
An Integrated Framework for Concurrent Test
and Wireless Control in Complex SoCs

by

Dan Zhao

December 2003

A dissertation

submitted to the Faculty of the Graduate School

of State University of New York at Buffalo

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

Copyright by

Dan Zhao

2003

ii

To my husband, parents and sister

to the earlier generations who gave me potential,

to my current family who supports, encourages and inspires me to pursue my passions,

and most of all, to the future generations who give me a reason to dream.

iii

ACKNOWLEDGMENTS

Doctoral research is an intensely individual journey supported by a tremendous team effort.

Without the assistance of others, a dissertation cannot flourish. I have been immensely fortunate to

have a phenomenal group of people nurture me and my research over the past four years, and this

dissertation would not be complete without recognizing their efforts.

I would like to express my gratitude to my advisor, Dr. Shambhu Upadhyaya, for his exceptional

guidance and continuous support, for his insights and outlook on computer engineering in general.

I have benefited greatly during my study at UB from the effort of Dr. Upadhyaya. He knows

the importance of allowing students the freedom to find their own way, yet at the same time he is

always willing and able to give advice. He is interested not only in the research I perform while in

the Security, PrIvacy, DEpendability Research (SPIDER) Laboratory, but also in cultivating abilities

that will inspire me in my entire career.

I also want to sincerely and gratefully thank my dissertation committee members, Dr. Rama-

lingam Sridhar and Dr. Nihar Mahapatra. Dr. Sridhar has shaped my research experience in many

ways, most of all, the inspiration of my interest in VLSI world. The most significant contributions

of Dr. Mahapatra relate to teaching. I am always grateful for his role in helping me find a passion

in teaching.

I would like to acknowledge Dr. Martin Margala in University of Rochester for the thoughtful

discussions we had in the last a couple of years. His insights and collaborations have dedicated to

the completion of this work. My thanks also go to my dissertation outside reader, Dr. Krishnendu

Chakrabarty, for his cogent comments. His never-ending enthusiasm for new and interesting ideas

have impacted my doctoral experience.

I wish to thank the folks in SPIDER lab, especially, Dr. Jae Min Lee, Ramkumar, Suranjan, who

iv

have contributed to the invaluable discussion and interactions of the SPIDER family. Over the years,

I have shared great times with my friends in Buffalo. Their friendly attitude and strong dedication

have made life so much more pleasant for graduate studies in CSE. I truly appreciate their efforts

and more importantly, their warm friendship.

Foremost, of course, major gratitude must be extended to my husband, my parents and my sister

for their constant encouragement, love and support. The greatest influence on my doctoral research

and on my life is Hongyi, my husband. He is a remarkable man who, just by being himself, inspires

me. Finally, thanks to those who wrote “A Fool on the Hill”, a tune which made our pedestrian tasks

somewhat easier.

v

Contents

1 Introduction 1

2 Background and Related Work 7

2.1 Background . 7

2.1.1 Overview of Embedded Core Based SoC Test 7

2.1.2 SoC Test Challenges . 8

2.1.3 IEEE P1500 Scalable Architecture . 13

2.1.4 Test Connectivity and Communication in Billion-transistor Era 16

2.2 Related Work . 16

2.2.1 Test Scheduling . 17

2.2.2 Test Access Mechanism Design and Test Wrapper Optimization 18

2.2.3 Test Control Network . 20

2.3 Summary . 21

3 Resource Balancing Based Test Scheduling 22

3.1 Rationale . 22

3.2 SoC Modeling . 23

3.3 System Definition and Assumptions . 24

3.4 The Resource Balancing-based Test Scheduling Algorithm 26

3.4.1 Problem Definition . 26

3.4.2 The Schedule with Modified Single-Pair Shortest-Path (SPSP) Algorithm . 28

3.4.3 Grouping Scheme . 32

vi

3.4.4 All Permutation Scheduling . 33

3.5 Simulation Study . 36

3.6 Fault-Model Oriented Multiple Test Sets Scheduling 38

3.7 Summary . 40

4 Dynamic Test Partitioning Under Power Constraints 42

4.1 Rationale . 42

4.2 Problem Formulation . 43

4.2.1 System Definition . 44

4.2.2 Test Power Analysis . 45

4.2.3 Test Compatibility . 46

4.2.4 A Test Case . 47

4.3 Basic Definitions . 48

4.4 Power-constrained Concurrent Test Scheduling Algorithm 49

4.4.1 Generating max-PCTS . 49

4.4.2 Dynamic Test Partitioning and Allocation 49

4.5 Discussion and Results . 54

4.5.1 Discussion of the Comparable Approaches 54

4.5.2 Experiment Results . 55

4.6 Summary . 56

5 Constrained Scheduling with Wrapper/TAM Co-optimization 59

5.1 Problem Statement . 59

5.2 Wrapper Configuration . 61

5.3 The CTST Scheduling Algorithm . 62

5.3.1 Obtaining max-PCTS . 62

5.3.2 Obtaining Seed Set . 64

5.3.3 Adaptive TAM Assignment . 65

5.3.4 Dynamic Test Partitioning . 66

vii

5.3.5 Lower Bound . 67

5.4 Simulation and Comparison . 68

5.5 Summary . 72

6 Wireless Test Control Architecture 74

6.1 Network Components . 74

6.2 Miniature Wireless LAN . 76

6.3 Multihop Wireless Test Control Network . 77

6.3.1 Architecture Overview . 77

6.3.2 Wireless Routing Algorithm . 78

6.4 Distributed Multihop Wireless Control Network 79

6.5 Test Control Overhead and Resource Partitioning 80

6.6 The Placement of RF Nodes . 81

6.6.1 System Modeling . 81

6.6.2 Greedy Set Covering Scheme . 82

6.6.3 Grid Disk Covering Scheme . 83

6.6.4 Clustering Option . 84

6.6.5 Simulation Study . 84

6.7 Summary . 85

7 Cost Oriented Resource Distribution and System Optimization 87

7.1 An Integrated Test Model for System Resource Distribution 87

7.2 SoC Testing Cost Optimization . 89

7.2.1 Cost of Test Control Distribution . 89

7.2.2 Cost of Test Resource Distribution . 91

7.3 Cost Oriented Resource Distribution . 93

7.3.1 A Disk Covering Algorithm for RF Distribution 94

7.3.2 A Shortest Path Algorithm for TAM Routing 96

7.3.3 Adaptive TAM Redistribution . 98

viii

7.3.4 Simulation Study . 98

7.4 Summary . 101

8 Conclusion and Future Work 103

Appendix A A–109

Appendix B B–112

ix

List of Figures

2.1 System-on-Board (a) vs. System-on-Chip (b) trajectory [1]. 8

2.2 Architecture overview of embedded core-based SoC test. 9

2.3 An example of Test Bus connection. 10

2.4 A general view of the test route [2]. 11

2.5 Overview of the P1500 scalable architecture [3]. 14

2.6 Example core A with P1500 wrapper (a) and wrapper input cell (b) and wrapper

output cell (c) [3]. 15

3.1 A general SoC model. 24

3.2 Graph representation of resource sharing. 25

3.3 The graph constructed from the���matrix. 27

3.4 Parallel usage of test resources. 28

3.5 The scheduling with the modified SPSP algorithm. 31

3.6 The final schedule illustrated on parallel queues. 31

3.7 The scheduling with grouping scheme. 33

3.8 The graph constructed for all permutation scheduling. 35

3.9 Comparing the shortest paths in the schedules with WG and AP approaches. 35

3.10 ��� changing with the resource distribution. 37

3.11 Multiple test sets scheduling. 40

4.1 The comparison of our approach with the existing approaches. 43

4.2 The power estimation model. 46

x

4.3 Obtain power-constrained TCG from resource conflict graph. 47

4.4 Obtaining power-constrained TCG. 50

4.5 The new power-constrained concurrent test scheduling algorithm. 50

4.6 The three ways to allocate a new coming node. 52

4.7 The scheduling steps of the example system. 53

4.8 The comparison with two existing approaches. 56

5.1 Representing a test set as a cube. 60

5.2 Candidate set of rectangles of test��. 62

5.3 The CTST test scheduling algorithm. 63

5.4 Power-constrained TCG. 64

5.5 The corresponding conflict graph. 64

5.6 Schedule result of the example SoC. 67

6.1 A RF node in a cluster of cores. 75

6.2 The illustration of miniature wireless LAN. 76

6.3 The illustration of MTCNet. 78

6.4 The distributed multihop architecture. 80

6.5 The illustration of disk covering. 82

7.1 An integrated system framework. 88

7.2 Clusters of IPs each sharing one RF node. 90

7.3 Three cases of TAM routing. 92

7.4 The system resource distribution algorithm. 94

7.5 Listing all possible RF nodes placement. 95

7.6 Greedy set covering algorithm. 95

7.7 Multisource shortest path algorithm. 97

7.8 Illustration of the overall routing cost optimization. 99

7.9 The overall test control cost optimization. 100

7.10 Control routing cost of SoCd695. 101

xi

List of Tables

3.1 Matrix representation of test sets. 26

3.2 The matrix of test sets for an example system. 30

3.3 The test sets for all permutation scheduling. 34

3.4 The comparison between WOG, WG and AP approaches. 37

3.5 A fault model based system. 39

4.1 Test data for an SoC embedded with cores from ISCAS benchmarks. 48

4.2 Test data for cores in SoC 1 to 5. 57

4.3 Comparison of PCTS approach with GD. 57

5.1 Test data for cores in SoC 1 to 4. 69

5.2 CTST test scheduling results for SoC 1 to 4. 70

5.3 Comparison of CTST algorithm with rectangle packing approach (d695). 70

5.4 Comparison of CTST algorithm with 3-D bin packing approach [4] (d695). 71

5.5 Determine the top level TAM needs (h953). 72

6.1 Number of RF nodes with the changing of� and� when�=10. 85

6.2 Number of RF nodes with the changing of� and� when�=10. 85

7.1 Experiment results for SoCd695. 101

xii

ABSTRACT

System-on-chip (SoC) is evolving as a new design style, where an entire system is built by

reusing pre-designed, pre-verified IP (intellectual property) cores. Embedded with numerous het-

erogeneous and complex IP cores, an SoC can be viewed as an interconnected network of vari-

ous functional modules. This new design style shortens time-to-market while meeting various de-

sign requirements, such as high performance, low power, and low cost, compared to the traditional

system-on-board (SoB) design. In the meantime, however, embedded core-based SoC test becomes

a challenging task due to IP protection. In particular, there are three major issues to be addressed

in SoC test: (1) a test access path needs to be constructed for each core to propagate test stimulus

and collect test responses, (2) one needs to partition test resources and schedule IP cores to achieve

maximum parallelism, and (3) a test control network is needed to initialize different test resources

used in the test application and observe the corresponding test results at appropriate instants.

In this dissertation, we develop cost-effective SoC test and diagnosis solutions from various

crucial aspects, such as test time, test access architecture, and memory depth on automatic test

equipment (ATE). It is the very first work that introduces radio frequency (RF) technology into SoC

test control for the forthcoming billion-transistor era. We mainly address two research issues:in-

tegrated testability design and optimization of SoC test solutions, andon-chip wireless test control

network design. We first develop a general test model for SoC testability analysis, test scheduling,

and test diagnosis. We then propose several test scheduling algorithms with the consideration of var-

ious test constraints such as resource sharing, power dissipation, and fault coverage, and develop an

integrated framework that combines wrapper design, test access mechanism (TAM) configuration,

and test scheduling. More specifically, we propose a fault model oriented test set selection scheme

and formulate the test scheduling as a shortest path problem with the feature of evenly balanced re-

source usage. We also propose a dynamic test partitioning technique based on the test compatibility

graph to address the power-constrained test scheduling problem. Furthermore, we develop an inte-

grated framework to handle constrained scheduling in a way that constructs core access paths and

distributes TAM bandwidth among cores, and consequently configures the wrapper scan chains for

TAM width adaptation. Using the “Radio-on-Chip” technology, we introduce a novel test control

xiii

network to transmit control signals chip-wide by RF links. We propose three types of wireless test

control architectures, i.e., a miniature wireless local area network, a multihop wireless test control

network, and a distributed multihop wireless test control network. The proposed architectures con-

sist of three basic components, namely the test scheduler, the resource configurators, and the RF

nodes supporting the communication between the scheduler and the IP cores. Under the multilevel

tree structure, the system optimization is performed on control constrained resource partitioning and

distribution. Several challenging system design issues such as RF nodes placement, clustering, and

routing, are studied along with integrated resource distribution (including not only the circuit blocks

to perform testing, but also the on-chip RF nodes for intra-chip communication) and test schedul-

ing (concurrent core testing as well as interconnect testing). Cost oriented optimization technique

is developed which addresses several highly interdependent design issues to achieve the minimum

overall testing cost.

xiv

Chapter 1

Introduction

The evolution of nanometer technology and the increasing system complexity have given rise to the

popularity of System-on-Chip (SoC) technology, where an entire system is built on a single chip

using pre-designed, pre-verified complex logic blocks called embedded cores, which leverage the

system by the intellectual property (IP) advantage. The system designers or integrators may use the

cores which cover a wide range of functions from CPU to SRAM to DSP to analog, and integrate

them into a single silicon with their own user-defined-logics (UDLs). According to ITRS’01 [5],

at 65�� and below, design of very complex SoCs consisting of billions of transistors, operating

below one volt and running at 10GHz will become a reality by the end of the decade. SoC design

in the forthcoming billion-transistor era will involve the integration of numerous heterogeneous IP

cores. The SoC technology has shown great advantage in shortening the time-to-market of a new

system and meeting various design requirements such as high performance, low power, and low

cost, compared to the traditional system-on-board (SoB) design.

The embedded cores are delivered at the hardware description level, i.e., soft (register-transfer

level), firm (netlist), or hard (technology-dependent layout). Therefore, they are not manufactured

and tested before integration. The system integrators need to test the whole system chip, i.e., not

only the interconnects between the cores, but also the cores themselves. The core-level tests need to

be selected from the pre-designed tests for various cores and additional tests need to be developed

for user-defined-logics (UDLs) around the cores and interconnects. Such a test strategy is referred

1

to as the core-based SoC testing, which brings forth several new challenges.

As the system integrators have limited knowledge of core internals, the core tests, including

design-for-testability (DfT) techniques, test pattern generation, core internal test requirements are

often provided by core-vendors. The system integrators should consider the trade-offs between

test quality and test cost, i.e., total test time, area overhead, performance overhead and power dis-

sipation. On the other hand, various testing methods such as BIST, scan, functional and IDDQ

for many kinds of design environments are provided by different core vendors. With continued

scaling of microelectronics, a future SoC will see several hundreds of embedded components in a

single package [6] and today’s SoC will become tomorrow’s IP core [7]. Embedded with numer-

ous heterogeneous and complex IP cores, an SoC can be viewed as an interconnected network of

various functional modules. Testing such high-density high-volume core-based SoCs faces three

major issues:accessing deeply embedded cores with high-speed high-efficiency low-cost intercon-

nect structure; partitioning test resources and scheduling IP cores to achieve maximum parallelism;

and developing a high-efficiency low-cost control network to execute the test application based on

a predetermined schedule.

Reuse methodologies have forced partitioning of the test data over IP blocks, which directly

affects the cost of test in terms of both test application time and test data volume [8]. System level

scheduling is pursued to reduce the test cost, specifically, the test application time by a certain level

of parallelism while meeting the test quality. There are several constraints that must be considered

in scheduling of tests. First, in a core-based SoC, not all tests can be applied at the same time due to

resource conflicts. For example, several cores may share the same test generator or response eval-

uator, and thus cannot be tested in parallel. In addition, the power consumption must be taken into

account in order to guarantee proper operating conditions. For instance, in a self-tested system, test-

ing the cores in parallel may cause high power consumption exceeding the maximum power limit,

which will result in system damage due to overheating, while the cores may not activate simultane-

ously in normal functional mode. Finally, certain fault coverage should be achieved when testing

an SoC. There are usually a number of core-testing methods available and each of them detects dif-

ferent faults (e.g., BIST for detecting performance-related defects and non-modelled faults, while

2

external test for detecting modelled faults). More than one method may be needed to test a core in

order to achieve the required fault coverage. In general, the basic idea of scheduling is to arrange

the tests in parallel so that no resource conflict occurs with respect to the test access architecture,

and the total power dissipation of the system does not exceed the maximum power limit at any time

while minimizing the overall test application time.

Cores are deeply embedded in the SoC, and direct access to the cores is usually impossible.

Thus, an efficient test access architecture is needed to access the cores, which includes three major

components, test source and sink, test access mechanisms (TAMs) and test wrappers. TAMs trans-

port the test stimuli from the source to the core-under-test (CUT) or the test responses from CUT to

the sink. The TAM design involves the trade-offs between the transport capacity (bandwidth) of the

mechanism and the test application cost it induces, such as test time and area overhead [1]. Several

types of TAM structures such as Macro test [9], core transparency [10], multiplexed direct parallel

access [11], Boundary Scan based test [12,13], dedicated test bus [14] and TestRail [15] have been

proposed for testing core-based SoCs. At the same time, IEEE P1500 [16] provides standard, but

scalable and configurable test wrappers to achieve efficient test isolation and to ease test access. The

wrappers may provide width adaptation by serial-parallel or parallel-serial conversion, in case of a

mismatch between the width of available TAMs and the core input/output terminals.

When moving into the billion-transistor era, the core accessibility becomes essential as direct

physical access is not available, and the accessibility is severely restricted in not only testing time

but also test coverage, and consequently test cost and reliability. Although copper/low� materi-

als have been introduced for deep sub-micron interconnects, they may become insufficient as the

technology goes below 100��. Recent studies have shown that the traditional hard-wired metal

interconnect system will eventually encounter fundamental limits and may impede the advances of

future ultralarge-scale integrated systems (ULSIs) [18]. In the meantime, recent advances in silicon

integrated circuit technology are making possible tiny low-cost antennae, receivers and transmitters

to be integrated on chip. As a result, a new radio frequency (RF)/Microwave interconnect technol-

ogy has been introduced for future intra-chip communication [18, 19]. In [19], the feasibility of

employing on-chip wireless interconnects for clock distribution has been investigated. By introduc-

3

ing a novel test data and control architecture with wireless connectivity and communication, test

accessibility of deeply embedded cores from chip level pins could be significantly improved. Ac-

cordingly, a new SoC test strategy needs to be developed by using very short-range, low-power and

low-cost wireless network integrated with core-level and chip-level tests. As first step, we investi-

gate the applicability of the recently developed “Radio-on-Chip” technology on test control, which

requires transmission of only single tone wireless signals chipwide.

One of the major issues in SoC test is the development of a low-cost, efficient control network

that initializes different test resources used in test application and observes the corresponding test

results at appropriate instants. In the current technology, the control network connects the central

controller (system level controller) with local control mechanisms by wires in one of the three struc-

tures: star, bus, and multiple bus [17]. A system level controller is used to execute the test applica-

tion based on a predetermined schedule. With the integration of tiny antennae and transceivers onto

a single chip, the chip-based wireless radios can replace wires used in conventional control network

to increase accessibility, to improve bandwidth utilization, and to eliminate delay and cross-talk

noise in conventional wired interconnects.

This dissertation investigates cost-effective SoC test and diagnosis solutions from various crucial

aspects such as test time, test access architecture, and memory depth on automatic test equipment

(ATE). It is the very first work that introduces radio frequency (RF) technology into SoC test control

for the forthcoming billion-transistor era. Specifically, we develop effective algorithmic models for

optimal test scheduling and efficient test access architecture design, and establish a novel distributed

multi-hop wireless test control network based on the recent development of “Radio-on-Chip” tech-

nology. In this dissertation, we mainly address two research issues:

� Integrated Testability Design and Optimization of SoC Test Solutions

With numerous heterogeneous and complex intellectual property (IP) cores that perform dif-

ferent functions and operate at different clock frequencies integrated in a single package,

well-designed test access architecture and test scheduling algorithms are important to run

intra-core and inter-core tests efficiently, reducing overall test cost while meeting the test

quality requirements. With this motivation, we develop a general test model for SoC testabil-

4

ity analysis, test scheduling, and test diagnosis. We propose several test scheduling algorithms

with the consideration of various test constraints such as resource sharing, power dissipation,

and fault coverage, and develop an integrated framework that combines wrapper design, test

access mechanism configuration, and test scheduling. More specifically, we propose a fault

model oriented test set selection scheme and formulate the test scheduling as a shortest path

problem with the feature of evenly balanced resource usage. We also propose a dynamic test

partitioning technique based on a test compatibility graph to address the power-constrained

test scheduling problem. Furthermore, we develop an integrated framework to handle con-

strained scheduling in a way that constructs core access paths and distributes TAM bandwidth

among cores, and consequently configures the wrapper scan chains for TAM width adapta-

tion.

� On-chip Wireless Test Control Network Design

When moving into the billion-transistor era, the wired interconnects used in conventional SoC

test control models are rather restricted in not only system performance, but also signal in-

tegrity and transmission with continued scaling of the feature size. Recent advances in silicon

integrated circuit technology are making possible tiny low-cost transceivers to be integrated

on chip. Using the “Radio-on-Chip” technology, we introduce a novel test control network to

transmit control signals chip-wide by RF links. We propose three types of wireless test con-

trol architectures, i.e., a miniature wireless local area network, a multihop wireless test control

network, and a distributed multihop wireless test control network. The proposed architectures

consist of three basic components, namely the test scheduler, the resource configurators, and

the RF nodes supporting the communication between the scheduler and the IP cores. Several

challenging system design issues, such as RF nodes placement, clustering, and routing are

studied for control constrained resource partitioning and distribution. We further present the

optimization technique for the integration of system resource distribution (including not only

the circuit blocks to perform testing, but also the on-chip RF nodes for intra-chip commu-

nication), TAM design and test scheduling (concurrent core testing as well as interconnect

testing) under power and cost constraints.

5

The rest of this dissertation is organized as follows. Chapter 2 introduces the background of SoC

test including test scheduling, TAM design, wrapper configuration and test control. In Chapter 3,

we formulate the test scheduling problem as the shortest path problem and propose a novel schedul-

ing scheme based on effective balancing of resource usage. Furthermore, we propose a grouping

scheme and all-permutation scheduling to further reduce the overall test time. Chapter 4 presents

a novel adaptive scheduling algorithm in a way that dynamically partitions and allocates the tests,

consequently constructs and updates a set of dynamically partitioned power constrained concurrent

test sets, and ultimately reduces the test application time. Chapter 5 addresses the power constrained

test scheduling with dynamically varied TAM which efficiently optimizes the core assignment on

TAMs and distributes varied TAM widths to the cores according to their data bandwidth needs.

Chapter 6 introduces three types of test control architectures: miniature WLAN, multihop scheme

and distributed multihop scheme, and formulates the problem of RF nodes placement. In Chapter 7,

we first propose an integrated framework for core test and interconnect test under wireless control.

Further, we analyze and formulate SoC testing cost and present a cost oriented system optimization

algorithm which addresses several highly interdependent design issues so as to achieve the min-

imum overall testing cost. Finally, Chapter 8 concludes this dissertation and presents the future

work.

6

Chapter 2

Background and Related Work

2.1 Background

In this section, we provide an overview of current industrial practices as well as academic research

on SoC test. We also discuss industry-wide efforts by VSIA and IEEE P1500 Standard Working

Group and describe the challenges on SoC testing research.

2.1.1 Overview of Embedded Core Based SoC Test

Core-based design and reuse is emerging as a new paradigm for modern systems, where the system

integrators (or designers) reuse embedded modules in building on-chip systems similar to using

integrated circuits in a printed circuit board (PCB). These large system ICs are often referred to as

system on chips (SoCs). SoC designers formed a rich library of pre-designed, pre-verified building

blocks, the so-calledembedded cores to import technology to a new system and differentiate the

corresponding product by leveraging IP advantages [1]. The SoC design often contains a very wide

range of functional modules from programmable CPUs to DSPs, as well as application-specific

hardware, embedded memories of different types, and some analog modules. Cores sometime come

in hierarchical compositions, i.e., a complex core embeds one or several simple cores. Cores are

delivered at a wide range of hardware description levels, i.e., soft (register-transfer level), firm

(netlist), or hard (technology-dependent layout). Each type of cores has different modelling and test

requirements [20]. The SoC design process shortens time-to-market while meeting various design

7

requirements such as high performance, low power consumption, and low cost.

Although the design process in core-based SoCs is conceptually analogous to the traditional

system on board (SoB) design, the manufacturing test processes in both cases are quite different [1].

In the SoB approach, as described in Figure 2.1(a), IC design, manufacturing, and testing are per-

formed by the IC provider, prior to PCB assembly and test done by the system integrator. Whereas

in SoC trajectory, as shown in Figure 2.1(b), the core provider only delivers a description of the core

design to the system integrator, and the cores are not manufactured and tested before integration.

The system integrator is responsible for not only the design and test of UDLs, interconnect logic

and wiring between the cores, but also the test of cores themselves. SoC test is a single composite

test, i.e., the manufacturing and test are performed for the whole system chip.

(a)

System−on−Chip

(b)

IC manufacturing

SoC test

SoC manufacturing

IC test

SoB manufacturing

SoB test

Core design+test developmentIC design+test development

SoB design+test development SoC design+test development

co
re

 p
ro

vi
de

r
sy

st
em

 in
te

gr
at

or

IC
 p

ro
vi

de
r

sy
st

em
 in

te
gr

at
or

System−on−Board

Figure 2.1: System-on-Board (a) vs. System-on-Chip (b) trajectory [1].

2.1.2 SoC Test Challenges

The core-based SoC design brings forth several new challenges, especially in the domains of man-

ufacturing test and design validation and debug.

8

Core-Level Testing

Increased usage of embedded pre-designed reusable cores necessitates a core-based test strategy,

in which cores are tested as separate entities. As the system integrators in most cases, have limited

knowledge of the core internals (except for soft cores) and the cores usually appear as black boxes

with known functionality and I/Os, the core tests including DfT technique, test pattern generation,

core internal test requirements, etc., are often provided by core-vendors [1]. The system integrators

need to assemble a high-quality, but inexpensive test for each core. In other words, they should con-

sider the trade-offs between the test quality and the testing costs, i.e., total test time, area overhead,

performance overhead and power dissipation. Specifically, an efficient test scheduling scheme is

required to optimize above test issues.

Test Access to Embedded Cores

As cores are deeply embedded in the SoC, direct access to embedded cores is usually impossible.

An efficient test access architecture (as shown in Figure 2.2) is needed to access the cores, which

includes three basic components [21].

Output Test Path

TAM

Input Test Path

TAM
Wrapper

Source

SRAMROM

CUT

CPU

DRAM

SoC

UDLMPEG

Sink

Figure 2.2: Architecture overview of embedded core-based SoC test.

The first one, namely, thetest pattern source and test pattern sink creates test stimulus for core-

under-test (CUT) and compares the responses to the expected results, respectively. Test pattern

source and sink can be implemented either off-chip by external automatic test equipment (ATE),

or on-chip data generators and response evaluators as used in many built-in self-test (BIST), or

9

as a combination of them. Off-chip ATE and on-chip BIST have their specific advantages and

drawbacks. Quality and cost considerations, driven by both the circuitry type of the cores as well as

IC-level optimization issues, determine the actual choice between ATE and BIST [21]. In theory all

kinds of test patterns can be generated on-chip, but in practice only algorithmic patterns, such as the

regular patterns for memories, functional patterns for analog modules, or pseudo random patterns for

random logic can be generated on-chip without requiring an excessive amount of silicon area [22].

The second component is thetest access mechanism (TAM) which is used to transport the test

stimuli from the source to the CUT and transport responses from CUT to the sink. Many different

TAM implementations exist; even on one SoC, different TAMs may coexist. Several TAMs have

been proposed and currently used for testing core-based SoCs, such as Macro test [9], core trans-

parency [10], multiplexed direct parallel access [11], Boundary Scan based test [12, 13], dedicated

test bus [14] and TestRail [15], etc. The bus-based TAMs, such as TestBus and TestRail, provide the

flexibility to make the trade-offs between test time and silicon area, in terms of its variable width

for multiple TAMs which are connected in many different ways (see Figure 2.3). In [2], various

TestRail configuration in the context of scan-testable cores are analyzed with respect to test time.

16

16

16

1616

16
Core A

Core B Core C

32

10
2

10Core E

Core D
8

Core F

Core G

Figure 2.3: An example of Test Bus connection.

The two key parameters of any TAM are its width and length. Thewidth refers to the TAM’s

transport capacity. An efficient TAM design involves the trade-offs between the transport capacity

(bandwidth) of the mechanism and the test application costs it induces such as test time and area

overhead. The TAM bandwidth is limited by the bandwidth of source and sink and the area available

10

for TAM wiring, while the test time is affected by the test data width of the individual cores and the

TAM bandwidth [1]. More specifically, TAM width determines the maximum test data bandwidth,

which in turn determines the maximum number of chip-level test vectors and the test application

time. Thus, TAM configuration determines the possibilities for testing multiple cores in parallel

and hence affects the outcome of test scheduling. TheTAM Configuration problem is to obtain an

optimal mix of the number and width of TAMs and the assignment of cores per TAM.

The length of a TAM is the physical distance it has to bridge between source and core or core

and sink. By asserting core bypass, we can easily access the dedicated core. Thus an independent

test path is established for the CUT by bypassing the surrounding environment. The cores on the

same TAM which are not tested right now, can be put into bypass mode to shorten the access

path for the CUT. Therefore, bypass increases the accessibility for the CUT, i.e., controllable and

observable at its inputs and outputs respectively. Meanwhile, the interconnects are thoroughly tested

since they are used to transport the test data from source to sink. Figure 2.4 shows the CUT and

a test route between source and sink. As we can see, two test paths (Input/Output test path) are

established between source and sink, which arises resource (source and sink) placement and TAM

routing issues. TheTAM Routing problem is to establish a shortest test path (fastest route) to carry

test data for a CUT between the dedicated source and sink.

s’

Output test path

bypassbypassbypassbypassbypass

Input test path

r’ Sink

CUT

Source

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 2.4: A general view of the test route [2].

The third component is thecore test wrapper which functions as the interface between the

cores and the rest of the SoC and TAM. Test conflicts can be minimized by placing the core in a

wrapper. Several wrapper structures have been proposed, such as TestShell [15], TestCollar [14],

IEEE P1500’s wrapper [16], and analog wrapper [23]. According to the control signals from the

wrapper control interface (WCI), the wrapper cells switch betweennormal operation / core-internal

11

test / core-external test modes. The wrappers may providewidth adaption by serial-parallel or

parallel-serial conversion, in case of a mismatch between the width of available TAM and the core

input and output terminals [21]. TheWrapper Configuration problem is to partition a set of core-

internal scan chains into� disjoint sets, one for each TAM chain, while minimizing wrapper scan

chain length. The partitioning of the scan chains directly affects the test time� for a core as defined

in [24],

� � �� �����	�
 	��� � ���	
�	�
 	�� (2.1)

where� denotes the number of test patterns, and	� and	� denote the scan-in and scan-out time for

a core, respectively. Equation 2.1 can also be used to calculate the test time for non-scan-testable

cores. In addition, the core bypass function is also enabled by the wrapper cells so that a test route is

established for the CUT. The WCI is implemented as a state machine, which creates control signals

to the wrapper cells on the basis of the global control signal, transports test data and enables test

access to dedicated cores. The WCI can be enhanced with the embedded intelligence to execute the

system-level test in a predetermined schedule, while the test sequencing of all the cores is embedded

in a network of distributed modular controllers.

Chip-level SoC Test and Optimization

From the system integrators’ point of view, an efficient test strategy is to test the system as a

whole. The SoC test should cover the individual core test, the UDL test, as well as the test of their

interconnects. In general, the test development in chip level should consists of expanding core-level

tests to chip-level test, adding interconnect tests and chip-level test scheduling to minimize the test

time. In order to select an efficient test strategy for an SoC, several performance criteria listed below

need to be considered.

(1) overall test time. The overall test time of a testing scheme is defined as the period from the

start time of the test activity to the end time when the last test task finishes. Note that, only when all

test sets in parallel test queues finish their tasks, we say it’s the end time of the test. In other words,

the longest test queue dominates the overall test time. In addition, since the expensive testers are

shared by many cores, the shorter the test time, the lower the cost is. The test time may be reduced

12

by using shorter test vectors or better scheduling schemes.

(2) fault coverage. In order to gain a high fault coverage, the individual embedded cores and

UDLs should be tested thoroughly. This includes consideration of various fault models. In addition,

the interconnections between different system blocks also need to be tested. Finally the system level

testing should be processed to check the system functions.

(3) area overhead. The area overhead is the extra silicon area needed in order to perform the

SoC test. The area overhead should be limited within a certain area budget, and kept as small as

possible.

(4) performance overhead. As one undesirable side-effect of integrating test resources into

the system, the power consumption of the SoC may increase while its speed may decrease. This

performance overhead may vary when using different testing methods, and thus becomes a major

performance criterion when evaluating various test strategies.

2.1.3 IEEE P1500 Scalable Architecture

IEEE P1500 (Standard for Embedded Core Test, SECT) is a standard under development with

respect to various aspects of core-based testing, that aims at improving ease of reuse and facilitating

interoperability with respect to the test of core manufacturing defects, especially when various cores

of different sources are brought together in one SoC. IEEE P1500 handles two main requirements:

easy integration and interoperability (plug-n-play) on the one hand, and flexibility and scalability on

the other [25]. More specifically, it facilitates test reuse for embedded cores through core access and

isolation mechanisms, and provides testability for SoC interconnect and logic. It also facilitates core

test interoperability, with plug-n-play protocols, in order to improve the efficiency of test between

core providers and core users.

Since 1997, the IEEE P1500 Working Group [26] is working towards a Standard for Embedded

Core Test (SECT). IEEE P1500 focuses on standardizing a core test architecture which defines a

core test interface between an embedded core and the SoC, i.e., the interface between core provider

and core user. These tasks involvecore test knowledge transfer, andtest access to embedded cores.

The corresponding two main components of the standard are acore test language and acore test

13

wrapper architecture. In the development of a core-based SoC test, the core providers prepare their

cores with proper design-for-testability hardware and create test patterns for the cores, while the SoC

integrator adds system-level design-for-testability and creates an SoC test using the core-level test as

building blocks [1]. IEEE P1500 SECT does not cover the core’s internal test methods or DfT, nor

SoC test integration and optimization due to the fact that their requirements differ for different cores

and SoCs. The IEEE P1500 SECT has two levels of compliance,IEEE P1500 Unwrapped Core,

which does not have an IEEE P1500 wrapper, andIEEE P1500 Wrapped Core, which incorporates

an IEEE P1500 wrapper function [25]. The motivation is to provide the flexibility required in testing

core-based SoCs. Direct generation of a P1500-wrapped core provides the possibility to integrate

the wrapper functionality with the core itself and hence minimizes the performance and area impact

of the wrapper. By creating a 1500-unwrapped core first and then turning into a 1500-wrapped

core, it allows to take the advantage of the scalability of the standardized wrapper and instantiate

the wrapper with respect to the SoC system environment. An example application is illustrated in

Figure 2.5 that shows the chip-level connections of the 1500-compliant cores with one serial TAM

and one parallel TAM per core.

outputs

pi po pi po

... soso sisi

inputs

P1500 Wrapper P1500 Wrapper

Core NCore 1

WIRWIR

wc

source

User Defined
Test Controller

chipchip

User Defined Parallel TAM

serial TAMserial TAM

...

sink

Figure 2.5: Overview of the P1500 scalable architecture [3].

14

Scalable Wrapper

P1500’s wrapper is a thin shell around the core that provides the switching capability between

the core and its various access mechanism [3]. In addition to a mode for connecting core inputs and

outputs for functional operation, the wrapper has modes for connecting the core input and output

terminals to a mandatory single-bit wide serial TAM, and zero or more scalable multi-bit TAMs.

Figure 2.6 shows the wrapper architecture for an example core. The wrapper contains aWrapper

Instruction Register (WIR), controlling the operation of the wrapper, aWrapper Boundary Register

(WBR), consisting of multiple wrapper cells that provide controllability and observability on core

terminals, a one-bitWrapper Bypass Register, serving as a bypass for the serial TAM.

clk

si

d[0:4]

pi[0:2] po[0:2]

q[0:2]

so

wc[0:5]

(b)

(a)

FF

from core

clk

scan−in

sc wc0

wcisc

from chip

scan−in

sc

d[0:4]
q[0:2]

(c)

wrapper output cell

to chip

scan−out

wrapper input cell

to core

scan−out

FF

scan chain 0 (6FFs)

wrapper Instruction Register

core A

scan chain 1 (8FFs)

clksc

clk
Bypass

m
2

m1

m4

m
6

m
5

m
3

Figure 2.6: Example core A with P1500 wrapper (a) and wrapper input cell (b) and wrapper output

cell (c) [3].

Core Test Language

IEEE P1500 SECT’s Core Test Language (CTL) is a language for capturing and expressing test-

related information for reusable cores [3]. Within CTL, one can create enough information at the

boundary of the core to allow for successful instantiation of a wrapper, mapping of the core terminals

15

to wrapper terminals, reuse of the core test data, and testing of the user-defined logic and wiring

external to the core.

2.1.4 Test Connectivity and Communication in Billion-transistor Era

According to ITRS’01 [5], at 65�� and below, design of very complex SoCs consisting of billions

of transistors, operating below one volt and running at 10GHz will become a reality by the end

of the decade. SoC design in the forthcoming billion-transistor era will involve the integration of

numerous heterogeneous IP cores. Problems will arise from non-scalable global wire delays, failure

to achieve global synchronization, errors due to signal integrity issues, bandwidth limitation, and

difficulties associated with wired interconnects [27]. Although copper/low� materials have been

introduced for deep sub-micron interconnects, they may become insufficient as the technology goes

below 100��. Recent studies have shown that the traditional hard-wired metal interconnect systems

will eventually encounter fundamental limits and may impede the advances of future ultralarge-scale

integrated systems (ULSIs) [18].

In the meantime, recent advances in silicon integrated circuit technology are making possible

tiny low-cost transceivers to be integrated on chip. As a result, a new radio frequency (RF)/Microwave

interconnect technology has been introduced for future intra-chip communication [18,19]. In [19],

the feasibility of employing on-chip wireless interconnects for clock distribution has been inves-

tigated. The tiny receivers, transmitters and on-chip zigzag antennae are implemented in 0.18��

TSMC CMOS technology with area consumption of 0.116���, 0.215��� and 0.15���, respec-

tively. In particular, for a die size of 2.5
� microprocessor, the total area with one transmitter, 16

receiver and 17 antennae will consume about 1% area [28]. As the technology accelerates, new in-

terconnect techniques (such as RF) and on-chip micro-networks (�Network) need to be introduced

and developed for test connectivity and communication.

2.2 Related Work

With up to several hundreds of embedded components in a single package, the SoC manufacturing

test becomes a bottleneck in the SoC design process. In this section, we briefly summarize previous

16

work that are related to our research.

2.2.1 Test Scheduling

System level scheduling is pursued to reduce the test cost (specifically, the test application time) by a

certain level of parallelism while meeting the test quality. It may consume a significantly long period

of time to test each embedded core successively, given that an SoC is embedded with hundreds of

cores with extensive DfT techniques and resources. Several strategies have been proposed to shorten

the test time, for example, compressing the test vector sets [29, 30], designing an appropriate test

access architecture [2,15,31] or providing efficient system level test scheduling [32–34]. In contrast

to the other approaches, test scheduling does not influence the test quality nor the SoC design, but it

is still related to test cost. A good test schedule can help reduce test application time significantly.

Various approaches have been proposed for test scheduling. Some of them map the problem to

shop scheduling [24, 32] or bin-packing [33, 35], some are defect-oriented [36], and the others are

based on graph theory [37–41]. Among these approaches, [17] is one of the first ones to take into

account the power dissipation issues in test scheduling. However, this work has mainly focused on

the problem definition rather than proposing an algorithm to solve it. The first thorough analysis

of the power-constrained test scheduling (PTS) at IC level has been performed in [40]. It proposes

the use of a compatible test clustering technique, which is based on test compatibility to derive

the power compatible set (PCS) and apply the weighted covering table minimization technique to

obtain the optimum schedule. However, this work is limited to a theoretical analysis. In addition,

the computation is quite excessive due to the enormous covering tables generated. Recently, an

extended tree growing approach has been proposed to exploit the potential of test parallelism by

expanding the compatible tree via merging the block-test intervals of compatible subcircuits [41].

Although this approach tries to fill in the idle time with shorter tests based on the compatibility rela-

tions among the tests, it has the limitation imposed by the test session boundaries, which means, no

test can stretch across two continuing test sections. [42] has mapped the test scheduling problem to

open shop and flow shop scheduling models, and solved it through a mixed integer linear program-

ming (MILP) approach combined with precedence, preemption and power constraints. However,

17

the computation time of MILP grows exponentially with the number of cores and test resources.

[35] has transformed the problem to bin-packing and adopted a heuristic Best-fit algorithm to map

the pins of embedded cores to SoC I/O pins or configure TAM (test access mechanism) buses. How-

ever, their work has focused on TAM configuration to reduce the test time rather than the scheduling

of test sets under various constraints. [33] has proposed a test parallelization combining scheduling

scheme to minimize test time under power limitation. But the problem is quite simplified by the

assumption of the linear dependence of test time and power on scan chain subdivision.

2.2.2 Test Access Mechanism Design and Test Wrapper Optimization

A test access architecture, in the form of dedicated design-for-testability hardware guarantees test

access from the chip pins to the embedded cores and vice versa [15]. A number of test access strate-

gies and TAM structures have been proposed for testing core-based SoCs, such as Macro Test [9],

core transparency [10], multiplexed direct parallel access [11], Boundary Scan based test [12, 13],

dedicated test bus [14] and the TestRail [15], etc. Bus-based TAMs, such as TestRail [15], appear to

be the most promising, since they provide the flexibility to trade-off between the test time and sili-

con area in terms of its variable width connected in different ways (i.e., Muxed, bypass, merge and

fork). Several types of wrappers have been proposed, such as TestShell [15], TestCollar [14], IEEE

P1500’s wrapper [16], and analog wrapper [23]. IEEE P1500 has standardized the core wrapper

structure to ease of plug-n-play for testing, while maintaining the required flexibility to cope with

different cores and SoCs [16]. Based on a specific TAM structure and wrapper architecture, TAM

configuration [2,31] and wrapper optimization problems [15] have been addressed independently.

Recently, several approaches have been proposed for the integrated framework of TAM opti-

mization and test scheduling because of the dependency of test time calculation on TAM configura-

tion and wrapper adaptation. We can classify these approaches into two categories, partition-based

[43–46] and geometric packing [35,47,48]. The partition-based approaches are usually formulated

into Integer Linear Programming [44], network transportation [45], etc. In these approaches, the

top level TAM width���� is first partitioned into� fixed width TAMs��
 ��
 ���
 �� (or fur-

ther subdivided into fixed width sub-TAMs), irrespective of test data needs of individual cores and

18

test constraints between the cores. The major disadvantage of these approaches is the inflexibility

of fixed TAM partitioning resulting in inefficient test scheduling on TAMs. Goel and Marinissen

improve TAM partitioning in TR-Architect [49] by efficiently determining the number of TAMs

and their widths through multi-step optimization by merging and redistributing the critical TAMs

and/or the bottleneck TAMs. Geometric packing, specifically the bin packing approaches [35, 48],

provides efficient and effective test scheduling by assigning flexible width TAMs to the cores when

allocating individual test sets. In these approaches, there is no explicit partitioning on the total TAM

width, thus eliminating the constraints on assigning some cores to a particular width TAM.

Iyengar et al. [48,50] have proposed a rectangle-packing approach for wrapper/TAM co-optimi-

zation and test scheduling, where the rectangles, whose length and height represent the test time and

TAM width of the test respectively, are allocated into a two-dimensional bin with fixed height of

����, while minimizing the unbounded length, i.e., the overall test application time. However, in

this approach, scheduling efficiency strongly relies on the initial calculation of the preferred TAM

width for each test set. Although the TAM width of a few cores may vary when they are used to fill

in the idle time, it is fixed at the preferred value for most cores, and thus results in loss of flexibility

to dynamically adjust the TAM width and the test time. Huang et al. have proposed in [4] a restricted

3-dimensional bin packing approach to optimize test time under pin and power constraints. In this

approach, a set of cubes with their 3 dimensions being the wrapper width (width), the peak power

(length) and the test time (height) respectively are selected and packed into a 3-D bin to meet the

pin count limit and the power constraint while minimizing the height, i.e., the overall test time.

However, the division of sub-bins on the TAM width dimension explicitly adds the constraints on

assigning some cores to particular partitioning of TAMs. In addition, the 3-D bin is divided based

on the initial test times of the cores in the first level by a simplified linear relation with their peak

powers. Additionally, in all the above-mentioned bin-packing approaches, the test constraints are

checked only when allocating an individual test. That means, when scheduling a new incoming test

�� in parallel with scheduled tests�� and����, they should check whether it meets test constraints,

such as resource conflict, precedence constraint and maximum power limitation, etc. Since the

test compatibility is not thoroughly utilized, the tests scheduled later have less choices to handle

19

constraints effectively. The more the test constraints are integrated into the system, the worse the

scheduling efficiency becomes.

2.2.3 Test Control Network

The control network executes the test application based on a predetermined schedule. Most test

control schemes [17, 37, 51, 52] use a hierarchical test control methodology employing distributed

controllers. Standard interfaces are used for communication between the control units at different

levels of the hierarchy. [37] proposes a hierarchical test control architecture, within which each

module is associated with a STU (self-testable unit). A hierarchy of supervisors is used to control the

test of the entire chip in a way that the top level supervisor communicates with the ATE and controls

the lower level supervisors which in turn control the STUs. In [17], three types of hierarchical test

controllers provide a structured division of control functions: external BIST access port, BRCs

(BIST Resource Controllers) and a distributed BIST control network, which results in uniform

and simplified interface protocols between three control levels. Hierarchical test models for core-

based system-on-chips are introduced in [51,52], which are capable of testing not only JTAG (IEEE

1149.1) cores and CTAG (IEEE P1500) cores, but also the hierarchical cores (cores integrated in

a hierarchical fashion). Note that, a vast majority of SoC interconnect networks are using a mix

of buses and various forms of point-to-point data or control links. When moving into the billion-

transistor era, transmitting signals chip-wide through wires will become more difficult.

Recently, the concept of using an on-chip network as the fundamental communication architec-

ture for a complex SoC design has been proposed in [53–55]. To surpass the fundamental limitation

of conventional hard-wired interconnects, [18] has introduced an RF/wireless interconnect for fu-

ture inter- and intra-chip communications, which is based on capacitive coupling, low loss and

dispersion-free microwave signal transmission, and modern multiple-access algorithms. With the

integration of tiny antennae, receivers and transmitters, an intra-chip wireless interconnect system

is proposed in [19] for clock distribution at a chip distance of 5.6��. As the technology acceler-

ates, new interconnect techniques (such as RF) and on-chip micro-networks (�Network) need to be

introduced and developed for test connectivity and communication. Moore et al. [56] have applied

20

for the first time, the concept of wireless technique for on-wafer testing.

2.3 Summary

This chapter has provided the background and motivation for our research on SoC testing. Some of

the ideas presented in the literature have been extended and several new proposals have been made

to address the SoC testing problem as described in the remaining chapters of this dissertation.

21

Chapter 3

Resource Balancing Based Test

Scheduling

In this chapter, we formulate the test scheduling problem for embedded core-based SoCs as a short-

est path problem. We first consider a system where one test set needs to be selected for each core

from a group of alternative test sets using different test resources, and propose a novel test schedul-

ing algorithm to reduce the overall testing time. Then, we extend the algorithm to support multiple

test sets selection for each core. The basic idea is to effectively construct a shortest path going

through each core exactly once, while simultaneously balancing the parallel resource usage [57].

3.1 Rationale

Most of the existing test scheduling approaches assume that all of the given test sets have to be

used in testing. Although test scheduling with multiple test sets has been introduced in [34] and an

MILP model has been developed in [32], their work focuses on selecting a test set for each core

from a set of alternatives with a varying proportion of BIST and external test patterns, which is just

a special case of the problem being studied in our research. We assume that a core may be provided

with several test configurations, each corresponding to a test set, or a core may consist of several

functional blocks or submodules, each of them requiring a different test method in order to meet

the fault coverage requirement. For example, a core may be provided by core vendors with several

22

precomputed test patterns to provide flexibility for different system needs. Moreover, as system

integrators can purchase cores from various core vendors, multiple core vendors may provide cores

with similar functionality but different test configuration. In this case, we may consider the test

sets for a core with similar functionality as a group of candidates (i.e., alternate tests). The system

integrators need to select one from each group for their system.

We first propose a scheduling algorithm for the case where only one from a group of test sets

may be selected for each core to perform testing, and take into consideration the test conflicts and

the fault coverage requirements. Our method subsumes the problem of constrained scheduling,

where some tests may not be executed concurrently due to resource conflicts. In those existing

approaches, for example, the MILP formulation, additional constraints have to be added to formulate

the problem thus increasing complexity. However, we map the test resources into parallel queues,

and the nodes competing for the same resource will sequentially enter the particular resource queue,

thus no additional constraints are necessary. The goal behind our formulation is that we expect to

minimize the overall testing time by shortening the usage time for any particular test resource. Thus

we view test resources as queues and the test to be scheduled as the job entering corresponding

queue. The test scheduling problem is deduced to minimizing the longest queue length which

represents the overall testing time. In order to solve this problem, we formulate it as a single-pair

shortest path problem by representing vertices as test sets, directed edges between vertices as a

segment of a schedule sequence, and the edge weight as the test time of the test set at the end of

the segment. Thereby, the original problem becomes finding a shortest path from the source to the

destination by going through each core exactly once.

3.2 SoC Modeling

A general SoC model is shown in Figure 3.1, which consists of digital cores (��, �� and��,

for example), analog cores (�� and��) and mixed-signal cores (�) as well as UDLs which can

be treated as cores so as to unify the formulation. In order to facilitate test reuse, a test access

architecture, which consists of test wrappers, test access mechanism (TAM) and test source and

sink, is constructed for individual cores embedded in the SoC so that the tests can be applied and

23

the responses can be observed at the chip level. The wrappers are logic structures that surround the

cores to support both core isolation and test access to IP cores during test operation. The TAM works

as “test data highway” which propagates test patterns from the test pattern source to the core-under-

test (CUT) and test responses from the CUT to the test pattern sink, as well as the control signals to

perform SoC test in a predetermined schedule. In addition, each core may include several functional

modules, and each block may be tested by one or multiple test sets using one or multiple resources,

thus to provide flexibility for test scheduling. As we can see, if analog, digital and mixed-signal

cores do not share resources (for example, the mixed-signal tests must be executed on a special

mixed signal test bus like IEEE 1149.4 test bus), they can be separated and tested in parallel using

the same scheduling technique, as shown in Figure 3.2.

UDL

D_wrapper

D2

B1
B2

B3

B1

B2

A1

A_wrapper

r1 − r8 are different test resources
D1 − D3 are digital cores
A1 − A2 are analog cores
M is a mixed−signal core
B is denoted as different functional blocks in a corei

D_wrapper

D3

A_wrapper

B1

B2

A_wrapper

M

B1

B2

D_wrapper

D1

A2

r1 r5

r4

r7

r3

r8

r6

r2

Figure 3.1: A general SoC model.

3.3 System Definition and Assumptions

Before introducing the system definition, we list the assumptions made.

24

D2

r2 r3 r4 r5r1 r6 r7 r8

MD3 UDLD1 A1 A2

Figure 3.2: Graph representation of resource sharing.

1. It is assumed that an SoC is embedded with� testable cores with� test resources. A core

may need to perform one test (or several tests) by using one resource (or several resources)

to meet the required fault coverage.

2. Test resources are defined as test buses, BIST, or any specific set of circuit blocks for

certain test configuration. For instance, the circuit blocks, i.e., the test control logic, TPG,

compressors/analyzers, and any intervening logic, needed to execute BIST test on core
 �

are grouped as test resource�� for
�.

3. A collision occurs when the tests sharing the same resource or the tests for the same core

are performed in parallel. Therefore, a core can be tested by one test set by using certain

resource at one time. A resource can be shared among several cores, but only one resource

can be used by a given core at a given time.

4. Each test set includes a set of test vectors. Different test sets may have different test times

by using different test resources. In other words, core vendors may have provided a set

of alternative tests, and one test from each group needs to be performed to achieve the

required fault coverage.

Given the test times and the required fault coverage, the goal of the scheduling technique is to

efficiently determine the start times of the test sets to minimize the total test application time.

Formally, we define the SoC model asTM=�C, RSC, T, FC�, in which C=�
�

�
 ���

	� is a

finite set of cores,RSC=���
 ��
 ���
 ��� is a finite set of resources,FC is the fault coverage required

to test each core, andT=����
 ���
 ���
 ���
 ���
 �	�
 �	�
 ���
 �	�� is a finite set of tests, which is

shown as an� � � matrix in Figure 3.1. Test set��� represents a test set for testing core
� by

25

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

r

T

n/a

T

T

n/a

n/a

T T

r

T

r

Tn/a

n/a

T

n/a

T

n/a

T

c

r

c

c

c

c

n/a

n/a

n/a

ijT

22

1

2

3

4

n

m

nmn3

11

31 2

12

43

2m

n2n1

31

Table 3.1: Matrix representation of test sets.

using resource�� , and has a test time of��� . The entries with��� indicate that such test sets are not

available.

3.4 The Resource Balancing-based Test Scheduling Algorithm

We introduce a new scheduling algorithm for SoC testing. The basic idea of this approach is to map

the test sets to a directed graph with weighted edges, and apply the shortest path algorithm to obtain

the best testing scheme [58].

3.4.1 Problem Definition

We consider a system discussed in Sec. 3.3 and assume that one core needs only one test set (selected

from a number of candidates) to achieve the required fault coverage (however, this assumption will

be nullified in the extended approach to be discussed in Sec. 3.6). According to the matrix shown

in Table 3.1, we can construct a graph with� � � vertices, one for each entry in the matrix (see

Figure 3.3).

� If an entry is��� (which indicates that the test is not available), it is mapped to a dummy

vertex (see the shaded circles in Figure 3.3).

� A vertex��� (� representing the core index and� representing the resource index) is connected

to all vertices (except the dummy ones) in the next column (i.e.,����
�, � � � � �) with

26

directed weighted edges.

Definition 1 : The weight of an edge connecting vertices ��
 and ��� is defined as a vector,

����

 ���� � ��
 ���
 ���
 ���
 �� (only the ��� entry, corresponding to resource�� , has a value of

the test time for��� , while other entries are zeros). The major motivation behind using the weight

assignment is to allow the shortest path algorithm to consider, and moreover, balance the usage of

test resources.

� In addition, two special nodes, the source	 and the destination� are added. Node	 connects

the vertices��� (� � � � �) with the weight of��	
 ���� � ��
 ���
 ���
 ���
 ��. The vertices

�	� (� � � � �) connect to node� with a weight of (0,0,...,0).

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.
.

.

.
.

.

.

.

.
.

.

(0,0,..,0)

T

.

.

.

.
.

.

r

(0,0,..,0)

r

(0
,0

,..
,0

)r (0,0,..,0)

r

T

c c c

T

T

T

T

T

T

T

c

ds

n

n1t ,0,..,0)(

nmt ,...,0)(0,0,

n1t
,0

,..
,0

)
(

n2t
(0

,
,..

,0
)

n3t
,..

.,0
)

(0
,0

,

nm
t

,...,0)

(0,0,

n3
t

,...,0)

(0,0,

n2
t

(0,
,..,0)

n1

,0,..,0
)

n2

t

n3

31

nm

(
,0

,..
,0

)
t 31

31

2m

22

(
)

t2m
)

(0,0,...,t2m
)

(0,0,...,t2m

)
(0,0,...,t2m

,..
.,0

)

t 22

,..
.,0

)

(0
,t22

,...,0)(0,t22

,...,0)

(0,t22

321

,...
,0)

(0
,t12

t11(
,0

,..
.,0

) 11

m

3

2

1

12

(0,0,...,

(0
,

Figure 3.3: The graph constructed from the���matrix.

Definition 2 : For a path� from a vertex����
� to 	 including the vertices����
 ����
 ���
 ����

(��
 ���
 �� can be any value between 1 to�), the length of the path � � �	
 ����
 ����
 ���
 ����

����
�� is denoted by the distance vector� �� � ����
� � 	� � ���
�
�

�
�
 ����

�
�
 ���
�

�
��, where

��
� �

�	
��� ��� is the sum of the test time shown in the��� entry of the weights of all edges along

the path�. In addition,the predecessor of ����
� on the path � to 	 is recorded in����
�.

We define� queues in parallel corresponding to� resources that may be used at the same

time independently [59] (see Figure 3.4). The length of the queue denotes the total testing time

of all test sets using the resource. For example, as we can see from Figure 3.3, the nodes on the

27

first row enter resource queue�� depending on whether the path is going through them, and their

weights contribute to��
� of � �� � 	 � ��. Since the longest queue length dominates the overall

test time of a schedule, the absolute value of the path distance�� �� � 	 � ��� is defined as

������
�
�

�
�
 ����

�
�
 ���
�

�
��. Accordingly, the test scheduling problem can be converted to the

problem of finding a shortest path from	 to �. More specifically, the SoC test scheduling problem

����
��� �
 	
 �� can be formulated as follows.

usage of

.

.

.

.

.

usage of

usage of

list of parallel queues

usage of
.Tnm

t12 t
12

11

T T11

3nm r

r2
for coretest set ic

mr

ij

1r

t

t

Figure 3.4: Parallel usage of test resources.

����
��� �
 	
 ��: Given an SoC represented by an� � � matrix, construct a weighted, directed

graph���
 � (where� includes� � � vertices), with�-tuple weight function����

 ���� �

��
 ���
 ���
 ���
 �� for some edges. The length of a path� is the sum of the weights on correspond-

ing resource tuples of its constituent edges. We define the shortest-path weight from source	 to

destination� by

Æ�	
 �� �

�����
�	
��� �� � 	� ����
 �! "#�	�	 ���� 	�� �

�
 $��"���	"
(3.1)

The objective is to find a path� from source	 to destination� such that� �� � 	� �� � Æ�	
 ��.

3.4.2 The Schedule with Modified Single-Pair Shortest-Path (SPSP) Algorithm

Dijkstra’s algorithm [60] is a well-known approach to solve the single-source shortest path problem

when all edges have nonnegative weights. A variation of this algorithm can be used to find the

28

shortest path from	 to � of the graph shown in Figure 3.3. More specifically, each vertex���

maintains a�-tuple vector as the distance to the source	, � �� � ��� � 	� � ���
�
�

�
�
 ���
�

�
��,

and��� to record its predecessor on the shortest path to	. Each vertex may be in one of the following

three states:

� state 1: not updated; the distance vector is��
�
 ���
��.

� state 2: updated; the distance vector has been updated at least once.

� state 3: finalized; the distance vector is the shortest distance to	, and it will not be updated

in the future.

Initially, 	 is finalized (i.e., in state 3), with the distance vector� �� � 	 � 	� � ��
 �
 ���
 ��,

and all other vertices are not updated (i.e., in state 1), with the distance vector� �� � � �� �
	� � ��
�
 ���
��. 	 will update the distance vectors of all its neighbors (���, � � � � �,

in Figure 3.3). More specifically,� �� � ��� � 	� � ��	
 ����, ��� � 	, and the states of

these vertices will be changed tostate 2. Then, one of the vertices in state 2 with the smallest

�� �� � ��� � 	�� will be selected and finalized. Again, it will update the distance vector of all of

its neighbors. In general, when a vertex��� (with the smallest�� �� � ��� � 	�� among all vertices

in state 2) is finalized, it will update the vertices����
� (� � � � �). If � �� � ����
� � 	� %

� �� � ��� � 	� � �����
 ����
��, then� �� � ����
� � 	� � � �� � ��� � 	� � �����
 ����
��,

and����
� � ��� . This algorithm will continue until the vertex� is finalized. The pseudocode is

provided in Appendix 8. It can be shown that, the worst-case time complexity of the initialization

step is��� �, and the computation is dominated by Priority Queue operation�� ��� � �, where�

is the number of vertices and is the number of directed edges in Graph�. Therefore, the worst

case time complexity of this algorithm is�� ��� � � � ����� ��������, where� is the number

of resources and� is the number of cores in the system, respectively.

Figure 3.5 shows an example of applying the algorithm for a core-based system with 7 cores

and 4 resources (as shown in Table 3.2). We first construct a graph (see Figure 3.5(a)) as described

in Sec. 3.4.1, then we apply the modified SPSP algorithm to find the shortest path from	 to � (see

Figure 3.5(b)). As we can see from Figure 3.5(b), a shortest path from	 to � includes tests���,

29

��� �� �� �� �� �

�� 12 7 ��� 6 3

�� ��� 4 1 ��� 2

�� 3 ��� 8 12 3

�� ��� ��� 13 9 2

�� 5 7 6 2 4

�� 5 ��� 1 ��� 2

�� 4 6 ��� ��� 2

Table 3.2: The matrix of test sets for an example system.

���, ���, ���, ���, ��� and�	�, within which���, ��� and�	� are the tests sequentially entering

resource queue��, ��� and��� sequentially enter resource queue��, and��� and��� are the only

test sets using resource�� and��, respectively. The test sets in different resource queues can be

applied concurrently. The distance vector of�,� �� � � � 	� � ���
 �
 ��
 ��, represents the total

test time on the corresponding resource queue. As we can see, queue�� is the longest resource

queue which results in an overall test time of�� �� � � � 	�� � ��. We convert the shortest path

from 	 to � into a way of resource usage of the cores as shown in Figure 3.6(a). As a matter of fact,

the shortest path from	 to � is constructed by balancing the resource queue lengths. In addition,

as we have noticed, one of the advantages of the proposed approach is that there is no idle time

between successive tests (namely,explicit dead time) in any of the queues.

Proposition 1 A shortest path from source 	 to destination � is constructed in a way that balances

the resource usage queues.

Proof : As shown in Figure 3.4, we have defined� queues in parallel corresponding to� re-

sources. Meanwhile, the graph on which the modified shortest path algorithm is applied is con-

structed in a way that the rows are corresponding to the resource usage queues while the columns

are corresponding to the cores in the SoC. In other words, the vertices in column� represent all

the tests for core
� and the vertices in row� are the candidate tests entering resource queue�� .

As we have discussed earlier, each vertex maintains a�-tuple vector as the distance to source

30

T

T

T

T

T

TT

T

T

TT

T

T

TT

T

T

T T

T

T

T

T T

T

T

T

T

T

T

T

T

T

T

TT

(3,7,15,6)

(0,0,0,2)

(0
,7

,0
,0

)

(0,0,0,2)

d

ds

(4,0,0,0)

(0,4,0,6)

r2
(0,0,0,0)

(0,0,0,0)

(0,6,0,0)

(4
,0

,0
,0

)

(0,6,0,0)

(0,0,1,0)
(0,0,1,0)

(0,0,1,0)

(0,0,1,0)

(5
,0

,0
,0

)

(5
,0

,0
,0

)

(5,0,0,0)
(5,0,0,0)

(0,0,6,0)

(0,0,6,0)

(0,7,0,0)

(5
,0

,0
,0

)

(0,0,13,0)

(0,0,0,9)

(0,0,13,0)

(0,0,0,9)

(0,0,0,9)

(0,0,13,0)

(3,0,0,0)

(1
2,

0,
0,

0)
(0,7,0,0)

(a) The Graph of The Example System

(b) The Schedule Without Grouping

(3,0,14,6)

(3
,0

,0
,0

)

(5
,0

,0
,0

)

(3,0,1,6)

(0,0,1,18) (3,0,1,15)

r1

(8,7,14,6)

c1

c1

(0,0,0,6)

(0,0,1,0)

(12,0,0,0)

(0,7,0,0)

(0,0,0,6)

(0,0,1,6)

c7

(3,7,14,6) (8,13,14,6)

(12,7,14,6)

(12,7,14,6)

r3

c5

r2

r4

c6c5c2 c3 c4

s

(0
,4

,0
,0

)

(0,0,1,0)

r1

c4

c7

c6

(8,0,14,6)

c2

r3

(0,0,0,12)

(3,0,7,15)

r4

c3

(0,4,8,6)

(3,0,14,8)

(0,4,0,0)

(0,0,1,0)

(0,4,0,0)

(0,0,8,0)

(0,0,8,0)

(0,0,0,12)

54

31

33

34

53

11

23 63

6151

52

14 54

72

71

63

61

53

52

51

71

72

43

4434

33

31

23

2212

11

44

43

12

14

22

Figure 3.5: The scheduling with the modified SPSP algorithm.

(a) Without Grouping

3 12

r4

r2

r3

7

1

r1

8

6

7

90

0

0 2

0

4

(b) With Grouping

14

0

r1

r2

r3

r4

1 2

0

0

0

0

r3

r4

(c) All Permutation

r1

7

8

r2

0

0

0

7

3 7

1

2 11

C1

C2 C6

C7

C4

C7

C2

C3

C5

C3

C1

C3 C7

C1

C5 C4

C5

C6

C6 C2C4

Figure 3.6: The final schedule illustrated on parallel queues.

	, � ��� ����	� � ���
�
�

�
�
 ���
�

�
��. Each vertex��� in the graph is updated when a shorter

longest queue length can be reached when going through vertex����
�, i.e.,� ��� ����	� % � ���

����
��	�+������
�
 ����. Vertex��� is finalized when its longest queue length�� ��� ����	�� is

the smallest among updated vertices. That means, a shortest path is constructed from	 to� �� . Thus,

the shortest path from	 to � is constructed by balancing the resource queues to minimize the length

31

of the longest queue which dominates the total test time.

Proposition 2 There is no “explicit dead time” in this resource balancing approach.

Proof : Explicit dead time arises due to resource conflicts. There are two types of resource conflicts

defined in our system. 1) Several tests compete to use the same resource; 2) Different tests for the

same core are executed at the same time. Conflict of the first kind is totally overcome by the resource

balancing approach, since the tests competing for a resource sequentially enter the resource queue.

Although for each core a set of tests is provided, only one of them will be executed to test the core.

So the conflict of the second kind is eliminated.

3.4.3 Grouping Scheme

As there is no explicit dead time in resource balancing, our purpose is to effectively reduce the

implicit dead time (i.e., the idle time appearing at the beginning or the end of a schedule) at the end

of the resource queues (obviously, no implicit dead time appears at the beginning in this approach).

Because the shortest path from	 to� is set up by going through certain test set of each core from left

to right, different ordering of ready-to-schedule cores (i.e., the cores before entering the resource

queues) results in different schedule of tests, and accordingly the total test time.

We group the cores based on the number of available tests they have, such that in a group��,

all cores have& alternate test sets. This is a one time effort. For example, the right most column

of Table 3.2 shows the& value of each core. The cores in the group with smaller& value will

be scheduled earlier, because these tests have to be put into certain queues (i.e., the corresponding

cores have to be tested by using certain resources). Then, we schedule the test sets in the group with

larger& value to balance the lengths of the resource queues, and accordingly shorten the longest

queue length. Balancing queue length ultimately results in shorter overall test time.

Figure 3.7 illustrates the execution of the algorithm with grouping for the given example. Core

�,
�,
� and
	 have 2 alternate test sets and are scheduled first. With the& value of 3,
� and

� are the cores to be scheduled next, and finally
� with & of 4 is scheduled. After the graph is

constructed, the shortest path algorithm described in the previous subsection can be employed here

32

to find the shortest path. Figure 3.6(b) shows the resource usage of the final schedule. Compared

to the case without grouping, the total test time is reduced by 30% by using the grouping scheme.

As we can see, grouping the cores properly before scheduling can reduce the total testing time and

achieve better balancing of resource usage, while the worst case time complexity remains the same.

T

T

T T

T

T

TT

T

T

T

T

T

T

T

T

T

T

T

T T

T

T

T

T

T

T

TT

T

T

T

T

T

T

T

(7,7,2,11)(4,7,2,21)

(0,0,1,0) (0,4,13,0)

(0,0,1,9)

d

(0,0,2,9)
ds

(4
,0

,0
,0

)

c2

r3

(3,0,0,0)

(0,0,0,6)
(0,0,0,6) (0,0,8,0)

(0,0,0,12)
(0,0,0,12)

(0,0,0,12)
(0,0,0,2)

(0,0,6,0)

(0
,0,6,0)

(0,0,0,2)

(0,0,0,2)
(0,0,6,0)

(0
,7

,0
,0

)

(0
,7,0,0)

(5
,0

,0
,0

)

(5
,0

,0
,0

)

(0,7,0,0)

(7,14,2,9)

(0,7,0,0)

(0,6,0,0)

(0,0,1,0)

(0,0,1,0)(0,0,0,9)

(a) The Graph After Rearranging The Cores

(b) The Schedule With Grouping

(0,0,0,0)

(0,0,0,0)

(0
,0

,0
,0

)

(0,0,0,0)

r2

c6

(0,4,0,0)

c7

(7,7,8,9)

(0,7,0,0)

(12,0,0,0)
(12,0,0,0)

(7,7,2,9) (9,7,10,9)

(7,7,8,9)

c5c1

c6

(5,4,0,9) (4,0,2,9)

(4,7,2,9)

r1

r4

c7

(4,7,10,9)

s

r4

r3

r2

c5c1 c3c2

c4

(0,6,2,9)

(0,0,0,9)

(0,0,8,0)

c4

(0,0,1,0)

r1

c3

(3,0,0,0)

(0,4,0,0)

(12,6,2,9)

(4,0,2,15)

(0,0,13,0)

(0,0,13,0)
(5

,0
,0

,0
)

(5
,0

,0
,0

)

(0,6,0,0)

(4,0,0,0) (5,0,0,0)

(0,0,8,0)

(3
,0

,0
,0

)

33

31

5414

1222

44

52

53

34

11

34

33

31

14

12

11

72

71 51

52

53

54

63

61

44

43
23

22

63

61

72

71

23 43

51

Figure 3.7: The scheduling with grouping scheme.

3.4.4 All Permutation Scheduling

As we have discussed above, different ordering of the cores will affect the performance of the

schedule significantly. To perform test scheduling on a system embedded with� cores, there are��

ways for the ordering of the cores. Thus the optimal schedule can be determined after running��

times of the SPSP algorithm on all�� different ordering of cores. Clearly, the computation is quite

excessive (the worst case time complexity is������� ��������).

One way to reduce computational complexity while eliminating the effect on core ordering is to

construct a single graph with all possible permutations of the cores and running the SPSP algorithm

33

��� �� �� �� ��

�� ��� ��� ��� ���

�� ��� ��� ��� ���

�� ��� ��� ��� ���

Table 3.3: The test sets for all permutation scheduling.

once. We call this kind of schedulingAll-Permutation Scheduling. In this model, the graph is

constructed with the size of� � � � �. We list all the tests (including the dummy nodes) for the

cores in one column and copy by� times, thus there are�� possible ways for the ordering of these

cores. Note that, when we connect a vertex in column� (� � � � �	�) to a vertex in column�����,

they should not belong to the same core. We use a simple example for illustration, which includes 3

cores and 4 resources as shown in Table 3.3. We first construct the graph as shown in Figure 3.8. In

this way, we consider all�� � � permutations of the three cores in one graph: (1)
�,
�,
�; (2)
�,

�,
�; (3)
�,
�,
�; (4)
�,
�,
�; (5)
�,
�,
�; (6)
�,
�,
�. With the graph ready, the shortest path

algorithm discussed in Sec. 3.4.2 can be employed on this graph with a minor modification that a

vertex��� cannot update those neighbors in the next column if the cores they belong to have already

been included in the shortest path of��� to 	. Therefore, for each vertex��� we maintain a record

that traces the cores which consist of the shortest path from��� to 	. Note that, the all-permutation

scheduling does not result in an optimal schedule, because when we construct the shortest paths

for the vertices to	, some among the�� permutations will not be taken into consideration anymore

since those finalized vertices will not contribute to the shortest path from	 to �.

We apply the all-permutation scheduling (AP, for short) on the same example used by the sched-

ules with/without grouping (WG and WOG for short, respectively), the schedule result is shown in

Figure 3.6(c) (We do not show the graph of all-permutation scheduling due to its complexity). When

we compare the results of the three approaches, an interesting observation is that although AP ap-

proach considers all possible permutations of the cores at one time, it does not result in a better

performance than WG approach. It is because balancing the resource usage queues at the earlier

stage does not guarantee the final result to be well balanced. For example, Figure 3.9 shows the

34

s

r

r

r

r

r

r

r

r

d

T

T

T

T

r

T

T

r

T

r

T

c

T

T

m
T

n

T

r T

T

T

TT

c

T

c

T

T

T

T

T

T

3

12

2

14

22

T

11

23

12

31

14

33

22

T

23

11

31

(

34

,0
,0

,0
)

33

11

33

34

31

23

2

14

12

11

,0
,0

)

34

22

4

14T

(0
,0

,0
,

)

22T(0, ,0,0)

3

1

1

2

(0
,

4

12

3

T23
(0,0, ,0)

T
31

(
,0,0,0)

T
33

(0,0,
,0)

T
34

(0,0,0,
)

T
31

(
,0,0,0)

T
33

(0,0,
,0)

T
34

1

)

4

11

(
,0

,0
,0

)
T 1

2
(0

,
,0

,0
)

14T
(0

,0
,0

,
)

T
23

(0,0,
,0)

T22

(0,
,0,0)

T 1
2

(0
,

,0
,0

)

T 11

(
,0

,0
,0

)
14T

(0
,0

,0
,

)

T22

(0,
,0,0)

T
23

(0,0,
,0)

T
31

(
,0,0,0)

T
34

(0,0,0,
)

T
33

(0,0,
,0)

3

(0,0,0,

2

1

T

n

(0,0,0,0)
(0,0,0,0)

(0,0,0,0)

(0,0,0,0)

(0
,0

,0
,0

)
(0

,0
,0

,0
)

Figure 3.8: The graph constructed for all permutation scheduling.

T T TT T T T

T T T T T T Ts

s d

d

(a) The Shortest Path in The Schedule With Grouping

(b) The Shortest Path in All Permutation Schedule

71 12 44

44 71 12 3123

(0,0,0,0)

63

(0,0,2,0) (0,0,2,2) (3,0,2,2) (7,0,2,2) (7,7,2,11) (7,7,2,11)

31

Stage 2 Stage 6

(7,7,2,2)

(0,0,0,0) (0,0,1,9)(0,0,1,0) (0,0,2,9) (4,0,2,9) (4,7,2,9) (7,7,2,9) (7,7,8,9)(7,7,8,9)

63 23 54

(0,0,1,0)

53

Figure 3.9: Comparing the shortest paths in the schedules with WG and AP approaches.

shortest paths constructed by WG and AP approaches on the example system. Although, AP re-

sults in more balanced queues from stage 2 to 6 (for instance, when in stage 2, the longest queue

35

length in AP is 2 while in WG 9), it leads to a longer longest queue length (11) than that in WG

(9). As we can see, till the last stage, WG balances the queues by inserting tests into other queues

than the longest queue. While in AP, it balances the resource queues well at the beginning (till

stage 6, the longest queue length in AP is 7), but in the final stage, it cannot result in more bal-

anced queues rather than increasing the length of the queue of�� (which results in the longest

queue length finally). In addition, all-permutation scheduling results in much higher complexity,

�� ��� � � � ������ ���������.

3.5 Simulation Study

We evaluate the proposed scheduling algorithms by implementing them in C and running simula-

tions on Sun Enterprise 450 Workstation with four 450MHz UltraSPARC-II CPUs. We define the

balance ratio as� as given below:

� �
'��� 	 '
'���

where'��� is the total test time of a schedule without grouping while' can be either'�� or'��,

i.e., the total test time of a schedule with grouping or all-permutation scheduling.

In simulation scenario 1, we assume that there are 5 resources in the system and each core

may be provided with 1 to 3 test sets using corresponding resources to meet the fault coverage

requirement. Table 3.4 shows the comparison results of the performance of WG over WOG, as

well as AP over WOG. The number of cores (NumCore) in the SoCs changes from 10 to 45. TL

in WOG/WG/AP represents the total test time by using WOG/WG/AP approach and the balance

ratio of WG to WOG is represented by��� in percentage, while the balance ratio of AP to WOG

in ���. ET in WOG/WG/AP means the corresponding CPU execution time in these approaches,

represented in milli seconds. As we can see, WG and AP perform better than WOG since both���

and��� are greater than zero. When Comparing WG with AP, WG achieves better performance

than AP in terms of the balance ratio and the CPU execution time.��� reaches as high as 9.48%

whenNumCore is 40, while��� is 4.97%. WhenNumCore is 45, AP needs�������	 CPU time

to execute the algorithm while WG only needs��	.

36

of TL TL TL ��� ��� ET (
) ET (
) ET (
)

cores in WOG in WG in AP (%) (%) in WOG in WG in AP

10 136592.84 126900.89 131228.16 7.10 3.93 0 0 117

15 186448.02 170924.75 179253.49 8.33 3.86 1 1 837

20 224807.08 205515.81 216476.31 8.58 3.71 1 1 3394

25 270352.56 246014.63 258553.52 9.00 4.36 2 2 10005

30 318043.99 290777.63 307681.87 8.57 3.26 3 3 24359

35 365636.25 332672.08 350888.77 9.02 4.03 3 3 51968

40 413141.74 373992.82 392622.08 9.48 4.97 4 4 94022

45 455018.06 417752.12 434622.70 8.19 4.48 5 5 158427

Table 3.4: The comparison between WOG, WG and AP approaches.

10 20 30 40 50 60 70 80 90 100
5

6

7

8

9

10

11

12

13

Number of cores

G
 (

%
)

MaxNumRes=6
MaxNumRes=5
MaxNumRes=4
MaxNumRes=3
MaxNumRes=2

(a)��� changing withNumCore.

2 2.5 3 3.5 4 4.5 5 5.5 6
5

6

7

8

9

10

11

12

13

Maximum number of resources for each core

G
 (

%
)

NumRes=6
NumRes=5
NumRes=4
NumRes=3

(b)��� changing withMaxNumRes.

Figure 3.10:��� changing with the resource distribution.

In scenario 2, we study the effect of the number of cores on the test time and the maximum

number of resources (MaxNumRes) provided for each core on the test time. We first assume that

the total number of resources in the system is 6. Figure 3.10(a) shows the��� values with number

of cores ranging from 10 to 100 and maximum number of resources ranging from 2 to 6. As we

can see, with the same maximum number of resources,��� increases when the number of cores

37

increases. After it reaches a peak, it drops slowly when the number of cores increases further. For

example, whenMaxNumRes is set at 5,��� increase from 10% whenNumCore is 10. It reaches a

peak of 11.49% whenNumCore is 30. Then it drops slowly,��� decreases to 8.14% withNumCore

100. This is reasonable because, when there are small number of cores, the total number of tests

is also small and we could not balance the resource queues more evenly due to less flexibility. As

the number of cores increases, the flexibility increases, and accordingly,��� increases. On the

other hand, when there are a large number of tests, the benefit of grouping will be dominated by the

randomness, which in turn results in the dropping of the curve.

Moreover, we choose the number of cores to be 25 (for example), and change the total number

of resources in the system from 3 to 6. Figure 3.10(b) shows��� with various maximum number

of resources for each core. As we can see, with the same total number of resources,��� increases

with the maximum number of resources for each core, while with the same maximum number of

resources for each core,��� increases when the total number of resources increases. This is again

due to the change in flexibility of choosing test resources as discussed above.

Based on our simulation, we have the following result.

Proposition 3 Grouping always helps balance the resource usage queue lengths fast and efficient.

3.6 Fault-Model Oriented Multiple Test Sets Scheduling

In the previous section, we assumed that one core needs only one test set. However, it is possible

that a core may need multiple (say') test sets to achieve a certain fault coverage. For example, in

an embedded core-based SoC, several test methods are used to test the embedded memory. As we

know, in addition to stuck-at, bridge, and open faults, memory faults include bit-pattern, transition,

and cell-coupling faults. Parametric, timing faults, and sometimes, transistor stuck-on/off faults,

address decoder faults, and sense-amp faults are also considered. [61] lists various test methods for

embedded memory, i.e., direct access, local boundary scan or wrapper, BIST, ASIC functional test,

through on-chip microprocessor, etc. Different test methods may require different test resources,

use different test times, and provide different fault coverage. In this case, we can simply make

38

' virtual cores and convert the 1-' mapping to a 1-1 mapping. The only difference between this

and the single test selection we discussed earlier is that, when choosing the shortest queue, one has

to check if the selected test set conflicts with others which are for the same core and overlap the

running time. Table 3.5 shows an example system, in which the tests are to be performed using

the corresponding resources, for instance, test��
 to be applied using resource�
, test��� using

resource��, etc. For each fault model, we need to select one test method by applying certain test

from the candidates. Figure 3.11 illustrates the multiple test sets scheduling for the system, which

can be performed in two steps.

0

3r
1r

3

0

r
2r

r
r

2

f

r
1r

c0

c1

c3

00f

f01

r

Resource
Usage

Candidate Fault
Model

Core
Test setID

2r
3r
1r
1

0r

0r
3r
2r
1r
0r

10

= 4
02t = 6

10t = 3

11t = 8

12t = 12

13t = 13

15t = 5

t

31f

2c

r2
r3

r2

00t = 12

01t = 7

04t = 1
03

14

t = 6

32t = 18

33t = 11

34t = 9

20f

30f

12f

11f

31

t = 8

16t = 3
17t = 6
18t = 11

20t = 5

21t = 1

30t = 4

Table 3.5: A fault model based system.

First, we create' virtual cores for each core corresponding to' fault models. For example, in

Table 3.5, two virtual cores,($�" � � and($�" � � are generated for Core

 according to the two

fault models,!

 and!
�, respectively. For each fault model, a group of test sets with various test

times are provided for the required fault coverage. This means, each virtual core has a group of test

sets available and we select one of them to perform testing. For instance, in order to cover fault!

,

39

r0

3

r3 r3

(a) Test set selection for each fault model of cores (b) Rescheduling to avoid conflicts

7 10

Core 0_1

Core 2

r0

r1

r2

0 10

1

r1

r2

2

0

13

Core 2

Core 0

150 7

40

4

2

0

7

0 1 11

0 8

740

Core 3_0 Core 1_0

Core 0_0 Core 1_2

Core 3_1

Core 0

Core 3

Core 3

Core 1

Core 1

Core 1Core 1_1

Figure 3.11: Multiple test sets scheduling.

we need to select one test set from the alternate test sets,�

, �
� and�
�. Thus we map the multiple

tests selection model to the single test selection case. We select the tests in a way that we balance

the queues in order to avoid the situation where all the test sets will only use some of the resources

and thus result in long length in these queues. In the second step, we need to reschedule the tests

for the same core which overlap the running time. The shortest-task-first procedure is adopted here

for rescheduling [62]. The worst case complexity isO(��), where� is the number of virtual cores.

3.7 Summary

Optimal test scheduling for embedded core-based problem is a NP-hard problem. Our major tech-

nical contributions are as follows:

1. We have formulated test scheduling problem for SoCs as the single-pair shortest path prob-

lem by representing vertices as test sets, directed edges between vertices as a segment of

a schedule sequence, and the edge weight as the test time of the test set at the end of

the segment. Thereby, the problem of minimizing overall test time of a schedule has be-

come equivalent to the problem of finding a shortest path. We have presented efficient test

scheduling heuristic algorithms for its solution.

2. We have handled constrained scheduling by parallel resource usage queues. Resource con-

flict is the most commonly addressed constraint during scheduling, which arises due to the

same DfT hardware shared among several cores. In addition, certain fault coverage should

40

be achieved when testing an SoC. One method or a combination of several methods may

be needed to test a core in order to attain the required fault coverage. In this work, we have

defined� queues in parallel corresponding to� resources, thus the test sets competing for

the same resource would sequentially enter the resource usage queue.

3. Our simulation results have shown that there is no explicit dead time in our approach and

we can further reduce the implicit dead time by grouping the cores and assigning higher

priorities to those with smaller number of alternate test sets.

4. In our future work, we will discuss the modelling of mixed-signal SoCs for testability anal-

ysis, scheduling and diagnosis, and present efficient test scheduling algorithms to minimize

the test cost.

41

Chapter 4

Dynamic Test Partitioning Under Power

Constraints

In this chapter, we address the power-constrained test scheduling problem. We consider a system

where one test set or a combination of test sets may be provided for testing each core in order to

provide required fault coverage. Given a set of test sets for the cores, a set of resources, the test

access architecture and the maximum power allowance, we propose a novel test scheduling scheme

to minimize the overall test time by efficiently overlapping blocks of compatible tests of unequal

length. Moreover, the total power consumption must not exceed the maximum power allowance at

any time.

4.1 Rationale

Given a set of test sets for the cores, a set of resources, the test access architecture and the max-

imum power allowance, we propose a novel test scheduling scheme to minimize the overall test

time by efficiently overlapping blocks of compatible tests of unequal length. There are three pos-

sible schedules for unequal length tests, i.e., nonpartitioned testing, partitioned testing with run to

completion, and partitioned testing corresponding to three different test environments [37]. In an

embedded core based SoC, each core has its dedicated test scheme and local control unit to process

tests independently. Although a test must run to completion once started, a long test can proceed

42

continuously even if a shorter test in the same block finishes and a new test is initiated if it is com-

patible with the currently running tests. This gives us the flexibility to schedule the tests irrespective

of whether all tests in a session are completed or not. For instance, in Figure 4.1, we denote the

rectangle as a test set, with its length as the test time, and its width as the test power. Suppose

we have scheduled tests�� and�� which constructs a test session, and now another two tests,��

and��, which are compatible with�� (the test compatibility will be discussed later in Sec. 4.2.3),

need to be scheduled. According to our approach, both�� and�� can be allocated in this session

without interrupting�� (see Figure 4.1(c)), while the basic clique partitioning approach [38] and

the tree growing technique [41] only allow a new test to start after all tests in the previous session

are completed (see Figure 4.1(a) and (b)). The basic idea of this approach is to generate a group of

power-constrained concurrent test sets (PCTS’s) and schedule the tests based on the compatibility

relation among them [63].

Power a test session

(c) our approach(b) tree growing technique(a) clique partitioning

a test session Power

TimeTime Time

a test sessionPower

T1T1

T2 T3 T4T3T2T2

T1

Figure 4.1: The comparison of our approach with the existing approaches.

4.2 Problem Formulation

In this section, we consider the embedded-core based SoCs, where each core may have multiple

test sets using different resources. To satisfy the fault coverage requirement with minimum test

application time under certain power constraints, the testing of all cores at the system level should

be performed in parallel to the greatest possible extent.

43

4.2.1 System Definition

Without loss of generality, we assume that an SoC includes� cores, and there are� resources

available for testing. A core may need one or several tests to meet the required fault coverage. Each

test needs one or several resources, which can be used by one core at a time. In addition, a test is

associated with an execution time and a test power while using certain test resources. A collision

occurs when the tests sharing the same resource or the tests for the same core are scheduled to be

applied concurrently. Moreover, the total power consumption must not exceed the maximum power

allowance at any time. Given the test time, the test power and the required fault coverage, the goal

of the scheduling technique is to efficiently utilize the test resources, and accordingly minimize the

total test application time, while satisfying the power constraints.

More formally, we define the SoC asTM=�C, RSC, &���, T, FC, S�, where,C=�
�,
�, ...,

�� is a finite set of cores,��(� ���
 ��
 ������ is a finite set of resources,&��� is the maximal

allowed power consumption at any time,)(is the fault coverage required to test each core, and

� � ���
 ��
 ����	� is a finite set of tests. A test is defined as�� � ���
 ���, where�� is the test

time and�� is the power dissipated during the application of��. For illustration, we denote the

rectangle as a test set, with its length as the test time, and its width as the test power. To simplify

our discussion, we set the value of�� to be the maximum power dissipation over all test vectors in

�� [40]. We define�� as a set of power-constrained concurrent test sets (PCTS), with'���� as its

length.� � ���
 ��
 ������ is a finite set of PCTS’s. The power dissipation& ���� for a PCTS�� is

given as& ���� �
��

��
 �� (�� is the power of a test�� in ��, and� is the number of test sets in

��), which should satisfy the power constraints, i.e.,

& ���� � &��� (4.1)

Based on the system defined above, the power-constrained test scheduling problem or thePTS

Problem can be formulated as: Given the SoC model�� , explore the solution space of PCTS (��),

such that the total test application time is minimized (
��

��
 '����, where,� is the total number of

PCTS’s), while each test�� in set T will be executed exactly once.

44

4.2.2 Test Power Analysis

Generally speaking, the power dissipated during test mode of a system is substantially higher than

the power dissipated during normal functional operation, due to the high switching activity [17].

The power dissipation in CMOS circuit can be divided into static, short circuit, leakage and dy-

namic power consumption, and 80% of the total power dissipation is attributed to dynamic power

dissipation caused by switching of the gate outputs [64]. The power dissipation due to charging and

discharging load capacitance can be characterized by:

&� � (���� � � �
�� � ! �������� (4.2)

where(���� is the load capacitance,��� is the supply voltage,! is the global clock frequency and

������� is the switching activities (defined as the total number of gate output transitions). From

Equation 4.2, the dynamic power dissipation highly depends on the switching activity, in other

words, it is input-pattern dependent. In test mode, it depends on the test vector sets and testability

techniques, such as scan. The value of�� is instantaneously changing over time during testing,

because the power dissipation is dominated by the dynamic power dissipation caused by switching

of the gate outputs, and accordingly depends on the test vector sets in the test mode.

There exist mainly two models to estimate the power in VLSI circuits, the average power and the

worst case instantaneous power [65]. For the PTS problem, [40] presented a simplification scheme,

which assigns a fixed value for the power dissipation��, of a test��, that consists of a sequence of

test vectors applied over time. Furthermore,�� is defined as the maximum power dissipation over all

test vectors in�� (specified in Figure 4.2), and the power consumption is no more than�� when the

test�� is executed. To simplify our discussion, we also use this estimation model. During testing,

the test vectors are known for each core. We can use the test vectors generated by the ATPG as the

inputs to a power simulation tool and then build up a table of��’s for the tests��’s of each core.

As shown in Figure 4.2, the power dissipation& ���� for a concurrent test set�� is given as:

& ���� �
��
��

&� (4.3)

45

= =
= instantaneous power dissipation of test

matimum power dissipation of test
t

Power
+

tj

i

ti

p t

)+)(P(P

|

it)(P it
it)(P| i

P

t

+) |)(P(P| jtit

jPiP

jP

iP

max

j
j

t
it

)(P it)(P jt

|)(P| it

|)(P|

Figure 4.2: The power estimation model.

4.2.3 Test Compatibility

As proposed in [38], the resource conflict in an SoC is represented by a bipartite graph, called

resource conflict graph. For illustration, we use an example as shown in Figure 4.3(a), which is

similar to the one presented in [37–40]. The nodes on the top, labelled with its core number, test time

and test power, denote the test sets for the cores, while the bottom nodes denote all test resources

shared among the tests. For example, in a BIST enabled SoC, the circuit blocks which are required

to perform a test (i.e., the test control logic, TPG, compressors/analyzers, and any intervening logic)

aretest resources. An edge between two nodes represents the usage of a resource by a test. A test

may require one or several resources while a resource may be shared by several tests, which gives

rise to resource conflicts.

Based on the resource conflict graph, a test compatible graph (TCG) can be set up by denoting

the nodes as the test sets and connecting two nodes by an edge if there is no resource conflict

between them. Thereby the nodes can be partitioned into a set of cliques, and within each clique the

nodes are time compatible. Meanwhile, we need to consider power dissipation conflicts, since the

nodes in the same clique may not be compatible from the power consumption point of view when

46

T0

(a) Resource conflict graph

(155,2)

T1
(63,1)

(63,1)
T2

T3
(31,1)

(127,2)
T4

T5
(15,1)

(b) Power−constrained test compatible graph

r8r7r6r5r4r3r2r1r0

(0,155,2) (1,63,1) (2,63,1) (3,31,1) (4,127,2) (5,15,1)
T0 T5T4T3T2T1

Figure 4.3: Obtain power-constrained TCG from resource conflict graph.

executing all the tests in the same clique at the same time might exceed the maximum power limit.

Specifically, apower-constrained TCG (P-TCG) is established by deleting the edge connecting node

�� and�� if the total power of the two nodes exceeds the maximum power dissipation limit. In the P-

TCG, the pairs of nodes remaining connected are both time and power compatible and therefore can

be executed concurrently. For example, we construct the P-TCG, as shown in Figure 4.3(b), from

the resource conflict graph in Figure 4.3(a) assuming&��� to be 4. Our purpose is to obtain all

PCTS’s from the power-constrained TCG, thus we can handle the constrained scheduling problem

effectively.

4.2.4 A Test Case

In order to illustrate the proposed test scheduling algorithm, and to demonstrate its effectiveness,

we present a representative core-based SoC as a running example throughout this paper. It consists

of 7 embedded cores from the ISCAS’85 combinational benchmarks [66] and ISCAS’89 sequential

benchmark circuits [67]. Each core is provided with a test set, represented by a set of parameters,

the number of inputs and outputs, the number of scan chains and their lengths, the number of test

patterns, the number of capacitance nodes and peak switching frequency (PSF). Table 4.1 outlines

the characteristics of these circuits. The test patterns for these cores are obtained from [68], while

the related test power information is taken from [69, 70]. In addition, we assume that each core is

provided with one test set, and the number of resources is 14 and&��� is ����� .

47

core # of # of # of scan scan chain length # of # of test # of test # of cap PSF

PIs POs chains max min DFFs patterns cycles nodes

s9234 36 39 4 54 52 211 105 5723 8221 1.229

s38417 28 106 32 55 51 1636 68 3656 33988 0.737

s5378 35 49 4 46 44 179 97 4507 4440 1.249

c5315 178 123 0 - - 0 37 37 4509 1.714

s35932 35 320 32 54 54 1728 12 714 30317 1.410

c7552 207 108 0 - - 0 73 73 6252 2.020

s15850 77 150 16 34 33 534 95 3359 14343 0.722

Table 4.1: Test data for an SoC embedded with cores from ISCAS benchmarks.

4.3 Basic Definitions

Definition 1 : A maximum power-constrained concurrent test set (max-PCTS) is a PCTS, in which

no compatible tests can be added without exceeding the maximum power dissipation limit. For

example, in Figure 4.4, nodes 1, 3, 6 form a clique and the total power dissipation within the clique

satisfies the maximum power allowance. So���
 ��
 ��� is a max-PCTS.

Definition 2 : A seed is a candidate node, whose degree is the smallest among unscheduled

tests (if several candidates have the same degree, the one with the lowest index is selected), where

the degree is defined as the frequency of appearance of a node in unscheduled max-PCTS’s. The

basic idea of selecting the seed is to first schedule the tests which have the lowest compatibility.

This intuitively helps reduce the probability that only one (or very few) test is performed at a given

period, and accordingly reduce the overall test time.

Definition 3 : As to be discussed later, we will construct theDynamically Partitioned PCTS

(DP-PCTS) during scheduling. A DP-PCTS includes a number of power constrained concurrent

test sets. Each DP-PCTS has a start time and a stop time.

Definition 4 : A DP-PCTS isfull if it reaches a max-PCTS. A DP-PCTS,������ (where� is

its index in the current set of DP-PCTS’s), is called theDP-PCTS of the node �� if it can contain��.

Note that, the reason why we specify������ is to dynamically mark all the DP-PCTS’s which can

48

contain the new node�� to ease the scheduling later. A node may have long enough test time and

has to be contained in several continuing DP-PCTS’s, called aDP-PCTS sequence.

4.4 Power-constrained Concurrent Test Scheduling Algorithm

In our approach, the PTS problem is mapped into a graph theoretic problem by dynamically con-

structing a set of PCTS’s, where a long test can be uninterrupted while initiating new tests. This

relaxation will explore the restrictive space defined by concurrent block test scheduling [40, 41] so

that further reduction of the total test time can be achieved. The proposed PCTS approach is in

two steps. The first step searches for all maximum power-constrained concurrent test sets by con-

structing power-constrained TCG from the resource conflict graph. The second step performs the

scheduling of the tests.

4.4.1 Generating max-PCTS

In Step 1, we generate all max-PCTS’s, in which the tests meet all the constraints, i.e., resource

sharing and power constraint. We first construct the power-constrained TCG (see Figure 4.4 for the

test case in Sec. 4.2.4) as discussed earlier in Sec. 4.2.3. Then, we obtain all the cliques, and check

whether the total power dissipation within each clique exceeds the maximum power allowance. If

a clique with� nodes does not satisfy the power constraints, it will be sub-divided into� CTS sets,

and each of them includes�	� nodes. If any of them are a subset of a max-PCTS, it will be deleted

to reduce redundancy. If any of the remaining CTS’s are not a PCTS, they will be divided further

into smaller sets by repeating the above operations until we get the max-PCTS’s.

For the example in Figure 4.4, all maximum PCTS’s are:�
 � ��

 ��
 ���, �� � ���
 ��
 ���,
�� � ���
 ��
 ���, �� � ���
 ���, �� � ���
 ��
 ���, �� � ���
 ���.

4.4.2 Dynamic Test Partitioning and Allocation

After obtaining the max-PCTS’s, the next step is to schedule the test sets. It basically can be divided

into three main sub-steps, namely, obtaining seed, adaptive allocation of tests and dynamically

constructing DP-PCTS’s. These steps are formally presented in the algorithm of Figure 4.5.

49

T3
T4

T5

T6

T0

T1

T2

(5439,129)(206346,712)

(12848,211)

(399721,185)

(45784,168)

(274200,417)

(81126,92)

Figure 4.4: Obtaining power-constrained TCG.

15 update the degree of all the tests;
14 delete all full DP−PCTS’s;
13 update the existing DP−PCTS’s;

/* According to one of three cases */
12 construct newly created DP−PCTS;
11 allocate the node;
10 for every other test within the same max−PCTS with the seed

8 update the existing DP−PCTS’s;

9 delete all full DP−PCTS’s;

/* According to one of three cases */

7 construct newly created DP−PCTS;
6 allocate the seed;

5 obtain seed;
4 While (scheduled tests<total number of tests)

3 determine degree for each node;
2 derive the maximum power−constrained concurrent test sets;

Procedure PCTS()

1 obtain the power−constrained test compatible graph;

Figure 4.5: The new power-constrained concurrent test scheduling algorithm.

Step 1: We first select the seed according to Definition 2 and allocate it, then allocate the test

sets within the same max-PCTS of the seed and construct DP-PCTS’s. After we schedule the first

seed and other test sets within the same max-PCTS, we need to update the degree of the nodes and

search for the next seed.

Step 2: A new node�� can be allocated in either of the following three ways:

� Case 1:If its test length,��, is shorter than the length of one of its DP-PCTS, we may allocate

it in this DP-PCTS by specifying its start time as the start time of the DP-PCTS and the stop

time as the sum of its start time and its length (refer to Figure 4.6(a1)). If there are multiple

50

such DP-PCTS’s, we choose the one with the shortest length. In other words, we allocate the

test into the DP-PCTS whose length is closest to and larger than��. In case, its DP-PCTS

happens to be the end of the current schedule,�� may exceed the length of its DP-PCTS.

� Case 2: If its length is larger than any of its DP-PCTS’s but shorter than the total length of

its DP-PCTS sequence, we may allocate it in this DP-PCTS sequence by specifying its start

time as the start time of the first DP-PCTS and the stop time as the sum of its start time and

its length. Note that, if the last DP-PCTS is the end of the current schedule, the length of� �

may exceed the length of the DP-PCTS sequence (refer to Figure 4.6(b1)). Again, if there are

multiple such DP-PCTS sequences, we choose the shortest one.

� Case 3: If we could not find either a DP-PCTS or a DP-PCTS sequence as discussed in the

above two cases, then we may allocate it at the end of the schedule by specifying its start time

as the stop time of the last DP-PCTS and the stop time as the sum of its start time and its

length (refer to Figure 4.6(c1)).

Step 3: After �� has been scheduled, new DP-PCTS’s need to be constructed and some existing

DP-PCTS’s need to be updated according to the above three allocation cases:

� In case 1, the DP-PCTS of�� is split into two DP-PCTS’s, say�� and����. The stop time

of �� is the stop time of��, which is the start time of���� (See Figure 4.6(a2)). In addition,

we need to check if they are full or not. If it is full, it will be deleted. In other words, no

additional tests will be allocated into it.

� In case 2, if the stop time of�� exceeds the existing schedule, a new DP-PCTS is set up at the

end of the current schedule with its length equal to the stop time of�� minus the stop time of

the last DP-PCTS. Otherwise, similar to case 1, a DP-PCTS will be split into two. Meanwhile,

the remaining DP-PCTS’s in the sequence should be updated, and the full DP-PCTS’s will be

deleted (See Figure 4.6(b2)).

� Case 3 is quite simple since the node is added at the end of the schedule alone, a new DP-

PCTS is created with the same start time and the stop time as those of�� (See Figure 4.6(c2)).

51

D1D0 D2 D3

start time

stop time

(c1) Allocate node Ti at the end

D2
stop time

start time

D0 D4 D5

(a2) The previous DP−PCTS is split into two DP−PCTS’s

D1D0

D5D4D1D0

D4D3

D2

start time
D0 D1 D3

D4

(a1) Allocate node Ti in its DP−PCTS D1

stop time
D2

(b1) Allocate node Ti in its DP−PCTS sequence D1~D4

D5

D1 D2D3

D4

(c2) Construct a new DP−PCTS at the end

D4

D0 D1

D3

and update the DP−PCTS sequence
(b2) Construct a new DP−PCTS at the end

D3D2

Ti

Ti

Ti

Case 3

new PCTS created by case 1

Case 1

new PCTS created by case 3

Case 2Case 2

Ti

new PCTS created by case 2

Ti

Ti

Case 3

Case 1

Figure 4.6: The three ways to allocate a new coming node.

The following is an illustration of the steps of the PCTS algorithm applied to the set of max-

PCTS’s generated in Sec. 4.4.1 to find the best possible test scheduling. We select�
 as the first

seed, and allocate it at the beginning (i.e., with a start time of zero). In the meantime, we construct

the first DP-PCTS�
 � ��
�. The start time of�
 is 0, and the stop time is�
. Then we allocate

�� and�� since they are within the same max-PCTS as�
 and consequently construct three DP-

PCTS’s as shown in Figure 4.7(1). As the updated�
 � ��

 ��
 ��� is full, because it is equal to

52

�
, we will delete�
. Then we choose�� as the next seed. There are two DP-PCTS’s available

�� � ���
 ���, �� � ����. Since both of them can contain��, we choose the shortest one and

allocate�� in������ (To simplify, we will use the symbol�� to mean������ in the remainder of

the example), and the previous�� is split into two DP-PCTS’s,�� � ���
 ��� and�� � ����
as shown in Figure 4.7(2). Then we allocate other tests,�� and��, within the same max-PCTS

of ��. Since�� is compatible with the DP-PCTS sequence of��, ��, it is allocated into it and

split previous�� into �� � ���
 ��� and�� � ����. Since the updated�� � ���
 ��
 ���
reaches full, it is deleted. When we schedule test��, as there is no DP-PCTS to contain it, it is

allocated at the end of the schedule and generate a new DP-PCTS�� � ���� with length of�� (see

Figure 4.7(3)). The last test to be scheduled is��. Since�� and�� form its DP-PCTS sequence,

it is contained into this sequence. As the length of�� exceeds the length of the sequence, a new

DP-PCTS�� � ���� is created at the end. The final schedule is shown in Figure 4.7(4).

Power

FULL!

D1

Time
(1)

D1

287048
399721

274200

2796390
45784

493394

279639
2742000

399721

480847

D0 D2
D3

D4 D5D1

FULL! FULL!

45784

FULL!

399721

287048
274200

2796390 Time

D2D0

FULL!

PowerPower
D0

FULL!

45784
(3)

D0

Time

D2
D3

D4 D5 D6

D1 D3

399721

2742000
45784

(4)

FULL! FULL!

D2

900

480847

900

(2)

Time

900

900

T0

T1T1

T3
T1

T6

T0

T1

T0T0
T4

T2

T5

T6

T3

T2

T5

T6

T3

T6

Figure 4.7: The scheduling steps of the example system.

As discussed above, a test is not necessarily to be partitioned in our approach unless it is con-

tained in a sequence of DP-PCTS’s. In this case, the test is partitioned after it is allocated. In other

words, the test is scheduled as a whole and the partitioning is only used to provide the test compat-

ibility information for the remaining unscheduled tests. This partitioning property is different from

53

the test partitioning with run to completion proposed in [37], in which each test is divided into a set

of equal length sub-tests, and scheduled via a simplified approach for the equal length test problem.

Hereafter, we refer to our approach as thedynamic test partitioning, which can adapt to various

system configurations and resource allocation and sharing, and make the best fit for individual tests

in a resource and power constrained schedule.

4.5 Discussion and Results

We evaluate the proposed scheduling algorithm via simulation. In our simulation model, we use

randomly generated test sets and resources. We assume that each core may be provided with one

or several test sets, and one test set may use at least one test resource to meet the fault coverage

requirement. The performance of our approach is evaluated by comparing with other scheduling

techniques.

4.5.1 Discussion of the Comparable Approaches

In order to evaluate the performance of the new algorithm, we compared it with two existing ap-

proaches which also address the PTS problem, the block-test scheduling [40] (BT, for short) and the

greedy best-fit algorithm [33] (GD, for short). The first method is based on the concept of block-

test, which assumes that the tests cannot be partitioned so that the scheduling problem is deduced

to find a minimum cover of a set of power compatible sets. In addition, as we discussed earlier, the

computation is quite excessive due to the enormous covering tables generated. The second method

implements a fast heuristic algorithm, whose worst case complexity isO(� �), where� is the num-

ber of test sets. Note that, since our purpose is to evaluate the scheduling performance according

to the test application time, we will not consider improving parallel degree by integrating the scan

chain division technique as proposed in [33]. Although this approach allows test overlapping be-

tween each other, it greedily searches through all the scheduled tests when allocating an individual

test, and the test compatibility is checked only by then. Obviously, it does not utilize the compat-

ibility information effectively. While in our approach, we allow a long test to be contained in a

group of continuing DP-PCTS’s and the test sets are dynamically partitioned to provide effective

54

information for efficient allocation of tests in idle time. This relaxation explores a way to reduce

the explicit dead time introduced by the concurrent block test scheduling approaches. Meanwhile,

it efficiently utilizes the test compatibility relation between tests by constructing and updating a set

of DP-PCTS’s, so that further reduction of the total test time can be achieved.

The worst case complexity of the proposed PCTS algorithm (Figure 4.5) isO(� �), where�

is the number of test sets. From implementation point of view, since the identification of all the

cliques in a graph is a NP-complete problem [71], it dominates the time complexity of our approach.

Therefore, heuristic algorithms must be employed to obtain practical and near-optimal solutions [72]

for the clique identification step. We believe that if a suitable practical clique finding algorithm is

well implemented, our approach can provide a fast and efficient test scheduling.

We show the comparative results of the proposed PCTS algorithm with BT and GD. Dealing

with tests of unequal length for the same example system in Figure 4.4, we can see from Fig-

ure 4.7(4) and Figure 4.8 that our approach has a shorter overall test time (493394) than that of

the others (618915 for BT and 561672 for GD, respectively). As we know, there are three possible

schedules for unequal length tests, i.e., nonpartitioned testing, partitioned testing with run to com-

pletion, and partitioned testing according to different test environments [37]. Generally speaking,

BT belongs to nonpartitioned testing, while GD and PCTS are grouped to partitioned testing with

run to completion. In an embedded core based SoC, each core has its dedicated test scheme and

local control unit to process tests independently. Therefore, partitioned test schedules with run to

completion are usually applied to provide the flexibility to schedule the tests irrespective of whether

all tests in a session are completed or not, thus saving the overall test time significantly.

4.5.2 Experiment Results

In order to further evaluate the proposed PCTS approach, we implement GD and PCTS, and run

the experiments on 5 hypothetical but nontrivial SoCs consisting of ISCAS’85 benchmarks and

ISCAS’89 benchmark circuits. In our experiments, we assumed a single top level TAM of width

32 bits. For each SoC we generated a collection of graphs and the overall test time was averaged

over such a collection. Moreover, we assumed that each core may use up to 3 test resources to meet

55

Power

399721
257569

252130
480546

206346

(1) Block test scheduling

4933940 Time

618915

(2) Greedy scheduling algorithm

Power

Time
606067

480847

561672

611506
45784

274200
3997210

900

900

T1

T3

T3T0

T0

T5

T5

T2

T1

T2

T4

T6

T6

T4

Figure 4.8: The comparison with two existing approaches.

the fault coverage requirement, and&��� is 900mW. The test data related to each core in SoCs are

presented in Table 4.2 and the comparison of the SoCs is listed in Table 4.3.

As we can see, the PCTS approach achieves better performance than GD from the test time

point of view. The test time is reduced at least by 8.6% (e.g., when the number of cores is 12, and

the total number of resources shared among cores is 24), and it reaches 24.1% when the number of

cores is 30 (with 50 test resources).

4.6 Summary

In this chapter, we have presented a novel adaptive scheduling algorithm for testing embedded core-

based SoCs under power constraints. We have mapped the PTS problem into a graph theoretic

problem by constructing the P-TCG graph and efficiently utilizing the test compatibility between

the tests. We have performed the scheduling in a way that dynamically partitions and allocates the

tests such that a long test can be uninterrupted when initiating new tests. We have consequently

constructed and updated a set of dynamically partitioned power constrained concurrent test sets to

56

core # of # of # of scan # of # of test # of test SoC SoC SoC SoC SoC

PIs POs chains DFFs patterns cycles 1 2 3 4 5

c880 60 26 0 0 16 16 1 1 0 0 0

c1355 41 32 0 0 84 84 1 0 0 0 0

c1908 33 25 0 0 106 106 0 1 2 2 3

c2670 233 140 0 0 44 44 0 1 2 2 0

c3540 50 22 0 0 84 84 1 0 2 2 3

c5315 178 123 0 0 37 37 1 0 2 2 0

c6288 32 32 0 0 12 12 1 0 0 0 0

c7552 207 108 0 0 73 73 1 1 2 3 0

s838 35 2 1 32 75 2507 0 1 0 2 3

s1423 17 5 2 74 20 797 0 1 0 0 3

s5378 35 49 4 179 97 4507 0 1 0 2 3

s9234 36 39 4 211 105 5723 1 1 2 2 3

s13207 62 152 16 638 233 9593 0 1 2 2 3

s15850 77 150 16 534 95 3359 0 1 1 2 3

s35932 35 320 32 1728 12 714 1 1 1 2 3

s38417 28 106 32 1636 68 3656 1 1 1 2 3

Table 4.2: Test data for cores in SoC 1 to 5.

SoC # of cores # of test Test time Test time Time saved

resources in PCTS in GD (%)

1 10 20 480558 526342 8.7

2 12 24 1481378 1620940 8.6

3 20 34 1687083 1985890 15.1

4 25 40 1841535 2601573 29.2

5 30 50 2234102 2943915 24.1

Table 4.3: Comparison of PCTS approach with GD.

57

reduce the explicit dead time, and ultimately reduces the test application time. Simulation study

have shown the productivity gained by the new approach. Further research on test scheduling is not

only limited to the scheduling of the test sets provided by the core vendors, but also involves the

activities to develop the DfT techniques, to design the test controller IPs, and to efficiently partition

and distribute the test resources, which will in turn result in more efficient test scheduling.

58

Chapter 5

Constrained Scheduling with

Wrapper/TAM Co-optimization

In this chapter, we present a novel scheduling algorithm for testing embedded core-based SoCs.

Given test conflicts, power consumption limitation and top level TAM constraint, we handle the

constrained scheduling in a unique way that adaptively assigns the cores in parallel to the TAMs with

variable width and concurrently executes the test sets by dynamic test partitioning, thus reducing

the test cost in terms of the overall test time.

5.1 Problem Statement

In this section, we consider the embedded-core based SoCs, where each core may have multiple

test sets using different resources to provide required fault coverage. Given a set of test sets for

the cores, a set of resources, the test access architecture, the TAM bandwidth limitation and the

maximum power allowance, we describe the test scheduling problem based on wrapper scan chain

configuration and rectangle test set transformation such that the testing of all cores at the system

level is performed in parallel to the greatest possible extent. Therefore, the test scheduling is not

only limited to the ordering of the test sets provided by the core vendors, but also involves the issues

of core access path construction and TAM width distribution. We assume that multiple bus-based

59

TAMs, such as TestBus or TestRail1 in the system operate independently, and the cores on the same

TAM are tested sequentially. In addition, TAMs can fork and merge between cores to improve

utilization of TAM wires.

For an SoC, the chip level test ports and core input/output terminals are given, thus the total

TAM width is known. Without loss of generality, we assume that an SoC includes� cores sharing

� test resources, and a total of���� width TAMs are used for test data transportation. A core may

need one or several tests to meet the required fault coverage, and each test needs one or several test

resources involved in the test. On the other hand, a resource may be shared by several tests that gives

rise to resource conflicts. A test set, which is associated with a test power, assigned TAM width and

an execution time, is represented as a cube as shown in Figure 5.1. Note that, when several tests are

executed concurrently, their total TAM width and their total power consumption must not exceed

the maximum available TAM bandwidth and the maximum power allowance, respectively.

Test time

Power

Test time
p

i

i

w

TAM width
Power TAM width

Test timet ti

i

pi

i ti

wi

(c) Rectangle test set during

(i

(a) 3−D representation

T ti
p

(b) Rectangle test set during wrapper
power constraint checkingscan chain configuration

maxPmaxW

i i itw ,)(T ,)

Figure 5.1: Representing a test set as a cube.

More formally, we define the SoC as��=�(, ��(, &���, � , ����, ��, where,(�

�
�

�
 ���
	� is a finite set of cores,��(� ���
 ��
 ������ is a finite set of resources,&��� is

the maximal allowed power consumption at any time, and� � ���
 ��
 ����	� is a finite set of tests.

A test is expressed as a three-tuple�� � ���
 ������
 ���, where�� is the TAM width assigned to

core
�, ������ is the corresponding test time,�� is the power dissipated during the application of

��. To simplify the formulation, we use the peak power dissipated over all test vectors in� � as the

value of�� [40]. In addition, we assume that the peak power�� of a core
� does not vary with
1TestRail outperforms TestBus in terms of testing the wiring and circuitry in between the cores [49]. As we consider

core testing only in this chapter, either of them is used as the test access architecture.

60

the configuration of the wrapper scan chains. The test application time�� is decided by the test data

volume of the individual cores and the TAM width.���� is the top level TAM width of the system,

which is constrained due to pin count limitation.

We define�� as a set of power-constrained concurrent test sets (PCTS), with'���� as its length.

� � ���
 ��
 ������ is a finite set of PCTS’s. The power dissipation& ���� for a PCTS��, which is

given by& ���� �
��

��
 �� (where�� is the power of a test�� in �� and� is the total number of

tests in��), should satisfy the power constraints, i.e.,

& ���� � &��� (5.1)

In the meantime, the total TAM width of�� should meet the TAM bandwidth limit, i.e.,

� ���� �
��
��

�� ����� (5.2)

where�� is the TAM width of�� .

Thus the constrained test scheduling problem on TAMs (namely,the CTST problem) can be

stated as follows: Given the SoC model�� , we schedule� test sets on a total of���� width

TAMs in a way that���� is dynamically partitioned during test scheduling while meeting the top

level TAM width constraint and maximum power limitation, and the total test time is minimized by

concurrently executing constrained test sets.

5.2 Wrapper Configuration

Test width adaptation is usually performed by serially connecting core I/Os with internal scan chains

through test wrappers such as IEEE P1500 when there is a mismatch between test data width of

individual cores and the TAM bandwidth. Because of the stressed need for balanced wrapper scan

chains [2], the test times of scan-testable cores vary with TAM width as a “staircase” function [44],

�����
 ��� � �� �����'�������� &� ��	
�'������ (5.3)

where,'����� is the length of the wrapper scan chain when the TAM width is��, and&� is the

number of test patterns for testing��.

61

The scan chain partitioning problem has been mapped to well-known Multiprocessor Schedul-

ing and Bin Design problem in [2,44], and fast heuristic algorithms (such as FFD, BFD, etc.) have

been proposed to solve it. Here, we useBest-Fit Decreasing approach to design wrapper scan chains

with the varying of TAM bandwidth and calculate the candidate rectangle set� ����
 �������. Thus

for each test set, we actually supply a set of candidate rectangles��, as shown in Figure 5.2, when

assigning different TAM width resulting in different test time. Furthermore, we define the maximum

TAM width assigned to core
� as the bitwidth of
�, *� � �������. When�� � *�, we obtain the

minimum test time for��, ���*�� � �	
��������. In other words, even if we increase TAM width

further, the test time cannot be reduced any more.

t ’’it ’i

w ’’i
w ’i

i

T ’’T ’
Ti

i i

w _i

t _

max

min

Figure 5.2: Candidate set of rectangles of test��.

5.3 The CTST Scheduling Algorithm

The proposed scheduling algorithm includes four major steps, namely, obtaining max-PCTS, deriv-

ing seed, adaptively assigning TAM width, and dynamic test partitioning (see Figure 5.3) [73]. The

worst case time complexity of the CTST algorithm isO(� �), where� is the number of test sets.

5.3.1 Obtaining max-PCTS

As we discussed earlier, bin-packing approach is not very efficient since it checks the constraints

separately when scheduling each individual core, thus the test compatibility information is not ef-

fectively utilized, resulting in non-optimal scheduling for the remaining tests. In our approach,

we construct P-TCG and obtain power-constrained concurrent test sets, with resource conflicts and

power constraints of all tests taken into consideration at the same time.

Theorem 1 A maximal clique or a subset of maximal clique � (
 �) where no nodes can be added

without exceeding the maximum power limit in graph P-TCG � � ��
 � is a max-PCTS.

62

/* according to one of three cases as described in Sec.4.4 */

select a suitable rectangle test from the candidate set such that

randomly generate test resource distribution among the cores;
obtain the power−constrained TCG and the conflict graph;
obtain candidate rectangle set for each test;

Initialization;

Procedure CTST()

their total TAM

update the existing DP−PCTS’s;

derive the conflict sets from the conflict graph;

allocate the node;
for every test within the same max−PCTS

construct newly created DP−PCTS;

their test times are close to each other;

for each node in the max−PCTS with the seed
for each seed in the seed set

while (scheduled tests<total number of tests)

determine the first seed set;

derive the max−PCTS’s from P−TCG;

delete all full DP−PCTS’s;
search for the next seed set;

W 8
7

5

12

14
13

6

3

1
2

15

iii)

max

4

10

0
i)

ii)

, and

11

9

Figure 5.3: The CTST test scheduling algorithm.

Proof : As discussed in Sec. 4.2.3, a P-TCG� � ��
 � is constructed in a way that the vertices

in � are connected by edges in if they are both time compatible or power compatible. Thus, the

tests in a clique (i.e., a complete subgraph within which any pair of nodes are adjacent [71,74]) are

free of resource conflicts. A maximal clique (�) is a clique including a set of vertices so that any set

+ � � is not a clique. When the total power of the test sets in� exceeds the maximum power limit,

� is further divided into a set of, (smaller) cliques (��, � � � � , and
�
�� � �) so that the total

power dissipation in�� meets the power constraint and no nodes can be added without exceeding

the maximum power allowance. Clearly, each such set is a max-PCTS.

For an example SoC system, whose test data is shown in Table 4.1, we first construct the power-

constrained TCG as discussed earlier in Sec. 4.2.3. Then, we use a branch and bound method

proposed in [72] to obtain all maximal cliques from the P-TCG, and check if the total power dis-

sipation within each maximal clique exceeds the maximum power allowance. If a maximal clique

does not satisfy the power constraints, it will be divided further into smaller sets as described in

Sec. 4.4.1 until the power constraint is satisfied, resulting in max-PCTS’s. For example, for a P-

TCG as shown in Figure 5.4, we obtain the max-PCTS’s as follows:�
 � ��

 ���, �� � ��

 ���,

63

T6

T4 712 129T3

92
T2T5

211

185

168T0

T1

417

Figure 5.4: Power-constrained TCG.

T3 129

T5

211

T1

417

168T0

T6

185

T2
92

T4 712

Figure 5.5: The corresponding conflict graph.

�� � ��

 ���, �� � ��

 ���, �� � ���
 ��
 ���, �� � ���
 ��, ��� and�� � ���
 ���.
As we can see, a test set has multiple choices to be allocated in different PCTS, which provides

the flexibility to overlap PCTS’s in a way that a long test can be contained in several continuing

PCTS’s (see Sec. 5.3.4).

5.3.2 Obtaining Seed Set

In order to facilitate an efficient schedule, we start with scheduling seeds, i.e., the candidate nodes.

We first obtain the conflict sets that contain the maximal disconnected vertices in P-TCG, within

which no tests can be overlapped.

Theorem 2 A maximal clique) (
 �) in the complementary graph of P-TCG �� � ��
 � � is a

conflict set.

Proof : In P-TCG, the adjacent vertices are concurrent test sets, while the disconnected nodes are

the conflicting tests. Thus an empty subgraph of P-TCG contains the set) of vertices that cannot

be executed in parallel, i.e., the set) � � satisfies)
	
 �) � � � (1). In contrast to a set of

conflicting nodes with size� where no two vertices are adjacent in�, the same set of vertices in

complementary graph�� are all connected to each other, i.e. a clique of size�. It is quite obvious,

therefore, that a maximal clique) (
 �) that satisfies (1) together with+
	
 �+�
� �, �+ � �

is a conflict set. That means, a maximal clique of�� corresponds to the conflict set of� and vice

versa.

64

For instance, the complementary graph of Figure 5.4 (also dubbed asconflict graph) is shown

in Figure 5.5. We obtain the following conflict sets:)
 � ���
 ��
 ��
 ���,)� � ���
 ��
 ���,
)� � ���
 ���,)� � ��

 ��� and)� � ��

 ���.

Since the tests in a conflict set cannot be executed in parallel, it is likely that the largest conflict

set (in terms of the total test time) will dominate the overall test time of SoC testing. So we choose

the largest conflict set as the seed set and resolve this first. More specifically, after we obtain� ��*��

for each core, we calculate the minimum total test time of each conflict set)� ,

�)� � �
����
��

���*�� (5.4)

where B is the number of conflicting test sets in)� . The conflict set with maximum total test time

is chosen to be the seed set-� such that

�-�� � �����)��� (5.5)

and�-�� is denoted as thesize of seed set -�. For example, we choose-
 � ���
 ��
 ��
 ��� as the

first seed set for the tests shown in Figure 5.5 (�)
� = ���*� � ��� + ���*� � ��� + ���*� � �� +

���*� � ��� = 792+3876+4656+584 = 9908).

Thus, in step 2 (lines 3&15 in Figure 5.3), we choose the seed set as described above and start

the TAM assignment and test scheduling with the max-PCTS of the seed. If more than one max-

PCTS contains the seed, the one that has the largest number of nodes is selected. If they have the

same size, one of them is randomly picked. After we allocate the seeds and other tests within the

same max-PCTS of the seeds, we need to update the status of scheduled nodes and exclude them

from the sets to search for the next seed set.

5.3.3 Adaptive TAM Assignment

In order to obtain a suitable TAM assignment among the tests, we use a adaptive assignment scheme

here so that we can avoid the drawbacks induced by fixed TAM partitioning or preferred TAM width

initialization. In this scheme, we distribute the top level TAM width���� among the nodes in a

max-PCTS in a way that adaptively adjusts the TAM width for each node from its bitwidth so that

their test lengths are close to each other as much as possible. More specifically, we assign bitwidth

65

to each node in the same max-PCTS at first. For example, when we schedule the test sets within a

max-PCTS�� � ���
 �

 ��
 ���, we first assign the rectangles with the bitwidths (with their test

times�� % �� % �
 % ��) to all the tests. If their total TAM width�$��. ��� � *��*
�*��*�

exceeds����, we reduce the TAM width of node��, whose test time is the minimum among them,

to the next candidate set� �
���

�
�
 �

�
��. Then we check the total TAM width�$��. ��� again and

repeat the above operations until meeting the top level TAM width requirement (�$��. ��� ��).

In this way, we always assign the most suitable TAM width to the node and its test time is most

possibly minimized.

Based on the adaptive assigning scheme, we dynamically partition the top level TAM width

among the max-PCTS of the seed in step 3 (lines 6-9 in Figure 5.3) before allocating these nodes.

Therefore, the nodes within the max-PCTS meet all the constraints and suitable rectangle tests are

chosen from their candidate sets.

5.3.4 Dynamic Test Partitioning

After assigning suitable TAM width to each core, the last step (lines 10-14 in Figure 5.3) is to

schedule the tests. We first allocate the seed from the seed set with the lowest compatibility, and

then allocate the test sets within the same max-PCTS of the seed and construct DP-PCTS’s. After

we schedule the first seed set and other test sets within the same max-PCTS’s of the seeds, we

repeat these operations for the next seed set until all test sets are scheduled. Mainly, the scheduling

is performed in two subsequent steps, adaptive allocation of tests and dynamically constructing

DP-PCTS’s as described in Sec. 4.4.2.

For example, we schedule the tests for the SoC shown in Table 4.1 with a top level TAM width

of 32 bits. We select)
 � ���
 ��
 ��
 ��� to be the seed set and�� to be the first scheduled test

which has the lowest compatibility. We assign the bitwidth*
 � � to

 and the�	� maximum

width �� � �� to
�,2 and allocate them at the beginning. We next construct two DP-PCTS’s

�
 � ��

 ��� and�� � ��
�. As�
 equals to��, it is full. That means, it will not be considered
2After we assign 5 bit TAM width to��, the available TAM width for�� in parallel with�� is 27 bits. If we assign the

bitwidth ��=32 to��, their total TAM width exceeds the TAM limit. According to Pareto optimization [44], we choose

the next pareto optimal point for��.

66

to allocate a new node. Similarly, we choose the�	� maximum width�� � �� to
� and schedule it

in parallel with

. Previous�� is split into two DP-PCTS’s�� � ��

 ��� and�� � ��
�. As to

the third seed��, we adaptively partition the total TAM width among nodes 3, 6, 2 in the max-PCTS

of ��, resulting in the assignment of bitwidth*� � ��, *� � � to
� and
�, respectively. Since�� is

compatible with�
, it is contained in��. A new DP-PCTS�� � ���� is generated, and previous

�� is updated to�� � ��

 ���. Then we allocate�� and�� which are in the same max-PCTS of

��, and construct new DP-PCTS’s of�� � ���
 ��
 ���,�� � ���
 ��� and�� � ����. For the

final test��, since we cannot find a DP-PCTS to contain it, it is allocated at the end and uses up the

total TAM width as much as it can and results in a total test time of 10436 as shown in Figure 5.6.

i

c5
c6

c2 5

32
30

32
5

20
30
19
7
5

18
5

labels the cores which use the 2nd max width
labels the cores which use up the bitwidth

core # bitwidth assigned TAM width
w

c4

ic

c3

c0
c1

30
20

iW=32

c0

c4 c1
c3

c6

c5

30

20
7

5 c2

5
19 18

1320
104365880 9300

9852687951960

T
A

M
 w

id
th

Test time

D1 D3D2D0 D4 D5 D6

FULL! FULL! FULL!

Figure 5.6: Schedule result of the example SoC.

5.3.5 Lower Bound

As we can see, a seed set is chosen from the conflict sets with maximum total test time, i.e., the

longest sequential test time. After allocating the seeds in current seed set and other tests within the

same max-PCTS of the seeds, we update the conflict sets and search for the next seed set. Therefore,

a lower bound � of the overall testing time is found to be the sum of the size of the seed sets,

� �
����
��

�-�� (5.6)

where/ is the total number of seed sets. For this example, only one seed set-
 � ���
 ��
 ��
 ���
is needed to finish the scheduling, thus the lower bound is� � �-
� � ����.

67

Theorem 3 For an SoC with � cores and a total of���� TAM width, a lower bound on the overall

testing time � is given by

� �
����
��

���
�
�
����
��

���*��� (5.7)

Proof : The testing time for core
� depends on the TAM width assigned to it. Clearly, the testing

time for
� is at least���*��. For an SoC, the resource conflicts and power constraint among the

cores are represented by P-TCG,� � ��
 �. A conflict set of vertices, i.e., a maximal subset

� �
 � such that no two vertices in� � are joined by an edge in , are the test sets which can

only be tested in sequence. Since the overall system testing time is constrained by the longest test

times of sequential tests, the largest conflicting sequence with the size of�����
����

��
 ���*��� will

dominate the overall testing time, i.e.,

� �
����
��

���
�
�
����
��

���*���

This value is intuitively the sum of the test times of all seeds when assigned to the maximum TAM

width.

5.4 Simulation and Comparison

We evaluate the proposed scheduling algorithm via simulation running on750MHz SunBlade1000

with 512MB memory. In our simulation model, each core is provided with one test set, and may

use up to 3 test resources to meet the fault coverage requirement, and&��� is 900mW. Given the

number of cores and the number of resources, we randomly generate resource distribution among

the cores. Moreover, for each SoC we generate a collection of graphs and the overall test time is

chosen to be the minimum over such a collection. We run the experiments on 4 hypothetical but

nontrivial SoCs consisting of ISCAS’85 [66] and ISCAS’89 [67] benchmark circuits. The test data

related to each core in SoCs are presented in Table 5.1. We also extend the experiments on two

ITC’02 SoC test benchmarks [75], d695 and h953 (which is the only benchmark that contains the

power consumption information), for some valuable results. The performance of our approach is

evaluated by comparing with the lower bound and various bin packing approaches in [4,50] (which

take power consumption limitation into consideration).

68

core # of PIs # of POs # of scan scan chain length # of test SoC 1 SoC SoC SoC

chains max min patterns (d695) 2 3 4

c5315 178 123 - - - 37 - 1 - 2

c6288 32 32 - - - 12 1 1 - 2

c7552 207 108 - - - 73 1 1 - 2

s838 35 2 1 32 32 75 1 1 3 2

s1423 17 5 2 37 37 20 - 1 2 2

s5378 35 49 4 46 44 97 1 2 3 2

s9234 36 39 4 54 52 105 1 2 2 2

s13207 62 152 16 41 39 233 1 1 3 2

s15850 77 150 16 34 33 95 1 1 3 2

s35932 35 320 32 54 54 12 1 1 1 2

s38417 28 106 32 55 51 68 1 2 1 2

s38584 38 304 32 45 44 110 1 1 2 3

Table 5.1: Test data for cores in SoC 1 to 4.

Table 5.2 shows the schedule results of the CTST approach on the 4 SoCs when the top level

TAM equals to 64 or 32. Both the lower bound and the overall test time are listed for compar-

ison. More experiments are performed on d695 and h953 when���� and (or)&��� vary (see

tables 5.3, 5.4 and 5.5). We also compare the results of d695 with the rectangle packing approach

proposed in [50], and show the percentage of reduced test application time. Meanwhile, we com-

pare the total test application time of d695 with the 3-D bin packing approach proposed in [4] for

a given number of TAM width limit and the peak power constraint.�� presents the percentage

change in testing time over [4]. From the simulation data, we have the following observation:

(1) Our approach performs well, the results are reasonably close to the lower bound. For d695

from Table 5.3, the test time is 23% more above the lower bound when����=16, this rate is

reduced to 16% when���� is increased to 64. In addition, the lower bound from [49] is also listed

in Table 5.3 for comparison. As we have noticed, when���� � ��, our lower bound is lower

than what reported in [49]. That is because we use the minimum test time when optimally assigning

69

the bitwidth to each seed during the calculation of lower bound on the seed set. Most cores cannot

reach this optimal value when the top level TAM width is low (���� � ��), thus resulting in a

loose lower bound in this case.

SoC # of cores # of test ����=64 ����=32

resources Lower bound Test time Lower bound Test time

1 10 18 10836 12954 22602 25612

2 15 24 18286 18880 29741 31736

3 20 34 25590 26578 49987 50947

4 25 40 30184 30193 55230 57535

Table 5.2: CTST test scheduling results for SoC 1 to 4.

Top level TAM Lower bound Lower bound Test time in CTST Test time in [50] Time saved

���� in CTST in [49] ����+RSC preemptive+���� �� (%)

16 33454 40951 43619 47574 8.31

24 24982 27305 29699 - -

32 22602 20482 25612 29039 11.80

40 17319 16388 18909 - -

48 16159 13659 18186 28441 36.06

56 14192 11709 14402 - -

64 10836 10247 12954 20004 35.24

Table 5.3: Comparison of CTST algorithm with rectangle packing approach (d695).

(2) For a given SoC, the overall test time is reduced further when increasing the top level TAM

bandwidth. That is because the bitwidth of the cores increases accordingly and results in shorter test

time. For any SoC in Table 5.2, both the lower bound and the test time when����=64 are lower

than those when����=32.

(3) Our approach achieves a better performance than the rectangle packing approach by adap-

tively assigning the TAM width and concurrently executing tests by dynamic test partitioning. As

we can see from Table 5.3, for a fixed TAM bandwidth, we can reduce the test time further. The

test application time reduced by applying our approach is at least by 8.31% and it reaches as high

70

as 36.06%. On the other hand, for a fixed test time, we use less TAM bandwidth. For example, for

a test time of 18909, we use TAM width of 40 for SoC 1 while the approach in [50] needs 64 TAM

widths to reach 20004.

(4) When increasing either the top level TAM width or the total power allowance, the overall

test time can be further reduced. This reduction in testing time has been confirmed in [4]. However,

except the power and pin count constraints, [4] does not take the resource conflicts into consid-

eration. For example, several cores may share the same test generator or response evaluator, and

thus cannot be tested in parallel. Our approach provides the solution to more comprehensive con-

strained scheduling problem which considers various constraints including not only the power and

TAM constraints but also the resource conflicts between the cores. The schedule results for d695 are

shown in Appendix 8 with the related power and resource conflicting information in P-TCG when

����=32 and&��� changes from 1500 to 2500. When comparing with [4], further reduction is

obtained in the overall testing time as shown in Table 5.4, which implies that the CTST algorithm

achieves better performance over [4].

���� ����=32 ����=48 ����=64 ����=80 ����=96 ����=112 ����=128

CTST 26495 20432 15510 15510 15510 15510 15510

1500 3-D 45560 31028 27573 20914 20914 16841 16841

�� (%) 41.84 34.15 43.75 25.84 25.84 7.90 7.90

CTST 26158 18824 15270 15184 13242 13242 13169

1800 3-D 44341 29919 24454 20467 18077 14974 14899

�� (%) 41.01 37.08 37.56 25.81 26.75 11.57 11.61

CTST 26027 17996 14267 13737 13737 13737 13737

2000 3-D 43221 29419 24171 19206 17825 14128 14128

�� (%) 39.78 38.83 40.97 28.48 22.93 2.77 2.77

CTST 25669 17779 12696 10572 10572 10572 10572

2500 3-D 43221 29023 23721 19206 15847 14128 12993

�� (%) 40.61 38.74 46.48 44.95 33.29 25.17 18.63

Table 5.4: Comparison of CTST algorithm with 3-D bin packing approach [4] (d695).

71

(5) By applying our approach, we may optimally determine the top level TAM needs while

minimizing the total test application time. For instance, SoC h953 has 12 inputs and 41 outputs. As

we can see from Table 5.5, the minimum test application time is achieved for&��� � ����� when

the top level TAM is settled at 11.

Top level TAM ���� � �� ��� ���� � �� ��� ���� � �� ���

���� CTST 3-D CTST 3-D CTST 3-D

(����+�
�) (����) (����+�
�) (����) (����+�
�) (����)

8 132821 - 132821 - 132821 -

9 123045 - 119357 - 119357 -

10 123045 - 119357 - 119357 -

11 122457 - 119357 - 119357 -

12 122457 - 119357 - 119357 -

16 122457 - 119357 - 119357 -

32 122457 122636 119357 119357 119357 119357

48 122457 122636 119357 119357 119357 119357

64 122457 122636 119357 119357 119357 119357

80 122457 122636 119357 119357 119357 119357

96 122457 122636 119357 119357 119357 119357

112 122457 122636 119357 119357 119357 119357

128 122457 122636 119357 119357 119357 119357

Table 5.5: Determine the top level TAM needs (h953).

5.5 Summary

We have presented a novel TAM scheduling algorithm based on a graph-theoretic formulation. Our

major technical contributions are as follows:

1. We have formulated the test scheduling problem for SoCs as a graph theoretic problem by

constructing the power-constrained test compatibility graph and conflict graph. From the

conflict graph, we chose suitable candidate sets to initiate the scheduling. Based on the test

72

compatibility graph, we obtained the power-constrained test sets for concurrent scheduling.

2. We have scheduled constrained tests on TAMs. The test scheduling problem has been

deduced to provide test access to the core level test terminals from the system level pins

and efficiently scheduled the tests so as to reduce the total test application time.

3. We have studied the trade-off between the assigned TAM width and the corresponding

test time of each core. The TAM width for each test was properly selected according to

the power-constrained concurrent test sets (PCTS). Specifically, since a group of tests in a

PCTS might be scheduled concurrently and utilized all available TAM bandwidth (which

is a known parameter), we partitioned the bandwidth among tests in a way that the tests in

the same PCTS have their test lengths close to each other. Thus the test time of each core

was most possibly minimized while meeting test data bandwidth needs.

4. We have reduced the explicit dead time. The explicit dead time, i.e., the idle time between

test sets, was reduced by thedynamic test partitioning scheme. The test sets in continuing

PCTS’s overlapped with each other in a way that a new test can be initiated immediately

when a shorter test in a test session finishes.

5. Further research is needed to bring forth more SoC design and test features into test schedul-

ing, such as test resource partitioning, design for testability and design for reconfiguration,

etc.

73

Chapter 6

Wireless Test Control Architecture

When moving into the billion-transistor era, the direct or bus interconnects used in conventional SoC

test control models are rather restricted in not only system performance, but also signal integrity and

transmission with continued scaling of feature size. On the other hand, recent advances in silicon

integrated circuit technology are making possible tiny low-cost transceivers to be integrated on

chip. Based on the recent development in “Radio-on-Chip” technology, a new distributed multihop

wireless test control network is proposed. In this chapter, we first introduce the basic network

components. Then we present three proposed test control architectures, i.e., miniature wireless

local area network, multihop wireless test control network, and distributed multihop wireless test

control network.

6.1 Network Components

Three basic components are used in the proposed test control architectures: the test scheduler, the

resource configurators and the RF (radio frequency) nodes dispersed on the SoC supporting the

communication between the scheduler and the IP cores. The test scheduler is employed as a central

controller, it (1) carries out the chip level test procedure, including the testing of the interconnects

between the cores, the testing of the user-defined logics around the cores and the core testing,

(2) communicates with the resource configurators and also with the chip external, such that no

conflict arises during resource utilization and test application, (3) configures the routing of the test

74

cluster

RF
node

C1 C2

C4C3

Figure 6.1: A RF node in a cluster of cores.

control path for each individual core, and (4) provides proper test control signals to carry out the

test procedure of the selected core. The function of the resource configurator is to configure the

test resources required for testing a particular core on command of the scheduler. A set of test

resources (i.e., the circuit blocks required to perform testing) is distributed in the system for testing

the cores. At any particular control step, each resource is configured into its appropriate operating

mode by the control signals. In case when more than one test shares common test resources, the

resource configurators are activated such that no conflicts result in the use of resources. The RF

node works as a wireless test access node that has a radio-frequency interface (i.e., tiny low cost on-

chip transceiver) for (two-way) communication between the scheduler and IP cores. Particularly,

one RF node is dedicated to the scheduler. The distribution of RF nodes chip-wide provides the

coverage of the entire on-chip wireless communication. While it is possible to equip each core with

a dedicated RF node, it is more feasible to assign one RF node to each cluster of cores in order to

reduce the cost due to the area and power overhead. IP cores are hard-wired to the RF node of its

cluster, which has the RF interface. For example, as shown in Figure 6.1, cores
�,
�,
� and
� are

organized into one cluster and are wired to the RF node. In addition, the IP cores in the system are

organized into clusters and each has the IEEE P1500 wrapper interface to switch between different

modes according to the control signals received. Note that, the wireless test circuitry is used only for

testing purpose and will be deactivated or isolated during normal system operation, thus its impact

on system performance is negligible.

75

6.2 Miniature Wireless LAN

Our first proposal is a miniature wireless LAN (local area network) that works as the intra-chip test

control network for system-on-chips, where the scheduler broadcasts control signals through the

attached RF node as shown in Figure 6.2. A single wireless channel is shared by all RF nodes in

the chip and the control signals sent from the scheduler will be received by all RF nodes. Each RF

node has a unique ID and each control signal is attached with an ID field to specify the intended

recipient. Upon receiving a signal, a node checks the ID field through its local decoder. If the signal

is intended for the receiving node, the node processes the control signal, otherwise, it is just ignored.

By specifically assigning the ID (for example, reserving one bit to indicate multicasting while the

remaining bits are to hold a group number), we can also support multicasting to a subset of RF

nodes and consequently a subset of cores can be tested concurrently.

1

3

C1 C2

C3 C4

5

42

Scheduler

Miniature Wireless LAN

RF node

cluster

Figure 6.2: The illustration of miniature wireless LAN.

When a core finishes testing, the related RF node needs to notify the scheduler its completion.

Since the schedule of the tests is predetermined, each RF node is given exclusive access to the

network in a predetermined order. Permission to transmit signals to the scheduler is passed from

one RF node to another using a special message called a poll and the polling order is maintained by

the scheduler according to the schedule result. When the scheduler receives the completion signal

from the RF node which holds the poll, it then forwards the poll to the next node in the polling

sequence. This centralized polling scheme has its unique features as compared to the conventional

polling network, which divides time into alternating types of intervals: polling intervals, during

76

which the poll is transferred between stations, and transmission intervals, during which the station

with the poll transmits packets. Our scheme is quite simplified due to the fact that the scheduler

knows in advance the completion time of each test and the transmission time is quite short. Thus it

is not necessary to maintain the polling and transmission intervals. By using the polling scheme, no

collision occurs even when multiple tests finish testing at the same time.

6.3 Multihop Wireless Test Control Network

With the simple design of miniature WLAN, all RF nodes should be within the transmission range

of the controller, and the interference between RF nodes need to be carefully concerned. Since

the transmission power grows with the transmission range to the power of 2 to 4, relaying signal

between RF nodes may result in lower transmission power than communicating over large distance.

In addition, the heat dissipated by higher power transmission may damage the surrounding circuits.

Therefore, we propose a new low-power, high efficiency multihop scheme, where some RF nodes

communicate through multiple “hop” routing.

6.3.1 Architecture Overview

Due to the limited transmission range of wireless network interfaces, multiple network “hops” may

be needed for one RF node to exchange data with another across the network, we name this kind of

network asMultihop Wireless Test Control Network (MTCNet) . In MTCNet, the IPs are placed

at the leaves and RF nodes, i.e., wireless communication interface, placed at the vertices with the

scheduler as the root of a tree structure. Figure 6.3 illustrates a MTCNet with 16 IPs. Each RF

node is shared by a cluster of cores which are hard-wired to it so as to reduce routing cost and area

overhead. For instance, as shown in Figure 6.3, since only RF nodes 1 and 2 are within the direct

wireless transmission range of the scheduler, the transmission of the control signals between node

3 (or 4) and the scheduler is through the node 1 (or 2). Clearly, some nodes (for instance, node 1 or

2) operate not only as a host but also as a router, forwarding signals to other clusters in the network.

The routing cost in MTCNet involves wireless links between RF nodes and the scheduler, and

hard-wiring between RF nodes and dedicated cores. In MTCNet, the location of the cores and re-

77

Scheduler

C1 C2

C4C3

3 4

1 2

cluster

RF node

Figure 6.3: The illustration of MTCNet.

sources are fixed, and the placement of the RF nodes is predetermined. In such a static network, two

issues need to be addressed with regards to routing. First, the cores need to be properly clustered

such that the cost for hard-wiring a core to the RF node within its cluster is minimized. Core clus-

tering depends on core functionality and resource sharing, and is determined before test scheduling.

Second, an efficient topology needs to be formed such that the degree of each RF node (the number

of neighbors with direct wireless links) should be small. Here, the topology is defined as the set of

RF links between node pairs used explicitly by a routing mechanism.

6.3.2 Wireless Routing Algorithm

In MTCNet, a wireless routing protocol is needed to route the control signals over several hops

to its destination. The existing routing protocols such as distance vector and link state for static

infrastructure networks, or dynamic source routing (DSR) and ad hoc on-demand distance vector

(AODV) for wireless ad hoc networks [76] cannot be directly used here, because all of them rely

on powerful and complex hardware support, while an RF node is only a tiny wireless interface. A

simplified but efficient routing protocol is needed for effective transmission in MTCNet.

We propose a packet-based source routing approach for communication between the RF nodes,

where the scheduler specifies the route that a control signal should take through the network. Each

78

packet consists of a header, an IP address field which specifies the address of the destination IP,

and a data field which contains the control signal. Each RF node is assigned a unique ID to specify

the intended recipient, and each packet carries in its header the complete ordered list of node IDs

through which the signal must pass. More specifically, the scheduler maintains a routing table,

recording the shortest routes between any node and the scheduler, and works as the central node to

make routing decisions. When sending a control signal, the scheduler puts the entire route into the

header. Upon receiving a signal, a node checks the header through its local decoder. If the signal is

intended for the receiving node, the node processes the control signal, otherwise, the intermediate

node forwards the signal to the next hop accordingly. A shortest path algorithm (for example,

Dijkstra’s algorithm [77]) is needed to find the shortest route to any RF node in the network from

the scheduler. The idea is to build a graph of the network, with each vertex representing an RF node

and each edge between two nodes representing a wireless link, and the RF node attached with the

scheduler is defined as the source. The shortest route between any destination and the source is

found by running the shortest path algorithm on the graph. To facilitate parallel testing, the control

signal sent from the scheduler may be directed to multiple destination nodes simultaneously, i.e.,

multicasting.

6.4 Distributed Multihop Wireless Control Network

In order to improve parallel test control processing, we propose an advanced hierarchical multihop

scheme. In this architecture as shown in Figure 6.4, the scheduler is the system controller controlling

a set of subsystem controllers which are distributed within the transmission range of the scheduler.

Each subsystem includes a number of clusters and has a similar architecture as the basic network

as shown in Figure 6.3. In this multilevel tree structure, the system controller will send the control

information to the subsystem controllers which in turn control their subnetwork, such that efficient

parallel communication is achievable. However, introducing a hierarchical level of controllers in-

creases the test control overhead. In order to well balance the tradeoff between test application time

and test control cost, the number of subsystem controllers usually equals to the maximum number

of tests in a concurrent test set (within which all tests can be executed in parallel). Thus, the tests

79

that are simultaneously interrupted are processed by different subsystem controllers.

Scheduler

cluster

Subsystem

Figure 6.4: The distributed multihop architecture.

6.5 Test Control Overhead and Resource Partitioning

The test control cost in the system mainly includes the number of subsystem controllers and their

complexity, the distribution of resources (including not only the circuitry to perform testing but also

the RF nodes) and routing cost (including wireless routing as well as hard-wiring among clusters).

The impact of test control overhead on the overall testing cost is briefly discussed below.

In order to minimize the overall testing time, nonconflicting test sets (i.e., there is no resource

conflict between them and their total power meets the maximum power limit) are executed in paral-

lel. A schedule for a system is made up of a set of test sessions, each consisting of a set of power-

constrained concurrent test sets (PCTS) [78]. Corresponding to each PCTS, a set of controllers is

needed to issue a set of control signals to parallel-process the controlling and these control signals

are routed along different paths. Each control signal drives different test resources required for

dedicated cores in the same PCTS. This directs the partitioning of the test resources, where each

partitioning would be driven by the same set of control signals. Thus the test resources driven by

the same control signal would be physically adjacent to each other.

Due to parallel controlling, the number of controllers relies on the maximum number of tests

(size of a PCTS) in the PCTS’s. Different scheduling will result in different size of PCTS’s and

in turn requires different number of controllers, and vice versa. Moreover, the complexity of each

80

controller depends on the number of control signals it needs to generate. The number of control

signals required to execute a test may vary from one to another. Hence, the lower the disparity in

the number of control signals that are necessary for different test sets in the same PCTS, the more

cost-efficient the controller becomes.

The wiring cost can be significantly reduced if the cores sharing the same resources are physi-

cally adjacent. Thus the clustering of cores is performed according to their physical locations and

the sharing of resources. Further, the clustering also depends on the placement of RF nodes (which

will be discussed in the next subsection) as each RF node covers the communication of a cluster

of cores. Note that different partitioning of test resources and RF nodes may result in different

clustering of the cores which affects the concurrency relation between the cores, and accordingly

different test schedules. Thus the reduction in the test application time does not necessarily imply

the reduction in overall testing cost. In addition, as the cores within a cluster are adjacent to each

other, the wiring cost is properly reduced, and the routing cost is mainly determined by the number

of RF nodes for constructing an efficient topology. In summary, reduction in test control overhead

should aim at proper partitioning of overall resources (including not only the testing resources but

also the communication resources) and the concurrent scheduling of tests.

6.6 The Placement of RF Nodes

Given an SoC embedded with� cores and� test resources, the test sets parameters to perform

testing, and a tentative floor plan of the cores, where a core
� has the coordinates (#�, 0�). Each RF

node has a maximum assistant distance�, i.e., the maximum range for connecting a core to the RF

node. TheRF nodes distribution problem (&��) is deduced to finding the minimum number of RF

nodes needed to cover the communication of all cores within the chip and their placement.

6.6.1 System Modeling

The &�� problem can be formulated intogeometric disk covering [79, 80], where a (clustered)

wireless control network can be abstracted as a set of disks, each centered at an RF node with a

radius of�, that covers a set of embedded IP cores (wireless clients) in the chip plane. It is known

81

that this problem is strongly NP-complete [79]. A graph�(� ,) is used to represent the system.

� is a set of vertices, each representing an embedded IP core. is a set of edges, each connecting

two vertices within a distance of 2�. Assuming an optimally placed RF node can assist at least two

IP cores, i.e., a disk covers at least two vertices (it becomes trivial if one RF node can assist only

one core), we can always move the RF node such that there are two vertices on the circumference

of the disk, while the disk covers the same set of vertices (see Figure 6.5(a)) [80]. For each edge,

an RF node can be placed in two ways such that the two vertices connected by the edge are on

the circumference of the disk (see Figure 6.5(b)). Thus there are maximum 2� � possible disk

placements need to be considered. The position of each disk is specified by its center, i.e., each RF

node placement(�(1�
 2�) (� � � � �� �), which can be computed according to the coordinates of

the two given points as illustrated in Figure 6.5(b). By formulating the RF nodes distribution into

disk covering, we can apply existing heuristic and approximation algorithms to solve it [77,80–82].

xi yini (,)

nj xj yj(,)

(b)(a)

R

C(X,Y)

C’(X’,Y’)

Figure 6.5: The illustration of disk covering.

6.6.2 Greedy Set Covering Scheme

In [83], we have discussed a greedy heuristic which selects at each iteration the disk that covers the

largest number of IP cores which have not been selected. The basic idea is that when we obtain

� (� �� �) possible RF node placements, each corresponding disk covers a set of vertices, denoted

as set��. Therefore, the original problem is deduced to choosing a minimum,(� �) sets from

the� sets to cover all IP cores in the chip with each set assisted by one RF node, i.e., to keep the

coverage of the, sets equal to�� �. This is a typical set-covering problem, which is NP-hard [77]

82

and efficient heuristic algorithms [77, 81] exist to solve it. For example, a simple greedy algorithm

presented in [77] can be applied (e.g., it picks at each iteration the set that covers the maximal

number of uncovered points) with a polynomial time and (.��� �� �) approximation ratio.

6.6.3 Grid Disk Covering Scheme

Hochbaum and Maass have presented in [80] a polynomial approximation scheme that applies a

shifting technique in the context of planar graphs. More recently, Franceschetti et al. [82] have

proposed a grid strategy to find a covering of the points by placing disks only at the vertices of

a mesh. We further present a grid disk covering scheme using a divide-and-conquer method that

combines the grid strategy with the shifting technique.

We assume the shift parameter to be.. Two nested application of the shift strategy is used.

First, the chip plane is cut into vertical strips of width.�� (groups of. consecutive strips of width

�=�� are considered). By repeating the shift of all groups.-1 times over length�, there are.

different ways of partitioning of the plane into strips of.�� wide, each partitioning denoted as� �

(1���.). Then, in order to cover the points in such a strip, the shifting strategy is applied in the

other dimension. Thus, the considered strip is cut into squares of side length.��. The optimal

covering of points in such a square is found by applying the grid strategy. As we can see that with

�.���� disks of diameter of�, the square of side length.�� can be covered compactly, i.e., the

number of disks to cover points in the square does not exceed�.����. Thus, the number of possible

disk positions is finite. By checking all possible arrangement of maximum�.���� disks, an optimal

covering is found within the square. In addition, the coverage of an RF node(� is represented by a

set of IP cores covered by the disk, denoted by&�. Let� be the grid covering algorithm that provides

optimal covering within each square. For a given partition��, let����� be the divide-and-conquer

approach that applies� to each square and outputs the union of all disks used (i.e.,��
���&�=�� �).

The minimum cardinality of the. partitioning is chosen to be the final best covering. The proposed

algorithm has a polynomial time approximation complexity of3�.��.�����������
�
������ with

performance ratio� �� � ��.��.

83

6.6.4 Clustering Option

Further enhancement is employed by considering the core clustering and the workload balancing

during the placement of RF nodes. We first specify the clustering options due to resource con-

straint. For example, some cores, having similar functionality, or competing for the same resource,

or physically adjacent with precedence constraint, can be grouped into the same cluster and share

the same RF node. We use a virtual core
�� to represent each such group of cores labelled with the

workload of the number of cores in the group. We also need to specify the hierarchical cores and

use a virtual core
�� to represent a hierarchy of cores. Moreover, in order to overcome the situa-

tion where most of the cores are assigned to one or a few of RF nodes, we add the maximal load

requirement. In other words, we bound the maximum number of IP cores assigned to any particular

RF node by���� � ' (���� is the size of set�� which is covered by the RF node, naturally� has to

be large enough, i.e.,� � ���, where� is the number of cores and� is the number of RF nodes).

In order to incorporate the maximal load requirement, we split a set�� of size���� into the number

(�
���� of subsets with size of�.

6.6.5 Simulation Study

We evaluate the proposed algorithm via simulation. We assume the chip size of��� � ���. The

number of IP cores in the system is denoted by� , the maximum assistant distance of RF nodes by

�, and the load bound by�. We assume that the chip plane represents the universal set, each IP

core placement is viewed as a single point with (#, 0)-coordinates, and thus the� points to cover

represent the elements of the sets. We study the effect of� , � and� on the number of RF nodes.

The simulation result is shown in tables 6.1, 6.2. As we can see, when increasing the number of

IP cores in an SoC, the number of RF nodes required to provide the wireless coverage chip-wide

increases. For the same number of IP cores, the number of RF nodes decreases generally when� or

(and)� increases. As we know, the number of RF nodes determines the wireless routing cost while

the maximum RF node assistant distance determines the hard-wiring cost between the RF nodes

and the clusters of the cores. The wireless routing cost reduces at the expense of hard-wiring cost,

and vice versa. In addition, the number of RF nodes implicitly influences the concurrency testing

84

between the cores, as the cores using different RF nodes can be tested in parallel if meeting all

conflicts and constraints. The higher the number of RF nodes which increases the routing cost, the

higher the possibility of test concurrency which reduces the total testing time. Therefore, efficient

optimization techniques need to be developed to minimize the overall testing cost.

� �=5 �=10

10 7 7

20 10 10

30 14 14

40 18 17

50 18 18

60 19 18

80 25 19

100 28 22

Table 6.1: Number of RF nodes with the changing of� and� when�=10.

� �=10 �=15 �=20 �=25

10 7 5 5 3

20 10 8 6 5

30 14 11 8 5

40 17 12 8 6

50 18 12 10 8

Table 6.2: Number of RF nodes with the changing of� and� when�=10.

6.7 Summary

In this chapter, we have proposed a novel distributed wireless test control network using the “Radio-

on-Chip” technology for future high-density, high-volume embedded cores-based SoCs. Three

types of test control architectures, i.e., miniature Wireless LAN, multihop wireless test control net-

work, and distributed multihop wireless test control network have been presented and the system

85

optimization has been performed on RF nodes placement. Simulations using randomly generated

test sets have been carried out for evaluation and verification of the proposed test optimization algo-

rithm. Several system optimization issues such as RF nodes placement, clustering, and routing will

be further addressed in the following chapter. Techniques need to be presented for the integration of

test resource distribution and system optimization among TAM design, test scheduling under power

and cost constraints.

86

Chapter 7

Cost Oriented Resource Distribution

and System Optimization

With the application of “Radio-on-Chip” technology in test control, several system optimization is-

sues, such as RF nodes distribution, core clustering, and control routing (wireless routing as well as

hard-wiring between the IP cores and the RF nodes), are brought forward for the control constrained

resource partitioning and distribution. One major problem in wireless test control architecture is to

design a test procedure to ensure quality testing of all IP cores while minimizing the overall test-

ing cost. In this chapter, we present the optimization technique for the integration of test resource

distribution (specifically, the test access mechanism routing between pairs of test source and sink)

and wireless test control distribution (i.e., to build the network of RF links for intra-chip commu-

nication). We further propose a system optimization scheme to minimize the combined cost of

overall testing time and test control under power constraint and resource conflict. We assume that

a multihop wireless test control architecture is used to reduce transmission power, to avoid chip

overheating, and to achieve the most efficient control processing.

7.1 An Integrated Test Model for System Resource Distribution

With the introduction of on-chip wireless test control, the system resources in an SoC consist of two

parts, the circuit blocks required to perform a test (the test resources) and RF nodes in the intra-chip

87

H
ierarchical C

ore

Interconnect Test BIST
interS

External Test

B
IS

T

interS

S

offSoffS

UDL

self

U
D

L

MTCNet + TAM

sink

sinksource

so
ur

ce sinksource

Figure 7.1: An integrated system framework.

wireless test control network. We have addressed the distribution of RF nodes in [84], and the test

resource distribution mainly focuses on the optimal routing of test access mechanism (TAM) from a

dedicated test source to the core-under-test (CUT) and from the CUT to a dedicated test sink. In this

section, we present a test model (in Figure 7.1) for the integration of system resources in concurrent

testing of core internals and externals under wireless test control.

There are three types of test pattern source and sink used in this model,���� , �� �� , and��	� !

as shown in Figure 7.1.���� is implemented off-chip by using external ATE, and�� �� and��	� !

are implemented inside a chip (i.e., on-chip).�� �� is used for testing the core itself (such as in

BIST-enabled core), while��	� ! is used for testing interconnects. We assume that each individual

core is testable by either BIST or an external test or a combination of them. Meanwhile, we take

into consideration core testing (IEEE P1500 wrapped cores) as well as interconnect testing (which

includes the testing of interconnect logics, UDLs and wiring). We assume that the IP cores in

an SoC have the IEEE P1500 wrapper interface which switches between different modes, internal

test mode, external test mode and normal function mode, according to the control signals received.

TestRail [15] is adopted as the test access mechanism as it facilitates interconnect test as well as core

test. During external test, the core requires a high data bandwidth, while in BIST the requirement is

low (it only needs one bit TAM for initialization thus the BIST can be executed autonomously and

after that need one bit TAM to shift out the signature for comparison).

88

Various test conflicts may appear during core test and interconnect test. For example, special

care should be taken during the testing of a UDL and the two cores
� and
� connecting to the

UDL. Specifically, when testing
�, the wrapper surrounding the core is put into internal test mode

and test stimuli is transported from the required test source to
� and the test response is transported

from
� to the test sink through a set of TAM wires. When testing the UDL, the wrappers of
�

and
� are put into external test mode and the test stimuli is transported from the test source via
 �

to the UDL and the test response is transported from the UDL via
� to the test sink. Obviously,

the testing of the UDL and cores
� and
� cannot be carried out at the same time due to wrapper

usage conflict. In order to unify the problem formulation, we treat interconnects as unwrapped cores

with the consideration of wrapper usage conflict. A test conflict also occurs when the common test

resources are shared among a set of cores or the same core is tested by several test sets. Thus the

test sets for the same core cannot be executed at the same time and the same resource can only be

used by one test set at one time.

7.2 SoC Testing Cost Optimization

Various test scheduling and wrapper/TAM optimization algorithms have been proposed in the lit-

erature to reduce test cost in terms of test application time. However, less attention is paid to test

control cost which constitutes a major part of the total test overhead. In this section, we analyze and

formulate SoC testing cost, more specifically, the cost of test control distribution and test resource

distribution.

7.2.1 Cost of Test Control Distribution

In MTCNet, the neighboring IP cores are clustered in such a way that one on-chip RF node is

shared by a cluster of IPs (see Figure 7.2). Assuming that the maximum assistant distance of an RF

node is� (i.e., the maximum range for connecting an IP to the RF node), it may result in different

clustering of IPs by varying the value of�, and accordingly, different test control routing cost. The

cost of routing a control signal to its destination IP� includes the wireless communication cost that

is represented by the number of RF nodes needed to forward the signal from the scheduler to�, and

89

the hard-wiring cost that is represented by the total wire length between� and the associated RF

node. Specifically, the totaltest control routing cost of � is represented by:

(��	�!�� � � (��! � .��! � � (!� � �!� � (7.1)

where(��! is the unit hard-wiring cost and(!� is the cost of an RF node..��! � is the total wiring

length between core� and the RF node within the cluster. We estimate the length of wires between

a core and its RF node using Manhattan distance function,.��! � � �#� 	 #�� � �0� 	 0��, where

the center-coordinates of core� and its RF node(are�#�
 0�� and�#�
 0��, respectively.�!� �

is the total number of RF nodes needed to route the control signal to�. The maximum RF node

assistant distance determines both the number of RF nodes needed and the hard-wiring between the

RF nodes and the cores in their clusters. Clearly, the wireless communication cost reduces at the

expense of increased hard-wiring cost, and vice versa.

),

a

(C cycx

)(A

X

Y

0

R

RF node

,

(

s ysx),(

bybx),(B

source

si
nk

s
yax

E ex ey,)(d dx dy),
E

B

A

Figure 7.2: Clusters of IPs each sharing one RF node.

In order to reduce the overall test control routing cost, we determine the optimal distribution

of RF nodes on-chip, i.e., the optimization ofRF node placement. We have mapped the problem

of RF node placement to disk covering problem in [83], where a set of disks, each centered at an

RF node with a radius of� covers all IP cores in the chip. In order to optimize the test control

distribution, we efficiently distribute RF nodes on chip and minimize the associated test control cost

by the control routing cost function.

90

7.2.2 Cost of Test Resource Distribution

The distribution of on-chip test resources mainly addresses the routing of IP cores to a set of test

sources and sinks and assigning their data transportation bandwidth accordingly, i.e., theTAM rout-

ing. Each core may have its dedicated test source and test sink or may share either test source or test

sink with other IPs or may share both test source and test sink. Given the placement of test source	

and test sink�, the total cost of routing an IP� on a TAM with bandwidth of�� is represented by:

("#� � � (��! ��� � .��! �	� �� �� (7.2)

Similarly, the Manhattan distance function is used to calculate the TAM wire length from	 to

� to �. For example, the TAM wire length connecting cores� and (with center-coordinates

as shown in Figure 7.2) is.��! �	 � 4 � " � �� � ��	��	
 4� � ��	��4
 "� � ��	��"
 �� �

�0� 	 0$�� ��#$ 	 # �� �0$ 	 0 �� � �#� 	 # �.
Given core clustering, there are three cases to route the TAMs according to resource conflicts

among the cores.

� Case 1: The cores connected on the same TAM belong to different clusters, as shown in

Figure 7.3(a). For concurrent testing of cores� and� in the same cluster, unicast the control

signal shared by� and� to RF node 1 in their cluster, which is further forwarded to� and

� along hard-wires separately.

� Case 2: The cores connected on the same TAM belong to the same cluster, as shown in

Figure 7.3(b). For concurrent testing of� and� in two separate clusters, multicast the same

control signal to their dedicated RF nodes 1 and 2 along two separate wireless routing paths.

Compared with case 1, case 2 has less TAM routing (as neighboring IPs are connected on the

same TAM) but more control routing (due to multicasting).

� Case 3: Combination of case 1 and 2, as shown in Figure 7.3(c).

Moreover, the TAM bandwidth affects the test application time of a test significantly due to

various wrapper scan chain configurations. According to Pareto optimization [44], the test times of

91

D

A

C

B

(b)

A
D

E

C
B

(c)

A

B
C

D

RF node

cluster 1

(a)
cluster2

21

1

1 2

2

Figure 7.3: Three cases of TAM routing.

a core� vary with TAM width as a “staircase” function:

�����
��� � �� �����'�������� &� ��	
�'������ (7.3)

where,'����� is the length of the wrapper scan chain when the TAM width is��, and&� is the

number of test patterns for testing��. In order to reduce the overall test application time, an efficient

test scheduling algorithm needs to be applied. It connects the IPs in the SoC to the test sources and

sinks in a way that compatible tests are routed on parallel TAMs while the cores competing for the

same test resource are connected sequentially on the same TAM. In the meantime, it reduces the

cost of overall system resource distribution in terms of TAM routing as well as test control cost

(! � � (��	�!�� � ("#� .

92

7.3 Cost Oriented Resource Distribution

The goal of designing a test procedure is to minimize the overall testing cost including both the

test application time and the hardware cost associated with the testing process. In this section, we

propose an integrated optimization technique to efficiently distribute system resources on-chip and

minimize the overall test application cost. The problem of cost oriented system resource distribution

can be formally stated as follows.

Problem �System Resource Distribution�
Given is an SoC embedded with� cores and� test resources, and a tentative floor plan with

center-coordination system. Also given is the test set parameters to perform testing on each core

�� (1����), such as the number of test patterns&�, the number of functional inputs/outputs5�/3�,

the number of scan chains	� and their lengths.�
������ . Furthermore, given is the top level TAM

constraint���� (due to pin count limit). Determine the optimal scheduling of� IPs on the total

width of���� TAMs while meeting various constraints with the objective of minimizing the overall

testing cost(��� � 6� ����� � 7 �(! � with user specified relative weight6�7 (where(��� is the

overall testing cost of an SoC,����� is the overall test application time, and(! � is the overall cost

on system resource distribution).

We introduce a cost oriented system optimization algorithm. The basic idea is to specify four

highly interdependent design items, i.e., the rectangle test set (with different configuration of wrap-

per scan chains) selection, the control resource floorplanning (including RF nodes placement and

core clustering), the TAM design (i.e., TAM routing and TAM bandwidth distribution), and the sys-

tem level test scheduling (to achieve maximum parallelism). The overall test application time can

be minimized by executing IP cores in parallel, but the possibility of concurrent testing depends

on the TAM bandwidth between any particular pair of test source and sink and the TAM routing

through the IPs. The placement of RF nodes has a direct impact on core clustering which influences

concurrent testing and TAM routing. Finally, the partitioning over wrapper scan chains impacts the

TAM design. The pseudo-code of the algorithm is given in Figure 7.4, which includes three main

steps inside an iteration of the changing of maximum RF node assistant distance�.

93

=)allC(min R)(allC

num_scheduled15 update ;

1 initialize min ;)allC(

8 calculate R ;)(control

;

/* TAM routing */

/* RF node placement */

7 cluster cores by hardwiring to RF node;
6 place RF node with load balancing;
5 greedy_set_cover();
4 create_disk_cover();

2 construct a directed weighted graph;

19
18 if

16 adaptive TAM width adjustment;

14 remove IPs constructing the shortest path from the graph;
13 record the length of the shortest path;
12 record the shortest path;
11 get the shortest path among all pairs of source−sink;
10 multisource_shortest_path();

parallel TAM routing between pairs of sources−sink;
clustering of cores;
minimum # of RF nodes and their placement;

output: ;)allC(min

C

9 while(num_scheduled N<

in /* floorplan of all nodes on chip */
/* # of sources and sinks */M

R /* max assistant dist of RF node */

/* # of IP cores embedded in an SoC */input: N

Procedure System_Resource_Distribution()

),(iyix

3 estimate the initial rectangle test set of each core;
2 specify constraint list;
1 obtain a set of candidate rectangle set of each core;
Preprocessing:

)

3 for(R)<=<=lmin maxl

)R allC(min<)(allC
17 calculate R ;)(allC

Figure 7.4: The system resource distribution algorithm.

7.3.1 A Disk Covering Algorithm for RF Distribution

The first step of this algorithm is to find the minimum number of RF nodes needed to cover the

communication of all cores within the chip and their placement, and obtain the minimum overall

test control cost(��	�!�� � (��! � '��! � (!� � �!� . In order to optimally distribute con-

trol resources, we formulate the problem into geometric disk covering, and solve it with greedy set

covering as described in Sec. 7.2.1. For any particular� varying from.��	 (the shortest distance

between any two cores) to.��� (half of the chip side-length). We list the number of�) � � �� �
possible disk placement which represents the sets to choose from (as shown in Figure 7.5). Then,

94

the greedy heuristic (in Figure 7.6) is pursued that selects at each iteration the set that covers the

maximal number of uncovered points. Furthermore, we incorporate a control cost function and the

optimization of control distribution is oriented by minimizing the overall control cost (see lines4-8

in Figure 7.4). Further enhancement is employed by proper core clustering. For example, workload

balancing is pursued to overcome the communication congestion problem when most IPs are as-

signed to some of RF nodes. In addition, if a core is settled at the overlap region of several clusters,

it is hard-wired to only one of the RF nodes that results in the shortest hard-wire length and balanced

workloads.

S
niif (dist (, c) R)

ni

i

yi(,)for i N(1)

n

S’

/* assisted by RF node c */

/* assisted by RF node c’ */

Procedure create_disk_cover()

for
for

(2 j N)

obtain two disk placements

/* coordinates of the centers of the disks */

}

if (dist (, R)ni)c’

F { S, S’

i

) 2R)

ni xi yi(,)

,

nj(,)xj jy
ni njif (dist (

calculatec(x , y) andc’(x’, y’)

ni x

,

i N(1 −1)

ni nj on the border *//* with

Figure 7.5: Listing all possible RF nodes placement.

S F| |select setS F that maximizes
=while (U)

Procedure greedy_set_cover()

/* set U including all uncovered nodes */

/* set C includes the result */

ni{ }U

C

U U− S
C C S

return C

Figure 7.6: Greedy set covering algorithm.

95

7.3.2 A Shortest Path Algorithm for TAM Routing

The next step is to schedule the tests on parallel TAMs which is performed upon the routing of

TAMs from sources to sinks with the optimization of weighted cost of test application time and

TAM routing, i.e.,(������ � (���� � �"#��
� (��! � ("#��

(where,� � �, a set of TAMs).

A directed weighted graph���
 � is constructed to represent the system as follows:

� Each pair of test source and sink functioning as the source	� (� � � ��) and destination��

is connected to/from all vertices of cores with directed weighted edges. A source is connected

to any vertex with the weight of���	� � ��� � (���� � �� � (��! ��� � ��	��	� � ���.

Meanwhile, any vertex is connected to a sink by����� � ��� � (��! ������	���� � ���.

� Any two vertices of cores are connected to each other by bidirectional edges. The weight of an

edge from�� to�� is represented by����� � ��� � (��������(��! ������	���� � ���,

and similarly, the opposite edge has a weight of����� � ��� � (���� � �� � (��! ��� �
��	���� � ���. Obviously,��	���� � ��� � ��	���� � ���.

� Each node8� (including cores and sources and sinks) in the system maintains a shortest dis-

tance to the source (denoted by8� ��	�), and a predecessor (denoted by8� ��"�. Each node

will be in one of the three states:state 1, initial, 8� ��"� � �5' and8� ��	� � �; state 2,

updated, the distance and the predecessor have been updated at least once;state 3, finalized,

the distance is the shortest distance to the source, and it will not be updated in the future.

The major feature of this approach is to run a cost orientedmultisource shortest path algorithm

on a reduced graph (see lines9-15 in Figure 7.4). Each time a shortest path is selected after running

the single source shortest path algorithm for all dedicated pairs of source-sink. The covered vertices

of IPs are deleted from the graph, and the above operation is repeated again until all IPs are routed.

Each selection of a shortest path specifies the IPs routed sequentially on the same TAM which results

in the minimum total cost among all given pairs of source-sink. Themultisource shortest path

algorithm (in Figure 7.7) resolves an multiple-pairs shortest path problem by running a single source

shortest path algorithm (e.g., Dijkstra’s algorithm)� times, once for each dedicated pair of test

source and sink. As we can see, for each pair of source-sink, a shortest (least-weight) path is

96

constructed where the weight of a path is the sum of the weights of its constituent edges. Thereby,

the distance of a finalized sink indicates the minimum overall cost accumulated along a path going

through the source and then a subset of IPs and lastly the sink.

, , wt (u)) */
v[]i Adj [u]for

[]iv .dist u.dist

u

]
Dequeue(1,Q, num_pq)
S S {u}

v[]i v[]i/* relax(

v
)+=

.pred[]v i =u
Enqueue(i , num_pq)

Procedure multisource_shortest_path()

/* m is the # of sources */

/* for each pair of source−sink, run Dijkstra’s algo */

/* priority queue */

/* downheap priority queue */

/* the # of nodes in priority queue */

/* initialize all sources */

/* upheap priority queue */

u
[]iwt (u)if > +

[]iv .dist u.dist v[]iwt (

num_pq

v

V =M+N/* V(G), */

for 1<= <=i m

S
num_pq

i

for 1<=i<=M+N
INFTY.dist[]iv

.pred[]v i NIL

0.dist[]

N

<=i N
[v]i+M]+1i[Q

while(num_pq >0)
Q[1]u

[1]Q Q [

<=

+2
s[]kQ[1]

[]kdN+2[]Q

for 1<= <=k m

for 1

Figure 7.7: Multisource shortest path algorithm.

Note that, we start TAM routing with the estimated rectangle test set for each core. For core� �,

we assume that the area defined by its test time multiplied by its TAM width does not change due to

balanced wrapper scan chain configuration, i.e.,�� ����� ��� � ������, thus,

������ �
�����

��
(7.4)

As the shortest path is constructed by optimizing the weighted cost of test application time and TAM

routing cost,(������ � (���� � ������ � (��! ��� � .��! �	 � �� � ��, we derivate the cost

function with respect to�� and get,

�(������

���
� 	(���� � �����

� �
�

� (��! � .��! �	� �� � �� (7.5)

97

and by letting(�
������

=0 we calculate,

�� �

(���� � �����

(��! � .��! �	� �� � ��
(7.6)

After getting a second derivative, we obtain(��
������

% �, i.e., a minimum. For estimation, we set

the initial TAM width������ of core� to the closest pareto optimal point such that������� 	��� is

minimum, and we obtain the corresponding test time����������.

7.3.3 Adaptive TAM Redistribution

After we route the TAMs between pairs of source-sink, each TAM sequentially connecting to a set

of rectangle IP cores with the length of estimated test time and the height of associated TAM width

respectively, further optimization need to be carried out in following cases:

� As we use the estimated rectangle test set as the initial value for each core, the cores on the

same TAM may be assigned different TAM width. We may adjust the TAM width of some

cores to fully utilized the bandwidth�"#��
� ��#���� (� � 9, a subset of cores on TAM

�), and accordingly reduce the total cost(������ on this TAM, where�"#��
�
�%

��� ��, and

("#��
��"#��

� '"#��
, '"#��

� ��	��	� � �� � ���� � ���� ���.

� If the total TAM width������ % ���� (������ �
��

����"#��
), we reduce the width of

TAM � by 1, which results in the minimum total cost(����� � (�����������(��! �("#�

(where����� � �����"#��
�, ("#� �

��
���("#��

), and then check������ again, so on

and so forth, until������ �����.

� On the other hand, if������ : ����, we distribute the remaining bandwidth to a TAM� by

1 each time, which results in the minimum total cost(�����.

7.3.4 Simulation Study

In simulation scenario 1, the overall routing cost with� ranging from 5 to 30 is shown in Fig-

ure 7.8(a) and 7.8(b) with 50 and 200 cores, respectively. As we can see, if the cost of an RF node

is relatively low ((!��(��! : ��), one may deploy as many RF nodes as possible to minimize

98

the overall cost. On the other hand, when an RF node is expensive ((!��(��! % ��), the optimal

value of� (and accordingly the number of RF nodes) can be determined based on the lowest overall

routing cost. For example,� � �� is optimal as shown in Figure 7.8.

5 10 15 20 25 30
200

400

600

800

1000

1200

1400

Maximum assiatant distance R

O
ve

ra
ll

ro
us

tin
g

co
st

Crf/Cwire=5
Crf/Cwire=10
Crf/Cwire=20
Crf/Cwire=30
Crf/Cwire=40

(a)������ changing over� when�=50.

5 10 15 20 25 30
1500

2000

2500

3000

3500

4000

4500

5000

5500

Maximum assiatant distance R

O
ve

ra
ll

ro
us

tin
g

co
st

Crf/Cwire=5
Crf/Cwire=10
Crf/Cwire=20
Crf/Cwire=30
Crf/Cwire=40

(b)������ changing over� when�=200.

Figure 7.8: Illustration of the overall routing cost optimization.

In simulation scenario 2, we study the effect of the workload balancing on the overall routing

cost optimization and determine the minimum test control cost assuming an example SoC with 25

cores distributed on the chip with size of�����. We run the routing cost optimization algorithm on

the SoC when� changing from 10 to 25. As shown in Figure 7.9, we obtain the optimally placed

RF nodes and accordingly the overall routing cost. As we can see, when� is 5, the overall routing

cost increases as� increases, and we obtain the lowest(!��� when�=10. That means, we use as

many RF nodes as we can to reduce the routing cost. When� increases, the(!��� curve drops at

first and then increases. When�=8, the lowest(!��� is settled at�=20 ((!��(��! % ��), i.e.,

the optimal number of RF nodes is shifted to 20.

In simulation scenario 3, we present a sample of the experimental results for the proposed cost

orientedSystem resource distribution. We use SoCd695 from ITC’02 SOC Test Benchmarks [75]

for illustration. The floorplan of the cores embedded on-chip is randomly generated, as the original

benchmarks do not provide any related information.

As shown in Figure 7.10, we obtain the minimum overall control routing cost when�=20 (at

99

10 15 20 25
450

500

550

600

650

700

750

800

850

900

950

Maximum assiatant distance R

O
ve

ra
ll

ro
us

tin
g

co
st

 (
B

=
5)

Crf/Cwire=30
Crf/Cwire=40
Crf/Cwire=50
Crf/Cwire=60
Crf/Cwire=70

(a)������ changing over� when�=5.

10 15 20 25
450

500

550

600

650

700

750

800

850

900

950

Maximum assiatant distance R

O
ve

ra
ll

ro
us

tin
g

co
st

 (
B

=
6)

Crf/Cwire=30
Crf/Cwire=40
Crf/Cwire=50
Crf/Cwire=60
Crf/Cwire=70

(b)������ changing over� when�=6.

10 15 20 25
450

500

550

600

650

700

750

800

850

Maximum assiatant distance R

O
ve

ra
ll

ro
us

tin
g

co
st

 (
B

=
7)

Crf/Cwire=30
Crf/Cwire=40
Crf/Cwire=50
Crf/Cwire=60
Crf/Cwire=70

(c)������ changing over� when�=7.

10 15 20 25
450

500

550

600

650

700

750

800

850

Maximum assiatant distance R

O
ve

ra
ll

ro
us

tin
g

co
st

 (
B

=
8)

Crf/Cwire=30
Crf/Cwire=40
Crf/Cwire=50
Crf/Cwire=60
Crf/Cwire=70

(d)������ changing over� when�=8.

Figure 7.9: The overall test control cost optimization.

(!� /(��! %35) which requires 4 RF nodes to be distributed chipwide and to be shared by 10 IPs.

Table 7.1 shows the results for a range of���� when specifying the weights as(����/(��! /(!�

= 1/5/200. As we can see, the overall test application time reduces when increasing����, while

the total TAM routing cost increases. As a result, we obtain the minimum overall cost at����=32,

it is because when���� is small, the test application time dominates the overall cost; when����

increases further, instead, the TAM routing cost dominates.

100

15 20 25 30 35 40 45 50
250

300

350

400

450

500

550

600

Maximum assiatant distance R

O
ve

ra
ll

co
nt

ro
l r

ou
tin

g
co

st

Crf/Cwire=25
Crf/Cwire=35
Crf/Cwire=45
Crf/Cwire=55
Crf/Cwire=65

Figure 7.10: Control routing cost of SoCd695.

���� ����	 �
�� �
�����	 ��		

16 46071 2295 1860 59406

24 33342 3430 1860 51073

32 23475 4590 1860 48285

40 19821 5785 1860 48746

48 19698 6905 1860 54223

56 16438 8020 1860 56538

64 15418 9140 1860 61118

Table 7.1: Experiment results for SoCd695.

7.4 Summary

One of the objectives of SoC testing is to minimize the combined cost of test application time and

the associated hardware cost in resource distribution. We have proposed a multihop wireless test

control network using radio-frequency nodes for control signal distribution. In this chapter, we have

studied several system optimization issues such as RF nodes placement, core clustering and routing

for the control constrained resource partitioning and distribution. We have presented the system

optimization technique for the integration of resource distribution including not only the RF links

for intra-chip communication but also the TAM routing with the minimization of overall testing

101

cost. In the future work, we will further address the system optimization problem and evaluate the

impact of wireless control on the system testing solution.

102

Chapter 8

Conclusion and Future Work

This research work aims at testing of heterogeneous core-based System-on-Chips (SoCs), collabo-

rating the state-of-the-art design and test techniques with algorithmic model development, system

architecture design, and wireless applications. We have addressed not only the development of sys-

tem design-for-test methodology and optimization techniques but also the application of wireless

technology to on-chip test connectivity and communication for future complex SoCs. The motiva-

tion is to provide cost-effective test solutions to the rapidly evolving SoC design process. The major

contributions of this dissertation are as follows:

1. We have formulated the SoC test scheduling to the single-pair shortest path problem, and

presented efficient test scheduling heuristic algorithms for embedded core-based SoCs.

With the flexibility of selecting a test set from a set of alternatives, we have proposed

to schedule the tests for a given system in a way that balances the resource usage queue

as evenly as possible, thus reducing the overall test time. Moreover, we have presented a

grouping scheme and all permutation scheduling to optimize the schedule and evaluated

the proposed approaches via simulation. Our simulation results have shown that there is

no explicit dead time in our approach and we can further reduce the implicit dead time by

proper grouping. We have also extended the algorithm to allow multiple test sets selection

from a set of fault model based alternatives. We expect that the proposed approach can be

properly extended for testing the mixed-signal SoCs as well.

103

2. We have mapped the power-constrained test scheduling problem into a graph theoretic

problem and presented a novel PCTS algorithm for embedded core-based SoCs, which

minimizes the overall test time by overlapping blocks of power constrained concurrent

test sets. We efficiently utilized the test compatibility among the tests for a given system

by obtaining a set of PCTS’s from the power-constrained TCG. Furthermore, we have

proposed to schedule the tests in a way that reduces the explicit dead time by applying the

dynamic test partitioning technique. The simulation results showed that the PCTS approach

achieved better performance than the existing comparable scheduling algorithms. Further

research on scheduling is not only limited to the scheduling of the test sets provided by the

core vendors, but also involves the activities to develop the DfT techniques, test controller

IP and efficient test resource configuration and sharing, which will in turn result in more

efficient test scheduling.

3. We have presented a novel TAM scheduling algorithm based on a graph-theoretic formu-

lation. Given an SoC integrated with a set of cores and a set of test resources, the power

consumption limitation and the top level TAM width constraint, we have constructed a set

of PCTS’s from a P-TCG graph to utilize the test compatibility. We have derived seed

sets from the test conflict graph to facilitate efficient scheduling. Furthermore, we have

handled the constrained scheduling in an unique way that adaptively assigns the cores in

parallel to the TAMs with variable widths and efficiently utilizes the TAM bandwidth such

that the tests in the same PCTS have their lengths close to each other. Then we have re-

duced the explicit dead time by the dynamic test partitioning scheme. Through simulation,

we have shown that up to 40% of SoC testing time reduction can be achieved by using

our approach. Further research is needed to bring forth more SoC design and test features

into test scheduling, such as test resource partitioning, design for testability and design for

reconfiguration, etc.

4. We have proposed a novel distributed wireless test control network using the “Radio-on-

Chip” technology for future high-density, high-volume embedded SoCs. Three types of

control architectures, i.e., miniature wireless LAN, multihop wireless test control network

104

and distributed multihop wireless test control network have been presented. The proposed

architectures consist of three basic components, the test scheduler, the resource config-

urators, and the RF nodes which support the communication between the test scheduler

and clusters of cores. Moreover, the wireless test control cost has been analyzed and the

system optimization has been performed on control constrained test resource partitioning

and distribution. The system optimization has been performed on RF nodes placement, the

optimal number of RF nodes and core clustering under the multilevel tree structure.

5. We have addressed several challenging system optimization issues such as RF nodes place-

ment, core clustering and routing for the control constrained resource partitioning and

distribution assuming the use of multihop wireless test control network for test control

distribution. We have presented the system optimization technique for the integration of

resource distribution including not only the RF links for intra-chip communication but also

the TAM routing with the objective of minimizing the overall testing cost. Four highly in-

terdependent design items, i.e., wrapper configuration, control resource distribution, TAM

routing, and system-level scheduling, have been specified to optimize the SoC test solution.

In the future work, we will further address the system optimization problem and evaluate

the impact of wireless test control on the system testing solution.

Our research provides interesting opportunities for developing methodologies, algorithms, tech-

niques and tools for design and test of deep sub-micron (DSM) system-on-chip devices. In the

future we intend not only to enhance the applicability and usefulness of the initial results, but also

to extend research into related areas to find novel applications for the theoretical development. More

specifically:

1. According to ITRS, test and diagnosis of SoCs is the most important one among the major

hurdles to be overcome in the next decade. Core-based SoC design strategies with auto-

mated high-level synthesis is a potential means of overcoming the VLSI design complexi-

ties. High-level testability designs are essential so as to minimize test complexity without

affecting area or performance. Automated generation of optimized test architecture for

105

core-based SoCs is also an essential means of shortening time-to-market while reducing

design and test cost. Because of the strategic importance of SoC/IP design in the years

ahead, this research will focus on the development of design for testability methodologies

and tools to facilitate testing of complex SoCs consisting of heterogeneous IPs. We would

like to develop a system view of design for testability so that problems related to testing in

production, operation and maintenance phases can be dealt with in a systematic way and

be solved by formal and efficient methods.

2. SoC design in the forthcoming billion-transistor era will involve the integration of numer-

ous heterogeneous IP cores. Some of the main problems arise from non-scalable global

wire delays, failure to achieve global synchronization, errors due to signal integrity issues,

bandwidth limitation, and difficulties associated with wired interconnects. Meanwhile, the

evolutionary changes on design and testing of billion-transistor chips will be driven by sev-

eral factors, such as reusing IP cores in a plug-and-play fashion, on chip interconnections

limiting the performance and energy consumption, design with the requirement of quality

of service (QoS). Micronetworks based on new interconnect technology such as RF need to

be brought forward for intra-chip test connectivity and data communication. Thus an SoC

can be viewed as a micronetwork of embedded cores, where the communication among

the cores can be done through intra-chip wireless links. More research is needed to inves-

tigate the applicability of a distributed test access architecture based on multihop wireless

technology.

3. By introducing wireless test data and control communication in SoC testing strategy, one

important research issue is to investigate the feasibility and the limitation of the proposed

wireless test access mechanism, especially the area consumption and noise management.

With the distribution of on-chip RF nodes, the area cost by utilizing wireless test network

should be compatible with the saved interconnect area. In the current wired test access

models, the interconnect area mainly includes the total area of a particular TAM structure

in terms of dedicated DfT hardware and a hierarchy of test control architecture for parallel

test processing. When testing a billion-transistor SoC, the complexity of the supporting

106

interconnect infrastructure would become a major challenge. Therefore, we introduce the

idea of using wireless radios to transmit test data and control signals to resolve the acer-

bated core accessibility problem in testing GHz SoCs. The major area consumption is

contributed from the tiny low-power and low-cost RF interfaces and local control mecha-

nisms. Further, the test data transmission over wireless medium on-chip will present the

real challenge in the near future. Data communication will rely on more complex hard-

ware implementation than single tone wireless signal transmission. For the purpose of area

cost estimation and evaluation, we will develop area estimation models for both the pro-

posed wireless test network and the conventional wired test access architectures. Noise

management is another critical concern. Electrical noise introduces any unwanted energy,

which tends to interfere with the proper reception and reproduction of transmitted signals.

The internal noise generated by the receiver itself is random and difficult to treat on an

individual basis but can be described statistically. Random noise power is proportional to

the bandwidth over which it is measured. The external noise is accumulated from the sur-

rounding circuitry environment and the switching operation among various cores. We may

use Gaussian noise to identify the accumulative effect of all random noise generated both

external and internal to the wireless test network and average over a period of time with

the consideration of all frequencies. Noise figure, i.e., the signal to noise ratio (SNR) is de-

fined as the ratio of the desired signal power to the noise power. SNR estimation indicates

the reliability of the link between the transmitter and receiver. In addition, the interference

within the network of RF nodes may count on the RF transmission range and transmission

frequency. Employing single frequency implementation will simplify the hardware design

of RF nodes but would rely on complex MAC protocol to handle the interference. The

interference can be most possiblly reduced by implementing each dedicated RF node in

different transmission frequency. However, it may complicate the hardware design. The

collision within the network needs to be carefully considered during the transmission of

different signals to the same node, which can be avoided by a predetermined test schedule

and an efficient routing protocol. We will develop simulation models according to differ-

107

ent scenarios and measure these effects with the use of RF interconnects for intra-chip test

communication.

108

Appendix A

The Pseudocode of Modified SPSP Algorithm

structure CORE:��; /* core id */

�;� �; /* the num of test sets */

�
��; /* the test time of each test set */

�
��; /* the corresponding test resources */

structure NODE:��	�
��; /* a vector of distance to	 */

��
��; /* the weight on the incident edge */

��"�; /* the predecessor */

��# ��	�; /* the max among��	�
�� */

Modified SPSP(int�, int �, struct CORE
$�"
��, struct NODE8"��"#
���)

begin

/* initialize �
�� */

for each vertex8 � �
������ /* � is the num of resources, � is the num of cores */

for the distance on each resource queue� � �
�����

8"��"#
8����	�
�� ��;

for the weight of the incident edge on each resource queue� � �
�����

8"��"#
8����
�� � 8"��"#
8���
��;

8"��"#
8����"� � �5';

8"��"#
8����# ��	� ��;

/* initialize source 	 */

for the distance on each resource queue� � �
�����

A–109

8"��"#
	����	�
�� � �;

8"��"#
	����"� � �5';

8"��"#
	����# ��	� � �;

/* initialize destination � */

for the distance on each resource queue� � �
�����

8"��"#
�����	�
�� ��;

for the weight of the incident edge on each resource queue� � �
�����

8"��"#
�����
�� � �;

8"��"#
	����"� � �5';

8"��"#
	����# ��	� ��;

� � �*�;
Enqueue all vertex8 � �
�
 	
 �� into priority queue<
������ ��;

while<
� *

/* ;� Extract-Min(<) */

Dequeue(;
<
�
 �); /* remove node ; from < with minimum ��# ��	� value */

� � �
��;�;

if (node; ��)

for each node8 � ���
	�
for the distance on each resource queue� � �
�����

<
8����	�
�� � <
8����
��;

update<
8����# ��	�� ��#�<
8����	�
���;
<
8����"�� 	;

Enqueue(8
<
�
 �); /* add node 8 into < */

else if (node; �� �)

print minimum distance vector;

print path from	� �;

A–110

break; /*a shortest path from 	 to � is found */

else

for each node8 � ���
;�
/* relaxation */

for the distance on each resource queue� � �
�����

�
�� � <
8����	�
��;

for the distance on each resource queue� � �
�����

�
�� � <
;����	�
�� �<
8����
��;

if (="������
�
�� �� �) /* if � % � return 1; else return -1 */

for the distance on each resource queue� � �
�����

<
8����	�
�� � <
;����	�
�� �<
8����
��;

update<
8����# ��	�� ��#�<
8����	�
���;
<
8����"�� ;;

Enqueue(8
<
�
 �); /* add node 8 into < */

end

A–111

Appendix B

The Schedule Results of d695 with����=32

c9

c5

D2

c3
16

c8

c4

58
24

c7
c6

FULL! FULL! FULL!

46
01

c2

c0

24
24

1 Test Time

32

30

17

20

3

32

16

5

5

c1

TAM width

D1D0

17
56

7
17

90
5

21
76

5
21

79
0

25
14

6
25

98
1

26
49

5

D5D3 D4 D6 D7D8D9

maxP 1500=(a) The schedule with

602

530

690
1

641

max=32W

823
354

0

2

3

4
5

6

7

8

9
1144

275

753

660

5 c0

c4

19

c3

D0 D1 D5D2 D3 D4 D6 D7 D8 D9

Test Time

3

20

2

79
14

12
51

5

15
68

9

19
54

9

25
64

4
26

15
8

FULL!TAM width FULL!

maxP 1800=(b) The Schedule with

81
34

5c6

13

32 32 30c7c9c1

c5

c8

c2

24
76

33
56

58
24354

3

1

0
Wmax=32

5

2

4

6

7

8

9
1144

275

602

530

823641

660

753

690

B–112

c0

c2

c3

D2

11

D0 D1 D3 D4 D5 D6
FULL!

5

17
c5

c8

30 32
c7 c9 32c1

32
c6

3c4

5

D7 D8 D9
TAM width

Test Time

46
01

58
2425

98
90

12
24

7
12

76
1

18
85

6

22
71

6
23

55
1

26
02

7

max

530

823641

660

753

690

Pmax 2000=(c) The schedule with

W =32

602

354

0

1

2

3

4
5

6

7

8

9
1144

275

Test Time

5 c0

c7

20c8

1 c4

5 c2c6

c1

TAM width FULL!

25
73

33
56

58
24

50
58

79
14

12
51

5

15
71

4

15
68

9

21
80

9

25
69

9

32

19

6
D1

c5

13

17c3

c9
32

D0 D9D8D7D6D5D4D3D2

(d) The schedule with

602

530

823641

660

753

690 Wmax=32

max 2500=P

275

354

0

1

2

3

4
5

6

7

8

9
1144

B–113

ACKNOWLEDGMENTS FOR

FUNDING PROVIDERS

This research was in part supported by a NYSTAR grant from the Microelectronics Design Center

through University of Rochester.

B–114

Bibliography

[1] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core based system chips,”IEEE

Computer, pp. 52–60, June 1999.

[2] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction in core-based ICs,” in

Proc. of Int’l Test Conf., pp. 448–457, October 1998.

[3] R. Rajsuman,System-On-A-Chip: Design and Test. Artech House, Incorporated, 2000.

[4] Y. Huang, S. M. Reddy, W. T. Cheng, P. Reuter, N. Mukherjee, C. C. Tsai, O. Samman, and

Y. Zaidan, “Optimal core wrapper width selection and SOC test scheduling based on 3-D bin

packing algorithm,” inThe Proc. of ITC, pp. 74–82, 2002.

[5] International Technology Roadmap for Semiconductors, 2001 Edition.

[6] A. Allan, D. Edenfeld, W. H. Joyner, A. B. Kahng, M. Rodgers, and Y. Zorian, “2001 technol-

ogy roadmap for semiconductors,”IEEE Computer, vol. 35, pp. 42–53, January 2002.

[7] P. Gallagher, V. Chickermane, S. Gregor, and T. S. Pierre, “A building block BIST methodol-

ogy for SOC designs: A case study,” inProceedings of International Test Conference, October

2001.

[8] R. Kapur, R. Chandramouli, and T. W. Williams, “Strategies for low-cost test,”IEEE Design

and Test of Computers, vol. 18, no. 6, pp. 47–54, 2001.

[9] E. J. Marinissen and M. Lousberg, “Macro test: A liberal test approach for embedded reusable

cores,” inIEEE Int’l Workshop on Testing Embedded Cores-based Systems, pp. 1–9, November

1997.

B–115

[10] I. Ghosh, S. Dey, and N. K. Jha, “A fast and low cost testing technique for core-based system-

on-chip,” inProc. of DAC, pp. 542–547, 1998.

[11] V. Immaneni and S. Raman, “Direct access test scheme - design of block and core cells for

embedded ASICs,” inProc. of ITC, pp. 488–492, September 1990.

[12] L. Whetsel, “An IEEE 1149.1 based test access architecture for ICs with embedded cores,” in

Proc. of ITC, pp. 69–78, 1997.

[13] N. A. Touba and B. Pouya, “Using partial isolation rings to test core-based designs,”IEEE

Designs and Test of Computers, vol. 14, no. 4, pp. 52–59, 1997.

[14] P. Varma and S. Bhatia, “A structured test re-use methodology for core-based system chips,”

in Proc. of ITC, pp. 294–302, 1998.

[15] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, and C. Wouters, “A

structured and scalable mechanism for test access to embedded reusable cores,” inProc. of

ITC, pp. 284–293, 1998.

[16] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Towards a standard for

embedded core test: An example,” inProc. of ITC, pp. 616–627, 1999.

[17] Y. Zorian, “A distributed BIST control scheme for complex VLSI devices,” inProc. IEEE

VLSI Test Symposium, pp. 4–9, April 1993.

[18] M.-C. F. Chang, V. Roychowdhury, L. Zhang, H. Shin, and Y. Qian, “RF/wireless interconnect

for inter- and intra-chip communications,”Proc. of The IEEE, vol. 89, pp. 456–466, April

2001.

[19] B. A. Floyd, C.-M. Hung, and K. K. O, “Intra-chip wireless interconnect for clock distribution

implemented with integrated antennas, receivers, and transmitters,”IEEE Journal of Solid-

State Circuits, vol. 37, pp. 543–552, May 2002.

[20] R. K. Gupta and Y. Zorian, “Introducing core-based system design,”IEEE Design & Test of

Computers, vol. 14, pp. 15–25, December 1997.

B–116

[21] E. J. Marinissen and Y. Zorian, “Challenges in testing core-based system ics,”IEEE Commu-

nication magazine, pp. 104–108, June 1999.

[22] V. Agrawal, C. Lin, P. Rutkowski, S. Wu, and Y. Zorian, “Built-in self-test for digital integrated

circuits,” AT&T Technical Journal, vol. 73, March 1994.

[23] M. Stancic, L. Fang, and H. G. Kerkhoff, “Testing of parametric faults in embedded analog

cores of system-on-chip,” inProc. of ProRISC, pp. 515–518, 2000.

[24] E. J. Marinissen and J. Aerts, “Test protocol scheduling for embedded-core based system ICs,”

in 2nd IEEE Int’l. Workshop on TECS, pp. 5.3–1–9, October 1998.

[25] E. J. Marinissen, R. Kapur, and Y. Zorian, “On using IEEE P1500 SECT for test plug-n-play,”

in Proc. of ITC, pp. 770–777, October 2000.

[26] IEEE P1500 web site. http://grouper.ieee.org/groups/1500/.

[27] L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,”IEEE Computer,

vol. 35, pp. 70–78, 2002.

[28] B. Floyd, “A CMOS wireless interconnect system for multigigahertz clock distribution,” 2001.

PhD Dissertation, University of Florida.

[29] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan chains and its application

to testing core-based design,” inProc. of Int’l Test Conf., pp. 458–464, 1998.

[30] A. Chandra and K. Chakrabarty, “System-on-a-chip test data compression and decompression

architectures based on golomb codes,”IEEE Trans. on Computer-Aided Design, vol. 20, no. 3,

pp. 355–368, 2001.

[31] K. Chakrabarty, “Design of system-on-a-chip test access architectures using integer linear

programming,” inProc. of IEEE VLSI Test Symp., pp. 127–134, 2000.

[32] K. Chakrabarty, “Test scheduling for core-based systems using mixed-integer linear program-

ming,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 19,

pp. 1163–1174, October 2000.

B–117

[33] E. Larsson and Z. Peng, “Test scheduling and scan-chain division under power constraint,” in

The Proc. 10th Asian Test Symposium, pp. 259–264, October 2001.

[34] M. Sugihara, H. Date, and H. Yasuura, “Analysis and minimization of test time in a combined

BIST and external test approach,” inDesign, Automation and Test in Europe Conf., pp. 134–

140, March 2000.

[35] Y. Huang, W. T. Cheng, C. C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and S. M. Reddy,

“Resource allocation and test scheduling for concurrent test of core-based SoC design,” inThe

10th Asian Test Symposium, pp. 265 –270, October 2001.

[36] W. Jiang and B. Vinnakota, “Defect-oriented test scheduling,”IEEE Trans. on VLSI Systems,

vol. 9, pp. 427–438, June 2001.

[37] G. L. Craig, C. R. Kime, and K. K. Saluja, “Test scheduling and control for VLSI built-in

self-test,”IEEE Trans. on Computers, vol. 37, pp. 1099–1109, September 1998.

[38] C. R. Kime and K. K. Saluja, “Test scheduling in testable VLSI circuits,” inProc. of 12th Int’l.

Symp. Fault-Tolerant Computing, pp. 406–412, 1982.

[39] C.-I. H. Chen, “Graph partitioning for concurrent test scheduling in VLSI circuit,” inProc. of

DAC, pp. 287–290, 1991.

[40] R. Chou, K. Saluja, and V. Agrawal, “Scheduling tests for VLSI systems under power con-

straints,”IEEE Trans. on VLSI Systems, vol. 5, pp. 175–185, June 1997.

[41] V. Muresan, X. Wang, V. Muresan, and M. Vladutin, “Mixed classical scheduling algorithms

and tree growing techniques in block-test scheduling under power constraints,” in12th Inter-

national Workshop on Rapid System Prototyping, pp. 162–167, 2001.

[42] V. Iyengar and K. Chakrabarty, “Precedence-based, preemptive, and power-constrained test

scheduling for system-on-a-chip,” in19th IEEE Proceedings on VLSI Test Symp., pp. 368–

374, 2001.

B–118

[43] M. Nourani and C. Papachristou, “An ILP formulation to optimize test access mechanism in

system-on-chip testing,” inProc. of ITC, pp. 902–910, October 2000.

[44] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access mechanism

co-optimization for system-on-a-chip,” inProc. of ITC, pp. 1023–1032, 2001.

[45] S. Koranne and V. S. Choudhary, “Formulation of SoC test scheduling as a network transporta-

tion problem,” inDesign, Automation and Test in Europe Conf., p. 1125, March 2002.

[46] D. Bagchi, D. RoyChowdhury, J. Mukherjee, and S. Chattopadhyay, “A novel strategy to test

core based designs,” inProc. of 14th Int’l Conference on VLSI Design, pp. 122–127, January

2001.

[47] E. Larsson and Z. Peng, “An integrated system-on-chip test framework,” inDesign, Automa-

tion and Test in Europe Conf., pp. 138–144, March 2001.

[48] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On using rectangle packing for wrap-

per/TAM co-optimization,” inProc. IEEE VLSI Test Symp., pp. 253–258, 2002.

[49] S. K. Goel and E. J. Marinissen, “Effective and efficient test architecture design for SOCs,” in

Proc. of ITC, pp. 529–538, 2002.

[50] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Integrated wrapper/TAM co-optimization,

constraint-driven test scheduling, and tester data volume reduction for SoCs,” inProc. of

IEEE/ACM Design Automation Conf., pp. 685–690, 2002.

[51] K.-J. Lee and C.-I. Huang, “A hierarchical test control architecture for core based design,” in

Asian Test Symp., pp. 248–253, December 2000.

[52] J.-F. Li, H.-J. Huang, J.-B. Chen, C.-P. Su, C.-W. Wu, C. Cheng, S.-I. Chen, C.-Y. Hwang, and

H.-P. Lin, “A hierarchical test scheme for system-on-chip designs,” inProc. Design, Automa-

tion and Test in Europe, pp. 486–490, March 2002.

[53] P. Guerrier and A. Greiner, “A scalable architecture for system-on-chip interconnections,” in

Proc. of the Sophia Antipolis Forum on MicroElectronics, pp. 90–93, October 1999.

B–119

[54] K. Lahiri, G. Lakshminarayana, A. Raghunathan, and S. Dey, “Communications architecture

tuners: A methodology for the design of high-performance communication architectures for

system-on-chip,” inProc. of DAC, pp. 513–518, June 2000.

[55] D. Wingard, “Micronetwork-based integration for SOCs,” inProc. of DAC, pp. 673–677, June

2001.

[56] B. Moore, D. Garvey, M. Margala, and C. Backhouse, “Wireless testing techniques and circuits

for deep submicron VLSI circuits,” inProc. of the 12th International Conference on Wireless

Communications, pp. 224–235, July 2000.

[57] D. Zhao and S. Upadhyaya, “A generic resource distribution and test scheduling scheme for

embedded core-based SoCs,”IEEE Transactions on Instrumentation and Measurement, April

2004.

[58] D. Zhao and S. Upadhyaya, “A resource balancing approach to soc test scheduling,” inProc.

of IEEE International Symposium on Circuits and Systems, May 2003.

[59] D. Zhao, S. Upadhyaya, and M. Margala, “Minimizing concurrent test time in SoCs by bal-

ancing resource usage,” inProc. of the 12th ACM Great Lakes Symposium on VLSI, pp. 77–82,

April 2002.

[60] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, Second Edition.

The MIT Press, 2001.

[61] R. Rajsuman, “Design and test of large embedded memories: An overview,”IEEE Design and

Test of Computers, vol. 18, pp. 16–27, May-June 2001.

[62] R. Conway, W. Maxwell, and L. Miller,Theory of Scheduling. Addison-Wesley, 1967.

[63] D. Zhao and S. Upadhyaya, “Dynamically partitioned test scheduling for SoCs under power

constraints,” inProc. of IEEE North Atlantic Test Workshop, pp. 72–81, May 2002.

[64] A. P. Chandrakasan and R. W. Brodersen,Low Power Digital CMOS Design. Kluwer Aca-

demic Publishers, 1995.

B–120

[65] F. N. Najm, “Estimating power dissipation in VLSI circuits,” inIEEE Circutis and Devices

Magazine, 1994.

[66] F. Brglez and H. Fujiwara, “A neutral netlist of ten combinational benchmark circuits and a

target simulator in fortran,” inIntl. Symp. on Circuits and Systems, pp. 695–698, 1985.

[67] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark

circuits,” in Intl. Symp. on Circuits and Systems, pp. 1929–1934, 1989.

[68] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combinational circuits,” in

Proc. of Intl. Conference on Computer Aided Design, pp. 283–289, 1998.

[69] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “K2: An estimator for peak sustainable power of

VLSI circuits,” in International Symposium on Low Power Electronics and Design, pp. 178–

183, 1997.

[70] M. S. Hsiao, “Peak power estimation using genetic spot optimization for large VLSI circuits,”

in Proceedings of the Design, Automation and Test in Europe Conference, pp. 175–179, 1999.

[71] J. A. Bondy and U. S. R. Murty,Graph Theory with Applications. American Elsevier Publish-

ing Co., 1997.

[72] C. Bron and J. Kerbosch, “Finding all cliques of an undirected graph,”Comm. ACM, vol. 16,

pp. 575–577, 1973.

[73] D. Zhao and S. Upadhyaya, “Power constrained test scheduling with dynamically varied

TAM,” in Proc. of IEEE VLSI Test Symposium, April 27-May 1 2003.

[74] G. Chartrand and O. R. Oellermann,Applied and Algorithmic Graph Theory. McGraw-Hill

International Editions, 1993.

[75] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks for modular testing of

SOCs,” inProceedings of IEEE Intl. Test Conference, pp. 519–528, 2002.

[76] A. S. Tanenbaum,Computer Networks. Prentice Hall Inc., 1996.

B–121

[77] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction to Algorithms, Second

Edition. The MIT Press, 2001.

[78] D. Zhao and S. Upadhyaya, “Adaptive test scheduling in SoCs by dynamic partitioning,”

in Proc. of IEEE Int’l Symp. on Defect and Fault Tolerance in VLSI Systems, pp. 334–342,

November 2002.

[79] M. Franceschetti, M. Cook, and J. Bruck, “A geometric theorem for approximate disk covering

algorithms,” inParadise Technical Report, ETR035, January 2001.

[80] D. Hochbaum and W. Maass, “Approximation schemes for covering and packing problems in

image processing and VLSI,”Journal of the ACM, vol. 32, no. 1, pp. 130–136, 1985.

[81] V. Chvatal, “A greedy heuristic for the set-covering problem,”Mathematics of Operations

Research, vol. 4, no. 3, pp. 233–235, 1979.

[82] M. Franceschetti, M. Cook, and J. Bruck, “A geometric theorem for wireless network design

optimization,” inThe Lee Center for Advanced Network Workshop, October 2002.

[83] D. Zhao, S. Upadhyaya, and M. Margala, “A new distributed test control architecture with mul-

tihop wireless test connectivity and communication for gigahertz system-on-chips,” inProc.

of IEEE North Atlantic Test Workshop, May 2003.

[84] D. Zhao, S. Upadhyaya, and M. Margala, “Control constrained resource partitioning for com-

plex SoCs,” inProc. of IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems, November 2003.

B–122

