithm DrawTree will split T into at most 5 partial trees. Let T_{k} be a
non-empty partial tree of T, where T_{k} is one of $T_{A}, T_{\beta}, T_{1}, T_{2}, T_{C}$ in Case 1 , and is one of T_{A}, T_{B}, T_{C} in Case 2. Let n_{k} be the number of nodes in T_{k}, and let $x_{k}=n_{k} / n$. Let $P_{k}=$ $c_{1} n-c_{2} n^{\beta} / x_{k}^{1-\beta}$. From Theorem 2.3.1, it follows that $n_{k} \leq(2 / 3) n$, and hence, $x_{k} \leq 2 / 3$. Hence, $P_{k} \leq c_{1} n-c_{2} n^{\beta} /(2 / 3)^{1-\beta}=c_{1} n-c_{2} n^{\beta}(3 / 2)^{1-\beta}$. Let $P^{\prime}=c_{1} n-c_{2} n^{\beta}(3 / 2)^{1-\beta}$. Thus, $P_{k} \leq P^{\prime}$.

From the inductive hypothesis, Algorithm DrawTree will construct a drawing Γ_{k} of T_{k} that can fit inside a rectangle R_{k} with aspect ratio A_{k} and area $D\left(n_{k}\right)$, where A_{k} is as defined in Section 2.4.2, and $D\left(n_{k}\right) \leq c_{1} n_{k}-c_{2} n_{k}^{\beta}$. Since $x_{k}=n_{k} / n, D\left(n_{k}\right) \leq c_{1} n_{k}-c_{2} n_{k}^{\beta}=c_{1} x_{k} n-$ $c_{2}\left(x_{k} n\right)^{\beta}=x_{k}\left(c_{1} n-c_{2} n^{\beta} / x_{k}^{1-\beta}\right)=x_{k} P_{k} \leq x_{k} P^{\prime}$.

Let W_{k} and H_{k} be the width and height, respectively, of R_{k}. We now compute the values of W_{k} and H_{k} in terms of A, P^{\prime}, x_{k}, n, and ε. We have two cases:

- T_{k} is a small partial tree of T : Then, $n_{k}<(n / A)^{1 /(1+\varepsilon)}$, and also, as explained in Section 2.4.2, $A_{k}=1 / n_{k}^{\varepsilon}$. From Lemma 2.4.3, $W_{k}=\sqrt{A_{k} D\left(n_{k}\right)} \leq$ $\sqrt{\left(1 / n_{k}^{\varepsilon}\right)\left(x_{k} P^{\prime}\right)}=\sqrt{\left(1 / n_{k}^{\varepsilon}\right)\left(n_{k} / n\right) P^{\prime}}=\sqrt{n_{k}^{1-\varepsilon} P^{\prime} / n}$. Since $n_{k}<(n / A)^{1 /(1+\varepsilon)}, W_{k}<$ $\sqrt{(n / A)^{(1-\varepsilon) /(1+\varepsilon)} P^{\prime} / n}=\sqrt{\left(1 / A^{(1-\varepsilon) /(1+\varepsilon)}\right) P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}} \leq \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}$ since $A \geq 1$.

From Lemma 2.4.3, $H_{k}=\sqrt{D\left(n_{k}\right) / A_{k}} \leq \sqrt{x_{k} P^{\prime} /\left(1 / n_{k}^{\varepsilon}\right)}=\sqrt{\left(n_{k} / n\right) P^{\prime} n_{k}^{\varepsilon}}=$ $\sqrt{n_{k}^{1+\varepsilon} P^{\prime} / n} . \quad$ Since $\quad n_{k}<(n / A)^{1 /(1+\varepsilon)}, \quad H_{k}<\sqrt{(n / A)^{(1+\varepsilon) /(1+\varepsilon)} P^{\prime} / n}=$ $\sqrt{(n / A) P^{\prime} / n}=\sqrt{P^{\prime} / A}$.

- T_{k} is a large partial tree of T : Then, as explained in Section 2.4.2, $A_{k}=x_{k} A$. From

Lemma 2.4.3, $W_{k}=\sqrt{A_{k} D\left(n_{k}\right)} \leq \sqrt{x_{k} A x_{k} P^{\prime}}=x_{k} \sqrt{A P^{\prime}}$.
From Lemma 2.4.3, $H_{k}=\sqrt{D\left(n_{k}\right) / A_{k}} \leq \sqrt{x_{k} P^{\prime} /\left(x_{k} A\right)}=\sqrt{P^{\prime} / A}$.

In Step Compose Drawings, we use at most two additional horizontal channels and at most one additional vertical channel while combining the drawings of the partial trees to construct a drawing Γ of T. Hence, Γ can fit inside a rectangle R^{\prime} with width W^{\prime} and height H^{\prime}, respectively, where,

$$
H^{\prime} \leq \max _{T_{k} \text { is a partial tree of } T}\left\{H_{k}\right\}+2 \leq \sqrt{P^{\prime} / A}+2
$$

and

$$
\begin{aligned}
W^{\prime} & \leq \sum_{T_{k} \text { is a large partial tree }} W_{k}+\sum_{T_{k} \text { is a small partial tree }} W_{k}+1 \\
& \leq \sum_{T_{k} \text { is a large partial tree }} x_{k} \sqrt{A P^{\prime}}+\sum_{T_{k} \text { is a small partial tree }} \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 \\
& \leq \sqrt{A P^{\prime}}+5 \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1
\end{aligned}
$$

(because $\sum_{T_{k} \text { is a large partial tree }} x_{k} \leq 1$, and T has at most 5 partial trees)
R^{\prime} does not have aspect ratio equal to A, but it is contained within a rectangle R with aspect ratio A, area $D(n)$, width W, and height H, where

$$
W=\sqrt{A P^{\prime}}+5 \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1+2 A
$$

and

$$
H=\sqrt{P^{\prime} / A}+2+(5 / A) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 / A
$$

Hence, $\quad D(n)=W H=\left(\sqrt{A P^{\prime}}+5 \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1+2 A\right)\left(\sqrt{P^{\prime} / A}+2+\right.$ $\left.(5 / A) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 / A\right) \leq P^{\prime}+c_{3} P^{\prime} / \sqrt{A n^{2 \varepsilon /(1+\varepsilon)}}+c_{4} \sqrt{A P^{\prime}}+c_{5} P^{\prime} /\left(A n^{2 \varepsilon /(1+\varepsilon)}\right)+$ $c_{6} \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+c_{7} A+c_{8}+c_{9} / A+c_{10} \sqrt{P^{\prime} / A}+c_{11} \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}} / A, \quad$ where $c_{3}, c_{4}, \ldots, c_{11}$ are some constants.

Since, $1 \leq A \leq n^{\varepsilon}$, we have that

$$
\begin{aligned}
D(n) \leq & P^{\prime}+c_{3} P^{\prime} / \sqrt{n^{2 \varepsilon /(1+\varepsilon)}}+c_{4} \sqrt{n^{\varepsilon} P^{\prime}}+c_{5} P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}+c_{6} \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+c_{7} n^{\varepsilon} \\
& +c_{8}+c_{9}+c_{10} \sqrt{P^{\prime}}+c_{11} \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}
\end{aligned}
$$

Since $P^{\prime}<c_{1} n$,

$$
\begin{aligned}
D(n)< & P^{\prime}+c_{3} c_{1} n / \sqrt{n^{2 \varepsilon /(1+\varepsilon)}}+c_{4} \sqrt{n^{\varepsilon} c_{1} n}+c_{5} c_{1} n / n^{2 \varepsilon /(1+\varepsilon)}+c_{6} \sqrt{c_{1} n / n^{2 \varepsilon /(1+\varepsilon)}} \\
& +c_{7} n^{\varepsilon}+c_{8}+c_{9}+c_{10} \sqrt{c_{1}} n^{1 / 2}+c_{11} \sqrt{c_{1} n / n^{2 \varepsilon /(1+\varepsilon)}} \\
\leq & P^{\prime}+c_{3} c_{1} n^{1 /(1+\varepsilon)}+c_{4} \sqrt{c_{1}} n^{(1+\varepsilon) / 2}+c_{5} c_{1} n^{(1-\varepsilon) /(1+\varepsilon)}+c_{6} \sqrt{c_{1}} n^{(1-\varepsilon) /(2(1+\varepsilon))} \\
& +c_{7} n^{\varepsilon}+c_{8}+c_{9}+c_{10} \sqrt{c_{1}} n^{1 / 2}+c_{11} \sqrt{c_{1}} n^{(1-\varepsilon) /(2(1+\varepsilon))} \\
\leq & P^{\prime}+c_{12} n^{1 /(1+\varepsilon)}+c_{13} n^{(1+\varepsilon) / 2}
\end{aligned}
$$

where c_{12} and c_{13} are some constants (because, since $0<\varepsilon<1,(1-\varepsilon) /(2(1+\varepsilon))<$ $(1-\varepsilon) /(1+\varepsilon)<1 /(1+\varepsilon), \varepsilon<(1+\varepsilon) / 2$, and $1 / 2<(1+\varepsilon) / 2)$.
$P^{\prime}=c_{1} n-c_{2} n^{\beta}(3 / 2)^{1-\beta}=c_{1} n-c_{2} n^{\beta}\left(1+c_{14}\right)$, where c_{14} is a constant such that $1+c_{14}=$ $(3 / 2)^{1-\beta}$.

Hence, $D(n) \leq c_{1} n-c_{2} n^{\beta}\left(1+c_{14}\right)+c_{12} n^{1 /(1+\varepsilon)}+c_{13} n^{(1+\varepsilon) / 2}=c_{1} n-c_{2} n^{\beta}-\left(c_{14} n^{\beta}-\right.$ $\left.c_{12} n^{1 /(1+\varepsilon)}-c_{13} n^{(1+\varepsilon) / 2}\right)$. Thus, for a large enough constant n_{0}, and large enough β, where
$1>\beta>\max \{1 /(1+\varepsilon),(1+\varepsilon) / 2\}$, for all $n \geq n_{0}, c_{14} n^{\beta}-c_{12} n^{1 /(1+\varepsilon)}-c_{13} n^{(1+\varepsilon) / 2} \geq 0$, and hence $D(n) \leq c_{1} n-c_{2} n^{\beta}$.

The proof for the case $A<1$ uses the same reasoning as for the case $A \geq 1$. With T_{k}, R_{k}, $W_{k}, H_{k}, R^{\prime}, W^{\prime}, H^{\prime}, R, W$, and H defined as above, and A_{k} as defined in Section 2.4.2, we get the following values for $W_{k}, H_{k}, W^{\prime}, H^{\prime}, W, H$, and $D(n)$:

$$
\begin{aligned}
W_{k} & \leq \sqrt{A P^{\prime}} \\
H_{k} & \leq \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}} \text { if } T_{k} \text { is a small partial tree } \\
& \leq x_{k} \sqrt{P^{\prime} / A} \text { if } T_{k} \text { is a large partial tree } \\
W^{\prime} & \leq \sqrt{A P^{\prime}}+2 \\
H^{\prime} & \leq \sqrt{P^{\prime} / A}+5 \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 \\
W & \leq \sqrt{A P^{\prime}}+2+5 A \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+A \\
H & \leq \sqrt{P^{\prime} / A}+5 \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1+2 / A \\
D(n) & \leq P^{\prime}+c_{12} n^{1 /(1+\varepsilon)}+c_{13} n^{(1+\varepsilon) / 2}
\end{aligned}
$$

where c_{12} and c_{13} are the same constants as in the case $A \geq 1$. Therefore, $D(n) \leq c_{1} n-c_{2} n^{\beta}$ for $A<1$ too. (Notice that in the values that we get above for $W_{k}, H_{k}, W^{\prime}, H^{\prime}, W$, and H, if we replace A by $1 / A$, exchange W_{k} with H_{k}, exchange W^{\prime} with H^{\prime}, and exchange W with H, we will get the same values for $W_{k}, H_{k}, W^{\prime}, H^{\prime}, W$, and H as in the case $A \geq 1$. This basically reflects the fact that the cases $A \geq 1$ and $A<1$ are symmetrical to each other.)

Theorem 2.4.1 (Main Theorem) Let T be a binary tree with n nodes. Given any number A, where $n^{-\alpha} \leq A \leq n^{\alpha}$, for some constant α, where $0 \leq \alpha<1$, we can construct in
$O(n \log n)$ time, a planar straight-line grid drawing of T with $O(n)$ area, and aspect ratio A.

Proof: Let ε be a constant such that $n^{-\varepsilon} \leq A \leq n^{\varepsilon}$ and $0<\varepsilon<1$. Designate any node of T that has at most one child as its link node. Construct a drawing Γ of T in R by calling Algorithm DrawTree with T, A and ε as input. From Lemmas 2.4.1, 2.4.2, and 2.4.4, Γ will be a planar straight-line grid drawing of T contained entirely within a rectangle with $O(n)$ area, and aspect ratio A.

Corollary 2.4.1 Let T be a binary tree with n nodes. We can construct in $O(n \log n)$ time, a planar straight-line grid drawing of T with optimal (equal to $O(n)$) area, and optimal aspect ratio (equal to 1).

Proof: Immediate from Theorem 2.4.1, with $A=1$.

2.5 Experimental Results

We have implemented the algorithm using $\mathrm{C}++$. The implementation consists of about 2,100 lines of code. We have also experimentally evaluated the algorithm on two types of binary trees, namely, randomly-generated, consisting of up to 50,000 nodes, and complete, consisting of up to $65,535=2^{16}-1$ nodes.

Each randomly-generated tree T_{n} with n nodes is generated by constructing a sequence of
trees $T_{0}, T_{1}, \ldots, T_{n}$, where T_{0} is the empty tree, and T_{i+1} is generated from T_{i} by inserting a new node in it, using the Algorithm InsertRandomly:

Algorithm InsertRandomly $(u, T):\{u$ is a new node to be inserted in tree $T\}$

1. If T is the empty tree then

- Set u as its root.

2. Else, randomly choose to perform one of the following two pairs of steps ($a-b$ or $c-d):$
(a) If $T \rightarrow$ left is NULL, then $T \rightarrow$ left $=\mathrm{u}$.
(b) Else InsertRandomly ($u, T \rightarrow$ left $)$.
(c) If $T \rightarrow$ right is NULL, then $T \rightarrow$ right $=\mathrm{u}$.
(d) Else InsertRandomly ($u, T \rightarrow$ right).
(in our implementation, a tree T is stored as a pointer to its root, and $T \rightarrow$ left and $T \rightarrow$ right represent pointers to the left and right children of the root of T, respectively)

Recall that the algorithm takes three values as input: a binary tree T with n nodes, a number ε, where $0<\varepsilon<1$, and a number A in the range $\left[n^{-\varepsilon}, n^{\varepsilon}\right]$.

The performance criteria we have used to evaluate the algorithm is the ratio c of the area of the drawing constructed of a tree T, and the number of nodes in T. Recall that the area
and aspect ratio of a drawing is defined as the area and aspect ratio, respectively, of its enclosing rectangle.

To evaluate the algorithm, we varied n to up to 50,000 , for randomly-generated trees, and to up to $65,535=2^{16}-1$, for complete trees. For each n, we used five different values for ε, namely, $0.1,0.25,0.5,0.75$, and 0.9 . For each (n, ε) pair, we used 20 different values of A uniformly distributed in the range $\left[1, n^{\varepsilon}\right]$. The performance of the algorithm is symmetrical for $A<1$ and $A>1$. Hence, we varied A only from 1 through n^{ε}, not from $n^{-\varepsilon}$ through n^{ε} (the only difference between $A<1$ and $A>1$ is that for $A<1$ the algorithm constructs drawings with longer height than width, whereas for $A>1$, it constructs drawings with longer width than height). Hence, in the rest of the section, we will assume that $A \geq 1$. For each type of tree (randomly-generated and complete), and for each triplet (n, A, ε), we generated three trees of that type. We constructed a drawing of each tree using the algorithm, and computed the value of c. Next, we averaged the values of c obtained for the three trees to get a single value for each triplet (n, A, ε) for each tree-type.

Our experiments show that the value of c is generally small, and varies between 3 and 10. More specifically, it varies between 3 and 10 for randomly-generated, and 3 and 8 for complete trees. Figures 2.5 .1 and 2.5 . 2 show how c varies with n, A, and ε for randomlygenerated and complete trees, respectively.

We also discovered that c increases with A for a given n and ε. However, the rate of increase is very small. Consequently, for a given n and ε, the range for c over all the values of A is small (see Figure 2.5.1(b,d,f,h,j) and Figure 2.5.2(b,d,f,h,j)). For example, for $n=10,000$,
and $\varepsilon=0.5$, the range for c is $[4.2,5.2]$. Similarly, for a given n and A, c increases with ε.

Finally, we would like to comment that the aspect ratio of the drawing constructed is, in general, different from the input aspect ratio A. This is so because of two reasons. First, while large partial trees get an aspect ratio that is proportional to their sizes, small partial trees get an aspect ratio that is larger than what they would have got had they been assigned aspect ratios proportional to their sizes. Second, the algorithm adds some horizontal and vertical channels to place vertices a and u.

We computed the ratio r of the aspect ratio of the drawing constructed by the algorithm and input aspect ratio A. We discovered that r is close to 1 for $A=1$, generally decreases as we increase A, and can get as low as 0.1 for $A=n^{\varepsilon}$. However, we also discovered that for a large range of values for A, namely, $\left[1, \min \left\{n^{\varepsilon}, n / \log ^{2} n\right\}\right], r$ stays within the range $[0.8,1.2]$, and so is close to 1 . Hence, even in applications, that require the drawing to be of exactly the same aspect ratio as A, we can obtain a drawing with small area and aspect ratio exactly equal to A by adding enough "white space" to the drawing constructed by our drawing algorithm. Adding the white space will increase the area of the drawing by a factor of at most $1 / 0.8=1.25$ (assuming that A is in the above-mentioned range). Hence, the area of the drawing will still be relatively small, namely, at most $10 \times 1.25=12.5$ times the number of nodes in the tree.

Figure 2.5.1: Performance of the algorithm, as given by the value of c, for drawing a randomly-generated binary tree T with different values of A and ε, where $c=$ area of drawing/number of nodes n in T : (a) $\varepsilon=0.9$, (c) $\varepsilon=0.75$, (e) $\varepsilon=0.5$, (g) $\varepsilon=0.25$, and (i) $\varepsilon=0.1$. Figures (b), (d), (f), (h), and (j) contain the projections on the $X Z$-plane of the plots shown in Figures (a), (c), (e), (g), and (i), respectively, and show for each ε, the ranges for the values of c for different values of A for each n.

Figure 2.5.2: Performance of the algorithm, as given by the value of c, for drawing a complete binary tree T with different values of A and ε, where $c=$ area of drawing/number of nodes n in T : (a) $\varepsilon=0.9$, (c) $\varepsilon=0.75$, (e) $\varepsilon=0.5$, (g) $\varepsilon=0.25$, and (i) $\varepsilon=0.1$. Figures (b), (d), (f), (h), and (j) contain the projections on the XZ-plane of the plots shown in Figures (a), (c), (e), (g), and (i), respectively, and show for each ε, the ranges for the values of c for different values of A for each n.

Chapter 3

Planar Straight-line Grid Drawings of

General Trees with Linear Area and

Arbitrary Aspect Ratio

3.1 Introduction

Trees are very common data-structures, which are used to model information in a variety of applications. such as Software Engineering (hierarchies of object-oriented programs), Business Administration (organization charts), and Web-site Design (structure of a Website). A drawing Γ of a tree T maps each node of T to a distinct point in the plane, and each edge (u, v) of T to a simple Jordan curve with endpoints u and $v . \Gamma$ is a straight-line
drawing (see Figure 3.1.1(a)), if each edge is drawn as a single line-segment. Γ is a polyline drawing (see Figure 3.1.1(b)), if each edge is drawn as a connected sequence of one or more line-segments, where the meeting point of consecutive line-segments is called a bend. Γ is an orthogonal drawing (see Figure 3.1.1(c)), if each edge is drawn as a chain of alternating horizontal and vertical segments. Γ is a grid drawing if all the nodes and edge-bends have integer coordinates. Γ is a planar drawing if edges do not intersect each other in the drawing (for example, all the drawings in Figure 3.1.1 are planar drawings). Γ is an upward drawing (see Figure 3.1.1(a,b)), if the parent is always assigned either the same or higher y-coordinate than its children. In this chapter, we concentrate on grid drawings. So, we will assume that the plane is covered by a rectangular grid. Let R be a rectangle with sides parallel to the X - and Y-axes. The width (height) of R is equal to the number of grid points with the same $y(x)$ coordinate contained within R. The area of R is equal to the number of grid points contained within R. The aspect ratio of R is the ratio of its width and height. R is the enclosing rectangle of Γ, if it is the smallest rectangle that covers the entire drawing. The width, height, area, and aspect ratio of Γ is equal to the width, height, area, and aspect ratio, respectively, of its enclosing rectangle. The degree of a node of T is the number of edges incident on it. The degree of T is the maximum degree of any node in it. T is a binary tree if it has degree 3 . We denote by $T[v]$, the subtree of T rooted at a node v of $T . T[v]$ consists of v and all the descendents of v. Γ has the subtree separation property [3] if, for any two node-disjoint subtrees $T[u]$ and $T[v]$ of T, the enclosing rectangles of the drawings of $T[u]$ and $T[v]$ do not overlap with each other. Drawings with subtree separation property are more aesthetically pleasing than those without subtree separation property. The subtree

Figure 3.1.1: Various kinds of drawings of the same tree: (a) straight-line, (b) polyline, and (c) orthogonal. Also note that the drawings shown in Figures (a) and (b) are upward drawings, whereas the drawing shown in Figure (c) is not. The root of the tree is shown as a shaded circle, whereas other nodes are shown as black circles.
separation property also allows for a focus+context style [32] rendering of the drawing, so that if the tree has too many nodes to fit in the given drawing area, then the subtrees closer to focus can be shown in detail, whereas those further away from the focus can be contracted and simply shown as filled-in rectangles.

Planar straight-line drawings are more aesthetically pleasing than non-planar polyline drawings. Grid drawings guarantee at least unit distance separation between the nodes of the tree, and the integer coordinates of the nodes and edge-bends allow the drawings to be displayed in a display surface, such as a computer screen, without any distortions due to truncation and rounding-off errors. Giving users control over the aspect ratio of a drawing allows them to display the drawing in different kinds of display surfaces with different aspect ratios. The subtree separation property makes it easier for the user to detect the subtrees in the drawing, and also allows for a focus+context style [32] rendering of the drawing. Finally, it is important to minimize the area of a drawing, so that the users can display a tree in as small drawing area as possible.

We, therefore, investigate the problem of constructing (non-upward) planar straight-line grid drawings of trees with small area. Clearly, any planar grid drawing of a tree with n nodes requires $\Omega(n)$ area. A long-standing fundamental question, therefore, has been that whether this is a tight bound also, i.e., given a tree T with n nodes, can we construct a planar straight-line grid drawing of T with area $O(n)$?

In Chapter 2 we showed that a binary tree can be drawn in this fashion in $O(n)$ area. However, trees with degree greater than 3 appear quite commonly in practical applications. Hence, an important natural question arises, if this result can be generalized to higher degree trees also. In this chapter, we partially answer this question in affirmative, by giving an algorithm that constructs a planar straight-line grid drawing of a degree- d tree with n nodes, where $d=O\left(n^{\delta}\right)$ is a positive integer and $0 \leq \delta<1 / 2$ is a constant, with $O(n)$ area in $O(n \log n)$ time. Moreover, the drawing can be parameterized for its aspect ratio, i.e., for any constant α, where $0 \leq \alpha<1$, the algorithm can construct a drawing with any user-specified aspect ratio in the range $\left[n^{-\alpha}, n^{\alpha}\right]$. Theorem 3.4.1 summarizes our overall result. In particular, our result shows that optimal area (equal to $O(n)$) and optimal aspect ratio (equal to 1) is simultaneously achievable (see Corollary 3.4.1). It is also interesting to note that the drawings constructed by our algorithm also exhibit the subtree separation property.

3.2 Previous Results

Previously, the best-known bound on area of planar straight-line grid drawings of general trees was $O(n \log n)$, which can be achieved by a simple modification of the HV-drawing algorithm of [6].

Most of the research on drawing trees has dealt with binary trees. In Chapter 2 we present an algorithm for constructing a planar straight-line grid drawing of a binary tree with area $O(n)$.

We now summarize some other known results on planar grid drawings of binary trees (for more results, see [11]). Let T be an n-node binary tree. [17] presents an algorithm for constructing an upward polyline drawing of T with $O(n)$ area, and any user-specified aspect ratio in the range $\left[n^{-\alpha}, n^{\alpha}\right.$], where α is any constant, such that $0 \leq \alpha<1$. [26] and [43] present algorithms for constructing a (non-upward) orthogonal polyline drawing of T with $O(n)$ area. [3] gives an algorithm for constructing an upward orthogonal straight-line drawing of T with $O(n \log n)$ area, and any user-specified aspect ratio in the range $[\log n / n, n / \log n]$. It also shows that $n \log n$ is also a tight bound for such drawings. [35] gives an algorithm for constructing an upward straight-line drawing of T with $O(n \log \log n)$ area. If T is a Fibonacci tree, (AVL tree, complete binary tree), then [6, 42] ([8], [6], respectively) give algorithms for constructing an upward straight-line drawing of T with $O(n)$ area.

Table 3.2.1 summarizes these results.

Tree Type	Drawing Type	Area	Aspect Ratio	Reference
Fibonacci	Upward Straight-line	$O(n)$	$\theta(1)$	[6,42]
AVL	Upward Straight-line	$O(n)$	$\theta(1)$	[8]
Complete Binary	Upward Straight-line	$O(n)$	$\theta(1)$	[6]
General Binary	Upward Orthogonal Polyline	$O(n \log \log n)$	$\theta\left(\log ^{2} n /(n \log \log n)\right)$	[17,35]
	(Non-upward) Orthogonal Polyline	$O(n)$	$\theta(1)$	[26, 43]
	Upward Orthogonal Straight-line	$O(n \log n)$	$[\log n / n, n / \log n]$	[3]
	Upward Polyline	$O(n)$	$\left[n^{-\alpha}, n^{\alpha}\right]$	[17]
	Upward Straight-line	$O(n \log \log n)$	$\theta\left(\log ^{2} n /(n \log \log n)\right)$	[35]
	(Non-upward)	$O(n \log \log n)$	$\theta\left(\log ^{2} n /(n \log \log n)\right)$	[3]
	Straight-line	$O(n)$	$\left[n^{-\alpha}, n^{\alpha}\right]$	[18]
Degree- $O\left(n^{\delta}\right)$	(Non-upward)			
$0 \leq \delta<1 / 2$	Straight-line	$O(n)$	$\left[n^{-\alpha}, n^{\alpha}\right]$	this chapter

Table 3.2.1: Bounds on the areas and aspect ratios of various kinds of planar grid drawings of an n-node tree. Here, α is a constant, such that $0 \leq \alpha<1$.

The paper based on this Chapter has been presented in [22].

3.3 Preliminaries

Throughout this chapter, by the term drawing, we will mean a planar straight-line grid drawing. We will assume that the plane is covered by an infinite rectangular grid. A horizontal channel (vertical channel) is an infinite line parallel to $X-(Y-)$ axis, passing
through the grid-points.

Let T be a degree- d tree, with one distinguished node v, which has at most $d-1$ children. v is called the link node of T. Let n be the number of nodes in $T . T$ is an ordered tree if the children of each node are assigned a left-to-right order. A partial tree of T is a connected subgraph of T. If T is an ordered tree, then the leftmost path p of T is the maximal path consisting of nodes that are leftmost children, except the first one, which is the root of T. The last node of p is called the leftmost node of T. Two nodes of T are siblings if they have the same parent in $T . T$ is an empty tree, i.e., $T=\phi$, if it has zero nodes in it.

Let Γ be a drawing of T. By bottom (top, left, and right, respectively) boundary of Γ, we will mean the bottom (top, left, and right, respectively) boundary of the enclosing rectangle $R(\Gamma)$ of Γ. Similarly, by top-left (top-right, bottom-left, and bottom-right, respectively) corner of Γ, we mean the top-left (top-right, bottom-left, and bottom-right, respectively) corner of $R(\Gamma)$.

Let R be a rectangle, such that Γ is entirely contained within $R . R$ has a good aspect ratio, if its aspect ratio is in the range $\left[n^{-\alpha}, n^{\alpha}\right]$, where $0 \leq \alpha<1$ is a constant.

Let r be the root of T. Let u^{*} be the link node of T. Γ is a feasible drawing of T, if it has the following three properties:

- Property 1: The root r is placed at the top-left corner of Γ.
- Property 2: If $u^{*} \neq r$, then u^{*} is placed at the bottom boundary of Γ. Moreover, we
can move u^{*} downwards in its vertical channel by any distance without causing any edge-crossings in Γ.
- Property 3: If $u^{*}=r$, then no other node or edge of T is placed on, or crosses the vertical and horizontal channels occupied by r.

Theorem 3.3.1 In any degree-d tree T, there is a node u, such that removing u and its incident edges splits T into at most d trees, where each tree has at most $n / 2$ nodes in it, and $n \geq 2$ is the number of nodes in T. Node u is called a separator node of T. Moreover, u can be found in $O(n)$ time.

Proof: To obtain u, we invoke Algorithm FindSeparator with the root of T as its input. Also, as a pre-process step, before invoking Algorithm FindSeparator, we first compute the number of nodes $n(v)$ in the subtree rooted at each node v of T. We store the value of $n(v)$ in each node v. We now describe Algorithm FindSeparator.

Algorithm FindSeparator $(u):\{u$ is a node of $T\}$

1. Let s_{1}, \ldots, s_{j} be the children of u.
2. Let s_{i} be the child of u such that $n\left(s_{i}\right)=\max \left\{n\left(s_{1}\right), \ldots, n\left(s_{j}\right)\right\}$.
3. If $n\left(s_{i}\right)>n / 2$, then Return FindSeparator $\left(s_{i}\right)$.
4. Else Return u.

The algorithm clearly runs in $O(n)$ time.

Let u be the node of T returned on calling Algorithm FindSeparator (r), where r is the root of T. We will prove that u is a separator node of T. It is easy to see from the description of the algorithm that $n(u)>n / 2$ and $n(s) \leq n / 2$, for each child s of u. Let T^{\prime} be the partial tree of T obtained by removing the subtree rooted at u from T. Since $n(u)>n / 2$, the number of nodes in T^{\prime} is less than $n-n / 2=n / 2$. Also recall that $n(s) \leq n / 2$, for each child s of u. Hence, removing u and its incident edges will split T into at most d trees, each containing at most $n / 2$ nodes. Hence, u is indeed a separator node of T.

Let v be a node of tree T located at grid point (i, j) in Γ. Let Γ be a drawing of T. Assume that the root r of T is located at the grid point $(0,0)$ in Γ. We define the following operations on Γ (see Figure 3.3.1):

- rotate operation: rotate Γ counterclockwise by δ degrees around the z-axis passing through r. After a rotation by δ degrees of Γ, node v will get relocated to the point $(i \cos \delta-j \sin \delta, i \sin \delta+j \cos \delta)$. In particular, after rotating Γ by 90°, node v will get relocated to the grid point $(-j, i)$.
- flip operation: flip Γ vertically or horizontally. After a horizontal flip of Γ, node v will be located at grid point $(-i, j)$. After a vertical flip of Γ, node v will be located at grid point $(i,-j)$.

Figure 3.3.1: Rotating a drawing Γ by 90°, followed by flipping it vertically. Note that initially node u^{*} was located at the bottom boundary of Γ, but after the rotate operation, u^{*} is on the right boundary of Γ.

3.4 Tree Drawing Algorithm

Let T be a degree- d tree with a link node u^{*}, where $d=O\left(n^{\delta}\right)$ is a positive integer, $0 \leq \delta<$ $1 / 2$ is a constant, and n is the number of nodes in T. Let A and ε be two numbers such that $\delta /(1-\delta)<\varepsilon<1$, and A is in the range $\left[n^{-\varepsilon}, n^{\varepsilon}\right] . A$ is called the desirable aspect ratio for T.

Our tree drawing algorithm, called DrawTree, takes ε, A, and T as input, and uses a simple divide-and-conquer strategy to recursively construct a feasible drawing Γ of T, by performing the following actions at each recursive step (as we will prove later, Γ will fit inside a rectangle with area $O(n)$ and aspect ratio A):

- Split Tree: Split T into at most $2 d-1$ partial trees by removing at most two nodes and their incident edges from it. Each partial tree has at most $n / 2$ nodes. Based on the arrangement of these partial trees within T, we get two cases, which are shown in Figures 3.4.1 and 3.4.2, and described later in Section 3.4.1.
- Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio A_{k} to each

Figure 3.4.1: Drawing T in all the seven subcases of Case 1 (when the separator node u is not in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, g \neq u^{*}, 0 \leq i \leq d-3$, (b) $T_{A}=\emptyset$, $T_{C}=\emptyset, 0 \leq i \leq d-3$, (c) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, g=u^{*}, 0 \leq i \leq d-3$, (d) $T_{A} \neq \emptyset, T_{C}=\emptyset$, $r \neq e, 0 \leq i \leq d-3$, (e) $T_{A} \neq \emptyset, T_{C}=\emptyset, r=e, 0 \leq i \leq d-3$, (f) $T_{A}=\emptyset, T_{C} \neq \emptyset, g \neq u^{*}$, $0 \leq i \leq d-3$, and (g) $T_{A}=\emptyset, T_{C} \neq \emptyset, g=u^{*}, 0 \leq i \leq d-3$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. Here, x is the same as f if $T_{\beta} \neq \phi$, and is the same as the root of T_{α} if $T_{\beta}=\phi$. In Subcases (a) and (c), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is the same as r, or if $A<1(A \geq 1)$, then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.
partial tree T_{k}. The value of A_{k} is based on the value of A, and the number of nodes in T_{k}.

(a)

(b)

Figure 3.4.2: Drawing T in all the eight subcases of Case 2 (when the separator node u is in the leftmost path of T): (a) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, \nu \neq u^{*}, 1 \leq j \leq d-2$, (b) $T_{A}=\emptyset, T_{C} \neq \emptyset$, $v \neq u^{*}, j=0$, (c) $T_{A}=\emptyset, T_{C} \neq \emptyset, v \neq u^{*}, 1 \leq j \leq d-2$, (d) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, v \neq u^{*}, j=0$, (e) $T_{A} \neq \emptyset, T_{B} \neq \emptyset, v=u^{*}, 1 \leq j \leq d-2$, (f) $T_{A}=\emptyset, T_{B}=\emptyset, v=u^{*}, j=0,(\mathrm{~g}) T_{A}=\emptyset$, $T_{B} \neq \emptyset, v=u^{*}, 1 \leq j \leq d-2$, and (h) $T_{A} \neq \emptyset, T_{B}=\emptyset, v=u^{*}, j=0$. For each subcase, we first show the structure of T for that subcase, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Subcases (a) and (d), for simplicity, e is shown to be in the interior of Γ_{A}, but actually, either it is same as r, or if $A<1(A \geq 1)$, then it is placed on the bottom (right) boundary of Γ_{A}. For simplicity, we have shown Γ_{A}, Γ_{B}, and Γ_{C} as identically sized boxes, but in actuality, they may have different sizes.

- Draw Partial Trees: Recursively construct a feasible drawing of each partial tree T_{k}
with A_{k} as its desirable aspect ratio.
- Compose Drawings: Arrange the drawings of the partial trees, and draw the nodes and edges, that were removed from T to split it, such that the drawing Γ of T thus

Figure 3.4.3: Drawing of the complete binary tree with 63 nodes constructed by Algorithm DrawTree, with $A=1$ and $\varepsilon=0.2$.
obtained is a feasible drawing. Note that the arrangement of these drawings is done based on the cases shown in Figures 3.4.1 and 3.4.2. In each case, if $A<1$, then the drawings of the partial trees are stacked one above the other, and if $A \geq 1$, then they are placed side-by-side.

Figure 3.4.3 shows a drawing of a complete binary tree with 63 nodes constructed by Algorithm DrawTree, with $A=1$ and $\varepsilon=0.2$.

We now give the details of each action performed by Algorithm DrawTree:

3.4.1 Split Tree

The splitting of tree T into partial trees is done as follows:

- Order the children of each node such that u^{*} becomes the leftmost node of T.
- Using Theorem 3.3.1, find a separator node u of T.
- Based on whether, or not, u is in the leftmost path of T, we get two cases:
- Case 1: The separator node u is not in the leftmost path of T. We get seven subcases:
(a) In the general case, T has the form as shown in Figure 3.4.1(a). In this figure:
* r is the root of T,
* c_{1}, \ldots, c_{j} are the children of $u, 0 \leq j \leq d-1$,
* T_{1}, \ldots, T_{j} are the trees rooted at c_{1}, \ldots, c_{j} respectively, $0 \leq j \leq d-1$,
* T_{α} is the subtree rooted at u,
* w is the parent of u,
* a is the last common node of the path $r \leadsto v$ and the leftmost path of T,
* f is the child of a that is contained in the path $r \leadsto v$,
* T_{β} is the maximal tree rooted at f that contains w but not u,
* T_{B} is the tree consisting of the trees T_{α} and T_{β}, and the edge (w, u),
* e is the parent of a,
* g is the leftmost child of a,
* T_{A} is the maximal tree rooted at r that contains e but not a,
* T_{C} is the tree rooted at g,
* b_{1}, \ldots, b_{i} are the siblings of f and g,
$* T_{1}^{\prime}, \ldots, T_{i}^{\prime}$ are the trees rooted at b_{1}, \ldots, b_{i} respectively, $0 \leq i \leq d-3$, and

$$
\text { * } g \neq u^{*} .
$$

In addition to this general case, we get six special cases: (b) $T_{A}=\emptyset, T_{C}=\emptyset$, $0 \leq i \leq d-3$ (see Figure 3.4.1(b)), (c) $T_{A} \neq \emptyset, T_{C} \neq \emptyset, g=u^{*}, 0 \leq i \leq d-3$ (see Figure 3.4.1(c)), (d) $T_{A} \neq \emptyset, T_{C}=\emptyset, r \neq e, 0 \leq i \leq d-3$ (see Figure 3.4.1(d)), (e) $T_{A} \neq \emptyset, T_{C}=\emptyset, r=e, 0 \leq i \leq d-3$ (see Figure 3.4.1(e)), (f) $T_{A}=\emptyset, T_{C} \neq \emptyset$, $g \neq u^{*}, 0 \leq i \leq d-3$ (see Figure 3.4.1(f)), and (g) $T_{A}=\emptyset, T_{C} \neq \emptyset, g=u^{*}$, $0 \leq i \leq d-3$ (see Figure 3.4.1(g)). (The reason we get these seven subcases is as follows: T_{α} has at least $n / 2$ nodes in it because of Theorem 3.3.1. Hence $T_{\alpha} \neq \phi$, and so, $T_{B} \neq \phi$. Based on whether $T_{A}=\phi$ or not, $T_{C}=\phi$ or not, $g=u^{*}$ or not, and $r=e$ or not, we get totally sixteen cases. From these sixteen cases, we obtain the above seven subcases, by grouping some of these cases together. For example, the cases $T_{A}=\phi, T_{C}=\phi, d \neq u^{*}, r=u^{*}$, and $T_{A}=\phi, T_{C}=\phi, d \neq u^{*}$, $r \neq u^{*}$ are grouped together to give Case (a), i.e., $T_{A}=\phi, T_{C}=\phi, d \neq u^{*}$. So, Case (a) corresponds to 2 cases. Similarly, Cases (c), (d), (e), (f), and (g) correspond to 2 cases each, and Case (b) corresponds to 4 cases.) In each case, we remove nodes a and u, and their incident edges, to split T into at most $2 d-1$ partial trees $T_{A}, T_{C}, T_{\beta}, T_{1}^{\prime}, \ldots, T_{i}^{\prime}, 0 \leq i \leq d-3$, and $T_{1}, \ldots, T_{j}, 0 \leq j \leq d-1$. We also designate e as the link node of T_{A}, w as the link node of T_{β}, and u^{*} as the link node of T_{C}. We arbitrarily select a leaf e_{i} of $T_{i}^{\prime}, 0 \leq i \leq d-3$, and a leaf e_{j} of $T_{j}, 0 \leq j \leq d-1$, and designate them as the link nodes of T_{i}^{\prime} and T_{j}, respectively.

- Case 2: The separator node u is in the leftmost path of T. We get eight subcases:
(a) In the general case, T has the form as shown in Figure 3.4.2(a). In this figure, * r is the root of T,
* v is the leftmost child of u,
* c_{1}, \ldots, c_{j} are the siblings of $v, 1 \leq j \leq d-2$,
* T_{1}, \ldots, T_{j} are the trees rooted at c_{1}, \ldots, c_{j} respectively, $1 \leq j \leq d-2$,
* e is the parent of u,
* T_{A} is the maximal tree rooted at r that contains e but not u,
* T_{C} is the subtree of T rooted at v,
* F_{B} is the forest composed by trees $T_{1}, \ldots, T_{j}, 1 \leq j \leq d-2$, and
* $v \neq u^{*}$.

In addition to the general case, we get the following seven special cases: (b) $T_{A}=\emptyset, j=0, v \neq u^{*}$ (see Figure 3.4.2(b)), (c) $T_{A}=\emptyset, 1 \leq j \leq d-2, v \neq u^{*}$ (see Figure 3.4.2(c)), (d) $T_{A} \neq \mathfrak{0}, j=0, v \neq u^{*}\left(\right.$ see Figure 3.4.2(d)), (e) $T_{A} \neq \mathfrak{0}$, $1 \leq j \leq d-2, v=u^{*}\left(\right.$ see Figure 3.4.2(e)), (f) $T_{A}=\emptyset, j=0, v=u^{*}$ (see Figure 3.4.2(f)), (g) $T_{A}=\emptyset, 1 \leq j \leq d-2, v=u^{*}$ (see Figure 3.4.2(g)), and (h) $T_{A} \neq 0, j=0, v=u^{*}$ (see Figure 3.4.2(h)). (The reason we get these eight subcases is as follows: T_{C} has at least $n / 2$ nodes in it because of Theorem 3.3.1. Hence, $T_{C} \neq \phi$. Based on whether $T_{A}=\phi$ or not, $F_{B}=\phi$ or not, and $v=u^{*}$ or not, we get the eight subcases given above.) In each case, we remove node u, and its incident edges, to split T into at most d partial trees T_{A}, T_{C}, and T_{1}, \ldots, T_{j}, $0 \leq j \leq d-2$. We also designate e as the link node of T_{A}, and u^{*} as the link node of T_{C}. We randomly select a leaf e_{j} of T_{j} and designate it as the link node
of $T_{j}, 0 \leq j \leq d-2$.

3.4.2 Assign Aspect Ratios

Let T_{k} be a partial tree of T, where for Case $1, T_{k}$ is either $T_{A}, T_{C}, T_{\beta}, T_{1}^{\prime}, \ldots, T_{i}^{\prime}$, $0 \leq i \leq d-3$, or $T_{1}, \ldots, T_{j}, 0 \leq j \leq d-1$, and for Case $2, T_{k}$ is either T_{A}, T_{C}, or T_{1}, \ldots, T_{j}, $0 \leq j \leq d-2$. Let n_{k} be number of nodes in T_{k}.

Definition: T_{k} is a large partial tree of T if:

- $A \geq 1$ and $n_{k} \geq(n / A)^{1 /(1+\varepsilon)}$, or
- $A<1$ and $n_{k} \geq(A n)^{1 /(1+\varepsilon)}$,
and is a small partial tree of T otherwise.

In Step Assign Aspect Ratios, we assign a desirable aspect ratio A_{k} to each nonempty T_{k} as follows: Let $x_{k}=n_{k} / n$.

- If $A \geq 1:$ If T_{k} is a large partial tree of T, then $A_{k}=x_{k} A$, otherwise (i.e., if T_{k} is a small partial tree of T) $A_{k}=n_{k}^{-\varepsilon}$.
- If $A<1$: If T_{k} is a large partial tree of T, then $A_{k}=A / x_{k}$, otherwise (i.e., if T_{k} is a small partial tree of T) $A_{k}=n_{k}^{\varepsilon}$.

Intuitively, this assignment strategy ensures that each partial tree gets a good desirable aspect ratio, and so, the drawing of each partial tree constructed recursively by Algorithm DrawTree will fit inside a rectangle with linear area and good aspect ratio.

3.4.3 Draw Partial Trees

First, we change the desirable aspect ratios assigned to T_{A} and T_{β} in some cases as follows: Suppose T_{A} and T_{β} get assigned desirable aspect ratios equal to m and p, respectively, where m and p are some positive numbers. In Subcase (d) of Case 1 , and if $A \geq 1$, then in Subcases (a) and (c) of Case 1, and Subcases (a), (d), (e), and (h) of Case 2, we change the value of the desirable aspect ratio of T_{A} to $1 / \mathrm{m}$. In Case 1 , if $A \geq 1$, we change the value of the desirable aspect ratio of T_{β} to $1 / p$. We make these changes because, as explained later in Section 3.4.4, in these cases, we need to rotate the drawings of T_{A} and T_{β} by 90° during the Compose Drawings step. Drawing T_{A} and T_{β} with desirable aspect ratios $1 / m$ and $1 / p$, respectively, compensates for this rotation, and ensures that the drawings of T_{A} and T_{β} used to draw T have the desirable aspect ratios, m and p, respectively.

Next we draw recursively each nonempty partial tree T_{k} with A_{k} as its desirable aspect ratio, where the value of A_{k} is the one computed in the previous step. The base case for the recursion happens when T_{k} contains exactly one node, in which case, the drawing of T_{k} is simply the one consisting of exactly one node.

3.4.4 Compose Drawings

Let Γ_{k} denote the drawing of a partial tree T_{k} constructed in Step Draw Partial Trees. We now describe the construction of a feasible drawing Γ of T from the drawings of its partial trees in both Cases 1 and 2.

In Case 1 , we first construct a feasible drawing Γ_{α} of the partial tree T_{α} by composing $\Gamma_{1}, \ldots, \Gamma_{j}, 0 \leq j \leq d-1$, as shown in Figure 3.4.4, then construct a feasible drawing Γ_{B} of T_{B} by composing Γ_{α} and Γ_{β} as shown in Figure 3.4.5, and finally construct Γ by composing $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}, 0 \leq i \leq d-3$, as shown in Figure 3.4.1.
Γ_{α} is constructed as follows (see Figure 3.4.4): If $A<1$, place $\Gamma_{j}, \ldots, \Gamma_{2}, \Gamma_{1}, 1 \leq j \leq d-1$, one above the other, in this order, separated by unit vertical distance, such that the left boundaries of $\Gamma_{j}, \ldots, \Gamma_{2}$ are aligned, and one unit to the right of the left boundary of Γ_{1}. Place u in the same vertical channel as c_{1} and in the same horizontal channel as c_{j}. If $A \geq 1$, place $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{j}, 1 \leq j \leq d-1$ in a left-to-right order, separated by unit horizontal distance, such that the top boundaries of $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{j-1}$ are aligned, and one unit below the top boundary of Γ_{j}. Place u in the same vertical channel as c_{1} and in the same horizontal channel as c_{j}.
Γ_{B} is constructed as follows (see Figure 3.4.5):

- if $T_{\beta} \neq \emptyset$ (see Figure 3.4.5(a)) then, if $A<1$, then place Γ_{β} one unit above Γ_{α} such that the left boundaries of Γ_{β} and Γ_{α} are aligned; otherwise (i.e., if $A \geq 1$), first rotate
Γ_{β} by 90° and then flip it vertically, then place Γ_{β} one unit to the left of Γ_{α} such that the top boundaries of Γ_{β} and Γ_{α} are aligned. Draw edge (w, y).
- Otherwise (i.e., if $T_{\beta}=\emptyset$), Γ_{B} is same as Γ_{α} (see Figure 3.4.5(b)).
Γ is constructed from $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}, 0 \leq i \leq d-3$, as follows (see Figure 3.4.1): Let x be the root of T_{B}. Note that $x=f$ if $T_{\beta} \neq 0$, and $x=u$ otherwise.
- In Subcase (a), as shown in Figure 3.4.1(a), if $A<1$, stack $\Gamma_{A}, \Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}, \Gamma_{C}$ one above the other, in this order, such that they are separated by unit vertical distance from each other, and the left boundaries of $\Gamma_{i-1}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$ are aligned with each other and are placed at unit horizontal distance to the right of the left boundaries of Γ_{A} and Γ_{C}. Place node a in the same vertical channel as r and g and in the same horizontal channel as b_{i}. If $A \geq 1$, then first rotate Γ_{A} by 90°, and then flip it vertically. Then, place $\Gamma_{A}, \Gamma_{C}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}, \Gamma_{B}$ from left-to-right in this order, separated by unit horizontal distances, such that the top boundaries of $\Gamma_{C}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}$, are aligned, and are at unit vertical distance below the top boundaries of Γ_{A} and Γ_{B}. Then, move Γ_{C} down until u^{*} becomes the lowest node of Γ. Place node a in the same vertical channel as g and in the same horizontal channel as r and x. Draw edges $(a, e),(a, x)$, $(a, g),\left(a, b_{1}\right), \ldots,\left(a, b_{i}\right)$.
- In Subcase (b), as shown in Figure 3.4.1(b), if $A<1$, stack $\Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$, one above the other, such that they are separated by unit vertical distance from each other, and their left boundaries are aligned. Place node r one unit above and left of the top
boundary of Γ_{i}^{\prime}. If $A \geq 1$, place $\Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}, \Gamma_{B}$ in a left-to-right order such that they are separated by unit horizontal distance from each other, and their top boundaries are aligned. Place node r one unit above and left of the top boundary of Γ_{1}^{\prime}. Draw edges $\left(r, b_{1}\right), \ldots,\left(r, b_{i}\right),(r, x)$.
- The drawing procedure for Subcase (c) is similar to the one in Subcase (a), except that we also flip Γ_{C} vertically (see Figure 3.4.1(c)).
- In Subcase (d), as shown in Figure 3.4.1(d), if $A<1$, flip $\Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$ first vertically, and then horizontally, so that their roots get placed at their lower-right corners. Then, first rotate Γ_{A} by 90°, and then flip it vertically. Next, place $\Gamma_{A}, \Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}$, Γ_{B} one above the other, in this order, with unit vertical separation, such that their left boundaries are aligned, next move node e (which is the link node of T_{A}) to the right until it is either to the right of, or aligned with the rightmost boundary among $\Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$ (since Γ_{A} is a feasible drawing, by Property 2, as given in Section 3.3, moving e will not create any edge-crossings), and then place u^{*} in the same horizontal channel as x and one unit to the right of e. If $A \geq 1$, first rotate Γ_{A} by 90°, and then flip it vertically. Then $\operatorname{flip} \Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$ vertically. Then, place $\Gamma_{A}, u^{*}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}, \Gamma_{B}$ left-to-right in this order, separated by unit horizontal distances, such that the bottom boundaries of $\Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}$, are aligned, and are at unit vertical distance above the bottom boundary of Γ_{B}. Move Γ_{B} down until its bottom boundary is either aligned with or below the bottom boundary of Γ_{A}. Also, u^{*} is in the same horizontal channel with x. Draw edges $\left(u^{*}, e\right),\left(u^{*}, b_{1}\right), \ldots,\left(u^{*}, b_{i}\right),\left(u^{*}, x\right)$.
- In Subcase (e), as shown in Figure 3.4.1(e), if $A<1$, first flip $\Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$, vertically, then place $\Gamma_{A}, \Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$ one above the other, in this order, with unit vertical separation, such that the left boundaries of $\Gamma_{i}^{\prime}, \ldots, \Gamma_{1}^{\prime}, \Gamma_{B}$ are aligned, and the left boundary of Γ_{A} is at unit horizontal distance to the left of the left boundary of Γ_{B}. Place u^{*} in the same vertical channel with r and in the same horizontal channel with x. If $A \geq 1$, then first flip $\Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}, \Gamma_{B}$ vertically, next place $\Gamma_{A}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}$, Γ_{B} in a left-to-right order at unit horizontal distance, such that the top boundaries $\Gamma_{A}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}$ are aligned, and the bottom boundary of Γ_{B} is one unit below the bottom boundary of the drawing among $\Gamma_{A}, \Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}$ with greater height. Then, place u^{*} in the same vertical channel as r and in the same horizontal channel as r. Draw edges $\left(u^{*}, r\right),\left(u^{*}, b_{1}\right), \ldots,\left(u^{*}, b_{i}\right),\left(u^{*}, x\right)$. Note that, since Γ_{A} is a feasible drawing, by Property 3 (see Section 3.3), drawing (u^{*}, r) will not create any edge-crossings.
- The drawing procedure in Subcase (f) is similar to the one in Subcase (a), except that we do not have Γ_{A} here (see Figure 3.4.1(f)).
- The drawing procedure in Subcase (g) is similar to the one in Subcase (f), except that we also flip Γ_{C} vertically (see Figure 3.4.1(g).

In Case 2, we construct Γ by composing $\Gamma_{A}, \Gamma_{1}, \ldots, \Gamma_{j}, \Gamma_{C}$ as follows (see Figure 3.4.2):

- The drawing procedures in Subcases (a) and (c) are similar to those in Subcases (a) and (f), respectively, of Case 1 (see Figures 3.4.2(a, c)).
- In Subcase (b) as shown in Figure 3.4.4(b), if $A<1$, place u in the same horizontal
channel and at one unit to the left of v; otherwise (i.e. $A \geq 1$), place u in the same vertical channel and at one unit above v. Draw edge (r, v).
- In Subcase (d), as shown in Figure 3.4.2(d), if $A>1$, we place Γ_{A} above Γ_{C}, separated by unit vertical distance such that the left boundary of Γ_{C} is one unit to the right of the left boundary of Γ_{A}. Place u in the same vertical channel as r and in the same horizontal channel as v. If $A \geq 1$, then first rotate Γ_{A} by 90°, and then flip it vertically. Then, place Γ_{A} to the left of Γ_{C}, separated by unit horizontal distance, such that the top boundary of Γ_{C} is one unit below the top boundary of Γ_{A}. Then, move Γ_{C} down until u^{*} becomes the lowest node of Γ. Place u in the same vertical channel as v and in the same horizontal channel as r. Draw edges (u, v) and (u, e).
- The drawing procedures in Subcases (e), (f), (g), and (h) are similar to those in Subcases (a), (b), (c), and (d), respectively, (see Figures 3.4.2(e,f,g,h)), except that we also flip Γ_{C} vertically.

Figure 3.4.4: Drawing T_{α}. Here, we first show the structure of T_{α}, then its drawing when $A<1$, and then its drawing when $A \geq 1$. For simplicity, we have shown $\Gamma_{1}, \ldots, \Gamma_{j}$ as identically sized boxes, but in actuality, their sizes may be different.

(a)

(b)

Figure 3.4.5: Drawing T_{B} when: (a) $T_{\beta} \neq \emptyset$, and (b) $T_{\beta}=\emptyset$. For each case, we first show the structure of T_{B} for that case, then its drawing when $A<1$, and then its drawing when $A \geq 1$. In Case (a), for simplicity, w is shown to be in the interior of Γ_{β}, but actually, it is either same as f, or if $A<1(A \geq 1)$, then is placed on the bottom (right) boundary of Γ_{β}. For simplicity, we have shown Γ_{β} and Γ_{α} as identically sized boxes, but in actuality, their sizes may be different.

3.4.5 Proof of Correctness

Lemma 3.4.1 (Planarity) Given an n-node degree-d tree T, where $d=O\left(n^{\delta}\right)$ is a positive integer and $0 \leq \delta<1$, with a link node u^{*}, Algorithm DrawTree will construct a feasible drawing Γ of T.

Proof: We can easily prove using induction over the number of nodes n in T that Γ is a feasible drawing:

Base Case $(n=1): \Gamma$ consists of exactly one node and is trivially a feasible drawing.

Induction $(n>1)$: Consider Case 1. By the inductive hypothesis, the drawing constructed of each partial tree of T is a feasible drawing.

Hence, from Figure 3.4.4, it can be easily seen that the drawing Γ_{α} of T_{α} is also a feasible drawing.

From Figure 3.4.5, it can be easily seen that the drawing Γ_{B} of T_{B} is also a feasible drawing. Note that because Γ_{β} is a feasible drawing of T_{β} and w is its link node, w is either at the
bottom of Γ_{β} (from Property 2, see Section 3.3), or at the top-left corner of Γ_{β} and no other edge or node of T_{β} is placed on, or crosses the vertical channel occupied by it (Properties 1 and 3, see Section 3.3). Hence, in Figure 3.4.5(a), in the case $A<1$, drawing edge (w, x) will not cause any edge crossings. Also, in Figure 3.4.5(a), in the case $A \geq 1$, drawing edge (w, x) will not cause any edge crossings because after rotating Γ_{β} by 90° and flipping it vertically, w will either be at the right boundary of Γ_{β} (see Property 2), or at the top-left corner of Γ_{β} and no other edge or node of T_{β} will be placed on, or cross the horizontal channel occupied by it (see Properties 1 and 3).

Finally, by considering each of the seven subcases shown in Figure 3.4.1 one-by-one, we can show that Γ is also a feasible drawing of T :

- Subcase (a): See Figure 3.4.1(a). Γ_{A} is a feasible drawing of T_{A} and e is the link node of T_{A}. Hence, e is either at the bottom of Γ_{A} (from Property 2), or is at the top-left corner of Γ_{A}, and no other edge or node of T_{A} is placed on, or crosses the horizontal and vertical channels occupied by it (from Properties 1 and 3). Hence, in the case $A<1$, drawing edge (e, a) will not create any edge-crossings, and Γ will also be a feasible drawing of T. In the case $A \geq 1$ also, drawing edge (e, a) will not create any edge-crossings because after rotating Γ_{A} by 90° and flipping it vertically, e will either be at the right boundary of Γ_{A} (see Property 2), or at the top-left corner of Γ_{β} and no other edge or node of T_{A} will be placed on, or cross the horizontal channel occupied by it (see Properties 1 and 3). Thus, for the case $A \geq 1$ also, Γ will also be a feasible drawing of T.
- Subcase (b): See Figure 3.4.1(b). Because $\Gamma_{1}^{\prime}, \ldots, \Gamma_{i}^{\prime}, \Gamma_{B}$ are feasible drawings of $T_{1}^{\prime}, \ldots, T_{i}^{\prime}, T_{B}$ respectively, it is straightforward to see that Γ is also a feasible drawing of T for both the cases when $A<1$ and $A \geq 1$.
- Subcase (c): See Figure 3.4.1(c). The proof is similar to the one for Subcase (a).
- Subcase (d): See Figure 3.4.1(d). Γ_{A} is a feasible drawing of T_{A}, e is the link node of T_{A}, and $e \neq r$. Hence, from Property $2, e$ is located at the bottom of Γ_{A}. Rotating Γ_{A} by 90° and flipping it vertically will move e to the right boundary of Γ_{A}. Moving e to the right until it is either to the right of, or aligned with the right boundary of Γ_{B} will not cause any edge-crossings because of Property 2. It can be easily seen that in both the cases, $A<1$ and $A \geq 1$, drawing edge $\left(e, u^{*}\right)$ does not create any edge-crossings, and Γ is a feasible drawing of T.
- Subcase (e): See Figure 3.4.1(e). Γ_{A} is a feasible drawing of T_{A}, e is the link node of T_{A}, and $e=r$. Hence, from Properties 1 and $3, e$ is at the top-left corner of Γ_{A}, and no other edge or node of T_{A} is placed on, or crosses the horizontal and vertical channels occupied by it. Hence, in both the cases, $A<1$ and $A \geq 1$, drawing edge $\left(e, u^{*}\right)$ will not create any edge-crossings, and Γ is a feasible drawing of T.
- Subcase (f) : See Figure 3.4.1(f). It is straightforward to see that Γ is a feasible drawing of T for both the cases when $A<1$ and $A \geq 1$.
- Subcase (g) : See Figure 3.4.1(g). Γ_{C} is a feasible drawing of T_{C}, u^{*} is the link node of T_{C}, and u^{*} is also the root of T_{C}. Hence, from Properties 1 and $3, u^{*}$ is at the top-left corner of Γ_{C}, and no other edge or node of T_{C} is placed on, or crosses the
horizontal and vertical channels occupied by it. Flipping Γ_{C} vertically will move u^{*} to the bottom-left corner of Γ_{C} and no other edge or node of T_{C} will be on or crosses the vertical channel occupied by it. Hence, drawing edge $\left(r, u^{*}\right)$ will not create any edge-crossings, and Γ will be a feasible drawing of T.

Using a similar reasoning, we can show that in Case 2 also, Γ is a feasible drawing of T.

Lemma 3.4.2 (Time) Given an n-node degree-d tree T, where $d=O\left(n^{\delta}\right)$ is a positive integer and $0 \leq \delta<1$, with a link node u^{*}, Algorithm DrawTree will construct a drawing Γ of T in $O(n \log n)$ time.

Proof: From Theorem 3.3.1, each partial tree into which Algorithm DrawTree would split T will have at most $n / 2$ nodes in it. Hence, it follows that the depth of the recursion for Algorithm DrawTree is $O(\log n)$. At the first recursive level, the algorithm will split T into partial trees, assign aspect ratios to the partial trees and compose the drawings of the partial trees to construct a drawing of T. At the next recursive level, it will split all of these partial trees into smaller partial trees, assign aspect ratios to these smaller partial trees, and compose the drawings of these smaller partial trees to construct the drawings of all the partial trees. This process will continue until the bottommost recursive level is reached. At each recursive level, the algorithm takes $O(m)$ time to split a tree with m nodes into partial trees, assign aspect ratios to the partial trees, and compose the drawings of partial trees to construct a drawing of the tree. At each recursive level, the total number of nodes in all the trees that the algorithm considers for drawing is at most n. Hence, at each recursive
level, the algorithm totally spends $O(n)$ time. Hence, the running time of the algorithm is $O(n) \cdot O(\log n)=O(n \log n)$.

In Lemma 3.4.4 given below, we prove that the algorithm will draw a degree- d tree, where $d=O\left(n^{\delta}\right)$ is a positive integer and $0 \leq \delta<1$, in $O(n)$ area.

Lemma 3.4.3 Let R be a rectangle with area D and aspect ratio A. Let W and H be the width and height, respectively, of R. Then, $W=\sqrt{A D}$ and $H=\sqrt{D / A}$.

Proof: By the definition of aspect ratio, $A=W / H . D=W H=W(W / A)=W^{2} / A$. Hence, $W=\sqrt{A D} . H=W / A=\sqrt{A D} / A=\sqrt{D / A}$.

Lemma 3.4.4 (Area) Let T be an n-node degree-d tree, where $d=O\left(n^{\delta}\right)$ is a positive integer and $0 \leq \delta<1$, with a link node u^{*}. Let ε and A be two numbers such that $\delta /(1-\delta)<$ $\varepsilon<1$, and A is in the range $\left[n^{-\varepsilon}, n^{\varepsilon}\right]$. Given T, ε, and A as input, Algorithm DrawTree will construct a drawing Γ of T that can fit inside a rectangle R with $O(n)$ area and aspect ratio A.

Proof: Let $D(n)$ be the area of R. We will prove, using induction over n, that $D(n)=O(n)$. More specifically, we will prove that $D(n) \leq c_{1} n-c_{2} n^{\beta}$ for all $n \geq n_{0}$, where $n_{0}, c_{1}, c_{2}, \beta$ are some positive constants and $\beta<1$.

We now give the proof for the case when $A \geq 1$ (the proof for the case $A<1$ is symmetrical). Algorithm DrawTree will split T into at most $2 d-1$ partial trees. Let T_{k} be a non-empty partial tree of T, where T_{k} is one of $T_{A}, T_{C}, T_{\beta}, T_{1}^{\prime}, \ldots, T_{i}^{\prime}, 0 \leq i \leq d-3, T_{1}, \ldots, T_{j}, 0 \leq j \leq$ $d-1$, in Case 1 , and is one of $T_{A}, T_{C}, T_{1}, \ldots, T_{j}, 0 \leq j \leq d-2$, in Case 2. Let n_{k} be the number of nodes in T_{k}, and let $x_{k}=n_{k} / n$. Let $P_{k}=c_{1} n-c_{2} n^{\beta} / x_{k}^{1-\beta}$. From Theorem 3.3.1, it follows that $n_{k} \leq n / 2$, and hence, $x_{k} \leq 1 / 2$. Hence, $P_{k} \leq c_{1} n-c_{2} n^{\beta} /(1 / 2)^{1-\beta}=c_{1} n-$ $c_{2} n^{\beta} 2^{1-\beta}$. Let $P^{\prime}=c_{1} n-c_{2} n^{\beta} 2^{1-\beta}$. Thus, $P_{k} \leq P^{\prime}$.

From the inductive hypothesis, Algorithm DrawTree will construct a drawing Γ_{k} of T_{k} that can fit inside a rectangle R_{k} with aspect ratio A_{k} and area $D\left(n_{k}\right)$, where A_{k} is as defined in Section 3.4.2, and $D\left(n_{k}\right) \leq c_{1} n_{k}-c_{2} n_{k}^{\beta}$. Since $x_{k}=n_{k} / n, D\left(n_{k}\right) \leq c_{1} n_{k}-c_{2} n_{k}^{\beta}=c_{1} x_{k} n-$ $c_{2}\left(x_{k} n\right)^{\beta}=x_{k}\left(c_{1} n-c_{2} n^{\beta} / x_{k}^{1-\beta}\right)=x_{k} P_{k} \leq x_{k} P^{\prime}$.

Let W_{k} and H_{k} be the width and height, respectively, of R_{k}. We now compute the values of W_{k} and H_{k} in terms of A, P^{\prime}, x_{k}, n, and ε. We have two cases:

- T_{k} is a small partial tree of T : Then, $n_{k}<(n / A)^{1 /(1+\varepsilon)}$, and also, as explained in Section 3.4.2, $A_{k}=1 / n_{k}^{\varepsilon}$. From Lemma 3.4.3, $W_{k}=\sqrt{A_{k} D\left(n_{k}\right)} \leq$ $\sqrt{\left(1 / n_{k}^{\varepsilon}\right)\left(x_{k} P^{\prime}\right)}=\sqrt{\left(1 / n_{k}^{\varepsilon}\right)\left(n_{k} / n\right) P^{\prime}}=\sqrt{n_{k}^{1-\varepsilon} P^{\prime} / n}$. Since $n_{k}<(n / A)^{1 /(1+\varepsilon)}, W_{k}<$ $\sqrt{(n / A)^{(1-\varepsilon) /(1+\varepsilon) P^{\prime} / n}}=\sqrt{\left(1 / A^{(1-\varepsilon) /(1+\varepsilon)}\right) P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}} \leq \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}$ since $A \geq 1$.

From Lemma 3.4.3, $H_{k}=\sqrt{D\left(n_{k}\right) / A_{k}} \leq \sqrt{x_{k} P^{\prime} /\left(1 / n_{k}^{\varepsilon}\right)}=\sqrt{\left(n_{k} / n\right) P^{\prime} n_{k}^{\varepsilon}}=$ $\sqrt{n_{k}^{1+\varepsilon} P^{\prime} / n} . \quad$ Since $\quad n_{k}<(n / A)^{1 /(1+\varepsilon)}, \quad H_{k}<\sqrt{(n / A)^{(1+\varepsilon) /(1+\varepsilon)} P^{\prime} / n}=$ $\sqrt{(n / A) P^{\prime} / n}=\sqrt{P^{\prime} / A}$.

- T_{k} is a large partial tree of T : Then, as explained in Section 3.4.2, $A_{k}=x_{k} A$. From

Lemma 3.4.3, $W_{k}=\sqrt{A_{k} D\left(n_{k}\right)} \leq \sqrt{x_{k} A x_{k} P^{\prime}}=x_{k} \sqrt{A P^{\prime}}$.
From Lemma 3.4.3, $H_{k}=\sqrt{D\left(n_{k}\right) / A_{k}} \leq \sqrt{x_{k} P^{\prime} /\left(x_{k} A\right)}=\sqrt{P^{\prime} / A}$.

In Step Compose Drawings, we use at most two additional horizontal channels and at most one additional vertical channels while combining the drawings of the partial trees to construct a drawing Γ of T. Hence, Γ can fit inside a rectangle R^{\prime} with width W^{\prime} and height H^{\prime}, respectively, where,

$$
H^{\prime} \leq \max _{T_{k} \text { is a partial tree of } T}\left\{H_{k}\right\}+2 \leq \sqrt{P^{\prime} / A}+2
$$

and

$$
\begin{aligned}
W^{\prime} & \leq \sum_{T_{k} \text { is a large partial tree }} W_{k}+\sum_{T_{k} \text { is a small partial tree }} W_{k}+1 \\
& \leq \sum_{T_{k} \text { is a large partial tree }} x_{k} \sqrt{A P^{\prime}}+\sum_{T_{k} \text { is a small partial tree }} \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 \\
& \leq \sqrt{A P^{\prime}}+(2 d-1) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1
\end{aligned}
$$

(because $\sum_{T_{k} \text { is a large partial tree }} x_{k} \leq 1$, and T is split into at most $2 d-1$ partial trees)
R^{\prime} does not have aspect ratio equal to A, but it is contained within a rectangle R with aspect ratio A, area $D(n)$, width W, and height H, where

$$
W=\sqrt{A P^{\prime}}+(2 d-1) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1+2 A
$$

and

$$
H=\sqrt{P^{\prime} / A}+2+((2 d-1) / A) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 / A
$$

Hence, $\quad D(n)=W H=\left(\sqrt{A P^{\prime}}+(2 d-1) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1+2 A\right)\left(\sqrt{P^{\prime} / A}+2+\right.$ $\left.((2 d-1) / A) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 / A\right)=P^{\prime}+2(2 d-1) P^{\prime} / \sqrt{A n^{2 \varepsilon /(1+\varepsilon)}}+4 \sqrt{A P^{\prime}}+(2 d-$ $1)^{2} P^{\prime} /\left(A n^{2 \varepsilon /(1+\varepsilon)}\right)+4(2 d-1) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+4 A+4+1 / A+2 \sqrt{P^{\prime} / A}+2(2 d-$ 1) $\sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}} / A$.

Since, $1 \leq A \leq n^{\varepsilon}$, we have that

$$
\begin{aligned}
D(n) \leq & P^{\prime}+c_{3} d P^{\prime} / \sqrt{n^{2 \varepsilon /(1+\varepsilon)}}+c_{4} \sqrt{n^{\varepsilon} P^{\prime}}+c_{5} d^{2} P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}+c_{6} P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)} \\
& +c_{7} d \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+c_{8} n^{\varepsilon}+c_{9}+c_{10} \sqrt{P^{\prime}}
\end{aligned}
$$

where $c_{3}, c_{4}, \ldots, c_{10}$ are some constants.

Since $P^{\prime}<c_{1} n$,

$$
\begin{aligned}
D(n)< & P^{\prime}+c_{3} d c_{1} n / \sqrt{n^{2 \varepsilon /(1+\varepsilon)}}+c_{4} \sqrt{n^{\varepsilon} c_{1} n}+c_{5} d^{2} c_{1} n / n^{2 \varepsilon /(1+\varepsilon)}+c_{6} c_{1} n / n^{2 \varepsilon /(1+\varepsilon)} \\
& +c_{7} d \sqrt{c_{1} n / n^{2 \varepsilon /(1+\varepsilon)}}+c_{8} n^{\varepsilon}+c_{9}+c_{10} \sqrt{c_{1}} n^{1 / 2} \\
= & P^{\prime}+c_{3} d c_{1} n^{1 /(1+\varepsilon)}+c_{4} \sqrt{c_{1}} n^{(1+\varepsilon) / 2}+c_{5} d^{2} c_{1} n^{(1-\varepsilon) /(1+\varepsilon)}+c_{6} c_{1} n^{(1-\varepsilon) /(1+\varepsilon)} \\
& +c_{7} d \sqrt{c_{1}} n^{(1-\varepsilon) /(2(1+\varepsilon))}+c_{8} n^{\varepsilon}+c_{9}+c_{10} \sqrt{c_{1}} n^{1 / 2} \\
\leq & P^{\prime}+c_{11} n^{(1+\varepsilon) / 2}+c_{12} d n^{1 /(1+\varepsilon)}+c_{13} d^{2} n^{(1-\varepsilon) /(1+\varepsilon)}
\end{aligned}
$$

where c_{11}, c_{12}, and c_{13} are large enough constants (because, since $0 \leq \delta /(1-\delta)<\varepsilon<1$, $(1-\varepsilon) /(2(1+\varepsilon))<(1-\varepsilon) /(1+\varepsilon)<1 /(1+\varepsilon), \varepsilon<(1+\varepsilon) / 2$, and $1 / 2<(1+\varepsilon) / 2)$.

Because $d=O\left(n^{\delta}\right)$, for a large enough constant n_{0}, there exist constants c_{14} and c_{15} such that for all $n \geq n_{0}, D(n) \leq P^{\prime}+c_{11} n^{(1+\varepsilon) / 2}+c_{14} n^{\delta+1 /(1+\varepsilon)}+c_{15} n^{2 \delta+(1-\varepsilon) /(1+\varepsilon)}$. $P^{\prime}=c_{1} n-c_{2} n^{\beta} 2^{1-\beta}=c_{1} n-c_{2} n^{\beta}\left(1+c_{16}\right)$, where c_{16} is a constant such that $1+c_{16}=2^{1-\beta}$.

Hence, $D(n) \leq c_{1} n-c_{2} n^{\beta}\left(1+c_{16}\right)+c_{11} n^{(1+\varepsilon) / 2}+c_{14} n^{\delta+1 /(1+\varepsilon)}+c_{15} n^{2 \delta+(1-\varepsilon) /(1+\varepsilon)}=$ $c_{1} n-c_{2} n^{\beta}-\left(c_{16} n^{\beta}-c_{11} n^{(1+\varepsilon) / 2}-c_{14} n^{\delta+1 /(1+\varepsilon)}-c_{15} n^{2 \delta+(1-\varepsilon) /(1+\varepsilon)}\right)$. Thus, for a large enough constant n_{0}, and large enough β, where $1>\beta>\max \{(1+\varepsilon) / 2, \delta+1 /(1+\varepsilon), 2 \delta+$ $(1-\varepsilon) /(1+\varepsilon)\}$, for all $n \geq n_{0}, c_{16} n^{\beta}-c_{11} n^{(1+\varepsilon) / 2}-c_{14} n^{\delta+1 /(1+\varepsilon)}-c_{15} n^{2 \delta+(1-\varepsilon) /(1+\varepsilon)} \geq$ 0 , and hence $D(n) \leq c_{1} n-c_{2} n^{\beta}$. Note that because $\varepsilon>\delta /(1-\delta), \delta+1 /(1+\varepsilon)<1$ and $2 \delta+(1-\varepsilon) /(1+\varepsilon)<1$, and because $\varepsilon<1,(1+\varepsilon) / 2<1$.

The proof for the case $A<1$ uses the same reasoning as for the case $A \geq 1$. With T_{k}, R_{k}, $W_{k}, H_{k}, R^{\prime}, W^{\prime}, H^{\prime}, R, W$, and H defined as above, and A_{k} as defined in Section 3.4.2, we get the following values for $W_{k}, H_{k}, W^{\prime}, H^{\prime}, W, H$, and $D(n)$:

$$
\begin{aligned}
W_{k} & \leq \sqrt{A P^{\prime}} \\
H_{k} & \leq \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}} \text { if } T_{k} \text { is a small partial tree } \\
& \leq x_{k} \sqrt{P^{\prime} / A} \text { if } T_{k} \text { is a large partial tree } \\
W^{\prime} & \leq \sqrt{A P^{\prime}}+2 \\
H^{\prime} & \leq \sqrt{P^{\prime} / A}+(2 d-1) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1 \\
W & \leq \sqrt{A P^{\prime}}+2+(2 d-1) A \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+A \\
H & \leq \sqrt{P^{\prime} / A}+(2 d-1) \sqrt{P^{\prime} / n^{2 \varepsilon /(1+\varepsilon)}}+1+2 / A \\
D(n) & \leq P^{\prime}+c_{11} n^{(1+\varepsilon) / 2}+c_{14} n^{\delta+1 /(1+\varepsilon)}+c_{15} n^{2 \delta+(1-\varepsilon) /(1+\varepsilon)}
\end{aligned}
$$

where c_{11}, c_{14}, and c_{15} are the same constants as in the case $A \geq 1$. Therefore, $D(n) \leq$ $c_{1} n-c_{2} n^{\beta}$ for $A<1$ too. (Notice that in the values that we get above for W_{k}, H_{k}, W^{\prime}, H^{\prime}, W, and H, if we replace A by $1 / A$, exchange W_{k} with H_{k}, exchange W^{\prime} with H^{\prime}, and exchange W with H, we will get the same values for $W_{k}, H_{k}, W^{\prime}, H^{\prime}, W$, and H as in the case $A \geq 1$. This basically reflects the fact that the cases $A \geq 1$ and $A<1$ are symmetrical to each other.)

Theorem 3.4.1 (Main Theorem) Let T be an n-node degree-d tree, where $d=O\left(n^{\delta}\right)$ is a positive integer and $0 \leq \delta<1 / 2$ is a constant. Given any number A, where $n^{-\alpha} \leq A \leq$ n^{α}, for some constant α, where $0 \leq \alpha<1$, we can construct in $O(n \log n)$ time, a planar straight-line grid drawing of T with $O(n)$ area, and aspect ratio A.

Proof: Let ε be a constant such that $n^{-\varepsilon} \leq A \leq n^{\varepsilon}$ and $\delta /(1-\delta)<\varepsilon<1$. Designate any leaf of T as its link node. Construct a drawing Γ of T in R by calling Algorithm DrawTree with T, A and ε as input. From Lemmas 3.4.1, 3.4.2, and 3.4.4, Γ will be a planar straight-line grid drawing of T contained entirely within a rectangle with $O(n)$ area, and aspect ratio A.

Corollary 3.4.1 Let T be an n-node degree-d tree, where $d=O\left(n^{\delta}\right)$ is a positive integer and $0 \leq \delta<1 / 2$ is a constant.. We can construct in $O(n \log n)$ time, a planar straight-line grid drawing of T with optimal (equal to $O(n)$) area, and optimal aspect ratio (equal to 1).

Proof: Immediate from Theorem 3.4.1, with $A=1$.

Chapter 4

Area-Effi cient Order-Preserving Planar

Straight-line Grid Drawings of Ordered

Trees

4.1 Introduction

An ordered tree T is one with a prespecified counterclockwise ordering of the edges incident on each node. Ordered trees arise commonly in practice. Examples of ordered trees include binary search trees, arithmetic expression trees, BSP-trees, B-trees, and range-trees.

An order-preserving drawing of T is one in which the counterclockwise ordering of the edges incident on a node is the same as their prespecified ordering in T. A planar drawing
of T is one with no edge-crossings. An upward drawing of T is one, where each node is placed either at the same y-coordinate as, or at a higher y-coordinate than the y-coordinates of its children. A straight-line drawing of T is one, where each edge is drawn as a single line-segment. A grid drawing of T is one, where each node is assigned integer x - and y-coordinates. For example, the drawing in Figure 4.1.1(b) is an order-preserving upward straight-line grid drawing of the tree in Figure 4.1.1(a).

(a)

(b)

Figure 4.1.1: (a) A binary tree T. (b) An order-preserving upward planar straight-line grid drawing Γ of T. Here, the circle-shaped node is the root of T, the square-shaped nodes are left children of their respective parents, and the triangle-shaped nodes are right children of their respective parents.

Ordered trees are generally drawn using order-preserving planar straight-line grid drawings, as any undergraduate textbook on data-structures will show. An upward drawing is desirable because it makes it easier for the user to determine the parent-child relationships between the nodes.

We investigate the area-requirement of the order-preserving planar straight-line grid drawings of ordered trees, and present several results: Let T be an ordered tree with n nodes.

Result 1: We show that T admits an order-preserving planar straight-line grid drawing with $O(n \log n)$ area, $O(n)$ height, and $O(\log n)$ width, which can be constructed in $O(n)$ time.

Result 2: If T is a binary tree, then we show stronger results:

Result 2a: T admits an order-preserving planar straight-line grid drawing with $O(n \log \log n)$ area, $O((n / \log n) \log \log n)$ height, and $O(\log n)$ width, which can be constructed in $O(n)$ time.

Result 2b: T admits an order-preserving upward planar straight-line grid drawing with optimal $O(n \log n)$ area, $O(n)$ height, and $O(\log n)$ width, which can be constructed in $O(n)$ time.

An important issue is that of the aspect ratio of a drawing D. Let E be the smallest rectangle, with sides parallel to x and y-axis, respectively, enclosing D. The aspect ratio of D is defined as the ratio of the larger and smaller dimensions of E, i.e., if h and w are the height and width, respectively, of E, then the aspect ratio of D is equal to $\max \{h, w\} / \min \{h, w\}$. It is important to give the user control over the aspect ratio of a drawing because this will allow her to fit the drawing in an arbitrarily-shaped window defined by her application. It also allows the drawing to fit within display-surfaces with predefined aspect ratios, such as a computer-screen and a sheet of paper. We consider the problem of drawing binary trees with arbitrary aspect ratio, and prove the following result:

Result 3: Let T be a binary tree with n nodes. Let $2 \leq A \leq n$ be any user-specified number.
T admits an order-preserving planar straight-line grid drawing Γ with width $O(A+$ $\log n)$, height $O((n / A) \log A)$, and area $O((A+\log n)(n / A) \log A)=O(n \log n)$, which can be constructed in $O(n)$ time.

Also note that [17] shows an n-node binary tree that requires $\Omega(n)$ height and $\Omega(\log n)$ width in any order-preserving upward planar grid drawing. Hence, the $O(n)$ height and $O(\log n)$ width achieved by Result $2 b$ is optimal in the worst case.

4.2 Previous Results

Throughout this section, n denotes the number of nodes in a tree. The degree of a tree is equal to the maximum number of edges incident on a node.

In spite of the natural appeal of order-preserving drawings, quite surprisingly, little work has been done on optimizing the area of such drawings. The previous best upper bound on the area-requirement of an order-preserving planar upward straight-line grid drawing of a tree was $O\left(n^{1+\varepsilon}\right)$, where $\varepsilon>0$ is any user-defined constant, which was shown in [4]. [34] has shown that a special class of balanced binary trees, which includes k-balanced, redblack, $B B[\alpha]$, and (a, b) trees, admits order-preserving planar upward straight-line grid drawings with area $O\left(n(\log \log n)^{2}\right)$. [6], [7], and [42] give order-preserving planar upward straight-line grid drawings of complete binary trees, logarithmic, and Fibonacci trees, respectively, with area $O(n)$. [17] has given an upper bound of $O(n \log n)$ on order-preserving planar upward polyline grid drawings. (A polyline drawing is one, where each edge is
drawn as a connected sequence of one or more line-segments.)

As for the lower bound on the area-requirement of order-preserving drawings, [17] has shown a lower bound of $\Omega(n \log n)$ for order-preserving planar upward grid drawings. There is no known lower bound for non-upward order-preserving planar grid drawings other than the trivial $\Omega(n)$ bound.

We are not aware of any non-trivial results on order-preserving drawings of trees with user-defined arbitrary aspect-ratios. However, a few results are available on non-orderpreserving drawings. [17] shows that any tree with degree d admits a non-order-preserving planar upward polyline grid drawing with height $h=O\left(n^{1-\alpha}\right)$ and area $O(n+d h \log n)$, where $0<\alpha<1$ is any user-specified constant. This result implies that any tree with degree $O\left(n^{\beta}\right)$, where $0 \leq \beta<1$ is any constant, can be drawn in this fashion in $O(n)$ area with aspect ratio $O\left(n^{\gamma}\right)$, where γ is any user-defined constant, such that $\max \{0,2 \beta-1\}<\gamma<1$. [3] shows that any binary tree admits a non-order-preserving upward planar straight-line orthogonal (each edge drawn as a horizontal or vertical line-segment) grid drawing with area $O(n \log n)$, and any user-specified aspect ratio in the range $[1, n / \log n]$. They also prove that the $O(n \log n)$ bound on area is also optimal for such drawings by showing that for any n and a number $2 \leq A \leq n$, there exists a binary tree with n nodes that requires $\Omega(n \log n)$ area in any upward planar straight-line orthogonal grid drawing with aspect ratio in the range $[1, n / \log n]$. [3] and [34] show that any binary tree admits a non-order-preserving non-upward planar straight-line orthogonal grid drawing with height $O(n / A) \log A$, width $O(A+\log n)$, where $2 \leq A \leq n$ is any user-specified number. This result also implies that
we can draw any binary tree in this fashion in area $O(n \log \log n)$ (by setting $A=\log n)$.
[18] shows that any binary tree admits a non-order-preserving planar non-upward straightline drawing with area $O(n)$, and any user-specified aspect ratio in the range $\left[1, n^{\alpha}\right]$, where $0 \leq \alpha<1$ is any constant. [22] extends this result to trees with degree $O\left(n^{\delta}\right)$, where $0 \leq$ $\delta<1 / 2$ is any constant.

As for other kinds of drawings (non-order-preserving and with fixed aspect ratio), a variety of results are available. See [11] for a survey on these results.

Table 4.2.1 compares our results with the previously known results.

Tree Type	Drawing Type	Area	Aspect Ratio	Reference
Special Balanced Trees such as Red-black	Upward Order-preserving	$O\left(n(\log \log n)^{2}\right)$	$n / \log ^{2} n$	[35]
Binary	Upward Non-order-preserving	$O(n \log \log n)$	$(n \log \log n) / \log ^{2} n$	[35]
		$O(n \log n)$	[1, $n / \log n$]	[3]
	UpwardOrder-preserving	$O\left(n^{1+\varepsilon}\right)$	$n^{1-\varepsilon}$	[4]
		$O(n \log n)$	$n / \log n$	this chapter
	Non-upward Non-order-preserving	$O(n)$	[1, ${ }^{\alpha}$]	[18]
	Non-upward Order-preserving	$O\left(n^{1+\varepsilon}\right)$	$n^{1-\varepsilon}$	[4]
		$O(n \log n)$	[1, $n / \log n$]	this chapter
		$O(n \log \log n)$	$(n \log \log n) / \log ^{2} n$	this chapter
General	Non-upward Order-preserving	$O\left(n^{1+\varepsilon}\right)$	$n^{1-\varepsilon}$	[4]
		$O(n \log n)$	$n / \log n$	this chapter

Table 4.2.1: Bounds on the areas and aspect ratios of various kinds of planar straightline grid drawings of an n-node tree. Here, α and ε are user-defined constants, such that $0 \leq \alpha<1$ and $0<\varepsilon<1$. $[a, b]$ denotes the range $a \ldots b$.

The paper based on this Chapter has been presented in [19].

4.3 Preliminaries

We assume a 2-dimensional Cartesian space. We assume that this space is covered by an infinite rectangular grid, consisting of horizontal and vertical channels.

A left-corner drawing of an ordered tree T is one, where no node of T is to the left of, or above the root of T. The mirror-image of T is the ordered tree obtained by reversing the counterclockwise order of edges around each node. Let R be a rectangle with sides parallel to the x - and y-axis, respectively. The height (width) of R is equal to the number of grid-points with the same x-coordinate (y-coordinate) contained within R. The area of R is equal to the number of grid-points contained within R. The enclosing rectangle E of a drawing D is the smallest rectangle with sides parallel to the x - and y-axis covering the entire drawing. The height h, width w, and area of D is equal to the height, width, and area, respectively, of E. The aspect ratio of D is equal to $\max \{h, w\} / \min \{h, w\}$.

A subtree rooted at a node v of an ordered tree T is the maximal tree consisting of v and all its descendents. A partial tree of T is a connected subgraph of T. A spine of T is a path $v_{0} v_{1} v_{2} \ldots v_{m}$, where $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$ are nodes of T, that is defined recursively as follows (see Figure 4.3.1):

- v_{0} is the same as the root of T;
- v_{i+1} is the child of v_{i}, such that the subtree rooted at v_{i+1} has the maximum number of nodes among all the subtrees that are rooted at the children of v_{i}.

Figure 4.3.1: (a) A binary tree T with spine $v_{0} v_{1} \ldots v_{13}$. (b) The order-preserving planar upward straight-line grid drawing of T constructed by Algorithm BT-Ordered-Draw.

The concept of a spine has been used implicitly by several tree drawing algorithms, including those of $[3,4,17]$. In particular, [4] uses it to construct order-preserving drawings. However, our algorithms typically draw the spine as a more zig-zagging path than the algorithms of [4]. (In fact, some algorithms of [4] draw the spine completely straight as a single line-segment.) This enables our algorithms to draw a tree more compactly than the algorithms of [4].

4.4 Drawing Binary Trees

We now give our drawing algorithm for constructing order-preserving planar upward straight-line grid drawings of binary trees. In an ordered binary tree, each node has at most two children, called its left and right children, respectively.

Our drawing algorithm, which we call Algorithm BT-Ordered-Draw, uses the divide-andconquer paradigm to draw an ordered binary tree T. In each recursive step, it breaks T into several subtrees, draws each subtree recursively, and then combines their drawings to obtain an upward left-corner drawing $D(T)$ of T. We now give the details of the actions performed by the algorithm to construct $D(T)$. Note that during its working, the algorithm will designate some nodes of T as either left-knee, right-knee, ordinary-left, ordinary-right, switch-left or switch-right nodes (for an example, see Figure 4.4.1):

1. Let $P=v_{0} v_{1} v_{2} \ldots v_{m}$ be a spine of T. Define a non-spine node of T to be one that is not in P.
2. Designate v_{0} as a left-knee node.
3. for $i=0$ to m do (see Figure 4.4.1)

Depending upon whether v_{i} is a left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or switch-right node, do the following:
(a) v_{i} is a left-knee node: If v_{i+1} has a left child, and this child is not v_{i+2}, then designate v_{i+1} as a switch-right node, otherwise designate it as an
ordinary-left node. Recursively construct an upward left-corner drawing of the subtree of T rooted at the non-spine child of v_{i}.
(b) v_{i} is an ordinary-left node: If v_{i+1} has a left child, and this child is not v_{i+2}, then designate v_{i+1} as a switch-right node, otherwise designate it as an ordinary-left node. Recursively construct an upward left-corner drawing of the subtree of T rooted at the non-spine child of v_{i}.
(c) v_{i} is a switch-right node: Designate v_{i+1} as a right-knee node. Recursively construct an upward left-corner drawing of the subtree of T rooted at the non-spine child of v_{i}.
(d) v_{i} is a right-knee, ordinary-right, or switch-left node: Do the same as in the cases, where v_{i} is a left-knee, ordinary-left, or switch-right node, respectively, with "left" exchanged with "right", and instead of constructing an upward left-corner drawing of the subtree T_{i} of T rooted at the non-spine child of v_{i}, we recursively construct an upward left-corner drawing of the mirror image of T_{i}.
4. Let G be the drawing with the maximum width among the drawings constructed in Step 3. Let W be the width of G.
5. Place v_{0} at the origin.
6. for $i=0$ to m do (see Figures 4.4.1 and 4.4.2)

Let H_{i} be the horizontal channel corresponding to the node placed lowest in the drawing of T constructed so far.

Depending upon whether v_{i} is a left-knee, right-knee, ordinary-left, ordinaryright, switch-left, or switch-right node, do the following:
(a) v_{i} is a left-knee node: If v_{i+1} is the only child of v_{i}, then place v_{i+1} on the horizontal channel $H_{i}+1$ and one unit to the right of v_{i} (see Figure 4.4.2(a)). Otherwise, let s be the child of v_{i} different from v_{i+1}. Let D be the drawing of the subtree rooted at s constructed in Step 3. If s is the right child of v_{i}, then place D such that its top boundary is at the horizontal channel $H_{i}+1$ and its left boundary is one unit to the right of v_{i}; place v_{i+1} one unit below D and one unit to the right of v_{i} (see Figure 4.4.2(b)). If s is the left child of v_{i}, then place v_{i+1} one unit below and one unit to the right of v_{i} (see Figure 4.4.2(a)) (the placement of D will be handled by the algorithm when it will consider a switch-right node later on).
(b) v_{i} is an ordinary-left node: Since v_{i} is an ordinary-left node, either v_{i+1} will be the only child of v_{i}, or v_{i} will have a right child s, where $s \neq v_{i+1}$. If v_{i+1} is the only child of v_{i}, then place v_{i+1} one unit below v_{i} in the same vertical channel as it (see Figure 4.4.2(c)). Otherwise, let s be the right child of v_{i}. Let D be the drawing of the subtree rooted at s constructed in Step 3. Place D one unit below and one unit to the right of v_{i}; place v_{i+1} on the same horizontal channel as the bottom of D and in the same vertical channel as v_{i} (see Figure 4.4.2(d)).
(c) v_{i} is a switch-right node: Note that, since v_{i} is a switch-right node, it will have a left child s, where $s \neq v_{i+1}$. Let v_{j} be the left-knee node of P closest
to v_{i} in the subpath $v_{0} v_{1} \ldots v_{i}$ of $P . v_{j}$ is called the closest left-knee ancestor of v_{i}. Place v_{i+1} one unit below and $W+1$ units to the right of v_{i}.

Let D be the drawing of the subtree rooted at s constructed in Step 3. Place D one unit below v_{i} such that s is in the same vertical channel as v_{i} (see Figure 4.4.2(e)). If v_{j} has a left child s^{\prime}, which is different from v_{j+1}, then let D^{\prime} be the drawing of the subtree rooted at s^{\prime} constructed in Step 3. Place D^{\prime} one unit below D such that s^{\prime} is in the same vertical channel as v_{i} (see Figure 4.4.2(f)).
(d) v_{i} is a right-knee, ordinary-right, or switch-left node: These cases are the same as the cases, where v_{i} is a left-knee, ordinary-left, or switch-right node, respectively, except that "left" is exchanged with "right", and the left-corner drawing of the mirror image of the subtree rooted at the nonspine child of v_{i}, constructed in Step 3, is first flipped left-to-right and then is placed in $D(T)$.

To determine the area of $D(T)$, notice that the width of $D(T)$ is equal to $W+3$ (see the definition of W given in Step 3). From the definition of a spine, it follows easily that the number of nodes in each subtree rooted at a non-spine node of T is at most $n / 2$, where n is the number of nodes in T. Hence, if we denote by $w(n)$, the width of $D(T)$, then, $W \leq w(n / 2)$, and so, $w(n) \leq w(n / 2)+3$. Hence, $w(n)=O(\log n)$. The height of $D(T)$ is trivially at most n. Hence, the area of $D(T)$ is $O(n \log n)$. It is easy to see that the Algorithm can be implemented such that it runs in $O(n)$ time.

Figure 4.4.1: (a) A binary tree T with spine $v_{0} v_{1} \ldots v_{12}$. (b) A schematic diagram of the drawing $D(T)$ of T constructed by Algorithm BT-Ordered-Draw. Here, v_{0} is a left-knee, v_{1} is an ordinary-left, v_{2} is a switch-right, v_{3} is a right-knee, v_{4} is an ordinary-right, v_{5} is a switch-left, v_{6} is a left-knee, v_{7} is a switch-right, v_{8} is a right-knee, v_{9} is an ordinaryright, v_{10} is a switch-left, v_{11} is a left-knee, and v_{12} is an ordinary-left node. For simplicity, we have shown $D_{0}, D_{1}, \ldots, D_{9}$ with identically sized boxes but in actuality they may have different sizes.

Figure 4.4.2: (a, b) Placement of v_{i}, v_{i+1}, and D in the case when v_{i} is a left-knee node: (a) v_{i+1} is the only child of v_{i} or s is the left child of v_{i}, (b) s is the right child of v_{i}. (c,d) Placement of v_{i}, v_{i+1}, and D in the case when v_{i} is an ordinary-left node: (c) v_{i+1} is the only child of v_{i}, (d) s is the right child of v_{i}. (e,f) Placement of v_{i}, v_{i+1}, D, and D in the case when v_{i} is a switch-right node. (e) v_{j} does not have a left child, (f) v_{j} has a left child s^{\prime}. Here, D^{\prime} is the drawing of the subtree rooted at s^{\prime}.
[17] has shown a lower bound of $\Omega(n \log n)$ for order-preserving planar upward straightline grid drawings of binary trees. Hence, the upper bound of $O(n \log n)$ on the area of $D(T)$ is also optimal. We therefore get the following theorem:

Theorem 4.4.1 A binary tree with n nodes admits an order-preserving upward planar straight-line grid drawing with height at most n, width $O(\log n)$, and optimal $O(n \log n)$ area, which can be constructed in $O(n)$ time.

We can also construct a non-upward left-corner drawing $D^{\prime}(T)$ of T, such that $D^{\prime}(T)$ has height $O(\log n)$ and width at most n, by first constructing a left-corner drawing of the mirror image of T using Algorithm BT-Ordered-Draw, then rotating it clockwise by 90°, and then flipping it right-to-left. This gives Corollary 4.4.1.

Corollary 4.4.1 Using Algorithm BT-Ordered-Draw, we can construct in $O(n)$ time, a non-upward left-corner order-preserving planar straight-line grid drawing of an n-node binary with area $O(n \log n)$, height $O(\log n)$, and width at most n.

4.5 Drawing General Trees

In a general tree, a node may have more than two children. This makes it more difficult to draw a general tree.

In this section, we give an algorithm, which we call Algorithm Ordered-Draw, for constructing (non-upward) order-preserving planar straight-line grid drawing with $O(n \log n)$ area in $O(n)$ time. Algorithm Ordered-Draw is a modification of the algorithm for drawing binary trees presented in Section 4.4.

Let T be a tree with n nodes. In each recursive step, Algorithm Ordered-Draw breaks T into several subtrees, draws each subtree recursively, and then combines their drawings to obtain a left-corner drawing $D(T)$ of T.

We now give the details of the actions performed at each recursive step of the algorithm to construct a a left-corner drawing $D(T)$ of T. Note that the counterclockwise ordering of edges around each node, induces a counterclockwise ordering of the children of each node. During its working, the algorithm will designate some nodes of T as either left-knee, right-knee, switch-left, or switch-right nodes (for an example, see Figure 4.5.1):

1. Let $P=v_{0} v_{1} v_{2} \ldots v_{m}$ be a spine of T. Define a non-spine node of T to be one that is not in P.
2. Designate v_{0} as a left-knee node.
3. for $i=0$ to m do (see Figure 4.5.1)

Depending upon whether v_{i} is a left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or switch-right node, do the following:
(a) v_{i} is a left-knee node: Designate v_{i+1} as a switch-right node. Recursively
construct left-corner drawings of the subtrees of T rooted at all the nonspine children of v_{i}.
(b) v_{i} is a switch-right node: Designate v_{i+1} as a right-knee node. Recursively construct left-corner drawings of the subtrees of T rooted at all the nonspine children of v_{i}.
(c) v_{i} is a right-knee, or switch-left node: These cases are the same as the cases, where v_{i} is a left-knee node, or switch-right node, respectively, with "left" exchanged with "right", and instead of recursively constructing leftcorner drawings of the subtrees of T rooted at all the non-spine children of v_{i}, we recursively construct the left-corner drawings of the mirror images of these subtrees.
4. Let G be the drawing with the maximum width among the drawings constructed in Step 3. Let W be the width of G.
5. Place v_{0} at the origin. Let Y_{0} be the horizontal channel one unit below the origin.
6. for $i=0$ to m do (see Figures 4.5.1 and 4.5.2)

Depending upon whether v_{i} is a left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or switch-right node, do the following:
(a) v_{i} is a left-knee node: Let $Q=s_{1} s_{2} \ldots s_{k}$ be the (possibly empty) sequence of the children of v_{i} that come after v_{i+1} in the counterclockwise order of the children of v_{i} (see Figure 4.5.2(a)). In this sequence, the s_{j} 's, $1 \leq j \leq k$, are placed in the same order as they occur in the counterclockwise order
of the children of v_{i}. Let D_{j} be the drawing of the subtree rooted at s_{j} constructed in Step 3. Place $D_{1}, D_{2}, \ldots, D_{k}$ in that order one above the other at unit vertical separation from each other, such that D_{1} is at the bottom and D_{k} is at the top, the top of D_{k} is at the horizontal channel Y_{i}, and each D_{j} is placed one unit to the right of v_{i} (see Figure 4.5.2(b)).

Let Y_{i+1} be the horizontal channel one unit below D_{1} if Q is not empty, and is the same as Y_{i} if Q is empty.
(b) v_{i} is a switch-right node: Note that, since v_{i} is a switch-right node, v_{i-1} must be a left-knee node.

Let $Q=s_{1} s_{2} \ldots s_{k}$ be the (possibly empty) sequence of the children of v_{i} that come after v_{i+1} in the counterclockwise order of the children of v_{i} (see Figure 4.5.2(c)). In this sequence, the s_{j} 's, $1 \leq j \leq k$, are placed in the same order as they occur in the counterclockwise order of the children of v_{i}. Let D_{j} be the drawing of the subtree rooted at s_{j} constructed in Step 3. Place $D_{1}, D_{2}, \ldots, D_{k}$ in that order one above the other at unit vertical separation from each other, such that D_{1} is at the bottom and D_{k} is at the top, the top of D_{k} is at horizontal channel Y_{i}, and each D_{j} is placed two units to the right of v_{i-1}.

Place v_{i} such that it is one unit to the right of v_{i-1}, and is one unit below D_{1}, if Q is not empty, and is at the horizontal channel Y_{i} if Q is empty.

Place v_{i+1} one unit below and $W+1$ units to the right of v_{i} (see Figure 4.5.2(d)).

Let $Q^{\prime}=s_{1}^{\prime} s_{2}^{\prime} \ldots s_{r}^{\prime}$ be the (possibly empty) sequence of the children of v_{i} that come before v_{i+1} in the counterclockwise order of the children of v_{i} (see Figure 4.5.2(c)). In this sequence, the s_{j}^{\prime} 's, $1 \leq j \leq r$, are placed in the same order as they occur in the counterclockwise order of the children of v_{i}. Let D_{j}^{\prime} be the drawing of the subtree rooted at s_{j}^{\prime} constructed in Step 3. Place $D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{r}^{\prime}$ in that order one above the other at unit vertical separation from each other, such that D_{1}^{\prime} is at the bottom and D_{r}^{\prime} is at the top, s_{r}^{\prime} is placed on the same vertical channel as v_{i+1}, and each D_{j}^{\prime} is placed two units to the right of v_{i-1} (see Figure 4.5.2(d)).

Let H be the horizontal channel which is one unit below the bottom of D_{1}^{\prime} if Q^{\prime} is not empty, and contains v_{i+1} if Q^{\prime} is empty.

Let $Q^{\prime \prime}=s_{1}^{\prime \prime} s_{2}^{\prime \prime} \ldots s_{t}^{\prime \prime}$ be the (possibly empty) sequence of the children of v_{i-1} that come before v_{i} in the counterclockwise order of the children of v_{i-1} (see Figure 4.5.2(c)). In this sequence, the $s_{j}^{\prime \prime}$'s, $1 \leq j \leq t$, are placed in the same order as they occur in the counterclockwise order of the children of v_{i}. Let $D_{j}^{\prime \prime}$ be the drawing of the subtree rooted at $s_{j}^{\prime \prime}$ constructed in Step 3. Place $D_{1}^{\prime \prime}, D_{2}^{\prime \prime}, \ldots, D_{r}^{\prime \prime}$ in that order one above the other at unit vertical separation from each other, such that $D_{1}^{\prime \prime}$ is at the bottom and $D_{t}^{\prime \prime}$ is at the top, the top of $D_{t}^{\prime \prime}$ is at the horizontal channel H, and each $D_{j}^{\prime \prime}$ is placed one unit to the right of v_{i-1} (see Figure 4.5.2(d)).

Let Y_{i+1} be the horizontal channel which is one unit below the bottom of $D_{1}^{\prime \prime}$ if $Q^{\prime \prime}$ is not empty, and is the same as H if $Q^{\prime \prime}$ is empty.

(a)

(b)

Figure 4.5.1: (a) A tree T with spine $v_{0} v_{1} \ldots v_{5}$. (b) An $O(n \log n)$ area planar straightline grid drawing of T. In this drawing, v_{0} is left-knee node, v_{1} is switch-right node, v_{2} is right-knee node, v_{3} is switch-left node, v_{4} is left-knee node, v_{5} is switch-right node.
(c) v_{i} is a right-knee, or switch-left node: These cases are the same as the cases, where v_{i} is a left-knee node, or switch-right node, respectively, except that "left" is exchanged with "right", "counterclockwise" is replaced by "clockwise", and the left-corner drawings of the mirror images of the subtrees rooted at the non-spine children of v_{i}, constructed in Step 3, are first flipped left-to-right and then are placed in $D(T)$.

Just as for Algorithm BT-Ordered-Draw, we can show that the width $w(n)$ of $D(T)$ satisfies the recurrence: $w(n) \leq w(n / 2)+3$. Hence, $w(n)=O(\log n)$. The height of $D(T)$ is trivially at most n. Hence, the area of $D(T)$ is $O(n \log n)$.

Theorem 4.5.1 A tree with n nodes admits an order-preserving planar straight-line grid

Figure 4.5.2: (a) $s_{1}, s_{2}, \ldots, s_{k}$ is the sequence of the children of v_{i} that come after v_{i+1} in the counterclockwise order of the children of v_{i}. (b) Placement of $v_{i}, s_{1}, s_{2}, \ldots, s_{k}$, and $D_{1}, D_{2}, \ldots, D_{k}$ in the case when v_{i} is a left-knee node. (c) s_{1}, \ldots, s_{k} is the sequence of the children of v_{i} that come after v_{i+1} in the counterclockwise order of the children of v_{i}. $s_{1}^{\prime}, \ldots, s_{k}^{\prime}$ is the sequence of the children of v_{i} that come before v_{i+1} in the counterclockwise order of the children of $v_{i} . s_{1}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}$ is the sequence of the children of v_{i-1} that come before v_{i} in the counterclockwise order of the children of v_{i-1}. (d) Placement of $v_{i}, v_{i+1}, s_{1}, \ldots, s_{k}$, $D_{1}, \ldots, D_{k}, s_{1}^{\prime}, \ldots, s_{k}^{\prime}, D_{1}^{\prime}, \ldots, D_{k}^{\prime}, s_{1}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}, D_{1}^{\prime \prime}, \ldots, D_{k}^{\prime \prime}$ in the case when v_{i} is a switch-right node.
drawing with $O(n \log n)$ area, $O(\log n)$ width, and height at most n, which can be constructed in $O(n)$ time.

We can also construct a left-corner drawing $D^{\prime}(T)$ of T, such that $D^{\prime}(T)$ has height $O(\log n)$ and width at most n, by first constructing a left-corner drawing of the mirror image of T using Algorithm Ordered-Draw, then rotating it clockwise by 90°, and then flipping it right-to-left. This gives Corollary 4.5.1.

Corollary 4.5.1 Let T be a tree with n nodes. Using Algorithm Ordered-Draw, we can construct in $O(n)$ time, a left-corner order-preserving planar straight-line grid drawing D of T with $O(n \log n)$ area, such that D has height $O(\log n)$, and width at most n.

4.6 Drawing Binary Trees with Arbitrary Aspect Ratio

Let T be a binary tree. We show that, for any user-defined number A, where $2 \leq$ $A \leq n$, we can construct an order-preserving planar straight-line grid drawing of T with $O((n / A) \log A)$ height and $O(A+\log n)$ width. Thus, by setting the value of A, users can control the aspect ratio of the drawing. This result also implies that we can construct such a drawing with area $O(n \log \log n)$ by setting $A=\log n$.

Our algorithm combines the approach of [3] for constructing non-upward non-orderpreserving drawings of binary trees with arbitrary aspect ratio with our approach for constructing order-preserving drawings given in Sections 4.4 and 4.5. We will also use the following generalization of Lemma 3 of [3]:

Lemma 4.6.1 Suppose $A>1$, and f is a function such that:

- if $n \leq A$, then $f(n) \leq 1$; and
- if $n>A$, then $f(n) \leq f\left(n^{*}\right)+f\left(n^{+}\right)+f\left(n^{\prime \prime}\right)+1$ for some $n^{*}, n^{+}, n^{\prime \prime} \leq n-A$ with $n^{*}+n^{+}+n^{\prime \prime} \leq n$.

Then, $f(n)<6 n / A-2$ for all $n>A$.

Proof: The proof is by induction over n, with the base case being $n=A+1$.

If $n=A+1$, then $n^{*}, n^{+}, n^{\prime \prime} \leq A$. Hence, $f\left(n^{*}\right), f\left(n^{+}\right), f\left(n^{\prime \prime}\right) \leq 1$. Hence, $f(n) \leq 1+1+$ $1+1=4<6 n / A-2$.

Now we prove the induction. Suppose $f(m)<6 m / A-2$ for all $m \leq n-1$. Consider $f(n)$. We have four cases:

- $n^{*}, n^{+}, n^{\prime \prime} \leq A$: Then, $f\left(n^{*}\right), f\left(n^{+}\right), f\left(n^{\prime \prime}\right) \leq 1$. Hence, $f(n) \leq 1+1+1+1=4<$ $6 n / A-2$.
- Exactly two of n^{*}, n^{+}, and $n^{\prime \prime}$ have values less than or equal to A : Assume without loss of generality that $n^{*}, n^{+} \leq A$ and $n^{\prime \prime}>A$. Then, $f\left(n^{*}\right), f\left(n^{+}\right) \leq 1$, and $f\left(n^{\prime \prime}\right)<$ $6 n^{\prime \prime} / A-2 \leq 6(n-A) / A-2=6 n / A-6-2=6 n / A-8$. Hence, $f(n) \leq 1+1+$ $6 n / A-8+1=6 n / A-5<6 n / A-2$.
- Exactly one of n^{*}, n^{+}, and $n^{\prime \prime}$ has value less than or equal to A : Assume without loss of generality that $n^{*} \leq A$, and $n^{+}, n^{\prime \prime}>A$. Then, $f\left(n^{*}\right) \leq 1, f\left(n^{+}\right)+f\left(n^{\prime \prime}\right)<$ $6 n^{+} / A-2+6 n^{\prime \prime} / A-2=6\left(n^{+}+n^{\prime \prime}\right) / A-4<6 n / A-4$. Hence, $f(n)<1+6 n / A-$ $4+1=6 n / A-2$.
- $n^{*}, n^{+}, n^{\prime \prime}>A: f(n)=f\left(n^{*}\right)+f\left(n^{+}\right)+f\left(n^{\prime \prime}\right)+1<6 n^{*} / A-2+6 n^{+} / A-2+$ $6 n^{\prime \prime} / A-2+1=6\left(n^{*}+n^{+}+n^{\prime \prime}\right) / A-5 \leq 6 n / A-5<6 n / A-2$.

An order-preserving planar straight-line grid drawing of a binary tree T is called a feasible drawing, if the root of T is placed on the left boundary and no node of T is placed between the root and the upper-left corner of the enclosing rectangle of the drawing. Note that a left-corner drawing is also a feasible drawing.

We now describe our algorithm, which we call Algorithm BDAAR, for drawing a binary tree T with arbitrary aspect ratio. Let m be the number of nodes in T. Let $2 \leq A \leq m$ be any number given as a parameter to Algorithm BDAAR.

Figure 4.6.1(a) and Figure 4.6.1(b) show the drawings of the tree of Figure 4.3.1(a) constructed by Algorithm $B D A A R$ with $A=\sqrt{m}$ and using Corollary 4.4.1, and Corollary 4.5.1, respectively.

(a)

(b)

Figure 4.6.1: Drawings of the tree with $n=57$ nodes of Figure 4.3.1(a) constructed by Algorithm $B D A A R$ with $A=\sqrt{m}=\sqrt{57}=7.55$ and using: (a) Corollary 4.4.1, and (b) Corollary 4.5.1, respectively.

Like Algorithm BT-Ordered-Draw of Section 4.4, Algorithm BDAAR is also a recursive algorithm. In each recursive step, it also constructs a feasible drawing of a subtree T^{\prime} of T. If T^{\prime} has at most A nodes in it, then it constructs a left-corner drawing of T^{\prime} using Corollary 4.4.1 or Corollary 4.5.1, such that the drawing has width at most n and height
$O(\log n)$, where n is the number of nodes in T^{\prime}. Otherwise, i.e., if T^{\prime} has more than A nodes in it, then it constructs a feasible drawing of T^{\prime} as follows:

1. Let $P=v_{0} v_{1} v_{2} \ldots v_{q}$ be a spine of T^{\prime}.
2. Let n_{i} be the number of nodes in the subtree of T^{\prime} rooted at v_{i}. Let v_{k} be the vertex of P with the smallest value for k such that $n_{k}>n-A$ and $n_{k+1} \leq n-A$ (since T^{\prime} has more than A nodes in it and $n_{0}, n_{1}, \ldots, n_{q}$ is a strictly decreasing sequence of numbers, such a k exists).
3. for each i, where $0 \leq i \leq k-1$, denote by T_{i}, the subtree rooted at the non-spine child of v_{i} (if v_{i} does not have any non-spine child, then T_{i} is the empty tree, i.e., the tree with no nodes in it). Denote by T^{*} and T^{+}, the subtrees rooted at the nonspine children of v_{k} and v_{k+1}, respectively, denote by $T^{\prime \prime}$, the subtree rooted at v_{k+1}, and denote by $T^{\prime \prime \prime}$, the subtree rooted at v_{k+2} (if v_{k} and v_{k+1} do not have non-spine children, and $k+1=q$, then T^{*}, T^{+}, and $T^{\prime \prime \prime}$ are empty trees). For simplicity, in the rest of the algorithm, we assume that $T^{*}, T^{+}, T^{\prime \prime \prime}$, and each T_{i} are non-empty. (The algorithm can be easily modified to handle the cases, when $T^{*}, T^{+}, T^{\prime \prime \prime}$, or some T_{i} 's are empty).
4. Place v_{0} at origin.
5. We have two cases:

- $k=0$: Recursively construct a feasible drawing D^{*} of T^{*}. Recursively construct
a feasible drawing D^{+}of the mirror image of T^{+}. Recursively construct a
feasible drawing $D^{\prime \prime \prime}$ of the mirror image of $T^{\prime \prime \prime}$. Let s_{0} be the root of T^{*} and s_{1} be the root of T^{+}.
T^{\prime} is drawn as shown in Figure 4.6.2(a,b,c,d). If s_{0} is the left child of v_{0}, then place D^{*} one unit below v_{0} with its left boundary aligned with v_{0} (see Figure $4.6 .2(\mathrm{a}, \mathrm{c}))$. If s_{0} is the right child of v_{0}, then place D^{*} one unit above and one unit to the right of v_{0} (see Figure $4.6 .2(\mathrm{~b}, \mathrm{~d})$). Let W^{*}, W^{+}, and $W^{\prime \prime \prime}$ be the widths of D^{*}, D^{+}, and $D^{\prime \prime \prime}$, respectively. v_{1} is placed in the same horizontal channel as v_{0} to its right at distance $\max \left\{W^{*}+1, W^{+}+1, W^{\prime \prime \prime}-1\right\}$ from it. Let B_{0} and C_{0} be the lowest and highest horizontal channels, respectively, occupied by the subdrawing consisting of v_{0} and D^{*}. If s_{1} is the left child of v_{1}, then flip D^{+}left-to-right and place it one unit below B_{0} and one unit to the left of v_{1} (see Figure 4.6.2(a,b)). If s_{1} is the right child of v_{1}, then flip D^{+}left-to-right, and place it one unit above C_{0} and one unit to the left of v_{1} (see Figure 4.6.2(c,d)). Let B_{1} be the lowest horizontal channel occupied by the subdrawing consisting of v_{0}, D^{*}, v_{1} and D^{+}. Flip $D^{\prime \prime \prime}$ left-to-right and place it one unit below B_{1} such that its right boundary is aligned with v_{1} (see Figure 4.6.2(a,b,c,d)).
- $k>0$: For each T_{i}, where $0 \leq i \leq k-1$, construct a left-corner drawing D_{i} of T_{i} using Corollary 4.4.1 or Corollary 4.5.1.

Recursively construct feasible drawings D^{*} and $D^{\prime \prime}$ of the mirror images of T^{*} and $T^{\prime \prime}$, respectively.
T^{\prime} is drawn as shown in Figure 4.6.3(a,b,c,d). If T_{0} is rooted at the left child of v_{0}, then D_{0} is placed one unit below and with the left boundary aligned with v_{0}.

If T_{0} is rooted at the right child of v_{0}, then D_{0} is placed one unit above and one unit to the right of v_{0}. Each D_{i} and v_{i}, where $1 \leq i \leq k-1$, are placed such that:

- v_{i} is in the same horizontal channel as v_{i-1}, and is one unit to the right of D_{i-1}, and
- if T_{i} is rooted at the left child of v_{i}, then D_{i} is placed one unit below v_{i} with its left boundary aligned with v_{i}, otherwise (i.e., if T_{i} is rooted at the right child of $\left.v_{i}\right) D_{i}$ is placed one unit above and one unit to the right of v_{i}.

Let B_{k-1} and C_{k-1} be the lowest and highest horizontal channels, respectively, occupied by the subdrawing consisting of $v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}$ and $D_{0}, D_{1}, D_{2}, \ldots, D_{k-1}$. Let d be the horizontal distance between v_{0} and the right boundary of the subdrawing consisting of $v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}$ and $D_{0}, D_{1}, D_{2}, \ldots, D_{k-1}$. Let W^{*} and $W^{\prime \prime}$ be the widths of D^{*} and $D^{\prime \prime}$, respectively. v_{k} is placed to the right of v_{k-1} in the same horizontal channel as it, such that the horizontal distance between v_{k} and v_{0} is equal to $\max \left\{W^{\prime \prime}-1, W^{*}+1, d+1\right\}$. If T^{*} is rooted at the left-child of v_{k}, then D^{*} is flipped left-to-right and placed one unit below B_{k-1} and one unit left of v_{k} (see Figure 4.6.3(a,b)). If T^{*} is rooted at the right-child of v_{k}, then D^{*} is flipped left-to-right and placed one unit above C_{k-1} and one unit to the left of v_{k} (see Figure 4.6.3(c,d)). Let B_{k} be the lowest horizontal channel occupied by the subdrawing consisting of $v_{1}, v_{2}, \ldots, v_{k}$, and $D_{1}, D_{2}, \ldots, D_{k-1}, D^{*} . D^{\prime \prime}$ is flipped left-to-right and placed one unit below B_{k}, such that its right boundary is aligned with v_{k} (see Figure 4.6.3(b,d)).

Figure 4.6.2: Case $k=0$: (a) s_{0} is the left child of v_{0} and s_{1} is the left child of v_{1}. (b) s_{0} is the right child of v_{0} and s_{1} is the left child of v_{1}. (c) s_{0} is the left child of v_{0} and s_{1} is the right child of v_{1}. (d) s_{0} is the right child of v_{0} and s_{1} is the right child of v_{1}.

Figure 4.6.3: Case $k>0$: Here $k=4, s_{0}, s_{1}$, and s_{3} are the left children of v_{0}, v_{1}, and v_{3} respectively, s_{2} is the right child of $v_{2}, T_{0}, T_{1}, T_{2}$, and T_{3} are the subtrees rooted at v_{0}, v_{1}, v_{2}, and v_{3} respectively. Let s_{4} be the root of T^{*}. (a) s_{4} is left child of v_{4}. (b) s_{4} is the right child of v_{4}.

Let m_{i} be the number of nodes in T_{i}, where $0 \leq i \leq k-1$. From Corollaries 4.4.1 and 4.5.1, the height of each D_{i} is $O\left(\log m_{i}\right)$ and width at most m_{i}. Total number of nodes in the partial tree consisting of $T_{0}, T_{1}, \ldots, T_{k-1}$ and $v_{0}, v_{1}, \ldots, v_{k-1}$ is at most $A-1$. Hence, the height of the subdrawing consisting of $D_{0}, D_{1}, \ldots, D_{k-1}$ and $v_{0}, v_{1}, \ldots, v_{k-1}$ is $O(\log A)$ and width is at most $A-1$ (see Figure 4.6.3).

Suppose $T^{\prime}, T^{*}, T^{+}, T^{\prime \prime}$, and $T^{\prime \prime \prime}$ have $n, n^{*}, n^{+}, n^{\prime \prime}$, and $n^{\prime \prime \prime}$ nodes, respectively. If we
denote by $H(n)$ and $W(n)$, the height and width of the drawing of T^{\prime} constructed by Algorithm $B D A A R$, then:

$$
\begin{aligned}
H(n) & =H\left(n^{*}\right)+H\left(n^{+}\right)+H\left(n^{\prime \prime \prime}\right)+1 \text { if } \mathrm{n}>\mathrm{A} \text { and } \mathrm{k}=0 \\
& =H\left(n^{*}\right)+H\left(n^{+}\right)+H\left(n^{\prime \prime \prime}\right)+O(\log A) \\
H(n) & =H\left(n^{*}\right)+H\left(n^{\prime \prime}\right)+O(\log A) \text { if } \mathrm{n}>\mathrm{A} \text { and } \mathrm{k}>0 \\
H(n) & =O(\log A) \text { if } \mathrm{n} \leq \mathrm{A}
\end{aligned}
$$

Since $n^{*}, n^{+}, n^{\prime \prime}, n^{\prime \prime \prime} \leq n-A$, from Lemma 4.6.1, it follows that $H(n)=O(\log A)(6 n / A-$ $2)=O((n / A) \log A)$. Also we have that:

$$
\begin{aligned}
& W(n)=\max \left\{W\left(n^{*}\right)+2, W\left(n^{+}\right)+2, W\left(n^{\prime \prime \prime}\right)\right\} \text { if } \mathrm{n}>\mathrm{A} \text { and } \mathrm{k}=0 \\
& W(n)=\max \left\{A, W\left(n^{*}\right)+2, W\left(n^{\prime \prime}\right)\right\} \text { if } \mathrm{n}>\mathrm{A} \text { and } \mathrm{k}>0 \\
& W(n) \leq A \text { if } \mathrm{n} \leq \mathrm{A}
\end{aligned}
$$

Since, $n^{*}, n^{+}, n^{*} \leq n / 2$, and $n^{\prime \prime}, n^{\prime \prime \prime} \leq n-A<n-1$, we get that $W(n) \leq \max \{A, W(n / 2)+$ $2, W(n-1)\}$. Therefore, $W(n)=O(A+\log n)$. We therefore get the following theorem:

Theorem 4.6.1 Let T be a binary tree with n nodes. Let $2 \leq A \leq n$ be any number. T admits an order-preserving planar straight-line grid drawing with width $O(A+\log n)$, height $O((n / A) \log A)$, and area $O((A+\log n)(n / A) \log A)=O(n \log n)$, which can be constructed in $O(n)$ time.

Setting $A=\log n$, we get that:

Corollary 4.6.1 An n-node binary tree admits an order-preserving planar straight-line grid drawing with area $O(n \log \log n)$, which can be constructed in $O(n)$ time.

Chapter 5

Area-Effi cient Planar Straight-line Grid

Drawings of Outerplanar Graphs

5.1 Introduction

A drawing Γ of a graph G maps each vertex of G to a distinct point in the plane, and each edge (u, v) of G to a simple Jordan curve with endpoints u and $v . \Gamma$ is a straight-line drawing, if each edge is drawn as a single line-segment. Γ is a polyline drawing, if each edge is drawn as a connected sequence of one or more line-segments, where the meeting point of consecutive line-segments is called a bend. Γ is a grid drawing if all the nodes have integer coordinates. Γ is a planar drawing, if edges do not intersect each other in the drawing. In this chapter, we concentrate on grid drawings. So, we will assume that the
plane is covered by a rectangular grid. Let R be a rectangle with sides parallel to the X and Y-axes. The width (height) of R is equal to the number of grid points with the same $y(x)$ coordinate contained within R. The area of R is equal to the number of grid points contained within $R . R$ is the enclosing rectangle of Γ, if it is the smallest rectangle that covers the entire drawing. The width, height, and area of Γ is equal to the width, height, and area respectively, of its enclosing rectangle. The degree of a graph is equal to the maximum number of edges incident on a vertex.

It is well-known that a planar graph with n vertices admits a planar straight-line grid drawing with $O\left(n^{2}\right)$ area $[9,33]$, and in the worst case it requires $\Omega\left(n^{2}\right)$ area. It is also known that a binary tree with n nodes admits a planar straight-line grid drawing with $O(n)$ area [18]. Thus, there is wide gap between the $\Theta\left(n^{2}\right)$ area-requirement of general planar graphs and the $\Theta(n)$ area-requirement of binary trees. It is therefore important to investigate special categories of planar graphs to determine if they can be drawn in $o\left(n^{2}\right)$ area.

Outerplanar graphs form an important category of planar graphs. We investigate the arearequirement of planar straight-line grid drawings of outerplanar graphs. Currently the best known bound on the area-requirement of such a drawing of an outerplanar graph with n vertices is $O\left(n^{2}\right)$, which is that same as for general planar graphs. Hence, a fundamental question arises: can we draw an outerplanar graph in this fashion in $o\left(n^{2}\right)$ area?

In this chapter, we provide a partial answer to this question by proving that an outerplanar graph with n vertices and degree d can be drawn in this fashion in area $O\left(d n^{1+0.48}\right)=$ $O\left(d n^{1.48}\right)$ in $O(n)$ time. This implies that an outerplanar graph with n vertices and degree
$O\left(n^{\delta}\right)$, where $0 \leq \delta<0.52$ is a constant, can be drawn in this fashion in $o\left(n^{2}\right)$ area.

From a broader perspective, our contribution is in showing a sufficiently large natural category of planar graphs that can be drawn in $o\left(n^{2}\right)$ area.

In Section 5.4, we present our drawing algorithm. This algorithm is based on a tree-drawing algorithm of [4]. The connection between the two algorithms comes from the fact that the dual of an outerplanar graph is a tree.

5.2 Previous Results

There has been little work done on planar straight-line grid drawings of outerplanar graphs. Let G be an outerplanar graph with n vertices. Currently the best known bound on the arearequirement of such a drawing of an outerplanar graph with n vertices is $O\left(n^{2}\right)$, which is that same as for general planar graphs. However, in 3D, we can construct a crossings-free straight-line graph drawing of G with $O(n)$ volume $[14,16]$.
[1] shows that G admits a planar polyline drawing as well as a visibility representation with $O(n \log n)$ area. [26] shows that G admits a planar polyline drawing with $O(n)$ area, if G has degree 4. The technique of [26] can be easily extended to construct a planar polyline drawing of G with $O\left(d^{2} n\right)$ area, if G has degree $d[1]$.

The paper based on this Chapter will appear in [20].

5.3 Preliminaries

We assume a 2-dimensional Cartesian space. We assume that this space is covered by an infinite rectangular grid, consisting of horizontal and vertical channels.

We denote by $|G|$ the number of nodes (vertices) in a graph (tree) G.

A rooted tree is one with a pre-specified root. An ordered tree is a rooted tree with a prespecified left-to-right order of the children for each node. Let T be an ordered binary tree with n nodes. Let p and δ be two constants such that $p=0.48$ and $0<\delta \leq 0.0004$. A spine S of T is a path $v_{0} v_{1} v_{2} \ldots v_{m}$, where $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$ are nodes of T, that is defined recursively as follows (as defined in the proof of Lemma A. 1 in [4]):

- v_{0} is the same as the root of T, and v_{m} is a leaf of T;
- let α_{i} and β_{i} be the the left and right subtrees with the maximum number of nodes among the subtrees that are rooted at any of the nodes in the path $v_{0} v_{1} \ldots v_{i}$; let L_{i} and R_{i} be the subtrees rooted at the left and right children of v_{i} respectively. Then,
- if $\left|\alpha_{i}\right|^{p}+\left|R_{i}\right|^{p} \leq(1-\delta) n^{p}$ and $\left|L_{i}\right|^{p}+\left|\beta_{i}\right|^{p}>(1-\delta) n^{p}$, set v_{i+1} to be the left child of v_{i},
- if $\left|\alpha_{i}\right|^{p}+\left|R_{i}\right|^{p}>(1-\delta) n^{p}$ and $\left|L_{i}\right|^{p}+\left|\beta_{i}\right|^{p} \leq(1-\delta) n^{p}$, set v_{i+1} to be the right child of v_{i},
- if $\left|\alpha_{i}\right|^{p}+\left|R_{i}\right|^{p} \leq(1-\delta) n^{p}$ and $\left|L_{i}\right|^{p}+\left|\beta_{i}\right|^{p} \leq(1-\delta) n^{p}$, we terminate the construction as follows:
* if $\left|L_{i}\right| \leq\left|R_{i}\right|$, set the spine to be the concatenation of path $v_{0} v_{1} \ldots v_{i}$ and the leftmost path from v_{i} to a leaf v_{m},
* otherwise (i.e. $\left|L_{i}\right|>\left|R_{i}\right|$), set the spine to be the concatenation of the path $v_{0} v_{1} \ldots v_{i}$ and the rightmost path from v_{i} to a leaf v_{m}.
- in [4] it is shown that the case $\left|\alpha_{i}\right|^{p}+\left|R_{i}\right|^{p}>(1-\delta) n^{p}$ and $\left|L_{i}\right|^{p}+\left|\beta_{i}\right|^{p}>$ $(1-\delta) n^{p}$ is not possible.
$v_{0}, v_{1}, \ldots, v_{m}$ are called spine nodes. A subtree of S is a subtree of T rooted at the non-spine child of a spine node. A left (right) subtree of S is a subtree of T rooted at a left (right) non-spine child of a spine node.

We will use Lemma A. 1 of [4], which is given below:

Lemma 5.3.1 (Lemma A. 1 of [4]) Let $p=0.48$. For any left subtree α and right subtree β of a spine, $|\alpha|^{p}+|\beta|^{p} \leq(1-\delta) n^{p}$, for any constant $\delta, 0<\delta \leq 0.0004$.

An outerplanar graph is a planar graph for which there exists an embedding with all vertices on the exterior face. Throughout this chapter, by the term outerplanar graph we will mean a maximal outerplanar graph, i.e., an outerplanar graph to which no edge can be added without destroying its outerplanarity. It is easy to see that each face of a maximal outerplanar graph is a triangle. Two vertices of a graph are neighbors, if they are connected by an edge. The dual tree T_{G} of an outerplanar graph G is defined as follows:

- there is a one-to-one correspondence between the nodes of T_{G} and the internal faces
of G, and
- there is an edge $e=(u, v)$ in T_{G} if and only if the faces of G corresponding to u and v share an edge e^{\prime} on their boundaries. e and e^{\prime} are duals of each other.

For example, Figure 5.3.1(b), shows the dual tree of the outerplanar graph of Figure 5.3.1(a).

(a)

(b)

Figure 5.3.1: (a) An outerplanar graph G. Here, $H, K_{1}, K_{2}, K_{1}^{\prime}, K_{2}^{\prime}, L_{1}, L_{2}, M_{1}, N_{1}, N_{2}, N_{3}$, $N_{4}, Q_{e 1}, Q_{e 2}, Q_{e 4}$, and $Q_{e 5}$ are subgraphs of G, and are themselves outerplanar graphs. (b) The dual tree T_{G} of G. The edges of T_{G} are shown with dark lines. Note that $v_{0} v_{1} \ldots v_{12}$ is a spine of T_{G}.

Let $P=v_{0} v_{1} \ldots v_{q}$ be a connected path of T_{G}. Let H be the subgraph of G corresponding to P. A beam drawing of H is shown in Figure 5.3.2, where the vertices of H are placed on two horizontal channels, and the faces of H are drawn as triangles.

(b)
(a)

Figure 5.3.2: (a) A path P and its corresponding graph H. (b) A beam drawing of H.

A line-segment with end-points a and b is a flat line-segment if a and b either belong to the same horizontal channel, or belong to adjacent horizontal channels.

Let B be a flat line-segment with end-points a and b, such that b is at least two units to the right of a. Let G be an outerplanar graph with two distinguished adjacent vertices u and v, such that the edge (u, v) is on the external face of $G ; u$ and v are called the poles of G. Let D be a planar straight-line drawing of $G . D$ is a feasible drawing of G with base B if:

- the two poles of G are mapped to a and b each,
- each non-pole vertex of G is placed at least one unit above both a and b, and is placed at least one unit to the right of a and at least one unit to the left of b.

5.4 Outerplanar Graph Drawing Algorithm

The drawing algorithm, which we call Algorithm OpDraw, is recursive in nature. In each recursive step, it takes as input an outerplanar graph G with pre-specified poles, and a long-enough flat line-segment B, and constructs a feasible drawing D of G with base B by constructing a drawing M of the subgraph H corresponding to the spine of G, splitting G into several smaller outerplanar graphs after removing H and some other vertices from it, constructing feasible drawings of each smaller outerplanar graph, and then combining their drawings with M to obtain D.

Figure 5.4.1: The drawing of the outerplanar graph of Figure 5.3.1(a) constructed by Algorithm OpDraw.

We now give the details of the actions performed by Algorithm OpDraw in each recursive step (see Figure 5.4.1):

- Let u and v be the poles of G. Let T_{G} be the dual tree of G. Let r be the node of T_{G} that corresponds to the internal face F of G that contains both u and v. Convert T_{G} into an ordered tree as follows:
- make T_{G} a rooted tree by making r its root,
- and for each node w, let w^{\prime} be the parent of w in T_{G} (which now is a rooted tree). Let $c(d)$ be the children of w such that the face corresponding to c immediately follows (precedes) the face corresponding to w^{\prime} in the counterclockwise order of internal faces incident on the face corresponding to w. Make c the leftmost child of w, and d the rightmost child of w. Assign the children of w the same left-to-right order as the counter-clockwise order in which the faces that correspond to them are incident on the face corresponding to w.

Note that T_{G} is a binary tree because each internal face of G is a triangle.

- Draw F as a triangle such that u and v coincide with the end-points of B, and the third vertex w of F is placed one unit above the higher of u and v. (We will determine later on the horizontal distances of w from u and v, when we analyze the area-requirement of the drawing.) In the rest of this section, we will assume that u is placed either at the same horizontal channel as, or at a higher horizontal channel than v (the case where v is placed higher than u is similar). (In Figure 5.4.1, u and v are shown to be on the same horizontal channel, but the construction given below will also apply if u were placed at a higher horizontal channel than v.)
- Let $P=v_{0} v_{1} \ldots v_{q}$ be the spine of G, where $v_{0}=r$. Assume that the edge $\left(v_{0}, v_{1}\right)$ is the dual of edge (v, w) (the case where $\left(v_{0}, v_{1}\right)$ is the dual of edge (u, w) is symmetrical). Let $\left(v_{0}, v^{\prime}\right)$ be the dual of edge (u, w). Let H be the subgraph of G corresponding to the subtree of T_{G} rooted at v^{\prime}. Recursively construct a feasible drawing D_{H} of H with
$\overline{u w}$ as the base.
- Let $c_{0}=w, c_{1}, \ldots, c_{m}\left(=c_{0}^{\prime}\right), c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{s}^{\prime}$ be the counter-clockwise order of the neighbors of v different from u, where, for each $i(1 \leq i \leq m)$, the face $c_{i-1} c_{i} v$ corresponds to the spine node v_{i}, and for each $i(1 \leq i \leq s)$, the face $c_{i-1}^{\prime} c_{i}^{\prime} v$ corresponds to a non-spine node v_{i}^{\prime} of T_{G}. (In Figure 5.4.1, $m=3$.) Place the vertices $c_{1}, \ldots, c_{m}\left(=c_{0}^{\prime}\right), c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{s}^{\prime}$ at the same horizontal channel as w. (We will determine later on the horizontal distances between these vertices.)
- Let $\left(v_{i}, x_{i}\right)$ be the dual of edge $\left(c_{i-1}, c_{i}\right)$. Let K_{i} be the subgraph of G corresponding to the subtree of T_{G} rooted at x_{i}. For each i, where $1 \leq i \leq m-1$, recursively construct a feasible drawing of K_{i} with $\overline{c_{i-1} c_{i}}$ as the base.
- Let $\left(v_{i}^{\prime}, x_{i}^{\prime}\right)$ be the dual of edge $\left(c_{i-1}^{\prime}, c_{i}^{\prime}\right)$. Let K_{i}^{\prime} be the subgraph of G corresponding to the subtree of T_{G} rooted at x_{i}. For each i, where $1 \leq i \leq s$, recursively construct a feasible drawing D_{i}^{\prime} of K_{i}^{\prime} with $\overline{c_{i-1}^{\prime} c_{i}^{\prime}}$ as the base.
- Let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{t}$ be the vertices of K_{m}, such that $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}(0 \leq h \leq t)$ is the clockwise order of the neighbors of c_{m-1} in K_{m}, and $\alpha_{h}, \alpha_{h+1}, \ldots, \alpha_{t}$ is the clockwise order of the neighbors of c_{m} in K_{m}. Let j be the index such that the dual of edge $\left(c_{j-1}, c_{j}\right)$ belongs to P (if no such j exists, then set $j=t$). (In Figure 5.4.1, $j=3$.) Place $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{j-1}$ in the same horizontal channel, and $\alpha_{j-1}, \alpha_{j}, \ldots, \alpha_{t}$ along a line making 45° angle with the horizontal channels, such that
- α_{t} is in the same vertical channel as c_{m}, and at least one unit above the horizontal channel X occupied by $c_{0}=w, c_{1}, \ldots, c_{m}\left(=c_{0}^{\prime}\right), c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{s}^{\prime}$ (we will give the
exact value of the vertical distance between α_{t} and X a little while later),
- for each k, where $j-1 \leq k \leq t-1, \alpha_{k}$ is one unit above and one unit to the left of α_{k+1}, and
- α_{0} is in the same vertical channel as c_{m-1}.
(We will determine later on the horizontal distances between $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{j-1}$.)
- For each i, where $0 \leq i \leq j-1$, removing α_{i-1} and α_{i}, splits K_{m} into two subgraphs, one containing c_{m-1} and c_{m}, and another subgraph L_{i}^{\prime}. Let L_{i} be the subgraph of K_{m} consisting of the vertices of $L_{i}^{\prime}, \alpha_{i-1}$ and α_{i}, and the edges between them. Recursively construct a feasible drawing of L_{i} with $\overline{\alpha_{i-1} \alpha_{i}}$ as the base.
- Let $S=\beta_{0}, \beta_{1}, \ldots, \beta_{\mu}$ be an ordered sequence of the neighbors of $\alpha_{j-1}, \alpha_{j}, \ldots, \alpha_{t}$ that are not equal to c_{m-1} and c_{m}, and do not belong to L_{j-1}. In S, we first place the neighbors of α_{j-1}, then of α_{j}, and so on, finally placing the neighbors of α_{t}. For each k, where $j-1 \leq k \leq t$, we place the neighbors of α_{k} into S in the same order as their clockwise order around α_{k}. Let ε be the index such that the edge $\left(\beta_{\varepsilon-1}, \beta_{\varepsilon}\right)$ is the dual of an edge in P (if there is no such ε, then set $\varepsilon=\mu$). (In Figure 5.4.1, $\varepsilon=2$.)
- Place $\beta_{0}, \beta_{1}, \ldots, \beta_{\varepsilon-1}$ in the same horizontal channel from left-to-right, and place $\beta_{\varepsilon}, \beta_{\varepsilon+1}, \ldots, \beta_{\mu}$ in another horizontal channel from right-to-left, such that:
$-\beta_{0}, \beta_{1}, \ldots, \beta_{\varepsilon-1}$ are placed one unit above α_{j-1},
$-\beta_{\varepsilon}, \beta_{\varepsilon+1}, \ldots, \beta_{\mu}$ are placed one unit below α_{t},
- β_{0} and β_{μ} are at either to the right of, or on the same vertical channel as c_{s}^{\prime},
- $\beta_{\varepsilon-1}$ and β_{ε} are on the same vertical channel, and
- the distance between $\beta_{\varepsilon-1}$ and β_{ε} is equal to 2 plus the vertical distance between α_{j-1} and α_{t}.
- For each i, where $0 \leq i \leq \varepsilon-1$, if there is an edge $e=\left(\beta_{i-1}, \beta_{i}\right)$ in G, then do the following: Notice that removing e from G, split it into two subgraphs, one that contains $\alpha_{j-1}, \alpha_{j}, \ldots, \alpha_{t}$, and another subgraph M_{i}^{\prime} that does not contain any of them. Let M_{i} be the subgraph of G consisting of β_{i-1}, β_{i}, the vertices of M_{i}^{\prime}, and the edges between them. Recursively construct a feasible drawing of M_{i} with $\overline{\beta_{i-1} \beta_{i}}$ as its base.
- For each i, where $\varepsilon \leq i \leq \mu$, if there is an edge $e=\left(\beta_{i-1}, \beta_{i}\right)$ in G, then do the following: Notice that removing e from G, splits it into two subgraphs, one that contains $\alpha_{j-1}, \alpha_{j}, \ldots, \alpha_{t}$, and another subgraph N_{i}^{\prime} that does not contain any of them. Let N_{i} be the subgraph of G consisting of β_{i-1}, β_{i}, the vertices of N_{i}^{\prime}, and the edges between them. Recursively construct a feasible drawing $D_{i}^{\prime \prime}$ of N_{i} with $\overline{\beta_{i-1} \beta_{i}}$ as its base, and then flip $D_{i}^{\prime \prime}$ upside-down.
- Let $\left(v_{\rho-1}, v_{\rho}\right)$ be the edge of P that is the dual of the edge $\left(\beta_{\varepsilon-1}, \beta_{\varepsilon}\right)$. Let R be the subgraph of G that corresponds to the subpath $v_{\rho} v_{\rho+1} \ldots v_{q}$. Construct a beam drawing E of R. For each edge e on the external face of R, do the following: Let $e=\left(\gamma_{1}, \gamma_{2}\right)$. Removing γ_{1} and γ_{2} from G splits it into two subgraphs, one containing $\beta_{0}, \beta_{1}, \ldots, \beta_{\mu}$, and the other subgraph Q_{e}^{\prime} not containing them. Let Q_{e} be the subgraph of G containing γ_{1}, γ_{2}, and the vertices of Q_{e}^{\prime}, and the edges between them. If e is on the top or bottom boundary of E, then recursively construct a feasible drawing D_{e}
of Q_{e} with $\overline{\gamma_{1} \gamma_{2}}$ as its base. If e is on the bottom boundary of E, then flip Q_{e} upside down. (Note that if e is on the right boundary of E, then Q_{e} will contain just the edge e because v_{q} is a leaf of T_{G}.)
- We are now ready to give the vertical distance between α_{t} and X : it is equal to $1+\theta$, where θ is maximum height of any of $D_{i}^{\prime}, D_{i}^{\prime \prime}$, and D_{e}, where e is on the bottom boundary of E. Note that this will guarantee that the vertices of each $D_{i}^{\prime \prime}$ and D_{e} will occupy horizontal channels that are either above or the same as the horizontal channel that contains $c_{0}=w, c_{1}, \ldots, c_{m}\left(=c_{0}^{\prime}\right), c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{s}^{\prime}$. This ensures that there are no crossings between the edges of any $D_{i}^{\prime \prime}$ or D_{e}, and any edge of the form $\left(v, c_{j}^{\prime}\right)$.

Let $h(n)$ and $w(n)$ be the height and width, respectively, of a feasible drawing D of G with base B, constructed by the Algorithm $O p D r a w$. Here, n is the number of vertices in G. Let d be the degree of G. Note that, by the definition of feasible drawings, $w(n)$ will be equal to the horizontal separation between the end-points of B.

It is easy to prove using induction that $w(n)=n-1$ is sufficient. As for the horizontal distances between u and w, between c_{i-1} and $c_{i}($ for $1 \leq i \leq m-1)$, between c_{i-1}^{\prime} and c_{i}^{\prime} (for $1 \leq i \leq s)$, between α_{i-1} and $\alpha_{i}($ for $1 \leq i \leq j-1)$, between β_{i-1} and $\beta_{i}($ for $1 \leq i \leq \varepsilon-1)$, and between β_{i-1} and β_{i} (for $\varepsilon+1 \leq i \leq \mu$), it is sufficient to set them to be equal to $|H|-1$, $\left|K_{i}\right|-1,\left|K_{i}^{\prime}\right|-1,\left|L_{i}\right|-1,\left|M_{i}\right|-1$, and $\left|N_{i}\right|-1$, respectively. It is also sufficient to set the distance between the end-points of each edge e on the top or bottom boundary of E, to be equal to $\left|Q_{e}\right|-1$.

As for $h(n)$, first notice that, because G has degree $d, t-(j-1)$ is less than $2 d$, and hence, the distance between $\beta_{\varepsilon-1}$ and β_{ε} is less than $2 d+2$.

Let h^{\prime} be a function, such that $h^{\prime}(f)=h(n)$, where f is the number of internal faces in G, i.e., the number of nodes in the dual tree T_{G} of G.

From the construction of D, we have that:

$$
\begin{aligned}
h^{\prime}(f) \leq & \max \left\{\max _{1 \leq i \leq s}\left\{h^{\prime}\left(\left|T_{K_{i}^{\prime}}\right|\right)\right\}, \max _{\varepsilon+1 \leq i \leq \mu}\left\{h^{\prime}\left(\left|T_{N_{i}}\right|\right)\right\}, \max _{\text {edge e on bottom boundary of } E}\left\{h^{\prime}\left(\left|T_{Q_{e}}\right|\right)\right\}\right\} \\
& +\max \left\{h^{\prime}\left(\left|T_{H}\right|\right), \max _{1 \leq i \leq m-1}\left\{h^{\prime}\left(\left|T_{K_{i}}\right|\right)\right\}, \max _{1 \leq i \leq j-1}\left\{h^{\prime}\left(\left|T_{L_{i}}\right|\right)\right\}, \max _{1 \leq i \leq \varepsilon-1}\left\{h^{\prime}\left(\left|T_{M_{i}}\right|\right)\right\},\right. \\
& \text { edge e on top boundary of } E
\end{aligned}
$$

Since P is a spine of T_{G}, and

- the dual trees of H, K_{i}, L_{i}, M_{i}, and Q_{e} (in the case when edge e is on top boundary of E), are either left subtrees of P, or belong to the left subtrees of P, and
- the dual trees of K_{i}^{\prime}, N_{i}, and Q_{e} (in the case when edge e is on bottom boundary of $E)$, are either right subtrees of P, or belong to the right subtrees of P,
from Lemma 5.3.1, it follows that:

$$
h^{\prime}(f) \leq \max _{f_{1}^{p}+f_{2}^{p} \leq(1-\delta) f^{p}}\left\{h^{\prime}\left(f_{1}\right)+h^{\prime}\left(f_{2}\right)+O(d)\right\} .
$$

Using induction, we can show that $h^{\prime}(f)=O\left(d f^{0.48}\right)$ (see also [4]). Since $f=O(n)$, $h(n)=h^{\prime}(f)=O\left(d f^{0.48}\right)=O\left(d n^{0.48}\right)$.

Theorem 5.4. 1 Let G be an outerplanar graph with degree d and n vertices. We can construct a planar straight-line grid drawing of G with area $O\left(d n^{1+0.48}\right)=O\left(d n^{1.48}\right)$ in $O(n)$ time.

Proof: Arbitrarily select any edge $e=(u, v)$ on the external face of G, and designate u and v as the poles of G. Let B be any horizontal line-segment with length $n-1$. Let δ be any user-defined constant in the range $(0,0.0004]$. Construct a feasible drawing of G with base B using Algorithm OpDraw. From the discussion given above, it follows immediately that the area of the drawing is $O\left(d n^{1+0.48}\right)=O\left(d n^{1.48}\right)$. It is easy to see the algorithm runs in $O(n)$ time.

Corollary 5.4.1 Let G be an outerplanar graph with n vertices and degree $d=O\left(n^{\delta}\right)$, where $0 \leq \delta<0.52$ is a constant. We can construct a planar straight-line grid drawing of G with $o\left(n^{2}\right)$ area in $O(n)$ time.

Chapter 6

Conclusion and Open Problems

The visualization of relational information is concerned with the presentation of abstract information about relationships between various entities. It has many applications in diverse domains such as software engineering, biology, civil engineering, and cartography. Relational information is typically modeled by an abstract graph, where vertices are entities and edges represent relationships between entities. The aim of graph drawing is to automatically produce drawings of graphs which clearly reflect the inherent relational information.

In this thesis, we have investigated problems related to the automatic generation of areaefficient grid drawings of trees and outerplanar graphs, which are important categories of graphs.

In this thesis, we have obtained the following results:

1. An algorithm for producing planar straight-line grid drawings of binary trees with optimal linear area and with user-defined arbitrary aspect ratio,
2. An algorithm for producing planar straight-line grid drawings of degree- d trees with n nodes, where $d=O\left(n^{\delta}\right)$ and $0 \leq \delta<1 / 2$ is a constant, with optimal linear area and with user-defined arbitrary aspect ratio,
3. An algorithm which establishes the currently best known upper bound, namely $O(n \log n)$, on the area of order-preserving planar straight-line grid drawings of ordered trees,
4. An algorithm which establishes the currently best known upper bound, namely $O(n \log \log n)$, on the area of order-preserving planar straight-line grid drawings of ordered binary trees,
5. An algorithm for producing order-preserving upward planar straight-line grid drawings of ordered binary trees with optimal $O(n \log n)$ area,
6. An algorithm which establishes the trade-off between the area and aspect ratio of order-preserving planar straight-line grid drawings of ordered binary trees, in the case when the aspect ratio is arbitrarily defined by the user, and
7. An algorithm for producing planar straight-line grid drawings of outerplanar graphs with n vertices and degree d in $O\left(d n^{1.48}\right)$ area. This result shows for the first time that a large category of outerplanar graphs, namely those with degree $d=O\left(n^{\delta}\right)$, where $0 \leq \delta<0.52$ is a constant, can be drawn in sub-quadratic area.

All our algorithms are time-efficient. More specifically, algorithms 1 and 2 run in $O(n \log n)$ time each, and algorithms $3,4,5,6$, and 7 run in $O(n)$ time each.

We have also identified the following open problems, regarding planar straight-line grid drawings of trees and outerplanar graphs:

- Drawing general trees in optimal linear area
- In this thesis, we have proved that a degree- d tree with n nodes, where $d=$ $O\left(n^{\delta}\right)$ and $0 \leq \delta<1 / 2$ is a constant, can be drawn in optimal linear area and with user-defined arbitrary aspect ratio. So, a natural question is whether this result can be extended to trees with even higher degree.
- Drawing ordered-trees
- Can we prove lower bounds on non-upward order-preserving drawings, other than the trivial $\Omega(n)$ bound?
- Does every ordered binary tree admit a non-upward order-preserving drawing in better than $O(n \log \log n)$ area?
- Does every ordered tree admit a non-upward order-preserving drawing in better than $O(n \log n)$ area?
- In this thesis, we have studied the trade-off between the area and aspect ratio of order-preserving drawings of ordered binary trees. Can this result be extended to even higher degree trees?
- Drawing outerplanar graphs
- In this thesis, we have proved that an outerplanar graph with n vertices and degree d, can be drawn in $O\left(d n^{1.48}\right)$ area. If $d=O\left(n^{\delta}\right)$, where $0 \leq \delta<0.52$ is a constant, then the graph can be drawn in sub-quadratic area. Can we prove a sub-quadratic area bound on outerplanar graphs with even higher degree?

Bibliography

[1] T. Biedl. Drawing outer-planar graphs in $o(n \log n)$ area. In Proc. 10th International Symposium on Graph Drawing (GD 2002), volume 2528 of Lecture Notes in Computer Science, pages 54-65. Springer-Verlag, 2002.
[2] K. Booth and G. Lueker. Testing for the consecutive ones property interval graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13:335-379, 1976.
[3] T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Computational Geometry: Theory and Applications, 23:153-162, 2002.
[4] T. M. Chan. A near-linear area bound for drawing binary trees. In Proc. 10th ACMSIAM Symposium on Discrete Algorithms (SODA), pages 161-168, 1999.
[5] Marek Chrobak and Shin ichi Nakano. Minimum-width grid drawings of plane graphs. Comput. Geom. Theory Appl., 11:29-54, 1998.
[6] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. Theory Appl., 2:187-200, 1992.
[7] P. Crescenzi and P. Penna. Strictly-upward drawings of ordered search trees. Theoretical Computer Science, 203(1):51-67, 1998.
[8] P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of AVL trees. Comput. Geom. Theory Appl., 9:25-42, 1998. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).
[9] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990.
[10] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235-282, 1994.
[11] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.
[12] G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings. SIAM J. Comput., 27(6):1764-1811, 1998.
[13] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom., 7(4):381-401, 1992.
[14] V. Dujmovic and D.R. Wood. Tree-partitions of k-trees with applications in graph layout. Technical Report TR-02-03, School of Computer Science, Carleton University, Ottawa, Canada, 2002.
[15] I. Fary. On straight lines representation of planar graphs. Acta Sci. Math. Szeged, 11:229-233, 1948.
[16] S. Felsner, G. Liotta, and S. Wismath. Straight-line drawings on restricted integer grids in two and three dimensions. In Proc. 9th International Symposium on Graph Drawing (GD 2001), volume 2265 of Lecture Notes in Computer Science, pages 328342. Springer-Verlag, 2001.
[17] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings with optimal area. Internat. J. Comput. Geom. Appl., 6:333-356, 1996.
[18] A. Garg and A. Rusu. Straight-line drawings of binary trees with linear area and arbitrary aspect ratio. In Proc. 10th International Symposium on Graph Drawing (GD 2002), volume 2528 of Lecture Notes in Computer Science, pages 320-331. Springer-Verlag, 2002.
[19] A. Garg and A. Rusu. Area-efficient order-preserving planar straight-line drawings of ordered trees. In The Ninth International Computing and Combinatorics Conference (COCOON 2003), volume 2697 of Lecture Notes in Computer Science, pages 475486. Springer, 2003.
[20] A. Garg and A. Rusu. Area-efficient planar straight-line grid drawings of outerplanar graphs. In Proc. 11th International Symposium on Graph Drawing (GD 2003), Lecture Notes in Computer Science, 2003. To appear.
[21] A. Garg and A. Rusu. A more practical algorithm for drawing binary trees in linear area with arbitrary aspect ratio. In Proc. 11th International Symposium on Graph Drawing (GD 2003), Lecture Notes in Computer Science, 2003. To appear.
[22] A. Garg and A. Rusu. Straight-line drawings of general trees with linear area and arbitrary aspect ratio. In Proc. The 2003 International Conference on Computational Science and Its Applications (ICCSA 2003), volume 2669 of Lecture Notes in Computer Science, pages 876-885. Springer, 2003.
[23] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549-568, 1974.
[24] D. E. Knuth. Computer drawn flowcharts. Commun. ACM, 6, 1963.
[25] K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fund. Math., 16:271-283, 1930.
[26] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu. IEEE Sympos. Found. Comput. Sci., pages 270-281, 1980.
[27] W. Lenhart and G. Liotta. The drawability problem for minimum weight triangulations. Theoretical Computer Science, 270(1):261-286, 2002.
[28] Achilleas Papakostas and Ioannis G. Tollis. Algorithms for area-efficient orthogonal drawings. Comput. Geom. Theory Appl., 9(1-2):83-110, 1998. Special Issue on Geometric Representations of Graphs, G. Di Battista and R. Tamassia, editors.
[29] H. C. Purchase, R. F. Cohen, and M. I. James. An experimental study of the basis for graph drawing algorithms. ACM J. Experim. Algorithmics, 2(4), 1997.
[30] Helen Purchase. Which aesthetic has the greatest effect on human understanding? In G. Di Battista, editor, Graph Drawing (Proc. GD '97), volume 1353 of Lecture Notes Comput. Sci., pages 248-261. Springer-Verlag, 1997.
[31] Md. Saidur Rahman, Shin ichi Nakano, and Takao Nishizeki. Rectangular grid drawings of plane graphs. Comput. Geom. Theory Appl., 10(3):203-220, 1998.
[32] M. Sarkar and M. H. Brown. Graphical fisheye views. Commun. ACM, 37(12):73-84, 1994.
[33] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pages 138-148, 1990.
[34] C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for upward straightline tree drawings. In Proc. 2nd Ann. Internat. Conf. Computing and Combinatorics, volume 1090 of Lecture Notes Comput. Sci., pages 106-116. Springer-Verlag, 1996.
[35] C.-S. Shin, S.K. Kim, S.-H. Kim, and K.-Y. Chwa. Area-efficient algorithms for straight-line tree drawings. Comput. Geom. Theory Appl., 15:175-202, 2000.
[36] S. K. Stein. Convex maps. Proc. Amer. Math. Soc., 2(3):464-466, 1951.
[37] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421-444, 1987.
[38] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61-79, 1988.
[39] R. Tamassia and I. G. Tollis. Efficient embedding of planar graphs in linear time. In Proc. IEEE Internat. Sympos. on Circuits and Systems, pages 495-498, 1987.
[40] R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans. Circuits Syst., CAS-36(9):1230-1234, 1989.
[41] R. Tamassia and I. G. Tollis. Tessellation representations of planar graphs. In Proc. 27th Allerton Conf. Commun. Control Comput., pages 48-57, 1989.
[42] L. Trevisan. A note on minimum-area upward drawing of complete and Fibonacci trees. Inform. Process. Lett., 57(5):231-236, 1996.
[43] L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Comput., C-30(2):135-140, 1981.
[44] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung, 46:26-32, 1936.
[45] K. Wagner. Uber eine eigenschaft der ebene komplexe. Math. Ann., 114:570-590, 1937.

