
INFORMATION PATTERN AWARE
DESIGN STRATEGIES FOR

NANOMETER-SCALE ADDRESS BUSES

by

JIANGJIANG L IU
August 9, 2004

A dissertation submitted to the
Faculty of the Graduate School of

University at Buffalo, The State University of New York
in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science & Engineering

Copyright by

Jiangjiang Liu

2004

ii

ACKNOWLEDGEMENTS

I express my heartfelt gratitude to my advisor Dr. Nihar Mahapatra for his invaluable

advice and support throughout this research. His graduate course on computer architecture

piqued my interest in the area. His thoughtful criticism and inspiring guidance not only

helped shape this work, it also benefited me immensely in terms of both intellectual and

personal growth during my doctoral studies.

Many thanks go to my other thesis committee members, Dr. Chunming Qiao and Dr.

Shambhu Upadhyaya, for their valuable time, helpful advice, and feedback on my research

work, and encouragement on numerous occasions. My thanks also go to Dr. Hongjiang Song

for serving as the outside reader and for his invaluable comments on my thesis. I also thank

Dr. Xin He for his help and support during my graduate studies.

I express my appreciation to theComputer Science and Engineeringdepartment staff,

especially, Jodi Reiner, Joann Glinski, Matthew Stock, William Wallace, Margaret Evans,

and Lynne Terrana for being always there to patiently help me over the years.

Acknowledgement is due to: theNational Science Foundation, which partly funded this

research; theCenter for Computational Researchat theUniversity at Buffalofor access to

their high-performance computers on which many of the simulations for this research were

performed;Sun Microsystems, Inc.andSimpleScalar LLCfor providing free use of their

ShadeandSimpleScalarsimulators, respectively; Sergey Lyubskiy for helping me with the

use ofShade; and Niki Thornock ofBrigham Young Universityfor helping me with the use

of theBYU traces.

iii

I sincerely acknowledge help, both big and small, received from my research group mate

and good friend, Krishnan Sundaresan. Research is more fun with his help and support.

The innumerable discussions we had were greatly stimulating and enabled deeper and faster

progress. Also, I thank him for proof reading a good portion of my dissertation.

I thank all former and current members of the Computer Architecture Lab for helping me

over the past five years. Special thanks go to Shanker Nagesh and Srinivas Dangeti. I also

thank all my friends who made my stay at Buffalo pleasant and memorable. Most of all, I

wish to thank my best friend Jian Chen for always being there.

Lastly and most importantly, I thank my parents and my brother for their love and constant

support in my educational endeavors, and, in the most special manner, my husband for his

unwavering support and understanding which made my efforts easier.

iv

To Daoying

v

ABSTRACT

The growing disparity in processor and memory performance has forced designers to al-

locate an increasing fraction of die area tocommunication(I/O buffers, pads, pins, on- and

off-chip buses) andstorage(registers, caches, main memory)componentsof the memory

system to enable low-latency and high-bandwidth access to large amounts ofinformation

(addresses, instructions, and data). Consequently, the memory system has become critical to

system performance, power consumption, and cost.

In this dissertation, we consider three types of redundancies related to information com-

municated and stored in the memory system, with the main focus being on information com-

municated on nanometer-scale address buses. They aretemporal redundancy, information

redundancy, andenergy redundancy. To take advantage of these redundancies, we analyze

and designinformation pattern awarestrategies to exploit various patterns in information

communicated and stored in a multi-level memory hierarchy to derive gains in performance,

energy efficiency, and cost. Our main contributions are as follows. (1) A comprehensive

limit study on the benefits of address, instruction, and data compression at all levels of the

memory system considering a wide variety of factors. (2) A technique calledhardware-only

compression (HOC), in which narrow bus widths are used for underutilized buses to reduce

cost, novel encoding schemes are employed to reduce power consumption, and concatena-

tion and other methods are applied to mitigate performance penalty. (3) A detailed analy-

sis of the performance, energy, and cost trade-offs possible with two cache-based dynamic

address compression schemes. (4) A highly energy- and performance-efficient dynamic ad-

vi

dress compression methodology for nanometer-scale address buses. Many of the principles

underlying this methodology are also applicable to instruction and data bus compression.

All our analysis and design has been performed in the context of real-world benchmark

suites such as SPEC CPU2000 and using execution-driven simulators like Shade and Sim-

pleScalar. Our analysis shows that ample opportunities exist for applying compression

throughout the memory system. Further, we show that our address compression methods

can simultaneously provide significant improvements in energy efficiency, cost, and latency

compared to an uncompressed bus.

vii

Contents

Abstract vi

List of Figures xiii

List of Tables xxii

1 Introduction 1

1.1 Motivation . 1

1.2 Our Overall Approach and Contributions2

1.3 Dissertation Outline . 4

2 A Limit Study on the Benefits of Memory System Compression 7

2.1 The Case for Compressed Memory System

Architectures . 8

2.1.1 Opportunities for compression . 8

2.1.2 Benefits of compression .11

2.1.3 Feasibility and challenges .13

viii

2.1.4 CMS architectures and degree of specialization14

2.2 Related Work .16

2.2.1 Previous analysis .16

2.2.2 Address, instruction, and data compression17

2.2.3 Code memory compression .18

2.2.4 Cache and main memory compression19

2.2.5 Bus encoding .19

2.3 Relationship of Our Work to Previous Research20

2.4 Analysis Methodology .21

2.4.1 Compression ratios from entropy calculations21

2.4.2 Compression ratios from practical schemes23

2.4.3 Transition ratio .24

2.5 Simulation Environment .25

2.6 Trace Collection .29

2.7 Overall Memory System Analysis .31

2.8 Register Compression Analysis .33

2.9 Cache Compression Analysis Across Different Levels37

2.9.1 Instruction and data cache compression37

2.9.2 Compression ratio and cache parameters40

2.9.3 Cache compression and cache access time, energy consumption, and

area . 42

ix

2.10 Compression and Transition Ratio Across Individual Buses43

2.11 Compression Ratio and Bit Fields .45

2.12 Compression Ratio and Bit-Field Groupings47

2.13 Compression Ratio and Power Savings for Different Workloads51

2.14 Compression Ratio and Degree of Specialization57

2.15 Power Savings Due to Compression, Encoding, and Both Combined59

2.16 Power Savings and Bus Multiplexing .62

2.17 Compression Ratio and Analysis Tool .65

2.18 Compression Ratio and Multithreaded Execution65

2.19 Conclusions .66

3 Hardware-Only Compression of Underutilized Address Buses 68

3.1 Introduction .68

3.2 Hardware-Only Compression .70

3.2.1 Overview . 70

3.2.2 Benefits .71

3.2.3 Overheads .71

3.2.4 Hardware design .72

3.3 Wire Layout Optimizations .76

3.3.1 Wire spacing .76

3.4 Simulation Setup .76

3.4.1 Simulation environment .77

x

3.4.2 Bus utilization . 77

3.4.3 Performance penalty and wire delay78

3.4.4 Bus energy model .79

3.5 Bus Utilization and Selection of Bus Width80

3.6 Performance Overheads .82

3.6.1 Extra cycle penalty for same degree of HOC across all buses82

3.6.2 Extra cycle penalty for HOC in individual buses84

3.6.3 Extra cycle penalty for different relative degree of HOC87

3.7 Energy-Efficient Transmission Formats87

3.7.1 Technique 0 (T0): HOC baseline format88

3.7.2 Technique 1 (T1): HOC bus arrangement88

3.7.3 Technique 2 (T2): HOC Idle-bit insertion89

3.7.4 Technique 3 (T3): HOC address encoding90

3.7.5 Technique 4 (T4): HOC transmission encoding91

3.7.6 Techniques 5 (T5) and 6 (T6): Using idle bits as active shields . . .91

3.8 Address Compression and Bus Encoding92

3.9 Performance and Energy Optimization

with Wire Spacing . 98

3.10 Conclusions .102

4 Analysis of Dynamic Address Compression Schemes 103

4.1 Introduction .103

xi

4.1.1 Related work and our contributions104

4.2 Dynamic Address Compression .106

4.2.1 Dynamic base register caching .106

4.2.2 Bus expander .107

4.2.3 Overheads of address compression108

4.2.4 Optimal index sizes .110

4.2.5 Compressed address transmission format111

4.3 Simulation Methodology .114

4.4 Simulations and Results .115

4.4.1 Performance, energy, and cost tradeoffs115

4.4.2 System performance and bus energy for fixed hardware costs118

4.4.3 Influence of technology parameters on energy efficiency124

4.4.4 Influence of extra compression/decompression latency127

4.4.5 Influence of virtual→physical address translation128

4.4.6 Influence of compression cache set associativity and replacement

policy .132

4.4.7 Influence of L1 cache size .135

4.4.8 Address compression across memory system levels138

4.5 Conclusions .141

5 Energy-Efficient Compressed Address Transmission and Partial-Match Address

Compression 149

xii

5.1 Introduction .149

5.1.1 Scope and contributions of this work151

5.2 Technique 1: Bus arrangement .152

5.3 Technique 2: Idle-bit insertion for coupling energy reduction154

5.4 Results for Address Arrangement and Idle-bit Insertion155

5.5 Technique 3: LRU-encoded way-bits .156

5.6 Technique 4: Encoding higher order part of the address159

5.7 Technique 5: XOR encoding for the compressed address163

5.8 Partial-Match Compression Cache .164

5.8.1 Partial-match encoding and transmission format167

5.8.2 Average miss penalty and average bit penalty172

5.8.3 Performance and energy optimized designs177

5.9 Conclusions .186

6 Conclusions 188

6.1 Key Results .189

6.2 Future Work .192

Bibliography 193

xiii

List of Figures

2.1 Overall Memory System Analysis: Compression ratio variation across memory

system components. Communication components are in general more compressible

than storage components when first order entropies are considered.. 32

2.2 Compression Potential of Storage Components – Register Compression

Analysis: Average register compression analysis for 32 integer registers. . .34

2.3 Compression Potential of Storage Components – Register Compression

Analysis: Average register compression analysis for 32 single-precision floating-

point registers. .35

2.4 Compression Potential of Storage Components – Cache Compression

Analysis: Average instruction and data cache compression analysis for L1

and L2 caches. .38

2.5 Cache Compression and Cache Size:With increasing cache size, compres-

sion ratio deteriorates somewhat. .39

xiv

2.6 Cache Compression and Block Size:With increasing block size, compres-

sion ratio improves. Cache associativity has negligible impact on compres-

sion ratio. 40

2.7 Compression Potential of Communication Components:Compression

ratios for zeroth and first order behavior of various buses at different lev-

els of the memory system hierarchy. .44

2.8 Original, XOR, and Offset Address Trace Compression:Compression

ratios for original, XOR, and offset address traces for various address buses.46

2.9 Compression Ratio and Bit Fields and Bit-Field Groupings: Variation

of compression ratio across instruction address bit-fields – Higher order bit

fields show best compression. .48

2.10 Compression Ratio and Bit Fields and Bit-Field Groupings: Variation

of compression ratio across data address bit-fields – Higher order bit fields

show best compression. .49

2.11 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of

compression ratio across instruction bit-fields.50

2.12 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of

compression ratio across data bit-fields.51

2.13 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of

compression ratio across tag bit-fields.52

xv

2.14 Compression Ratio and Bit Fields and Bit-Field Groupings: Variation

of compression ratio across different instruction and data address bit-field

groupings. .53

2.15 Compression Ratio and Bit Fields and Bit-Field Groupings:Variation of

compression ratio across different instruction, data, and tag bit-field groupings.54

2.16 Application Class Analysis: Desktop/workstation class workloads (SPEC

CPU2000 INT and FP programs). .55

2.17 Application Class Analysis: Embedded workloads (MediaBench programs).56

2.18 Degree of Specialization Analysis:Compression ratio variation with degree

of specialization. .58

2.19 Communication Component Analysis Considering Bus Encoding and

Compression: The extent of power saving due to encoding, compression,

and compression and encoding combined. Compression followed by encod-

ing shows best results. .60

2.20 Communication Component Analysis Considering Bus Encoding and

Compression: The effect of information content of a trace on its power

consumption. .61

2.21 Compression and Transition Ratio Variation with Multiplexed Traffic. . 62

2.22 Compression Ratio Variation Across Different Compression Measures

and Tools. 63

2.23 Compression Ratio Variation with the Degree of Multithreading. 64

xvi

3.1 Hardware for HOC: Compression hardware at sending end.74

3.2 Hardware for HOC: Decompression hardware at receiving end.75

3.3 Average Bus Utilization and Percentage Standard Deviation (sN) Across

Different Buses. 81

3.4 Extra Cycles for HOC: Performance penalty (with and without concatena-

tion) when same degree of compression is applied to all three buses: P→L1

LDA, L1→L2 IDA, and L2→M IDA bus. BW represents bus width (in

bits),R represents percentage amount of bus compression,Ue represents the

expected bus utilization,Ua the actual utilization from simulations, andUac

the actual utilization with concatenation. Concatenation is not possible in

L1→L2 and L2→M buses for f=0.5 and hence the value is not reported. . .83

3.5 Extra Cycles for HOC: Extra cycle penalties for different degrees of HOC

for P→L1 load address, L1→L2, and L2→M buses. 85

3.6 Extra Cycles for HOC: Extra cycle penalties for different relative degrees

of HOC. 86

3.7 Proposed Bus Arrangement Techniques.The figure on the left shows the

new basic transmission format that we propose for HOC. The figure on the

right further reduces energy by rearranging some bits to reduce unwanted

coupling transitions. .90

3.8 On-Chip Energy Reduction Using All the Proposed Techniques. 93

3.9 Off-Chip Energy Reduction Using All the Proposed Techniques. 94

xvii

3.10 Off-Chip Energy Variation Across Transmission and Encoding Schemes. 95

3.11 On-Chip Energy Variation Across Transmission and Encoding Schemes. 97

3.12 Wire Delay Reduction Using HOC with Wire Spacing. 99

3.13 Performance Improvement Across Different Compressed Bus Widths

With Wire Spacing. 100

3.14 On-Chip Energy Reduction Across Different Compressed Bus Widths

With Wire Spacing. 101

4.1 Dynamic Address Compression Schemes:General schematic of a dy-

namic address compression scheme. .109

4.2 Dynamic Address Compression Schemes:Schematic depicting how DBRC

and BE form a compressed address word differently before sending it on the

compressed bus. .110

4.3 Dynamic Address Compression Schemes:Our default transmission format

for DBRC and BE. .111

4.4 Extra Cycle Penalty for DBRC and BE for Different Compression Cache

Sizes. .120

4.5 Miss Rate for DBRC and BE for Different Compression Cache Sizes. . 122

4.6 Influence of Compression Cache Size on Off-Chip Bus Energy Dissipa-

tion: Off-chip bus energy dissipation ratio for DBRC and BE for different

compressed bus widths. .123

xviii

4.7 Influence of Compression Cache Size on On-Chip Bus Energy Dissipa-

tion: On-chip bus energy consumption ratio for DBRC and BE for different

compression cache sizes. (Narrow Bus)125

4.8 Influence of Compression Cache Size on On-Chip Bus Energy Dissipa-

tion: On-chip bus energy dissipation ratio for DBRC and BE for different

compression cache sizes. (Wide Bus) .126

4.9 Energy Reduction in Compressed Address Buses for Different Technolo-

gies.This plot shows the effect of technology on compressed address buses

of various widths. .127

4.10 Influence of Compression/Decompression Latency on Performance with

and without Address Bus Pipelining. 129

4.11 Influence of Different Virtual →Physical Address Mapping Schemes on

Performance. .130

4.12 Influence of Different Virtual →Physical Address Mapping Schemes on

On-Chip Energy. .132

4.13 Influence of Different Virtual →Physical Address Mapping Schemes on

Off-Chip Energy. .133

4.14 Influence of Varying Compression Cache Set Associativity on Perfor-

mance and Energy:Extra cycle penalties are the least for fully-associative

caches. .134

xix

4.15 Influence of Varying Compression Cache Set Associativity on Perfor-

mance and Energy:For most bus widths fully-associative caches also result

compressed addresses that dissipate least energy during transmission. . . .135

4.16 Influence of Varying Compression Cache Set Associativity on Perfor-

mance and Energy:Off-chip bus energies also reduce when the associativ-

ity increases. .136

4.17 Influence of Varying Compression Cache Replacement Policy on Perfor-

mance. .137

4.18 Influence of Varying Compression Cache Replacement Policy on Miss

Rate. .138

4.19 Influence of Varying Compression Cache Replacement Policy on On-

Chip Energy. .139

4.20 Influence of Varying Compression Cache Replacement Policy on Off-

Chip Energy. .140

4.21 Influence of Varying L1 Cache Sizes on Performance.. 141

4.22 Influence of Varying L1 Cache Sizes on On-Chip Energy. 142

4.23 Influence of Varying L1 Cache Sizes on Off-Chip Energy. 143

4.24 Influence of Varying L1 Cache and Buffer Sizes on Performance.. . . . 144

4.25 Influence of Varying L1 Cache and Buffer Sizes on On-Chip Energy.. . 145

4.26 Influence of Varying L1 Cache and Buffer Sizes on Off-Chip Energy. . 146

4.27 Address Compression Across Different Memory System Levels.. . . . 147

xx

4.28 Address Compression Across Different Memory System Levels.. . . . 148

5.1 Proposed Bus Arrangement Techniques.The figure on the left shows the

new basic transmission format that we propose for the BE address compres-

sion scheme. The figure on the right further reduces energy by rearranging

some bits to reduce unwanted coupling transitions.154

5.2 Energy Reduction Using the Proposed Address-arrangement Technique.157

5.3 Frequency of Values Taken by LRU-encoded Way Bits. 158

5.4 Energy Reduction Using the LRU-encoded Way-bit Technique:On-chip

bus energy dissipation ratio for different compression cache set associativities.160

5.5 Energy Reduction Using the LRU-encoded Way-bit Technique:Off-chip

bus energy dissipation ratio for different compression cache set associativities.161

5.6 Structure for Encoding the Higher Order Part of the Address. 162

5.7 On-Chip Energy Reduction Using All the Proposed Techniques. 165

5.8 Off-Chip Energy Reduction Using All the Proposed Techniques. 166

5.9 Partial-Match Logic. 167

5.10 Partial-Match Compression Cache: Hardware organization for proposed

partial-match address compression scheme.168

5.11 On-Chip Energy Ratio for PM for Different Encoding Schemes. 170

5.12 Off-Chip Energy Ratio for PM for Different Encoding Schemes. 171

5.13 Control Number Format for PM. 172

5.14 Transmission format for PM. 173

xxi

5.15 Individual Frequency and Total Frequency. 174

5.16 Individual Frequency of Different Partition Points for Different Com-

pressed Buses. .175

5.17 Procedure TotalFrequency . 176

5.18 Algorithm MABP . 178

5.19 Procedure Concatenate . 179

5.20 Extra Cycle Penalty Variation Across Different Compression Schemes. 180

5.21 On-Chip Energy Variation Across Different Compression Schemes. . . 181

5.22 Off-Chip Energy Variation Across Different Compression Schemes. . . 182

5.23 Performance Improvement Across Different Compressed Bus Widths

With Wire Spacing. 184

5.24 On-Chip Energy Reduction Across Different Compressed Bus Widths

With Wire Spacing. 185

xxii

List of Tables

2.1 Summary of Benchmark Set and Input Files Used for Our Simulations.SPEC

CPU2000 (INT and FP) benchmarks were used in all experiments. MediaBench

programs were used in an experiment studying the effect of different workloads

on compression. All input files for SPEC CPU2000 programs are available with

the benchmark suite. Input files for MediaBench programs are available from the

MediaBench website.. 27

2.2 Access Time, Power Consumption, and Area of Caches:Cache parameters ob-

tained using the CACTI 3.0 model. Entries marked with a† use a direct-mapped

organization for the compressed cache.. 41

3.1 Target System and Benchmarks:Default configurations for our target system,

benchmarks, and sample sizes used in our simulations. LSQ= load/store queue,

MAF= miss address file. This target system is broadly based on the Alpha 21264

processor.. 77

xxiii

4.1 Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ratios,

Miss Rates, and Compression Ratios for Address Compression Using DBRC

Scheme.For a given bus width (column) and metric (rows), [A1, A2] means that

A1 is the index width (minimum or optimal) and A2 is the value for the metric

for that index width. For column corresponding to bus width=8, 10, and 36, the

minimum and optimal values are the same. Hence only one is reported.. 116

4.2 Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ra-

tios, Miss Rates, and Compression Ratios for Address Compression Using BE

Scheme.For a given bus width (column) and metric (rows), [A1, A2] means that A1

is the index width (minimum or optimal) and A2 is the value for the metric for that

index width. For column corresponding to bus width=36, the minimum and optimal

values are the same. Hence only one is reported.. 117

5.1 Partition for PM Performance and Energy Optimization. 183

xxiv

Chapter 1

Introduction

1.1 Motivation

Performance, power consumption, and cost are arguably the three most important pa-

rameters that drive computer system design today, although their relative importance varies

across systems. Thus, while performance is most important in high-end multiprocessors

and servers, performance/cost drives the desktop market, and cost and power play a more

significant role in embedded and wireless systems.

All computer systems have three main subsystems: thecomputation systemor the pro-

cessor core, thememory system, and theI/O system. The memory system has two main

types of components:storage components(including registers, one or more levels of caches,

main memory) for storing information (primarily instructions and data) andcommunication

components(comprising I/O buffers, I/O pads, and pins on the processor and memory chips,

and on- and off-chip control, address, instruction, and data buses) for communicating in-

1

formation (primarily addresses, instructions, and data) between the computation system and

storage components and between the storage components themselves.

A combination of dramatic technological and architectural advancements has resulted in

an exponential trend for computation system performance enhancement. This, coupled with

slower speed improvements of on- and off-chip interconnect, caches, and DRAM, has con-

tributed to a growing computation-memory system performance gap [26]. To address this

problem, the fraction of the processor chip devoted to storage (registers, caches) and com-

munication components (I/O buffers and pads, on-chip buses) has increased and so also has

the number and size of off-chip storage (off-chip caches, main memory) and communication

(pins, off-chip buses) components [26]. Moreover, in nanometer regime (drawn feature sizes

< 100 nm), interconnect size scales relatively poorly compared to logic size, and not only

do individual wire capacitances contribute to power consumption, but more so do interwire

capacitances between adjacent on-chip bus lines due to tighter spacing between lines [58].

Consequently, increasingly more fraction of the system power consumption and cost is due

to the memory system compared to the computation system [69]. Thus, the memory sys-

tem is becoming an increasing bottleneck as designers strive towards higher performance,

cost-effective, and power-efficient system designs.

1.2 Our Overall Approach and Contributions

In this dissertation, we consider the following three types of redundancies related to in-

formation communicated and stored in the memory system, with the main focus being on

2

information communicated on nanometer-scale address buses.Temporal redundancyrefers

to the fact that there are time periods when memory system components carry no or non-

performance-critical information (e.g., idle buses and invalid, stale, or “dead” blocks in

caches).Information redundancymeans redundancy in the number of bits used to represent

information, which causes more resources (e.g., bus lines or memory cells) to be engaged

than necessary—information compression techniques address this. Finally,energy redun-

dancyimplies expending more than the required energy to communicate or store informa-

tion; encoding schemes attempt to minimize this redundancy via energy-efficient information

representations.

To take advantage of these redundancies, we analyze and designinformation pattern

aware strategies to exploit various patterns in information communicated and stored in a

multi-level memory hierarchy to derive gains in performance, energy efficiency, and cost.

Our general approach consists of two phases. First, we analyze trace information off-line

to determine information patterns and instances prevalent in different parts of the memory

system. In light of this discovery, we next design hardware that, during run-time, statically

exploits these frequent information instances and/or dynamically exploits information in-

stances in accordance with predetermined frequent patterns. In our analysis, we consider ad-

dress, instruction, and data information, all types of communication (on- and off-chip buses

and associated circuitry) and storage (registers, caches, main memory, TLB, and page ta-

ble) components at different memory levels, and various target system (embedded, desktop,

server) and application (e.g., DSP, multimedia, integer-intensive, scientific) scenarios.

3

Our main contributions are as follows. (1) A comprehensive limit study on the benefits of

address, instruction, and data compression at all levels of the memory system considering a

wide variety of factors. (2) A technique calledhardware-only compression (HOC), in which

narrow bus widths are used for underutilized buses to reduce cost, novel encoding schemes

are employed to reduce power consumption, and concatenation and other methods are ap-

plied to mitigate performance penalty. (3) A detailed analysis of the performance, energy,

and cost trade-offs possible with two cache-based dynamic address compression schemes.

(4) A highly energy- and performance-efficient dynamic address compression methodology

for nanometer-scale address buses. Many of the principles underlying this methodology are

also applicable to instruction and data bus compression.

All our analysis and design has been performed in the context of real-world benchmark

suites such as SPEC CPU2000 and using execution-driven simulators like Shade and Sim-

pleScalar. Our analysis shows that ample opportunities exist for applying compression

throughout the memory system. Further, we show that our address compression methods

can simultaneously provide significant improvements in energy efficiency, cost, and latency

compared to an uncompressed bus.

1.3 Dissertation Outline

The remainder of the dissertation is organized as follows. In the next chapter, we com-

prehensively analyze the redundancy in the information (addresses, instructions, and data)

stored and exchanged between the processor and the memory system and evaluate the poten-

4

tial of compression in improving performance, power consumption, and cost of the memory

system. We then present our work on nanometer-scale address bus compression to improve

cost, power consumption, and performance by exploiting temporal, information, and energy

redundancies in the information carried. In Chapter 3, we describe a technique for exploit-

ing temporal and energy redundancies in buses calledhardware-only compression (HOC),

in which narrow bus widths are used for underutilized buses to reduce cost. To minimize the

power overhead of HOC, we propose various techniques to ensure energy-efficient transmis-

sion of uncompressed information on narrow buses. In addition, we apply different degrees

of wire spacing by taking advantage of the extra area available from HOC to reduce coupling

capacitance and thereby reduce wire delay and on-chip energy.

In the next two chapters, we describe how we exploit information and energy redundancies

of information transmitted on memory system buses for performance, power, and cost im-

provements. Dynamic address compression schemes that exploit address locality can help re-

duce both address bus energy and cost simultaneously with only a small performance penalty.

In Chapter 4, we investigate two such schemes and determine their optimal parameters that

result in the highest area/cost reductions and least performance penalty for various address

buses (both on- and off-chip) in current systems. We present results on how address com-

pression schemes perform when applied to on-chip or off-chip buses in modern superscalar

processors. In particular, we explore the performance, energy, and cost benefits of address

compression, the effect of techniques like bus pipelining, and the effect of technology scaling

on energy-efficiency of compressed address buses. Next, in Chapter 5, we present various

5

techniques that can be used with existing compression schemes for buses to ensure high

energy-efficiency for compressed information transmission and propose a highly energy-

and performance-efficient dynamic address compression methodology for nanometer-scale

address buses, partial-match compression. To improve the hit-rate and reduce miss penalty

of the compression cache used in the previous schemes, we proposepartial-matchingof

the tag portion stored in the compression cache with the higher order portion of the address

and present performance and energy optimized designs. Finally, Chapter 6 concludes this

dissertation and also discusses future research.

6

Chapter 2

A Limit Study on the Benefits of Memory

System Compression

A compressed memory system(CMS) architecture is a computer system architecture that

employs compression in one or more parts of the memory system. In this chapter, we con-

sider the advantages of CMS architectures in terms of improvements that can be obtained

in performance (improvements in bandwidth and latency of communication components and

improvement in capacity of storage components), power consumption, and cost. We consider

all the three primary types of information, namely, addresses, instructions, and data, and all

important storage and communication components at all levels of the memory system hier-

archy, where such information is stored or communicated. For addresses, we consider the

tag fields of instruction and data caches and instruction and data address buses. For instruc-

tions, we consider the data fields of instruction caches, main memory executable code, and

7

instruction buses. For data, we consider integer and floating-point register files, data fields

of data caches, and data buses. For our study, we consider a memory hierarchy with split

instruction and data caches at the first level, a unified cache at the second level, and a main

memory. We consider both demultiplexed and multiplexed buses.

The chapter is organized as follows. Section 2.1 discusses the advantages of a CMS ar-

chitecture and its feasibility. Then we review related work in Section 2.2 and discuss the

relationship of our work to previous research in Section 2.3. Sections 2.4, 2.5, and 2.6 de-

scribe the analysis methods and simulation environment used in our study. Sections 2.7 -

2.18 present the results of our analysis. Finally, we conclude in Section 2.19.

2.1 The Case for Compressed Memory System

Architectures

Here we first briefly explain where opportunities for compression lie in the memory sys-

tem in Sec. 2.1.1. Then, in Sec. 2.1.2, we explain the benefits to be gained by applying

compression. Next, in Sec. 2.1.3, we discuss the feasibility of applying compression and

some challenges to be overcome. Finally, we briefly describe a useful way to classify com-

pressed memory system architectures.

2.1.1 Opportunities for compression

Compression of some source information consisting of a sequence of symbols is possible

when those symbols occur with non-uniform frequencies or likelihoods either in the source

8

as a whole or in any given portion thereof. This allows for the encoding of the more frequent

or likely symbols with shorter code words compared to the less frequent or likely symbols,

resulting in an overall compression of the source. The three primary types of information that

are stored and communicated by the storage and communication components of the mem-

ory system, respectively, are addresses, instructions, and data. All three of these inherently

possess significant amounts of redundancy as we explain next.

Address redundancy

Addresses are of two types: instruction addresses and data addresses. Both exhibit spa-

tial and temporal locality, meaning that the next instruction or data address to be issued

by the processor is not random, but likely spatially and/or temporally close to recently is-

sued addresses. Instruction addresses issued by the processor to the L1 cache are typically

sequential, except when branches or jumps occur, and even when this happens, the target

addresses are not typically very far away from the last address. That is the reason why many

instruction sets provide branch and jump instructions that specify the target address relative

to the previous address. The addresses issued by L1 cache to L2 cache correspond to misses

in the former and are more unpredictable compared to those issued by the processor to L1.

Similarly, addresses issued by higher levels (away from the processor) of the memory system

become increasingly unpredictable and hence more information rich. Still, these addresses

do exhibit temporal and spatial locality, although to lesser extents. Data addresses issued by

the processor are also known to exhibit temporal and spatial locality because of scanning of

data arrays in loops, although to a lesser extent than instruction addresses. Like instruction

9

addresses, redundancies are expected to decrease at higher levels of the memory hierarchy.

As far as storage components are concerned, address information is primarily stored in the

tag fields of caches, translation-lookaside buffer (TLB), and page tables (and some registers,

such as the program counter and the memory address register, but this is not much). Since

tag fields store a portion of the address (a portion of the instruction address in the case of

instruction caches and a portion of the data address in the case of data caches), they are

expected to exhibit redundancy as discussed above for addresses. Specifically, the tag fields

correspond to blocks that have been recently accessed and as such they should be temporally

and spatially close. Note that since the tag field is normally derived from the high order

portion of the address, it is expected to possess a higher amount of redundancy than whole

addresses, since the high order end of the address is where more redundancy lies due to

the spatial proximity of addresses issued. Similarly, the TLB and page tables which store

address information (virtual and physical page numbers) will have redundancies.

Instruction redundancy

Since instructions fetched correspond to instruction addresses issued by the processor, in-

structions exhibit the same temporal and spatial locality as instruction addresses. Further, not

all instructions, instruction sequences, opcodes, register operands, and immediate constants

are present equally frequently. Repetitions of instruction sequences, opcodes, registers, and

immediate constants, and correlation between opcodes and registers and between opcodes

and immediate constants can be exploited. The reasons for the presence of such redundan-

cies are that all programs have certain basic characteristics, e.g., they have procedures and

10

procedure calls, they have branches every few instructions (typically every six instructions),

they use loops and if-then-else clauses, etc. Moreover, compilers used to generate object

code do so based on a set of templates, which naturally leads to redundancies. As discussed

for addresses earlier, instruction traffic at higher levels of the memory hierarchy are likely

to exhibit less temporal and spatial locality. However, since at higher levels, the instruc-

tion traffic consists of larger blocks, more redundancy is present within blocks. Similarly,

in storage components, there is redundancy in the instructions stored in main memory and

instruction caches.

Data redundancy

Data fetched by the processor also exhibits temporal and spatial locality, although to a

lesser extent than instructions. However, there is extra redundancy present in the values of

data communicated by data buses and stored in registers, data caches, and main memory.

For any given type of data (character, integer, floating-point, etc.), not all values are equally

likely. For instance, many programs do not tend to use the entire range of integer values

possible, but rather the values used tend to be concentrated around certain values, especially,

zero. For such small magnitude two’s complement numbers, most high order bits of the data

word are likely to be either all zero (positive) or all one (negative) due to sign extension.

2.1.2 Benefits of compression

Depending upon the state of the technology at the time of implementation and application

requirements, it may not be possible to use compression to advantage in all areas of the

11

processor system, although substantial direct or indirect improvements can be expected in

most areas of the system. As an example, using compression in on-chip or off-chip buses

can have multiple ramifications. The effective bandwidth of the system will increase as more

number of bits can be transmitted using the same number of bus lines. If the emphasis is on

reducing power, it may be possible to reduce the number of bus lines while maintaining the

same effective bandwidth, and this would result in power savings because fewer bits need

to be transmitted and because significant amount of power is consumed in the metal lines

of the chip. Similarly, a decrease in the number of bus lines will reduce the die area and

hence cost could go down significantly because cost varies as the fourth or higher power of

die area. Application of compression in other areas like caches, registers, and main memory

have obvious benefits like increasing the effective storage capacity using the same number of

transistors or lowering power consumption and cost by using smaller number of transistors

that provide the same effective storage capacity.

Compression can also be used possibly to improve cache latency by, for example, storing

a portion of the information in cache in compressed form. Using the same number of transis-

tors, this modified cache will have more effective capacity and hence less effective miss rate

than a regular fully uncompressed cache. The latency of the uncompressed portion of this

modified cache will be comparable or better (due to its smaller size) relative to the regular

cache. Also, the miss rate of the former will be only slightly worse than the latter for larger

cache sizes. This is because, for larger caches, miss rate reduces very slowly as cache size

increases. The latency of the compressed portion of the cache will be more than the regular

12

cache, but it will be less than that of the next higher level of the memory hierarchy. As a

result, if there is a miss in the uncompressed portion of the cache, the compressed portion

can be checked and if the required information is present, a slower access to the next higher

level of the memory hierarchy can be avoided.

2.1.3 Feasibility and challenges

As a downside, any implementation of compression in the memory system will have over-

heads in extra logic, latency, and power consumption due to the compression/decompression

logic. However, since the size, speed, and power consumption of logic (which will be used to

do compression/decompression) scale better than those of interconnect (which will be used

to communicate the information), these overheads will continue to decrease over time. Also,

the (area, latency, or power) overheads that can be tolerated for compression/decompression

vary from one part of the memory system to another and from application to application.

For example, more compression/decompression latency overhead can be tolerated at higher

levels of cache and main memory than at lower levels. Similarly, less latency overhead can

be tolerated in higher performance systems than in non-performance-critical systems. De-

pending upon the state of the technology, the location in the memory system where compres-

sion is to be applied, and the application system requirements, the compression scheme can

be more aggressive (better compression, but more compression/decompression overheads)

or less aggressive (moderate compression, but less compression/decompression overheads),

i.e., the compression scheme, and hence its overheads, can be suitably regulated. Accurate

estimation of overheads of compression and decompression is possible only with respect to

13

a specific compression scheme and architecture, which is not the focus of this paper, but of

our future work. Therefore, we concentrate in this paper on the limits to which compression

can be potentially exploited.

2.1.4 CMS architectures and degree of specialization

In general, a compression scheme is designed to compress some new raw information

based upon symbol statistics or frequencies drawn from some known or typical data set.

Depending upon how specialized this data set is, five important classes of CMS architectures,

from the most specialized to the least specialized, can be identified as described below. Note

that in all cases, symbol statistics are drawn from the same type of information (address,

instruction, data) as the type of information being compressed.

• Block-specific architecture:In this case, symbol statistics used to compress a block

of information (e.g., a block in any cache or main memory or a word on a bus) are

drawn from the same block. Such a compression scheme utilizes the most specialized

information for compression, but it is likely to have the most complexity.

• Memory-component-specific architecture:When in a CMS architecture symbol statis-

tics are drawn from the typical data set of a memory component and are used to com-

press each block of that component, it is referred to as memory-component-specific.

For example, symbol statistics may be drawn from all the instruction addresses typ-

ically transmitted over the L1-L2 instruction address bus and then used to compress

each instruction address transmitted over that bus.

14

• Application-program-specific architecture:In this case, symbol statistics used for

compression of information in a memory component are drawn from the typical data

sets found in a given application program in all memory components that store or

communicate information of the same type.

• Application-class-specific architecture:In contrast to the previous case, here sym-

bol statistics are drawn from application programs that belong to the same class (e.g.,

integer-computation-intensive applications or floating-point-computation-intensive ap-

plications), rather than from one particular application program.

• General architecture:In this case, symbol statistics used for compressing information

in a memory component are drawn from a broad range of applications meant to be

executed on a system and from all memory components that store and communicate

the same type of information. Here the compression scheme utilizes the most general

type of statistical information and is expected to provide some reasonable compression

across a range of applications.

It is possible to use different degrees of specialized statistical information to perform com-

pression in different parts of the memory system. Also, the compression scheme can be static

or dynamic, i.e., the statistical information used for compression can be predetermined and

fixed or it may change dynamically. A compression scheme is effective only if it is adapted

to the characteristics of the source information it seeks to compress. That is why we have

chosen to study the effect of varying degrees of specialization on the effectiveness of a CMS

15

architecture.

2.2 Related Work

Previous work in memory system compression has been done both in analyzing com-

pressibility and in the development of specific compression schemes for the memory system.

These include schemes for address compression and extension of these schemes to instruc-

tion and data compression, program code compression and compressed instruction set design

for embedded systems, and main memory and cache compression. Related work in traffic

optimization for low power using bus encoding has also been reported. We briefly review

previous research in these areas next.

2.2.1 Previous analysis

In previous analytical research focusing on finding the potential for compression, separate

studies by Hammerstorm and Davidson [24] and Becker et al. [4] used entropy models to

evaluate the compressibility of addresses in microprocessors. Wang and Quong analyzed

the potential of instruction compression [66]. They evaluated the effect of instruction com-

pression on the average memory access time for various types of memory systems. Later,

compressibility of program code in different architectures on various operating systems was

investigated by Kozuch and Wolfe [38]. The potential of main memory compression was

studied by Kjelso et al. [37]. We presented a brief analytical study of compression focus-

ing on overall benefits for the memory system in [48] and a broader study in [50]. Apart

from analytical studies of compressibility of memory system components, specific compres-

16

sion schemes have also been proposed for various memory system components. We briefly

review them next.

2.2.2 Address, instruction, and data compression

Park and Farrens presented adynamic base register caching(DBRC) scheme for com-

pressing off-chip, processor-memory addresses in [52]. In this scheme, the original address

is split into a higher order and a lower order component and the former is stored in cache

of base registers and the index to the base-register cache is transmitted on the bus along

with the uncompressed lower order part of the original address. They found that by using

a 16-bit bus for a 32-bit microprocessor and the DBRC scheme resulted in only a miss rate

of 2% and most of the time memory addresses could be transmitted using a 16-bit bus thus

achieving almost a 50% reduction in the number of pins. Citron and Rudolph proposed a

similar scheme, called BUS-EXPANDER (BE), for address, instruction and data traffic and

bus compression [11]. They reported hit rates of up to 95% for their compression caches

[11]. Both these schemes focused on reducing costs and improving pin bandwidth for off-

chip accesses. Recently, the effectiveness of BE-like schemes to reduce the switching ac-

tivity (power consumption) in off-chip data buses has also been studied [3]. Also recently,

Kant and Iyer have analyzed the benefits of using dynamic-cache based compressed address

and data transfer mechanisms for server interconnects by exploiting the spatial and temporal

locality of addresses and data [30].

17

2.2.3 Code memory compression

Code memory compression schemes involve compressing the text segment of an exe-

cutable program to reduce code size (decreases memory requirements) and thus save power

and cost (larger memories consume more power and cost). Code memory compression

schemes can be divided into three. The first category of schemes, calledcode compaction

schemes use compiler optimizations during embedded code generation to minimize sizes of

parts of code (like procedures and subroutines) that are used frequently. These are purely

software techniques and require no hardware support during run-time. Various code com-

paction schemes have been reported in literature [22, 19, 35, 15, 17]. A second category

of schemes, calledcode compression, refers to techniques that minimize code size of the

executable and require decompression to be done before the compressed code can be ex-

ecuted. Among popular code compression schemes are compressed code RISC processor

(CCRP) [70], call-dictionary compression [47], software-managed dictionary compression

[42], semi-adaptive Markov compression (SAMC) and semi-adaptive dictionary compres-

sion (SADC) [44, 43], and IBM’s CodePack for PowerPC cores [32, 23]. Code compression

has also been proposed for VLIW architectures [14, 71] and have been recently adopted in

commercial VLIW processors [27]. Simple instruction encoding schemes have also been

proposed for low-cost, low-energy embedded processors [74, 5, 29]. The third category of

code memory compression schemes arecompressed instruction setsthat are supported in

popular RISC cores like ARM and MIPS [1, 36].

18

2.2.4 Cache and main memory compression

Memory is an important resource for both embedded and general purpose processors.

IBM’s Memory eXpansion Technology (MXT) [64] enables the microprocessor to inter-

face with compressed memory (C-RAM) [21] and provides fast hardware compression and

decompression to enable access to the memory without significant increase in latency. Selec-

tive cache compression techniques [41], frequent value data caches [72], and dynamic zero

compression in data caches [65] have also been proposed and evaluated for performance and

power improvements.

2.2.5 Bus encoding

Bus encoding is an area of research that has major implications in low power design of

microprocessor systems. Encoding, although closely related to compression, is directed at

minimizing unwanted signal transitions in the information stream to reduce bus switching

energies during transfer rather than compressing the information itself. Various bus encoding

schemes for off-chip address buses like Gray code [62], bus-invert code [60], asymptotic-

zero (T0) code [6], and working-zone code [51] have been proposed and some of them [39]

have been applied to data buses too. Most of these schemes involve the use of a redundant

line that indicates if the current value on the bus is an encoded value or not. Some modified

address bus encoding schemes that do not require any redundant lines have been suggested in

[2]. More recently, bus encoding schemes have been proposed for on-chip buses taking into

account the effect of inter-wire capacitances that are especially important in deep submicron

designs [58, 25]. Apart from energy reductions, encoding schemes that reduce bus delay and

19

inter-wire cross talk have also been proposed.

2.3 Relationship of Our Work to Previous Research

To our knowledge, our comprehensive analysis of the potential of compression when ap-

plied to all parts of the memory system in the context of real-world benchmark programs

and using extensive simulations is the first of its kind. The purpose of this chapter is not

to present specific compression schemes, but to estimate the extent of compression possible

in various memory system components. Towards this end, we employ existing compression

tools and analysis methods (such as SAMC, Gzip, Markov models) to estimate the extent of

compression possible and estimate the improvements in performance, power consumption,

and cost improvements that can be obtained. We present results for all parts of the memory

system using realistic timing, power, and area models (CACTI 3.0 [56] and SimplePower

[76]). We also present results related to: (1) the compressibility of original, XOR, and off-

set instruction and data address traces, (2) the effect of compression on cache access time,

power consumption, and area, (3) the relationship between compression ratio and bit fields

and bit-field groupings, (4) the effect of application class, degree of specialization, encod-

ing and multiplexing, analysis tool, static vs. adaptive compression, multithreading, and (5)

the relationship between information content, compression ratio, and power consumption,

among other things.

20

2.4 Analysis Methodology

We analyze the potential for compression of a particular trace by measuring two parame-

ters described below. First,compression ratio, R, for any compression scheme is defined as

the ratio of the size of compressed information to the size of the raw uncompressed informa-

tion. We use various entropy measures and some available compression schemes to estimate

the information content or compression ratio possible for our traces. Second,transition ra-

tio, T, for the compressed information is defined as the ratio of the number of transitions that

occur when the compressed information is transmitted on the bus to the number of transitions

that occur when the original uncompressed information is transmitted on the same bus.

2.4.1 Compression ratios from entropy calculations

The entropy of a source denotes the average number of bits required to encode each sym-

bol present in the source. Thus, the lower the entropy value, the more compressible the

source. Entropy values can be computed for a source based upon various models (zero infor-

mation, zeroth order Markov, first order Markov, etc.). Compression ratios based on these

models provide a theoretical lower-bound for a particular trace. We describe these entropy

models and how we computed compression ratios from entropy values next.

Zero information entropy: Given a source with symbol sets1,s2, . . . ,sN, the compress-

ibility of a symbol in zero information entropy is determined by its presence or absence in

the trace, irrespective of the number of times the symbol occurs in the trace. Thus, if there

areM unique symbols that actually occur in a trace out ofN total unique symbols that could

occur, whereM ≤ N, the zero information entropy for that trace is log2M, i.e., every one of

21

theM symbols that actually occurs is represented by a unique log2M bit pattern.

Zeroth order Markov entropy: Given that the source data has symbol sets1,s2, . . . ,sN

and each symbolsi occurs with probabilityp(si), entropy for the symbol is− log2 p(si). The

zeroth order Markov entropy of the source data is given by the following relation:H0 =

−Σ∀i [p(si) · log(p(si))]. Whereas zero information entropy reflects only the occurrence/non-

occurrence of symbols, zeroth order Markov entropy reflects in addition the frequency of

occurrence of symbols.

First order Markov entropy: In first order Markov entropy, we consider the occurrence

of a symbolsi , the probabilityp(si) of that symbol’s occurrence, and the probabilityp(sj |si)

that the symbol is preceded by another symbolsj . The first order Markov entropy of a source

is given by: H1 = −Σ∀i
[
p(si) ·Σ∀ j [p(sj |si) · log(p(sj |si))]

]
. This means that in a sequence

of symbols if the current symbol issj and the next symbol issi , this next symbolsi can be

represented using− log2 p(sj |si) bits.

The symbols that we consider while measuring the entropy of any trace (address, instruc-

tion, data) correspond to aligned words in the trace, i.e., 32-bit words for addresses and

instructions and 64-bit words for data. In our compression analysis study, we use only the

low-order 32 bits of the actual 64-bit address in order to keep simulation times reasonable.

Doing so results in a pessimistic estimate of the actual address compression potential since

the high order address bits have large amounts of redundancy due to the spatial locality char-

acteristics of addresses. Using the entropy values measured, the corresponding compression

ratio can be computed by taking the ratio of entropy times the number of symbols (words)

22

to the number of symbols (words) times the size of a symbol (32 for addresses and instruc-

tions and 64 for data) in the original raw trace. Thus, for example, theaverage zeroth order

Markov compression ratioovern benchmarks is:

RH0 = ∑n
i=1H0 of tracei

n× Original wordsize
.

RH andRH1 are defined similarly.

2.4.2 Compression ratios from practical schemes

Some specific schemes to compress address, instruction, and data have also been proposed

recently. We used some of these schemes to measure compression ratios to obtain an estimate

of efficiency obtainable with practical schemes.

Instruction and data block compression scheme:Semi-adaptive Markov compression

(SAMC), a compression algorithm based on arithmetic coding combined with a precalcu-

lated Markov model was proposed by Lekatasas and Wolf for code compression [45]. We

used the SAMC executable obtained from the authors to compress instruction and data blocks

with the following parameters: block size equal to L1 or L2 cache block size depending on

the level where the algorithm is applied, Markov model of depth 32 and width 256, and bits-

per-probability of 4. Theaverage SAMC compression ratioover n benchmark traces was

calculated as follows:

RSAMC= ∑n
i=1Size of compressed instruction or data tracei

∑n
i=1Size of original tracei

.

A point to note is that the SAMC algorithm is a block-based compression algorithm and

hence average compression ratio for an individual block of that size is reported as the output.

23

Address compression scheme:Two techniques (dynamic base register caching and bus-

expander) have been proposed to compress addresses that are transmitted on buses [52, 11].

Both schemes use a small fully associative cache at the sending end for compressing ad-

dresses and decompress them using registers at the receiving end. In our analysis, we use the

bus-expander scheme to compress address streams. Theaverage address compression ratio

overn benchmark traces is defined as follows:

RAddr =
∑n

i=1Size of compressed address tracei

∑n
i=1Size of original tracei

.

Data compression scheme:Gzip is a widely used GNU utility for compression in UNIX

systems. It uses Lempel-Ziv (LZ77) dictionary compression algorithm which replaces strings

of characters with single codes. Gzip does not do any analysis of the information source. In-

stead, it just adds every new string of characters it sees to a table of strings. Compression

occurs when a single code is output instead of a string of characters. Since Gzip uses an

algorithm based on bytes, good compression ratio is achieved on text files. We used Gzip

on address, instruction, and data streams to provide an idea of compression achieved using a

widely used text compression utility. Theaverage Gzip compression ratioovern benchmark

traces is defined as follows:

RGzip = ∑n
i=1Size of compressed tracei

∑n
i=1Size of original tracei

.

2.4.3 Transition ratio

For CMOS technology, power consumption on a bus line is directly related to the switch-

ing activity on it as bits are transmitted one after another over it. We use a methodology

24

similar to the one used in SimplePower [73] to calculate the switching activity of a given

bus when information is transmitted across it. They calculate the average probability of a

transition in each bit of the bus and find the total average probability across all bits, which

is a measure of the per-input switching activity of the bus in bits [76]. Thus, the ratio of

bus power consumption for two traces using the SimplePower model is equal to the ratio

of the number of transitions for those two traces. We defineaverage transition ratioovern

benchmarks for compressed traces as follows:

TC = ∑n
i=1No. of transitions in compressed tracei

∑n
i=1No. of transitions in original tracei

.

2.5 Simulation Environment

Our target system has a memory hierarchy consisting of 32 integer and 32 floating-point

registers, split instruction and data caches at the first level, a unified cache at the second level,

and a paged main memory. The first level caches are write-through, 16KB each, 4-way set

associative, and have a block size of 32 bytes. The second level cache is write-back, 256KB,

4-way set associative, and has a block size of 64 bytes. For this target memory system

configuration, we used a modified version of thecachesim5cache analyzer in SHADE5

[12] running on SPARC-V9 platform to collect the real-time traffic (addresses, instructions,

and data) for benchmark programs.Cachesim5simulates cache operation by using address

information and hence can be easily modified to collect address bus traces. But we also

needed to collect instruction and data block traces for our analysis. To facilitate this, we

augmentedcachesim5by creating an interface to map addresses to the appropriate location

25

in memory where the instruction and the data blocks are located. This way, we were able

to collect the actual address, instruction, and data traffic between processor, caches, and

memory for our analysis.

We used benchmarks from the SPEC CPU2000 suite [16]. To capture the characteristics

of both integer and floating-point programs, we chose eight integer and seven floating-point

benchmarks randomly out of 26 in the suite. For some experiments, especially when study-

ing the effect of workloads, we additionally used five benchmarks from the MediaBench

suite [40]. A summary of our complete benchmark set is shown in Table 2.1. We used

the -O2 optimization flag, which does basic local and global optimization to compile these

benchmarks. All executables were statically-linked, in which the procedures and libraries

are linked with the main program during compilation itself. We ran the benchmark programs

using reference input sets provided with the SPEC2000 suite and to limit the execution times

of our simulations we used a methodology similar to the one described by Skadron, et al.

[57]. Their research shows that accurate simulation results can be obtained by avoiding un-

representative behavior at the beginning of a benchmark programs’ execution and by using

a single, short simulation window of 50 million instructions. In our simulations, we simu-

late (but do not collect results for) instructions before the representative segment (warm up

window) and use a sampling window of 50 million instructions to collect our results. The

sizes of the warmup windows are also different for different SPEC programs [57]. These are

also summarized in Table 2.1. For MediaBench programs, we used input sets provided on

the MediaBench website and collected results for complete execution.

26

Benchmark Representative Application Warmup Inputs
window

SPEC INT [16]
gcc GNU C/C++ compiler 221M 200.s
gzip Text/file compression utility 2576M input.source
vortex Object-oriented database 2451M bendian1.raw
parser Word processing 500M ref.in
crafty Chess game playing program 500M crafty.in
twolf VLSI place and route 500M ref
mcf Combinatorial optimization 500M inp.in
vpr FPGA circuit placement and routing 500M arch.in, net.in
SPEC FP [16]
applu Parabolic-elliptic partial differential

equation solver
500M applu.in

swim Shallow water modeling 500M swim.in
wupwise Physics/quantum chromodynamics 500M wupwise.in
lucas Number theory/ primality testing 500M lucas2.in
art Image recognition with neural net-

work
500M c756hel.in,

a10.img, hc.img
ammp Computational chemistry 500M ammp.in
equake Earthquake simulation 500M equake.in
MediaBench [40]
jpeg JPEG image compression and decom-

pression
testimg.jpg, testimg.ppm

adpcm Family of speech compression and
decompression algorithms

clinton.pcm, clinton.adpcm

gsm European GSM 06.10 provisional
standard for full-rate speech transcod-
ing

clinton.pcm, clinton.pcm.gsm

ghostscript An interpreter for the postscript lan-
guage and portable document format
(PDF) files

tiger.ps

rasta Program for bandpass filtering addi-
tive noise and spectral distortion in
speech recognition systems

mapweights.dat (mapping
coefficient file for 8KHz 15
critical bands) and speech file
in SPHERE format.

Table 2.1: Summary of Benchmark Set and Input Files Used for Our Simulations. SPEC
CPU2000 (INT and FP) benchmarks were used in all experiments. MediaBench programs were used
in an experiment studying the effect of different workloads on compression. All input files for SPEC
CPU2000 programs are available with the benchmark suite. Input files for MediaBench programs are
available from the MediaBench website.

27

For communication components, we performed experiments on traces of address, instruc-

tion, and data traffic between the processor and memory for all three levels: processor-L1

cache, L1 cache-L2 cache and L2 cache-main memory for each benchmark and calculated

the zero information, zeroth, and first order Markov entropies, and SAMC compression ra-

tio in each case and, in some cases, we also calculated the Gzip compression ratio. We

investigated the compression potential of storage components other than registers by calcu-

lating zero information, zeroth order Markov, and first order Markov entropy values, and

RSAMC andRGzip. For main memory, we calculated these values for the text segment of the

statically-linked executable code. For registers, we performed only zeroth order Markov

analysis. The reason we did not do a first order Markov analysis for registers is because a

compression scheme that exploits first-order behavior will need to represent the current value

in a register in a manner that depends upon the previous value. Since a register has only one

word, storing the previous and current values, even in compressed form, is unlikely to yield

much compression. Moreover, if register compression is attempted, the compression scheme

needs to be simple enough not to affect access latency by more than a little.

To keep the number of simulations reasonable and at the same time be able to study a

number of parameter variations, we consider certain default settings as follows. We consider

the default architecture to be memory-component specific as described earlier in Sec. 2.1.4.

Also, in the default case, for our communication component analysis experiments, we con-

sider demultiplexed buses, in which case there are separate buses for instruction address,

data address, instruction, and data. In some cases, we consider a multiplexed bus, with one

28

‘address’ bus carrying both instruction and data addresses and one ‘data’ bus carrying both

instructions and data. Also, the default level for which we report most of our results is be-

tween L1 and L2 caches. The default word size considered as a symbol size in Markov

entropy calculations is 32 bits for address and instruction, 64 bits for data, and 20 bits for

tag field (See Sec. 2.4.1 for an explanation regarding why we use 32-bit instead of the actual

64-bit address). For entropy analysis, in most cases, first order Markov provides the best

results and the performance of zeroth order Markov is also better than zero information. We

present these two entropy results in most of our plots. In the experiments that we describe

next, we summarize results in plots by averaging over all 15 (8 INT and 7 FP) benchmarks

or by showing averages for INT, FP, and MediaBench programs separately for specific com-

ponents. We calculate the average compression ratios as mentioned earlier in Sec. 2.4.2.

2.6 Trace Collection

For communication components, traces were collected by writing each new value trans-

mitted on a bus (connected between two storage components or between the storage compo-

nent and the processor) and its corresponding timestamp into a file. Thus, we assume that

bus lines are held at previously transmitted values when the bus is idle.

For storage components, the following methodology was adopted to collect dynamic

traces and to ensure that the analysis done reflects average compressibility of the compo-

nent. In instruction caches, a block may be loaded into and be replaced from a cache multiple

times during the sampling window of the simulation. A load and the next replacement of a

29

block correspond to a time period during which it is resident in the cache known as its cache

residence time. Since the time instant of a load that occurs before the sampling window

and that of a replacement that occurs after the sampling window are not known, we ignore

these time periods to avoid errors and consider only load-replacements that occur during the

sampling window. In a data cache, a data block in cache during the sampling window can

take on one or more values because of writes to it. Therefore, for data caches, we consider

the all data block values (instead of data blocks) that are acquired and replaced during the

sampling window.

During the simulation, we keep a record of the block address and CRT of each block that is

loaded and replaced during the sampling window. After simulation, we list the blocks in non-

increasing order of CRTs and sum the CRTs of all blocks to get the total CRT (TCRT). Then,

starting from the first block, we select blocks in the list in order until the total residency time

of selected blocks becomes equal to 80% TCRT. Then we write in random order the actual

contents of these selected blocks a number of times in proportion to each block’s CRT into a

file to obtain the trace for our experiment. We do the same for 90% TRCT. We use a random

order to write the blocks to avoid any optimistic first order compression ratios that may be

obtained if the blocks were written in order of their sorted residency times.

For 80% and 90% TCRT traces, we consider only blocks up to 80% or 90% TCRT and

scale down the number of occurrences of such blocks (and hence the number of times they

need to be written to the trace file) by that of the last block selected. This simplifies the cre-

ation of the trace file compared to a 100% TCRT trace because in the latter the total number

30

of times each of the blocks needs to be written into the trace will be extremely large for some

blocks. Compression analysis for a cache is then done by analyzing its corresponding trace

file. The above discussion applies to the data field of instruction and data caches. From the

addresses and CRTs of the blocks available for the instruction caches, we are able to create

similar trace files for analyzing tag field compression.

Adopting a similar methodology as above for register compression analysis, we consid-

ered the residency times of only those values that are loaded and replaced in a register during

the simulation window. Note that by considering the residency times of blocks as above,

both in the case of cache and register, the trace file we created reflects the average contents

of the cache/register. Hence the compression ratios obtained would be those expected from a

compression scheme that chooses encodings based on average symbol statistics, rather than

one where the choice changes dynamically as cache/register contents change. Therefore, the

compression ratios we report in our studies are, in this sense, not optimistic.

2.7 Overall Memory System Analysis

We investigated how compression ratio and power consumption vary across memory sys-

tem components, namely, registers, cache, main memory, address bus, instruction bus, data

bus. The compression ratio is indicative of the extent to which performance enhancement or

cost savings can be realized. Figure 2.1 presents an overview of our analysis. We observe

that communication components are in general more compressible than storage components

(consideringH1 values which provide the best lower bound for entropy). Among storage

31

components, we observe that the ordering from the most to the least compressible is L1

I-cache data field, L1 I-cache tag field, main memory, and registers.

0.
20

6

0.
26

4

0.
12

3

0.
39

4

0.
36

3

0.
31

0

0.
26

2

0.
12

5 0.
23

0

0.
09

8

0.
31

0

0.
22

5

0.
26

1

0.
16

1

0.
04

3

0.
06

3

0.
07

1

0.
05

6

0.
04

7

0.
05

2

0.
47

7

0.
48

9 0.
59

30.
75

7

0.
82

3

0.
81

1

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900

Registers L1 I-Cache
Data Field

L1 I-Cache
Tag Field

Main
Memory

L1�L2
Address Bus

L1�L2
Instruction

Bus

L1�L2
Data Bus

Memory Component

C
om

pr
es

si
on

/T
ra

ns
iti

on
 R

at
io

Zero Info.
Zeroth Order
First Order
SAMC
Transition Ratio

 Average Values Summary
RH R R RSAMC TC

 0.286 0.216 0.055 0.520 0.797

Compression and Transition Ratio Variation
Across Memory Components

H0 H1

Figure 2.1:Overall Memory System Analysis:Compression ratio variation across memory system
components. Communication components are in general more compressible than storage components
when first order entropies are considered.

This is to be expected since instructions that are stored in the data fields of I-cache and tag

field that corresponds to the high-order portion of the instruction address carry significantly

higher amounts of redundancy than main memory or registers. Among communication com-

ponents, the ordering, from the most to the least compressible (again consideringH1 values),

is instruction bus, data bus, and address bus. A possible explanation for the higher redun-

dancy in the data bus compared to address bus is that a lot of the data blocks transmitted may

32

contain small magnitude numbers that have lots of either 0 or 1 bits. Further, it is observed

that the volume of data read traffic (data blocks sent from L2 to L1) is far greater than the

write traffic (data blocks sent from L1 to L2), which means that the same blocks may appear

in the data bus traffic often without any changes, and this also increases the redundancy. This

also explains why data traffic shows the best compressibility in zero information and zeroth

order analysis. We also observe that the ordering of the communication components in terms

of power savings after compression (from most to least savings) is as follows: address bus,

data bus, and instruction bus.

2.8 Register Compression Analysis

For register compression, we performed zeroth order Markov analysis over all 32 inte-

ger registers and 32 single-precision floating-point registers in our target architecture. In

SPARC-V9, all integer registers are 64 bits each and the single-precision floating-point reg-

isters are 32 bits each [67]. The floating-point register file (FPRF) usesaliasing, i.e., some

register names overlap. For example, the 32 single-precision register set, the lower half of

the 32 double-precision register set, and the lower half of the 16 quad-precision register set

overlay each other. Considering the total number of registers in our analysis and keeping

track of all values stored in them for large samples (50 million instructions) would have been

computationally intractable. Hence, we study only instructions that manipulate registers in

the single-precision FPRF.

Fig. 2.2 and Fig. 2.3 show the zero-information and zeroth-order compression ratio for

33

C
om

pr
es

si
on

 R
at

io
 V

ar
ia

tio
n

A
cr

os
s I

nt
eg

er
 R

eg
is

te
rs

0.286
0.228

0.202
0.199

0.125
0.177

0.098
0.437

0.490
0.476

0.434
0.379

0.312
0.105

0.066
0.439

0.427
0.420

0.398
0.363
0.365

0.339
0.316

0.484
0.376

0.414
0.354
0.361

0.378
0.147

0.067

0

0.056

0.081
0.174

0.164
0.146

0.180

0.220
0.238

0.174
0.201

0.170

0.159
0.177

0.226
0.267

0.239

0.057
0.088

0.180
0.191

0.235
0.265

0.312
0.275

0.103
0.071

0.079
0.109
0.106

0.113
0.109

0

0.
00

0

0.
10

0

0.
20

0

0.
30

0

0.
40

0

0.
50

0

0.
60

0

0
5

10
15

20
25

31

In
te

ge
r

R
eg

is
te

r

Compression Ratio
Z

er
o

In
fo

.
Z

er
ot

h
O

rd
er

A
ve

ra
ge

 V
al

ue
s S

um
m

ar
y

 R

R

IN
T

*

 0
.3

12

 0

.1
69H
0

H

*
E

xc
lu

di
ng

 in
te

ge
r r

eg
is

te
r 0

F
ig

ur
e

2.
2:

C
om

pr
es

si
on

P
ot

en
tia

l
of

S
to

ra
ge

C
om

po
ne

nt
s

–
R

eg
is

te
r

C
om

pr
es

si
on

A
na

ly
si

s:
A

ve
ra

ge
re

gi
st

er
co

m
pr

es
si

on
an

al
ys

is
fo

r3
2

in
te

ge
r

re
gi

st
er

s.

34

0.318
0.197

0.431
0.070

0.458
0.215

0.265
0.063

0.189
0.133

0.125
0.063

0.281
0.126

0.271

0.211
0.058

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0.052
0.171

0.216
0.115

0.207

0.057
0.088
0.084

0.151
0.058

0.275
0.156

0.296

0.351
0.062

0.160
0.236

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0.
00

0
0.

05
0

0.
10

0
0.

15
0

0.
20

0
0.

25
0

0.
30

0
0.

35
0

0.
40

0
0.

45
0

0.
50

0

0
5

10
15

20
25

31

Fl
oa

tin
g

Po
in

t R
eg

is
te

r

Compression Ratio
Z

er
o

In
fo

.
Z

er
ot

h
O

rd
er

A
ve

ra
ge

 V
al

ue
s S

um
m

ar
y

 R

R

FP
*

0.
20

6

 0

.1
61

H
0

H

C
om

pr
es

si
on

 R
at

io
 V

ar
ia

tio
n

A
cr

os
s F

lo
at

in
g

Po
in

t R
eg

is
te

rs

*
E

xc
lu

di
ng

 u
nu

se
d

fl

oa
tin

g
po

in
t r

eg
is

te
rs

F
ig

ur
e

2.
3:

C
om

pr
es

si
on

P
ot

en
tia

l
of

S
to

ra
ge

C
om

po
ne

nt
s

–
R

eg
is

te
r

C
om

pr
es

si
on

A
na

ly
si

s:
A

ve
ra

ge
re

gi
st

er
co

m
pr

es
si

on
an

al
ys

is
fo

r3
2

si
ng

le
-

pr
ec

is
io

n
flo

at
in

g-
po

in
tr

eg
is

te
rs

.

35

each register in the integer and floating-point register file. Considering average values, we

find that floating-point registers are more compressible than integer registers. The following

observations can be made from the plots.

• Integer register compression:The average zeroth-order integer register compression

ratio across all 32 registers, excluding register r0, is 0.169. We observe that integer

registers r1-r7, r14, r15, r30, and r31 show potential for more compression than the

rest. This can be attributed to the register windowing employed in the SPARC register

architecture: r1-r7 correspond to the most often used ‘global’ set of registers which,

due to their more frequent usage show higher compression potential. Also, registers

r14, r15, r30, and r31 have dedicated use as stack, frame, temporary, and return-address

register respectively and may hence be used more frequently than others. But, one

may argue that many integer registers can potentially contain pointer values1 (32-bit

addresses of other locations where data is actually stored) that can take large values and

hence may be poorly compressible. But, there is indeed a lot of redundancy present

in pointers because they point to roughly a similar region in memory (since they are

dynamically allocated). Hence many of their high-order bits will be the same and

hence redundant.

• Floating point register compression:The average zeroth order floating-point register

compression ratio we observe for the 32 single-precision registers in SPARC-V9 is

0.161 (excluding registers f16-f29 that were all unused). Note that, as opposed to inte-

1Pointers in SPARC-V9 are 32 bits. A simple C program using the sizeof(void *) functions will reveal this.

36

ger registers, a symbol size of 32 bits was used here to calculate entropy because only

single-precision operands were considered. The substantial underutilization of the reg-

ister set—13 out of 32 were not used by the benchmarks at all—can be explained by

the fact that these may have been used as double or quad-precision registers.

In summary, our results show that although there is good amount of variation in com-

pression ratio across registers, no register (INT or FP) has an averageH0 compression ratio

exceeding about 0.35, which implies registers can, on average, be compressed to about one-

third of their original size using a very good zeroth-order compression scheme.

2.9 Cache Compression Analysis Across Different Levels

In this section, we analyze the compressibility of L1 and L2 caches. First, we explore the

potential for instruction cache and data cache compression in separate experiments. Then,

we investigate the effect of change in cache parameters (cache size, block size, and associa-

tivity) on compression. Finally, we estimates the benefits of cache compression in terms of

improvement in cache access times, reduction in consumption, and reduction in area.

2.9.1 Instruction and data cache compression

Fig. 2.4 shows results for compression ratios calculated using zero information, zeroth

order, and first order Markov entropies for instruction and data caches. To limit the running

times and memory required for this analysis, we limited the sample size used for cache trace

collection to 20M instructions and 100% TCRT cache traces are collected for this study.

37

0.255
0.266

0.097
0.076

0.229 0.234

0.059

0.028
0.038 0.040

0.010 0.0004
0.000

0.050

0.100

0.150

0.200

0.250

0.300

Level 1 Level 2 Level 1 Level 2

I-Cache D-Cache
Cache Level

C
om

pr
es

si
on

 R
at

io
Zero Info.
Zeroth Order
First Order

 Average Values Summary
 R R R
 I-Cache 0.261 0.232 0.039
 D-Cache 0.086 0.043 0.005

Compression Ratio Variation Across Different Cache Levels

H0 H1H

Figure 2.4:Compression Potential of Storage Components – Cache Compression Anal-
ysis: Average instruction and data cache compression analysis for L1 and L2 caches.

Comparing instruction and data caches, we observe that data caches are more compress-

ible. One reason for this could be the presence of data blocks with uninitialized values

(mostly zeros) that add to redundancy. Comparing between L1 and L2 caches, it would be

expected that L1 cache will be more compressible, if both L1 and L2 blocks are dynami-

cally compressed with the same scheme, due to the following reason. L1 cache contains a

more frequent symbol set (of instructions or data) and the L2 cache, in addition to storing

the contents of L1, also contains additional symbols (instructions or data) that are relatively

infrequent. This is observed to hold in the case of instruction cache, but for data caches we

observe that L2 is more compressible than L1, albeit slightly (by about 3% or less). One

38

Compression Ratio Variation with Cache Size

0

0.05

0.1

0.15

0.2

0.25

0.3

8 KB 16 KB 32 KB 64 KB 128 KB

L1 I-Cache Size

C
om

pr
es

si
on

 R
at

io
Zero Info
Zeroth Order
First Order

Percentage Change Summary
R R R

 5.443% 3.222% 11.818%
H0 H1H

Figure 2.5:Cache Compression and Cache Size:With increasing cache size, compression
ratio deteriorates somewhat.

possible explanation is that, since data is more dynamic in nature compared to instructions,

blocks in L1 cache tend to be replaced more frequently. This tendency may have been aggra-

vated by a small L1 data cache size (16KB). Both these factors result in a more dynamic mix

of data in the L1 cache trace making it less compressible. As we will see later in Sec. 2.9.2,

increasing cache size from 16KB to 32KB could have resulted in better compression for L1

D-cache. In contrast, due to the larger size of the L2 cache (256KB), data blocks tend to stay

longer and thus the L2 data cache trace is more compressible. On average for instruction

caches, we observed a zeroth order Markov compression ratio of about 0.23 and a first order

Markov compression ratio of about 0.04. This means that, theoretically, we could reduce

39

Compression Ratio Variation with Block Size

0

0.05

0.1

0.15

0.2

0.25

0.3

8 Bytes 16 Bytes 32 Bytes 64 Bytes 128 Bytes

L1 I-Cache Block Size

C
om

pr
es

si
on

 R
at

io
Zero Info.
Zeroth Order
First Order

Percentage Change Summary
R R R

 11.467% 7.008% 38.107%
H H0 H1

Figure 2.6:Cache Compression and Block Size:With increasing block size, compression
ratio improves. Cache associativity has negligible impact on compression ratio.

instruction cache sizes by about 4 to 25 times by applying cache compression methods or

store that much more information in the same area.

2.9.2 Compression ratio and cache parameters

We also investigated the sensitivity of cache compressibility to cache parameters, namely,

cache size, block size, and degree of associativity and its relationship to access time, power

consumption, and area. All experiments in this set were done on L1 instruction cache resi-

dent blocks. From Fig. 2.5, we find that the compression potential of cache first increases and

then decreases with increasing cache size. For the range that we studied, cache compression

potential is maximum for a 32KB cache. A larger cache has more relatively infrequently

40

occurring blocks than a smaller one, and that explains its lower compressibility. However,

even for large caches, the compression ratio is very good.

In general, compression ratio improves when we increase block size as shown in Fig. 2.6.

This is because a larger block has more spatially close instructions than a smaller one, and

so, for the same cache size, increasing block size increases the number of instructions that

are related to each other, and a smaller block size leads to more block boundaries where

interruptions in related instructions occur. We also performed experiments to test the impact

of varying cache set associativity on compression and we found that it has negligible impact

on compression ratio.

Cache
Type

Comp. Access Time Total Power Area

Method (ns) (%
redn.)

(nJ) (%
redn.)

Tag
(cm2)

Tag (%
redn.)

Data
(cm2)

Data
(%
redn.)

L1 Uncomp. 1.2790 – 1.6889 – 0.00112 – 0.01163 –
L2 Uncomp. 1.7363 – 3.0679 – 0.00514 – 0.12910 –
L1 I-
cache

Zeroth-
order

1.2357 03.385 1.5845 06.185 0.00063 43.75 0.00633 45.57

L1 D-
cache†

Zeroth-
order

0.7550 40.969 0.5767 68.854 0.00023 79.46 0.00179 84.61

L1 I-
cache†

First-
order

0.7550 40.969 0.5767 68.854 0.00023 79.46 0.00179 84.61

L1 D-
cache†

First-
order

0.7398 42.158 0.5724 66.108 0.00020 82.14 0.00160 86.24

L2 Zeroth-
order

1.3011 25.065 1.8850 38.558 0.00117 77.24 0.02549 80.26

L2 First-
order

1.2398 28.600 1.7281 43.672 0.00023 95.53 0.00179 98.61

Table 2.2: Access Time, Power Consumption, and Area of Caches:Cache parameters obtained
using the CACTI 3.0 model. Entries marked with a† use a direct-mapped organization for the com-
pressed cache.

41

2.9.3 Cache compression and cache access time, energy consumption,

and area

To measure the effect of compression on other parameters like access time, power con-

sumption, and area of the tag and data arrays, we used the CACTI 3.0 model [56] for a 0.18

micron SRAM cache implementation. Table 2.2 gives values of these parameters for L1 and

L2 caches. Here, we compare a normal uncompressed cache with a smaller (by compression

ratio) compressed cache having the same effective storage capacity. Both cache have simi-

lar parameters, such as block size and set associativity, but the compressed cache has fewer

blocks (compression ratio times the number of blocks in the corresponding normal uncom-

pressed cache). In some cases, however, the size of the compressed cache was too small (due

to the compression ratio being very small) to use a set-associative mapping in CACTI 3.0.

In those cases, we used a direct-mapped cache implementation. We observe that with tag

and data field compression in the compressed cache, access times can be reduced by about

41%(29%) and power consumption by about 66%(44%) on the average for L1 (L2) levels

w.r.t. normal uncompressed caches with the same effective capacity.

42

2.10 Compression and Transition Ratio Across Individual

Buses

Zeroth order and first order redundancies in all buses

Figure 2.7 shows compression and transition ratio results for demultiplexed buses at all

three levels. We observe that theRH andRH0 values are similar across all levels. Based on

RH1 values, instruction address is most compressible and data address least, except for L2-M,

where data is most compressible.

Original, XOR, and offset address trace compression

Since instruction and data addresses are known to exhibit spatial redundancy to different

degrees, it would be expected that the XOR of consecutive addresses will have a lot of zeros

(especially at the high order bit positions) and that the offset values for consecutive addresses

will have small magnitudes. Note that computing bitwise XOR of twon-bit addresses re-

quires constant time and little hardware and offsets can be computed inO(logN) time using

a carry lookahead tree adder. However, XOR traces have a power disadvantage. Every bit

transition in the original trace will cause two bit transitions in the XOR trace, except when

consecutive transitions occur in the original trace (not likely), in which case there will not

be any transition in the XOR trace. To study the compressibility of original, XOR, and off-

set address traces, we evaluated their zero information, zeroth order, and first order Markov

compression ratios, which are shown in Figure 2.8. Since instruction addresses occur at

some very frequent offsets (typically an instruction word), the zero information and zeroth

43

0.350

0.536

0.304

0.281

0.274

0.264

0.462

0.310

0.258

0.267

0.229

0.436

0.308

0.209

0.237

0.295

0.250

0.234

0.199

0.216

0.243

0.206

0.261

0.163

0.159

0.212

0.417

0.262

0.120

0.179

0.001

0.092

0.035

0.057

0.041

0.024

0.088

0.047

0.051

0.053

0.050

0.052

0.047

0.031

0.032

0.691

0.715

0.623

0.615

0.642

0.706

0.706

0.489

0.400

0.632

0.765

0.763

0.459

0.401

0.708

0.850

0.854

1.011

1.167

0.639

0.823

0.658

0.840

1.330

0.986

0.713

0.755

0.777

0.538

1.046

0
0.

2
0.

4
0.

6
0.

81
1.

2
1.

4

Instruction
Address

Data
Address

Instruction

P�L1
Data
P�L1
Data

Instruction
Address

Data
Address

Instruction

L1�L2
Data

L1�L2
Data

Instruction
Address

Data
Address

Instruction

L2�M
Data

L2�M
Data

P-
L

1
L

1-
L

2
L

2-
M

B
us

Compression/Transition Ratio
Z

er
o

In
fo

.
Z

er
ot

h
O

rd
er

Fi
rs

t O
rd

er
A

ct
ua

l S
ch

em
es

*
T

ra
ns

iti
on

 R
at

io

A
ve

ra
ge

 V
al

ue
s S

um
m

ar
y

 R

 R

 R

R

ac
tu

al
*

 T

C

 P
�

L
1:

 0

.3
49

 0

.2
39

 0

.0
45

 0

.6
57

0.
89

4
L

1�
L

2:

 0
.3

12

 0
.2

06

 0
.0

53

 0
.5

87

0.

82
5

 L

2�
M

:

0.
28

4

0.
23

8

0.
04

2

0.
58

5

 0
.9

12

C
om

pr
es

si
on

 a
nd

 T
ra

ns
iti

on
 R

at
io

 V
ar

ia
tio

n
A

cr
os

s I
nd

iv
id

ua
l B

us
es

H
0

H
1

H

*
B

us
-E

xp
an

de
r u

se
d

fo
r c

om
pr

es
si

ng
 a

dd
re

ss
es

 a
nd

SA
M

C
 fo

r i
ns

tr
uc

tio
ns

 a
nd

 d
at

a
F

ig
ur

e
2.

7:
C

om
pr

es
si

on
P

ot
en

tia
lo

f
C

om
m

un
ic

at
io

n
C

om
po

ne
nt

s:
C

om
-

pr
es

si
on

ra
tio

s
fo

r
ze

ro
th

an
d

fir
st

or
de

r
be

ha
vi

or
of

va
rio

us
bu

se
s

at
di

ffe
re

nt
le

ve
ls

of
th

e
m

em
or

y
sy

st
em

hi
er

ar
ch

y.

44

order Markov compression ratios for instruction address offset traces is the best and even

the XOR trace has better compressibility than the original trace. However, when consider-

ing first-order Markov compression, the original trace provides the best compression and the

offset trace the worst. This is expected since, given an offset, the next offset value can vary

depending upon the instructions being executed at the time. However, given an instruction

address, the next instruction address can be easily predicted. In the case of data addresses,

XOR and offset traces do not necessarily give better compression ratios due to more variation

in data addresses issued.

2.11 Compression Ratio and Bit Fields

In this experiment, we consider eight consecutive bit fields (from high to low order: F7,

F6,. . . , F1, F0) corresponding to each nibble for instruction and data addresses. For 64-bit

data, we consider four consecutive bit fields (F3, F2, F1, and F0) corresponding to each

half-word (16 bits). For 20-bit I-cache tag, we consider four fields each a nibble wide. For

32-bit instructions, we consider six fields (F5, F4, F3, F2, F1, F0) of widths 2, 5, 6, 5, 9, and

5 bits respectively based on the field boundaries of the most common instruction format in

SPARC-V9 architectures (J-format). In the experiments under this section, the symbol size

for compression corresponds to the above-mentioned bit field sizes. We generated individual

bit-field traces for data addresses and instruction addresses at the P→L1 level, instructions

and data at the L1→L2 level, and tag field of L1 I-cache and then analyzed each trace by do-

ing zeroth and first order Markov analysis. We also considered three different representations

45

0.350

0.264

0.229

0.536

0.462

0.436

0.295

0.243

0.212

0.250

0.206

0.417

0.001

0.024

0.050

0.092

0.088

0.052

0.235

0.261

0.245

0.553

0.482

0.392

0.083

0.142

0.180

0.261

0.188

0.271

0.049

0.082

0.081

0.098

0.098

0.090

0.223

0.248

0.233

0.551

0.480

0.375

0.026

0.103

0.149

0.249

0.180

0.230

0.025

0.075

0.082

0.097

0.097

0.080

0.
00

0
0.

10
0

0.
20

0
0.

30
0

0.
40

0
0.

50
0

0.
60

0
P�L1 Instruction Address

L1�L2 Instruction Address

L2�M Instruction Address

P�L1 Data Address

L1�L2 Data Address

L2�M Data Address

P�L1 Instruction Address

L1�L2 Instruction Address

L2�M Instruction Address

P�L1 Data Address

L1�L2 Data Address

L2�M Data Address

P�L1 Instruction Address

L1�L2 Instruction Address

L2�M Instruction Address

P�L1 Data Address

L1�L2 Data Address

L2�M Data Address

Ze
ro

 In
fo

rm
at

io
n

Ze
ro

th
 O

rd
er

Fi
rs

t O
rd

er

B
us

Compression Ratio
O

ri
gi

na
l

X
O

R
O

ff
se

t

A

ve
ra

ge
 V

al
ue

s S
um

m
ar

y

 O
ri

gi
na

l

 X
O

R

 O
ff

se
t

IA
 (R

H
)

D

A
 (R

H
)

IA

 (R

)

D
A

(R

)

IA
 (R

)

D

A
 (R

)

H

1

C
om

pr
es

si
on

 R
at

io
 V

ar
ia

tio
n

A
cr

os
s O

ri
gi

na
l,

X
O

R
, a

nd

O
ff

se
t A

dd
re

ss
 T

ra
ce

s

0.
28

1
 0

.2
47

0.

23
5

0.
47

8
 0

.4
76

0.

46
9

0.
25

0
 0

.1
35

0.

09
3

0.
29

1
 0

.2
40

0.

21
9

0.
02

5
 0

.0
71

0.

06
1

0.
07

7
 0

.0
96

0.

09
1

H
0

H
1

H
0

F
ig

ur
e

2.
8:

O
rig

in
al

,
X

O
R

,
an

d
O

ffs
et

A
dd

re
ss

Tr
ac

e
C

om
pr

es
si

on
:C

om
-

pr
es

si
on

ra
tio

s
fo

r
or

ig
in

al
,

X
O

R
,

an
d

of
fs

et
ad

dr
es

s
tr

ac
es

fo
r

va
rio

us
ad

dr
es

s
bu

se
s.

46

for each bit-field stream in addresses: original (raw), XOR-encoded, and offset-encoded. The

motivation for studying these address representations was described earlier in Sec. 2.10.

According to the results shown in Figs. 2.9- 2.13, we observe that compression ratio varies

across bit-fields and the variation differs for each type of traffic. In general, across all types

of information, we observe that compressibility improves from low order to high order bit

fields, except somewhat in the case of instruction bus traffic. Comparing data addresses

and instruction addresses (Figs. 2.9 and 2.10), we observe the following. First, instruction

addresses are more compressible than data addresses. Second, zeroth-order and first-order

compression of bit-fields yield more returns in instruction addresses than in data addresses.

Third, offsets and XORs of instruction addresses are more compressible with higher-order

compression schemes.

2.12 Compression Ratio and Bit-Field Groupings

We also investigated how compression ratio varies depending upon grouping of bits fields

for compression. We considered five bit-field groupings for addresses that are mentioned in

the top right corner of Fig. 2.14: Group-1 (G1) consists of 8 nibbles with each compressed

separately, Group-2 (G2) consists of a most significant byte followed by 6 nibbles, Group-3

(G3) comprises a most significant part of 12 bits followed by a byte and then two nibbles,

Group-4 (G4) consists of a most significant half-word, a byte, and then a nibble, and finally

Group-5 (G5) considers the whole word as a symbol. In a similar vein, the bit-field groupings

that we considered for instruction, data, and cache tag fields are shown in Fig. 2.15.

47

0.160

0.192

0.184

0.062

0.008

0.007

0.006

0.008

0.007

0.017

0.019

0.019

0.015

0.002

0.002

0.002

0.002

0.002

0.199

0.261

0.234

0.054

0.007

0.006

0.005

0.007

0.006

0.470

0.663

0.645

0.257

0.032

0.028

0.023

0.032

0.027

0.707

0.818

0.788

0.511

0.511

0.042

0.038

0.052

0.041

0.947

0.939

0.890

0.788

0.118

0.065

0.091

0.115

0.065

1.000

0.968

0.954

0.979

0.424

0.153

0.286

0.378

0.150
0.105

0.145

0.101

0.107

0.310

0.500

0.500

0.500

0.500

0

0.
2

0.
4

0.
6

0.
81

1.
2

R
aw

X
O

R
O

ff
se

t
R

aw
X

O
R

O
ff

se
t

R
aw

X
O

R
O

ff
se

t

Z
er

o
In

fo
.

Z
er

ot
h

O
rd

er
Fi

rs
t O

rd
er

Compression Ratio
F7

F6
F5

F4
F3

F2
F1

F0

P

 L
1

In
st

ru
ct

io
n

A
dd

re
ss

C
om

pr
es

si
on

 R
at

io
 V

ar
ia

tio
n

A
cr

os
s D

iff
er

en
t I

ns
tr

uc
tio

n
A

dd
re

ss
 B

it
Fi

el
ds

 A
ve

ra
ge

 V
al

ue
s S

um
m

ar
y

 R

R

 R

R

aw

 0

.5
00

 0
.3

96

 0

.0
69

X
O

R

0.

54
5

0.
17

6

0.

05
2

O
ff

se
t

0.

52
7

0.
05

1

0.

05
0

H
H

0
H

1

F
ig

ur
e

2.
9:

C
om

pr
es

si
on

R
at

io
an

d
B

it
F

ie
ld

s
an

d
B

it-
F

ie
ld

G
ro

up
-

in
gs

:V
ar

ia
tio

n
of

co
m

pr
es

si
on

ra
tio

ac
ro

ss
in

st
ru

ct
io

n
ad

dr
es

s
bi

t-
fie

ld
s

–
H

ig
he

r
or

de
r

bi
tfi

el
ds

sh
ow

be
st

co
m

pr
es

si
on

.

48

0.331

0.394

0.414

0.253

0.246

0.246

0.224

0.229

0.229

0.342

0.397

0.397

0.246

0.246

0.246

0.227

0.233

0.232

0.627

0.744

0.739

0.343

0.384

0.364

0.303

0.312

0.302

0.976

0.994

0.985

0.487

0.548

0.534

0.392

0.414

0.415

1.000

1.000

1.000

0.539

0.577

0.576

0.427

0.447

0.451

1.000

1.000

1.000

0.738

0.712

0.686

0.554

0.574

0.558

1.000

1.000

1.000

0.881

0.824

0.777

0.669

0.680

0.647
0.502

0.509

0.489

0.568

0.580

0.545

0.833

0.833

0.786

0

0.
2

0.
4

0.
6

0.
81

1.
2

R
aw

X
O

R
O

ff
se

t
R

aw
X

O
R

O
ff

se
t

R
aw

X
O

R
O

ff
se

t

Z
er

o
In

fo
.

Z
er

ot
h

O
rd

er
Fi

rs
t O

rd
er

P

 L
1

D
at

a
A

dd
re

ss

Compression Ratio
F7

F6
F5

F4
F3

F2
F1

F0

C
om

pr
es

si
on

 R
at

io
 V

ar
ia

tio
n

A
cr

os
s D

iff
er

en
t D

at
a

A
dd

re
ss

 B
it

Fi
el

ds

 A

ve
ra

ge
 V

al
ue

s S
um

m
ar

y

 R

R

 R

R
aw

 0
.7

58

 0

.5
04

 0
.4

11
X

O
R

0.
79

5

0.

51
4

0.
42

5
O

ff
se

t

0.
79

6

0.

50
0

0.
41

7

H
H

0
H

1

F
ig

ur
e

2.
10

:C
om

pr
es

si
on

R
at

io
an

d
B

it
F

ie
ld

s
an

d
B

it-
F

ie
ld

G
ro

up
-

in
gs

:V
ar

ia
tio

n
of

co
m

pr
es

si
on

ra
tio

ac
ro

ss
da

ta
ad

dr
es

s
bi

t-
fie

ld
s

–
H

ig
he

r
or

de
r

bi
tfi

el
ds

sh
ow

be
st

co
m

pr
es

si
on

.

49

0.
81

1

0.
75

6

0.
70

3

0.
50

5

0.
78

7

0.
54

3

0.
38

3

0.
95

5

0.
68

1

0.
52

8

0.
73

6

0.
39

6

0.
28

5

0.
99

4

0.
78

7

0.
65

2

0.
98

6

0.
97

1

0.000

0.200

0.400

0.600

0.800

1.000

1.200

R R R
L1 L2 Instruction Bus

C
om

pr
es

si
on

 R
at

io
F5 [2-bit] F4 [5-bit] F3 [6-bit]
F2 [5-bit] F1 [9-bit] F0 [5-bit]

Compression Ratio Variation Across Different Instruction Bit Fields
 Average Values Summary
 R R R
 0.905 0.653 0.518

H0 H1H

H0 H1H

Figure 2.11:Compression Ratio and Bit Fields and Bit-Field Groupings: Variation of
compression ratio across instruction bit-fields.

For addresses only, we considered original, XOR-encoded, and offset-encoded values for

compression separately. We observe the following from the results shown in Fig. 2.14 and

Fig. 2.15. In general, for any type of information the more the number of bits in the higher

order field, the better overall compression ratio we get. When we consider the whole word

as a symbol (G5 for addresses and G4 for others), the best compression ratio was obtained.

In the case of instruction addresses, we find that XOR-encoded and offset-encoded values,

in most cases, perform worse than original values for zero-info and first-order compression.

However, for zeroth-order compression, these perform substantially better than original val-

ues. This is because the same XOR or offset values repeat for different combinations of

50

0.608

0.258

0.160

0.898

0.461

0.232

0.737

0.308

0.166

0.888

0.445

0.224

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

R R R
L1 L2 Data Bus

C
om

pr
es

si
on

 R
at

io
F3 [16-bit]
F2 [16-bit]
F1 [16-bit]
F0 [16-bit]

Compression Ratio Variation Across Different Data Bit Fields

 Average Values Summary
 R R R
 0.783 0.368 0.196

H0 H1H

H0 H1H

Figure 2.12:Compression Ratio and Bit Fields and Bit-Field Groupings: Variation of
compression ratio across data bit-fields.

original addresses, thus resulting in higher zeroth-order compression.

2.13 Compression Ratio and Power Savings for Different

Workloads

Results for experiments reported in previous sub-sections were averaged over all bench-

marks. In this experiment, we compare the compression potential and power savings due to

compression of different workloads: integer, floating-point, and embedded. The results of

this experiment are shown in Fig. 2.16 and Fig. 2.17 for SPEC CPU2000 and MediaBench

programs, respectively.

51

0.
20

0

0.
11

9

0.
09

2

0.
02

1

0.
02

0

0.
01

6

0.
24

8

0.
10

9

0.
08

6

0.
51

6

0.
35

3

0.
28

6

0.
71

8

0.
61

4

0.
44

9

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

R R R
L1 I-Cache Tag Field

C
om

pr
es

si
on

 R
at

io
F4 [4-bit]
F3 [4-bit]
F2 [4-bit]
F1 [4-bit]
F0 [4-bit]

Compression Ratio Variation Across Different Tag Bit Fields

 Average Values Summary
 R R R
 0.341 0.243 0.186

H0 H1H

H0 H1H

Figure 2.13:Compression Ratio and Bit Fields and Bit-Field Groupings: Variation of
compression ratio across tag bit-fields.

The following observations can be made for desktop/workstation class workloads repre-

sented by the SPEC CPU2000 benchmark programs. As seen earlier in Sec. 2.8, for this

type of workload, data in floating-point registers are more compressible than data in integer

registers. For program instructions (stored in I-cache data field and main memory and trans-

mitted on instruction bus) and addresses (in I-cache tag field and instruction address bus), we

observe that the information for the FP application class is more compressible than the INT

application class. We also see that the FP data sent over the data bus is more compressible

than the INT data sent over the same bus. This may be because the FP data blocks sent from

L2 to L1 (in the event of an L1 D-cache miss) may contain many unused FP words that are

52

0.
00

0
0.

10
0

0.
20

0
0.

30
0

0.
40

0
0.

50
0

0.
60

0
0.

70
0

0.
80

0
0.

90
0

G1
G2
G3
G4
G5
G1
G2
G3
G4
G5
G1
G2
G3
G4
G5
G1
G2
G3
G4
G5
G1
G2
G3
G4
G5
G1
G2
G3
G4
G5

R
R

R
R

R
R

P�
L

1
In

st
ru

ct
io

n
A

dd
re

ss
P�

L
1

D
at

a
A

dd
re

ss
B

us

Compression Ratio

O
ri

gi
na

l
X

O
R

O
ff

se
t

 A

ve
ra

ge
 V

al
ue

s S
um

m
ar

y
R

R

R

O

ri
gi

na
l

X
O

R
 O

ff
se

t
O

ri
gi

na
l

X
O

R
 O

ff
se

t
O

ri
gi

na
l

X
O

R
 O

ff
se

t
0.

62
9

0.
67

0
0.

53
9

0.
61

1
0.

65
2

0.
66

0
0.

61
3

0.
65

5
0.

62
5

0.
51

7
0.

53
0

0.
59

1
0.

44
3

0.
39

4
0.

43
5

0.
45

0
0.

31
7

0.
15

0
0.

43
5

0.
30

3
0.

27
5

0.
41

4
0.

29
3

0.
26

1
0.

34
3

0.
23

0
0.

24
6

0.
27

3
0.

17
2

0.
18

2
0.

24
0

0.
25

8
0.

07
4

0.
22

6
0.

24
5

0.
23

4
0.

21
1

0.
22

8
0.

21
9

0.
13

7
0.

15
8

0.
19

9
0.

04
6

0.
07

4
0.

12
9

E
ff

ec
t o

f D
iff

er
en

t B
it-

Fi
el

d
G

ro
up

in
gs

 o
n

C
om

pr
es

si
on

 R
at

io

H
H

1
H

0

H
H

1
H

0
H

H
1

H
0

G
1:

4|

4|
4|

4|
4|

4|
4|

4
G

2:

8|
4|

4|
4|

4|
4|

4
G

3:

12
|8

|4
|4

G

4:

16
|8

|4

G
5:

32

F
ig

ur
e

2.
14

:C
om

pr
es

si
on

R
at

io
an

d
B

it
F

ie
ld

s
an

d
B

it-
F

ie
ld

G
ro

up
in

gs
:

Va
ria

tio
n

of
co

m
pr

es
si

on
ra

tio
ac

ro
ss

di
ffe

re
nt

in
st

ru
ct

io
n

an
d

da
ta

ad
dr

es
s

bi
t-

fie
ld

gr
ou

pi
ng

s.

53

0.873

0.603

0.463

0.783

0.368

0.196

0.197

0.140

0.109

0.517

0.405

0.143

0.486

0.251

0.109

0.194

0.138

0.108

0.530

0.403

0.148

0.444

0.222

0.112

0.173

0.128

0.099

0.310

0.261

0.047

0.262

0.161

0.052

0.114

0.091

0.059

0.
00

0
0.

10
0

0.
20

0
0.

30
0

0.
40

0
0.

50
0

0.
60

0
0.

70
0

0.
80

0
0.

90
0

1.
00

0

R
R

R
R

R
R

R
R

R

L
1�

L
2

In
st

ru
ct

io
n

B
us

L
1�

L
2

D
at

a
B

us
L

1
I-

C
ac

he
 T

ag
 F

ie
ld

M
em

or
y

C
om

po
ne

nt

Compression Ratio

A
ve

ra
ge

 V
al

ue
s

Su
m

m
ar

y

L

1
<-

 L
2

In
st

ru
ct

io
n

B
us

L

1
<-

>
L

2
D

at
a

B
us

L

1
I-

C
ac

he
 T

ag

R

R

R

G
1:

2|

5|
6|

5|
9|

5
16

|1
6|

16
|1

6
4|

4|
4|

4|
4

0.

61
7

0.
37

0
0.

25
6

G
2:

13

|1
9

32
|3

2
8|

4|
4|

4

0.
39

9
0.

26
5

0.
12

0
G

3:

18
|1

4
48

|3
2

8|
8|

4

0.
38

2
0.

25
1

0.
12

0
G

4:

32

64

20

0.

22
9

0.
17

1
0.

05
3

E
ff

ec
t o

f D
iff

er
en

t B
it-

Fi
el

d
G

ro
up

in
gs

 o
n

C
om

pr
es

si
on

 R
at

io

H
0

H
1

H

H
H

1
H

0
H

H
1

H
0

H
H

1
H

0

�

�
L

2

F
ig

ur
e

2.
15

:C
om

pr
es

si
on

R
at

io
an

d
B

it
F

ie
ld

s
an

d
B

it-
F

ie
ld

G
ro

up
in

gs
:

Va
ria

tio
n

of
co

m
pr

es
si

on
ra

tio
ac

ro
ss

di
ffe

re
nt

in
st

ru
ct

io
n,

da
ta

,a
nd

ta
g

bi
t-

fie
ld

gr
ou

pi
ng

s.

54

0.302
0.164

0.306
0.201

0.025
0.159

0.073
0.045

0.418
0.324

0.087
0.381

0.257
0.064

0.682
0.707

0.341
0.272

0.063
0.489

0.824
0.263

0.173
0.055

0.648
0.956

0.029

0.049
0.148

0.262
0.777

0.494

0.249
0.274

0.706

0.524
0.671

0.654
0.047

0.188
0.342

0.053
0.294

0.367
0.034
0.063
0.088

0.020
0.191
0.204

0.086
0.109

0

0.
2

0.
4

0.
6

0.
81

1.
2

Zero Info.
Zeroth
Order

Zero Info.
Zeroth
Order
First

Order
Zero Info.

Zeroth
Order
First

Order
Zero Info.

Zeroth
Order
First

Order
Zero Info.

Zeroth
Order
First

Order
Bus-

Expander
Transition

Ratio
Zero Info.

Zeroth
Order
First

Order
SAMC

Transition
Ratio

Zero Info.
Zeroth
Order
First

Order
SAMC

Transition
Ratio

R
eg

is
te

r
L

1
I-

C
ac

he
D

at
a

Fi
el

d
L

1
I-

C
ac

he
T

ag
 F

ie
ld

M
ai

n
M

em
or

y
L

1�
L

2
A

dd
re

ss
 B

us

L
1�

L
2

In
st

ru
ct

io
n

B
us

L
1�

L
2

D
at

a
B

us

M
em

or
y

C
om

po
ne

nt

Compression/Transition Ratio

IN
T

FP

C
om

pr
es

si
on

 a
nd

 T
ra

ns
iti

on
 R

at
io

 V
ar

ia
tio

n
A

cr
os

s I
N

T
 a

nd
 F

P
B

en
ch

m
ar

ks

A

ve
ra

ge
 V

al
ue

s S
um

m
ar

y

 R

 R

R

 R

ac
tu

al
*

 T

C

IN
T

 0

.3
10

0.

20
9

 0
.0

63

 0
.6

06

 0
.8

29
FP

0.
23

5
 0

.1
74

0.

04
2

0.

55
7

 0

.7
18

H
0

H
1

H

*B
us

-E
xp

an
de

r
us

ed
 fo

r
co

m
pr

es
si

ng
 a

dd
re

ss
se

s a
nd

SA

M
C

 fo
r

in
st

ru
ct

io
ns

 a
nd

 d
at

a

F
ig

ur
e

2.
16

:A
pp

lic
at

io
n

C
la

ss
A

na
ly

si
s:

D
es

kt
op

/w
or

ks
ta

tio
n

cl
as

s
w

or
k-

lo
ad

s
(S

P
E

C
C

P
U

20
00

IN
T

an
d

F
P

pr
og

ra
m

s)
.

55

0.320
0.276
0.261
0.244

0.024
0.188

0.152
0.110

0.357
0.318

0.053
0.109

0.077
0.063

0.174
0.096

0.024
0.076

0.011
0.003

0.420
0.365

0.072
0.351

0.255
0.032

0.690
0.732

0.389
0.327

0.056
0.584

0.988
0.224

0.157
0.028

0.514
0.784

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

Z.I.
Z.O.
Z.I.

Z.O.
F.O.
Z.I.

Z.O.
F.O.
Z.I.

Z.O.
F.O.
Z.I.

Z.O.
F.O.
Z.I.

Z.O.
F.O.
Z.I.

Z.O.
F.O.
Z.I.

Z.O.
F.O.
Z.I.

Z.O.
F.O.
B.E.
T.R.
Z.I.

Z.O.
F.O.
B.E.
T.R.
Z.I.*

Z.O.*
F.O.*
B.E.*
T.R.*

L
1

I-
C

ac
he

D
at

a
Fi

el
d

L
1

I-
C

ac
he

T
ag

Fi
el

d

L
2

I-
C

ac
he

D
at

a
Fi

el
d

L
2

I-
C

ac
he

T
ag

Fi
el

d

L
1

D
-

C
ac

he
D

at
a

Fi
el

d

L
2

D
-

C
ac

he
D

at
a

Fi
el

d

M
ai

n
M

em
.

L
1�

L
2

A
dd

r.
 B

us

L
1�

L
2

In
st

r.
 B

us
L

1�
L

2
D

at
a

B
us

M
em

or
y

C
om

po
ne

nt

Compression/Transition Ratio

A
ve

ra
ge

 V
al

ue
s S

um
m

ar
y

R

 R

R

R

ac
tu

al
*

 T

C

0.
26

1
 0

.2
07

0.

04
6

0.

59
6

 0

.8
35

C
om

pr
es

si
on

 a
nd

 T
ra

ns
iti

on
 R

at
io

 V
ar

ia
tio

n
A

cr
os

s M
ed

ia
B

en
ch

 B
en

ch
m

ar
ks

H
0

H
1

H

*
B

us
-E

xp
an

de
r

us
ed

 fo
r

co
m

pr
es

si
ng

 a
dd

re
ss

es
 a

nd
 S

A
M

C
 u

se
d

fo
r

in
st

ru
ct

io
ns

 a
nd

 d
at

a

Integer
Register

*Z
.I.

: Z
er

o
in

fo
.

*Z
.O

.:
Z

er
o

or
de

r
*F

.O
.:

Fi
rs

t o
rd

er

*B
.E

.:
B

us
-E

xp
an

de
r

*T
.R

.:
T

ra
ns

iti
on

 R
at

io

F
ig

ur
e

2.
17

:A
pp

lic
at

io
n

C
la

ss
A

na
ly

si
s:

E
m

be
dd

ed
w

or
kl

oa
ds

(M
ed

ia
B

en
ch

pr
og

ra
m

s)
.

56

set to zero giving rise to redundancy of information. We also observe that for communica-

tion components, FP programs give better power savings than INT programs. For embedded

workloads, represented by MediaBench programs, compressibilities are somewhat worse

than both integer and floating-point programs.

2.14 Compression Ratio and Degree of Specialization

In this experiment, we investigate how varying degrees of specialization of the compres-

sion scheme affect compression ratio. We set up five different types of specialization as men-

tioned in Section 2.1.4. In thebenchmark-specificarchitecture, the compression scheme is

specific to each benchmark, but same for all blocks and memory components. For this, sym-

bol statistics used for compression of any trace are determined by analyzing symbols from

all memory components. In theapplication-class-specificcase, symbol statistics for various

components for a subset of benchmarks, the sample-benchmarks, for each application class

(INT or FP) are determined and then these statistics are used to compress components for

the remaining test-benchmarks in the same application class. To limit the simulation time

and memory required for this study, we limited the sample size used for trace collection to

10M instructions. Here, we show separate results for INT and FP.

We observe from results in Fig. 2.18 that with the degree of specialization decreasing, the

compression ratio deteriorates. But we observe that compressibility with a general compres-

sion architecture is slightly better than an application-class-specific architecture although the

former is less specialized than the latter. The general case that we considered here very sim-

57

0.076

0.208

0.359

0.089

0.279

0.296

0.460

0.650

0.583

0.037

0.138

0.165

0.738

0.770

0.832

0.773

0.876

0.838

0.695

0.879

0.042

0.042

0.010

0.371

0.071

0.061

0.003

0.132

0.079

0.009

0.884

0.902

0.
00

0
0.

10
0

0.
20

0
0.

30
0

0.
40

0
0.

50
0

0.
60

0
0.

70
0

0.
80

0
0.

90
0

1.
00

0

Block-
specific

General

Block-
specific

General

Block-
specific

General

L
1�

L
2

A
dd

re
ss

 B
us

L

1�
L

2
In

st
ru

ct
io

n
B

us
L

1�
L

2
D

at
a

B
us

M
em

or
y

C
om

po
ne

nt

Compression RatioZ
er

ot
h

O
rd

er
Fi

rs
t O

rd
er

 A
ve

ra
ge

 V
al

ue
s S

um
m

ar
y

B
lo

ck

 M
em

or
y

A

pp
l.-

pr
og

.

 S
ta

tic

 A
pp

l.-
cl

as
s

G

en
er

al

R

 0

.0
7

0.

21

 0
.2

7

0.
46

 0

.7
5

0.
73

R

 0

.0
1

0.

06

 0
.0

8

0.
37

 0

.8
7

0.
78

E
ff

ec
t o

f V
ar

yi
ng

 D
eg

re
es

 o
f S

pe
ci

al
iz

at
io

n
on

 C
om

pr
es

si
on

R

at
io

Appl.-prog-
specific

Appl.-class-
specific

Memory-
specific

Appl.-prog-
specific

Static-prog-
Specific

Memory-
specific

Appl.-prog-
specific

Appl.-class-
specific

Memory-
specific

Appl.-class-
specific

H
0

H
1

F
ig

ur
e

2.
18

:D
eg

re
e

of
S

pe
ci

al
iz

at
io

n
A

na
ly

si
s:

C
om

pr
es

si
on

ra
tio

va
ria

tio
n

w
ith

de
gr

ee
of

sp
ec

ia
liz

at
io

n.

58

ilar to the application-specific-class and the only difference is that it draws statistics from all

application classes combined. Since the number of distinct application classes considered in

our analysis is only two (INT and FP classes–MediaBench programs can be considered to in

the INT class), the general case does not result in worse compression than the application-

specific class. For the first four cases, first order Markov performs better than zeroth order

Markov. But in the application-class-specific case, it is the opposite. This is because for sym-

bols that occur in both test benchmarks and sample benchmarks, symbols are compressed

according to statistics in sample benchmarks in zeroth order Markov, but if their preceding

symbols do not occur in sample benchmarks, the symbol is left uncompressed in first order

Markov and this results in worse compression for first order Markov.

2.15 Power Savings Due to Compression, Encoding, and

Both Combined

Some experiments above demonstrated that power saving can be achieved with compres-

sion alone. We wanted to investigate if bus encoding, compression, or both applied together

decrease power consumption further. We conducted experiments for the three cases and the

results are shown in Fig. 2.19 we found that by using compression and encoding together,

we could achieve the best power saving. In fact, on the average, compared to the reduction

in transitions due to encoding alone, compression reduces transitions further by about 9%

and compression followed by encoding reduces transitions by 17%. Thus, a scheme that

combines both compression and encoding, can provide excellent benefits in terms of energy

59

Effect of Encoding, Compression, and Compression-
Encoding on Transition Ratio

0.777

0.937 0.901

0.757
0.823 0.811

0.7580.703 0.709

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

L1�L2 Address Bus L1�L2 Instruction Bus L1�L2 Data Bus
Bus

T
ra

ns
iti

on
 R

at
io

Encoded
Compressed
Compressed-Encoded

Average Values Summary
TE TC TC-E

0.872 0.797 0.723

Figure 2.19: Communication Component Analysis Considering Bus Encoding and
Compression:The extent of power saving due to encoding, compression, and compression
and encoding combined. Compression followed by encoding shows best results.

efficiency.

The above result is reiterated in another experiment where we studied the effect of in-

formation content on the power consumption of a particular trace. To study how different

amounts of information content affect the power savings in a trace, we grouped all traces

that we used (address, instruction, and data traces) in different groups according to their first

order compression ratio (information content). For example, traces with compression ratios

in the range (0, 0.1] were put in one group, those in (0.1, 0.2] in another, and so on until

the last group with range (0.9, 1.0]. We used first order compression ratio since it has the

lowest value for all traces and hence it represents the lower bound for compression. After

60

Analysis of Information Content and Power
Consumption for Various Traces

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
First Order Markov Compression Ratio

Raw
Encoded
Compressed
Compressed+Encoded
Linear (Encoded)

C
om

pr
es

si
on

/T
ra

ns
iti

on
 R

at
io

Figure 2.20: Communication Component Analysis Considering Bus Encoding and
Compression:The effect of information content of a trace on its power consumption.

grouping the traces, we calculated the average transition ratio for each group (total number

of transitions in all traces in a group divided by the number of traces in the group) for the

original, compressed, encoded, and compressed+encoded versions of the traces in the group.

We did this for all traces in all groups and normalized the number of transitions with respect

to the trace that had the maximum number of transitions. We plotted this normalized average

transitions against the mean compression ratio of a group and the result is shown in Fig. 2.20.

It shows that for a given trace, the number of transitions increase with information content,

although, for a given information content (compression ratio), the compressed+encoded and

compressed traces cause fewer transitions.

61

Effect of Bus Multiplexing on Transition Ratio

0.476

0.703

0.477
0.593

0.743

0.943

0.757 0.811

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

L1�L2 (m) Address L1�L2 (m) Data L1�L2 Address L1�L2 Data

Multiplexed Demultiplexed
Bus Type

T
ra

ns
iti

on
 R

at
io

SAMC
Transition Ratio

Average Values Summary
 RSAMC TC

Multiplexed: 0.590 0.843
Demultiplexed: 0.535 0.784

Figure 2.21:Compression and Transition Ratio Variation with Multiplexed Traffic.

2.16 Power Savings and Bus Multiplexing

The default bus in our experiments was the demultiplexed bus, and so we also wanted

to know how multiplexing affects power consumption. As mentioned earlier, a multiplexed

address bus means that both instruction and data addresses are carried on the same bus.

Similarly, a multiplexed data bus means that both instructions and data are carried on the

same bus. We compared multiplexed and demultiplexed address and data buses and obtained

results as shown in Fig. 2.21. While multiplexing an address bus slightly improves both

the address compression ratio and power savings, it degrades both in a data bus by a non-

negligible amount. This shows that there is sufficient redundancy in multiplexed address

streams whereas it is not true for combined data/instruction streams. For data/instruction

62

Compression Ratio Variation Across Different Tools

0.363
0.310

0.262
0.225

0.261

0.161

0.056 0.047 0.052

0.477 0.489

0.593

0.127
0.098

0.183

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

L1�L2 Address Bus L1�L2 Instruction Bus L1�L2 Data Bus

Memory Component

C
om

pr
es

si
on

 R
at

io
Zero Info.
Zeroth Order
First Order
SAMC
Gzip

 Average Values Summary
 R R R RSAMC RGzip

 0.311 0.216 0.052 0.520 0.136
H0 H1H

Figure 2.22:Compression Ratio Variation Across Different Compression Measures and
Tools.

buses, the degree of specialization of the compression scheme on demultiplexed bus is higher

than multiplexed bus. On demultiplexed bus compression is specific to each trace itself

(instruction, data from L1 to L2, data from L2 to L1, etc.) but on the multiplexed bus, the

compression scheme is used for all content on the bus, consisting of instruction and data

traffic (both directions) on the bus. This also accounts for lesser compression and power

savings on the demultiplexed data/instruction bus. Thus, in spite of multiplexed traffic on

address buses, benefits can be obtained but the same is not true for data buses.

63

C
om

pr
es

si
on

 a
nd

 T
ra

ns
iti

on
 R

at
io

 V
ar

ia
tio

n
A

cr
os

s
D

eg
re

e
of

 M
ul

tit
hr

ea
di

ng

0.0351.281
1.283
1.283
1.283

2.155
0.533

0.712
0.528

1.061
1.060

0.733
0.734
0.734
0.735
0.740
0.755
0.758

1.036
0.899
0.899

0.607
0.869

0.724
0.360
0.362

0.047
0.047
0.067
0.030
0.077
0.072
0.072
0.071
0.082
0.082
0.062
0.060
0.060
0.060
0.060
0.047
0.047
0.096
0.082
0.084
0.024
0.035
0.035
0.035

0

0.
51

1.
52

2.
5

1-way MT

2-way MT

3-way MT

4-way MT

5-way MT

1-way MT

2-way MT

3-way MT

4-way MT

5-way MT

1-way MT

2-way MT

3-way MT

4-way MT

5-way MT

1-way MT

2-way MT

3-way MT

4-way MT

5-way MT

1-way MT

2-way MT

3-way MT

4-way MT

5-way MT

In
st

ru
ct

io
n

A
dd

re
ss

B
us

 L
1�

L
2

 D

at
a

A
dd

re
ss

 B
us

L

1�
L

2
In

st
ru

ct
io

n
B

us
L

1�
L

2
D

at
a

B
us

 L
1�

L
2

D
at

a
B

us
 L

1�
L

2

B
us

Fi
rs

t O
rd

er
T

ra
ns

iti
on

 R
at

io

 A

bs
ol

ut
e

D
iff

er
en

ce
IA

 (
L

1�
L

2)

D
A

 (L
1�

L
2)

I

 (L
1�

L
2)

D
 (L

1�
L

2)

D

 (L
1�

L
2)

Compression/Transition Ratio

0.
01

1 0.
05

0 0.
00

F
ig

ur
e

2.
23

:
C

om
pr

es
si

on
R

at
io

Va
ria

tio
n

w
ith

th
e

D
eg

re
e

of
M

ul
ti-

th
re

ad
in

g.

64

2.17 Compression Ratio and Analysis Tool

SAMC, an arithmetic compression scheme, does not approach the entropy bound, but

provides a decent compression ratio of 0.48–0.59 as shown in Fig. 2.22. Among available

compression tools, SAMC performs much worse than the commonly used text compression

utility Gzip, that uses dictionary compression methods. It is also noticeable that there is a

wide gap (almost an order of magnitude) between the theoretically achievable compression

bound (zeroth and first order entropies) and that achieved by existing compression techniques

such as SAMC or Gzip.

2.18 Compression Ratio and Multithreaded Execution

To observe how multithreaded execution affects compression ratios of programs when a

shared (address, instruction, or data) bus is used for different threads, we simulatedk-way

multithreading by obtaining address, instruction, or data traces fromk benchmarks and cre-

ating a single trace (address, instruction, or data) by ordering them according to the times-

tamps, i.e., one cumulative trace is created for each of address, instruction, and data. To

limit memory required for this analysis, we limited the sample size used for trace collec-

tion to 10M instructions. In the case of addresses, we analyze address offset traces because

they have more redundancy in general. For any memory system component, it is expected

that because of intermingling of traffic from different threads, more transitions will occur.

The results shown in Fig. 2.23 suggest that this is somewhat true, although, transitions often

do not increase by much when the degree of multithreading is increased from one to five.

65

Multithreading does not seem to have a perceptible impact on first order compression ratios.

2.19 Conclusions

In this chapter, we presented a comprehensive analysis of all three primary types of infor-

mation (addresses, instructions, and data) stored and transmitted by the storage and commu-

nication components, respectively, at various levels of the memory system hierarchy. The

analysis was done in terms of the compression ratio possible, which in turn reflects the

amount of performance and to some extent cost improvements attainable using compression.

Our analysis was done on SPEC CPU2000 integer and floating-point benchmarks. We have

shown that a substantial amount of information redundancy exists in every component of

the memory system, such as registers, tag and data fields of caches, main memory (storage

components) and also in address, instruction, and data buses (communication components).

Some important results from our analysis are mentioned below. We observed that infor-

mation stored in the memory system can be compressed to at least 39% of their original

size with ideal zero-information compression schemes and to about 31% with ideal zeroth-

order compression schemes. Information transmitted in the memory system through buses

was found to be more compressible on the average for similar schemes. We found that by

compressing tag and data fields, cache access times can be reduced by about 41%(29%)

and power consumption by about 66%(44%) on the average for L1 (L2) levels w.r.t. nor-

mal uncompressed caches with the same effective capacity. Also, both tag and data areas

of caches can be substantially reduced by compression. Other conclusions drawn from our

66

analysis are as follows: (1) Among storage components, L1 cache was slightly more com-

pressible compared to L2 cache and cache size and block size affected compression ratios,

(2) Among communication components, the level of the memory hierarchy where the com-

ponent is present, different bit fields, and bit-field groupings play a part in determining the

amount of compression that is possible, and (3) Compression ratio also depends on the de-

gree of specialization of the compression scheme. We also studied the compressibility of

original, XOR, and offset instruction and data address traces, the effect of application class,

encoding and multiplexing, analysis tool, static vs. adaptive/dynamic compression, multi-

threading, and the relationship between information content, compression ratio, and power

consumption.

Next, in Chapters 3-5, we present our work on nanometer-scale address bus compression

to improve cost, power consumption, and performance by exploiting temporal, spatial, and

energy redundancies.

67

Chapter 3

Hardware-Only Compression of

Underutilized Address Buses

3.1 Introduction

Higher instruction issue and clock rates and larger address spaces in modern processors

and systems-on-chip (SoCs) necessitate morecommunication components(address, instruc-

tion, and data buses and associated hardware like I/O buffers, pads, and pins), which con-

tribute to increased area/cost and power consumption. On-chip buses scale relatively poorly

in size compared to logic and this results in more area, which causes more individual wire

capacitance and hence power consumption. Further, due to tighter spacing between higher

aspect-ratio wires of buses in nanometer regime, coupling capacitance effects become pro-

nounced, resulting in even more power consumption. Increasing the number of pins and

68

off-chip buses is difficult because it is limited by the surface area of the chip, whereas the

amount of logic circuitry grows as the volume of the die. Also, off-chip buses have orders of

magnitude more capacitance than on-chip circuit nodes and this exacerbates the power dis-

sipation problem. Therefore, it is important to minimize area/cost and power consumption

due to communication components.

This chapter focuses on the area/cost and power consumption of address buses. Previous

work in reducing cost relies on using narrow buses to transmit compressed addresses [20, 11].

Bus encoding schemes, on the other hand, strive to reduce power consumption by trans-

mitting encoded (uncompressed) addresses that cause fewer self-transitions [8] and fewer

coupling-transitions [77, 34]. For narrow buses, two particularly relevant encoding schemes

are the Pyramid code [9] for DRAM address buses and the BITS and ABITS codes [55].

We proposehardware-only compression(HOC) of underutilized address buses in which ad-

dress information is transmitted on a narrow bus over multiple cycles to reduce area/cost and

improve bus utilization, and possibly also lower power consumption. Due to its simplicity,

HOC is expected to have lower area and power consumption overheads at the and receiving

ends compared to address compression and encoding methods. We present hardware designs

and new encoding methods for HOC and analyze in detail its performance, power, and cost

implications through realistic execution-driven simulations.

The rest of the chapter is organized as follows. In Section 3.2, we describe in detail our

HOC strategy, including its benefits and feasibility, and hardware design. In the following

section, we discuss how area savings from HOC can be exploited via appropriate wire lay-

69

outs. In Section 3.4, we describe our simulation setup and metrics and in Sections 3.5 - 3.9

present various strategies for for improving energy efficiency of HOC and results from our

simulations. Finally, Section 3.10 concludes the chapter.

3.2 Hardware-Only Compression

In this section, we describe HOC in detail, including its benefits, overheads, hardware

design, and novel encoding schemes.

3.2.1 Overview

In hardware-only compression, so called because only the bus hardware, but not the infor-

mation transmitted on the bus, is compressed, a narrow bus is used to transmit information

over multiple cycles. HOC is applied to underutilized buses to save cost and improve bus

utilization and possibly lower power consumption. Buses at different levels of the memory

system are underutilized because of the following reasons. Memory referencing instruc-

tions (loads and stores) that cause data addresses to be issued from the processor constitute

only about 41% in RISC processors [26]. As a result, the utilization of processor-to-level1

(P→L1) data address (DA) buses can be expected to be low. Correspondingly, the utiliza-

tion of DA, instruction address (IA), data, and instruction buses to higher levels of cache

or DRAM can be expected to be lower since caches filter out most of the instruction or

data misses. A limited form of HOC to reduce the number of pins on DRAM is used by

multiplexing row and column addresses.

70

3.2.2 Benefits

Some of the benefits that can be obtained directly or indirectly by using HOC are as

follows. In the case of on-chip buses, HOC results in less area, and when applied to off-chip

buses, the number of I/O pads and pins reduces, all of which lead to lower die and packaging

costs. Due to the smaller area, capacitance and thus power consumption may reduce. Further,

by using area no more than a normal, uncompressed bus, a narrow bus can: (1) use greater

spacing between bus lines, which will reduce coupling capacitance and hence delay, power

consumption, and cross talk; and/or (2) use wider wires to reduce resistance and hence delay.

3.2.3 Overheads

Using hardware-only compression entails performance, area, and power consumption

overheads. Performance overheads can occur due to two reasons. First, since addresses

occur nonuniformly over time, buffering will be required at the sending end and even then

these buffers may fill up due to an address burst, necessitating pipeline stalls. Second, since

addresses arrive at the receiving end later, cache/memory access is delayed and this delayed

fetch may cause a dependent instruction to stall the pipeline. However, modern processors

using dynamic scheduling can minimize the occurrence of such stalls by executing instruc-

tions out of order. Performance overheads can be mitigated in three ways. First, more

buffering can be done at the sending end to avoid buffer-full related stalls. Second, addresses

can be transmitted inw-bit groups from the high- to low-order end so that address tag and

index fields are received quickly to allow early hit detection in the cache/memory at the re-

ceiving end. Third, when bus width is a non-integral fraction of the address width,address

71

concatenationcan be used, i.e., during the last cycle of transmission of an address, if there

are unused bus lines and if the next address is available, a part of this next address (start-

ing from the high-order end) can be transmitted. To indicate the presence or absence of a

concatenated address in this last cycle, aconcatenation bitcan be used.

There will be area and power consumption overheads due to the additional logic required

to transmit and receive addresses in parts, for extra address buffers at the sending end, and for

supporting address concatenation if used. But these overheads will not be much compared

to the savings obtained by compressing long on-chip buses and off-chip buses. Address par-

titioning is not expected to take any additional cycles (although transmission of the address

itself will take multiple cycles depending upon bus width). Due to the misaligned transfer of

addresses in hardware-only compression, there will be some extra transitions and power con-

sumption. To mitigate this problem, address offsets (offset w.r.t. previous address: mostly

small magnitude) and address XORs (XOR w.r.t. previous address: mostly zeros) can be

used. Of course, in these cases, the previous address needs to be saved at the receiving end

in order to determine the new address. Finally, since logic scales better in size, speed, and

power consumption than long bus wires, with technology improvements, the logic overhead

to perform hardware-only compression and decompression will reduce relative to the savings

in bus lines.

3.2.4 Hardware design

The compression and decompression hardwares for HOC at the sending and receiving ends

are shown in Figs. 3.1 and Figs. 3.2. We propose a hardware structure shown in Figs. 3.1

72

with multiplexers to split then-bit original address intoj = bn
bc partitions and place them

on the narrow bus ofb lines in j successive cycles. The last portion of the address is either

transmitted in the(j + 1)th cycle, with some of the bus lines unused, or concatenated with

the first part of the next address. Conventional barrel or logarithmic shifters can also be

used but the overheads in terms of area may be higher. We use theb-bit registers labeled

R1,R2, . . . ,Rj+1 to store the shifted partitions at the end of each cycle. These registers (flip-

flops) do not add to the overheads of our scheme since bus driving circuitry (based on static

or dynamic CMOS logic) already contains flip-flops or latches for each bit-line. It can be

noted from the way the hardware is organized that during each clock cycle, the contents of

registerR1 are latched on to the bus and at the end of the cycle, the contents ofR2 are selected

through the 2 : 1 multiplexer and latched intoR1 and so on. The default hardware shown in

the figure uses the concatenation mode of operation, where unused lines in the last cycle of

transmission are used for the transmission of a part of the next item, if available. The normal

mode of operation where concatenation is not used can be enabled by sending an appropriate

signal to the control unit. The operation of the decompression hardware is analogous to the

compression hardware described above. Portions of the address that arrive are first placed in

the registerRj+1 and then shifted into the next register in subsequent cycles and so on until

the first portion is in registerR1. At this time, multiplexers are used to shift the address onto

the outgoing lines.

73

0
n−

jb

1
2

0

b

r

b

r−
1

U
N

IT
C

O
N

T
R

O
L

3:
1

M
U

X

W
O

R
ST

 C
A

SE
 S

H
IF

T
IN

G
IN

C
O

M
IN

G
 A

D
D

R
E

SS
 L

IN
E

S

B
U

S

b b

n−
2b

n−
b+

1

r−
1

n−
b

b
b b

b

k
co

nt
ro

l b
its

1

n−
1

n−
2

n−
3

n−
b−

1

0b

R
2

R
j

b

j+
1

R

R
2

k
co

nt
ro

l b
its

1
b

0

2:
1

M
U

X

2:
1

M
U

X

R
1

F
ig

ur
e

3.
1:

H
ar

dw
ar

e
fo

r
H

O
C

:
C

om
pr

es
si

on
ha

rd
w

ar
e

at
se

nd
in

g
en

d.

74

n−
b−

1
n−

b−
2

n−
3

n−
2

r−
1

b−
2

r−
1

0

r−
2

n−
2

n−
b

n−
1

0
n−

2b
n−

b+
1

n−
b−

1 O
U

T
G

O
IN

G
 A

D
D

R
E

SS
 L

IN
E

S

U
N

IT
C

O
N

T
R

O
L

B
U

S

b

r +
k−

2
p

p
0

r +
k−

1
n−

1

k
co

nt
ro

l b
its

R
2

b

b

b

0

j+
1

R

W
or

st
 c

as
e

sh
if

tin
g

j−
1

R

R
j

R
1

b
R

3

F
ig

ur
e

3.
2:

H
ar

dw
ar

e
fo

r
H

O
C

:
D

ec
om

pr
es

si
on

ha
rd

w
ar

e
at

re
ce

iv
in

g
en

d.

75

3.3 Wire Layout Optimizations

Using compressed buses grants an extra degree of freedom while performing global wire

routing for high-performance designs. Common optimizations likenet shielding(inserting

power or ground wires on both sides to protect a wire on the critical path from inter-wire cou-

plings) andsoft spacing(a technique that automatically maximizes spacing between tightly

packed wires within given area constraints) are greatly facilitated by using compressed buses.

Such optimizations go a long way in achieving signal integrity and timing closure in current

nanometer designs [46]. Although these techniques have been used in the VLSI design com-

munity for a long time, our work is the first to examine their implications in the context of

compressed buses.

3.3.1 Wire spacing

In this simple scheme, the wires in a compressed bus can be spaced further apart while

maintaining the area footprint smaller or equal to the original bus to minimize the wire delay

and coupling capacitance. Wire spacing involves no additional cost overheads and it will

reduce wire delay and bus energies since inter-wire capacitances are inversely proportional

to spacing.

3.4 Simulation Setup

In this section, we first describe our simulation environment. Next, we describe how we

calculated various metrics like bus utilization, extra cycle penalty, and energy ratios that we

used to estimate the performance, power consumption, and cost overheads of our schemes.

76

3.4.1 Simulation environment

Processor Core
Clock rate 600MHz
Issue width 6 (4 integer and 2 floating point)
LSQ 32 entries each

Memory System
P↔L1 bus Non-pipelined; 64-bit data, 128-bit instruction, and 44-bit address lines
L1 D-cache Virtually-indexed physically-tagged (VIPT), 64KB, 2-way set assoc., 64B block

size, LRU policy, 3 cycle hit latency, write-back
L1 I-cache Virtually-indexed virtually-tagged (VIVT), 64KB, 2-way set assoc., 64B block

size, LRU policy, 1 cycle hit latency
L1 MAF 8 entries
L1↔L2 bus Non-pipelined; 128-bit data/instruction lines and 38-bit address lines (21 bits for

block index and 17 bits for tag)
L2 cache Physically-indexed physically-tagged (PIPT), 2MB, direct-mapped, 64B block

size, LRU policy, 12 CPU cycles hit latency, write-back policy, operating at 2x
CPU clock cycle

L2↔M bus Non-pipelined; 64-bit data/instruction lines and 38-bit address lines
DRAM 256MB, operating at 2x CPU clock cycle, 96 CPU cycles hit latency

Benchmarks
CINT2000 gcc, gzip, parser, vpr, twolf, mcf, crafty
CFP2000 applu, swim, wupwise, lucas, art, ammp, equake
Sample 10 million committed instructions after skipping 500 million committed instruc-

tions initially.

Table 3.1: Target System and Benchmarks:Default configurations for our target system, bench-
marks, and sample sizes used in our simulations. LSQ= load/store queue, MAF= miss address file.
This target system is broadly based on the Alpha 21264 processor.

3.4.2 Bus utilization

In the first phase of simulation, the traces collected were used to determine theaverage bus

utilization (BU) for each bus. The BU for a bus shows the extent to which the bus is utilized

on the average. It also points to the amount of HOC possible in the bus. Also, by looking at

the BU, it is possible to decide if a particular bus is worth compressing or not. For example,

a bus with a BU close to unity is not worth compressing since the performance penalties may

77

be severe. For any address trace during the sampling window, ifr is the number of address

references for a particular bus type (P→L1 load data address (LDA), L1→L2 instruction and

data address (IDA), or L2→M IDA), then the BU averaged overn benchmarks, denoted as

Ubus type, is given by the following relation.

Ubus type=
∑n

i=1 rbus type

∑n
i=1Simulation sample time in CPU cycles

3.4.3 Performance penalty and wire delay

The extra cycles that a benchmark program running on the modified target system (system

with address compression) takes compared to its running time on the default target system

(system with no compression) is reported as the performance overhead due to address com-

pression. Since we use an event-driven simulator, our calculation of performance overhead

includes any latencies due to pipeline stalls also and not just the latencies due to address

transmission. The metric that we use to measure the performance overhead is theaverage

percentage extra cycle penalty(ECP) which we define as follows forn benchmarks. Here,

tC is the total time (in terms of processor cycles) for execution of the sample window with

address compression/decompression andtoriginal is the total time for execution of the sample

window of a benchmark (without HOC).

ECP=
∑n

i=1(tC− toriginal)
∑n

i=1 toriginal
×100

To compute the wire delay, we use the Elmore delay formula which gives the delay of a

wire routed in the global layer [53]. The metric used to evaluate the wire delay improved

78

when wire spacing is applied is thewire delay ratio(WDR). Here,wdS is the wire delay

for the compressed bus with wire spacing andwdoriginal is the wire delay for the original

uncompressed bus.

WDR=
wdS

wdoriginal

3.4.4 Bus energy model

In on-chip buses, energy is dissipated due toself-transitions(transitions on the capacitance

between a bus line and the ground plane) andcoupling transitions(transitions on the capac-

itance between adjacent bus lines) [59]. The total energy dissipated due to self-transitions

can be computed using the following expression:Esel f ∝ Ns,edge·Cs,edge+Ns,middle·Cs,middle,

whereNs,edgecorresponds to the total number of self-transitions occurring in the two edge

wires of a bus,Cs,edgeis the self-capacitance of an edge wire,Ns,middle is the total number of

self-transitions occurring in all the non-edge wires, andCs,middle is the self-capacitance of a

non-edge wire. Note thatCs,edge> Cs,middle in current technologies due to thefringing effect

of the isolated side-wall in each edge wire. The effect of fringing fields are non-negligible in

current technologies because wire-height and hence side-wall area is more than wire-width

for global and intermediate metal layers where most long buses are routed.

The total energy dissipated due to coupling transitions can be computed using the fol-

lowing expression:Ecoupling ∝ (Ncharge+ Ndischarge+ 4 ·Ntoggle) ·Cc, whereNcharge is the

total number ofcharging coupling transitions(00→ 01, 00→ 10, 11→ 01, and 11→ 10),

Ndischargeis the total number ofdischarging coupling transitions(01→ 00, 10→ 00, 01→

79

11, and 10→ 11), Ntoggle is the total number oftoggletransitions (01→ 10 and 10→ 01),

andCc is the coupling capacitance between two adjacent lines of the bus. Note thatCs,edge,

Cs,middle, andCc are values that depend on technology and the layer of metal being con-

sidered. We used values for these parameters obtained using TSMC 0.18µ global wire di-

mensions and applying formulas used in Berkeley predictive technology models (BPTM) for

interconnects [7].

For off-chip buses, only self-transitions need to be considered because inter-wire spacings

are large; fringing effects are also negligible since wire-widths are substantially larger than

wire-heights. In our simulation results, we plotaverage on-chip energy ratio, Eon−chip, and

average off-chip energy ratio, Eo f f−chip, instead of absolute energies. These are obtained

by summing the compressed bus energies for 14 benchmarks and dividing by the sum of

original bus energies for the same set of benchmarks. The average on-chip energy ratio is

defined as follows forn benchmarks.

Eon−chip =
∑n

i=1enarrow on−chip bus

∑n
i=1eoriginal on−chip bus

The average off-chip energy ratio is similarly defined.

In the following sections, we describe the experiments that we conducted to show the

efficacy of our proposed schemes and discuss the results for each.

3.5 Bus Utilization and Selection of Bus Width

We calculate the average bus utilization for each of the three buses, namely, P→L1 LDA

bus, L1→L2 IDA bus, and L2→M IDA bus as mentioned earlier in Sec. 3.4.2. We also calcu-

80

Bus Utilization Analysis

0.265

0.011
0.033

95.795

774.570

1088.000

0.000

0.050

0.100

0.150

0.200

0.250

0.300

P�L1 LDA L1�L2 IDA L2�M IDA

Bus

U
til

iz
at

io
n

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000
 Average
Percentage S

Percentage sN

 Percentage sN

Figure 3.3: Average Bus Utilization and Percentage Standard Deviation (sN) Across
Different Buses.

late the percentage standard deviation (sN) of the bus utilization w.r.t. the average utilization

for each benchmark and report this value in the figure. The percentage standard deviation

of the utilization is an indicator of the burstiness of the address traffic due to each bench-

mark program. Using the utilization,Ubus type, for a particular bus obtained from Fig. 3.3,

we choose the narrow bus widthb for the remainder of our simulations according to the fol-

lowing relation:n∗ [U + f × (1−U)]. Heren is the original bus width andf is a parameter

calleddegree of HOC, which denotes the portion of the underutilized capacity of the bus

that we want to use. Thus,f = 1 represents the original bus width (no HOC) andf = 0

represents the case where the utilization of the compressed bus will be ideally 100%. The

maximum savings in cost can be realized without performance penalty for HOC for this bus

81

width assuming that references are spaced evenly apart. Intermediate values off like 0.25

and 0.5 represent different degrees of HOC and hence different cost savings. We observe

from the figure that, as expected, as we move away from the processor, buses become more

and more underutilized and bursty.

3.6 Performance Overheads

3.6.1 Extra cycle penalty for same degree of HOC across all buses

We first conducted experiments keeping the degree of HOC (f) value same for all buses in

the system. Thus, different bus widths were used for buses at different memory levels. From

Fig. 3.4, we observe that the performance penalty increases non-linearly as the degree of

HOC is increased. The increase follows the trend curvey= 0.1968x3+0.8605x2−5.3203x+

12.087. This non-uniform increase may be as a result of the fact that misses at that level are

not evenly distributed. For the casef = 0.1, we observe that about 31% extra cycles may

be needed for the program to complete execution when concatenation is not used. For lower

cost savings (f = 0.9, f = 0.75, andf = 0.5), the performance penalties are still substantial

(about 7.5%). Another interesting observation is that the performance penalty remains at

about 7.5% until almost 50% bus compression (f = 0.5) is reached. This is because, for

values off ranging from 1 to 0.5, regardless of the degree of HOC, two cycles are required

to transmit each address. Beyondf = 0.5, reducing the bus width by a few bits is enough

to double the number of cycles needed to transmit the address. This explains the sudden

increase in performance penalty afterf = 0.5. From the same figure, we also observe that

82

7.552

7.552

7.552

18.260

31.330

5.846

30.715

17.953

5.213

05101520253035

f=
0.

9
f=

0.
75

f=

0.
5

f=

0.
25

f=
0.

1

Percentage of Extra Cycles

N
on

-C
on

ca
te

na
tio

n

C
on

ca
te

na
tio

n

E
xt

ra
 C

yc
le

 P
en

al
ty

 fo
r

H
ar

dw
ar

e-
O

nl
y

C
om

pr
es

si
on

D
eg

re
e

of
 H

O
C

 (f
)

R

U
e

U
a

U
ac

91

%

0.
28

6
0.

27
5

0.
28

0
89

%

0.
03

7
0.

03
5

0.
03

5
89

%

0.
01

2
0.

01
2

0.
01

2

R

U
e

U
a

U
ac

81

%

0.
32

5
0.

30
6

0.
30

9
76

%

0.
04

4
0.

04
1

0.
04

1
76

%

0.
01

4
0.

01
4

0.
01

4

R

U
e

U
a

U
ac

45

%

0.
59

1
0.

50
4

0.
50

5
26

%

0.
12

0
0.

10
7

0.
10

7
26

%

0.
04

3
0.

03
6

0.
03

6

R

U
e

U
a

63
%

0.

41
8

0.
39

3
50

%

0.
06

4
0.

06
2

50
%

0.

02
0

0.
02

0

B
W

40

34

34

B
W

36

29

29

B
W

20

10

10

B
W

28

19

19

B
W

15

5 4

R

U
e

U
a

U
ac

34

%

0.
78

3
0.

60
8

0.
61

1
13

%

0.
25

4
0.

19
3

0.
19

4
11

%

0.
10

0
0.

08
0

0.
08

1

P�
L

1
L

1�
L

2
ID

A
L

2�
M

 ID
A

F
ig

ur
e

3.
4:

E
xt

ra
C

yc
le

s
fo

r
H

O
C

:
P

er
fo

rm
an

ce
pe

na
lty

(w
ith

an
d

w
ith

ou
t

co
nc

at
en

at
io

n)
w

he
n

sa
m

e
de

gr
ee

of
co

m
-

pr
es

si
on

is
ap

pl
ie

d
to

al
lt

hr
ee

bu
se

s:
P

→
L1

LD
A

,L
1
→

L2
ID

A
,a

nd
L2
→

M
ID

A
bu

s.
B

W
re

pr
es

en
ts

bu
s

w
id

th
(in

bi
ts

),
R

re
pr

es
en

ts
pe

rc
en

ta
ge

am
ou

nt
of

bu
s

co
m

pr
es

si
on

,
U

e
re

pr
es

en
ts

th
e

ex
pe

ct
ed

bu
s

ut
ili

za
tio

n,
U

a
th

e
ac

tu
al

ut
ili

za
tio

n
fr

om
si

m
ul

at
io

ns
,a

nd
U

a
c

th
e

ac
tu

al
ut

ili
za

tio
n

w
ith

co
nc

at
en

at
io

n.
C

on
ca

te
na

tio
n

is
no

tp
os

si
bl

e
in

L1
→

L2
an

d
L2
→

M
bu

se
s

fo
r

f=
0.

5
an

d
he

nc
e

th
e

va
lu

e
is

no
tr

ep
or

te
d.

83

address concatenation helps lower the performance penalty a little (up to 2.3%) in some cases

where concatenation is possible. We will see next how applying different degrees of HOC to

different buses based upon their differing performance sensitivities yields better results.

3.6.2 Extra cycle penalty for HOC in individual buses

The above results point to the fact that it may be unfair to compare across narrow buses at

different levels of the system after applying the same degree of HOC in all of them. This is

because a bus closer to the processor which is utilized more will suffer a greater penalty due

to reduction in bus lines than a bus at higher level of the memory system. Hence, we study in

Fig. 3.5 how the degree of HOC (f) affects the number of extra cycles when applied to one

bus only at a time. From the plot, we observe that for degrees of HOC (f) closer to unity, the

P→L1 LDA bus is the most sensitive followed by the L1→L2 IDA and L2→M IDA buses.

This is because the P→L1 LDA bus is the most utilized among the three and reducing its

width causes most penalties in the system. However, as the L1→L2 IDA bus width is reduced

more and more, beyondf = 0.5, the performance penalty begins to increase sharply, thus

making the L1→L2 IDA bus more sensitive than P→L1 LDA bus to HOC. This is because

for a reduction in bus width corresponding to values off from 0.5 to 0.2, the number of

cycles taken for transmission of an address on the L1→L2 IDA bus increases from 2 to 5

cycles, whereas the corresponding number of cycles for an P→L1 LDA increases from 2 to

3 only. The L2→M IDA bus has much lesser penalties till aboutf = 0.2, possibly because

of the high degree of underutilization of that bus.

To compare fairly across buses, we keep the extra cycle penalty when HOC is applied to

84

Extra Cycle Penalty for Hardware-Only
Compression Across Individual Buses

0

5

10

15

20

25

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Degree of HOC (f)

Pe
rc

en
ta

ge
 o

f E
xt

ra
 C

yc
le

s
P�L1 LDA
L1�L2 IDA
L2�M IDA

Figure 3.5:Extra Cycles for HOC: Extra cycle penalties for different degrees of HOC for
P→L1 load address, L1→L2, and L2→M buses.

only one bus in the system at a nominal value (say, 5%) and find the value off that gives

this value for each bus. This value, denoted asfbase for a bus, represents the maximum

degree of HOC possible in that bus such that the extra cycle penalty in the system does not

exceed a given value. Thesefbasevalues for different buses can be obtained directly from

Fig. 3.5 that shows the extra cycle penalty as a function off for three buses. For a nominal

system performance penalty of 5%, we find that the values off that give us 5% performance

penalties for P→L1 load, L1→L2, and L1→L2 address buses are 0.354, 0.354, and 0.12

respectively. We consider the maximum among these valuesfmax (fmax=0.354 is obtained

for P→L1 load address and L1→L2 bus). Now, we introduce a parameter,relative degree

of HOC, p, that can take values between 1 and 1/ fmax. The degree of HOC,f , that we used

85

12
.2

84

8.
94

9
8.

51
1

8.
14

8

0.
61

3

02468101214

P=
1

P=
1.

45
6

P=
1.

91
2

P=
2.

36
8

P=
2.

82
5

R
el

at
iv

e
D

eg
re

e
of

 H
O

C
 (p

)

Percentage of Extra Cycles
E

xt
ra

 C
yc

le
 P

en
al

ty
 fo

r
H

ar
dw

ar
e-

O
nl

y
C

om
pr

es
si

on
C

om
p.

 R
at

io
 (U

a)

P
=

1

 P

 =
 1

.4
56

 P
 =

 1
.9

12

 P

 =
 2

.3
68

 P
 =

 2
.8

25
P�

L
1

L
D

A

 5

2%
(0

.4
61

)
 6

4%
(0

.3
88

)
 7

5%
(0

.3
31

)
 8

8%
(0

.2
81

)
 1

00
%

(0
.2

64
)

L
1�

L
2

ID
A

37
%

(0
.0

80
)

 5
3%

(0
.0

58
)

 6
8%

(0
.0

45
)

 8
4%

(0
.0

37
)

 1
00

%
(0

.0
33

)
L

2�
M

 ID
A

 1
3%

(0
.0

75
)

 1
8%

(0
.0

55
)

 2
4%

(0
.0

43
)

 2
9%

(0
.0

36
)

34

%
(0

.0
32

)

F
ig

ur
e

3.
6:

E
xt

ra
C

yc
le

s
fo

rH
O

C
:

E
xt

ra
cy

cl
e

pe
na

lti
es

fo
rd

iff
er

en
tr

el
at

iv
e

de
gr

ee
s

of
H

O
C

.

86

previously is related top as follows: f = fbase× p.

3.6.3 Extra cycle penalty for different relative degree of HOC

For different values of the relative degree of HOC, we run simulations and measure the

extra cycle penalty. The results are shown in Fig.3.6. In this figure, we find that extra

cycles decrease as the relative degree of HOC is increased from 1 to 2.825. In the last set

(p=2.825), the P→L1 load address bus and the L1→L2 bus are uncompressed (f = fbase×

p= 0.354×2.825= 1). Although these buses are uncompressed, the other bus (L2→M) can

be compressed to 34%, according to our results, with only an extra cycle penalty of 0.613%.

Thus, applying HOC intelligently in address buses in the memory hierarchy can yield much

better cost savings with low extra cycle penalties.

3.7 Energy-Efficient Transmission Formats

To minimize power overhead of HOC, we propose various techniques to ensure the best

energy-efficient transmission format for uncompressed information transmission on narrow

buses. An efficient transmission format is important because the number of self and coupling

transitions and hence bus energy consumption/dissipation depend on relative positioning of

different bits in the uncompressed address. Next, we present our proposed techniques. Each

successive technique we present is an improvement over the previous one and results in

progressively better energy reductions. The results are collected by simulating 50 million

committed instructions after skipping 2 billion committed instructions initially.

87

3.7.1 Technique 0 (T0): HOC baseline format

Our proposed baseline transmission format, T0, for HOC is shown on the left in Fig. 3.7.

The original address is split from lower order to higher order into multiple partitions and

placed on the narrow bus in successive cycles. In the design of this format, we followed

certain principles as described below to ensure their energy-efficiency.

• To minimize transitions on coupling capacitance between neighboring lines, correla-

tion between the bits is necessary, i.e., biti should be correlated with both biti +1 and

i−1. In our transmission format, different partitions transmitted in successive cycles

are taken from the original address from lower order to higher order to ensure highly

correlated bits are placed together. This also helps limit decoding complexity.

• During each cycle of transmission, the bits are placed on the bus starting from the LSB

so that inactive lines (lines that do not carry any new data in that cycle) are placed in

the higher order portion of the bus

Our T0 technique targets to minimize both self and coupling transitions and is different

from the T0 code [6], which is a bus encoding scheme designed to minimize the switching

activity the address bus.

3.7.2 Technique 1 (T1): HOC bus arrangement

It can be observed easily that, with the baseline transmission format, the addresses have

to be transmitted in full in multiple cycles, bus energy dissipation will be higher because of

misaligned bits, i.e., bits that have no correlation with bits in the same position transmitted in

88

the previous cycle—causes a self-transition—and bits that are uncorrelated with neighboring

bits in the same cycle which causes coupling transitions. In this section, we propose a new

transmission format based on the following principles of arranging the different fields to

minimize self and coupling transitions.

Due to the highly sequential nature of addresses, the lower order bits of the address will

be more active than higher order bits. To reduce the coupling energies of the lower order

portion of the bits transmitted on the compressed bus, we place Ui , the LSB of the entire

portion in the MSB line of the compressed bus for each cycle as shown in the figure on the

right in Fig. 3.7. Thus, the bit Ui+1 now occupies the LSB line of the bus and its coupling

energy is reduced because it can no longer cause a toggle transition with the Ui bit. Further,

the Ui bit which has been placed next to the original MSB bit also results in lesser coupling

energies since its neighbor is expected to change state less frequently. Also, the edge lines

have less coupling capacitance since they have only one neighboring line and this will lead

to lesser coupling energies.

3.7.3 Technique 2 (T2): HOC Idle-bit insertion

When an address is sent in multiple cycles over the narrow-width bus, the last cycle of

transmission of the address is likely to be poorly utilized when the compressed bus width is

a non-integral fraction of the uncompressed address width. In such cases, theidle bits can

be used to reduce coupling energies by placing them betweenactivebits in different cycles

of the miss. Note that if a bit is designated as idle in the current cycle, then it means that it

holds the value from its previous cycle. Thus, an idle bit can never have a toggle transition

89

Technique 0

U 37 U 32Last cycle

U 15 U 82nd cycle

U 7 U 01st cycle

Technique 1

U 37 U 33Last cycle

U 8U 15 U 92nd cycle

1st cycle U 0U 7 U 1

U 37 U 0Original Address

U 32

Figure 3.7:Proposed Bus Arrangement Techniques.The figure on the left shows the new
basic transmission format that we propose for HOC. The figure on the right further reduces
energy by rearranging some bits to reduce unwanted coupling transitions.

with either of its neighboring bits for the current cycle.

Given a fixed number of idle bits that we can insert, we assign the maximum possible

number of idle bits to each cycle starting from the first cycle. For aw-bit compressed bus

the maximum number of idle bits that can be assigned to each cycle isbw/2c. Now, suppose

k bits were assigned to the first cycle, then the idle bits are interspersed alternately with

active bits in the cycle starting from an active bit at the LSB to achieve maximum benefits

for coupling energy reduction. After assigning to the first and second cycles as above, if

idle bits remain, then they are assigned to the third cycle and so on till all the idle bits are

exhausted.

3.7.4 Technique 3 (T3): HOC address encoding

Transition signaling code involves a simple bit-wise XOR operation of the current word

to be transmitted on the bus with the previous word to minimize transitions for off-chip

90

buses [61]. In address buses, due to temporal and spatial redundancy of the bits, the result

will have more zero-valued bits than the current address. Thus, potentially many self and

coupling energies can be reduced by XOR-ing the address word before placing on the narrow

compressed bus. Note that computing bitwise XOR of twon-bit addresses requires constant

time and little hardware and hence this will not add much extra latency to the bus interface.

3.7.5 Technique 4 (T4): HOC transmission encoding

In the transmission encoding, we again XOR each bit of the new address word with the bit

transmitted at the corresponding bit position on the bus in the previous cycle. Since T3 step

yielded more zero-valued bits, T4 will make the address pattern similar to the one transmitted

on the bus in the previous cycle thus reducing both self and coupling energies.

3.7.6 Techniques 5 (T5) and 6 (T6): Using idle bits as active shields

In this technique, we use the idle bits that we inserted using the idle-bit insertion tech-

nique discussed earlier as active shields. In the default idle-bit insertion technique, the bits

designated as idle held the value transmitted at that bit position in the previous cycle. We

mentioned that toggle transitions for that bit with its neighbors can be eliminated using this

technique. To further reduce total coupling energy by eliminating the occurrence of coupling

charge and discharge energies at the cost of some self-energy, we propose to change the value

held by the idle bit according to the changes of the values of its neighboring active bits. In

T5, the value held by an idle bit becomes equal to its adjacent bits when the adjacent bit pair

transitions from 00→ 11 or from 11→ 00. In T6, the value held by an idle bit becomes

91

equal to its adjacent bits when the two adjacent bits are equal. Some self energy is expended

due to the extra switching activity of the idle bit due to this scheme but that will be a small

portion compared to the savings in coupling energy. Our idle-bit shielding techniques are

different from the active shielding in [31] because our technique is an info-pattern dependent

shielding approach.

On-chip and off-chip energy results for all the proposed transmission schemes for L1→L2

address bus are shown in Figs. 3.8 and 3.9. T1 is slightly better, 1% more on-chip energy

saving, than T0. Since T1 doesn’t affect the self transitions, the off-chip energy is the same

as T0. On average, idle-bit insertion technique, T2, causes more on-chip and off-chip energy

than T0. This is due to the increased charge and discharge transitions cause more on-chip

energy than the reduced toggle transitions. However, after we apply T3 on top of T0, T1,

and T2, 5% on-chip energy saving can be obtained compared to the uncompressed bus and

18% off-chip energy improvement achieved w.r.t. T0. For off-chip bus, T4 provides the best

improvement, 45% w.r.t. T0. T5 and T6 yield about 8% and 16% on-chip energy reductions

on the average, respectively.

3.8 Address Compression and Bus Encoding

Bus-invert (BI) encoding[60]: Bus-invert encoding was one of the original techniques pro-

posed for reducing self-transitions on buses. The scheme examines the number of bits that

are different (Hamming distance) between the current input pattern and the pattern transmit-

ted on the bus in the last cycle. If this number is greater than half the bus-width, all the bits

92

0

0.
51

1.
52

2.
53

T0
T1
T2
T3
T4
T5
T6
T0
T1
T2
T3
T4
T5
T6
T0
T1
T2
T3
T4
T5
T6
T0
T1
T2
T3
T4
T5
T6
T0
T1
T2
T3
T4
T5
T6
T0
T1
T2
T3
T4
T5
T6
T0
T1
T2
T3
T4
T5
T6
T0
T1
T2
T3
T4
T5
T6

8
12

16
20

24
28

32
38

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
C

ha
rg

e
E

ne
rg

y

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
D

is
ch

ar
ge

 a
nd

 C
ha

rg
e

E
ne

rg
y

Se
lf-

C
ap

ac
ita

nc
e

E
ne

rg
y

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s
D

iff
er

en
t T

ra
ns

m
is

si
on

 S
ch

em
es

O
n-

ch
ip

 e
ne

rg
y

sa
vi

ng

A
vg

.
M

ax
.

M
in

.
T

0
-3

3.
34

3%

0.
00

3%

-5
2.

43
6%

T

1
-3

2.
97

4%

3.
61

9%

-5
2.

11
2%

T

2
-8

8.
03

7%

3.
61

9%

-1
60

.8
69

%

T
3

-3
3.

61
8%

20

.4
38

%

-7
7.

40
2%

T

4
5.

39
6%

9.

10
4%

-1

.3
84

%

T
5

8.
88

3%

20
.4

38
%

-1

.8
63

%

T
6

16
.1

32
%

24

.5
32

%

2.
20

2%

F
ig

ur
e

3.
8:

O
n-

C
hi

p
E

ne
rg

y
R

ed
uc

tio
n

U
si

ng
A

ll
th

e
P

ro
po

se
d

Te
ch

ni
qu

es
.

93

2.115

2.446

2.776

2.798

2.504

2.023

1.562

1.000

2.115

2.446

2.776

2.798

2.504

2.023

1.562

1.000

2.114

2.082

2.348

2.787

2.394

2.549

2.738

1.000

1.580

1.591

1.702

1.960

1.745

1.779

1.929

1.057

1.114

1.125

1.095

1.094

1.056

1.050

1.088

0.986

0.
00

0

0.
50

0

1.
00

0

1.
50

0

2.
00

0

2.
50

0

3.
00

0

8
12

16
20

24
28

32
38

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Off-Chip Energy Ratio

T
0

T
1

T
2

T
3

T
4

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s
D

iff
er

en
t T

ra
ns

m
is

si
on

 S
ch

em
es

O
ff

-c
hi

p
en

er
gy

 im
pr

ov
em

en
t

w
.r

.t.
 T

0
A

vg
.

M
ax

.
M

in
.

T
2

-8
.2

70
%

15

.4
18

%

-7
5.

28
9%

T

3
17

.7
59

%

38
.6

89
%

-2

3.
49

6%

T
4

45
.0

58
%

45

.0
58

%

1.
4%

F
ig

ur
e

3.
9:

O
ff-

C
hi

p
E

ne
rg

y
R

ed
uc

tio
n

U
si

ng
A

ll
th

e
P

ro
po

se
d

Te
ch

ni
qu

es
.

94

of the current input pattern are inverted and a separateinvert line is held high. Else, the value

is transmitted in original form and the invert line is held low.

2.
11

5

2.
44

6

2.
77

6

2.
79

8

2.
50

4

2.
02

3

1.
56

2

1.
00

0

1.
92

2

2.
29

3 2.
46

0 2.
64

7

2.
45

1

2.
07

4

1.
58

2

1.
00

0

1.
11

4

1.
12

5

1.
09

5

1.
05

6

1.
05

0

1.
08

8

0.
98

6

1.
04

8

1.
12

5

1.
09

4

1.
06

7

1.
05

6

1.
05

0

1.
08

8

0.
98

6

1.
09

4

0.000

0.500

1.000

1.500

2.000

2.500

3.000

8 12 16 20 24 28 32 38
Compressed Bus Width (Bits)

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

T0
T0-BI
T4
T4-BI

Off-Chip Energy Ratio Variation Across Different
Transmission and Encoding Schemes

Figure 3.10:Off-Chip Energy Variation Across Transmission and Encoding Schemes.

Odd/even bus-invert (OEBI) encoding[77]: Since adjacent wire coupling occurs between

an even-numbered and its adjacent odd-numbered wire on a bus, this method encodes even

and odd bit positions separately and uses two invert lines to indicate one of four modes of

transmission: 00 – none of the bits are inverted, 01 – even bits are inverted, 10 – odd bits

are inverted, and 11 – all bits are inverted. A two phase transfer method (TPTM) was also

suggested to prevent the occurrence of thetogglecase (01→10 or 10→01) between any two

adjacent bit-lines. The toggle case results in the maximum power energy dissipated since

the effective coupling capacitance between the toggling wires is four times the normal value.

95

To minimize toggling, one of the lines in the toggling pair is delayed by one cycle, i.e., 01

becomes 11 or 00 and finally 10, which results in less energy dissipated than the worst case,

although it costs an extra clock cycle.

Coupling-driven bus-invert (CBI) encoding[34]: This method examines all pairs of ad-

jacent bits and counts the number of coupling transitions. The current input bit pattern is

inverted if the coupling effect of the inverted pattern is less than that of the original pattern.

Since odd and even lines are not handled separately, this scheme requires only one extra

invert line.

In this study, we apply three encoding schemes on HOC address buses to investigate if bus

encoding can decrease actual energy further. Since T0 is our baseline transmission format,

T4 is best for off-chip buses, and T6 is best for on-chip buses, we apply encoding on top of

these three techniques. As we can see in Fig. 3.10, BI with T0 provides better off-chip energy

saving than T0 itself. For BI with T0, off-chip energy ratio is reduced by 0.09 compared to

T0 whereas T4 itself can improve the off-chip energy by 0.98 w.r.t. T0 on average. We

also apply BI on on-chip HOC address buses to see how it performs. Fig. 3.11 shows the

on-chip energy ratios across these schemes. The three encoding schemes actually consume

more on-chip energy than without encoding on HOC address buses. The extra energy might

be caused by the extra control lines used in the schemes. Our T6 without any extra control

lines, which reduces on-chip energy by 15%, is the best for on-chip HOC address buses

among all schemes we examine. So for both off-chip and on-chip compressed address buses,

our transmission techniques are much more effective than the encoding schemes.

96

0.
00

0

1.
00

0

2.
00

0

3.
00

0

4.
00

0

5.
00

0

6.
00

0

7.
00

0

T0
T0-BI

T0-CBI
T0-OEBI

T6
T6-BI

T6-CBI
T6-OEBI

T0
T0-BI

T0-CBI
T0-OEBI

T6
T6-BI

T6-CBI
T6-OEBI

T0
T0-BI

T0-CBI
T0-OEBI

T6
T6-BI

T6-CBI
T6-OEBI

T0
T0-BI

T0-CBI
T0-OEBI

T6
T6-BI

T6-CBI
T6-OEBI

T0
T0-BI

T0-CBI
T0-OEBI

T6
T6-BI

T6-CBI
T6-OEBI

T0
T0-BI

T0-CBI
T0-OEBI

T6
T6-BI

T6-CBI
T6-OEBI

T0
T0-BI

T0-CBI
T0-OEBI

T6
T6-BI

T6-CBI
T6-OEBI

8
12

16
20

24
28

32
C

om
pr

es
se

d
B

us
 W

id
th

 (B
its

)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
 C

ha
rg

e
E

ne
rg

y
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

D
is

ch
ar

ge
 a

nd
 C

ha
rg

e
E

ne
rg

y
Se

lf-
C

ap
ac

ita
nc

e
E

ne
rg

y

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
T

ra
ns

m
is

si
on

 a
nd

 E
nc

od
in

g
Sc

he
m

es
E

ne
rg

y
sa

vi
ng

A

vg
.

M
ax

.
M

in
.

T
0

-3
8.

10
7%

-1

3.
42

9%

-5
2.

43
6%

T

0-
B

I
-4

1.
92

4%

-1
4.

50
1%

-5

7.
85

3%

T
0-

C
B

I
-4

1.
03

2%

-1
3.

42
4%

-5

4.
84

1%

T
0-

O
E

B
I

-3
60

.0
60

%

-2
67

.9
58

%

-5
12

.8
06

%

T
6

15
.8

35
%

24

.5
32

%

2.
20

2%

T
6-

B
I

9.
31

3%

14
.6

91
%

1.

16
1%

T

6-
C

B
I

8.
15

5%

15
.7

09
%

-4

.9
41

%

T
6-

O
E

B
I

-3
76

.2
10

%

-2
68

.0
42

%

-4
91

.2
67

%

F
ig

ur
e

3.
11

:O
n-

C
hi

p
E

ne
rg

y
Va

ria
tio

n
A

cr
os

s
Tr

an
sm

is
si

on
an

d
E

nc
od

in
g

S
ch

em
es

.

97

3.9 Performance and Energy Optimization

with Wire Spacing

As mentioned in Sec. 3.3.1, the wires in a compressed bus can be spaced further apart

while maintaining the area footprint smaller or equal to the original bus to minimize the

wire delay and coupling capacitance. In this study, we spaced the wires of the compressed

L1→L2 buses at different spacing degrees (SD), the percentage of original bus area, to im-

prove performance and reduce energy. When the spacing degree is less than 100%, 1−SD

of the original bus area can be saved.

Fig. 3.12 shows that the less the number of bus wires the compressed bus has, the more

effective the wire spacing scheme is. This is because narrower compressed bus provide more

extra area for spacing. The wire delay decreases dramatically when the spacing between

wires increases. For 8-bit compressed bus, 88% wire delay reduction can be obtained when

SD is 100%. Even for 32-bit compressed bus with the same SD, the wire delay can be

reduced by 27%. On average, the wire delay can be improved by 61% with HOC and wire

spacing. In Fig. 3.13, we examine the performance improvement for the compressed buses

with wire spacing. HOC with wire spacing can actually improve the performance up to 0.8%

to 15% w.r.t. original address bus. As shown in Fig. 3.14, HOC with wire spacing can also

reduce on-chip energy to large extent. With T6 and wire spacing, up to 88% energy can be

reduced for 8-bit bus and 42% for 32-bit bus, whereas T6 itself can only reduce 14% and

20% for 8-bit and 32-bit buses, respectively. On average, 60% on-chip energy can be saved

98

0.998
0.495

0.332
0.252

0.204
0.172

0.149
0.132
0.119

0.621
0.444

0.347
0.286

0.244
0.213

0.189
0.706

0.529
0.424

0.355
0.306

0.269
0.767

0.596
0.488

0.414
0.359

0.813
0.649

0.541
0.464

0.849
0.693

0.586
0.877

0.729

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

20%
30%
40%
50%
60%
70%
80%
90%

100%
40%
50%
60%
70%
80%
90%

100%
50%
60%
70%
80%
90%

100%
60%
70%
80%
90%

100%
70%
80%
90%

100%
80%
90%

100%
90%

100%

8
12

16
20

24
28

32
C

om
pr

es
se

d
B

us
 W

id
th

 (B
its

)

Wire Delay RatioW
ir

e
D

el
ay

 R
at

io
 V

ar
ia

tio
n

A
cr

os
s D

iff
er

en
t D

eg
re

e
of

 W
ir

e
Sp

ac
in

g
B

us

 M

ax
. P

er
ce

nt
ag

 D
el

ay
 R

ed
uc

tio
n

8-
bi

t
12

-b
it

16
-b

it
20

-b
it

24
-b

it
28

-b
it

32
-b

it

88
.1

07
%

81
.0

82
%

73
.1

30
%

64
.0

56
%

53
.6

04
%

41
.4

35
%

27
.0

87
%

F
ig

ur
e

3.
12

:W
ire

D
el

ay
R

ed
uc

tio
n

U
si

ng
H

O
C

w
ith

W
ire

S
pa

ci
ng

.

99

-3.613

-1.532

0.232

1.900

1.902

1.905

1.904

-0.422

2.727

3.833

4.205

4.270

4.270

4.270

0.816

2.807

4.497

6.094

6.095

6.098

6.098

4.568

7.561

8.613

8.966

9.028

9.028

9.028

5.745

7.638

9.243

10.761

10.762

10.764

10.764

12.255

13.253

13.589

13.647

13.647

13.647

10.531

12.327

13.851

15.292

15.293

15.295

15.295

9.414

-505101520

8
12

16
20

24
28

32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Percentage Performance Improvement (%)

2�
1*

3�
2

3�
1

4�
2

4�
1

5�
2

5�
1

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t A

cr
os

s D
iff

er
en

t
C

om
pr

es
se

d
B

us
 W

id
th

s w
ith

 W
ir

e
Sp

ac
in

g

*2
�

1:
 P

er
ce

nt
ag

 p
er

fo
rm

an
ce

 im
pr

ov
em

en
t

w
he

n
bu

s l
at

en
cy

, 2
 C

PU
 c

yc
le

s,
is

 r
ed

uc
ed

 to

1
C

PU
 c

yc
le

 a
ft

er
 w

ir
e

sp
ac

in
g

F
ig

ur
e

3.
13

:P
er

fo
rm

an
ce

Im
pr

ov
em

en
tA

cr
os

s
D

iff
er

en
tC

om
pr

es
se

d
B

us
W

id
th

s
W

ith
W

ire
S

pa
ci

ng
.

100

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

T6
20%
30%
40%
50%
60%
70%
80%
90%

100%
T6

40%
50%
60%
70%
80%
90%

100%
T6

50%
60%
70%
80%
90%

100%
T6

60%
70%
80%
90%

100%
T6

70%
80%
90%

100%
T6

80%
90%

100%
T6

90%
100%

8
12

16
20

24
28

32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
 C

ha
rg

e
E

ne
rg

y
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

D
is

ch
ar

ge
 a

nd
 C

ha
rg

e
E

ne
rg

y
Se

lf-
C

ap
ac

ita
nc

e
E

ne
rg

y

B
us

 M
ax

im
um

 E
ne

rg
y

Sa
vi

ng
8-

bi
t

12
-b

it
16

-b
it

20
-b

it
24

-b
it

28
-b

it
32

-b
itO

n-
C

hi
p

E
ne

rg
y

R
at

io
 V

ar
ia

tio
n

A
cr

os
s

D
iff

er
en

t D
eg

re
e

of
 W

ir
e

Sp
ac

in
g

88
.1

43
%

83
.1

52
%

76
.9

59
%

63
.9

70
%

62
.1

98
%

55
.2

39
%

41
.8

61
%

F
ig

ur
e

3.
14

:O
n-

C
hi

p
E

ne
rg

y
R

ed
uc

tio
n

A
cr

os
s

D
iff

er
en

t
C

om
pr

es
se

d
B

us
W

id
th

s
W

ith
W

ire
S

pa
ci

ng
.

101

using HOC with T6 and wire spacing.

3.10 Conclusions

We proposed and analyzed the overheads (extra cycles required and power consumption)

of a hardware-only compression scheme to reduce costs and improve power consumption of

underutilized address buses in the memory system. Our simulations show that by carefully

choosing the relative address bus widths at different levels of the memory system, hardware

only compression schemes can result in reductions of up to 34% in number of lines of a

L2→M address buses with only a 0.613% increase in number of cycles required for exe-

cution. For 8-bit compressed bus, 88% wire delay reduction can be obtained when SD is

100%. On average, the wire delay can be improved by 61% with HOC and wire spacing.

Up to 0.8% to 15% performance improvement can be achieved for L1→L2 compressed ad-

dress buses with wire spacing. We have also proposed energy-efficient transmission format

to minimized on-chip and off-chip energy. On average, 16% on-chip energy reduction can be

obtained using our best transmission technique, T6. With wire spacing, T6 can provide up to

88% energy saving for 8-bit compressed bus. On average, 60% on-chip energy can be saved

with HOC and wire spacing. Off-chip energy can be improved by 45% with T4 compared to

the baseline transmission format.

102

Chapter 4

Analysis of Dynamic Address

Compression Schemes

4.1 Introduction

Address compression, when applied to on-chip address buses in current microprocessors

or systems-on-chip (SoCs) can potentially reduce or mitigate some of the problems asso-

ciated with interconnect scaling in current nanometer-scale technologies. Employing com-

pressed addresses for certain buses in the design will help reduce the number of address

lines needed for those buses, result in less area overheads and lower costs, and may also

potentially facilitate their routing. Also, due to the smaller area occupied by the bus, ca-

pacitance and thus bus energy may reduce. Further, by using area no more than a bus of

original width, a narrow bus can: (1) use greater spacing between bus lines, which will

103

reduce inter-wire capacitance and hence delay, bus energy, and cross talk; and/or (2) use

wider wires to reduce resistance and hence delay and potentially improve performance. Us-

ing an address compression scheme may itself entail some performance, area, and power

consumption overheads due to extra logic. But these overheads will not be much compared

to the savings potentially obtained by compressing long on-chip buses and off-chip buses.

This is because the size, speed, and power consumption of logic (which will be used to do

compression/decompression) scale better than those of interconnect (which will be used to

communicate the information), and hence these overheads will continue to decrease over

time.

4.1.1 Related work and our contributions

Address buses have been studied widely in previous work and schemes have been pro-

posed to improve their performance, power consumption, and/or area/cost. Various bus en-

coding schemes have been proposed to reduce power consumption in address buses many of

which are surveyed in [8]. Compression, which is related to encoding, can also provide sim-

ilar or greater energy benefits in addition to performance improvements and cost reduction

for almost all components in a processor-memory system as we found in our earlier work

[50]. We also proposed a simple scheme to reduce cost and improve the utilization of address

buses in [49].

A specific scheme for address compression using a smallcompression cache(cache spe-

cially used for compression) at the sending end and base register files at the receiving end

of a bus was first proposed in [52, 20], and subsequently used for compressing instruction

104

and data buses in [11]. However, none of the above works consider address compression as

a means of improving energy efficiency while reducing costs at the same time. Also, they do

not study on-chip buses. Only recently, the effectiveness of these schemes in reducing the

switching activity in data buses was studied in [3]. However, results reported in the above

work too do not reflect actual energy reductions for current technologies since: (i) only

switching activities were considered and (ii) it does not provide an estimate of the effective-

ness of address compression in reducingself-energy(bus energy dissipated due to transitions

in the line self-capacitance) andcoupling energy(bus energy dissipated due to transitions on

the coupling capacitance between two adjacent lines) separately. This is important because,

in current and future technologies, coupling energy dominates self-energy by almost an order

of magnitude. Recently, address compression was also used to compress addresses and data

transmitted between processors in a multiprocessor server to improve bandwidth and reduce

costs due to pins [30].

In our study, using a simulator that models a realistic processor, we present results on

how address compression schemes perform when applied in on-chip or off-chip buses in

modern superscalar processors. In particular, we explore the performance, energy, and cost

benefits of address compression, the effect of techniques like bus pipelining, and the effect of

technology scaling on energy-efficiency of compressed address buses. We use two metrics

in our study –extra cycle penaltyandenergy ratio– that help us quantify: (1) the actual

performance penalty due to address compression (including the effect of hardware latency

and pipeline stalls) on the system and (2) energy dissipation in buses including the effect of

105

inter-wire capacitances for various metal routing layers in nanometer-scale technology nodes

for on-chip buses. We consider buses carrying physical addresses—instruction and data

addresses are carried on the same bus—between level-one (L1) and level-two (L2) caches

in a system and report results for two cases: (i) when the address bus connects L1 and L2

caches that are both on-chip like in most modern processors; and (ii) when the address bus

connects L1 cache to off-chip memory (L2 cache or DRAM) like in the case of many SoCs.

Overall, our work is the first to study address compression in detail, from the perspective of

optimizing performance, energy, and cost, for these types of buses.

The organization of the rest of this chapter is as follows. In Sec. 4.2, we discuss two

dynamic address compression schemes and discuss ways to optimize system performance

and area/costs when using these schemes practically. Next, in Sec. 4.3, we describe our

simulation environment and methodology. Then, in Sec. 4.4, we describe our experiments

and discuss results. Finally, we conclude in Sec. 4.5.

4.2 Dynamic Address Compression

Our study focuses on two schemes: dynamic base register caching (DBRC) and bus ex-

pander (BE) that have been proposed previously for processor-memory address compression.

These are described briefly below.

4.2.1 Dynamic base register caching

Since higher order portion of the address has more redundancy than lower order portion,

in dynamic base register caching, the original address is split into a higher order and a lower

106

order component and the former is stored in a compressor, a cache of base registers, at the

processor side in Fig. 4.1. Upon a cache hit, the index and entry number to the base-register

cache (BRC) is transmitted on the bus with the uncompressed lower order part of the original

address in a single cycle. Due to address locality, a hit will occur most of the time and since

the number of bits in the entry number is shorter than in the higher order portion, a narrower

bus can be used to transmit the address. As shown in Fig. 4.2, a miss in the processor BRC

(sending end) is indicated by sending a reserved bit pattern on the bus in the first cycle

followed by the missed address in subsequent cycles. The memory (receiving) side consists

of a register file that is loaded with this missed address. The BRC on the processor is also

updated simultaneously. Based on their simulations, the authors conclude that using a 16-bit

bus for transmission of 32-bit addresses with the DBRC scheme will result in a miss rate of

only 2% and most of the time the memory address could be transmitted using the 16-bit bus

in a single cycle. For this bus width, a fully associative BRC of at least 15 entries or a direct

mapped BRC of at least 63 entries was suggested as the optimal configuration.

4.2.2 Bus expander

In this scheme, the sending end has a look-up table (LUT) that caches the higher order

portion of the address at the processor side [11]. Upon a hit in the sender-LUT, control

signals, index, and the uncompressed portion are transmitted on the address bus in a single

cycle. Similar to DBRC, a narrow bus is used in this scheme also and in case of a miss, the

entire address is transmitted in multiple cycles. But, as we can see in Fig. 4.2, a miss is not

explicitly indicated with a reserved bit pattern as is done in the DBRC scheme. Rather, the

107

BE logic at the sending end begins to transmit the entire address immediately starting from

the first cycle. A separate control signal line is used to indicate hit or miss in the sender-LUT.

Using this control signal, the BE at the receiving side, which is a set of base registers similar

to the one used in DBRC, can determine whether the information on the bus corresponds to

a compressed address or a missed address. In the latter case, the logic updates the receiver-

LUT with the missed address after it has been received. Therefore, for the same compressed

bus, the miss penalty for BE is less than for DBRC. However, if both the number of bus lines

and the number of entries are same for DBRC and BE, the compressed portion in BE is one

bit more than in DBRC due to the control signal line, which might increase the miss rate in

BE. To further reduce the number of cycles taken to service a miss, the authors propose that

a smaller LUT with 4 entries can be used for the 4 higher order bits of the address. This

increases the number of control lines required to two. In [11], the authors show that using a

16-bit narrow bus for 32-bit addresses, only a single cycle is needed to transmit the address

90% of the time.

4.2.3 Overheads of address compression

Using address compression schemes in microprocessor buses entail performance, area,

and power consumption overheads that have not been considered in previous work. The

performance overheads are due to missed addresses that require more than one cycle to be

transmitted. These overheads occur due to two reasons. First, since addresses occur non-

uniformly over time, buffering of missed addresses will be required at the sending end and

even then these buffers may fill up due to a burst of misses, necessitating pipeline stalls.

108

Higher Order Address Bits

Compressor

Compressed

Uncompressed

Decompressor

Higher Order Address Bits

Compressed
 Bus

Sending End

Receiving End

Lower Order Address Bits

Lower Order Address Bits

Lower Order Address Bits
Figure 4.1: Dynamic Address Compression Schemes:General schematic of a dynamic
address compression scheme.

Second, since missed addresses arrive at the receiving end later, cache/memory access is

delayed and this delayed fetch may cause a dependent instruction to stall the pipeline. How-

ever, modern processors using dynamic scheduling can minimize the occurrence of such

stalls by executing instructions out of order. Performance overheads can be mitigated in two

ways. First, more buffering can be done at the sending end to avoid buffer-full related stalls.

Second, missed addresses can be transmitted inw-bit groups from the high- to low-order

end so that address tag and index fields are received quickly to start up cache/memory at the

receiving end early even before the entire missed address is received. We describe next how

address buses can be optimized for performance and cost by choosing cache sizes and bus

widths appropriately.

109

Uncompressed Bus
Sending End

Address Word

DBRC BE

Hit/Miss? Hit/Miss?

H U

R H UE U C H U

Miss MissHitHit

H: Higher order part for compression
U: Lower order part uncompressed
E : Compression cache hit entry number
R: reserved pattern to indicate miss
C : 1-bit control to indicate hit/miss

UC E
Figure 4.2:Dynamic Address Compression Schemes:Schematic depicting how DBRC
and BE form a compressed address word differently before sending it on the compressed
bus.

4.2.4 Optimal index sizes

As described earlier, a narrow bus is used to transmit compressed addresses in DBRC and

BE. The compressed bus widthw is determined using the relation:w = u+ log2(e) (plus

1 control bit for BE), whereu is the portion of the address (lower order part) that is left

uncompressed ande is the number of entries in the compression cache. Note that ifW is the

original address width (also the original bus width) and compression cache is direct mapped,

thent = W− (log2(e)+ u) is the width of the tag that is stored in the compression cache.

Decreasing the address bus width (w), while maintaining the width of the uncompressed

portion (u) the same, will reduce the number of entries (e) in the compression cache. This

may lead to higher miss penalties (the number of extra cycles needed to transmit an address

110

W UI
Hit Pattern

DBRC Transmission Format

Miss Pattern

T H T MLast cycle

T M T L I2nd cycle

R U1st cycle

T H T M T L UIOriginal Address

C W UI
Hit Pattern

BE Transmission Format

Miss Pattern

T H T MLast cycle

T M T L2nd cycle

C T L UI1st cycle

Figure 4.3:Dynamic Address Compression Schemes:Our default transmission format for
DBRC and BE.

if it misses in the compression cache) and therefore degrade system performance due to the

following reasons: (1) fewer entries in the compression cache cause more misses and (2)

wider tag (t) to find a match for reduces the chances of a hit. Thus, there exists a range

of values forw and e for which the system performance will be affected the least when

address compression is used. We are interested in finding these ranges of values. Note

that the combination ofw ande is proportional to the cost of using address compression—e

represents the extra compression cache hardware added andW−w represents the number of

bus lines that can be removed.

4.2.5 Compressed address transmission format

In this section, we describe an energy-efficient transmission format for compressed ad-

dresses. Previous work has not clearly specified any format for transmission of compressed

111

addresses. An efficient transmission format is important because the number of self and cou-

pling transitions and hence bus energy consumption/dissipation depend on relative position-

ing of different bits in the compressed address. In this work, we suggest a basic transmission

format for DBRC and BE.

Our proposed baseline transmission format for DBRC and BE is shown in Fig. 4.3. In the

case of a hit, when the compressed address is transmitted, the entry (E) field consists of an

index (I) field, which points to line number which hit in the sender cache, and away (W)

field which points to the set number for the tag match in the line. The rest of the bus lines are

filled with the control bit (C) field which occupies the most significant bit (MSB)—only in

the case of the BE scheme— and the uncompressed (U) field which occupies the remaining

bits in the lower order portion of the bus. It can be noted that the absence of control bit in

the compressed address for DBRC means that the I or U fields can be one bit wider.

In the case of a miss, during the first cycle of transmission, the entire E-field is replaced by

a reserved bit-pattern (R) in the DBRC scheme whereas in BE it is replaced with a portion

from the higher order part of the address. Other fields in the first cycle—U-field in the case

of DBRC and C- and U-fields in BE are derived in a manner as in the case of a hit. In

subsequent cycles, other portions of the higher order part of the address (tag or H-field) are

transmitted on the bus but this time they can fill up the bit lines corresponding to the U and

C fields too. Note that the U- and C-fields must be transmitted in the first cycle of a miss so

that the decompresser can detect the miss and calculate the number of cycles in which it will

receive the complete address.

112

In the design of these formats, we followed the principles mentioned in Sec. 3.7.2 with

some changes to ensure their energy-efficiency.

• To minimize transitions on the self-capacitance of the wires, bits in the same position

should be correlated across consecutive cycles. Hence, where possible, different fields

of the compressed address like the U-field, I-field, W-field, or different parts of the

H-field (TL, TM, andTH) should be placed at the same position on the bus irrespective

of hit or miss. This also helps limit decoding complexity. In the transmission format

shown on the left in Fig. 4.3, we have placed the U-field and the I-field in the same

position (lower order bits of the bus for hit as well as miss) for this reason.

• To minimize transitions on coupling capacitance between neighboring lines, correla-

tion between the bits is necessary, i.e., biti should be correlated with both biti +1 and

i−1. In our transmission format for a hit, the I-field and U-field are placed together

since they are both derived from the original address and hence can be expected to be

highly correlated than the case in which W-field and U-field are placed together. Fur-

ther, to minimize transitions on self-capacitance as discussed earlier, this arrangement

is followed in the first cycle of a miss also, although there is no way-field in that case.

Here, the bits corresponding to the W-field are occupied by bits from the lower order

portion of the H-field represented byTL in Fig. 4.3.

• Finally, during each cycle of transmission, the bits are placed on the bus starting from

the LSB so that inactive lines (lines that do not carry any new data in that cycle) are

113

placed in the higher order portion of the bus

4.3 Simulation Methodology

We usedsim-alpha, the validated Alpha 21264 simulator [18] based on the SimpleScalar

tool, as the platform for our experiments. The benchmarks and simulator configuration we

used are summarized in Table 3.1. In this simulator, we implemented DBRC and BE for

address compression on the L1→L2 address bus. As mentioned earlier, we report results

for two cases: (i) when the bus connects L1 and L2 caches that are both on-chip like in

most modern processors and (ii) when the bus connects to off-chip memory (L2 cache or

DRAM) like in the case of many SoCs. In either case, we that the assume compression

hardware is placed after the L1-cache but before the buffer chains that drive the L1→L2

address bus. Thus, we assume that the L1 miss address file (MAF) stores uncompressed

addresses from L1-cache and is drained when the compression hardware is free. We also

assume that instruction and data addresses are compressed using the same hardware. Further,

in the default case, we assume that the compression and decompression of addresses take

negligible time and that buses are not pipelined. The former assumption is justified even

for the largest size of our compression cache which is of the order of a few kilobits because

L1 cache sizes in current systems—which are at least 10 times larger—have only a single

cycle latency. The extra cycle penalty and bus energy model for performance and energy

evaluation are mentioned earlier in Sec. 3.4. 50 million committed instructions are simulated

after skipping 2 billion committed instructions initially.

114

4.4 Simulations and Results

4.4.1 Performance, energy, and cost tradeoffs

In this experiment, we examine three-way tradeoffs between performance, energy, and

cost when using DBRC and BE schemes for L1→L2 addresses. Table 4.1 reports values for

five quantities: extra cycle penalty, cache size, on- and off-chip energy ratios, miss rates, and

compression ratios for various bus widths. These bus widths were chosen so that all trends

for variations in the above-mentioned quantities can be captured with minimum number of

bus widths.

As explained in Sec. 4.2.4, an optimal number of bits that should be allotted to the index

field that results in the minimum extra cycle penalty for a given bus width can be found.

These values, which we determined experimentally, are reported in the bottom lines of each

row in Table 4.1. For example, the extra cycle penalty of a 16-bit bus for the optimal index

width is reported as:[5,0.18%], i.e., if an index width of 5 bits is used, the extra cycle

penalty will be only 0.18% compared to address transmission on an uncompressed bus. The

corresponding cache size is given on the bottom line of the next row which is 1575 bits.

Similarly, the energy ratios are 1.16 (16% energy overhead) and 0.94 (6% energy reduction)

for the off-chip and on-chip cases, respectively, when the optimal index width is used for this

bus.

We also found that, by tolerating a slightly higher extra cycle penalty, it may be possible

to reduce the compression cache size (hardware cost) substantially. Results for this config-

uration are indicated on the top lines of each row. In this study, we limited the extra cycle

115

Bus Width
8 10 12 14 16

Extra Cycle Min. [3, 1.55%] [2, 0.92%] [3, 0.32%]
Penalty Opt. [1, 5.42%] [3, 2.95%] [6, 1.49%] [3, 0.64%] [5, 0.18%]
Cache Min. [3, 435] [2, 189] [3, 375]

Size in Bits Opt. [1, 99] [3, 465] [6, 3683] [3, 405] [5, 1575]
Off-Chip Min. [3, 1.23] [2, 1.29] [3, 1.21]

Energy Ratio Opt. [1, 1.32] [3, 1.20] [6, 1.27] [3, 1.23] [5, 1.16]
On-Chip Min. [3, 0.85] [2, 0.93] [3, 0.97]

Energy Ratio Opt. [1, 0.91] [3, 0.81] [6, 0.85] [3, 0.90] [5, 0.94]
Miss Rate Min. [3, 0.20%] [2, 0.19%] [3, 0.10%]

Opt. [1, 0.42] [3, 0.25] [6, 0.20] [3, 0.15] [5, 0.08]
Comp. Ratio Min. [3, 0.48] [2, 0.50] [3, 0.49]

Opt. [1, 0.56] [3, 0.48] [6, 0.49] [3, 0.48] [5,0.48]

Bus Width
20 24 28 32 36

Extra Cycle Min. [1, 0.06%] [1, 0.00%] [1,0.00%] [1,0.00%]
Penalty Opt. [8, 0.01%] [5, 0.00%] [9, 0.00%] [3, 0.00%] [1, 0.00%]
Cache Min. [1, 63] [1, 51] [1, 39] [1, 27]

Size in Bits Opt. [8,10731] [5, 1071] [9, 13299] [3, 135] [3, 15]
Off-Chip Min. [1, 1.08] [1, 1.00] [1, 1.00] [1, 1.00]

Energy Ratio Opt. [8,0.99] [5, 1.01] [9, 1.00] [3, 1.00] [1, 1.00]
On-Chip Min. [1, 1.01] [1, 1.00] [1, 1.00] [1, 1.00]

Energy Ratio Opt. [8, 0.99] [5,1.01] [9, 1.00] [3, 1.00] [9, 1.00]
Miss Rate Min. [1, 0.042%] [1, 0.00] [1, 0.00] [1, 0.00]

Opt. [8, 0.00] [5,0.00] [9, 0.00] [3, 0.00] [1, 0.00]
Comp. Ratio Min. [1, 0.55] [1, 0.63] [1, 0.74] [1, 0.84]

Opt. [8, 0.53] [5,0.63] [9, 0.74] [3, 0.84] [1, 0.94]

Table 4.1: Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ratios, Miss
Rates, and Compression Ratios for Address Compression Using DBRC Scheme.For a given bus
width (column) and metric (rows), [A1, A2] means that A1 is the index width (minimum or optimal)
and A2 is the value for the metric for that index width. For column corresponding to bus width=8,
10, and 36, the minimum and optimal values are the same. Hence only one is reported.

penalty to 0.3% higher values than those for the optimal index and experimentally deter-

mined the compression cache size, energy ratios, and miss rates. For the 16-bit example

explained above, we found that the minimum index that can be used is only 3-bits. Thus

the cache size can be reduced from 1575 bits (as in the optimal case) to only 375 bits—a

116

Bus Width
8 10 12 14 16

Extra Cycle Min. [1, 4.98%] [2, 2.34%] [3, 1.62%] [2, 0.83%] [2, 0.46%]
Penalty Opt. [2, 4.91%] [3, 2.34%] [4, 1.61%] [5, 0.63%] [6, 0.27%]
Cache Min. [1, 136] [2, 256] [3, 480] [2, 224] [2,208]

Size in Bits Opt. [2, 272] [3, 512] [4, 960] [5, 1792] [6, 3328]
Off-Chip Min. [1, 1.19] [2, 1.07] [3, 1.06] [2,1.11] [2, 1.11]

Energy Ratio Opt. [2, 1.18] [3, 1.08] [4, 1.06] [5, 1.06] [6, 1.07]
On-Chip Min. [1, 0.88] [2, 0.82] [3, 0.84] [2,0.88] [2, 0.94]

Energy Ratio Opt. [2, 0.87] [3, 0.82] [4, 0.84] [5, 0.87] [6, 0.92]
Miss Rate Min. [1, 0.40] [2, 0.28] [3, 0.21] [2,0.18] [2, 0.12]

Opt. [2, 0.39] [3, 0.28] [4, 0.21] [5, 0.15] [6,0.10]
Comp. Ratio Min. [1, 0.54] [2, 0.48] [3, 0.47] [2, 0.48] [2, 0.50]

Opt. [2, 0.53] [3, 0.48] [4, 0.47] [5, 0.47] [6, 0.48]

Bus Width
20 24 28 32 36

Extra Cycle Min. [1, 0.07%] [1,0.00%] [1,0.00%] [1, 0.00%]
Penalty Opt. [6, 0.01%] [10, 0.00%] [8, 0.00%] [4, 0.00%] [1, 0.00%]
Cache Min. [1, 88] [1, 72] [1, 56] [1, 40]

Size in Bits Opt. [6, 2816] [10, 36864] [8, 7168] [4, 320] [1, 24]
Off-Chip Min. [1, 1.10] [1, 1.00] [1, 1.00] [1, 1.00]

Energy Ratio Opt. [6, 1.00] [10, 1.00] [8, 1.00] [4, 1.00] [1, 1.00]
On-Chip Min. [1, 1.01] [1, 1.00] [1, 1.00] [1, 1.00]

Energy Ratio Opt. [6, 1.00] [10, 1.00] [8, 1.00] [1, 1.00] [1, 1.00]
Miss Rate Min. [1, 0.06] [1, 0.00] [1, 0.00] [1, 0.00]

Opt. [6, 0.00] [10, 0.00] [8, 0.00] [4, 0.00] [1, 0.00]
Comp. Ratio Min. [1, 0.56] [1, 1.63] [1, 0.74] [1, 0.84]

Opt. [6, 0.53] [10, 0.63] [8, 0.74] [4, 0.84] [1, 0.94]

Table 4.2: Extra Cycle Penalty, Optimal Index Widths, Cache Sizes, Bus Energy Ratios, Miss
Rates, and Compression Ratios for Address Compression Using BE Scheme.For a given bus
width (column) and metric (rows), [A1, A2] means that A1 is the index width (minimum or optimal)
and A2 is the value for the metric for that index width. For column corresponding to bus width=36,
the minimum and optimal values are the same. Hence only one is reported.

76.2% reduction. However, this may result in slightly worse energy ratios as observed from

Table 4.1. For address compression using the BE scheme (Table 4.2), the corresponding

cache size reduction for a 16-bit bus is from 3328 bits when using the optimal index size (6

bits) to 208 bits when using the minimum index of 2 bits—a 93.75% reduction. Other values

117

of extra cycle penalty can also be used to derive corresponding minimal index widths and

similar trends as reported below will be observed.

Comparing across the two schemes for same bus widths, the following observations can be

made. First, both schemes result in negligible performance penalty when address bus widths

are reduced up to 20 bits from the original 38 bits. This results in immediate savings of 18

out of 38 (47.4%) bus lines and their associated buffers, repeaters, and receiving circuitry.

For these savings, the compression cache size needed is also small (maximum of 63 bits).

Thus, there will be net savings in area/cost even if the size of address compression hardware

is taken into account. Reduction of bus width (beyond 20 bits) increases the extra cycle

penalty for both DBRC and BE. Also, the energy ratios show a broadly decreasing trend

as we move towards narrower bus widths. For these buses, BE results in greater energy

reduction than DBRC for most of the bus widths we considered. Finally, compression cache

miss rates for both schemes are roughly similar for all bus widths—they vary between 0%

(very few misses) for larger bus widths to about 39% for narrow bus widths.

4.4.2 System performance and bus energy for fixed hardware costs

In the previous experiment, we set limits on how much extra cycle penalty can increase to

determine the minimum index widths or cache sizes that can be used for various bus widths.

In this experiment, we assume that the designer is allowed to use a compression cache in

a given range of sizes thus fixing the hardware cost for address compression in this range.

For seven different bus widths which represent different area/cost reductions of the address

bus, we estimate the extra cycle penalty and energy ratios that result. For each bus width, we

118

consider compression cache sizes ranging from 4 to 2048 entries.

Performance penalty and miss rates

In Fig. 4.4, for narrower buses (e.g., a 12 bit bus), we observe that the extra cycle penalty

first decreases as the number of entries is increased from 4 to 64 and then increases dramat-

ically as we increase the number of entries to 2048. The reason for this is the following. A

larger number of entries means more bits of the compressed bus need to be used for trans-

mitting the index during a hit. Thus, a lesser number of bits of the bus can be used for the

uncompressed low-order portion of the address word. Reducing the uncompressed portion,

in turn, means increasing the compressed portion, which lowers the compression cache hit

rate to some extent and this is the reason for this degradation in performance. For slightly

wider buses (e.g., 14 and 16-bit buses), the number of entries in the compression cache be-

comes less critical to the performance than the narrow bus does as our results show. This

is because, for the same compressed portion of an address word, the increased bus width

allows more entries in the compression cache, which can reduce the miss rate. Also, even

in the case of miss, the wider bus facilitates transfer of the missed address in fewer cycles

and hence the miss penalty becomes smaller. For even wider buses (24-bits or more), the

uncompressed part is relatively large across different compression cache sizes, so varying

the compression cache size does not have any impact on the performance.

Another observation from Fig. 4.4 is that DBRC performs better than BE when smaller

number of entries (notably four and eight entries) are used and this trend is true for all bus

widths. The reason for this is the following. As mentioned in Sec. 4.2, the miss penalty for

119

0.
00

0
1.

00
0

2.
00

0
3.

00
0

4.
00

0
5.

00
0

6.
00

0
7.

00
0

8.
00

0
9.

00
0

10
.0

00
11

.0
00

12
.0

00
13

.0
00

14
.0

00

4
8

16
32
64

128
4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

8
12

14
16

20
24

28

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Extra Cycle Penalty (%)

D
B

R
C

B
E

E
xt

ra
 C

yc
le

 P
en

al
ty

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t C
om

pr
es

se
d

B
us

 W
id

th
s a

nd
 C

om
pr

es
si

on
 C

ac
he

 S
iz

es

N
um

be
r

of
 e

nt
ri

es
 in

co

m
pr

es
si

on
 c

ac
he

[M
in

. E
xt

ra
 C

yc
le

 P
ea

nl
ty

,
O

pt
. I

nd
ex

]
8

12

14

16

20

24

28

D
B

R
C

 [

5.
42

0%
, 1

]
[1

.2
95

%
, 5

]
[0

.6
43

%
, 3

]
[0

.1
78

%
, 5

]
[0

.0
09

%
, 8

]
[0

.0
04

%
, 1

]
[0

.0
04

%
, 1

]
B

E

[4
.9

07
%

, 2
]

[1
.6

15
%

, 4
]

[0
.6

34
%

, 5
]

[0
.2

74
%

, 6
]

[0
.0

07
%

, 6
]

[0
.0

01
%

, 1
0]

[0

.0
04

%
, 1

]

F
ig

ur
e

4.
4:

E
xt

ra
C

yc
le

P
en

al
ty

fo
rD

B
R

C
an

d
B

E
fo

rD
iff

er
en

tC
om

pr
es

si
on

C
ac

he
S

iz
es

.

120

BE will be less than or equal to that for DBRC for the same bus width since the former uses

a single bit and the latter uses a longer reserved bit-pattern to indicate a miss. However, for a

given bus width and also fixed number of entries in the compression cache, the compressed

portion for BE is one bit wider than that for DBRC due to the control bit, so the extra cycle

penalty in the case of BE can become higher due to increased miss rate leading to worse

performance than DBRC.

Bus energy dissipation

Off-chip bus energy ratios are reported in Fig. 4.6. From this plot, we observe that BE

consumes less energy on the average than DBRC for most bus widths—average results are

shown in the table on the top-left corner of each plot. BE is more energy-efficient because it

has lesser miss penalty than DBRC for the same bus width. But, for a bus width of 24 bits

or greater, not much off-chip energy savings can be obtained with both address compression

designs. This is because, for wider buses, the uncompressed part has more bits and the

compressed part has a lesser number which leads to low miss rate (smaller than 0.002%) for

both schemes. So most bus lines are used for the uncompressed portion and hence the bit

pattern of the compressed address word is similar to the bit pattern of uncompressed original

address word.

Figs. 4.7 and 4.8 show on-chip energy ratio, including the contribution of self-capacitance

energy and components of coupling energy across different number of entries in compression

cache, for four bus widths. These are shown across two plots: bus widths 12 and 14 in

Fig. 4.7 and 16 and 24 in Fig. 4.8. From these figure, it can be observed that energy savings

121

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0
4
8

16
32
64

128
4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

8
12

14
16

20
24

28

C
om

pr
es

se
d

B
us

 W
id

th
 (b

its
)

DBRC Miss Rate

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

BE Miss Rate

M
is

s R
at

e
V

ar
ia

tio
n

A
cr

os
s D

iff
er

en
t C

om
pr

es
se

d
B

us
 W

id
th

s f
or

 D
B

R
C

 a
nd

 B
E

N
um

be
r

of
 e

nt
ri

es
 in

co

m
pr

es
si

on
 c

ac
he

[M
in

. M
is

s R
at

e,

O
pt

. I
nd

ex
]

8
12

14

16

20

24

28

D

B
R

C

[0
.3

36
, 3

]
[0

.1
81

, 4
]

[0
.1

23
, 6

]
[0

.0
73

, 8
]

[0
.0

00
, 9

]
[0

.0
00

, 1
]

[0
.0

00
, 1

]
B

E

[0
.3

89
, 2

]
[0

.2
10

, 4
]

[0
.1

50
, 5

]
[0

.0
96

, 6
]

[0
.0

01
, 9

]
[0

.0
00

, 1
]

[0
.0

00
, 1

]

F
ig

ur
e

4.
5:

M
is

s
R

at
e

fo
r

D
B

R
C

an
d

B
E

fo
r

D
iff

er
en

tC
om

pr
es

si
on

C
ac

he
S

iz
es

.

122

0.
00

0

0.
50

0

1.
00

0

1.
50

0

2.
00

0

2.
50

0

3.
00

0
4
8

16
32
64

128
4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

4
8

16
32
64

128
256
512

1024
2048

8
12

14
16

20
24

28

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Off-Chip Energy Ratio

D
B

R
C

B
E

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t C
om

pr
es

se
d

B
us

W

id
th

s a
nd

 C
om

pr
es

si
on

 C
ac

he
 S

iz
es

N
um

be
r

of
 e

nt
ri

es
 in

co

m
pr

es
si

on
 c

ac
he

[M
in

. O
ff

-C
hi

p
E

ne
rg

y
R

at
io

,
O

pt
. I

nd
ex

]
8

12

14

16

20

24

28

D
B

R
C

[1

.2
23

, 2
]

[1
.1

85
, 4

]
[1

.1
90

, 5
]

[1
.1

53
, 8

]
[0

.9
90

, 9
]

[0
.9

99
, 1

]
[1

.0
00

, 6
]

B
E

[1

.1
78

, 2
]

[1
.0

59
, 3

]
[1

.0
60

, 6
]

[1
.0

65
, 7

]
[0

.9
85

, 1
0]

[1

.0
00

, 1
0]

[0

.9
99

, 1
0]

F
ig

ur
e

4.
6:

In
flu

en
ce

of
C

om
pr

es
si

on
C

ac
he

S
iz

e
on

O
ff-

C
hi

p
B

us
E

ne
rg

y
D

is
si

pa
tio

n:
O

ff-
ch

ip
bu

s
en

er
gy

di
ss

ip
at

io
n

ra
tio

fo
rD

B
R

C
an

d
B

E
fo

rd
iff

er
en

t
co

m
pr

es
se

d
bu

s
w

id
th

s.

123

obtained with address compression in on-chip buses is more savings for off-chip buses. It can

also be seen that, across bus widths, most of the energy saving is due to reduction in toggle

energy and across different compression cache sizes in the same bus width, the savings—

which are better when smaller cache sizes are used—are due to reductions in coupling charge

and discharge energies. Also, similar to what was observed in Sec. 4.4.2 for performance,

BE resulted in a worse energy ratio compared to DBRC when smaller compression caches

(number of entries of 4 and 8) are used. The reason for this is also the same as that described

in Sec. 4.4.2. Finally, we also observe that, similar to trends in off-chip energy dissipation,

the wider the compressed bus width is, the less energy can be saved with dynamic address

compression.

4.4.3 Influence of technology parameters on energy efficiency

To study the energy-efficiency of address compression as technology scales down, we plot-

ted energy ratios as a function ofλ, the ratio of coupling capacitance to the self-capacitance

of a wire. The parameterλ takes values of approximately the following for topmost layer

interconnects in current and future nanometer technologies according to [28]: 2.08 for 130-

nm, 2.34 for 90-nm, 2.73 for 65-nm, and 3.05 for 45-nm. For future nanometer technologies,

the values ofλ are bound to increase further. From the plot shown in Fig. 4.9, we observe

that address compression improves energy efficiency of compressed address buses even as

technology scales down. For current technology (130-nm), the reduction is about 10% on

the average for most buses.

124

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

Original
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE

4
8

16
32

64
12

8
4

8
16

32
64

12
8

25
6

51
2

10
24

20
48

4
8

16
32

64
12

8
25

6
51

2
10

24
20

48

8
12

14

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

T
og

gl
e

E
ne

rg
y

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
 D

is
ch

ar
ge

 a
nd

 C
ha

rg
e

E
ne

rg
y

Se
lf-

C
ap

ac
ita

nc
e

E
ne

rg
y

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t C
om

pr
es

se
d

B
us

 W
id

th
s (

N
ar

ro
w

) f
or

 D
B

R
C

 a
nd

 B
E

N
um

be
r

of
 e

nt
ri

es
 in

co

m
pr

es
si

on
 c

ac
he

[M
in

. O
n-

C
hi

p
E

ne
rg

y
R

at
io

,
O

pt
. I

nd
ex

]
8

12

14

D
B

R
C

[0

.8
14

, 3
]

[0
.8

25
, 4

]
[0

.8
78

, 5
]

B
E

[0

.8
65

, 2
]

[0
.8

36
, 3

]
[0

.8
65

, 5
]

F
ig

ur
e

4.
7:

In
flu

en
ce

of
C

om
pr

es
si

on
C

ac
he

S
iz

e
on

O
n-

C
hi

p
B

us
E

ne
rg

y
D

is
-

si
pa

tio
n:

O
n-

ch
ip

bu
s

en
er

gy
co

ns
um

pt
io

n
ra

tio
fo

r
D

B
R

C
an

d
B

E
fo

r
di

ffe
re

nt
co

m
pr

es
si

on
ca

ch
e

si
ze

s.
(N

ar
ro

w
B

us
)

125

0

0.
2

0.
4

0.
6

0.
81

1.
2

Original
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE
DBRC

BE

4
8

16
32

64
12

8
25

6
51

2
10

24
20

48
4

8
16

32
64

12
8

25
6

51
2

10
24

20
48

4
8

16
32

64
12

8
25

6
51

2
10

24
20

48

16
20

28

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
T

og
gl

e
E

ne
rg

y
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

 D
is

ch
ar

ge
 a

nd
 C

ha
rg

e
E

ne
rg

y
Se

lf-
C

ap
ac

ita
nc

e
E

ne
rg

y

N
um

be
r

of
 e

nt
ri

es
 in

co

m
pr

es
si

on
 c

ac
he

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t C
om

pr
es

se
d

B
us

 W
id

th
s (

M
ed

iu
m

 a
nd

 W
id

e)
 fo

r
D

B
R

C
 a

nd
 B

E
[M

in
. O

n-
C

hi
p

E
ne

rg
y

R
at

io
,

O
pt

. I
nd

ex
]

16

20

28

D
B

R
C

[0

.9
31

, 8
]

[0
.9

87
, 8

]
[1

.0
00

, 1
]

B
E

[0

.9
22

, 5
]

[0
.9

89
, 1

0]

[0
.9

99
, 3

]

F
ig

ur
e

4.
8:

In
flu

en
ce

of
C

om
pr

es
si

on
C

ac
he

S
iz

e
on

O
n-

C
hi

p
B

us
E

ne
rg

y
D

is
si

pa
tio

n:
O

n-
ch

ip
bu

s
en

er
gy

di
ss

ip
at

io
n

ra
tio

fo
rD

B
R

C
an

d
B

E
fo

rd
iff

er
en

t
co

m
pr

es
si

on
ca

ch
e

si
ze

s.
(W

id
e

B
us

)

126

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

2 2.2 2.4 2.6 2.8 3 3.2
(Ratio of Coupling-Capacitance to Self-Capacitance)

O
n-

C
hi

p
E

ne
rg

y
R

at
io

On-Chip Energy Ratio Variation Across Different
Technologies for DBRC and BE

�

DBRC 8-bit

BE 8-bit

BE 10-bit

BE 12-bit

DBRC 10-bit

DBRC 12-bit

BE 14-bit

BE 16-bit

DBRC 14-bit

DBRC 16-bit

DBRC 24-bit

BE 24-bit

(130nm) (90nm) (65nm) (45nm)

Technology

Figure 4.9:Energy Reduction in Compressed Address Buses for Different Technologies.
This plot shows the effect of technology on compressed address buses of various widths.

4.4.4 Influence of extra compression/decompression latency

In this experiment, we examine how compression/decompression latency affects system

performance. Previously, we assumed that there is no extra compression or decompression

latency at the sending and receiving ends respectively. We observed that the extra cycle

penalty was large (about 5%) for small bus widths (8-bit and 12-bit bus) and dropped off

rapidly for bus widths beyond 16 bits. This trend can be observed in Fig. 4.10 too for com-

pression/decompression latency of zero cycles. Realistically, compression may take a longer

time—if complex schemes are used for compression cache lookup and/or multiplexers are

used to rearrange bits to ensure energy-efficient transmission—than decompression which

involves only register access but only if a hit occurs at the sender compression cache. Hence

127

we consider two cases in this experiment: (1) compression takes one extra clock cycle and

decompression takes zero cycles, and (2) compression takes one cycle and decompression

takes one cycle only if a hit occurs in the sender compression cache. In the second case, a

miss is assumed to cause no extra decompression latency because there is no need for a regis-

ter file access to decompress the address. Rather, the multiple cycles needed for transmission

of the missed address already takes into account the latency for a miss.

From results shown in Fig. 4.10, we observe that the extra cycle penalty does not drop off

rapidly with bus width as in the default case (both compression and decompression occur

in zero cycles). This is because the hit-rate of the compression cache with wider buses

becomes better which necessitates one extra cycle for decompression each time a hit occurs.

We also observe that pipelining the address bus helps reduce the extra cycle penalty to some

extent but the effect is not much since L1→L2 address references are spaced more or less

randomly apart in time; bus pipelining yields best results when references on the bus occur

continuously spaced apart by a fixed time gap.

From all the above results we observe that both DBRC and BE have similar trends and in

most cases, the results for BE are slightly better. Hence in the rest of the chapter, we report

results only for BE.

4.4.5 Influence of virtual→physical address translation

In a realistic system, a page can be placed anywhere in the available memory by the

operating system (OS) and hence the higher order part (page number) of the L1→L2 physical

address–which is obtained using the hardware translation look-aside buffers (TLB)—can

128

5.420

4.835

1.549

0.898

0.322

0.009

0.060

0.060

0.004

0.004

0.004

0.004

4.907

4.448

1.617

0.943

0.461

0.069

0.072

0.072

0.004

0.004

0.004

0.004

6.828

6.337

2.327

2.121

1.374

1.314

1.280

1.237

1.177

1.123

1.177

1.123

6.223

5.863

2.393

2.276

1.460

1.388

1.304

1.252

1.177

1.123

1.177

1.123

7.217

6.685

2.903

2.763

2.108

2.013

2.036

1.971

1.997

1.929

1.997

1.929

6.582

6.196

2.951

2.724

2.145

2.055

2.056

1.983

1.883

1.822

1.997

1.822

0.
00

0

1.
00

0

2.
00

0

3.
00

0

4.
00

0

5.
00

0

6.
00

0

7.
00

0

8.
00

0
Non-

pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

Non-
pipelined
Pipelined

8-
bi

t
12

-b
it

16
-b

it
20

-b
it

24
-b

it
32

-b
it

8-
bi

t
12

-b
it

16
-b

it
20

-b
it

24
-b

it
32

-b
it

D
B

R
C

B
E

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Extra Cycle Penalty (%)

C
om

p.
 L

at
en

cy
: 0

 c
yc

le
D

ec
om

p.
 L

at
en

cy
: 0

 c
yc

le
C

om
p.

 L
at

en
cy

: 1
 c

yc
le

D
ec

om
p.

 L
at

en
cy

: 0
 c

yc
le

C
om

p.
 L

at
en

cy
: 1

 c
yc

le
D

ec
om

p.
 L

at
en

cy
: 1

 c
yc

le

E
xt

ra
 C

yc
le

 P
en

al
ty

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t C
om

pr
es

si
on

 a
nd

D
ec

om
pr

es
si

on
 L

at
en

ci
es

 W
ith

 a
nd

 W
ith

ou
t P

ip
el

in
in

g

F
ig

ur
e

4.
10

:I
nfl

ue
nc

e
of

C
om

pr
es

si
on

/D
ec

om
pr

es
si

on
La

te
nc

y
on

P
er

-
fo

rm
an

ce
w

ith
an

d
w

ith
ou

tA
dd

re
ss

B
us

P
ip

el
in

in
g.

129

vary quite significantly. But this variation is not captured realistically in the direct page table

translation mechanism that is used in sim-alpha. It uses the value from a sequential counter—

which is incremented whenever a new page is loaded—as the physical page number and

places the mapping information (physical and virtual page numbers) in the page table at the

location pointed to by the virtual page number. Due to this, higher order parts of physical

addresses issued in sim-alpha are likely to have more sequentiality characteristics than in a

realistic system where contiguous entries of the page table are not likely to belong to the

same program.

0

5

10

15

20

25

30

4 6 8 10 12 14 16 18 19 20 22 24 28 32 36
Compressed Bus Width (Bits)

E
xt

ra
 C

yc
le

 P
en

al
ty

 (%
) W

ith
ou

t M
P

Without-HMP
With-HMP

Extra Cycle Penalty and Compression Ratio Variation Across
Different Compressed Bus width for Hash Memory Mapping

Extra Cycle Penalty Avg. Max. Min.
Without HMP 3.295% 27.936% 0.004%

With HMP 3.965% 28.059% 0.816%

Figure 4.11: Influence of Different Virtual →Physical Address Mapping Schemes on
Performance.

We study the effect of a more realistic scenario by implementing a hashing mechanism to

randomize the physical page number of a newly loaded page. Note that, in an actual system,

130

available memory constraints dictate the physical page number and no hash mappings are

used. Given the number of bits used for the physical page number (PB), the virtual page

number (VN), andΦ =
√

5−1
2 ; the physical page number (PN) using our mapping scheme is

found by using:

PN = 2PB× (VN×Φ−bVN×Φc).

Both instruction and data addresses are mapped using this scheme. Note that we have

not changed the way TLBs operate but some extra TLB misses may be caused due to the

new mapping mechanism. Our simulations in which we measure the extra cycle penalty also

include this overhead, if any. Results for simulations using the default mapping scheme and

our hash mapping scheme are shown in Figs. 4.11, 4.12, and 4.13.

As we observe in Fig. 4.11, the extra cycle penalty increases when new mapping is applied

since the number of different patterns in the higher order portion of the addresses increases

and consequently the miss rate of the compression cache is higher than before. However, this

increase is small, only 0.7% on average but the energy savings are much more, especially

for off-chip buses. From Figs. 4.12 and 4.13 we observe that, on the average, the off-chip

and on-chip energy savings are improved by 0.271 and 0.009, respectively. These results

show that address compression will be more effective in real systems even if different virtual

memory organizations and/or mapping schemes are used.

131

0.000

0.200

0.400

0.600

0.800

1.000

1.200

O
ri

g.
W

/O
-H

M
P

W
-H

M
P

W
/O

-H
M

P
W

-H
M

P
W

/O
-H

M
P

W
-H

M
P

W
/O

-H
M

P
W

-H
M

P
W

/O
-H

M
P

W
-H

M
P

W
/O

-H
M

P
W

-H
M

P
W

/O
-H

M
P

W
-H

M
P

W
/O

-H
M

P
W

-H
M

P
W

/O
-H

M
P

W
-H

M
P

W
/O

-H
M

P
W

-H
M

P
W

/O
-H

M
P

W
-H

M
P

W
/O

-H
M

P
W

-H
M

P
W

/O
-H

M
P

W
-H

M
P

W
/O

-H
M

P
W

-H
M

P
W

/O
-H

M
P

W
-H

M
P

4 6 8 10 12 14 16 18 19 20 22 24 28 32 36

Compressed Bus Width (Bits)

O
n-

C
hi

p
E

ne
rg

y
R

at
io

Coupling-Capacitance: Toggle Energy

Coupling-Capacitance: Discharge and Charge
Energy
Self-Capacitance Energy

On-Chip Energy Ratio Variation Across Different Compressed
Bus width for Hash Memory Mapping

On-Chip Energy Ratio Avg. Max. Min.
Without HMP 0.038 0.071 0.031

With HMP 0.029 0.060 0.020

Figure 4.12: Influence of Different Virtual →Physical Address Mapping Schemes on
On-Chip Energy.

4.4.6 Influence of compression cache set associativity and replacement

policy

If the number of bits in the tag field and the number of entries in the compression cache

are fixed, then the miss rate of the cache will change with change in set associativity. Thus,

higher set associativities can reduce both extra cycle penalty and improve energies primarily

due to an increase in the number of hits when shorter compressed addresses can be trans-

ferred in a single cycle. We studied the effect of different configurations: direct-mapped,

2-way, 4-way, 8-way, and fully-associative caches on extra cycle penalty and the results are

shown in Figs. 4.14, 4.15, 4.16. Here, we use a compression cache with 16 entries which

enables us to study the following range of bus widths: 8-bit, 10-bit, 12-bit, 16-bit, and 24-bit.

132

1.
58

2

1.
17

8

1.
07

2

1.
05

9

1.
10

5

1.
11

5

1.
15

2

1.
12

4

1.
09

5

1.
00

0

1.
00

2

1.
00

0

1.
00

0

1.
32

2

0.
94

2

0.
76

7

0.
64

4

0.
59

3 0.
67

0

0.
70

7 0.
81

5

0.
83

3

0.
83

5

0.
86

1

0.
87

4

0.
91

3

0.
95

0

0.
98

6

1.
29

8

1.
00

0

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

4 6 8 10 12 14 16 18 19 20 22 24 28 32 36
Compressed Bus width (Bits)

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

Without-HMP
With-HMP

Off-Chip Energy Ratio Variation Across Different Compressed
Bus width for Hash Memory Mapping

Off-Chip Energy Ratio Avg. Max. Min.
Without HMP 1.119 1.582 1.000

With HMP 0.848 1.322 0.593

Figure 4.13: Influence of Different Virtual →Physical Address Mapping Schemes on
Off-Chip Energy.

From our results, we observe that, across most bus widths, extra cycle penalties and energies

reduce when set associativity increases from direct-mapped to fully-associative. Extra cycle

penalties also reduce as the buses become wider because of reducing miss rates as described

in earlier results. With fully-associative compression caches, on-chip energy ratios reduce

by as much as 8% or so compared to direct-mapped caches and extra cycle penalties reduce

by a few tenths of a percent. Thus, using fully associative compression caches, particularly

since the number of entries is small can be very effective in address compression.

We also studied how different replacement policies will influence extra cycle penalty and

energies in address compression caches. We tested the well-known first-in-first-out (FIFO)

and least-recently-used (LRU) policies and a modified LRU policy recently proposed in [30].

133

0

1

2

3

4

5

6

Direct-mapped 2-way 4-way 8-way Fully-associative
Set Associativity

E
xt

ra
 C

yc
le

 P
en

al
ty

 (%
)

8-bit

10-bit

12-bit

16-bit

Extra Cycle Penalty Variation Across Different Set Associativity
of Compression Cache for BE

24-bit

Figure 4.14:Influence of Varying Compression Cache Set Associativity on Performance
and Energy: Extra cycle penalties are the least for fully-associative caches.

In MLRU, if a block was not accessed soon after it was brought into the cache, then it is

replaced. This helps eliminate one-touch references. To implement MLRU, before an entry

in a set is replaced, we update the value of the LRU counter with the valueLRUnewas follows:

LRUnew= L+0.25×N,

whereL is the LRU counter value for the least recently accessed entry in the set andN

is the total number of entries is a set. Thus, in our implementation, the incoming entry is

assigned an LRU value 25% above the currently least recently used entry. Our results shown

in Figs. 4.17, 4.18, 4.19, and 4.20 indicate that the basic LRU scheme performs the best in

terms of both performance (extra cycle penalty and miss rates) and energies. Higher order

portions of addresses which are stored in our compression cache tend to be more similar—

134

0.8

0.85

0.9

0.95

1

1.05

Direct-mapped 2-way 4-way 8-way Fully-associative
Set Associativity

O
n-

C
hi

p
E

ne
rg

y
R

at
io

8-bit

10-bit
12-bit

16-bit

24-bit

On-Chip Energy Ratio Variation Across Different
Set Associativity of Compression Cache for BE

Figure 4.15:Influence of Varying Compression Cache Set Associativity on Performance
and Energy: For most bus widths fully-associative caches also result compressed addresses
that dissipate least energy during transmission.

the same (recently used) entry will be accessed again—and one-touch references are highly

unlikely to occur. Hence MLRU and FIFO perform worse.

4.4.7 Influence of L1 cache size

The L1 cache size may also potentially affect the density of L1→L2 address traffic and

hence the performance and energies when address compression schemes are used. We ex-

perimented with seven different L1 cache sizes with 2-way set-associativity and the results

are shown in Figs. 4.21, 4.22, and 4.23 for six different compressed bus widths: 12, 14, 16,

19, 20, and 24 bits. The results show that, as expected, the extra cycle penalty decreases

for larger L1 cache sizes since the address traffic reduces and the references are also spaced

135

1

1.05

1.1

1.15

1.2

1.25

1.3

Direct-mapped 2-way 4-way 8-way Fully-associative
Set Associativity

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

Off-Chip Energy Ratio Variation Across Different
Set Associativity of Compression Cache for BE

8-bit

10-bit

12-bit
16-bit

24-bit

Figure 4.16:Influence of Varying Compression Cache Set Associativity on Performance
and Energy: Off-chip bus energies also reduce when the associativity increases.

wider apart. For energy dissipation in on-chip buses shown in Fig. 4.22, most wider buses

(19, 20, and 24 bits) show an increase in bus energy dissipation with larger L1 cache sizes.

This may be because L1 cache misses that occur are spaced wider apart in time and hence

these miss addresses are likely to be dissimilar resulting in more switching transitions. For

off-chip buses a similar trend—some buses becoming more energy-efficient and others be-

coming less—can be observed.

L1 miss address buffer

In a pipelined processor, misses in the L1 caches are often buffered in a miss address file

(MAF) and dependent instructions are not allowed to advance to the next stage until the miss

is serviced. This delay adds to the overall program execution time but, in some cases, it may

136

5.
07

3

2.
28

9

1.
54

3

0.
31

6

0.
03

5

0.
00

4

0.
00

4

4.
99

4

2.
25

5

1.
47

4

0.
29

1

0.
02

1

0.
00

4

0.
00

4
0.

00
4

0.
00

4

0.
00

60.
33

3

1.
62

42.
22

7

5.
14

1

0.
00

4

0.
00

4

0.
02

5

0.
31

5

5.
18

1

2.
34

0

1.
64

1

0.
00

4

0.
00

4

0.
01

2

0.
26

2

1.
54

1

2.
44

0

5.
35

6

0.
00

4

0.
00

4

0.
03

2

5.
43

3

2.
37

6

1.
62

1

0.
28

5

0.000

1.000

2.000

3.000

4.000

5.000

6.000

8-bit 10-bit 12-bit 16-bit 20-bit 24-bit 32-bit 8-bit 10-bit 12-bit 16-bit 20-bit 24-bit 32-bit

4-way 8-way
Compressed Bus Width (Bits)

E
xt

ra
 C

yc
le

 P
en

al
ty

 (%
)

FIFO LRU MLRU

Extra Cycle Penalty Variation Across Different
Replacement Policies for BE

Figure 4.17:Influence of Varying Compression Cache Replacement Policy on Perfor-
mance.

also lead to stalling of the pipeline. In our target system, we have assumed that the address

compression hardware takes missed addresses from the MAF, compresses it and transmits

on the bus in a single cycle (if the compression cache has a hit) and in multiple cycles (if the

compression cache misses). Increasing the size of the MAF can, to some extent, offset the

extra latency due to misses in the compression cache. We experimented with six different

MAF sizes: 8, 16, 32, 64, 128, and 256 and three L1 cache sizes since lower miss rates for

larger cache sizes will also reduce the need for larger MAF buffer.

Results for this experiment with five different bus widths are shown in Figs.4.24, 4.25,

and 4.26. In Fig.4.24, we observe that, for all bus widths and L1 cache sizes, increasing the

MAF size from 8 to 16 entries reduces the extra cycle penalty by a small amount but further

137

0.
40

1

0.
27

3

0.
20

4

0.
09

9

0.
02

9

0.
00

0

0.
00

0

0.
39

6

0.
27

1

0.
19

8

0.
09

7

0.
02

5

0.
00

0

0.
00

0
0.

00
0

0.
00

00.
03

1

0.
10

3

0.
21

0

0.
27

8

0.
40

6

0.
00

0

0.
00

00.
02

9

0.
10

2

0.
21

1

0.
27

8

0.
40

8

0.
00

0

0.
00

00.
02

7

0.
09

4

0.
20

9

0.
28

5

0.
41

9

0.
00

0

0.
00

00.
03

1

0.
09

9

0.
20

8

0.
28

0

0.
42

4

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Compressed Bus Width (Bits)

M
is

s R
at

e

FIFO LRU MLRU

Miss Rate Variation Across Different
Replacement Policies for BE

Figure 4.18:Influence of Varying Compression Cache Replacement Policy on Miss Rate.

increase in the MAF does not result in much benefits for most buses. Also, even for small L1

cache sizes (16KB), increasing the MAF size to 16 entries with a compressed address bus

24 bits wide, results in a net reduction in program execution time as seen from the negative

value of extra cycle penalty. If L1 cache size is increased to 64KB, the percentage reduction

in execution time also increase. Thus, address compression can actually reduce program

execution time for a modest increase in the size of the MAF.

4.4.8 Address compression across memory system levels

In our previous experiments, address compression was applied to only the L1→L2 bus.

In this experiment, we apply compression on: (1) L2→M address bus separately, and (2)

in combination with L1→L2 address bus. Results are shown in Figs. 4.27 and 4.28. From

138

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU
FIFO
LRU

MLRU

8-
bi

t
10

-b
it

12
-b

it
16

-b
it

20
-b

it
24

-b
it

32
-b

it
8-

bi
t

10
-b

it
12

-b
it

16
-b

it
20

-b
it

24
-b

it
32

-b
it

4-
w

ay
8-

w
ay

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
 T

og
gl

e
E

ne
rg

y
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

D
is

ch
ar

ge
 a

nd
 C

ha
rg

e
E

ne
rg

y
Se

lf-
C

ap
ac

ita
nc

e
E

ne
rg

y

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
R

ep
la

ce
m

en
t P

ol
ic

ie
s f

or
 B

E
E

ne
rg

y
Sa

vi
ng

A

vg
.

M
ax

.
M

in
.

FI
FO

6.

60
0%

17

.7
34

%

-6
.6

46
%

L

R
U

7.

01
6%

18

.3
07

%

-6
.3

94
%

M

L
R

U

6.
43

6%

17
.3

51
%

-6

.6
23

%

F
ig

ur
e

4.
19

:In
flu

en
ce

of
Va

ry
in

g
C

om
pr

es
si

on
C

ac
he

R
ep

la
ce

m
en

tP
ol

ic
y

on
O

n-
C

hi
p

E
ne

rg
y.

139

0.950

1.000

1.050

1.100

1.150

1.200

1.250

1.300

8-bit 10-bit 12-bit 16-bit 20-bit 24-bit 32-bit 8-bit 10-bit 12-bit 16-bit 20-bit 24-bit 32-bit

4-way 8-way
Compressed Bus Width (Bits)

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

FIFO
LRU
MLRU

Off-Chip Energy Ratio Variation Across Different
Replacement Policies for BE

Figure 4.20:Influence of Varying Compression Cache Replacement Policy on Off-Chip
Energy.

Fig. 4.27, we observe that the extra cycle penalty when the 38-bit L2→M address bus is

compressed to 8 bits is only 1.65% and similar to the trend observed earlier for the L1→L2

bus, the penalty begins to drop off rapidly for larger bus widths. Also, the trend is similar

when both L1→L2 and L2→M buses and addresses are compressed, but higher penalties are

incurred. It can also be noted that the combined penalty is slightly less than the penalties

when the buses are compressed individually. From Fig. 4.28, we observe that compressing

L2→M addresses slightly worsens bus energy except for wider buses (24 and 32 bits) in

which case the bus becomes energy-efficient to a small degree.

140

0

0.5

1

1.5

2

2.5

3

4K 8K 16K 32K 64K 128K 256K
Level 1 Cache Size

E
xt

ra
 C

yc
le

 P
en

al
ty

 (%
)

12 14 16 19 20 24

Extra Cycle Penalty Variation Across Different Sizes of Level 1 Cache

Figure 4.21:Influence of Varying L1 Cache Sizes on Performance.

4.5 Conclusions

In this chapter, we comprehensively analyzed system performance, bus energy dissipation,

and cost savings (due to reduction in number of bus lines and associated hardware) when

address compression schemes like dynamic base register compression or bus expander are

applied to the L1→L2 level address bus. With simulations using a cycle-accurate simulator

for fourteen SPEC CPU2000 benchmarks, we found optimal compression cache sizes that

results in minimum extra cycle penalty, for each of these schemes, and for a wide range of

compressed bus widths. We also reported energy savings, compression cache miss rates,

and address compression ratios for the optimal configurations. We showed that aggressive

bus-width reduction (as much as 63%, for example) will result in only an extra cycle penalty

of about 1% or less and that energy dissipation in address buses will reduce appreciably (up

141

0.75

0.8

0.85

0.9

0.95

1

1.05

4K 8K 16K 32K 64K 128K 256K
Level 1 Cache Size

O
n-

C
hi

p
E

ne
rg

y
R

at
io

12 14 16 19 20 24

On-Chip Energy Ratio Variation Across
Different Sizes of Level 1 Cache

Figure 4.22:Influence of Varying L1 Cache Sizes on On-Chip Energy.

to 13%) with compression for current technologies. These savings were found to increase

for future nanometer technology nodes.

142

0.95

1

1.05

1.1

1.15

1.2

4K 8K 16K 32K 64K 128K 256K

Level 1 Cache Size

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

12 14 16 19 20 24

Off-Chip Energy Ratio Variation Across
Different Sizes of Level 1 Cache

Figure 4.23:Influence of Varying L1 Cache Sizes on Off-Chip Energy.

143

2.401

1.104

0.497

0.058

0.004

1.625

0.826

0.465

0.072

0.004

2.324

1.064

0.461

0.032

1.576

0.772

0.413

0.016

2.320

1.061

0.464

0.032

1.578

0.767

0.405

0.015

2.320

1.061

0.464

0.032

1.576

0.767

0.405

0.015

2.320

1.061

0.464

0.032

1.576

0.767

0.405

0.015

2.320

1.061

0.464

0.024

1.576

0.665

0.405

0.015

-0.030

-0.053
-0.052

-0.030

-0.051

-0.030

-0.051

-0.030

-0.051

-0.030

-0
.5

00

0.
00

0

0.
50

0

1.
00

0

1.
50

0

2.
00

0

2.
50

0

3.
00

0

12
14

16
20

24
12

14
16

20
24

16
 K

B
64

 K
B

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Extra Cycle Penalty (%)

8
(d

ef
au

lt)

16
32

64
12

8
25

6

E
xt

ra
 C

yc
le

 P
en

al
ty

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
B

uf
fe

rs
 a

nd
 L

ev
el

 1
 C

ac
he

 S
iz

es
 fo

r
B

E

of
 e

nt
ri

es
 in

 b
uf

fe
r:

F
ig

ur
e

4.
24

:In
flu

en
ce

of
Va

ry
in

g
L1

C
ac

he
an

d
B

uf
fe

r
S

iz
es

on
P

er
fo

r-
m

an
ce

.

144

0.843

0.889

0.937

0.999

0.995

0.836

0.882

0.938

1.010

1.004

0.825

0.867

0.912

0.970

0.966

0.811

0.854

0.905

0.970

0.964

0.820

0.862

0.907

0.966

0.961

0.804

0.847

0.898

0.963

0.957

0.820

0.862

0.907

0.966

0.961

0.804

0.847

0.898

0.963

0.957

0.820

0.862

0.907

0.966

0.961

0.804

0.847

0.898

0.963

0.957

0.820

0.862

0.907

0.966

0.961

0.804

0.847

0.898

0.963

0.957

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

12
14

16
20

24
12

14
16

20
24

16
 K

B
64

 K
B

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

8
(d

ef
au

lt)
16

32
64

12
8

25
6

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
B

uf
fe

rs
 a

nd
 L

ev
el

 1
 C

ac
he

 S
iz

es
 fo

r
B

E

of

 e
nt

ri
es

 in
 b

uf
fe

r:

F
ig

ur
e

4.
25

:In
flu

en
ce

of
Va

ry
in

g
L1

C
ac

he
an

d
B

uf
fe

rS
iz

es
on

O
n-

C
hi

p
E

ne
rg

y.

145

1.067

1.095

1.075

1.057

0.992

1.059

1.105

1.115

1.095

1.002

1.050

1.076

1.053

1.033

0.968

1.035

1.078

1.084

1.061

0.968

1.045

1.070

1.048

1.028

0.963

1.028

1.070

1.077

1.054

0.960

1.045

1.070

1.048

1.028

0.963

1.028

1.070

1.077

1.054

0.960

1.045

1.070

1.048

1.028

0.963

1.028

1.070

1.077

1.054

0.960

1.045

1.070

1.048

1.028

0.963

1.028

1.071

1.077

1.054

0.960

0.
85

0

0.
90

0

0.
95

0

1.
00

0

1.
05

0

1.
10

0

1.
15

0

12
14

16
20

24
12

14
16

20
24

16
 K

B
64

 K
B

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Off-Chip Energy Ratio

8
(d

ef
au

lt)
16

32
64

12
8

25
6

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
B

uf
fe

rs
 a

nd
 L

ev
el

 1
 C

ac
he

 S
iz

es
 fo

r
B

E

of
 e

nt
ri

es
 in

 b
uf

fe
r:

F
ig

ur
e

4.
26

:In
flu

en
ce

of
Va

ry
in

g
L1

C
ac

he
an

d
B

uf
fe

rS
iz

es
on

O
ff-

C
hi

p
E

ne
rg

y.

146

4.
90

7

1.
61

7
1.

65
3

6.
19

4

2.
09

6

0.
80

4
0.

46
1

0.
00

4
0.

00
4

0.
07

2
0.

46
9

0.
00

2
0.

00
2

0.
02

9
0.

23
3

0.
01

0
0.

01
0

0.
15

3

01234567

8-
bi

t
12

-b
it

16
-b

it
20

-b
it

24
-b

it
32

-b
it

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Extra Cycle Penalty (%)

L
1�

L
2

A
dd

re
ss

 B
us

L
2�

M
 A

dd
re

ss
 B

us
L

1�
L

2�
M

 A
dd

re
ss

 B
us

E
xt

ra
 C

yc
le

 P
en

al
ty

 V
ar

ia
tio

n
A

cr
os

s M
em

or
y

L
ev

el
s f

or
 B

E

F
ig

ur
e

4.
27

:A
dd

re
ss

C
om

pr
es

si
on

A
cr

os
s

D
iff

er
en

tM
em

or
y

S
ys

te
m

Le
ve

ls
.

147

1.
17

8
1.

11
4

1.
09

5

1.
00

2
1.

00
0

1.
17

7
1.

12
6

1.
16

9

0.
99

9
0.

99
9

1.
05

9

1.
27

8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

8-
bi

t
12

-b
it

16
-b

it
20

-b
it

24
-b

it
32

-b
it

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Off-Chip Energy Ratio
L

1�
L

2
A

dd
re

ss
 B

us
L

2�
M

 A
dd

re
ss

 B
us

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s M
em

or
y

L
ev

el
s f

or
 B

E

F
ig

ur
e

4.
28

:A
dd

re
ss

C
om

pr
es

si
on

A
cr

os
s

D
iff

er
en

tM
em

or
y

S
ys

te
m

Le
ve

ls
.

148

Chapter 5

Energy-Efficient Compressed Address

Transmission and Partial-Match Address

Compression

5.1 Introduction

Nanometer design, which will soon make billion transistor chips a reality, has been plagued

with many problems that are related to the interconnect system [46]. Some of these problems

are increasing delays in interconnects routed in the global layers, where most signal lines like

address, instruction, and data buses are routed and increasing power consumption and signal

integrity/reliability problems in these buses due to coupled inductance and capacitance ef-

fects. In deep sub-micron (DSM) design, circuit techniques like wire and driver sizing, use of

149

repeaters, etc. and/or physical design techniques like power- and delay-aware routing were

adopted to keep such problems of interconnect scaling in check. But, due to rising number of

metal layers, smaller spacings and hence the explosion in the amount of inter-wire coupling

(both inductive and capacitive), such schemes are no longer complexity-effective for current

nanometer designs. In contrast, an effective and scalable solution to alleviate the problems

due to the interconnect system in nanometer design is to consider architectural-level tech-

niques that can reduce the pressure on the interconnect system and remove or reduce the

reliance on interconnect-aware circuit and physical design.

Since bus lines constitute a bulk of the interconnect system in the upper metal layers,

many schemes involving encoding of data transmission for energy, delay, and cross talk

have been proposed. Some older schemes use the fact that switching activities and hence

energy dissipation in bus lines can be reduced by exploiting the spatial locality of information

[6]. Others like the bus-invert scheme require no prior knowledge of data statistics [60].

Recently, due to the dominance of inter-wire capacitive coupling, encoding schemes that

minimize inter-wire transitions have been proposed [77, 34, 58]. Another way to possibly

reduce bus energy dissipation is compression—compression followed by encoding has been

found to yield highest energy reductions for buses [50]. In a compression scheme for buses,

data to be sent is compressed and transmitted on a narrow-width bus if the compression is

successful or transmitted in multiple cycles if not. Compression can also result in overall

cost benefits since savings obtained by reducing the number of bus lines, associated drivers,

and repeaters can outweigh the area/cost incurred by the compression and decompression

150

hardware. However, when transmitting compressed information over narrow-width buses,

energy dissipation may actually worsen if: (i) the compression hardware is unsuccessful

most of the time, or (ii) bits of the compressed addresses are misaligned so as to cause an

increase in the number of self and inter-wire transitions.

5.1.1 Scope and contributions of this work

Some previous work has proposed compression and decompression schemes for address,

instructions, and data primarily to improve bandwidth and latency for buses [52, 11, 10].

The effectiveness of a compression scheme in reducing the switching activity in off-chip

data buses was studied in [3] and these results are not necessarily relevant to on-chip buses

in current nanometer-scale technologies where coupling capacitances dominate. Recently,

energy efficiency of various data-value prediction schemes—which are often viewed as pro-

viding performance enhancement—were studied in [68] for on-chip data buses and in [63]

for off-chip data buses. Thus, no previous work has considered energy-efficiency as a goal

when designing compression schemes for buses.

In this work, we propose various techniques that can be used with existing compression

schemes for buses to ensure the best energy-efficiency for compressed information transmis-

sion. Note that these techniques are complementary to others like bus encoding which can be

applied after compression or techniques like low-swing signaling [75], charge recycling [33],

or wire optimizations like spacing and shielding [13]. In fact, the area/cost of circuitry that

is saved by adopting compression can be used to increase spacing or insert shield wires to

obtain further benefits. Although the ideas behind many of our techniques are broadly appli-

151

cable to all buses (address, instruction, and data), the techniques presented in this chapter are

somewhat specialized for the purpose of address compression. In addition, we propose new

and optimized designs of compression-caches that are different and perform substantially

better compared to those proposed earlier.

In Chapter 4, our simulations have shown that BE works better for on-chip address buses

than another scheme, DBRC. Hence, we use BE as the default address compression scheme

in this work and report energy reductions using our techniques for this scheme. However,

many of our techniques will provide similar reductions when applied to the DBRC scheme

also. The simulation methodology used in this study has been mentioned earlier in Sec. 4.3.

We will first present our proposed transmission techniques and results. The transmission

techniques are based on the techniques proposed earlier for HOC in Sec. 3.7. Similarly,

each successive technique we present is an improvement over the previous one and results in

progressively better energy reductions. Then, in Sec. 5.8, we will present a highly energy-

and performance-efficient dynamic address compression methodology for nanometer-scale

address buses designed to improve the hit-rate and reduce miss penalty of dynamic compres-

sion caches and hence improve performance, energy, and cost.

5.2 Technique 1: Bus arrangement

It can be observed easily that, with the default transmission format described in Sec. 4.2,

when misses in the sender cache occur and addresses have to be transmitted in full in multiple

cycles, bus energy dissipation will be higher because of misaligned bits, i.e., bits that have

152

no correlation with bits in the same position transmitted in the previous cycle—causes a

self-transition—and bits that are uncorrelated with neighboring bits in the same cycle which

causes coupling transitions. Hence, in Chapter 4, we have modified the original transmission

format used for BE to improve its energy efficiency by rearranging some of the fields to

reduce unwanted self and coupling transitions, which is shown on the left in Fig. 5.1. In

this section, we propose a new transmission format for compressed addresses—separately

for hit and miss cases—based on the following principles of arranging the different fields to

minimize self and coupling transitions.

Due to the highly sequential nature of addresses, the least significant bits (LSB) of the

address will be the most active. For this reason, in address compression schemes, the lower

order portion of the address is not compressed. To reduce the coupling energies of the lower

order portion of the address (U-field), we place U0, the LSB of the U-field in the MSB line

of the compressed bus during the hit as well as during the first cycle of a miss as shown in

the figure on the right in Fig. 5.1. Thus, the bit U1 now occupies the LSB line of the bus

and its coupling energy is reduced because it can no longer cause a toggle transition with

the U0 bit. Further, the U0 bit which has been placed next to the C-bit also results in lesser

coupling energies since its neighbor is expected to change state less frequently because of

high hit rates in the sender cache. Also, the edge lines have less coupling capacitance since

they have only one neighboring line and this will lead to lesser coupling energies. Note that

we rearrange bits as described above only during a hit and the first cycle of a miss because,

for subsequent cycles of a miss when the H-field is transmitted the two least significant bit

153

line may not necessarily be the most active lines to warrant being decoupled from each other.

C W UI
Hit Pattern

BE Transmission Format

Miss Pattern

T H T MLast cycle

T M T L2nd cycle

C T L UI1st cycle

C W U RI
Hit Pattern

BA Transmission Format

Miss Pattern

T H T MLast cycle

T M T L2nd cycle

1st cycle C T L U RIU 0

T H T M T L UIOriginal Address

U 0

Figure 5.1: Proposed Bus Arrangement Techniques.The figure on the left shows the
new basic transmission format that we propose for the BE address compression scheme.
The figure on the right further reduces energy by rearranging some bits to reduce unwanted
coupling transitions.

5.3 Technique 2: Idle-bit insertion for coupling energy re-

duction

When a missed address is sent in multiple cycles over the narrow-width bus, the last cycle

of transmission of the address is likely to be poorly utilized. This effect is more pronounced

when the compressed bus width is a non-integral fraction of the uncompressed address width.

In such cases, theidle bits can be used to reduce coupling energies by placing them between

activebits in different cycles of the miss. Note that if a bit is designated as idle in the current

154

cycle, then it means that it holds the value from its previous cycle. Thus, an idle bit can never

have a toggle transition with either of its neighboring bits for the current cycle.

Given a fixed number of idle bits that we can insert, we first place idle bits at the W-field

in the first cycle of the miss transmission which will potentially help reduce the coupling

energy for that cycle. This is because the W-field is un-correlated with its neighboring fields

and inserting idle bits between them reduces the chance of unwanted coupling transitions.

Next, we assign the maximum possible number of idle bits to the second cycle of miss

transmission. For aw-bit compressed bus the maximum number of idle bits that can be

assigned to each cycle isbw/2c. Now, supposek bits were assigned to the second cycle, then

the idle bits are interspersed alternately with active bits in the cycle starting from an active

bit at the LSB to achieve maximum benefits for coupling energy reduction. After assigning

to the first and second cycles as above, if idle bits remain, then they are assigned to the third

cycle and so on till all the idle bits are exhausted.

5.4 Results for Address Arrangement and Idle-bit Inser-

tion

Results for address arrangement combined with idle-bit insertion technique compared to

the default transmission format for BE are shown in Fig. 5.2. The results show that, in

all cases, net energy reductions are obtained over the default transmission format used for

BE. Average energy reductions are about 5.5% with our proposed address arrangement and

idle-bit insertion techniques. Further, most of the energy reductions are obtained as a result

155

of reduction in the number of toggle transitions. In most cases, where the bus widths are

reduced less than 50%, the default BE scheme results in an increase in energy over an un-

compressed bus, but with our techniques energy reductions are obtained in almost all cases.

5.5 Technique 3: LRU-encoded way-bits

We call this scheme BAL (Bus arrangement + LRU-encoding) and it applies only in the

case of compressed addresses transmitted during a hit. We replace the W-field, which nor-

mally points to the way number of the tag that hit in a particular line of the sender cache, with

the least-recently-used (LRU) number that the sender cache maintains for each entry. This

encoding of the way-bits using the LRU-value is motivated by the fact that, in the sender

cache, the most recently accessed entry is likely to be accessed again and in this case an

LRU value of zero will be used to encode the way bits. If the most recently accessed is not

accessed again, then it is highly likely then the one with the next higher LRU value (equal

to one) will be accessed. Thus, compared to the previous transmission the LRU-encoded

way bits will cause only transition in only one bit. If the way bits were not LRU-encoded,

then they can take one ofa different values in 0, . . . ,a−1, a being the set-associativity of

the sender cache. Our argument that LRU-encoded way-bits will take the zero value most

of the time is supported by simulation results shown in Fig. 5.3. This figure shows that, for

most bus-widths and set-associativities, way-bits encoded with LRU values are zero-valued

and remain unchanged more than 50% of the time and this may lead to substantial self- and

coupling-energy savings.

156

0.524

0.536

0.495

0.502

0.496

0.519

0.519

0.521

0.523

0.525

0.532

0.549

0.529

0.540

0.515

0.520

0.477

0.481

0.478

0.482

0.478

0.483

0.478

0.483

0.478

0.483

0.298

0.266

0.288

0.255

0.305

0.257

0.329

0.324

0.380

0.366

0.486

0.462

0.461

0.447

0.462

0.425

0.502

0.459

0.495

0.452

0.490

0.447

0.490

0.447

0.490

0.447
0.034

0.031

0.034

0.031

0.034

0.031

0.034

0.031

0.034

0.031

0.037

0.034

0.036

0.035

0.038

0.036

0.037

0.035

0.037

0.036

0.037

0.035

0.039

0.036

0.044

0.043

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1.
20

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

B
E

B
A

8
[1

]
10

 [1
]

12
 [9

]
14

 [3
]

16
 [9

]
18

 [1
5]

19
 [1

8]
20

 [1
]

22
 [2

]
24

 [2
]

28
 [2

]
32

 [2
]

36
 [2

]
C

om
pr

es
se

d
B

us
 W

id
th

 (B
its

) [
Id

le
 B

its
]

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
 C

ha
rg

e
E

ne
rg

y
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

 D
is

ch
ar

ge
 a

nd
 C

ha
rg

e
E

ne
rg

y
Se

lf-
C

ap
ac

ita
nc

e
E

ne
rg

y

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t C
om

pr
es

se
d

B
us

 w
id

th
 w

ith
 B

us
 A

rr
an

ge
m

en
t

 E
ne

rg
y

Sa
vi

ng

 A
vg

.

M

ax
.

M
in

.

 B

E

3.
45

2%
 1

8.
00

4%
 -

8.
93

9%

 B

A

5.
58

0%
 2

0.
36

3%
 -

8,
71

9%

F
ig

ur
e

5.
2:

E
ne

rg
y

R
ed

uc
tio

n
U

si
ng

th
e

P
ro

po
se

d
A

dd
re

ss
-a

rr
an

ge
m

en
t

Te
ch

ni
qu

e.

157

Fr
eq

ue
nc

ie
s o

f L
R

U
-E

nc
od

ed
 W

ay
 V

al
ue

s

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way

8
10

12
16

20
24

32
C

om
pr

es
se

d
B

us
 W

id
th

 (B
its

)

Frequency (%)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Se
t A

ss
oc

ia
tiv

ity
F

ig
ur

e
5.

3:
F

re
qu

en
cy

of
Va

lu
es

Ta
ke

n
by

LR
U

-e
nc

od
ed

W
ay

B
its

.

158

Energy results for compressed address transmissions with and without using LRU-encoded

way bits are shown in Fig. 5.4 and Fig. 5.5. In this study, we varied the set associativity of

sender cache from 2-way to 16-way. Note that using direct-mapped caches does not make

sense for this study since there are no way bits to encode in that case. Also, we considered

the maximum size of the E-field to be 4 bits and hence 16-way set associativity represents a

fully-associative sender cache. Average energy reductions of about 12% were obtained for

on-chip buses due to reductions in both self and coupling energies with LRU-encoded way-

bits. With off-chip buses energy reductions ranging from 0.8–4.5% were observed due to re-

ductions in self-energies. It can also be observed that, in both cases, higher set-associativities

yield better energy savings when LRU-encoded way bits are used. This is because higher

set-associative caches provide better hit rates.

5.6 Technique 4: Encoding higher order part of the ad-

dress

In this scheme, we encode the higher order part of the address (also called the tag-field

since it is stored as tag in the sender cache) using a two step XOR process as shown in

Fig. 5.6. Note that computing bitwise XOR of twon-bit addresses requires constant time

and little hardware and hence this will not add much extra latency to the bus interface. We

call this BALT (Bus arrangement + LRU-encoding + Tag-encoding) and it is applied only in

the case of a missed address.

First, the H-field of the current address is XOR-ed with the H-field of the previous address.

159

0

0.
2

0.
4

0.
6

0.
81

1.
2

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

BA
BAL

2- w
ay

4- w
ay

8- w
ay

16
-

w
ay

2- w
ay

4- w
ay

8- w
ay

16
-

w
ay

2- w
ay

4- w
ay

8- w
ay

16
-

w
ay

2- w
ay

4- w
ay

8- w
ay

16
-

w
ay

2- w
ay

4- w
ay

8- w
ay

16
-

w
ay

2- w
ay

4- w
ay

8- w
ay

16
-

w
ay

2- w
ay

4- w
ay

8- w
ay

16
-

w
ay

8
10

12
16

20
24

32
C

om
pr

es
se

d
B

us
 W

id
th

 (B
its

)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
T

og
gl

e
E

ne
rg

y

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
 D

is
ch

ar
ge

 a
nd

 C
ha

rg
e

E
ne

rg
y

Se
lf-

C
ap

ac
ita

nc
e

E
ne

rg
y

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
C

om
pr

es
se

d
B

us
 w

id
th

 w
ith

 L
R

U
-E

nc
od

ed
 W

ay
E

ne
rg

y
Sa

vi
ng

 A

vg
.

M

ax
.

M
in

.
B

A

 9
.4

69
%

 2

0.
50

5%

-3
.1

71
%

B
A

L

12

.4
70

%

26
.1

47
%

 3

.4
23

%

F
ig

ur
e

5.
4:

E
ne

rg
y

R
ed

uc
tio

n
U

si
ng

th
e

LR
U

-e
nc

od
ed

W
ay

-b
it

Te
ch

ni
qu

e:
O

n-
ch

ip
bu

s
en

er
gy

di
ss

ip
at

io
n

ra
tio

fo
r

di
ffe

re
nt

co
m

pr
es

si
on

ca
ch

e
se

ta
ss

oc
ia

-
tiv

iti
es

.

160

1.
25

9

1.
06

7 1.
04

8

1.
17

0 1.
14

8 1.
13

2 1.
05

4 1.
02

8 1.
01

5 0.
99

7
1.

00
2

0.
99

8 0.
97

1 0.
95

1

1.
02

3

1.000

1.000

1.000

1.000

1.010

1.003

1.
01

1

1.
07

4
1.

07
4

1.
01

2
1.

02
8

1.
04

0
1.

05
5

1.
04

0

1.
03

4

1.
04

4
1.

05
7

1.
06

6
1.

06
8

1.
07

51.
19

4
1.

20
1

1.
20

9

1.003

1.
05

8

0.
97

8
0.

97
6

1.
03

7

1.000
1.000

1.000

1.000

0.997

0.999

0.999

1.
03

4
1.

03
7

1.
03

0

1.241

0.999

1.
00

7

0.
90

0

0.
95

0

1.
00

0

1.
05

0

1.
10

0

1.
15

0

1.
20

0

1.
25

0

1.
30

0

2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way
2-way
4-way
8-way

16-way

8
10

12
16

20
24

32
C

om
pr

es
se

d
B

us
 W

id
th

 (B
its

)

Off-Chip Energy Ratio

B
A

B
A

L

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
C

om
pr

es
se

d
B

us
 w

id
th

 w
ith

 L
R

U
-E

nc
od

ed
 W

ay
Im

pr
ov

em
en

t

 A
vg

.

M

ax
.

 M
in

.
8-

bi
t

 3

.5
78

%

 5
.1

55
%

 1

.4
39

%

10

-b
it

4.

08
3%

 5

.7
77

%

 2
.0

26
%

12
-b

it

4.
35

4%

 6
.1

28
%

 1

.8
98

%
16

-b
it

4.

47
5%

 6

.0
06

%

 2
.3

32
%

20
-b

it

3.
78

0%

 4
.1

83
%

 3

.4
19

%
24

-b
it

0.

84
4%

 1

.1
79

%

 0
.4

26
%

32
-b

it

0.
00

0%

 0
.0

00
%

 0

.0
00

%

F
ig

ur
e

5.
5:

E
ne

rg
y

R
ed

uc
tio

n
U

si
ng

th
e

LR
U

-e
nc

od
ed

W
ay

-b
it

Te
ch

ni
qu

e:
O

ff-
ch

ip
bu

s
en

er
gy

di
ss

ip
at

io
n

ra
tio

fo
r

di
ffe

re
nt

co
m

pr
es

si
on

ca
ch

e
se

ta
ss

oc
ia

-
tiv

iti
es

.

161

Due to temporal and spatial redundancy of the bits, the result will have more zero-valued bits

than the H-field of the current address. However, this XOR-ed form of the H-filed may have

a power disadvantage. To rectify this, in the next step, we again XOR each bit of the new

H-field with the bit transmitted at the corresponding bit position on the bus in the previous

cycle. Since the first step yielded more zero-valued bits, the next step will make the H-field

pattern similar to the one transmitted on the bus in the previous cycle thus reducing both

self and coupling energies. It can be observed from results shown in Fig. 5.6 that compared

to the previous scheme (BAL), H-field encoding alone can result in extra average energy

reductions of nearly 3.3% for on-chip buses and about 13.4% for off-chip buses. It can also

be observed that this scheme provides the best energy reductions for off-chip buses because,

by doing two-step XOR operation, the self energy between the the tag bits transmitted at the

same position in two consecutive bus cycles reduces since the bits are likely to have the same

value.

Previous H−field

Current H−field

X
n
−

1
(t

−
1
)

X0(t)
X1(t)

Xn−1(t)

X
1
(t

−
1
)

X
0
(t

−
1
)

FF FF FF

Figure 5.6:Structure for Encoding the Higher Order Part of the Address.

162

5.7 Technique 5: XOR encoding for the compressed ad-

dress

It was observed earlier that using an XOR form of the H-field for transmitting missed

addresses yield good reductions in self-energy and some reductions in coupling energy also.

However, by using an XOR form of the entire address before address arrangement, LRU-

encoding, or tag-encoding are applied, further coupling energy reductions can be obtained.

Hence this scheme is called XOR-BALT.

In this technique, the incoming (uncompressed) address is first XOR-ed with the previous

address and this XOR version of the address is used to form the compressed address depend-

ing on whether a hit or miss occurs in the sender cache. Note that we do not use the XOR

version of the address to look up the sender cache because we found that doing so leads

to no substantial performance or energy benefit. Thus, in the case of a hit, the U-field and

the I-field which are obtained from the original address are in XOR form but the control bit

and the W-field are not. The W-field is encoded with the LRU bits as discussed earlier. In

the case of a miss, all fields except the control bit are in XOR form and the H-field encod-

ing is done as described earlier; note that the first step of the two-step XOR process for tag

encoding is already done in this case. Results in Figs. 5.7 and 5.8 show that this scheme

results in about 0.7% better energy reduction than the previous scheme on the average for

on-chip buses but also results in a 0.3% degradation for off-chip buses. The reason for this

degradation is that, every bit transition in the original trace will cause two bit transitions in

163

the XOR trace, except when consecutive transitions occur in the original trace (not likely),

in which case there will not be any transition in the XOR trace.

In addition, we apply the technique 5 proposed in Sec. 3.7.6, which use the idle bits as

active shields, on top of the XOR-BALT. We call this scheme XOR-BALTI (XOR-BALT +

Idle-bit encoding). Results for the XOR-BALTI scheme in Fig. 5.7 show that this scheme

performs the best for on-chip buses yielding about 14.7% energy reductions on the average

for compressed address transmission.

5.8 Partial-Match Compression Cache

To improve the hit-rate and reduce miss penalty of the compression cache used in the

previous schemes, we proposepartial-matchingof the tag portion stored in the compression

cache with the higher order portion of the address. In partial-match (PM) compression-cache,

we check for the longest match between the tag portion stored in the cache and the higher

order portion of the incoming address. We considerk possible groups of bits ending at the

most significant bit (MSB) of the incoming address as shown in Fig. 5.9. For the hardware

schematic shown in Fig. 5.10, the value ofk is four. If a partial match in any of thesek

groups occurs, the control number for each group is transmitted along with the index. The

remaining portion of the higher order part of the address (that did not match the tag) are sent

in uncompressed form, as is the lower order portion of the address. In case of a miss, where

none of the partial matches succeeded, the entire address is sent.

164

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

BE
BA

BAL
BALT

XOR-BALT
XOR-BALTI

8
10

12
14

16
19

20
24

32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
T

og
gl

e
E

ne
rg

y
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

 D
is

ch
ar

ge
 a

nd
 C

ha
rg

e
E

ne
rg

y
Se

lf-
C

ap
ac

ita
nc

e
E

ne
rg

y

*B
E

: D
ef

au
lt-

B
E

 B
A

: B
us

 a
rr

an
ge

m
en

t
 B

A
L

: B
us

 a
rr

an
ge

m
en

t+
L

R
U

-e
nc

od
in

g
 B

A
L

T
: B

us
 a

rr
an

ge
m

en
t+

L
R

U
-e

nc
od

in
g+

T
ag

-e
nc

od
in

g
 X

O
R

-B
A

L
T

: X
O

R
+B

A
L

T
 X

O
R

-B
A

L
T

I:
 X

O
R

+B
A

L
T

+I
dl

e-
bi

t-
en

co
di

ng

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s
D

iff
er

en
t T

ra
ns

m
is

si
on

 S
ch

em
es

E
ne

rg
y

sa
vi

ng

A
vg

.
M

ax
.

M
in

.
B

E
*

6.
86

0%

18
.0

04
%

-2

.5
28

%

B
A

*
9.

00
7%

20

.3
75

%

-2
.6

87
%

B

A
L

*
10

.1
24

%

23
.9

39
%

-1

.3
76

%

B
A

L
T

*
13

.4
83

%

26
.6

61
%

2.

72
9%

X

O
R

-B
A

L
T

*
14

.2
17

%

27
.4

09
%

3.

06
2%

X

O
R

-B
A

L
T

I*

14
.7

28
%

28

.7
92

%

3.
06

2%

F
ig

ur
e

5.
7:

O
n-

C
hi

p
E

ne
rg

y
R

ed
uc

tio
n

U
si

ng
A

ll
th

e
P

ro
po

se
d

Te
ch

ni
qu

es
.

165

0.
80

0

0.
85

0

0.
90

0

0.
95

0

1.
00

0

1.
05

0

1.
10

0

1.
15

0

1.
20

0

8
10

12
14

16
19

20
24

32
C

om
pr

es
se

d
B

us
 W

id
th

 (B
its

)

Off-Chip Energy Ratio

B
E

*
B

A
*

B
A

L
*

B
A

L
T

*
X

O
R

-B
A

L
T

*
X

O
R

-B
A

L
T

I*

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s
D

iff
er

en
t T

ra
ns

m
is

si
on

 S
ch

em
es

*B
E

: D
ef

au
lt-

B
E

 B
A

: B
us

 a
rr

an
ge

m
en

t
 B

A
L

: B
us

 a
rr

an
ge

m
en

t+
L

R
U

-e
nc

od
in

g
 B

A
L

T
: B

us
 a

rr
an

ge
m

en
t+

L
R

U
-e

nc
od

in
g+

T
ag

-e
nc

od
in

g
 X

O
R

-B
A

L
T

: X
O

R
+B

A
L

T
 X

O
R

-B
A

L
T

I:
 X

O
R

+B
A

L
T

+I
dl

e-
bi

t-
en

co
di

ng

E
ne

rg
y

sa
vi

ng

A
vg

.
M

ax
.

M
in

.
B

E

-8
.3

33
%

0.

00
0%

-1

7.
80

0%

B
A

-7

.3
89

%

0.
00

0%

-1
7.

70
0%

B

A
L

-6

.3
33

%

0.
10

0%

-1
6.

40
0%

B

A
L

T

7.
05

6%

17
.3

00
%

-0

.6
00

%

X
O

R
-B

A
L

T

6.
73

3%

16
.7

00
%

-0

.7
00

%

X
O

R
-B

A
L

T
I

6.
37

8%

16
.7

00
%

-0

.7
00

%

F
ig

ur
e

5.
8:

O
ff-

C
hi

p
E

ne
rg

y
R

ed
uc

tio
n

U
si

ng
A

ll
th

e
P

ro
po

se
d

Te
ch

ni
qu

es
.

166

Tag Index U
Hit Entire tag
Part 1

Part 2
Part 3

Miss entire tag

Partial-Match Logic (e.g. k=3)

10
00
01

11

Control number

Figure 5.9:Partial-Match Logic.

5.8.1 Partial-match encoding and transmission format

The transmission techniques we proposed for BE can also be applied in PM transmission.

However, for tag encoding, the tag bits are XOR-ed with the tag in the PM compression

cache entry instead of the tag of the previous address when partial hit happens. Since the

tag of the current address partially matches the tag of the entry in the compression cache,

the result will have more zero-valued bits than XOR-ing the tag of the current address with

the tag of the previous address. As shown in Figs. 5.11 and 5.12, this technique provides the

same on-chip and off-chip energy reduction as the one we proposed in Sec. 5.6. The benefit

of applying this technique is that the performance of the compression can be improved since

the XOR tag can be taken from the comparison result obtained when checking compression

cache hit/miss instead of calculated separately. In addition, since the LRU-encoded way-

bits are zero-valued more than 50% of the time, shown in Fig. 5.3 and the percentage will

increase with PM, the LRU-encoded way-bits can be XOR-ed with the bits transmitted at the

167

=
?

=
=

=

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

	
	
	
	

	
	
	
	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

U
nm

at
ch

ed
 T

ag

3:1 MUX

C
N

T
R

L
.

U
N

IT

V
<

1>

37
0

2

H
/M

<
1>

M
U

X

U
N

C
<

2>
I<

2>
T

A
G

<
34

>
E

<
3>

sp
ec

if
ic

 p
or

tio
ns

 o
f

T
A

G
<

34
>

E
<

3>
0

U
nm

at
ch

ed
 T

ag

01
E

<
3>

E
<

3>

U
N

C
<

2>

U
N

C
<

2>

5

T
A

G
<

34
> 34 34

E
ac

h
co

m
pa

ra
to

r
m

at
ch

es
 o

nl
y

T
A

G
<

27
>

T
A

G
<

16
>

T
A

G
<

9>

C
om

pl
et

e
H

it
(1

 c
yc

le
)

3

C
om

pl
et

e
M

is
s

(7
 c

yc
le

s)
Pa

rt
ia

l H
its

 (
3,

 5
, o

r
6

cy
cl

es
)

or

U
nm

at
ch

ed
 T

ag
 (

co
nt

d.
)

C
yc

1

C
yc

2
C

yc
3

G
rp

#

G
rp

#

F
ig

ur
e

5.
10

:P
ar

tia
l-M

at
ch

C
om

pr
es

si
on

C
ac

he
:H

ar
dw

ar
e

or
ga

ni
za

tio
n

fo
r

pr
o-

po
se

d
pa

rt
ia

l-m
at

ch
ad

dr
es

s
co

m
pr

es
si

on
sc

he
m

e.

168

corresponding bit position on the bus in the previous cycle before placed on the bus to reduce

self- and coupling-energy. The off-chip and on-chip energy ratios can be slightly improved

by 0.011 and 0.009 with way bit encoding, respectively.

In a partial match scheme withk partitions in the compressed portion of the address, the

starting bit position of each partition starting from the least significant bit (LSB) is [c×B−

(1+C)− log2(E)−U]-1, wherec is the number of cycles required to transmit the codeword,

B is the narrow bus-width,C is the number of bits used for partial-match control number to

indicate which part has hit,E is the number of entries in the compression cache, andU is the

width of the uncompressed portion.

For k partitions, we assign the k partial-match control numbers in two energy-efficient

ways based on the total frequencies of the partitions and the number of 1s in the binary

formats of the control numbers. For k partition, our first approach, control A (CA), is to use

log2(k+1) bits for the control numbers ifk+1 is power of 2. Otherwise, the first approach

is the same as the second approach, control B (CB). In the second approach, we use different

number of bits to differentiate the control numbers. If there is only one bit for the control

number, the control number is 0. Otherwise, all bits in the binary format of the control

numbers are 1s except the LSB bit. As far as the assignment of the control numbers, the

main idea is to assign the control numbers which have more 1s to the partitions, which have

lower frequency to minimize self and coupling energy. Fig. 5.13 shows the control numbers

used for k partitions in binary format. The transmission format for PM is shown in Fig. 5.14.

Since the control numbers change less frequent than the tag, the control numbers for the

169

0.573

0.605

0.654

0.761

0.834

0.942

0.968

0.969

0.964

0.964

0.573

0.605

0.654

0.761

0.834

0.942

0.968

0.969

0.964

0.964

0.564

0.597

0.646

0.754

0.829

0.938

0.966

0.969

0.964

0.964

0.564

0.597

0.646

0.754

0.829

0.938

0.966

0.969

0.964

0.964

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

8
10

12
14

16
18

19
20

24
32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

PM PM
-T

ag
-E

nc
od

in
g

PM
-W

ay
-E

nc
od

in
g

PM
-T

ag
,W

ay
-E

nc
od

in
g

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
Pa

rt
ia

l-M
at

ch
 E

nc
od

in
g

Sc
he

m
es

F
ig

ur
e

5.
11

:O
n-

C
hi

p
E

ne
rg

y
R

at
io

fo
r

P
M

fo
r

D
iff

er
en

tE
nc

od
in

g
S

ch
em

es
.

170

0.547

0.602

0.681

0.777

0.864

0.949

0.965

1.005

0.999

1.000

0.547

0.602

0.681

0.777

0.864

0.949

0.965

1.005

0.999

1.000

0.536

0.593

0.674

0.771

0.858

0.946

0.963

1.005

0.999

1.000

0.536

0.593

0.674

0.771

0.858

0.946

0.963

1.005

0.999

1.000

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

8
10

12
14

16
18

19
20

24
32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Off-Chip Energy Ratio

PM PM
-T

ag
-E

nc
od

in
g

PM
-W

ay
-E

nc
od

in
g

PM
-T

ag
,W

ay
-E

nc
od

in
g

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
Pa

rt
ia

l-M
at

ch
 E

nc
od

in
g

Sc
he

m
es

F
ig

ur
e

5.
12

:O
ff-

C
hi

p
E

ne
rg

y
R

at
io

fo
r

P
M

fo
r

D
iff

er
en

tE
nc

od
in

g
S

ch
em

es
.

171

partitions are interspersed alternately with the tag bits in the second cycle starting from MSB

to minimize the coupling energy. In addition, before placing the control number on the bus,

we XOR each bit of the control number with the bit transmitted at the corresponding bit

position on the bus in the previous cycle. Since the higher the frequency of the partition, the

more zero-valued bits in the control number, the XOR operation will make the bit pattern of

the new control number similar to the one transmitted on the bus in the previous cycle thus

reducing both self and coupling energies.

 0 0 00
 1 10 01
 110 10
 11

 0 0 0
 1 10 10
 110 110
 111

highest

lowest
CA

CB
highest

lowest

Partition Frequencyk=1 k=2 k=3

Figure 5.13:Control Number Format for PM.

5.8.2 Average miss penalty and average bit penalty

We first collect the individual frequency (IF) for each possible partition ending at the MSB,

shown in Fig. 5.15 for n-bit tag field. Fig. 5.16 shows the individual frequency of different

partitions for different buses. The complete hit case is where the partition point equals to the

172

Complete Hit Pattern

Complete Miss Pattern

Last cycle

2nd cycle

1st cycle

PM Transmission Format (k=2)

Partial Hit Pattern

T H T MLast cycle

2nd cycle

1st cycle

T H T M T L UIOriginal Address

C W U RIU 0

T H T M

T M T L

C T L U RIU 0 C W U RIU 0

T M c 1c 2 T L c 0 T L

Figure 5.14:Transmission format for PM.

number of bits in the tag field. When the bus width increases, the frequency of complete hit

increases, which means partial-match compression will be more effective for narrow buses.

Based on the individual frequencies, we use the procedure shown in Fig. 5.17 to generate

the total frequency (TF) for the different partitions, which will be used to choose the best

partitions for performance optimization design and energy optimization design. Fig. 5.15

shows the total frequency for the j-bit partition starting from i bit,TFi, j .

There are two parameters we consider, average miss penalty and average bit penalty, when

we choose the best combination of different partition points. In the case of complete tag hit,

only one cycle is needed for the transmission, which is the same as BE. Miss penalty (MP)

is the extra cycles taken due to partial hit or complete miss. Theaverage miss penaltyof k

173

Tag Index U

0
1

2

i-2
i-1

i

n -1

i-j+1

IF 1
IF 2

IF i
IF i-1
IF i-2

IF i-j+1

IF n -5

TF i, j

n

IF 0

IF n

 (Complete hit)

 (Complete miss)

n -bit

Figure 5.15:Individual Frequency and Total Frequency.

partitions for n-bit tag field is as follows:

MP =
k

∑
i=1

MPi ×TFi,n−i+1

The bit penalty (BP) is the extra bits transmitted due to partial hit or complete miss including

unmatched portion and control bits. Thus, theaverage bit penaltyfor k partitions is:

BP=
k

∑
i=1

BPi ×TFi,n−i+1

174

Pa
rt

iti
on

 P
oi

nt
:

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

4
[3

6]
6

[3
4]

8
[3

2]
10 [3

0]
12 [2

8]
14 [2

6]
16 [2

4]
18 [2

2]
19 [2

1]
20 [2

0]
22 [1

8]
24 [1

6]
28 [1

2]
32

 [8
]

36
 [4

]

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
) [

T
ag

 L
en

gt
h]

Frequency
36

35
34

33
32

31
30

29
28

27
26

25
24

23
22

21
20

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

F
ig

ur
e

5.
16

:I
nd

iv
id

ua
lF

re
qu

en
cy

of
D

iff
er

en
t

P
ar

tit
io

n
P

oi
nt

s
fo

r
D

iff
er

en
t

C
om

pr
es

se
d

B
us

es
.

175

ProcedureTotalFrequency(IndiFrequency[TagLength],TagLength)

/* To determine allTotalFrequency[i, j] of interest.

TotalFrequency[i, j] := IndiFrequency[i]+ IndiFrequency[i−1]+ ...+ IndiFrequency[i− j +1].

0≤ i ≤ t,1≤ j ≤ i. */

Begin

For (i = 0, i < TagLength; i ++) begin

1. TotalFrequency[i,1] := IndiFrequency[i];

2. For (j = 2; j < i; j++) begin

TotalFrequency[i, j] := IndiFrequency[i]+TotalFrequency[i−1, j−1];

Endfor

Endfor

End /* Procedure TotalFrequency */

Figure 5.17:Procedure TotalFrequency

176

5.8.3 Performance and energy optimized designs

In performance optimized design (PO), the tag field is partitioned to obtain the minimum

performance penalty of the address compression. Transmission for any partial match misses

always takes full bus cycles to ensure the minimum miss penalty. The miss penalty for

complete miss is the same as BE. The best partition points are chosen based on the average

miss penalty. We first find out the average miss penalties for all possible combinations of

different partitions. Then the combination which gives the minimum average miss penalty

will be used for partial-match compression. For the narrowest compressed bus we consider,

8-bit bus, the miss penalty in BE is 4 extra bus cycles, which means the complete miss in

partial-match also takes 4 cycles. So the partial match partitions can only take 1, 2, or 3

extra bus cycles for 8-bit compressed bus. For wider buses, the number of extra cycles will

be even less. Therefore the number of different combinations for the partitions is limited and

the best combination can be easily detected.

Similarly, for energy optimized design (EO), we partition the tag field based on the average

bit penalty to obtain the minimum energy consumption. The number of different partitions

including the complete miss is equal to the number of bits in the tag field. If we just simply

check all possible combinations one by one, the time complexity will ben! for n-bit tag

field. We propose the following divide-and-conquer algorithm, minimum average bit penalty

algorithm (MABP), for PM energy optimized design. The time complexity for our MABP

is O(nlog(n)). In MABP, we use recursion to get the minimum average bit penalty and its

corresponding combination of the partitions for sub tag fields first and then use procedure

177

Algorithm MABP(i, j,k, p)

/*MABP(i, j,k, p) perform an optimal partitioning of interval[i, j] k times to minimize bit penalty.

Let it return the bit penalty for this optimal k-partition and let the positions of the optimalk partitions

be returned in integer arrayp[]. The bit penalty includes the penalties for allk parts in[i, j] plus the

partition at(j +1). */

Begin

For (i = 0;i < TagLength; i ++) begin

1. b := MAXFLOAT;

2. k1 := f loor(k/2);

3. k2 := ceil(k/2)−1;

4. TotalFrequency[i,1] := IndiFrequency[i];

5. For (l = (i +k1); l <= (j−k2); l ++) begin

If (k1 = 0) then b1 := l ∗TotalFrequency[l ,(l − i +1)];

elseb1 := MABP(i,(l −1),k1, p1);

If (k2 = 0) then b2 : +(j +1)∗TotalFrequency[(j +1),(j +1− l)];

elseb2 := MABP((l +1), j,k2, p2);

If (k2 = 0) then begin

b = b1+b2;

Concatenate(p, p1,k1, l , p2,k2);

EndIf

Endfor

Endfor

End /* Algorithm MABP */

Figure 5.18:Algorithm MABP

178

ProcedureConcatenate(p, p1,k1, l , p2,k2)

/**/

Begin

1. For (i = 0, i < k1;i ++)

p[i] = p1[i];

2. p[k1] = l ;

3. For (i = 0, i < k2;i ++)

p[k1+ i +1] = p2[i];

End /* Procedure Concatenate */

Figure 5.19:Procedure Concatenate

179

1.555
0.677
0.649

0.854
0.828

0.366
0.570
0.630

0.216
0.250

0.527
0.177
0.179
0.245

0.122
0.124
0.177
0.177

0.090
0.154
0.154

0.078
0.057
0.057
0.057
0.000
0.000
0.000
0.000
0.000

4.981
1.846
1.845

2.428
2.340

1.584
1.617

0.000

0.917

0.004
0.004

0.004
0.004
0.004
0.072

0.072
0.103
0.103
0.237

0.120

0.307
0.189
0.188

0.374
0.377

0.830
0.620

0.374

0.004

0.072

0.138

0.461
0123456

BE/XBALTI
PO(CA)
PO(CB)

EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)
BE/XBALTI
PO(CA/CB)
EO(CA/CB)

8
10

12
14

16
18

19
20

24
32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Miss Penalty and Extra Cycle Penalty (%)

M
is

s P
en

al
ty

E
xt

ra
 C

yc
le

 P
en

al
ty

 (%
)

E
xt

ra
 C

yc
le

 P
en

al
ty

 V
ar

ia
tio

n
A

cr
os

s
D

iff
er

en
t C

om
pr

es
si

on
 S

ch
em

es

E
xt

ra
 C

yc
le

 P
en

al
ty

A

vg
.

M
ax

.
M

in
.

B
E

/X
B

A
L

T
I*

1.

08
5%

4.

98
1%

0.

00
4%

PO

(C
A

)
0.

40
1%

1.

84
6%

0.

00
4%

PO

(C
B

)
0.

40
0%

1.

84
5%

0.

00
4%

E

O
(C

A
/C

B
)

0.
55

1%

2.
42

8%

0.
00

4%

F
ig

ur
e

5.
20

:E
xt

ra
C

yc
le

P
en

al
ty

Va
ria

tio
n

A
cr

os
s

D
iff

er
en

tC
om

pr
es

si
on

S
ch

em
es

.

180

0.402
0.402

0.181
0.173
0.193

0.286
0.286

0.130
0.130

0.218
0.218

0.099
0.087

0.183
0.183

0.103
0.068

0.128
0.128

0.089
0.041
0.093
0.093
0.079

0.024
0.081
0.081
0.077

0.017
0.060
0.060
0.060

0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.865
0.738

0.524
0.564

0.533
0.820

0.726
0.597

0.524
0.836

0.712
0.646

0.608
0.883

0.803
0.761

0.698
0.938

0.843
0.834

0.781
1.055

0.936
0.942

0.900
1.025

0.955
0.968
0.944

1.010
0.969
0.969
0.946

1.004
0.964
0.964
0.964
1.000

0.964
0.964
0.964

0.
00

0

0.
20

0

0.
40

0

0.
60

0

0.
80

0

1.
00

0

1.
20

0

BE
XBALTI
PO(CA)
PO(CB)
EO(AB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

8
10

12
14

16
18

19
20

24
32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Bit Penalty Ratio & On-Chip Energy Ratio

B
it

Pe
na

lty
 R

at
io

O
n-

C
hi

p
E

ne
rg

y
R

at
io

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s
D

iff
er

en
t C

om
pr

es
si

on
 S

ch
em

es

*X
B

A
L

T
I:

 X
O

R
-B

A
L

T
I

E
ne

rg
y

sa
vi

ng

A
vg

.
M

ax
.

M
in

.
B

E

5.
64

0%

18
.0

00
%

-5

.5
00

%

X
B

A
L

T
I*

13

.9
00

%

28
.8

00
%

3.

10
0%

PO

(C
A

)
18

.3
10

%

47
.6

00
%

3.

10
0%

PO

(C
B

)
17

.9
10

%

43
.6

00
%

3.

10
0%

E

O
(C

A
/C

B
)

21
.3

80
%

47

.6
00

%

3.
60

0%

F
ig

ur
e

5.
21

:
O

n-
C

hi
p

E
ne

rg
y

Va
ria

tio
n

A
cr

os
s

D
iff

er
en

t
C

om
pr

es
si

on
S

ch
em

es
.

181

0.402
0.402

0.181
0.173
0.193

0.286
0.286

0.130
0.130

0.218
0.218

0.099
0.087

0.183
0.183

0.103
0.068
0.128
0.128

0.089
0.041
0.093
0.093
0.079

0.024
0.081
0.081
0.077

0.017
0.060
0.060
0.060

0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

1.178
0.863

0.531
0.536
0.537

1.072
0.827

0.602
0.613

1.059
0.839

0.674
0.711

1.105
0.894

0.771
0.780

1.115
0.939

0.858
0.864

1.152
0.994

0.946
0.952

1.124
0.998

0.963
0.978

1.095
1.006
0.978
0.980
1.002
0.999
0.999
0.999
1.000
1.000
1.000
1.000

0.
00

0
0.

20
0

0.
40

0
0.

60
0

0.
80

0
1.

00
0

1.
20

0
1.

40
0

BE
XBALTI
PO(CA)
PO(CB)
EO(AB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

BE
XBALTI

PO(CA/CB)
EO(CA/CB)

8
10

12
14

16
18

19
20

24
32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Bit Penalty Ratio & Off-Chip Energy Ratio

B
it

Pe
na

lty
 R

at
io

O
ff

-c
hi

p
E

ne
rg

y
R

at
io

O
ff

-C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s
D

iff
er

en
t C

om
pr

es
si

on
 S

ch
em

es

*X
B

A
L

T
I:

 X
O

R
-B

A
L

T
I

E
ne

rg
y

sa
vi

ng

A
vg

.
M

ax
.

M
in

.
B

E

-9
.0

17
%

0.

00
0%

-1

7.
80

0%

X
B

A
L

T
I*

6.

41
0%

17

.3
00

%

-0
.6

00
%

PO

(C
A

)
16

.7
80

%

46
.9

00
%

0.

00
0%

PO

(C
B

)
16

.7
30

%

46
.4

00
%

0.

00
0%

E

O
(C

A
/C

B
)

15
.8

60
%

46

.3
00

%

0.
00

0%

F
ig

ur
e

5.
22

:O
ff-

C
hi

p
E

ne
rg

y
Va

ria
tio

n
A

cr
os

s
D

iff
er

en
t

C
om

pr
es

si
on

S
ch

em
es

.

182

Concatenate to generate the optimal solution for the entire tag field.

Bus Width
8 10 12

P.P.*, C.* P.P., C. P.P., C.
PO(CA, CB) [6,14,22,32],[2,3,4,6] [9,18,30],[2,3,5] [11,28],[2,4]

[7,14,21,32],[2,3,4,6]
EO(CA,CB) [13,32],[3,5] [12,30],[3,4] [9,28],[2,4]
*P.P.:Partition points and C.:Cycles

Bus Width
14 16 18

P.P.*, C.* P.P., C. P.P., C.
PO(CA, CB) [13,26],[2,3] [15,24],[2,3] [17,22],[2,3]
EO(CA,CB) [9,26],[2,3] [7,24],[2,3] [5,22],[2,3]

Bus Width
19 20 24 32

P.P., C. P.P., C. P.P., C. P.P., C.
PO(CA, CB) [18,21],[2,3] [20],[2] [16],[2] [8],[2]
EO(CA,CB) [4,21],[2,3] [3,20],[2,2] [5,16],[2,2] [1,8],[2,2]

Table 5.1:Partition for PM Performance and Energy Optimization.

Our simulations show that both BE and PM are more effective for narrower compressed

buses as far as the energy is concerned. Overall, PM performances much better than BE

in terms of performance and energy. Fig. 5.1 lists the partition points and corresponding

cycles for both performance and energy optimized designs. As shown in Fig. 5.20, the

PM performance and energy optimized compression only cause 0.4% and 0.5% extra cycle

penalty, which is much better than 1.085% when BE is applied. For the 8-bit compressed

bus, the extra cycle penalty is 1.8% for PM performance optimized compression and 4.9%

for BE.

Figs. 5.21 and 5.22 show that 16% and 24% more energy saving for on-chip and off-chip

183

2.287

2.725

2.917

2.974

3.061

3.095

3.107

3.113

3.179

3.185

1.950

2.758

3.681

3.916

4.094

4.142

4.176

4.205

4.270

4.270

6.464

6.883

7.066

7.121

7.204

7.238

7.249

7.255

7.318

7.323

6.823

7.591

8.468

8.692

8.860

8.906

8.938

8.966

9.028

9.028

11.112

11.511

11.685

11.737

11.816

11.848

11.858

11.864

11.924

11.929

12.283

13.115

13.328

13.488

13.532

13.562

13.589

13.647

13.647

15.626

16.004

16.169

16.219

16.294

16.324

16.334

16.339

16.396

16.401

11.554

024681012141618

8
10

12
14

16
18

19
20

24
32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

Percentage Performance Improvement (%)

2�
1*

3�
2

3�
1

4�
2

4�
1

5�
2

5�
1

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t A

cr
os

s D
iff

er
en

t
C

om
pr

es
se

d
B

us
 W

id
th

s w
ith

 W
ir

e
Sp

ac
in

g

*2
�

1:
 P

er
ce

nt
ag

e
pe

rf
or

m
an

ce
 im

pr
ov

em
en

t
w

he
n

bu
s l

at
en

cy
, 2

 C
PU

 c
yc

le
s,

is
 r

ed
uc

ed
 to

1

C
PU

 c
yc

le
 a

ft
er

 w
ir

e
sp

ac
in

g

F
ig

ur
e

5.
23

:P
er

fo
rm

an
ce

Im
pr

ov
em

en
t

A
cr

os
s

D
iff

er
en

t
C

om
pr

es
se

d
B

us
W

id
th

s
W

ith
W

ire
S

pa
ci

ng
.

184

0

0.
2

0.
4

0.
6

0.
81

1.
2

PM
2
3
4
5
6
7
8
9

10
PM

3
4
5
6
7
8
9

10
PM

4
5
6
7
8
9

10
PM

4
5
6
7
8
9

10
PM

5
6
7
8
9

10
PM

5
6
7
8
9

10
PM

5
6
7
8
9

10
PM

6
7
8
9

10
PM

7
8
9

10
PM

9
10

8
10

12
14

16
18

19
20

24
32

C
om

pr
es

se
d

B
us

 W
id

th
 (B

its
)

On-Chip Energy Ratio

C
ou

pl
in

g-
C

ap
ac

ita
nc

e:
 C

ha
rg

e
E

ne
rg

y
C

ou
pl

in
g-

C
ap

ac
ita

nc
e:

D
is

ch
ar

ge
 a

nd
 C

ha
rg

e
E

ne
rg

y
Se

lf-
C

ap
ac

ita
nc

e
E

ne
rg

y

O
n-

C
hi

p
E

ne
rg

y
R

at
io

 V
ar

ia
tio

n
A

cr
os

s D
iff

er
en

t
D

eg
re

e
of

 W
ir

e
Sp

ac
in

g
B

us

 M

ax
im

um
 E

ne
rg

y
Sa

vi
ng

8-
bi

t
10

-b
it

12
-b

it
14

-b
it

16
-b

it
18

-b
it

19
-b

it
20

-b
it

24
-b

it
32

-b
it

98
.8

62
%

97
.1

83
%

95
.9

43
%

93
.7

69
%

91
.5

24
%

87
.8

72
%

85
.9

37
%

84
.7

71
%

79
.6

05
%

67
.5

75
%

F
ig

ur
e

5.
24

:O
n-

C
hi

p
E

ne
rg

y
R

ed
uc

tio
n

A
cr

os
s

D
iff

er
en

t
C

om
pr

es
se

d
B

us
W

id
th

s
W

ith
W

ire
S

pa
ci

ng
.

185

buses can be obtained with PM energy optimized compression than BE. The bit penalty ratio

is the ratio between the bit penalty of the compressed address and the bit penalty of the

original address when the compressed bus is used. Also, the average miss penalty and the

average bit penalty, which are used to decide the best partitions for performance and energy

optimization, correlate very well with the actual performance and the energy dissipation,

respectively.

Similar to the study in Sec. 3.9, we also apply different degrees of wire spacing on top

of PM to improve performance and on-chip energy further. Fig. 5.23 shows that PM with

wire spacing can improve the performance by 2% to 16%. As shown in Fig. 5.24, for 8-bit

compressed bus, up to 98% on-chip energy can be saved using PM with wire spacing, which

is 51% more than using PM itself. Even for 32-bit compressed bus, 68% on-chip energy

reduction can be obtained. On average, 88% on-chip energy can be saved using PM with

wire spacing.

5.9 Conclusions

In this work, we have shown that substantial energy reductions are possible by judiciously

arranging and/or encoding different bit-fields in compressed addresses thus reducing both

self and coupling transitions. Our simulations show that the performance penalty for ad-

dress compression is very modest: about 0.83-0.004% for compressed address bus widths of

14–36 bits. We proposed six different techniques to reduce energy in compressed address

buses and our best scheme results in overall energy reduction of 14.7% for on-chip and 7.0%

186

for off-chip buses compared to transmission of uncompressed addresses. Address compres-

sion alone contributes to only half of this reduction; our proposed techniques contributes the

rest. Also, in many cases where address compression failed to yield energy benefits, our

schemes were successful in reducing energies. With less than 1% performance penalty for

most bus widths and up to 28.8% energy reduction possible by combining address compres-

sion schemes with our proposed transmission techniques, excellent energy efficiencies can

be obtained for on-chip address buses. Further, energy reductions can be obtained by ap-

plying our proposed partial-match compression and wire spacing. With PM, the extra cycle

penalty is only 0.5%, which is much better than 1.085% when BE is applied. On average,

21% and 15% energy savings can be obtained for on-chip and off-chip buses using PM, re-

spectively. In addition, with wire spacing, PM can improve the performance by 2% to 16%

and provide 88% on-chip energy savings on average.

187

Chapter 6

Conclusions

In this dissertation, we have made significant strides in the analysis of memory system com-

pression potential and the design of information pattern aware strategies for nanometer-scale

address buses to improve performance, cost, and power consumption. This was done in the

context of real-world benchmark suites such as SPEC CPU2000 and using execution-driven

simulators like Sun Microsystems’ Shade and SimpleScalar. We have completed the most

comprehensive analysis to date of the potential benefits that address, instruction, and data

compression may yield at all levels of the memory system considering a wide variety of fac-

tors in Chapter 2. Then, in Chapter 3, we presented a technique called HOC, in which narrow

bus widths are used for underutilized buses to reduce cost, novel encoding schemes are em-

ployed to reduce power consumption, and concatenation and other methods are applied to

mitigate performance penalty. Next, we exploited information and energy redundancy of

information transmitted on memory system address buses for performance, power, and cost

188

improvements. We presented a detailed analysis of the performance, energy, and cost trade-

offs possible with two cache-based dynamic address compression schemes in Chapter 4 and

a highly energy- and performance-efficient dynamic address compression methodology for

nanometer-scale address buses in Chapter 5.

6.1 Key Results

Below we summarize the main contributions of this dissertation.

• We comprehensively analyzed the redundancy in the information (addresses, instruc-

tions, and data) stored and exchanged between the processor and the memory system

and evaluated the potential of compression in improving performance, power con-

sumption, and cost of the memory system. Analysis on traces obtained with Sun Mi-

crosystems’ Shade simulator simulating SPARC-V9 executables of eight integer and

seven floating-point programs in the SPEC CPU2000 benchmark suite and five pro-

grams from the MediaBench suite and analyzed using Markov entropy models, exist-

ing compression schemes, and CACTI 3.0 and SimplePower timing, power, and area

models showed good potential for compression at all levels of the memory system.

Simulations results also showed that, even in current fabrication technologies, well-

designed compression schemes can provide overall benefits in performance, power,

and cost that outweigh their overheads (extra time, logic, and power for compression

and decompression). These benefits will further grow in future technologies since

the speed, size, and power consumption of logic (which is used to perform compres-

189

sion/decompression) are improving and are projected to improve at a much higher

rate compared to those of interconnect (which is used to communicate information via

buses), both on-chip and, especially, off-chip.

• Minimizing the area/cost and power consumption of communication components (ad-

dress, instruction, and data buses and associated hardware like I/O pins, pads, and

buffers) is becoming important in modern microprocessors. Currently, utilization of

buses is not taken into account during design of many bus systems. This may lead to

underutilization of many buses during actual operation. We proposed a scheme that

exploits the underutilization of address buses to result in a cost-effective and energy-

efficient bus system design. This is accomplished by using buses of narrow width,

energy-efficient transmission formats, and wire spacing. On average, 16% on-chip en-

ergy reduction can be obtained using our best transmission technique, T6, and off-chip

energy can be improved by 45% with T4 compared to the baseline transmission for-

mat. HOC with wire spacing results in 61% reduction of the wire delay, up to 0.8% to

15% performance improvement, and 60% on-chip energy savings.

• Dynamic address compression schemes that exploit address locality can help reduce

both address bus energy and cost simultaneously with only a small performance penalty.

We investigated two such schemes and determined their optimal parameters that result

in the highest area/cost reductions and least performance penalty for various address

buses (both on- and off-chip) in current systems. For addresses compressed with these

190

schemes, we studied energy reduction of buses in current and future nanometer tech-

nology nodes. Results show that using address compression will result in only small

performance overheads (less than 1% for a 38-bit bus to 14 bits) and reduce bus energy

dissipation by as much as 13% when applied to on-chip buses in current technologies.

• To realize energy-efficient buses in current nanometer-scale technologies, techniques

like compression or encoding that exploit information redundancy have been explored.

However, available compression techniques for buses do not always ensure energy-

efficient transmission of compressed information. We presented various techniques

that can be used with existing compression schemes for buses to ensure the best

energy-efficiency for compressed information transmission. Our best scheme, applied

to a stream of 38-bit addresses issued in a typical microprocessor, yields about 14.3%

energy reduction on the average across a wide range of compressed bus widths rang-

ing from 8 to 32 bits. Our proposed techniques especially perform better (up to 27.4%

energy reduction is obtained) for narrower bus widths in the range 8–16 bits. Further

energy reductions can be obtained by applying our proposed partial-match compres-

sion and wire spacing. With PM, extra cycle penalty is only 0.5%, which is much

better than 1.085% when BE is applied. On average, 21% and 15% energy savings can

be obtained for on-chip and off-chip buses using PM, respectively. In addition, with

wire spacing, PM can improve performance by 2% to 16% and provide 88% on-chip

energy savings on average.

191

6.2 Future Work

In the future, we intend to design compression schemes for instruction and data buses

by taking into account characteristics of different instruction formats and fields and data

types, like character, integer, and floating point. Currently, the schemes developed are meant

mainly for communication components, especially, nanometer-scale address buses. We plan

to extend and apply most ideas to storage components, like caches, TLB, and main memory.

The increased complexity of computing systems not only involves challenges to system

design, but also to testability. Test data volume is increasing dramatically as technology

is moving into nanometer regime, which makes testing time longer, consumes more test-

ing power, and increases testing cost [78, 54]. Testing is becoming a critical bottleneck in

improving time-to-market. Another fruitful research direction will be to explore test data

compression to reduce size of test data and minimize its effect on testing time, power con-

sumption, and cost.

192

Bibliography

[1] Advanced RISC Machines Ltd (ARM).An Introduction to Thumb, March 1995. Avail-

able at: http://www.arm.com.

[2] Y. Aghaghiri, F. Fallah, and M. Pedram. Irredundant Address Bus Encoding for Low

Power. InProceedings of International Symposium on Low Power Electronics and

Design, pages 322–327, August 2001.

[3] K. Basu, A. Choudhary, J. Pisharath, and M. Kandemir. Power Protocol: Reducing

Power Dissipation on Off-Chip Data Buses. InProceedings of the Annual ACM/IEEE

International Symposium on Microarchitecture, pages 345–355, November 2002.

[4] J.C. Becker, A. Park, and M. Farrens. An Analysis of the Information Content of

Address Reference Streams. InProceedings of the International Conference on Mi-

croarchitecture, pages 19–24, November 1991.

[5] L. Benini, G. De Micheli, E. Macii, and M. Poncino. Selective Instruction Compression

for Memory Energy Reduction in Embedded Systems. InProceedings of International

Symposium on Low Power Electronics and Design, pages 206–211, August 1999.

[6] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano. Asymptotic Zero-

Transition Activity Encoding for Address Busses in Low-power Microprocessor-based

Systems. InProceedings of Great Lakes Symposium on VLSI, pages 77–82, March

1997.

[7] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New Paradigm of Predictive

MOSFET and Interconnect Modeling for Early Circuit Design. InProceedings of the

193

IEEE Custom Integrated Circuits Conference, pages 201–204, June 2000.

[8] W.-C. Cheng and M. Pedram. Memory Bus Encoding for Low-power: A Tutorial. In

Proceedings of International Symposium on Quality Electronic Design, pages 199–204,

March 2001.

[9] W.-C. Cheng and M. Pedram. Power Optimal Encoding for a DRAM Address Bus.

IEEE Transactions on VLSI Systems, 10(2):109–118, April 2002.

[10] D. Citron. Exploiting Low Entropy to Reduce Wire Delay.Computer Architecture

Letters, 3, January 2004.

[11] D. Citron and L. Rudolph. Creating a Wider Bus using Caching Techniques. InPro-

ceedings of International Symposium on High Performance Computer Architecture,

pages 90–99, January 1995.

[12] B. Cmelik and D. Keppel. SHADE: A Fast Instruction-set Simulator for Execution

Profiling. ACM SIGMETRICS Performance Evaluation Review, 22(1):128–137, May

1994.

[13] J. Cong, L. He, C.-K. Koh, and Z. Pan. Global Interconnect Size and Spacing with Con-

sideration of Coupling Capacitance. InProceedings of IEEE International Conference

on Computer-Aided Design, pages 628–633, November 1997.

[14] T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and S. W. Sathaye. Instruction

Fetch Mechanisms for VLIW Architectures with Compressed Encodings. InProceed-

ings of the Annual Symposium on Computer Architecture, pages 201–211, December

1996.

194

[15] K.D. Cooper and N. McIntosh. Enhanced Code Compression for Embedded RISC Pro-

cessors. InProceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 139–149, May 1999.

[16] Standard Performance Evaluation Council. SPEC CPU2000 Benchmark Suite Ver1.2.

http://www.specbench.org/cpu2000, 2000.

[17] S. Debray, W. Evans, R. Muth, and B. de Sutter. Compiler Techniques for Code Com-

paction.Transactions on Programming Languages and Systems, 22(2):378–415, March

2000.

[18] R. Desikan, D.C Burger, S.W. Keckler, and T.M. Austin. Sim-alpha: a Validated,

Execution-Driven Alpha 21264 Simulator. Technical Report TR-01-23, The University

of Texas at Austin, Department of Computer Sciences, 2001.

[19] J. Ernst, W. Evans, C.W. Fraser, S. Lucco, and T.A. Proebsting. Code Compression.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 358–365, June 1997.

[20] M. Farrens and A. Park. Dynamic Base Register Caching: A Technique for Reducing

Address Bus Width. InProceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 128–137, May 1991.

[21] P.A. Franaszek and J.T. Robinson. Design and Analysis of Internal Organizations for

Compressed Random Access Memories. Technical Report IBM Research Report RC

21146(94535)20OCT98, IBM Research Division, T.J. Watson Research Center, York-

town Heights, NY, October 1998.

195

[22] C.W. Fraser, E.W. Myers, and A.L. Wendt. Analyzing and Compressing Assembly

Code.SIGPLAN Notices, 19(6):117–121, June 1984.

[23] M. Game and A. Booker. Codepack[tm]: Code Compression for

PowerPC Processors. IBM White Paper available at: http://www-

3.ibm.com/chips/techlib/techlib.nsf/products/CodePack, May 2000.

[24] D.W. Hammerstrom and E.S. Davidson. Information Content of CPU Memory Refer-

encing Behavior. InProceedings of the 4th Annual Symposium on Computer Architec-

ture (ISCA-4), pages 184–192, march 1977.

[25] J. Henkel and H. Lekatsas. A2BC: Adaptive Address Bus Coding for Low-power Deep

Sub-micron Designs. InProceedings of Annual ACM/IEEE Design Automation Con-

ference, pages 744–749, June 2001.

[26] J.L. Hennessy and D.A. Patterson.Computer Architecture: A Quantitative Approach,

Third edition. Morgan Kaufmann Publishers Inc., 2003.

[27] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de Wiel. A Code Compres-

sion System Based on Pipelined Interpreters.Software Practice and Experience,

29(11):1005–1023, September 1999.

[28] ITRS. International Technology Roadmap for Semiconductors, 2001 edition, 2001.

[29] I. Kadayif and M. Kandemir. Instruction Compression and Encoding for Low-

power Systems. InProceedings of the IEEE International ASIC/SOC Conference

(ASIC/SOC’02), pages 301–305, September 2002.

[30] K. Kant and R. Iyer. Design and Performance of Compressed Interconnects for High

196

Performance Servers. InProceedings of International Conference on Computer De-

sign, pages 164–169, October 2003.

[31] H. Kaul, D. Sylvester, and D. Blaauw. Issues in Crosstalk: Active Shielding of Rlc

Global Interconnects. InProceedings of ACM/IEEE International Workshop on Timing

Issues in the Specification and Synthesis of Digital Systems, pages 98–104, 2002.

[32] T.M. Kemp, R.K. Montoye, J.D. Harper, J.D. Palmer, and D.J. Auerbach. A Decom-

pression Core for PowerPC.IBM Journal of Research and Development, 42(6):807–

811, November 1998.

[33] K.-Y. Khoo and A.N. Willson. Charge Recovery on a Databus. InProceedings of

International Symposium on Low Power Electronics and Design, pages 185–189, 1995.

[34] K.W. Kim, K.H. Back, N. Shanbhag, C.L. Liu, and S.M. Kang. Coupling-driven Signal

Encoding Scheme for Low-power Interface Design. InProceedings of IEEE Interna-

tional Conference on Computer-Aided Design, pages 318–321, November 2000.

[35] D. Kirovski, J. Kin, and W.H. Mangione-Smith. Procedure Based Program Compres-

sion. InProceedings of the Annual ACM/IEEE International Symposium on Microar-

chitecture, pages 204–213, December 1997.

[36] K.D. Kissell. MIPS16: High-density MIPS for the Embedded Market.

http://www.mips.com/Documentation/MIPS16whitepaper.pdf, 1997.

[37] M. Kjelso, M. Gooch, and S. Jones. Empirical Study of Memory-data: Character-

istics and Compressibility.IEE Proceedings on Computers and Digital Techniques,

145(1):63–67, January 1998.

197

[38] M. Kozuch and A. Wolfe. Compression of Embedded System Programs. InProceed-

ings of International Conference on Computer Design, pages 270–277, October 1994.

[39] T. Lang, E. Musoll, and J. Cortadella. Extension of the Working-zone Encoding

Method to Reduce the Energy on the Microprocessor Data Bus. InProceedings of

International Conference on Computer Design, pages 414–419, October 1998.

[40] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A Tool for Evaluating

and Synthesizing Multimedia and Communicatons Systems. InProceedings of the

Annual Symposium on Computer Architecture, pages 330–335, December 1997.

[41] J.-S. Lee, W.-K. Hong, and S.-D. Kim. Design and Evaluation of a Selective Com-

pressed Memory System. InProceedings of International Conference on Computer

Design, pages 184–191, October 1999.

[42] C. Lefurgy and T. Mudge. Code Compression for DSP. Technical Report CSE-TR-

380-98, EECS Department, University of Michigan, Ann Arbor, MI, 1998.

[43] H. Lekatsas, J. Henkel, and W. Wolf. Code Compression for Low Power Embedded

System Design. InProceedings of Annual ACM/IEEE Design Automation Conference,

pages 294–299, June 2000.

[44] H. Lekatsas and W. Wolf. Random Access Decompression using Binary Arithmetic

Coding. In Prodeedings of Data Compression Conference, pages 306–315, March

1999.

[45] H. Lekatsas and W. Wolf. SAMC: A Code Compression Algorithm for Embedded Pro-

cessors.IEEE Transactions on Computer-aided Design, 18(12):1689–1701, December

198

1999.

[46] L. Lev and P. Chao. Down to the wire: Requirements for Nanometer Design Imple-

mentation. White Paper, Cadence Design Systems Inc., 2002.

[47] S.Y. Liao, S. Devadas, and K. Keutzer. Code Density Optimization for Embedded DSP

Processors Using Data Compression Techniques. InProceedings of Conference on

Advanced Research in VLSI, pages 393–399, March 1995.

[48] J. Liu, N.R. Mahapatra, K. Sundaresan, S. Dangeti, and B.V. Venkatrao. Memory

System Compression and Its Benefits. InProceedings of the 15th Annual IEEE Inter-

national ASIC/SOC Conference, pages 41–45, September 2002.

[49] N.R. Mahapatra, J. Liu, and K. Sundaresan. Hardware-Only Compression of Under-

utilized Address Buses: Design and Performance, Power Consumption and Cost Anal-

ysis. In Proceedings of IEEE International Conference on Computer Design, pages

234–239, October 2003.

[50] N.R. Mahapatra, J. Liu, K. Sundaresan, S. Dangeti, and B.V. Venkatrao. The Potential

of Compression to Improve Memory System Performance, Power Consumption, and

Cost. InProceedings of IEEE Performance, Computing and Communications Confer-

ence, pages 343–350, April 2003.

[51] E. Musoll, T. Lang, and J. Cortadella. Working-zone Encoding for Reducing the Energy

in Microprocessor Address Buses.IEEE Transactions on VLSI Systems, 6(4):568–572,

December 1998.

[52] A. Park and M. Farrens. Address Compression through Base Register Caching. In

199

Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture,

pages 193–199, November 1990.

[53] J.M. Rabaey, A. Chandrakasan, and B. Nikolic.Digital Integrated Circuits. Prentice

Hall Inc., 2002.

[54] J. Rajski and J. Tyszer. Test Data Compression and Compaction for Embedded Test

of Nanometer Technology Designs. InProceedings of International Conference on

Computer Design, pages 331–336, 2003.

[55] Y. Shin and K. Choi. Narrow Bus Encoding for Low Power Systems. InProceedings of

Asia and South Pacific Design Automation Conference, pages 217–220, January 2000.

[56] P. Shivakumar and N.P. Jouppi. CACTI 3.0: An Integrated Cache Cycle Timing, Power,

and Area Model. Technical Report WRL Research Report 2001/2, Compaq Western

Research Laboratory, August 2001.

[57] K. Skadron, P.S. Ahuja, M. Martonosi, and D.W. Clark. Selecting a Single, Represen-

tative Sample for Accurate Simulation of SPECint Benchmarks.IEEE Transactions on

Computers, 48(11):1260–1281, November 1999.

[58] P.P. Sotiriadis and A. Chandrakasan. Low Power Bus Coding Techniques Considering

Inter-wire Capacitances. InProceedings of Custom Integrated Circuits Conference,

pages 414–419, May 2000.

[59] P.P. Sotiriadis and A. Chandrakasan. A Bus Energy Model For Deep Sub-Micron In-

terconnects.IEEE Transactions on VLSI Systems, 10(3):341–350, June 2002.

[60] M.R. Stan and W.P. Burleson. Bus-invert Coding for Low-power I/O.IEEE Transac-

200

tions on VLSI Systems, 3:49–58, March 1995.

[61] M.R. Stan and W.P. Burleson. Low-power Encodings for Global Communication in

CMOS VLSI. IEEE Transactions on VLSI Systems, 5:444–455, December 1997.

[62] C.L. Su, C.Y. Tsui, and A.M. Despain. Low Power Architecture Design and Compila-

tion Techniques for High-performance Processors. Technical Report ACAL-TR-94-01,

Advanced Computer Architecture Laboratory, University of Southern California, 1994.

[63] D.C. Suresh, B. Agarwal, J. Yang, W. Najjar, and L. Bhuyan. Power Efficient Tech-

niques for Off-Chip Data Buses. InProceedings of Workshop on Compiler and Archi-

tecture Support for Embedded Systems, pages 267–275, October 2003.

[64] R. B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T.B. Smith, M.E. Wa-

zlowski, and P.M. Bland. IBM Memory eXpansion Technology (MXT).IBM Journal

of Research and Development, 45(2):271–285, March 2001.

[65] L. Villa, M. Yang, and K. Asanovic. Dynamic Zero Compression for Cache Energy

Reduction. InProceedings of the Annual ACM/IEEE International Symposium on Mi-

croarchitecture, pages 214–220, December 2000.

[66] J.L. Wang and R.W. Quong. The Feasibility of Using Compression to Increase Memory

System Performance. InProceedings of International Workshop on Modeling, Anal-

ysis and Simulation of Computer and Telecommunications Systems, pages 107–113,

January 1994.

[67] D.L. Weaver and T. Germond, editors.The SPARC Architecture Manual, Version 9.

Prentice Hall, 2000.

201

[68] V. Wen, M. Whitney, Y. Patel, and J.D. Kubiotowicz. Exploiting Prediction to Reduce

Power on Buses. InProceedings of International Symposium on High Performance

Computer Architecture, pages 2–13, February 2004.

[69] Wayne Wolf. Computers as Components: Principles of Embedded Computing System

Design. Morgan Kaufmann Publishers Inc., 2001.

[70] A. Wolfe and A. Channin. Executing Compressed Programs on an Embedded RISC

Architecture. InProceedings of the Annual Symposium on Computer Architecture,

pages 81–91, December 1992.

[71] Y. Xie, W. Wolf, and H. Lekatsas. Code Compression for VLIW using Variable-to-

fixed Coding. InProceedings of the International Symposium on System Synthesis,

pages 138–143, October 2002.

[72] J. Yang, Y. Zhang, and R. Gupta. Frequent Value Compression in Data Caches. In

Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture,

pages 258–265, November 2000.

[73] W. Ye, N. Vijaykrishnan, M. Kandemir, and M.J.Irwin. The Design and Use of Simple-

power: a Cycle-accurate Energy Estimation Tool. InProceedings of Annual ACM/IEEE

Design Automation Conference, pages 340–345, June 2000.

[74] Y. Yoshida, B. Y. Song, H. Okuhata, T. Onoye, and I. Shirakawa. An Object Code

Compression Approach to Embedded Processors. InProceedings of International Sym-

posium on Low Power Electronics and Design, pages 265–268, August 1997.

[75] H. Zhang and J.Rabaey. Low-Swing Interconnect Interface Circuits. InProceedings

202

of International Symposium on Low Power Electronics and Design, pages 161–166,

August 1998.

[76] Y. Zhang, R. Y. Chen, W. Ye, and M.J.Irwin. System Level Interconnect Power Mod-

eling. In IEEE International ASIC/SoC Conference, pages 289–293, September 1998.

[77] Y. Zhang, J. Lach, K. Skadron, and M.R. Stan. Odd/even Bus Invert with Two-Phase

Transfer for Buses with Coupling. InProceedings of International Symposium on Low

Power Electronics and Design, pages 80–83, August 2002.

[78] Y. Zorian, S. Dey, and M. Rodgers. Test of Future System-on-chips. InProceedings of

IEEE International Conference on Computer-Aided Design, pages 392–398, 2000.

203

