
An Appliation of Well-Orderly Trees in GraphDrawingHuaming Zhang and Xin He?Department of Computer Siene and EngineeringSUNY at Bu�aloBu�alo, NY, 14260, USAAbstrat. Well-orderly trees seem to have the potential of beoming apowerful tehnique apable of deriving new results in graph enoding,graph enumeration and graph generation [3, 4℄. Our appliation of well-orderly trees in this paper provides new evidene to their power. Wegive more ompat visibility representation of plane graphs using theproperties of well orderly trees.1 IntrodutionGraph drawing has emerged as an exiting and fast growing area of researh inthe omputer siene ommunity in reent years [1℄.Among various tehniques fordrawing planar graphs, the anonial orderings and anonial ordering trees of3-onneted plane graphs have served as a fundamental step upon whih drawingalgorithms are built [7{9, 12℄. The work by de Fraysseix, Pah and Pollak [9℄ isonsidered to be the �rst using the anonial orderings to produe straight-linedrawings with polynomial sizes for planar graphs. The tehnique of anonialorderings has subsequently been applied to drawing graphs with respet to avariety of aestheti onstraints, inluding straight-line, onvexity, orthogonality,visibility representation, 2-visibility, oor-planning, and others.Later on, Chiang et. al. introdued the onept of orderly spanning tree [6℄,whih generalizes anonial ordering tree and leads to several improvements invarious styles of graph drawings [6, 5, 16℄. In [3℄, Bonihon, Gavoille and Hanusseintrodued well-orderly trees, whih are anonial ordering trees with some spe-ial properties. These speial properties have been suessfully used in graphenoding, graph enumeration, and graph generation [3, 4℄. More importantly,well-orderly trees are losely related to the onept of Shnyder's realizers [20,21℄, whih has also been widely used in graph drawing. We believe, well-orderlytrees will be a promising tehnique of unifying known results as well as derivingnew results in various styles in graph drawings. In this paper, we are going toderive an appliation of well-orderly trees in graph drawing.A visibility representation (VR for short) of a plane graph G is a representa-tion, where the verties of G are represented by non-overlapping horizontal line? Researh supported in part by NSF Grant CCR-0309953.



segments (alled vertex segment), and eah edge of G is represented by a vertialline segment touhing the vertex segments of its end verties. The problem ofomputing a ompat VR is important not only in algorithmi graph theory,but also in pratial appliations suh as VLSI layout. A simple linear time VRalgorithm was given in [19, 22℄ for a 2-onneted plane graph G. It only usesan st-orientation of G and the orresponding st-orientation of its dual G� toonstrut a VR of G.One of the main onerns afterwards for VR is the size of the representation,i.e., the height and width of VR. Some work has been done to redue the sizeof the VR by arefully hoosing a speial st-orientation of G. We summarizerelated previous results in the following table:Referenes Plane graph G 4-Conneted plane graph G[19, 22℄ Width of VR � (2n� 5) Height of VR � (n� 1)[13℄ Width of VR � b 3n�62 [17℄ Width of VR � b 22n�4215 [14℄ Width of VR � (n� 1)[25℄ Height of VR � b 5n6 [24, 26℄ Width of VR � b 13n�249  Height of VR � d 3n4 eIn this paper, we prove that every plane graph G has a VR with height atmost 4n�15 , and it an be obtained in linear time.The present paper is organized as follows. Setion 2 introdues preliminaries.Setion 3 presents the onstrution of a VR with height bounded by 4n�15 .2 PreliminariesIn this setion, we give de�nitions and preliminary results. De�nitions not men-tioned here are standard.G is alled a direted graph (digraph for short) if eah edge of G is assigned adiretion. We abbreviate the words \ounterlokwise" and \lokwise" as wand w respetively.An orientation of a graph G is a digraph obtained from G by assigning adiretion to eah edge of G. We will use G to denote both the resulting digraphand the underlying undireted graph unless otherwise spei�ed. (Its meaningwill be lear from the ontext.) For a 2-onneted plane graph G and an exterioredge (s; t), an orientation of G is alled an st-orientation if the resulting digraphis ayli with s as the only soure and t as the only sink. For more informationon st-orientation, we refer readers to [18℄.Let G be a 2-onneted plane graph and (s; t) an exterior edge. An st-numbering of G is a one-to-one mapping � : V ! f1; 2; � � � ; ng, suh that�(s) = 1, �(t) = n, and eah vertex v 6= s; t has two neighbors u;w with�(u) < �(v) < �(w), where u (w, resp.) is alled a smaller neighbor (bigger



neighbor, resp.) of v. Given an st-numbering � of G, we an orient G by diret-ing eah edge in E from its lower numbered end vertex to its higher numberedend vertex. The resulting orientation is alled the orientation derived from �whih, obviously, is an st-orientation of G. On the other hand, if G = (V;E)has an st-orientation O, we an de�ne an 1-1 mapping � : V ! f1; � � � ; ng bytopologial sort. It is easy to see that � is an st-numbering and the orientationderived from � is O. From now on, we will interhangeably use the term anst-numbering of G and the term an st-orientation of G, where eah edge of G isdireted aordingly.Lempel et. al. [15℄ showed that for every 2-onneted plane graph G and anexterior edge (s; t), there exists an st-numbering. The following lemma was givenin [19, 22℄:Lemma 1. Let G be a 2-onneted plane graph. Let O be an st-orientation ofG. A VR of G an be obtained from O in linear time. The height of the VR isthe length of the longest direted path in O.Let T be a rooted spanning tree of a plane graph G. Two nodes are unrelatedif neither of them is an anestor of the other in T . An edge of G is unrelated ifits endpoints are unrelated.Bonihon et. al. introdued well-orderly trees [3℄, a speial ase of orderlyspanning trees de�ned by Chiang, Lin and Lu in [6℄, referred as simply orderlytrees afterwards. Let v1; v2; � � � ; vn be the w preordering of the nodes in T . Anode vi is orderly in T with respet to T if the inident edges of vi in T formthe following four bloks (possibly empty) in w order around vi:{ Bp(vi): the edge inident to the parent of vi;{ B<(vi): unrelated edges inident to nodes vj with j < i;{ BC(vi): edges inident to the hildren of vi; and{ B>(vi): unrelated edges inident to nodes vj with j > i.A node vi is well-orderly in G with respet to T if it is orderly, and if:{ the �rst w edge (vi; vj) 2 B>(vi), if it exists, veri�es that the parent of vjis an anestor of vi.T is a well-orderly tree of G is all the nodes of T are well-orderly in G, andif the root of T belongs to the boundary of the exterior fae of G (similarly forsimply orderly tree). Note that an orderly tree (simply orderly or well-orderly)is neessarily a spanning tree.A plane triangulation is a plane graph where every fae is a triangle (inludingthe exterior fae). Let G be a plane triangulation of n verties with three exteriorverties v1; v2; vn in w order. A realizer R = fT1; T2; Tng of G is a partitionof its interior edges into three sets T1; T2; Tn of direted edges suh that thefollowing holds:{ for eah i 2 f1; 2; ng, the interior edges inident to vi are in Ti and diretedtoward vi.
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Fig. 1. Edge diretions around an interior vertex v.{ For eah interior vertex of G, v has exatly one edge leaving v in eah ofT1; T2; Tn. The w order of the edges inident to v is: leaving in T1, enteringin Tn, leaving in T2, entering in T1, and entering in T2 (See Fig. 1). Eahentering blok ould be empty.
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1 2Fig. 2. A plane triangulation G and the minimum realizer R0 of G.Normally, realizers of a plane triangulation G are not unique. Among all therealizer of G, there is an unique realizer R0 of G, where aording to the edgediretions in R0, there are no w-triangles. This realizer of G will be alled theminimum realizer of G. For example, in Fig. 2, the three trees of the realizer are



drawn in solid lines, dashed lines and dotted lines respetively. There are threew yli faes (marked by empty irles) but no w yli triangles, so it is theminimum realizer of G.Shnyder showed in [20℄ that eah set Ti of a realizer is a tree rooted atthe exterior vertex vi. For eah tree Ti of a realizer, we denote by �Ti the treeomposed of Ti augmented with the two edges of the exterior fae inident tothe root of Ti, i.e. the vertex vi. For example, in Fig. 2, �Ti is Tn (the tree inthik solid lines) augmented with edges (vn; v1) and (vn; v2).We summarize related results in the following lemma [3, 6, 20, 21℄:Lemma 2. Let G be a plane triangulation of n verties with three exterior ver-ties v1; v2; vn in w order. Let R = fT1; T2; Tng be any realizer of G. Then,1. Eah �Ti, i 2 f1; 2; ng is a simply orderly tree. In addition, if R is the mini-mum realizer R0, then eah �Ti, i 2 f1; 2; ng is a well-orderly tree.2. Given the tree �T1 ( �T2, �Tn resp.), all the �rst w edge (u; vj) 2 B>(u) foreah node u with respet to �T1 ( �T2, �Tn resp.) form the tree �Tn. ( �T1, �T2 resp.)3. The minimum realizer an be omputed in linear time.For example, in Fig. 2, �Tn is a well-orderly tree for G. And the �rst w edge(9; 12) in B>(9) for the node 9 is in �T2.Let v1; v2; � � � ; vn be the w preordering of the nodes of a tree T . The sub-sequene vi; � � � ; vj is a branh of T if it is a hain (i.e., vt is the parent of vt+1for every i � t < j), and if j � i is maximal. Branhes partition the nodes of T ,and eah branh ontains exatly one leaf.Bonihon et. al. proved the following [3℄: The well-orderly tree �Tn of a min-imum realizer R0 = fT1; T2; Tng has the branh property: All nodes of a givenbranh of �Tn must have the same parent in �T1 (exept the root of �Tn). (Similarresults hold for �T1 and �T2.) For example, in Fig. 2, nodes 3; 4 form a branh,they have the same parent in �T1.3 More ompat VR of Plane GraphsLet T be a tree drawn in the plane. Let t1; t2; � � � ; tn be the w postorderingof the nodes of T . A node of T is a glue node of T if it is right before a leafnode in the ordering t1; t2; � � � ; tn. For example, onsidering �Tn in Fig. 2, nodes14; 12; 11; 9; 7; 5; 3 are the glue nodes. Note that, the set of the �rst node of allbranhes of T exept the root is the set of glue nodes. Also observe that thenumber of glue nodes of T is the number of leaves of T minus 1.Next, let's explore another property of a well-orderly tree of a plane triangu-lation.Lemma 3. Let R0 = fT1; T2; Tng be the minimum realizer of a plane triangula-tion G with n verties. Let �1; �2; �n be the number of internal nodes (i.e, non-leafnode) of �T1; �T2; �Tn, l1; l2; ln be the number of the leaves of �T1; �T2; �Tn respetively.Then,



1. The internal nodes of �T2 ( �Tn; �T1 resp.) must be the glue nodes of �Tn ( �T1; �T2resp.).2. ln � 1 � �2; l1 � 1 � �n; l2 � 1 � �1.Proof. Aording to Lemma 2, eah �Ti is a well-orderly tree of G. We only provethe ase of �T2. The other two ases are similar.1. Let w be an internal node in �T2. Therefore, there is an edge (u;w) in �T2suh that w is the parent of u in �T2. Applying Lemma 2 2, for the node uin �Tn, (u;w) is the �rst w edge in B>(u) with respet to �Tn. Sine �Tn isa well-orderly tree, the parent of w must be the anestor of u in �Tn. So wmust be a glue node of �Tn.2. Applying to the observation that the number of glue nodes of T is the numberof leaves of T minus 1, we have ln � 1 � �2.For example, in Fig. 2, the internal nodes of �T2 are 14; 12; 9; 7; 5; 11. All ofthem are glue nodes of �Tn.Next we use the three well-orderly trees from the minimum realizer to obtainmore ompat VR of a plane triangulation G.Let R0 = fT1; T2; Tng be the minimum realizer of a plane triangulation Gwith n verties.
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 (b)Fig. 3. (a) There is no edge between ua and w1. (b) There is an edge between uaand w1, and there is no edge between ua and w0e. (Therefore, there is no edge be-tween u1 and w0e.) (ua; w1) ould be in �T1 or �T2. Then there must be edges betweenq1; � � � ; qb; qb+1; � � � ; qb+ with ua and they must be in �T1.() There is an edge betweenua and w1, and there is an edge between ua and w0e. Therefore, there is no edge betweenqb and w1.Let's onstrut an st-numbering of G using �Tn step by step. (The ases ofusing �T1; �T2 are similar.)Eah step begins from a leaf of �Tn. Suppose the leftmost unassigned leaf is u1,the seond leftmost unassigned leaf is q1. The rightmost unassigned leaf if w1, theseond rightmost unassigned leaf if w01. The ordering of verties ofG by w pos-tordering, starting from u1 with respet to �Tn is u1; u2; � � � ; ua; q1; � � � ; qb. And



qb is the last vertex before the third leaf in this w postordering. The branhof �Tn ontaining q1 ontains qb+; � � � ; qb+1; qb; � � � ; q1 (whih will be needed later).The ordering of verties of G by w postordering, starting from w1 with re-spet to �Tn is w1; w2; � � � ; wd; w01; � � � ; w0e. And w0e is the last vertex before thethird leaf in this w postordering (Namely, the parent of w0e in �Tn has a hildon the left of w0e).See Fig. 3 for an illustration. Only part of the graph is drawn. Edges andpaths of �Tn are drawn in solid lines. Note that qb+1 must have a hild on theright of qb.Eah step is lassi�ed into one of the following three ases:Case 1: If there is no edge between ua and w1, then we �rst assign numbersto u1; u2; � � � ; ua by w postordering with respet to �Tn, then ontinue toassign numbers to w1; � � � ; wd by w postordering with respet to �Tn.Case 2: (ua; w1) is an edge in G, and there is no edge between ua and w0e.Note that q1 is a leaf in �Tn, and ua is the only vertex of G in B<(q1). Therefore(q1; ua) must be an edge of G and it is in T1. Aording to the branh propertyfor �Tn, all the edges (ua; qi); i = 1; � � � ; b; (b+ 1); � � � ; (b+ ) must also be in �T1.For the vertex qb+, ua is the only vertex of G in B<(qb+), and (qb+; ua) is in �T1.Hene, qb+ annot be an internal node in the tree �T2. Also observe that qb+ is aglue node of �Tn. In this ase, we �rst assign numbers to w1; � � � ; wd; w01; � � � ; w0e byw postordering with respet to �Tn. Then we assign numbers to u1; u2; � � � ; uaby w postordering with respet to �Tn .Case 3: (ua; w1) is an edge in G, and (ua; w0e) is an edge in G. Similar toCase 2, all the edges (ua; qi); i = 1; � � � ; b; (b+ 1); � � � ; (b+ ) must be in �T1. Forthe vertex qb+, ua is the only vertex of G in B<(qb+), and (qb+; ua) is in �T1.Hene, qb+ annot be an internal node in the tree �T2. Also observe that qb+ isa glue node of �Tn. Note that, all the edges (ua; w0i); i = 1; � � � ; e are also in �T1.Obviously, in this ase, there is no edge between qb and w1. Therefore, we �rstassign numbers to u1; � � � ; ua by w postordering with respet to �Tn, thenontinue to q1; � � � ; qb by w postordering with respet to �Tn. Then we assignnumbers to w1; � � � ; wd by w postordering with respet to �Tn.Continue to next step if there are leaves left unassigned.Note: If there are only 1 or 2 leaves left in the end, then we assign the remain-ing numbers to them either using w postordering or using w postorderinguntil we �nish at the root of T . We do not ount this as a step. Note that, foreah node, either it is assigned a number in a w postordering setting, or it isassigned a number in a w postordering setting.We have the following two key observations:Observation 1: For eah step, at most three leaves are assigned numbers.Observation 2: If Case 2 and Case 3 are applied kn times altogether, thenkn glue nodes (the nodes qb+) of �Tn annot be internal nodes of �T2. Therefore,aording to Lemma 3 (1), ln � kn � 1 � �2.Lemma 4. Let G be a plane triangulation, R0 = fT1; T2; Tng be the minimumrealizer of G. Then, using �Ti; i = 1; 2; n,
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Fig. 4. An st-numbering of G in Fig. 2, obtained from �Tn by using our numberingsheme.1. The numbering of the verties of G onstruted by the above numberingsheme is an st-numbering of G.2. If Case 2 and Case 3 are applied ki times altogether for �Ti, then any diretedpath in the resulting st-orientation is at most n� li�ki2 .3. Any direted path in the resulting st-orientation is at most n� li3 ; i = 1; 2; n.Proof. We only prove the ase i = n. The other two ases are similar.1. First observe that, for any node other than the root of �Tn, its parent isassigned a bigger number. And the root of �Tn is assigned n.For any internal node of �Tn, their hildren are assigned smaller numbers. Fora leaf u 6= v1; v2 of �Tn, either it is assigned a number in a w setting, thenthe non-empty blok B<(u) ontains its smaller neighbors; or it is assigneda number in a w setting, then the non-empty blok B>(u) ontains itssmaller neighbors. For v1; v2, one of them is assigned 1, and it beomes asmaller neighbor for the other. Therefore, this numbering is an st-numberingfor G.2. Observe that, if Case 1 is applied to a step, then one of ua and w1 has to bebypassed by any direted path, and they are assigned onseutive numbersby our numbering sheme. If Case 2 is applied to a step, then one of w0e andu1 must be bypassed by any direted path, and they are assigned onseutivenumbers by our numbering sheme (This is beause, if ua = u1, then there isno edge between w0e and ua aording to our ondition in Case 2. If ua 6= u1,then it is not possible to have an edge (w0e; u1) beause G is a plane graph).If Case 3 is applied to a step, then one of qb and w1 must be bypassed by anydireted path, and they are assigned onseutive numbers by our numbering



sheme. Therefore, from the nodes assigned numbers within the same step,at least one node has to be bypassed by any direted path.Suppose Case 2 and Case 3 are applied kn times altogether, then the totalnumber of steps is at least ln�3kn2 �1+kn. (The subtration of 1 omes fromthe last 1 or 2 leaves whih do not form a step.) Therefore, any direted pathhas to bypass at least ln�3kn2 � 1 + kn verties. Therefore, its length is atmost n� ( ln�3kn2 � 1 + kn)� 1 =n� ln�kn2 .3. In the worst senario, eah step assigns numbers to three leaves, then wehave b ln3  steps. So any direted path must bypass at least b ln3  verties, soit length is at most n� b ln3  � 1 � n� ln3 .For example, Fig. 4 shows an st-numbering of G, using our numbering shemeto �Tn. The �rst step numbers 1; 2; 3 by w postordering, then it numbers 4 byw postordering. The seond step numbers 5 by w postordering, then itnumbers 6 by w postordering.Next we present our main theorem:Theorem 1. Let G be a plane triangulation with n verties, then there is a VRof G whose height is at most 4n�15 . And it an be onstruted in linear time.Proof. Let R0 = fT1; T2; Tng be the minimum realizer of G. Apply our st-numbering sheme, suppose for �T1; �T2; �Tn, the number of their Case 2 and Case3 steps altogether are k1; k2; kn respetively. Then we have �2 � ln � kn � 1.Symmetrially, we have �1 � l2 � k2 � 1, and �n � l1 � k1 � 1. Summing themup and moving 3 to the left side, we have:�1 + �2 + �n + 3 � (l1 + l2 + ln)� (k1 + k2 + kn): (1)Pik a longest direted path for eah st-orientation. By Lemma 4 (2), thesum of their lengths is at most:(n� ln � kn2 ) + (n� l2 � k22 ) + (n� l1 � k12 )= 3n� l1 + l2 + ln2 + k1 + k2 + kn2= 3n� (l1 + l2 + ln)� (k1 + k2 + kn)2� 3n� �1 + �2 + �n + 32 (2)The last inequality omes from Equation (1).By Lemma 4 (3), the sum of their length is at most:n� l13 + n� l23 + n� ln3= 3n� l1 + l2 + ln3 (3)



Multiply Equation (2) by 2 and multiply Equation (3) by 3. Adding themup, we have that 5 times the sum of the lengths of the three longest diretedpaths is at most: 6n� (�1 + �2 + �n + 3) + 9n� (l1 + l2 + ln)= 15n� (�1 + �2 + �n + l1 + l2 + ln)� 3= 15n� 3n� 3= 12n� 3: (4)Therefore, one of the longest direted path from these three paths must beat most 12n�315 � 4n�15 . Applying Lemma 1, G admits a VR whose height is atmost 4n�15 , and it an be onstruted in linear time.Referenes1. G. di Battista, P. Eades, R. Tammassia, and I. Tollis, Graph Drawing: Algorithmsfor the Visualization of Graphs, Prineton Hall, 19982. N. Bonihon, B. Le Sa�e and M. Mosbah, Wagner's theorem on realizers, in: Pro.ICALP'02, Leture Notes in Computer Siene, Vol. 2380, (Springer, Berlin, 2002)1043-1053.3. N. Bonihon, C. Gavoille, and N. Hanusse, An information-theoreti upper bound ofplanar graphs using triangulation, in Pro. STACS'03, pp 499-510, Letures Notesin Computer Siene, Vol. 2607, Springer-Verlag, 2003.4. N. Bonihon, C. Gavoille, and N. Hanusse, Canonial deomposition of outerplanarmaps and appliation to enumeration, oding and generation, In Pro. WG'2003,pp. 81-92, Leture Notes in Computer Siene, Vol. 2880, Springer-Verlag, 20035. H.-L. Chen, C.-C. Liao, H.-I. Lu and H.-C. Yen, Some appliations of orderlyspanning trees in graph drawing, in Pro. Graph Drawing'02, pp. 332-343, LetureNotes in Computer Siene, Vol. 2528, Springer-Verlag, Berlin, 2002.6. Y.-T. Chiang, C.-C. Lin and H.-I. Lu, Orderly spanning trees with appliations tograph enoding and graph drawing, in Pro. of the 12th Annual ACM-SIAM SODA,pp. 506-515, ACM Press, New York, 2001.7. M. Chrobak and G. Kant, Convex grid drawings of 3-onneted planar graphs, Teh-nial Report RUU-CS-93-45, Department of Computer Siene, Utreht University,Holland, 1993.8. U. F�o�meier, G. Kant and M. Kaufmann, 2-Visibility drawings of planar graphs, inPro. 4th International Symposium on Graph Drawing, pp. 155-168, Leture Notesin Computer Siene, Vol. 1190, Springer-Verlag, Berlin, 1996.9. H. de Fraysseix, J. Pah and R. Pollak, How to draw a planar graph on a grid.Combinatoria 10 (1990), 41-51.10. G. Kant, Drawing planar graphs using the lm-ordering, in Pro. 33rd Symposiumon Foundations of Computer Siene, pp.101-110, IEEE, Pittsburgh, 1992.11. G. Kant, Algorithms for drawing planar graphs, Ph.D. Dissertation, Departmentof Computer Siene, University of Utreht, Holland, 1993.12. G. Kant, Drawing planar graphs using the anonial ordering, Algorithmia 16(1996), 4-32.13. G. Kant, A more ompat visibility representation. International Journal of Com-putational Geometry and Appliations 7 (1997), 197-210.
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