
A Transactional Framework for Programming Wireless Sensor/Actor Networks

Murat Demirbas
Department of Computer Science & Engineering

University at Buffalo, SUNY
demirbas@cse.buffalo.edu

Abstract— Effectively managing concurrent execution is one of
the biggest challenges for future wireless sensor/actor networks
(WSANs): For safety reasons concurrency needs to be tamed to
prevent unintentional nondeterministic executions, on the other
hand, for real-time guarantees concurrency needs to be boosted to
achieve timeliness. We propose a transactional, optimistic concur-
rency control framework for WSANs that enables understanding
of a system execution as a single thread of control, while permit-
ting the deployment of actual execution over multiple threads
distributed on several nodes. By exploiting the properties of
wireless broadcast communication, we outline a lightweight and
fault-tolerant implementation of our transactional framework.

I. I NTRODUCTION

Current wireless sensor networks (WSNs) do not have
any significant actuation capability, however, we envision
that WSNs will become increasingly more integrated with
actuation capabilities. Future wireless sensor/actor networks
(WSANs) will play a major role in our lives as they fulfill the
proactive computing vision [34]. WSANs will be instrumental
in factory automation and process control systems, such as vi-
bration control of the assembly line platforms or coordination
of regulatory valves. Another example of WSANs could be
robotic highway safety/construction markers [10], where robot
cones move in unison to mark the highway for the safety of
workers.

With great power comes great responsibility. In contrast
to WSNs, where a best-effort (eventual consistency, loose
synchrony) approach has been dominant for most applications
and services, consistency and coordination will be essential
requirements for WSANs, since in many WSAN applications
the nodes need to consistently take a coordinated course of
action to prevent a malfunction. For example, in the factory
automation scenario inconsistent operation of regulator valves
may lead to chemical hazards, and in the robotic highway
markers example a robot with an inconsistent view of the
system may enter in to traffic and cause an accident.

Due to the heavy emphasis WSANs lay on consistency
and coordination, we anticipate that concurrent execution, or
more accurately, nondeterministic execution due to concur-
rency will be a major hurdle in programming of distributed
WSANs. Since each node can concurrently change its state
in distributed WSANs, unpredictable and hard-to-reproduce
bugs may occur frequently as it is the case in any distributed
system. Even though it is possible to prevent these uninten-
tional and unwanted nondeterministic executions by tightly
controlling interactions between nodes and access to the shared
resources [8], [15], [18], if done inappropriately, this may
deteriorate a distributed system into a centralized one and

destroy concurrency, which is necessary for providing real-
time guarantees for the system.

To enable ease of programming and reasoning, and yet allow
concurrent execution, we proposeTRANSACT: TRANsactional
framework for Sensor/ACTor networks. TRANSACT enables
reasoning about the properties of a distributed system execu-
tion as interleaving of single transactions from its constituent
nodes, whereas, in reality, the transactions at each of the nodes
are running concurrently. Consequently, under the TRANSACT

framework, any property proven for the single threaded coarse-
grain executions of the system is a property of the concurrent
fine-grain executions of the system. (We call this the “conflict
serializability” theorem.) Hence, TRANSACT eliminates unin-
tentional nondeterministic executions and achieves simplicity
in reasoning while retaining the concurrency of executions.

Overview of TRANSACT. The key idea of TRANSACT

can be traced to the optimistic concurrency control (OCC)
in database systems [21]. There are three phases in an OCC
transaction: 1.Read: Transaction begins by reading values
and writing to a private sandbox. 2.Validation: The database
checks if the transaction could have conflicted with any other
concurrent transaction. If so, the transaction is aborted and
restarted. 3.Write: Otherwise, the transactions commits. Thus,
transactions in OCC satisfy the ACID (atomicity, consistency,
isolation, durability) properties.

In TRANSACT, a thread, an execution of a nonlocal method,
is analogous to a transaction in OCC. A nonlocal method
(which requires inter-process communication) is structured as
read∗[write−all], i.e., a sequence ofread operations followed
by a write-all operation. Each read operation reads variables
from some nodes in single-hop, and write-all operation writes
to variables of a set of nodes in single-hop. Read operations
are compatible with each other: since reads do not change the
state, it is allowable to swap the order of reads across different
threads (and even within the same thread as we discuss later).
Similar to a write operation in OCC, a write-all operation
may fail to complete when a conflict with another thread
is reported. A conflict is possible only if two overlapping
threads have both read-write and write-write incompatibilities
(as defined in Section II-B) with respect to some variables.
When a write-all operation fails, the thread aborts without any
side-effects. Since the write-all operation—the only operation
that changes the state—is placed at the end of the thread, if it
fails no state is changed and hence there is no need for rollback
recovery at any node. An aborted thread can be retried later.

Novel contributions. Concurrency control in TRANSACT

diverges from that in the database context significantly, and
introduces new challenges to address as well as new oppor-



tunities to exploit for efficient implementations. In contrast to
database systems, in distributed WSANs there is no central
database repository or an arbiter; the control and sensor
variables are maintained distributedly over several nodes. As
such, it is infeasible to impose control over scheduling of
threads at different nodes, and also challenging to evaluate
whether distributed threads are conflicting. By exploiting the
properties of broadcast communication inherent in WSANs,
TRANSACT overcomes this challenge and provides a light-
weight implementation of optimistic concurrency control as
we discuss in Section II-C. Moreover, TRANSACT is free of
deadlocks (as none of the operations is blocking) and livelocks
(as at least one of the threads needs to succeed in order to
cancel other incompatible thread executions).

Process control and coordination programs are easy to write
in TRANSACT. For example a leader election method is written
in two lines in Figure 1. Here, the first statement reads
the “leader” variable from all neighbors, and if none of the
neighbors has a valid leader, the second statement assigns the
node as the leader to all neighbors. Similarly, mutual exclu-
sion, cluster construction, neighborhood discovery, recovery
actions, and consensus are easy to denote using TRANSACT.
Since TRANSACT guarantees that any concurrent execution is
equivalent to a single-threaded execution of the program, it is
easy to see why the concurrent executions of methods satisfy
the denoted goals. Moreover, since a write-all operation –upon
completion– updates the states of many nodes simultaneously,
achieving consistency and coordination is facilitated.

Unreliable wireless communication due to collisions is a big
challenge in the implementation of TRANSACT. We discuss
how we cope with collisions using our receiver-side collision
detection mechanism [5] in Section II-C.

II. T RANSACT FRAMEWORK

A. Language

A TRANSACT method consists of read and write-all opera-
tions and is of the formread∗[write−all]. Each read operation
reads variables from a set of nodes in single-hop, and write-all
operation writes to variables of a set of nodes in single-hop.
A thread is an execution of a method, and can span across
many nodes.

In Figure 1 we give some examples of TRANSACT methods
for different tasks to illustrate the ease of programming in this
model. TRANSACT methods return a boolean value denoting
the successful completion of the method. If the method exe-
cution is aborted (e.g., due to conflicts with other threads or a
lack of response to a read), it is the responsibility of the caller
(application) to retry.

B. Semantics

To keep the exposition simple we assume for the rest of
the text that nodes have single thread of control, and focus on
concurrent execution of threads only across nodes.

The read operations are compatible with respect to each
other, so swapping the order of any two concurrent read
operations results into an equivalent computation. A read

bool leader election(){
X=read(“*.leader”);//read from all nbrs

if (X = {⊥}) then return write-all(“*.leader=”+ID);
return SUCCESS; }

bool consensus(){
VoteSet=read(“*.vote”);
if( |V oteSet| = 1) then //act consistently

return write-all(“*.decided=TRUE”);
return FAILURE;}

bool recovery action() {
StateColl=read(“*.state”);//read state from nbrs

if(¬ legal(StateColl)) then //state is corrupted

return write-all(correct(StateColl));
return SUCCESS;}

Fig. 1. Sample methods in TRANSACT

operation and a write operation at different and overlapping
threads to the same variable are incompatible, so it is dis-
allowed to swap the order of two such operations. In such
a case, a causality is introduced from the first to the second
thread. Similarly, two write operations to the same variable are
incompatible with each other, and introduce a causality from
the first thread to perform the write to the latter. If a read-
write incompatibility introduces a causality fromt1 to t2, and
a write-write incompatibility introduces a causality fromt2 to
t1, then we say thatt1 andt2 are conflicting. This is because,
due to the causalities the concurrent execution oft1 andt2 do
not return the same result as neither at1 followed by t2 nor a
t2 followed by t1 execution. In this case, sincet2 is the first
thread to complete, whent1 tries to write-all, t1 is aborted
due to the conflict.

TRANSACT provides guarantees on consistency and safety,
but cannot provide very tight timeliness guarantees due to the
contending nature of channel access. For example, when the
bandwidth limits of the network is stretched due to a large
number of communicating nodes in a region, it is not possible
to provide tight real-time guarantees. Precaution should be
taken to ensure the bandwidth limits are respected. Moreover,
contention management schemes [11], [36] can be used to
improve the real-time performance.

C. Read and Write-all operations

Broadcast communication opens novel ways for optimizing
the implementation of read and write operations in OCC
transactions. We identify these as follows:

1) Broadcast is atomic, that is, a broadcast is received by
all recipients simultaneously

2) Broadcast allows snooping

Property 1 gives us a powerful low-level atomic primitive
upon which we build the threads. Using Property 1, it is
possible to order one transaction ahead of another, so that
the latter is aborted in case of a conflict. (Property 1 does
not rule away collisions nor asserts that a broadcast message
should be reliably received by all intended nodes. We relegate



the discussion of how we cope with collisions to the end of
this section.) We use Property 2, i.e., snooping, for detecting
conflicts between transactions without the help of an arbiter.

Implementation of Read operation : Since read operations
are compatible with other read operations, it is possible to
execute read operations—even those from the same thread—
concurrently. Moreover, exploiting the broadcast nature of
communication the node initiating the transaction can broad-
cast a read-request where all variables to be read are listed.
To avoid collisions of the reply, it is possible to exploit the
order the variables are listed in the read-request message. For
example, ifj.x occurred at the first place andk.y occurred
at the second in read-request,j knows it should reply some
time between 0-40ms of the read-request, andk knows it
should reply some time between 40-80ms of the read-request.
This scheduling scheme is possible since the broadcasted read-
request message is received by all recipients simultaneously.

Implementation of Write-all operation : The write-all
broadcast performs a tentative write (a write to a sandbox)
at each receiver. If after the broadcast, the writer receives a
conflict-detectedmessage (we discuss how below), the write-
all operation fails, and the writer notifies all the nodes involved
in the write-all to cancel committing. This is done by a broad-
casting of acancellationmessage, and the writer expects a
smallcancel-ackfrom each node to avoid an inconsistency due
to loss of a cancellation message. Such small control messages
are easily implementable under some WSN MACs [30], [37].
The cancellation process may be repeated a few times until the
writer gets a cancel-ack from each node involved in the write-
all (the above scheme can be used for avoiding collision of
cancel-acks). The commit is time-triggered: If after the write-
all, the writer node does not cancel the commit, the write-all is
finalized when the countdown timer expires at the nodes. Since
write-all is received simultaneously by all nodes, it is finalized
at the same time at all nodes –if it completes successfully.

Snooping for detecting conflicts: As mentioned in Section
II-B, any two threadst1 and t2 are conflicting if and only
if a read-write incompatibility introduces a causality fromt1
to t2, and a write-write incompatibility introduces a causality
from t2 to t1. Detection of a conflict over distributed variables
is a hard problem, further complicated by the case where the
read-write and write-write incompatibilities are for different
variables at separate nodes.

conflict_msg

t1:write−all(l’.x)

t2:write−all(l.y,l’.x)

t1:read(l.y)

Execution order:

l’

k

l

j

t1:write−all t2:write−all

t2:write−all
t1:read

Fig. 2. Snooping for detecting conflicts

To enable low-cost detection of conflicts, we use nodes
to act as proxies for detecting incompatibilities between
transactions by snooping over broadcast messages. Figure 2
demonstrates this technique. Herej is executing threadt1
which consists ofread(l.y);write−all(l′.x) operations that
operate on its 1-hop neighbors,l and l′. Simultaneously,
another nodek within 2-hops ofj is executing threadt2 which
write−all(l.y, l′.x). In this scenariol′ is the key. Whent1
readsl, l′ learns about the pendingt1 thread via snooping.
When t2 writes to l′, l′ takes note of the simultaneous write
to l.y (since that information appears at the write-all message)
and notices the read-write incompatibility betweent1 and t2.
Later, whent1 writes tentatively tol′.x, l′ notices the write-
write incompatibility betweent2 and t1. Thus, l′ complains
and abortst1. Had there been multiple nodes written byt1,
the affected nodes may schedule transmission of the conflict-
messages in a collision-free manner by taking the write-all
broadcast as a reference point.
Fault-tolerance : Even when single-hop neighbors are chosen
conservatively to ensure reliable communication (we assume
an underlying neighbor-discovery service to this end—one that
may potentially be implemented as a TRANSACT method),
unreliability in broadcast communication is still possible due
to message collisions and interference. Here, we describe how
TRANSACT tolerates unreliability in wireless communication.

Occasional loss of a read-request message or a reply to a
read-request message is detected by the node initiating the
transaction when it times-out waiting for a reply from one of
the nodes. After a second try of the read-request, the initiator
node aborts the transaction before a write-all is attempted.
In this case, since the initiator never attempted the write-all,
no cancellation messages are needed upon aborting. Retrying
the method later, after a random backoff, is less likely to be
susceptible to message collisions due to similar reasons as in
CSMA with collision avoidance approaches [1].

The collision of a write-all message is harder to detect.
To this end, we employ our work on receiver-side collision
detec- tion (RCD) [4], [5]. When a node receives a collided
message (a carrier-sense mechanism at the MAC layer can
successfully distinguish between an intense activity due to
collision and an idle status of a channel [4]), it broadcasts
a collision-detectedmessage immediately. Note that it is not
possible to identify the sender information, content, or type
of the message collided, so this message is just a collision
notification. Upon receiving a collision-detected message from
one of the nodes involved in the transaction or a collision
message (which may be due to collision of multiple collision-
detected messages) within a small time frame of its write-
all message, the initiator treats this as a conflict message.
In this case, to avoid some intricate consistency issues that
may be raised due to a re-broadcast of a write-all, a second
try is not attempted and the initiator aborts its transaction by
broadcasting a cancellation message as discussed above in the
context of conflict-resolution.

Failure of an initiator node after it broadcasts a write-all may
lead to inconsistent decisions among the nodes involved in the



transaction. Even though this is a very rare fault compared to
collisions and may not incite a solution, it may be possible to
handle this case by devising a decentralized abort mechanism
using snooping. Note that failures of other nodes are readily
tolerated and do not lead to inconsistencies.

III. R ELATED WORK

Concurrency control in TRANSACT diverges from that in
the database context significantly as we discuss in the Intro-
duction. Recently, there has been a lot of work on transaction
models for mobile ad hoc networks [6], [22], [24], [25], [29],
[31], however, these work all assume a centralized database
and an arbiter at the server, and try to address the consistency
of hidden read-only transactions initiated by mobile clients.

Distributed systems community has invested significant ef-
fort on coping with concurrency issues, and proposed sev-
eral formal verification frameworks, such as temporal logics
of actions [23], Unity framework [3], etc. Researchers in
distributed systems mostly considered wired, point-to-point
network topologies, and preferred to use high-level models
to think about atomicity at a coarser granularity than the
underlying message-passing communication. For example, the
shared memory model [9] uses a read and a write primitive:
The read primitive reads atomically from all the neighboring
nodes, and the write primitive writes only to the local state of
the node. In the guarded-command model [3], [7], each action
(a combination of read from neighbors and write to local state)
is deemed atomic. These models do not provide any built-in
support for deadlock/livelock prevention or serializability of
the method executions —in contrast TRANSACT provides all
these.

A cached sensor transform (CST) that allows simulation of
a program written for interleaving semantics in WSNs under
concurrent execution is introduced in [16]. CST advocates
a push-based communication model: Nodes write to their
own local states and broadcast so that neighbors’ caches are
updated with these values. This is not directly equivalent to
writing neighbor’s state, due to complications arising from
concurrency and not being able to directly hear writes from
2-hop neighbors to a 1-hop neighbor. CST imposes a lot of
overhead for updating of a continuous environmental value
(e.g., a sensor reading changing with time) due to the cost of
broadcasting the value every time it changes. In contrast to the
CST model, TRANSACT uses pull-based communication, and
hence it is more efficient and suitable for WSANs. CST targets
WSN platforms and supports only a loosely-synchronized,
eventually-consistent view of system states. TRANSACT is
more amenable for control applications in distributed WSANs
as it guarantees consistency even in the face of message losses
and provides a primitive to write directly and simultaneously
to the states of neighboring nodes.

Similar to the conflict-serializability theorem in TRANS-
ACT, Seuss [28] provides a reduction theorem to the same
effect. In contrast to the TRANSACT model where the only
allowed methods are “read” and “write-all” primitives in the
read∗[write−all] format and the only allowed call depth is

one node, Seuss’s remote procedure call based programming
model is more general: call-depth is not-restricted, and the
method structure is less constrained. On the other hand, the
Seuss discipline requires a compile-time semantic compati-
bility check to be performed across nodes and allow only
semantically compatible methods across nodes to run con-
currently by asserting pre-synchronization inserted between
incompatible methods. Note that in TRANSACT we take an
optimistic approach to concurrency control, and do not assert
such restrictions. Also Seuss requires a proof of partial orders
on methods at the compile-time in order to prevent the case
where a method can be called malformedly as part of its
execution.

Linda [2] introduced a tuple-space based programming
model with two communication primitive: “in” (blocking) and
“out” operation. Linda is prone to deadlocks and also does not
provide support for a conflict serializability theorem.

Several programming abstractions have been proposed for
sensor networks, including Kairos [14] and Hood [35]. Kairos
allows a programmer to express global behavior expected
of a WSN in a centralized sequential program and provides
compile-time and runtime systems for deploying and executing
the program on the network. Hood provides an API that
facilitates exchanging information among a node and its neigh-
bors. In contrast to these abstractions that provide best-effort
semantics (loosely-synchronized, eventually consistent view of
system states), TRANSACT focuses on providing a dependable
framework for WSANs with well-defined consistency and
conflict-serializability guarantees.

IV. FUTURE DIRECTIONS

Implementing TRANSACT under WSANs. We will imple-
ment TRANSACT under TinyOS [17] for the mote platforms
[27]. TinyOS currently does not provide any mechanism for
handling inadvertent nondeterministic executions across the
nodes. To achieve conflict-serializability for TinyOS, we will
implement the read and write-all operations of TRANSACT

as a TinyOS library component. Our component willprovide
read and write-all commands in its interface and implement
these operations as we described in Section II-C. By asserting
that the programmer use only TRANSACT-style methods (of
the formread∗[write−all]) for inter-process communication,
we can provide the benefits of TRANSACT framework for a
TinyOS application.

TinyOS has a single-thread of control managed by the
scheduler, however, due to interrupt-driven execution it is
possible to have race-conditions among updates to intra-
node level variables by tasks and events [13]. We will not
implement transactions for preventing intra-node race condi-
tions. To handle those, we revert to TinyOS, which provides
“atomic” keyword and compile-time race condition detection
for intra-node code [13]. We will initially limit our TinyOS
implementation to initiate at most one TRANSACT method
at a time at a node. (Note that this does not restrict a node
to concurrently participate at several transactions initiated by
other nodes.) Our techniques can be extended to allow multiple



threads executing in parallel at a node, and are applicable for
more powerful WSAN architectures [32] that support multiple
threads at a node.

Experimentation with implementations of TRANSACT will
help in answering questions about the performance and over-
head of the framework. For example, there are some latencies
built into transactions, such as waiting for replies to a read
operation or waiting for the count-down timer to expire
before finalizing a write-all operation. Using table-top and
later using large-scale testbeds [33], we will fine-tune these
latencies. As a demonstration of TRANSACT framework, we
will implement a decentralized traffic-light control application
1. In this application, a number of remote-controlled toy cars
(each carrying a Mica2 mote) will be arriving at an intersection
from different directions. By running a leader-election method
using TRANSACT, only one of the cars will get to proceed at
a time while the others are stopped safely.

Investigating patterns for building more efficient control
programs. The consistent write-allparadigm provided by
TRANSACT enables a node to read from its neighbors and also
to update state of its neighbors in aconsistentandsimultane-
ousmanner. This new model differs from the traditional read-
write models [3], [7], [9]. We believe it is possible to build
more efficient control programs by exploiting the TRANSACT

model than using traditional models. We will provide a library
of examples/applications (patterns [12]) that achieve efficient
control and coordination among nodes. One effective pattern
could be to assign the controller duty of each service to a
few nodes and get other nodes to serve as slaves in those
respects to the nodes responsible for a service (for instance,
some nodes may take over the responsibility for leader-
election and consensus duties while others control resource
discovery, recovery, and topology control of the network).
Programmers can then adopt these patterns to achieve the same
improvements in their code quickly.

Verification support. To enable the application developer
to check safety and progress properties about her program,
verification support may be included for TRANSACT. Since
TRANSACT already provides conflict serializability, the burden
on the verifier is significantly reduced. Hence, for verification
purposes it is enough to consider asingle-threaded coarse-
grain executionof a system rather than investigating all pos-
sible fine-grain executions due to concurrent threads. Another
advantage TRANSACT provides is due to the simplistic format
of the methods. Since TRANSACT methods consist of read
operations followed by one write operation at the end, it is
easy to reason about the effects of a method as a guarded-
command [7], or more generally as a transition [26]. This
facilitates translation between TRANSACT methods and other
existing verification toolkits, such as model checkers [19],
[20].
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