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Abstract— The Bluetooth standard specifies the formation of
Piconets but only alludes to the possibility of joining several of
these Piconets to form a Scatternet. In an attempt to formalize
this Scatternet formation process, several schemes have been
suggested. The centralized schemes suggested so far, require all
the nodes to be in the radio range of each other (i.e. single hop)
to ensure the correctness of their algorithm. To address multi
hop scenarios, the distributed schemes suggested so far, usually
require multiple phases to form a Scatternet. In particular, they
need a considerable amount of time and energy in the topology
discovery phase, during which the nodes exchange one hop or
even two hop neighbor information. This also restricts these
schemes’ ability to efficiently cope with fully dynamic topology
changes due to nodes joining/leaving. In this work, we propose a
novel and practical approach called BlueToothSpin (BTSpin) to
overcome several of the above mentioned shortcomings. BTSpin
has a single phase, wherein the nodes concurrently form Scatter-
nets and route data traffic. Our simulations show that BTSpin
has a low Scatternet formation delay, and can form efficient
multi-hop Scatternets when nodes arrive both Incrementally and
En Masse (all at the same time). The total number of Piconets
formed and the average number of roles per node (number of
Piconets a node participates in) are also shown to be lower than
other proposed mesh based protocols.

I. INTRODUCTION

Bluetooth ([1], [2]) is a wireless communication system
used to form personal area networks over a short range.
On being turned on, a Bluetooth device can be in any one
of the following modes: Inquiry, Inquiry Scan, Symmetric
Inquiry. In the Symmetric Inquiry mode, a Bluetooth device
toggles between the Inquiry mode and the Inquiry Scan mode.
A device in the Inquiry mode sends out ID packets in a
predetermined frequency hopping sequence. A device in the
Inquiry Scan mode, while scanning frequencies in a preset
frequency hopping sequence, waits for those ID packets. To
ensure a frequency match between devices in these two modes,
the device in the Inquiry mode hops frequencies twice as
fast as the one in the Inquiry Scan mode. On a frequency
match, the device in the Inquiry Scan mode responds with
its Frequency-Hop Synchronization (FHS) packet containing
its device ID and Bluetooth clock, and enters a Page Scan
mode. The inquiring device, on receiving this FHS packet,
pages the inquired device with its own clock. On receiving the
page, the inquired device tunes its clock to that of the paging
device, thereby becoming its Slave. This way, a star shaped
network called Piconet may be formed with one Master and

at most seven active Slaves. In the event of having more than
seven Slaves, a Master can park/un-park Slaves so that only
seven remain active at any given time. All intra-Piconet data
transfer is coordinated by the Master, who periodically polls
all its active Slaves as per as its scheduling policy. Slaves
can only communicate with their Master. Only Masters can
initiate this communication by the polling mechanism. Hence
all traffic flows through the Master. To accommodate a greater
number of active devices, the Bluetooth standard alludes to the
possibility of joining several Piconets to form a larger network
called a Scatternet. To this end, a node can have multiple roles
in multiple Piconets to serve as a Bridge in between them.
For example, it can be a Master in one of the Piconets and
a Slave in all the other Piconets. Details of achieving such
a bridged network (Scatternet) however, is not mentioned in
the specifications. In an attempt to formalize this Scatternet
formation process, many schemes have been described in the
literature.

The solutions proposed so far can be broadly classified
into two categories: Centralized and Distributed. Centralized
schemes (e.g., [3], [4], [5], [6]) assume the entire network to
be in the radio range of each other (single hop network). Thus
these protocols can leverage on the complete network topology
information to optimize the Scatternets formed. However,
given that the average transmission radius of a Bluetooth
device is only 10 meters, such a single-hop assumption may be
too restrictive. To overcome this problem, distributed schemes
(e.g., [4], [7], [8]) were proposed, which form multi-hop
Scatternets. In most of these schemes, however, the nodes form
a Scatternet in multiple phases and are unable to account for
nodes that turn on (join) and turn off (leave) at different times.
Moreover, any protocol requiring multiple steps or phases to
form a Scatternet faces the challenge of selecting optimal
phase timeout values (see III-A for more details).

In this work, we propose a novel framework called Blue-
ToothSpin (BTSpin), which is a single phase distributed Scat-
ternet formation strategy in Bluetooth. BTSpin makes use of
a greedy and aggressive approach to form and heal mesh-
based Scatternets, and allows concurrent data communication
between the nodes. It does not require all nodes to be in
communication range with each other, and as such, supports
multi-hop networks. The Spin technique that we propose al-
lows a Piconet to connect omni-directionally. It also promotes



fairness by relieving any particular node from being burdened
by the Scatternet formation task more than the others in its own
Piconet. At the same time, the absence of multiple phases in
the protocol makes distributed implementation easier (by not
having to worry about synchronizing phase timeout values).
BTSpin tries to minimize the number of Piconets formed to
result in a minimum number of Bridge nodes, as well as reduce
the energy consumed in the process of forming (and breaking)
Piconets. In Bluetooth, two nodes cannot exchange informa-
tion without the existence of a Piconet between them. This
constraint mandates that every new node, which attempts to
communicate with another node, needs to form a Piconet with
the other node. The process of Piconet formation requires a
frequency match in the time domain between the two devices.
As described earlier, both devices hop in a predetermined
frequency hopping sequence, which implies that both devices
must spend a considerable time in this process to ensure a good
probability of a match. Often such Piconets are broken as soon
as the information exchange is over. Thus, these Piconets do
not form a part of the final Scatternet. Such Piconets shall
be henceforth referred to as temporary Piconets in this paper.
Since Bluetooth devices are particularly power constrained,
BTSpin tries to eliminate the need to form temporary Piconets
at any point in an effort to conserve energy. BTSpin also uses
the concept of Backup Gateways that help in recovering from
any single node failure (e.g., caused by turning off a node). To
the best of our knowledge, no other solution has been proposed
so far that is as capable as BTSpin in forming efficient multi-
hop Scatternets for Bluetooth devices.

The rest of the paper is outlined as follows. In Section II, we
present a thorough survey and discussion on related work. In
Section III, we describe the details of the BTSpin protocol.
In Section IV, we analyze and compare BTSpin with other
protocols and present our simulation results. In Section V, we
mention our future direction and conclude this work.

II. RELATED WORK

Recently, the Bluetooth Scatternet formation problem has
attracted a lot of attention. Broadly, Scatternet formation
strategies can be classified into the following categories:� Centralized: A special node (e.g. co-coordinator, leader)

initiates and oversees the Scatternet formation process� Distributed: Each node independently participates in the
formation of a Scatternet, based only upon its local
knowledge about the network� Single-Hop: All nodes are in the radio range of each other� Multi-Hop: Only some nodes are in the radio range of
each other� Static: All nodes arrive (or are turned on) simultaneously
(or within a short time interval), and no nodes will leave
(or are turned off)� Dynamic: Nodes can leave/join the network at different
times

Based on the above classification, the Scatternet formation
schemes in the current literature can be summarized by the
following Table I.

TABLE I

CLASSIFICATION OF SCATTERNET FORMATION PROTOCOLS

Centralized Distributed
Single-Hop [3], [9] [7], [10]

Static [11], [5], [7] [12]
Single-Hop None [4], [13], [14]
Dynamic [6], [15], [16]

Multi-Hop [11] [8], [17]
Static

Multi-Hop None [18]1

Dynamic BTSpin2

Centralized schemes permit the application of traditional
graph theoretic techniques to optimize the generated Scatternet
topology for data traffic. They assume the presence of a
special node to gather the topology information, construct
the topology graph and start the Scatternet formation process.
Typically such special nodes are chosen by a leader election
process. This process relies on empirical timeout values to
ensure the correctness of the algorithm, and is difficult to
auto-tune in real ad hoc scenarios. Further, gathering topology
information requires the formation of a large number of
temporary Piconets, which implies a large Scatternet formation
delay. Once the initial topology has been determined, it is
impractical to re-run the entire topology discovery phase to
account for node leaving and joining the network at different
times.

Salonidis et al.([3], [9]) were among the first who worked on
this subject. They presented a centralized approach, assuming
all devices to be turned on within a short time window. Marsan
et al.[11] presented an offline topology construction scheme
by formulating it as a min-max optimization problem. Stating
it to be an NP Complete problem they presented a distributed
approach with an interesting application of unused bits in the
FHS packet. In [5], the authors assumed a single-hop scenario
and approached the problem of Scatternet topology formation
through graph theoretic formulation. They concentrated on
graphs that can be partitioned into disjoint sets of edges, each
of which is a (near-) perfect matching of the original graph.
However, their approach has a multi-phased implementation
similar to the one described in [3] and suffered from all the
consequent disadvantages, including the problem of requiring
appropriate empirical timeout values.

To mitigate these disadvantages of centralized approaches,
and to deal with dynamic nature of networks (with respect
to nodes joining and leaving the network at different times),
several distributed approaches have been proposed in the
literature. In contrast to the centralized schemes, current
distributed approaches rely on local optimizations through
information exchange with neighbors. This leads to wastage
of resources due to large number of temporary Piconets. Also,
distributed approaches, relying only on local information about

1partially dynamic: allows nodes to join later; cannot handle nodes leaving
2fully dynamic: allows nodes to join/leave later; our proposed protocol



the network, often end up in forming disconnected topologies,
with several components in the topological graph. Hence most
of these protocols cannot generate a single Scatternet even in
the presence of physical connectivity.

Among the distributed approaches, Foo et al.([10], [12])
proposed a ring based topology. They leveraged the ease in
routing and ‘two-connectivity’ (at least two nodes need to fail
to cause the network to partition) to improve performance.
Their protocol forces each node to be associated with two
Piconets, thereby incurring expensive scheduling penalties.
Petrioli et al.[8] proposed a multi-hop and distributed mesh
topology construction. Their approach suffers from an expen-
sive topology discovery phase and is intrinsically dependent
on empirical timeouts which can be difficult to auto-tune in
an ad hoc scenarios. To their credit, they generated a single
Scatternet whenever physical connectivity was available. Each
Piconet however, could end up having more than seven Slaves.
This problem has been solved in [19], where the author
addressed the problem of reducing the total number of Slaves
in a Piconet using a distributed degree reduction technique.
This approach requires each device to know its geographic
location and thus mandates dependency on additional hardware
viz. GPS [20] receiver. Yun et al.[18] proposed a star shaped
topology construction scheme. Their approach required all
the nodes in a Scatternet to be in Inquiry Scan, while the
‘free’ nodes could engage themselves in both Inquiry and
Inquiry Scan. The links were formed based on memberships
to Piconet groups. Only one bridge to another Piconet group
was allowed. Since Inquiry Scan is a resource intensive task,
forcing all the nodes in a Scatternet to be in Inquiry Scan
waste resources. It also had an initial neighbor discovery phase
that introduced the problem of requiring empirical timeout
values as discussed earlier for the centralized schemes. Zaruba
et al.[7] had proposed a Scatternet formation heuristic to
induce a tree topology. It was a multi-phased approach with
a time consuming election phase. Tan et al. ([6], [15], [16])
had a similar distributed tree formation protocol, where only
certain types of nodes were allowed to connect with each
other. They addressed the problem of nodes leaving/dying by
allowing disconnected components to merge. They suffered
from En Masse arrival problem (nodes arriving all at once)
which in their particular case results in many disconnected
partitions. Basagni et al.[17] proposed a multi-hop three-
phased protocol similar to the one in [8], where they restrict
the topology discovery phase to single hop neighbors. They
relied on device ID and a distributed election process (as
in [3]) to determine the roles (Master, Slave, Bridge) of
nodes. Since Bluetooth requires the existence of a Piconet for
any information exchange, their algorithm resulted in a large
number of temporary Piconets. Having multiple phases, their
scheme had to rely on empirical timeout values for protocol
correctness. Also having a separate topology discovery phase,
they too failed to account for nodes joining and leaving the
network.

Kapoor et al.[21] approached the problem from a net-
work capacity point of view and provided insights into the

performance of different topologies. They however, did not
discuss techniques to form any of those topologies. Liu et
al.([14], [13], [4]) proposed a randomized distributed strategy
for forming a chain like Scatternet. Their algorithm relied
on all nodes being in the radio range of each other. They
addressed the problem of incremental joining of nodes, but
failed to account for nodes leaving (turning off) the network
at different times.

It is evident from the discussion above that even the existing
distributed techniques like [4], [10], [7] can only be used for
single hop networks. The schemes in [8], [18], [17] on the
other hand do address multi-hop scenarios but suffer from an
resource intensive multi-phased approach that fails to account
for dynamic node joining/leaving.

III. BTSPIN STRATEGY

The main goal of BTSpin is to provide an efficient solution
in a realistic ad hoc scenario. Hence we adopted the Mesh-
based Scatternet topology as it has been proved to be superior
to Tree-based Scatternet formation protocols ([17], [8]). BT-
Spin employs the proposed Spin concept (see III-B below),
which allows data communication and Scatternet formation to
be performed concurrently. This strategy avoids un-necessary
temporary Piconets that are formed for the sake of mutual
information exchange. In case a Piconet formed is redundant
and needs to be broken, we keep the Backup Gateway in-
formation to help maintain a single Scatternet even after a
single point Bridge node failure. Since the nodes do not have
to go through an initial phase where they discover topology
by exchanging one hop or even two hop neighbor information,
the Scatternet formation delay is low and Piconets can actually
start exchanging data earlier. We shall now proceed to explain
in detail the working of this BTSpin protocol.

A. Single-Phase vs. Multi-Phase Scatternet Formation

In most mesh-based Scatternet formation techniques de-
scribed in literature, the nodes have multiple phases to form a
Scatternet. For example, in [17], the authors proposed a three
phased approach. The first phase does topology discovery,
wherein all nodes exchange information with their physical
neighbors (i.e., in the radio range). As discussed earlier, this
requires a large number of temporary Piconets, making this
phase resource intensive in terms of energy consumption. In
the second phase, a distributed Piconet formation algorithm is
used. This phase additionally requires each node to updates all
its physical neighbors about its assigned role (Master or Slave)
and its Piconet ID (the node ID of the Master of the Piconet).
Once the Piconets are formed, the Masters use their Slave’s
one-hop neighbor information to decide network Bridges that
join Piconets into a single Scatternet in the final phase. This
protocol suffers from the fact that a Piconet could end up
with more than seven Slaves. In [8], the authors proposed
a similar approach, but with only two phases. The topology
discovery done in the the first phase is more extensive than
the one described in [17]. More specifically, all the nodes
first discover their one-hop neighbors and then exchange that



information once again with all one-hop neighbors to get two-
hop neighbor information. Thus, it ends up forming a larger
number of temporary Piconets than in [17]. In the second
phase, the Scatternet is formed. It is evident that the phased
approach requires the use of empirical timeout values for each
phase. These timeout values are intrinsically dependent on
the node density, and are therefore difficult to auto-tune in
a real ad hoc scenario. Thus during any topology discovery
phase, if a node times out early, it may not discover all its
neighbors. Alternatively, if the timeout value is large, the
Scatternet formation delay is increased. Moreover, once this
topology discovery phase is concluded, the protocol fails to
accommodate any node that joins (or is turned on) the network
at a later time. In contrast to these approaches, BTSpin has
a single Spin phase (see III-B below) and forms a multi-
hop Scatternet through a distributed mechanism, which does
not require a complete knowledge of one-hop or two-hop
neighborhood information. BTSpin can also account for nodes
joining (turning on) and leaving (turning off) the network at
different times.

B. Spin Technique

The main feature of the BTSpin strategy is the proposed
Spin technique that each Master in BTSpin employs to achieve
a balance between Scatternet formation and intra-Piconet data
communication. We define a single ‘Spin’ to comprise of an
Inquiry mode followed by an Inquiry Scan mode. The Master
in each Piconet schedules each of its Slaves for a Spin in a
round robin fashion. While a Slave is spinning, the Master
can continue data communication with the other Slaves. The
spinning node also obtains relevant Piconet parameters from
its Master (e.g., size of Piconet, Master ID) before it starts
its spin. As detailed in the algorithm below (see III-C), on
discovering another spinning node, this information is used
to make intelligent decisions on when to switch roles, form
a new Piconet, etc. The actual implementation of this Spin
can be achieved by requiring the Master to put the Slave in
‘hold’ mode (as in the Bluetooth Specification) for a Spin
duration. In a ‘hold’ mode, the Slave gives up its active Piconet
membership and listens to its Master only at predetermined
points in time. Once the Slave completes its spin, it notifies
the Master. The Master then selects yet another Slave to start
its Spin. The Master himself goes for a Spin once every Slave
has had its turn, and then the entire process is repeated. In this
way, the Piconet has a chance to connect omni-directionally
with other Piconets and Free nodes, without burdening any
single node in the Piconet with the task of trying to connect
with other nodes in the network. Slave-Slave bridges are not
scheduled by the Master to Spin since in BTSpin the maximum
number of roles a node can have is restricted to two. This is
done to improve system capacity (as analyzed in [21]). To keep
the maximum number of Slaves in a Piconet to be no greater
than seven, a Master removes itself from the spin schedule,
once its Piconet gets full.
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Fig. 1. (i) A and B are two-hop connected (ii) A and B are three-hop
connected

C. Connect Rules and Role Determination

Initially all nodes are Free nodes when they turn on. All Free
nodes continue to Spin till they connect with another node in
the network, either as a Slave, or as a Master. Once a node
becomes a part of a Piconet, it waits for the Master to schedule
it to Spin (if it is a Slave), or it periodically Spins itself (if
it is a Master). BTSpin lays out rules for two spinning nodes
to determine their roles when they happen to connect for the
first time (i.e. they are in the radio range of each other, with
one of them in Inquiry mode and the other in Inquiry Scan
mode). At first when two nodes connect, they form a Piconet
between themselves, with the one in the Inquiry mode acting
as the Master of the one in the Inquiry Scan mode. Further,
depending on our connect rules, they determine their final
roles and may do a role reversal (according to the Bluetooth
specification) if required. Thus, the initial Piconet formed in
between the two nodes that meet each other while spinning,
may be broken, modified (by role reversals), or kept as it is
first formed, depending on our role determination policy. For
example, if two spinning Slave nodes meet each other (come
in the radio range of each other and one happens to be in
Inquiry mode, while the other is in Inquiry Scan mode), they
form a Piconet between themselves (where one becomes a
Master to the other). However, they might decide to break
that Piconet and not remain connected with each other at all,
if they realize their Masters to be already two-hop or three-
hop connected (Fig. 1). Such scenarios lead to formation of
temporary Piconets (i.e., Piconets that need to be broken soon
after they are initially formed, and are not part of the final
Scatternet) in the process of Scatternet construction. In this
paper we shall henceforth refer to the following definitions:� connected nodes: nodes that are either directly, two-hop

or three-hop connected to each other� atomic Piconet: that contains a Master with a single Slave

Following, we will describe our algorithms for each of the
node types that are allowed to spin (i.e., Free, Slave, Master,
and Master-Slave Bridge). Rules have been laid out for them
to determine their roles (i.e., Slave, Master, or a Bridge),
upon forming an initial Piconet with (or connecting with)



another spinning node, as mentioned above. We also discuss
the conditions that require the initial Piconet to be broken.

1. If the spinning node is Free

a) On connecting with another spinning Free node:
Both nodes initially form a Piconet, with the node in the

Inquiry mode acting as the Master of the other node in the
Inquiry Scan mode. This Piconet remains and both Master and
Slave take turns to Spin and also communicate with each other.

(a) Initial contact(i)

(a) Initial contact(ii)
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Fig. 2. (i) Free node becomes Slave (ii) Free node becomes master

b) On connecting with a spinning Slave node:
If the peer Slave formed an atomic Piconet with its own

Master, the peer performs a role reversal (as described in the
Bluetooth Specification) to become a Master of both the Free
node (which turns into a Slave) and its original Master, to
form one single Piconet (Fig. 2(i)). Otherwise, the peer Slave
becomes a Slave-Slave Bridge node (Fig. 2(ii)) of the Free
node, which then becomes a Master. The Free node is not
made a Slave of its peer in the second case. This is done to
reduce the number of Piconets that would be formed if the
peer Slave turned into a Master-Slave Bridge, which could
potentially spin. Note that to restrict the maximum number
of roles of any node to two, Slave-Slave Bridges in BTSpin
are not scheduled to Spin. This is due to system capacity
considerations, as analyzed in [21].

c) On connecting with a spinning Master node:
The Free node becomes a Slave of the peer.

d) On connecting with a spinning Master-Slave node:
The Free node becomes a Slave of the peer.

The role determination process for a Free node can be
presented as follows.

FreeNodeRoleDetermination()
1 if (peerRole = Free)
2 role[node in Inquiry] = Master;
3 role[node in Inquiry Scan] = Slave;
4 else if (peerRole = Slave)
5 if (peer is only Slave of its Master)
6 peerRole = Master; (role reversal)
7 myRole = Slave; (Fig. 2(i))
8 else
9 peerRole = Slave-Slave Bridge;
10 myRole = Master; (Fig. 2(ii))
11 end if
12 else if (peerRole = Master OR Master-Slave Bridge)
13 peerRole = Same as before;
14 myRole = Slave;
15 end if

2. If the spinning node is a Slave

a) On connecting with a spinning Free node:
This scenario has already been described in the above

routine for a Free node.

b) On connecting with another spinning Slave node:
If the Masters of these two Slaves are connected (directly,

two-hop or three-hop) with each other, the initial Piconet
formed between these two Slaves will be broken, to minimize
the number of Bridge nodes. Otherwise, the Slave belonging
to a larger Piconet becomes a Slave (Slave-Slave Bridge)
of its peer, which then becomes its peer’s Master (Master-
Slave Bridge) ((Fig. 3(i)). The motivation behind this role
determination is the fact that a Master-Slave Bridge being a
Master of a Piconet has more responsibilities (e.g., scheduling
Slaves for spinning, polling) than a Slave-Slave Bridge.
Hence the Slave belonging to a smaller Piconet is a better fit
to this additional task. The Slave turning into a Master-Slave
Bridge also checks to see if it formed an atomic Piconet
with its own Master, in which case it performs a role reversal
to become a Master of both its peer and its own Master
(Fig. 3(ii)). The role reversal helps reduce the number of
Piconets that need to be formed.

c) On connecting with a spinning Master node:
If this Slave finds its own Master to be a Slave of the

peer, it leaves its old Master and becomes a Slave of the
peer (Fig. 4(i)). On the other hand, if this Slave finds its
Master to be two-hop or three-hop connected to the peer, the
initial connection is broken, to avoid short loops in the mesh.
Otherwise, this Slave becomes a Slave (Slave-Slave Bridge)
of its peer (Fig. 4(ii)).

d) On connecting with a spinning Master-Slave node:
This scenario is identical to the one described above.

The role determination process for a Slave node can be
presented as follows.
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SlaveNodeRoleDetermination()
1 if (peerRole = Free)
2 As described in FreeNodeRoleDetermination()
3 when Free node meets Slave node
4 else if (peerRole = Slave)
5 if (my Master is connected to peer’s Master)
6 break this current Piconet
7 do not connect
8 else
9 role[Slave of bigger Piconet] = Slave-Slave Bridge;
10 role[other Slave] = Master-Slave Bridge; (Fig. 3(i))
11 if (new Master-Slave Bridge is an only Slave)
12 Master-Slave Bridge does role reversal to be
13 Master of peer and its own Master (Fig. 3(ii))
14 end if
15 end if
16 else if (peerRole = Master OR Master-Slave Bridge)
17 if (my Master is a Slave of peer)
18 leave my old Master; make peer my new Master;
19 roles remain same for both peer and me; (Fig. 4(i))
20 else if (my Master is connected to peer)
21 break this current Piconet
22 do not connect
23 else
24 peerRole = Same as before;

25 myRole = Slave-Slave Bridge; (Fig. 4(ii))
26 end if
27 end if

3. If this spinning node is a Master

a) On connecting with a spinning Free node:
This scenario has already been described in the above

routine for a Free node.

b) On connecting with a spinning Slave node:
This scenario has already been described in the above

routine for a Slave node.

c) On connecting with another spinning Master node:
If these Masters are already two-hop connected with each

other, they retain this direct connection if and only if one of
them has the connecting bridge node as its only Slave. In
that case, that Master relieves its Slave and becomes a Slave
of its peer, thereby merging the two Piconets (Fig. 5(i)).
If on the other hand, the two Masters are not two-hop but
three-hop connected with each other, they may still retain
this direct connection, if and only if the pair of Slaves
that form the two bridges connecting them, have an atomic
Piconet between themselves. In that case, these two Masters
instruct their corresponding Slaves to break that atomic
Piconet. The Master of the smaller Piconet becomes the Slave
(Master-Slave Bridge) of the Master of the bigger Piconet
(Fig. 5(ii)). If these two Masters are not connected at all,
they remain connected directly with each other with roles as
mentioned above.
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Fig. 5. (i) Piconets get merged (ii) Intermediate Piconet removed (ii) Smaller
master becomes bridge

d) On connecting with a Master-Slave node:
This scenario is almost identical to that of a Master

connecting with another Master, except for a few additional
checks. If the Master node finds the Master-Slave Bridge
to be its own Slave, the initial Piconet formed between
these two nodes is broken. Else, the Master retains direct
connection with the peer almost as it would with another
Master (Fig. 6(i)). If the peer’s Master is a Slave of this



Master, the peer leaves its old Master and joins this Master
(Fig. 6(ii)). If the Master eventually retains this direct
connection with the Master-Slave Bridge node, it becomes a
Slave (Master-Slave Bridge) of the peer irrespective of their
Piconet sizes (Fig. 6(iii)). This is because we try to restrict
the number of roles that a node can have to at most two to
improve system capacity (as analyzed in [21]).
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Fig. 6. (i) Piconets get merged (ii) Piconet re-arranged (iii) Master becomes
bridge

The role determination process for a Master node can be
presented as follows.

MasterNodeRoleDetermination()
1 if (peerRole = Free)
2 As described in FreeNodeRoleDetermination()
3 when Free node meets Master node
4 else if (peerRole = Slave)
5 As described in SlaveNodeRoleDetermination()
6 when Slave node meets Master node
7 else if (peerRole = Master)
8 if (I am two-hop connected to peer)
9 if (me OR peer has only one Slave)
10 Master with one Slave releases Slave;
11 role[Master with one Slave] = Slave;
12 role[other Master] = Master; (Fig. 5(i))
13 else
14 break this current Piconet
15 do not connect
16 end if
17 else if (I am three-hop connected to peer)
18 if (our Slaves form an atomic Piconet)
19 instruct Slaves to break their atomic Piconet
20 role[smaller Master] = Master-Slave Bridge;
21 role[bigger Master] = Master; (Fig. 5(ii))
22 else

23 break this current Piconet
24 do not connect
25 end if
26 else
27 role[smaller Master] = Master-Slave Bridge;
28 role[bigger Master] = Master;
29 end if
30 else if (peerRole = Master-Slave Bridge)
31 if (peer is my Slave)
32 break this current Piconet
33 do not connect
34 else
35 Similar to when Master meets Master; (Fig. 6(i))
36 Except for a couple of checks and differences
37 if (peer’s Master is my Slave)
38 peer leaves old Piconet and joins mine;
39 our roles remain the same; (Fig. 6(ii))
40 end if
41 if (they DO connect)
42 peerRole = Same as before;
43 myRole = Master-Slave Bridge;
44 irrespective of our Piconet sizes; (Fig. 6(iii))
45 end if
46 end if
47 end if

4. If this spinning node is a Master-Slave Bridge

a) On connecting with a spinning Free node:
This scenario has already been described in the above

routine for a Free node.

b) On connecting with a spinning Slave node:
This scenario has already been described in the above

routine for a Slave node.

c) On connecting with a spinning Master node:
This scenario has already been described in the above

routine for a Master node.

d) On connecting with another spinning Master-Slave node:
By definition, a Master-Slave Bridge belongs to two

Piconets. Since in BTSpin we restrict the number of roles of
a node to two, the initial Piconet formed between the two
nodes shall be broken.

The role determination process for a Master-Slave Bridge
node can be presented as follows.

Master-SlaveBridgeNodeRoleDetermination()
1 if (peerRole = Free)
2 As described in FreeNodeRoleDetermination()
3 when Free node meets Master-Slave Bridge node
4 else if (peerRole = Slave)
5 As described in SlaveNodeRoleDetermination()
6 when Slave node meets Master-Slave Bridge node



7 else if (peerRole = Master)
8 As described in MasterNodeRoleDetermination()
9 when Master node meets Master-Slave Bridge node
10 else if (peerRole = Master-Slave Bridge)
11 Master-Slave Bridge nodes already have two roles
12 Hence break this current Piconet
13 do not connect
14 end if

D. Backup Gateways

In the multi-phased mesh-based approaches proposed in
literature ([17], [8]), we observed a large number of temporary
Piconets being formed between nodes, just for exchanging
symmetric information about their one-hop or two-hop neigh-
bors. BTSpin minimizes the number of such temporary Pi-
conets that need to be formed. In most of our cases, when two
spinning nodes connect with each other for the first time (i.e.
come in the radio range of each other with one node in Inquiry
mode and the other in Inquiry Scan mode), they form and keep
the Piconet, either as it was initially formed, or modifying it (if
mandated by our role determination policy) by performing a
role reversal. Only in a few cases, determined by our connect
rules and role determination policy, two nodes might need
to break the Piconet that is formed initially. Even in those
circumstances, BTSpin tries to salvage as much as possible by
keeping a Backup Gateway information for later use. When
two (bridge) nodes break the link between them, the Masters
of their respective Piconets (if they belong to one) keep a note
of these two nodes as Backup Gateway bridges. In the future,
if these two Masters ever need to connect with each other (due
to their existing Bridge/Bridges failing or turning off) they can
make use of this Backup information to know precisely which
Slave/Slaves to instruct to act as Bridge/Bridges between these
two Piconets. This is the adaptive nature of BTSpin strategy
that takes care of nodes leaving (turning off) the network.

E. Node Failures

As we mentioned in the section above, BTSpin can adapt
itself to heal the Scatternet when nodes leave (fail or turn
off) the network. Following is the action taken on failures of
different types of nodes:

1. Slave node
The Master of this Slave eventually considers the link

as dead when the Slave misses successive polls. No further
action is necessary.

2. Master node
The Slaves realize that the Master is down if they are not

polled successively for some predetermined period of time.
The nodes that were not Bridges act as Free nodes and start
spinning till they connect with someone else. The Bridge
nodes continue with their their second role in the other Piconet.

3. Bridge node
If a Slave-Slave Bridge goes down, both Masters use the

Backup Gateway information to find another Bridge node if
one is available. If a Master-Slave Bridge goes down, the
Master of the Bridge notes the absence as it would for any of
its other Slaves. The Slaves of the Bridge behave as described
above for the failure of a Master node.

F. Routing over BTSpin

Since BTSpin generates a mesh based multi-path multi-
hop Scatternet, any flooding based routing scheme can be
used. The multi-path topology provides the advantage of fault
tolerance and possibility of data stripping (data aggregation).
To overcome loops in the mesh, data sequencing is necessary
to identify duplicate data packets.

IV. SIMULATION RESULTS

To evaluate the efficiency of the proposed protocol, we
implemented BTSpin in GloMoSim [22]. In Bluetooth, the
dynamic nature of the network is driven more by turning on
and off the devices at different times than by mobility of the
devices. Hence we simulated a static network (i.e., no node
mobility), but considered node joining/leaving (as a result
of turning on/off nodes) in three different physical network
topologies.

A. En Masse vs. Incremental Arrival

The three topologies with varying degrees of randomness
considered in our simulations (see detailed description below)
are:� GRID: No randomness in node placement. Nodes are

placed uniformly in a grid.� CELL: Some randomness in node placement. Nodes are
placed at random in cells.� RANDOM: Complete randomness in node placement.
Nodes can be placed anywhere in the terrain.

In each of the above scenarios, we simulated BTSpin
with both ‘Incremental’ arrival (joining) of nodes into the
network and En Masse arrival. The terrain was taken to be
a square region with varying sizes with each node having
a transmission range of 10 meters. The simulation was run
multiple times with varying seeds, each for a duration of 300
seconds.

1. GRID
In this scenario, 36 nodes were placed uniformly onto a grid

that covered the entire terrain. The grid unit size was chosen
to be 7 meters. Since the transmission range of each node
was fixed to 10 meters, the nodes could only contact their
(maximum of 8) immediate grid neighbors.

Fig. 7 shows the Scatternet formed when the nodes arrive
(i.e., devices get turned on) all at the same time (En Masse),
whereas Fig. 8 shows the Scatternet formed when nodes
join the network at the rate of one node every 10 seconds
(Incremental arrival) in the order of their node ID shown in
the figure. We find that in the case of incremental arrival,
the number of Piconets formed (14 in Fig. 8) were smaller
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Fig. 7. En Masse arrival of nodes in the GRID physical network topology
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Fig. 8. Incremental arrival of nodes in the GRID physical network topology

with Piconets having a larger number of slaves in a Piconet
on average. This is due to the fact that in the case of En
Masse arrival, Piconets are formed in parallel at multiple
locations and they may not merge with each other. Hence,
the number of Piconets formed (18 in Fig. 7) is larger, and to
maintain connectivity, the Scatternet has more bridge nodes,
which also means a higher number of roles per node on
average. The Scatternet formation delay in this En Masse
case was observed to be 41.03 seconds (see more discussion
in Section IV-B and IV-C).

2. CELL
Based on the number of nodes in the simulation, the

physical terrain is divided into a number of cells. Within each
cell, a node is placed randomly. In this case, we simulated
with 40 nodes.

Fig. 9 illustrate the Scatternet formed when nodes arrive
En Masse, and Fig. 10 illustrate the Scatternet formed when
nodes join one after another in the order of their node ID
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Fig. 9. En Masse arrival of nodes in the CELL physical network topology
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Fig. 10. Incremental arrival of nodes in the CELL physical network topology

(Incremental arrival). In both cases, we find the node 6 is
left un-connected. This is because the node 6 is physically
isolated from the rest (i.e. no other node was within a radius
of 10 meters from it). In the incremental case we find node 35
is left un-connected too. This is because, at present BTSpin
restricts each node to belong to at most two Piconets. This
is done to increase the system capacity as analyzed in [21].
Hence in BTSpin, a Master never schedules a Slave-Slave
Bridge to spin. Thus, node 35 cannot connect to its only
neighbor (node 28) which already serves as a Slave-Slave
Bridge. As before, the overall Scatternet formation with
Incremental arrival has a lower overall number of Piconets
and lower roles per node on average than the case with
En Masse arrival. The Scatternet formation delay in the En
Masse arrival case was observed to be 28.05 seconds. This
is less than that in the GRID topology primarily due to the
fact that the nodes in the CELL topology are less scattered as
compared to those in GRID. Hence, in the CELL topology,
a spinning node has on average a larger number of spinning



neighbors, thus increasing the chance of connecting with
them. This reduces the time taken to form the Scatternet.

3. RANDOM
In this scenario we place the nodes completely at random

anywhere within the terrain.We simulated 40 nodes for this
scenario.

−10 0 10 20 30 40 50 60 70 80
−10

0

10

20

30

40

50

60

70

80

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38

39

RANDOM: En Masse Arrival

X coordinate of Terrain

Y
 c

oo
rd

in
at

e 
of

 T
er

ra
in

Fig. 11. En Masse arrival of nodes in the RANDOM physical network
topology
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Fig. 12. Incremental arrival of nodes in the RANDOM physical network
topology

Fig. 11 and Fig. 12 show the cases for En Masse arrival
and Incremental arrival respectively. Note that whenever there
is physical connectivity among nodes, BTSpin succeeds in
forming a Scatternet. Given the node placement as shown
in our simulation, we have a number of Scatternets formed
(3 in Fig. 11 and 2 in Fig. 12). Nodes 2 and 14 remained
unconnected since they were physically isolated from the rest
of the nodes. As before, we find that in the incremental arrival
the Piconets formed have more slaves on average than when
all the nodes arrive at once.

B. Comparison with other single-hop approaches

Two of the important performance metrics are the initial
connection setup delay (time taken by a Free node to join a
Piconet for the first time) and the final Scatternet formation
delay. We compared the delay in BTSpin with the following
two schemes in [6]:� PROB: A probabilistic scheme where each node becomes

a Master with a probability of 0.5 and tries to connect
with at most 5 Slaves.� TSF: A Tree-based Scatternet formation protocol.

Both of these schemes are only suited for single-hop net-
works, where any node can potentially connect with any other
node, anywhere within the network. This is not required by
BTSpin. To evaluate the effect of this difference (single-hop
vs. multi-hop) we compared these three schemes for the delays
involved in Scatternet formation. In all the protocols, nodes are
assumed to arrive all at once.
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Fig. 13. Initial connection setup delay varying with number of nodes

Fig. 13 shows the initial connection setup delay for a Free
node to join a Piconet for the first time. Both TSF and BTSpin
outperform PROB. Since BTSpin employs a greedy approach
in connecting the nodes together, the initial delay in BTSpin
is less than that in TSF where Free nodes can only connect
to other Free and non-Root nodes (refer to [6]). In BTSpin,
the delay initially increased with the increase of the number
of nodes due to our ‘Spin’ technique because of which the
Free node had to wait for a neighbor node to be in the spin
mode. With more than 40 nodes, that delay stabilizes due to
the increased number of spinning nodes nearby.

Fig. 14 shows the final Scatternet formation delay. PROB
has the lowest delay among the three, but due to its non-
deterministic nature it cannot guarantee a fully connected
Scatternet. The delay in BTSpin initially increases with the
increase in the number of nodes, but with 40 nodes or more,
it stabilizes. The overall delay in BTSpin remains much lower
than that in TSF. In TSF, when the nodes arrive En Masse,
several disconnected tree components are formed, which take
a long time to merge with each other. This is because only
the Root nodes can merge with other Root nodes (refer to [6]
for further details). Thus its delay keeps increasing with an
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Fig. 14. Final Scatternet formation delay varying with number of nodes

increase in the number of nodes. In BTSpin with En Masse
arrival, the number of Piconets formed increases with the
number of nodes. Hence the delay for getting them connected
increased initially. However, that delay stabilizes with a larger
number of nodes due to increased node density.

C. Comparison with other multi-hop schemes

We compared BTSpin with two-phased mesh based protocol
called BlueMesh ([8]). In both protocols, we considered the
En Masse arrival. When analyzing the multi-hop Scatternets
formed, we use the following two performance metrics:� total number of Piconets formed� average number of roles per node
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Fig. 15. Total number of Piconets varying with number of nodes

Among all the operations that a Bluetooth node performs,
Piconet formation (Inquiry and Inquiry Scan) is the most
resource intensive with respect to the time and energy spent
by a node. Hence the number of Piconets formed during the
process of Scatternet formation is of importance. Fig. 15 shows
that BTSpin forms comparable number of total Piconets with
respect to BlueMesh even though BTSpin does not engage
in a multi-phase process including topology discovery which
BlueMesh uses to reduce the number of Piconets contained in
the Scatternet formed. However, the total number of Piconets

formed in BlueMesh is higher than the number of piconets in
BTSpin due to the large number of temporary Piconets that
are formed during the topology discovery phase alone.

The number of Piconets formed in BTSpin is also close to
the theoretical minimum. For example in one of our simulation
runs , we had ��� nodes in a ���	��
��	��� terrain. Since the nodes
were placed at random, the approximated average node density
was: ���

���
������ ��� �����������������	�! "� � (1)

nodes per square meter. With the transmission radius of
���#�$�!%&�!'�� , we had approximately:(*) 
+���,
+���-
.��� ������/ � ����������� (2)

in the radio range of each other. Thus on an average we could
have one Master with four Slaves in a Piconet. As shown
in [14], the lower bound on the number of Piconets in any
Scatternet is: 0 �213�4 5
where ‘n’ is the total number of nodes in the network and ‘k’
is the average number of Slaves in a Piconet. Thus in our case,
the lower bound on the number of Piconets is:0 ���+16�

�716� 5 � ��� (3)

while in the simulation we get ��� Piconets are formed in
BTSpin.
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Fig. 16. Average number of roles per node varying with number of nodes

Fig. 16 shows the average number of Piconets that a node
belongs to. If the average is lower, it implies a fewer number
of Bridge nodes in the Scatternet. Since the Bridge nodes
have to participate in multiple Piconets, they may become the
bottleneck for data throughput. Hence, having fewer Bridges
in a Scatternet is desirable, as long as all the Piconets can
be connected into one single Scatternet. Clearly, BTSpin has
fewer Bridges than BlueMesh when the number of nodes is
reasonably large, but still ensures connectivity whenever the
nodes are in each other’s radio range.



V. CONCLUDING REMARKS

BTSpin is a single phase distributed Scatternet formation
process that is effective in creating a mesh-based multi-hop
Scatternet both with En Masse and incremental— arrival of the
nodes. Unlike any of the existing protocols, it supports fully
dynamic node joining/leaving without the need to rely on some
central repository of the network topology information and
without collecting one-hop or two-hop neighbor information
through a resource consuming topology discovery. It employs
the proposed Spin technique to achieve concurrency between
Scatternet formation and data communication. The Scatternet
formation delay is shown to be lower than some other existing
schemes. The total number of Piconets formed and the average
number of roles per node are shown to be smaller compared
to other mesh based protocols, even though each Piconet does
not contain more than seven Slaves. The Spin technique is
fair to all the nodes in the Piconet and does not burden any
particular node with the task of connecting with other nodes
in the network. It also enables a Piconet to connect omni-
directionally. BTSpin has an adaptive strategy to account for
nodes leaving (turning off) the network at any time. It uses the
proposed concept of Backup Gateways to quickly heal from
a single node failure (caused by turning off a node). Thus,
BTSpin lends itself as an attractive candidate for distributed
and multi-hop Scatternet formation in Bluetooth.

Currently we are in the process of testing BTSpin’s ro-
bustness against node failures by using the backup gateway
information collected from all the failed node connections as
described in Section. III-D. As an extension to the Scatternet
formation process, we are also devising an efficient routing
protocol that leverages the benefits of BTSpin technique.
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