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Abstract 
 

Recent advances in bioinformatics combined with genome sequencing 

and annotation has lead to the generation of large volumes of molecular 

biological data. This influx of information has necessitated better 

computational models to interpret the data available and thereby assist 

in relating the molecular behavior to system characteristics and 

functions. Such holistic approach to biological modeling is called 

systems biology. 

Research has shown that all the information needed to build a detailed 

model of a cell, including the properties of all constituent components 

and their interconnectivity, is still not available. However, cells are 

subject to various constraints such as mass-balance of reactions, 

thermodynamics, regulation, etc., that help to define its behavioral 

solution space. Thus, a constraint-based approach to systems biology 

can overcome the lack of detailed information by successive imposition of 

constraints on the cell behavior.  A purely constraint-based approach 

however, tends to overlook the structural properties that define the 

composition of biological systems. Therefore, in this thesis we propose 

and explore the constrained object approach to systems biology. The 

constrained object paradigm offers a unified approach towards modeling 

the structural properties of biological systems in terms of an object 

hierarchy and the behavioral aspects using declarative constraints.  

We illustrate our hypothesis by providing a fairly detailed model of a 

typical metabolic network using the Cob programming language.  The 

time-varying behavior of such networks is modeled using the conceptual 

extension of Cob called dynamic constrained objects.  Additionally, the 

paradigm allows objective exploration of the phenotypic solution space 

using preference predicates. Our conclusion from this research shows 

that constrained objects offer a promising approach to modeling more 

complex metabolic networks. 
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Chapter 1 
 

Introduction 
 

1.1 Motivation and Significance    
 
Recent advances in the field of molecular biology combined with rapid 

technological progress have led to an overwhelming flow of biological 

data[1,10,16]. This approach has successfully generated information about 

individual cellular components and their functions. It is estimated that, 

at the current rate, very soon we would have catalog of individual cellular 

components and their functions for a large number of organisms[10]. 

Such knowledge, while necessary in understanding what constitutes the 

system, is not sufficient in understanding or predicting the system’s 

behavior. Biological systems tend not to abide by the principle of 

behavioral compositionality, i.e. the behavior of the system is not 

deducible from the behavioral knowledge of its individual components. 

Therefore, in order to understand the emergent properties exhibited by 

biological systems, we need computational models that can simulate the 

component behavior and their interactions when functioning within a 

system’s environment. Experimental studies to observe systemic 

behavior tend to be particularly expensive for biological systems[20]. The 

challenge posed now is to understand how all the cellular components 

collaborate within living systems.  

 

Systems biology[16,21,35] aims to develop a system-level understanding of 

biological systems. Such holistic knowledge will enable scientists to link 

molecular behavior to system characteristics and functions. 

Computational models for biological systems, thus, will be helpful in 

analyzing, interpreting and even predicting the genotype - phenotype 
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relationship.  The approaches to systems biology can be broadly 

classified as graph-theoretic, mathematical, object-based, or constraint-

based approaches. Graph-theoretic approaches[31] represent the 

structure of reaction pathways in terms of how ‘substances’ are 

connected to each other by reactions. However, they exhibit severe 

shortcoming in representing reactions other than monomolecular. Purely 

mathematical models[42] are extremely limited at representing the 

structural characteristics inherent to all biological systems. Object-based 

approaches[36] are impeded by the lack of detailed structural information. 

Constraint-based approaches[22] to cell modeling have the distinct 

advantage that they can overcome the lack of detailed information by 

imposing constraints such as mass-balance of reactions, 

thermodynamics, regulation, etc., that limit the possible cellular 

behavior. By imposing these constraints on a cell it is possible to predict 

what the cell can and cannot do. This approach leads to the formulation 

of solution spaces in which the behavior of a cell is likely to be.  The 

solution space defines the likely phenotypic behavior a cell.  Thus, we 

feel that the constraint-based strategy offers a promising approach to 

modeling biological systems and processes.  

 

1.2 Constrained Object approach to Systems Biology 
 
A purely constraint-based approach fails to account for the inherent 

structural characteristics exhibited by biological entities and the 

variation in their interactions influenced by a dynamic environment.  For 

this reason, we explore a more comprehensive paradigm which caters to 

both structural and behavioral modeling.  The constrained object 

paradigm[37] (Cob) is aimed at modeling systems that are compositional in 

nature, and whose emergent behavior is governed by certain laws or 

rules governing the constituent components and their interactions. The 
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Cob language[38] and its modeling environment, which was developed at 

the University at Buffalo, has been successfully applied at modeling 

engineering entities such as electrical networks of interconnected 

components.  

 

The Cob language supports some of the traditional object oriented 

features such as inheritance, encapsulation, aggregation etc. as well as 

declarative specification of system behavior through constraints. The Cob 

environment also facilitates visual development and manipulation of 

models.  In this thesis we apply the constrained object paradigm towards 

modeling complex biological entities such as metabolic networks. We 

show the application of Cob principles in modeling a representative 

metabolic network. The traditional Cob model, however, is aimed at 

modeling static system behavior. Therefore, in order to model the 

dynamic behavior exhibited by biological networks, such as metabolic 

pathways, we employ the concept of dynamic constrained object[23]. The 

metabolic pathways are often defined by a system of underdetermined 

biochemical reactions. Therefore, in order to understand specific system 

behavior we need to employ optimization criteria on the network. Cob 

facilitates the observation and analysis of specific system behavior by 

application of preference predicates.  

 
The rest of this thesis is organized as follows: Chapter 2 presents the 

motivation behind building a computational model for biological systems. 

We review the notion of systems biology aimed at an integrative analysis 

the data obtained from molecular biology and identify some of the 

requirements for a computational biological model based on our 

literature survey. We then elaborate on the motivation for a Constrained 

Object approach and the advantages it offers over other models. Finally, 

we present a brief overview of some of the constraints that we will 

incorporate in our model of a metabolic pathway in Chapter 4.  
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Chapter 3 details the constrained object paradigm. We briefly review the 

syntax of the Cob language and illustrate the paradigm of constrained 

objects through the example of a DC circuit. The basic paradigm of 

constrained object however cannot easily model dynamic behavior. 

Therefore, we present the concept of dynamic constrained object and 

illustrate it in modeling AC Circuits and the nerve cell behavior. In 

chapter 4 we illustrate the Cob approach to systems biology by building a 

dynamic Cob model for a hypothetical metabolic network. We also 

illustrate the ability of Cob in exploring the under-determined behavioral 

solution space, defined by such reaction pathways, through specification 

of preference predicates. Finally, we list the advantages in employing the 

Cob paradigm over traditional modeling methodologies.  Chapter 5 

presents the conclusions from our study and some open areas for future 

research in this area. 
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Chapter 2 

Systems Biology 
 

Genome sequencing and annotation combined with high-throughput 

technologies continues to generate large amounts of molecular 

information for a wide range of organisms. Such reductionist approaches 

have focused on analyzing individual cellular components, their 

composition and functions. However the cellular components and their 

functions in isolation do not enable us to understand the overall cellular 

behavior. In this chapter we review the systems biology approach 

towards understanding biological behavior, and state the requirements 

for a quantitative computational model to simulate and/or predict 

systemic behavior exhibited by biological entities. 

Molecular biology has traditionally focused on identifying and analyzing 

individual cellular components, their composition and functions.  Such 

approaches may soon result in a catalog of cellular components for a 

large number of organisms[10]. Although an understanding of the 

individual components of the system is important towards understanding 

the system as a whole, it is not sufficient[15,16]. In order to make sense of 

the all the molecular data being generated we need to understand the 

component behavior from a systems perspective. The behavioral 

properties of biological systems can be better understood by studying the 

interactions of these components with one another in the context of their 

operating environment. 

To put things in perspective, let’s consider the example of a complex 

engineering entity such as a spaceship. A thorough understanding of all 

the components it is built of and their functions, although important and 

essential, would be insufficient in determining the overall functional 

properties of the spaceship. Similarly, biological systems exhibit 
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emergent properties that cannot be predicted based on the properties of 

their components alone. Systems biology promises to provide a 

comprehensive quantitative analysis of the manner in which all the 

components of a biological system interact functionally over time[1].  

 

2.1 Requirements for a Computational Biological Model 
 
Experimental results indicate that there is no one-to-one relationship 

between individual cellular components and overall cellular functions [34]. 

This relationship is extremely complex and highly nonlinear, and thus 

cannot be predicted from knowledge of the components and their 

functions alone. Therefore in order to understand and predict cellular 

behavior, the function of each cellular component must be placed in the 

context of the interrelatedness and connectivity of cellular components 

working towards attaining the overall goals of a cellular function [27]. This 

interrelatedness constitutes a network. Due to the complexity of such 

networks operating within cells and large number of components 

involved, it is extremely difficult to understand the behavior of such 

networks by purely analytical techniques. We therefore need to build 

representative computational models that can simulate the behavior of 

such networks in order to understand their complex patterns and 

relationships and thereby be in a better position to predict their behavior 
[18]. 

 

Our study of literature in this area indicates that quantitative models 

built to simulate biological behavior should address the following issues: 

 

 System structure  

One of the key requirements to understand a biological system is 

to first identify the structure of the system. The model should be 

able to depict the component based structure exhibited by cells 
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and cellular components. Towards this end one must identify all 

the components of the system, their functions and associated 

parameters. The model should facilitate understanding of physical 

structure of whole organisms at the cellular level. Such models can 

then be used to simulate a quantitative analysis of the system’s 

response and its behavioral profile [16]. 

 Component attributes  

Once the system structure has been identified, we need to focus on 

identifying attributes that define the behavior of each of those 

components. The model also needs to account for attributes that 

influence the interaction between these components.   

 Emergent behavior 

As already stated biological systems don’t tend to abide by the 

principles of behavioral compositionality. In other words the overall 

behavioral properties exhibited by biological systems tend to be 

vastly different from the properties exhibited by their individual 

components. The model should be able to identify each 

component’s behavior in context of the whole organism and its 

environment. It is therefore imperative that any computational 

model that simulates biological systems or processes be able to 

emulate their emergent behavior. It needs to account for how the 

organism adapts to changes in the environment, and various 

stimuli, how it maintains robustness against potential damages to 

the system, how it exhibits the functions observed [16]. 

 Dynamic behavior 

The emergent behavior exhibited by biological systems also tends 

to change with time and operating conditions. In other words the 

system behavior at a given instant depends upon the constraints 

under which it is acting and the cell objective at that instant. For 

example in glucose rich medium the cell may decide to maximize 

growth by optimizing biomass generation.   
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 Visual modeling environment 

Since such models are intended to be used primarily by biologists, 

usability is another important issue that needs to be factored in 

the design goals. Biologists would prefer to access and modify the 

underlying model using the visual representation. Therefore such 

models need to be able to map the visual representation to the 

underlying code. We need to provide a visual modeling 

environment that facilitates interactive design and verification. 

Thereby, it should be possible to fine tune the model using the 

visual interface as opposed to manipulating the underlying code 

written to build the model.  

 Incremental design 

Flexibility in design is another key consideration for any such 

computational model. This need arises from incomplete knowledge 

of constraints and erroneous annotation when building such 

models [15,20,35]. Much of the modeling would thus be hypothesis 

driven; wherein the model would enable us to make behavioral 

predictions which will then be tested using in vivo /in vitro 

methods. The results would either confirm the hypothesis or lead 

to reevaluation of the model. The model may also need to be 

updated as and when new information becomes available from the 

molecular databases. Thus, the model should be flexible enough to 

allow iterative development. 

 Biological fidelity 

Any such computational model needs to be consistent with 

underlying biochemistry and genetics. Although complete gene 

portfolios for a large number of organisms are available, functional 

assignment to these genes is presently incomplete [reference]. 

Thus, in spite of impressive bioinformatics databases, not all 

information needed to build a detailed computational model of a 

whole cell is still available[20]. So, it is likely that such a model may 
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be built on certain assumptions/extrapolation about attributes 

and/or functions. However such hypothesis needs to be then 

verified experimentally and any deviation between the observed 

and expected behavior should be fed back in the model so that it is 

consistent with observed biological behavior.  

 Scalability 

According to the Human Genome Project, the human genome 

contains around 3164.7 million chemical nucleotide bases and is 

estimated to contain around 20000-25000 genes. The mere size of 

these numbers is indicative of the kind of scale such a model will 

need to confront with. Thus, scalability is a critical design 

parameter for any computational model of a biological system. 

 

2.2 Towards a Constrained Object Approach 
 
As stated in section 2.1, the ability of a computational model of a 

biological system to predict phenotypic system behavior lies in its ability 

to model, through a visual modeling environment, the systems structure 

and its components i.e. their attributes and interactions.  

 
In independent research earlier [Regev A., Shapiro E.] had proposed the 

idea of modeling cells as computational entities. They proposed the idea 

of using abstraction to model bio-molecular systems so that these 

complex systems could be described hierarchically. Thus, a system of 

interacting molecular entities could be described and modeled by a 

system of interacting computational entities.  

Elsewhere [Hartwell L.H., Hopfield J.J. Leibler S., Murray A.W.] have 

proposed the notion of modular biology towards identifying ‘functional 

modules’ for representing the biological organization. They define 

functional modules as discrete entities whose function is separable from 

those of other modules. The higher-level properties of the cell are then 
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described by the pattern of connections among their functional modules. 

[Kitano H. et.al.] proposed modeling the systemic structure and behavior 

exhibited by biological entities, which would enable us to control the 

state of the system. They have emphasized on understanding the 

physical structure of whole organisms at the cellular level as the first 

step towards understanding biological systems. 

Meanwhile, in independent parallel research, investigators at UCSD led 

by Dr. Palsson have proposed a constraint based approach to cell 

modeling. Their motivation for constraint based approach stems from the 

fact that, in spite of huge bioinformatics databases, all the information 

needed to build a computer model of a whole cell, at a level of detail that 

contains information on both, the properties of each component in the 

system as well as their interconnectivity, is still not available. However, 

this lack of information can be countered by modeling cellular behavior 

based on the constraints acting on the cell [5,22,24,]. The constraints help 

to define a solution space in which the phenotypic behavior of the cell is 

likely to lie, as opposed to a unique solution. This solution space can 

then be refined further by optimizing on some criteria which would 

represent a particular phenotypic trait. A purely constraint based 

approach however fails to account for the structural characteristics, 

modularity and the contextual behavior exhibited by biological entities. 

 

Based on the literature analysis presented above and the issues faced 

therein, we propose a unified approach to modeling biological systems 

that overcomes the limitations of a purely structural modeling approach 

by incorporating constraints, in the definition of those structural entities 

and their interactions, in the model. The Constrained Object paradigm 

developed by researchers lead by Dr. B. Jayaraman at the University at 

Buffalo, has been shown to model engineering entities like trusses, 

circuits, etc. with considerable amount of success [37].  We’ll review some 

of the constraints a cell is subject to in the following section; a detailed 
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explanation of the Constrained Object paradigm with relevant examples 

is presented in the following chapter. 

 

 Biological constraints 
 

The constraints acting on a cell can be classified broadly as invariant 

(hard) or adjustable (soft) constraints. The hard constraints define the 

boundaries of the solution space and thus represent the range of 

possible phenotypic behaviors for a cell. Several classifications schemes 

have been proposed for the type of constraints a cell is subject to [14,22]. 

Following the work of Dr. Palsson and collaborators we use the following 

constraint classification scheme: 

 

Physicochemical constraints 

They represent hard constraints on the cell. Examples of such 

constraints include balance of mass and energy. Mass and energy can be 

never created or destroyed in the cell. Therefore elements entering the 

cell need to be either incorporated for cell growth and replication or 

utilized to generate energy needed to carry out cellular functions or 

secreted into the extra cellular environment. Excess biochemical 

products tend to accumulate over time and result in cellular toxicity and 

death [cite reference]. Energy imbalance has similar detrimental 

consequences. Balance of mass and energy thus imposes critical 

constraints on the cellular behavior. The total number of components 

that can be contained in the cell is constrained by the cell volume; 

another physicochemical constraint. Reaction thermodynamics and 

enzyme capacity pose additional physicochemical constraints on the cell. 

The thermodynamics of internal reactions determine the direction in 

which the reactions proceed. The presence of enzymes facilitates 
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conversion of substrates into products. The maximum enzyme capacity 

thus influences the possible cellular behavior.   

 

Environmental constraints 

The constraints imposed on the cell by its internal and external 

environment has a significant influence on the cellular behavior. The 

presence or absence of necessary compounds, physical characteristics of 

the external environment such as temperature, pressure, pH, exposure 

to light or water etc. are some of the constraints the external 

environment can impose on the cell. Inadequate knowledge of these 

constraints may lead to incorrect or misleading predictions of cell 

behavior and hence they need to be factored in the quantitative analysis 

of cellular behavior [5]. The dense internal environment of a cell creates 

osmotic pressure in relation to the external environment that must be 

balanced while maintaining an electro neutral environment on both sides 

of the cell membrane. The osmotic and electroneutrality constraints 

affect the cell volume which in turn restricts the total number of 

components that can be contained in the cell [5]. 

 

Regulatory constraints 

Unlike the above, regulatory constraints are imposed by the cell on 

themselves in order to cope with the constraints imposed by the internal 

and external environments. They, thus tend to be time dependent. 

Through these constraints, cells are able regulate to a certain extent 

which genes are expressed, which proteins are present and even the 

activity of proteins in cells. These constraints help to further limit the 

space of possible cell functions.   

For a more detailed analysis of above constraint classification scheme the 

reader is referred to [20]. 
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Summary 

 
Thus, in this chapter we have looked at the motivation in building 

computational models to represent biological phenomenon. We detailed 

the systems biology approach towards understanding the emergent 

behavior exhibited by biological systems. We also reviewed the 

requirements for such a computational biological model. We then 

elaborated on the motivation for a constrained object approach, which 

offers the distinct advantage of being able to model structural 

characteristics, and at the same time can overcome the lack of detailed 

information therein, through declarative specification of constraints on 

the model’s behavioral solution space. Towards this end, we also saw 

some of the typical constraints acting on a cell. Some of these constraints 

will be employed when we build the Cob model for a metabolic pathway 

in Chapter 4. 
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Chapter 3 
 

Constrained Objects  
 
 
The object oriented modeling paradigm bas been successfully applied to 

model many real world complex entities. In this paradigm, objects are 

essentially containers for data and the behavior is abstracted through an 

interface of procedures. In the constrained object modeling paradigm[37] 

that we present in this chapter, an object is also a container for data. 

However, in contrast with traditional objects, a constrained object is one 

whose attributes are governed by certain laws or invariants. When such 

objects are aggregated to form complex entities, their internal attributes 

are often subject to additional interface constraints.  Thus, the resultant 

state of the complex entity can be deduced only by satisfying both the 

internal and the interface constraints of the constituent objects.   

 

To illustrate the notion of constrained objects, let us consider the 

example of a resistor in an electrical circuit. Its state maybe represented 

by three variables V (voltage), I (current) and R (resistance). However, 

these state variables cannot change independently, instead they are 

governed by Ohm’s law: V = I * R. Thus, a resistor is a constrained 

object. Similarly other electrical components such as capacitors, 

inductors, voltage sources, etc. can also be viewed as constrained objects 

as we explain further in the example in the next section. Now, when 

several such objects meet at a node, the node is subject to Kirchhoff’s 

current law, namely, the sum of currents at the node must be zero. 

Thus, the node is also a constrained object. Constrained objects, thus, 

provide a principled approach to compositional modeling of complex 
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systems wherein the behavior of a component by itself and in relation to 

other components is governed by laws or rules.  

 

In general, modeling such entities involves the specification of both the 

structure and behavior of their constituent components. While structure 

can be modeled using objects and aggregation/inheritance hierarchies, 

modeling behavior using traditional imperative procedures places the 

responsibility of enforcing them on the programmer. Constraints 

facilitate a declarative specification of the behavior of a complex system. 

The Constrained Object paradigm thus, can be viewed as a declarative 

approach to object-oriented programming.  

 

3.1 Overview of Cob Language  
 

Cob (for Constrained object) is a programming language[37] that supports 

some of the traditional object oriented features such as inheritance, 

encapsulation and aggregation as well as declarative language features 

such as arithmetic equations and inequalities, quantified and conditional 

constraints etc. Cob provides a modeling environment that facilitates 

compositional specification of the structure of a system, declarative 

specification of its behavior and visual development and manipulation of 

the underlying model. The following description of Cob syntax has been 

adapted from [37]. 

 

A Cob program is a sequence of class definitions and each constrained 

object is an instance of some class. 

  program ::= class_definition+

A class definition consists of attributes, constraints, predicates and 

constructors.  
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class_definition ::= [abstract] class class_id  
 [extends class_id] {body}  

 
  body ::= [attributes attributes] 

         [constraints constraints] 
          [predicates predicates] 
        [constructors constructor_clause] 
 
 
 

An attribute is a typed identifier, where the type is either a primitive type 

or user-defined type or an array of primitive or user-defined type. 

 
attributes        ::= decl; [decl;]+ 
decl              ::= type id_list 
type              ::= primitive_type_id | class_id |   

                   type[] 
primitive_type_id ::= real | int | bool | char | string 
id_list           ::= attribute_id [, attribute_id]+ 
 
 

Constraints define the relation over the attributes of one or more classes.  

 
constraints           ::= constraint; [constraint;]+ 
constraint            ::= simple_constraint |  
        quantified constraint | 
        creational_constraint 
creational_constraint ::= complex_id = new class_id(terms) 
quantified_constraint ::= forall var in enum:(constraints)|         
                          exists var in enum:(constraints) 
simple_constraint     ::= conditional_constraint | 
                          constraint_atom 
conditional_constraint::= constraint_atom :- literals 
constraint_atom       ::= term relop term |  
                          constraint_predicate_id(terms) 
relop                 ::=  =|!=|>|<|>=|<= 
 

Terms can appear in constraints or as arguments to functions, 

predicates or constructors. 

 

     term ::= constant | var | complex_id | (term) | 
              arithmetic_expr | func_id (terms) | [terms] 
              | sum var in enum : term 
              | prod var in enum : term 
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              | min var in enum : term 
              | max var in enum : term 
 terms ::= term [,term]+

 

complex_id: A complex identifier refers to an element of an array or to 

an attribute of an object.  

 

           complex_id ::= attribute_id[.attribute_id]+ | 
                     complex_id [term]  
 

A Literal can be an atom or the negation of an atom: 

 

     literals ::= literal[,literal]+

     literal  ::= [not] atom 
     atom     ::= predicate_id(terms) | constraint_atom 
 
Constructor – A class can have more than one constructors and a class 

without a constructor must be declared as abstract: 

 
     constructor_clauses ::= constructor_clause+

     constructor_clause ::= constructor_id(formal_pars) {    
                            constructor_body } 
     constructor_body ::= constraints 
 

Example (DC Circuit) 
 

Consider the example of an electrical circuit consisting of a series-

parallel combination of resistors. The components and connections of 

such a circuit can be modeled as constrained objects. The component 

class models any electrical entity (e.g resistor, battery) that has two ends. 

The attributes of this class represent the currents and voltages at the two 

ends of the entity. The constraint in class resistor represents Ohm’s 

law. The class end represents the terminal ends of a component. A 

collection of ends meet at a node, where they are subject to Kirchhoff’s 
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current law constraint i.e. the sum of currents entering and leaving that 

node must be zero.  

 

 
Figure 3.1 An example of DC circuit (adapted from [37]) 

 

 

abstract class component { 
 attributes 
   real V1, V2, I1, I2; 
  constraints 
     I1 + I2 = 0; 
} 
 
class resistor extends component { 
 attributes 
   real R; 
 constraints 
   V1 – V2 = I1 * R; 
 constructor resistor(D) { R = D; } 
} 
 
class battery extends component { 
 attributes 
  real V; 
 constraints 
  V2 = 0; 
 constructor battery(X) { V1 = X; } 
} 
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class end { 
 attributes 
  component C; 
  real E,V,I; 
 constraints 
  V = C.V1 :- E = 1; 
  V = C.V2 :- E = 2; 
  V = C.I1 :- E = 1; 
  V = C.I2 :- E = 2; 
constructor end(C1,E1) 
{ C = C1; E = E1; } 
} 
 
class node { 
 attributes 
  end [] Ce; 
  real V; 
 constraints 
  sum C in Ce: C.I = 0; 
  forall C in Ce: C.V = V; 
 constructor node(L) { 
  Ce = L; } 
} 
 
Using the above class definitions we can give a constrained object 

definition of the circuit class as: 

 
class samplecircuit { 
 attributes 
  resistor R12, R13, R23, R24, R34; 
  battery B; 
  end Re121, Re122, Re131, Re132, Re231, Re232, Re241,   
      Re242, Re341, Re342, Be1, Be2; 
  node N1, N2, N3, N4; 
 constructor samplecircuit(X) { 
  R12 = new resistor(10); 
  R13 = new resistor(10); 
  R23 = new resistor(5); 
  R24 = new resistor(10); 
  R34 = new resistor(5); 
  Re121 = new end(R12, 1); Re122 = new end(R12,2); 
  Re131 = new end(R13,1); Re132 = new end(R13,2); 
  Re231 = new end(R23,1); Re232 = new end(R23,2); 
  Re241 = new end(R24,1); Re242 = new end(R24,2); 
  Re341 = new end(R34,1); Re342 = new end(R34,2); 
  B = new battery(10); 
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  Be1 = new end(B,1); Be2 = new end(B,2); 
  N1 = new node([Re121, Be1, Re131]); 
  N2 = new node([Re122, Re241, Re231]); 
  N3 = new node([Re132, Re232, Re341]); 
  N4 = new node([Re242, Re342, Be2]); 
 } 
} 
 
 
 

3.2 Dynamic Constrained Objects
 
Biological entities tend to exhibit dynamic behavior, that is, their 

behavior tends to change with time and the environmental conditions 

under which they are functioning. The notion of constrained objects 

presented in the section above is suitable for modeling systems whose 

behavior remains essentially static over time. However, for modeling 

continuously evolving biological entities, we illustrate in this section the 

notion of dynamic constrained objects[23]. This is followed by the syntax 

and usage characteristics and some examples in the next section. 

 
The constrained object paradigm and its applications discussed in the 

section above relied on the steady state behavior of systems. However, 

certain systems tend to exhibit dynamic behavior, i.e. their state changes 

with time. For some systems, such state changes can be represented 

mathematically, whereas on other occasions certain aspects of the time-

varying behavior can be characterized by behavioral constraints, while 

other aspects need to be provided as time-series data[23]. Therefore, in 

order to represent the dynamic behavior exhibited by such systems we 

need to maintain information regarding previous states and also be able 

to enforce constraints that relate a state to those of its previous or 

succeeding states. To incorporate such functionality in the Cob paradigm 

the notion of series variable was conceived. Series variables can hold a 
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range of values representing different system states. These values can be 

updated according to certain constraints. The dynamic system behavior 

can now be modeled by specifying constraints over these series variables. 

 

Syntax and Usage [adapted from 23] 
 

The D-Cob extends the Cob syntax by introducing two new features: the 

series variable and dynamic class. 

 

program            ::=  class_definition+ 

class_definition   ::= [abstract] [dynamic] class   
                       class_id [extends class_id] { body } 

body               ::= [attributes attributes]  
                       [constraints constraints] 

                  [predicates pred_clauses]    
                  [constructors constructor_clause] 

attributes         ::= decl ; [decl ;]+ 

decl               ::= type id_list |  
                  series_decl 

series_decl               ::= series attribute_id = series_type 

series_type        ::= term | [ terms ] 

type               ::= [ series ] primitive_type_id |   
                  class_id | type[]  

primitive_type_id ::= real | int | bool | char | string 

id_list           ::= attribute_id [, attributes_id]+ 
 
The keyword dynamic indicates that the class has constraints which 

specify dynamic behavior. The keyword series indicates the variable 

can store values over different instants of time.  

 

Usage: The ‘ operator applied on a series variable addresses values in 

the previous state(s), whereas the ’operator addresses values in the 

future state(s). 
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Example (AC Circuit)
 
In section 3.1.3 we illustrated the use of Cob in modeling DC circuit with 

resistors connected in parallel. Now, consider the case for an AC circuit. 

The primary difference between the two is that in an AC circuit the 

voltage across the circuit will vary over time and secondly the circuit may 

have inductors and/or capacitors. 

 

The electrical law that governs the behavior of a capacitor is given as  

I = C × dV/dt 

where C is the capacitance, and dV/dt represents the change in voltage 

over time. In order to model such behavior in D-Cob the differentiation is 

approximated by a difference equation which can be represented using 

the series variable. Thus, the above equation remodeled as a difference 

equation can be written as, 

I = C × ∆V ⁄ ∆t  

Now, assuming unit time difference for ∆t, current I and voltage V can be 

represented using series variables. So the D-Cob code for above 

behavioral constraint becomes, 

I = C × (V – V’) 

 

Similarly, an inductor’s electrical constraint given as,  

V = L × dI/dt 

can be transformed into the equivalent D-Cob code, 

V = L × ( I – I’) 

 

Consider the simple AC circuit shown below, 
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Figure 3.2: Sample AC Circuit 

 

 

Let’s assume the following specifications for the components in the above 

circuit: Inductor 0.1 henry, Resistor 10 ohm, Capacitor 0.1 farad, AC 

voltage source 10 * sin(10 * t). 

  

Cob code for the parent class component is given below. 

 

abstract dynamic class component { 
  attributes 
    series real I1, I2, V1, V2; 
  constraints 
    I1 + I2 = 0; 
} 
 
Note that the constraint I1 + I2 = 0 in the above code holds over all 

progressive values of the series variables I1 and I2. 
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class resistor extends 
component { 
  attributes  
    real R; 
  constraints 
    V1 – V2 = I1 * R; 
  constructor resistor(D) { 
    R = D; 
  } 
} 
 

class capacitor extends component 
{ 
  attributes 
   real C; 
  constraints  
    I1 = C * (( V1 – V2) –  
        ( V1’ – V2’)); 
  constructor capacitor(C1) { 
    C = C1; 
    V1<1> = 0; 
    V2<1> = 0; 
  } 
} 
 

 
class inductor extends 
component { 
  attributes  
    real L; 
  constraints 
    V1 – V2 = L*(I1 – I1’) 
  constructor inductor(L1) { 
    L = L1; 
    I1<1> = 0; 
  } 
} 

 
class voltagesource extends 
component { 
  constraints 
    V2 = 0; 
  constructor voltagesource(X) { 
  V1 = X; 
  } 
} 

 
 
dynamic class componentEnd { 
  attributes 
   component C; 
   series real V, I; 
   int End; 
  constraints 
    V = C.V1 :- End = 1; 
    V = C.V2 :- End = 2; 
    I = C.I1 :- End = 1; 
    I = C.I2 :- End = 2; 
  constructor componentEnd(C1,E)  
  { 
   C = C1; 
   End = E; 
  } 
} 

dynamic class node { 
  attributes  
    componentEnd [] Ce; 
    series real[] V; 
  constraints 
    sum X in Ce: X.I = 0; 
    forall X in Ce: X.V = V; 
   constructor node(L) { 
     Ce = L; 
   } 
} 
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dynamic class samplecircuit { 
  attributes 
    resistor R; 
    real [] voltages; 
    voltagesource B; 
    capacitor Cl 
    inductor Il 
    componentEnd R1,R2,B1,B2,C1,C2,I1,I2; 
    node N1,N2,N3; 
  constructors samplecircuit() { 
    R = new resistor(10); 
    C = new capacitor(0.2); 
    I = new inductor(0.1); 
    Time[1] = 0; 
    Voltages = 10 * sin(0.1 * Time); 
    B = new voltagesource(Voltages); 
    B1 = new componentEnd(B,1); 
    B2 = new componentEnd(B,2); 
    R1 = new componentEnd(R,1); 
    R2 = new componentEnd(R,2); 
    C1 = new componentEnd(C,1); 
    C2 = new componentEnd(C,2); 
    I1 = new componentEnd(I,1); 
    I2 = new componentEnd(I,2); 
    N1 = new node([C1,B1]); 
    N2 = new node([B2,R1,I1]); 
    N3 = new node([C2,R2,I2]); 
  } 
} 
 
 

Example (Nerve Cell Behavior Model) 
 

Under the Hodgkin and Huxley’s mathematical model[44] for nerve cell 

behavior, the total current flow through a cell membrane is the sum total 

of capacitive and resistive current flows. The capacitive current is defined 

by the equation: 

I = C * dv/dt where C and V denote the membrane capacitance 

and trans-membrane potential. The resistive current is defined as: 
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Iion = gion – (V – Eion) where V represents the transmembrane 

potential, Eion the equilibrium potentials of the individual ions and gion 

the conductance of ion channels. 

There are three different types of ion flow viz. sodium, potassium and a 

leak current.  However, experiments demonstrated that only currents 

induced by sodium and potassium are time variant. The total resistive 

current is given as: 

          Ires = gNa × m3 × h × (V – ENa) + gk × n4 × (V –EK) + gL × (V – EL) 
where m and h represent the gates that control sodium flow, while the n 

gate controls potassium flow. 

Each of these gates satisfies the following equation: 

dX/dt = x(v) × (1 - x) – βx(v) × x 

in which x stands for m, h or n and x and βx are coefficients that 

depend on V and associate with m, h or n respectively. 

We now list details of the dynamic cob representation for above model. 

This representation has been adapted from [43]. 

The series variable V is used to represent the voltage between the inner 

and outer side of the cell and I for current. M, H and N represent 

coefficients for the resistive current. 

 

dynamic class HodgkinHuxley { 
  attributes  
    series real V,M,H,N; 
    real I; 
  constraints 
    V – V’ = I – (120*pow(M,3) * H(V+155) + 36 * pow(N,4) *  
             (V -12) + 0.3 * (V+10.6)); 
    M – M’ = (1 - M)*((V’ + 25)/10) / (exp((V’+25)/10) – 1) 
               - M*4*exp(V’/18); 
    H – H’ = (1 – H)*0.07*exp(V’/20) –  
               H/(1+exp((V’+30)/10)); 
    N – N’ = (1 – N)*0.1*((V’+10)/10)/(exp(((V’+10)/10)-1)- 
              N*0.125*exp(V’/80); 
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  constructors HodgkinHuxley(A) { 
     I = A; 
     V<1> = 0; M<1> = 0; H<1> = 0; N<1> = 0; 
  } 
} 
 
 
 

3.3 Preference Predicates in Cob 
 
Sometimes the imposition of constraints on a system may lead to 

solution spaces as opposed to any unique solution. In order to achieve 

desired objective within this solution space Cob provides the notion of 

preference predicates. Thus, by specifying an optimization criterion for 

under-determined systems we can specify the desired behavior from such 

systems. 

For example consider the problem of minimizing the use of raw materials 

in the combination of mixers and separators in chemical engineering 

domain. This problem was originally formulated by [Tambay et.al] in her 

doctoral dissertation[37]  and is adapted for presentation in this thesis.   

The problem can be modeled using the notion of preference predicates in 

Cob.  Consider the scheme of separators and mixers as shown in figure 

3.3: 
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                    Figure 3.3 Mixers and Separators [redrawn from 37] 
 
The raw materials R1 and R2 are split and a part of each (I1 and I2 

respectively) is sent to a separator which separates its ingredients. The 

mixer combines these ingredients in some proportion to produce the 

desired chemical Mout. W1 and W2 are waste streams from the 

separators. The problem then, is to produce Mout while minimizing I1 

and I2 thereby minimizing the cost of processing material in the 

separators. 

The key classes identified are stream to represent the input raw 

material stream, equipment class models any equipment with some 

input and output streams and the Flowsheet class wherein we specify 

the preference min (I1.FlowRate + I2.FlowRate). The Cob model can 

then be used to determine the optimal consumption of input raw 

material. 
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class stream { 
 attributes 
  real FlowRate; 
  real [] Concentrations; 
 constraints 
  sum C in Concentrations:C = 1; 
 constructors stream(Q, C) { 
  FlowRate = Q; Concentrations = C; 
 } 
} 
class equipment { 
 attributes 
   stream [] InStream, OutStream; 
   int NIngredients; 
  
 constraints % law of mass balance 
  forall I in 1..NIngredients : 
  (sum J in InStream :(J.FlowRate * J.Concentrations[I])) = 
  (sum K in OutStream: (K.FlowRate * K.Concentrations[I])); 
  
 constructors equipment(In,Out,NumIng) { 
  InStream = In;  
  OutStream = Out;  
  NIngredients = NumIng; 
 } 
} 
class sampleFlowsheet { 
 attributes 
   stream I1, I2, S1out, S2out, Mout, W1, W2; 
   equipment S1, S2, M1; 
   real Q1, Q2; 
 constraints 
   Mout.FlowRate = 150; 
   Mout.Concentrations = [0.2,0.8,0.0]; 
   I1.FlowRate = 500; 
   I2.FlowRate = 600; 
 preferences 
   min (I1.FlowRate + I2.FlowRate). 
 constructors sampleFlowsheet() { 
   I1 = new stream(Q1, [0.5, 0.3, 0.2]); 
   I2 = new stream(Q2, [0.05, 0.4, 0.55]); 
   S1 = new equipment([I1], [S1out, W1], 3); 
   S2 = new equipment([I2], [S2out, W2], 3); 
   M1 = new equipment([S1out, S2out], [Mout], 3); 
 } 
} 
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Summary 
 
In this chapter we have seen the Constrained Object approach applied at 

modeling some real world entities from the engineering domain such as 

circuits. We also illustrated the notion of dynamic constrained objects, 

their significance and application in modeling dynamic behavior such as 

in an AC circuit. Finally, we looked at the application of Cob in modeling 

a biological phenomenon namely, the nerve cell behavior, based on the 

mathematical model proposed by Hodgkin and Huxley. However, being a 

purely mathematical model it failed to account for the structural 

characteristics that are inherent to every biological system. In the next 

chapter we will explore a specific biological process, its structural and 

behavioral characteristics, and how it could be modeled using the Cob 

paradigm. We also discuss the distinct advantages it offers in doing so, 

over traditional modeling methodologies. 
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Chapter 4
 

Modeling Metabolic Networks  
 
 
The idea of modeling biological systems as constrained objects has been 

the main theme of this thesis. Earlier, in section 2.3, we cited the distinct 

advantages offered by the constrained object paradigm over purely 

constraint based models or purely object models that simulated behavior 

by enforcing constraints as procedural code. To reiterate, constrained 

object paradigm allows compositional specification of the structure of any 

biological system and declarative specification of its behavior through 

constraints on the objects and their interactions. Besides, the paradigm 

also facilitates visual development and manipulation of the underlying 

model where appropriate. In this chapter we illustrate this idea by 

modeling a representative metabolic network using the Cob paradigm 

and present the distinct advantages it offers in doing so, over traditional 

modeling methodologies.  

 

4.1 Metabolic Networks 
 

Metabolism can be considered as a highly integrated network of chemical 

reactions that converts a particular molecule into some other molecule or 

molecules in a carefully defined fashion[2]. This process may be 

accompanied by the consumption or liberation of energy. Metabolism 

helps us understand how a cell meets it survival objectives. The choice of 

modeling metabolic network was motivated by the fact that most of the 

functional annotation completed thus far has been for genes that encode 

for metabolic functions.  Although the number of reactions that 
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constitute a metabolic network even in the simplest of organisms is fairly 

large, the types of reactions are small and principles for reconstruction of 

such reactions are well established[2]. Such networks tend to be 

structurally similar to circuits encountered in electrical engineering 

domain, although the interactions within these metabolic networks tend 

to be many orders of magnitudes more complicated. Metabolism 

facilitates distribution and processing of metabolites throughout its 

extensive map of pathways. Thus, computational models simulating such 

networks would help us to understand and thereby be in a position to 

predict their behavior. It would thus enable us to enhance performance 

of certain pathways or introduce entirely novel routes for the production 

of various biochemicals of interest[29]. In section 2.3 we presented one of 

the classifications schemes for constraints acting on a biological system. 

We’ll consider their relevance as applicable to metabolic networks as we 

build our Cob model for the same.  

 

Stoichiometric constraints 

The reaction equations define the interconnectivity and interactions 

between the metabolites in the network. They represent the 

stoichiometric conversion of substrates into products. Some of these 

reactions are regulated by concentration of enzymes in their 

environment. These enzymatic reactions as well as the transport of 

metabolites across system boundaries constitute fluxes which help to 

dissipate and generate metabolites [29]. A flux balance equation can be 

written around each metabolite where the difference between the rate of 

production and consumption of that metabolite is equivalent to the 

change in concentration of that metabolite over time, in accordance with 

the law of conservation of mass. Thus, considering the quasi-steady state 

behavior inside the cell, we can write the following mass balance 

equation around each metabolite for a system of m metabolites involved 

in n reactions: 
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                                                 S.v = 0                                   (1) 

This equation represents the stoichiometric constraints on the metabolic 

network. S is an m X n matrix wherein the Sijth element represents the 

number of moles of metabolite i participating in reaction j. v is a vector of 

unknown metabolic fluxes through the j reactions. Eq(1) thus imposes 

the constraint that total rate of production for any metabolite must equal 

the total rate of consumption for that metabolite [23]. Excess biochemical 

products tend to accumulate over time with detrimental consequences 

for the cell. This mass balance equation is formally analogous to 

Kirchhoff’s current law used in electrical circuit analysis, where the 

currents entering and leaving a node must sum to zero. Once the 

genomic sequence for an organism has been annotated the entire 

metabolic map representing stoichiometry of all metabolic reactions 

taking place in the cell can be constructed [26]. However, this matrix 

formulation representing stoichiometry of metabolic reactions provides a 

purely mathematical perspective of the metabolic pathway. It fails to 

account for the structural properties inherent to constituent metabolites, 

the pathway itself and its operating environment. A matrix based 

representation of the reactions is thus very limited in expressing 

structural characteristics of the involved entities. 

 

Thermodynamic and enzyme capacity constraints 

In addition to stoichiometric constraints, thermodynamics and enzyme 

capacity constraints are also employed to further limit the possible range 

of flux values. Thermodynamics associated with reaction equilibrium 

causes some reactions in the metabolic network to be irreversible. 

Furthermore, reversible reactions can be decomposed into a forward and 

reverse component thereby constraining the flux values through these 

reactions to be positive values [5]. Enzyme capacity constraints place an 

upper limit on the values a given flux can take. These values can be 

determined experimentally using procedures detailed in [33].  
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Regulatory constraints 

In order to cope with the hard physicochemical constraints listed above 

the cell imposes upon itself certain regulatory constraints.  As opposed to 

the rigid physicochemical constraints these regulatory constraints tend 

to be transitory, that is they are influenced by the state of external and 

internal environment at any given time. Regulatory constraints are often 

expressed through enzymes that control the transcriptional activity of 

genes and thereby are able to control to a certain extent which genes are 

expressed, which proteins are present and even the activity of proteins in 

cells. Inclusion of these regulatory constraints has been shown to 

significantly influence the prediction capabilities of metabolic 

networks[6,8].  

Thus, in the section below we will consider the application of these 

constraints i.e. stoichiometric, thermodynamic, enzyme capacity and 

regulatory constraints to a hypothetical metabolic network using the Cob 

paradigm.  

 

4.2 Example  
 
We will be often using the terms substrate, metabolic product, biomass 

constituents and intracellular metabolite in this and some of the 

subsequent sections. Given below is a brief definition of these terms as 

pertinent our example.  

 
Substrates are compounds found in the external medium that can be 

further metabolized by, or directly incorporated into, the cell. Some 

examples of substrates are carbon, nitrogen, energy sources etc. 

essential for cell function. 
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A metabolic product is a compound produced by the cell that is secreted 

into the extracellular environment. These could be compounds produced 

in primary metabolism such as carbon dioxide, ethanol, acetate etc. 

Biomass constituents are pools of macromolecules that make up biomass. 

This group includes cellular constituents like macromolecular pools of 

proteins, lipids, carbohydrates, etc. as well as macromolecular products 

accumulating inside the cell. 

Intracellular metabolite includes all other compounds within the cell. This 

includes intermediates in different cellular pathways and building blocks 

used for macromolecular synthesis [33]. 

 

We’ll illustrate some of the constraints explained above with the help of a 

simple reaction system as shown in Figure 4.1 below. 

 

 
 

The system consists of 6 metabolites namely A, B, C, D, G and F. These 

metabolites are linked through 5 reactions. Each of these reactions 
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constitutes a flux namely v1, v2, v3, v4, v5 and v6. The reversible reaction 

between metabolites B and C has been decomposed into two equivalent 

reactions with positive fluxes. System boundary indicated by dotted lines 

demarcates the internal environment from the external environment. 

Metabolite A enters the system with transport flux b1, metabolites G and 

F (that can be considered as biomass precursors) exit the system with 

fluxes b2 and b3 respectively. One of the reactions, that is conversion of 

metabolite B to D is regulated by enzyme E. Thus, this reaction can only 

occur only if enzyme E is present in the internal environment. The 

presence of enzyme E in the internal environment is constrained on the 

presence of substrate Eext in the external environment. However, the 

product of this reaction D has a negative influence on the transcription 

of the gene producing E thereby leading to the depletion of E.  

 

Now, let us consider the constraints acting on this system. Mass balance 

constraints require that the formation fluxes of a metabolite must be 

balanced by the consumption fluxes for that metabolite. For example, in 

the network above metabolite A is involved in 2 reactions: the transport 

flux b1 that brings A into the internal environment and the reaction flux 

v1 that converts it to metabolite B. Thus, imposing flux balance 

constraint around metabolite A in the network above, we can write v1 - b1 

= 0. Similarly, flux balance equations can be written around every other 

metabolite in the system. Maximum uptake and secretion rates for 

transport proteins can be determined experimentally [33]. These can be 

used to constrain the maximum possible values for the transport fluxes 

i.e. b1 ≤ b1_Max (similar constraints can be written for b2 and b3). 

Enforcing thermodynamic constraints we get v1, v2, v3, v4, v5, v6, b1, 

b2, b3 ≥ 0. Presence of A in the internal environment is constrained upon 

the presence of substrate S in the external environment i.e. b1 > 0 iff 

external environment contains (S). The regulated reaction between B and 

D and the resultant feedback mechanism can be expressed as: 
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- 1 B + 1 D  :  if (E) 
regulation                       E   : if (NOT D) 

 

 

Abstract Metabolic Network (adapted from 8) 
 
Now, consider an abstract metabolic network as shown in the figure 

below: 

 

 
Figure 4.2: Hypothetical metabolic network [redrawn from 8] 

 
 
 
The network is an abstract representation of a typical metabolic network. 

The network consists of 20 reactions, 7 of which are regulated by four 

regulatory proteins. For modeling convenience we use mnemonic letters 

such as A, B, C etc as abstractions of actual metabolites. We consider 

only a few hypothetical reactions and metabolites in this scheme 
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otherwise it would lead to an overwhelmingly large system, without 

significantly adding to the usefulness of the model to justify the inclusion 

of additional detail. 

 

The external environment provides carbon sources in the form of 

Carbon1 and Carbon2 through transport processes Tc1 and Tc2. Oxygen, 

and metabolites F and H enter the network from the external 

environment through transport processes TO2, Tf and Th respectively. 

ATP is used as the energy currency and NADH serves as the charge 

carrier. The network is composed of metabolites A, B, C, D, E, F, G, H 

and O2 linked through 12 reactions. Some of these reactions are 

regulated by regulatory proteins RPO2, RPc1, RPh and RPb.  The 

reactions and regulatory rules are listed in Table 1.  

 

Reaction Name Regulation 
 

Metabolic reactions 

  

-1 A – 1 ATP + 1 B R1  

-1 B + 2 ATP + 2 NADH + 1C R2a IF NOT (RPb) 

-1 C – 2 ATP -2 NADH + 1 B R2b  

-1 B + 1 F R3  

-1 C + 1G R4  

-1 G + 0.8 C + 2 NADH R5a IF NOT (RPO2) 

- 1 G + 0.8 C + 2 NADH R5b IF RPO2 

-1 C + 2 ATP + 3 D R6  

-1 C – 4 NADH + 3 E R7 IF NOT (RPb) 

-1 G – 1 ATP – 2 NADH + 1 H R8a IF NOT (RPh) 

1 G + 1 ATP + 2 NADH – 1 H R8b  

- 1 NADH – 1 O2 + 1 ATP Rres IF NOT (RPO2) 
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Transport processes 

  

- 1 Carbon1 + 1 A Tc1  

- 1 Carbon2 + 1 A Tc2 IF NOT (RPc1) 

- 1 Fext + 1 F Tf  

- 1 D + 1 Dext Td  

- 1 E + 1 Eext Te  

- 1 Hext + 1 H Th  

-1 Oxygen + 1 O2 To2  

   

Regulatory proteins   

 RPO2 IF NOT (Oxygen) 

 RPc1 IF Carbon1 

 RPh IF (vTh > 0) 

 RPb IF (vR2b > 0) 

Table 1 Reactions and regulatory constraints for the simplified metabolic network 
[adapted from 8] 
 

 

The metabolic reactions represent stoichiometric constraints on the 

network. The concentration of carbon sources, oxygen and metabolites in 

the external environment represents environmental constraints. Column 

3 in Table 1 above represents the regulatory constraints imposed by the 

enzymes RPO2, RPc1, RPh and RPb.  

Maintenance and growth processes are approximated by the relation 

Biomass – 1 C – 1 F – 1 H – 10 ATP. Since the reactions typically form an 

underdetermined system we will maximize growth using this relation as 

the objective function when determining the unknown flux values. 

Maximizing the growth function is in accordance with the normally 

behavior observed in microbial organisms [40].    
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4.3 Metabolic Networks as Dynamic Constrained Objects 
 
We will identify important and representative components from the above 

network and explain their corresponding Cob representation. The idea is 

illustrated with the help of following class diagram. This will be followed 

by explanation of Cob code for significant portions of identified classes. 

 

 
Figure 4.3 Class diagram for Cob representation of the metabolic network in fig 4.2 

 
 

Let’s first consider an unregulated reaction from the network above and 

identify the important Cob concepts applicable. For the sake of 

illustration we consider reaction R1. 

 

R1: -1 A – 1 ATP + 1 B           

 

This reaction consumes one molecule of metabolite A and uses up one 

energy molecule in the form of ATP to form one molecule of metabolite B. 
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(We’ll use the term mole and molecule interchangeably during the course 

of our explanation). These concentration values may be subject to further 

change depending upon the other reactions they are involved in. Since 

this represents a series formation for the concentration values of all 

entities involved, we can represent the molecular concentration of 

metabolites using a series variable. Thus, metabolites can be modeled 

aptly as a dynamic Cob class as shown below: 

 

dynamic class metabolite { 
  attributes 
    series real Moles[20]; 
  constraints 
   forall I in 1..20 : Moles[I] >= 0; 
  constructor metabolite(Conc,M) { 
    ConcPool<1> = Conc; 
    forall I in 1..20: Moles[I]<1> = M[I]; 
  } 
} 
 

The vector of 20 values represents the number of moles of a metabolite 

formed or consumed per unit flux of the 12 internal reactions and 8 

transport processes. These coefficients form an invariant property of the 

network and can be obtained from the metabolic genotype of an 

organism. The initial stoichiometric vector will be initialized when the 

metabolite is constructed inside the internal environment. For example 

the metabolite A can be initialized with the Cob syntax: 

 

A = new metabolite([0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,   
                    0,0]); 
 

where the vector element represents the stoichiometric coefficients 

associated with reactions R1, R2a, R2b, R3, R4, R5a, R5b, R6, R7, R8a, 

R8b, Rres and transport processes Tc1, Tc2, Tf, Td, Te, Th and To2 

respectively. 
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The obvious constraints in the reaction R1 above are that the number of 

moles of metabolite A and energy carrier ATP has to be greater than or 

equal to 1. Thus, the result of this reaction and its direct execution 

constraints can be represented using conditional constraints in the 

equivalent Cob syntax: 

 
A.Moles[1]` = A.Moles[1] – 1,  
ATP.Moles[1]` = ATP.Moles[1] – 1,  
B.Moles[1]` = B.Moles[1] + 1  

              :- A.Moles[1] >=1, ATP.Moles[1] >=1; 
 
The index 1 represents the fact the concentration changes are associated 

with reaction 1.  

However, as we can see from the network the only other reactions 

producing A are transport processes Tc1 and Tc2. Furthermore, the 

transport process Tc2 itself is regulated by the presence of enzyme RPc1 

in the metabolic pathway. Thus, Tc1 and Tc2 impose indirect constraints 

on the execution of this reaction. In order to consider the influence of 

such interactions, we model the internal environment as a dynamic Cob 

class, with the flux values generated by individual reactions represented 

as series variables. Given below is the Cob representation of the 

internalEnv class. It includes the metabolites A, B, C, D, E, F, G, H, 

O2, ATP and NADH represented via the metabolite array Meta[]. The 

reactions involving these metabolites are represented as constraints in 

the class. This includes only the unregulated reactions in the internal 

environment, as representing regulatory constraints requires knowledge 

of the enzymes that are considered as part of the pathway. Furthermore, 

some these enzymes depend on the presence of compounds in the 

external environment; hence specification of these constraints is deferred 

to the metabolicPathway class that aggregates both the internalEnv 

and externalEnv classes. 
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Given below is an extract from the internalEnv class highlighting the 

significant components. For the complete code listing please see 

Appendix A. 

 

dynamic class internalEnv { 
  attributes 
    metabolite [11] Meta; 
    series real [12] Flux; 
  constraints 
    Meta[1].Moles[1]` = Meta[1].Moles[1] – 1,  
    Meta[10].Moles[1]` = Meta[10].Moles[1] – 1,  
    Meta[2].Moles[1]` = Meta[2].Moles[1] + 1,  
      :- Meta[1].Moles[1] >=1, Meta[10].Moles[1] >=1; 
    . 
    . 
    . 
 
   constructors internalEnv() { 
    Meta[1] = new metabolite([-1,0,0,0,0,0,0,0,0,0,0,0,1,  
                               1,0,0,0,0,0]); 
    Meta[2] = new metabolite([1,-1,1,-1,0,0,0,0,0,0,0,0,0,  
                              0,0,0,0,0,0]); 
    . 
    . 
    . 
  }  
} 

 

The external environment provides Carbon sources in the form of 

Carbon1 and Carbon2 through transport processes Tc1 and Tc2 

respectively. Oxygen is made available through transport process To2, 

thus, anaerobic growth can be simulated by restricting the external 

Oxygen concentration to zero. Some of the intracellular metabolites like 

H and F can be made by the cell internally or transported from 

substrates Hext and Fext in the external environment through transport 

process such as Th and Tf. Growth is represented by the biomass 

equation -1C – 1F – 1H – 10ATP + 1Biomass. The objective of the 

metabolic pathway is to maximize growth by optimizing this reaction. 
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However, as we can see from the biomass reaction above, it depends on 

the concentration levels of metabolites C, F, H and ATP that are present 

in the internal environment. Therefore, it is appropriate to impose the 

growth objective in the metabolic pathway that has knowledge of both 

the internal and external environments.  

 
class externalEnv { 
  attributes 
    substrate Carbon1, Carbon2, Oxygen,Fext,Ext,Dext,Hext; 
    biomass Bio; 
  constraints 
    Carbon1.Moles >= 0; 
    Carbon2.Moles >= 0; 
    Oxygen.Moles >= 0; 
    . 
    . 
    . 
  constructors externalEnv(C1,C2,Oxy,Fe,He) { 
    Carbon1 = new substrate(C1); 
    Carbon2 = new substrate(C2);  
    Oxygen = new substrate(Oxy); 
    Fext = new metabolite(Fe); 
    Eext = new metabolite(0); 
    . 
    . 
  } 
} 
 
 
The last significant class we detail here is the metabolic pathway itself. 

The regulatory and stoichiometric constraints will be enforced by this 

class. The stoichiometric constraints impose conservation of mass and 

thereby require that the consumption fluxes for a metabolite be balanced 

by the corresponding production fluxes for that metabolite. Thus, for a 

metabolite A with stoichiometric coefficients {-1,0,0,0,0,0,0,0,0,0,0,0, 

1,1,0, 0,0,0,0} and the corresponding fluxes through the 12 internal 

reactions represented by the flux vector Flux[] and those through the 8 

transport processes represented by the flux vector TransportFlux[], 
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we can write the following formulation in Cob to represent the 

stoichiometric constraint. 

 

(sum J in 1..12:(IntEnv.A.Moles[J] – IntEnv.A.Moles[J]’) *   
                                         IntEnv.Flux[J]) + 
(sum K in 1..8: (IntEnv.A.Moles[K] - IntEnv.A.Moles[K]’) *   
                                           TransFlux[K])  
= 0; 
 

Thus, generalizing over all the metabolites in the internal environment, 

we can write: 

 
forall I in 1..11: 
(sum J in 1..12:(IntEnv.Meta[I].Moles[J] –       
                 IntEnv.Meta[I].Moles[J]’) *   
                           IntEnv.Flux[J]) + 
(sum K in 1..8: (IntEnv.Meta[I].Moles[K] -    
                 IntEnv.Meta[I].Moles[K]’) *   
                             TransFlux[K])  
= 0; 
 
 
 
Regulatory constraints 

In order to explain the Cob representation of regulatory constraints lets 

consider one of the regulated reactions for example reaction R2a: 

R2a: -1 B + 2 ATP + 2 NADH + 1 C              IF NOT (RPb) 

In biological context this indicates transcriptional regulation to maintain 

concentration of metabolite B. From a computational perspective it 

indicates that the reaction R2a can take place only if the concentration of 

enzyme RPb in the pathway is zero. The other execution constraint for 

this reaction is that the molecular concentration of metabolite B has to 

be ≥ 1. The side effects are production of 2 molecules of ATP and NADH 

and 1 molecule of metabolite C. Thus, the Cob notation for the above 

reaction using conditional constraints is given below: 
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IntEnv.B.Moles[2]` = IntEnv.B.Moles[2] – 1,  
IntEnv.C.Moles[2]` = IntEnv.C.Moles[2] + 1,  
IntEnv.ATP.Moles[2]` = IntEnv.ATP.Moles[2] + 2,  
IntEnv.NADH.Moles[2]` = IntEnv.NADH.Moles[2] + 2   
          :- IntEnv.B.Moles[2] >= 1, RPb.Moles == 0; 
 

 
The concentration of enzyme RPb is represented by the attribute Moles. 
 
 
 
Optimization predicates 
 
The system of reaction equations cited in Table1 and their corresponding 

fluxes often form an underdetermined system [21,27]. That is the number 

of fluxes often exceeds the number of metabolites. A particular solution 

can be sought by optimizing on a linear objective function. Here, growth 

is considered as the objective and we determine the corresponding flux 

distribution that would maximize this objective. Growth is represented by 

the relation: 

- 1 C – 1 F – 1 H – 10 ATP + 1 Biomass 

Thus, a biomass molecule is produced by consuming 1 molecule each of 

metabolite C, F and H and 10 molecules of energy ATP. Cob provides 

preference clauses to specify the optimization criteria. In presence of 

preferences the resultant optimal state of the constrained object is 

obtained by employing constraint satisfaction and optimization 

techniques. Given below is an extract from the metabolicPathway class 

where this optimization criterion is specified. 

 

dynamic class metabolicPathway extends pathway { 
 attributes 
   internalEnv IntEnv; 
   externalEnv ExtEnv; 
   series real [8] TransFlux; 
   enzyme RPO2,RPc1,RPh,RPb;  
 constraints 
   ExtEnv.Bio.Moles` = ExtEnv.Bio.Moles + 1,  
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  IntEnv.Meta[3].Moles[20]` = IntEnv.Meta[3].Moles[20] – 1,  
  IntEnv.Meta[6].Moles[20]` = IntEnv.Meta[6].Moles[20] – 1,  
  IntEnv.Meta[8].Moles[20]` = IntEnv.Meta[8].Moles[20] – 1,  
  IntEnv.Meta[10].Moles[20]` = IntEnv.Meta[10].Moles[20]–10  
       :- IntEnv.Meta[3].Moles[20] >= 1,  

   IntEnv.Meta[6].Moles[20] >= 1, 
   IntEnv.Meta[8].Moles[20] >= 1,   

           IntEnv.Meta[10].Moles[20] >= 10;  
   . 
   . 
   . 
 
 preferences 
   max (ExtEnv.Bio.Moles). 
 constructors metabolicPathway(MC1,MC2,MOxy,MFext,MHext,  
                               MRPO2,MRPc1,MRPh,MRPb) { 
   . 
   . 
   . 
 } 
} 
 

The constraint highlighted above indicates the restriction that for 

biomass to be generated the number of moles of metabolite C, F and H in 

the internal environment have to be greater that 1 and that of ATP has to 

be more than 10. The results of the reaction are also specified as part of 

the constraint. The preference clause indicates that the concentration of 

biomass molecules has to be maximized when more than one optimal 

solution exists. 

 

Code snippet listing the metabolicPathway class with the regulated 

reactions, stoichiometric constraints and growth objective is shown 

below. For the complete code listing please see Appendix A. 

 

dynamic class metabolicPathway extends pathway { 
 attributes 
   internalEnv IntEnv; 
   externalEnv ExtEnv; 
   series real [7] TransFlux; 
   enzyme RPO2,RPc1,RPh,RPb;  
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 constraints 
   RPO2.Moles = 0 :- ExtEnv.Oxygen.Moles > 0; 
   RPc1.Moles = 1 :- ExtEnv.Carbon1.Moles > 0; 
   RPc1.Moles = 0 :- ExtEnv.Carbon1.Moles = 0; 
   RPh.Moles = 1 :- TransFlux[6] > 0; 
   . 
   . 
   . 
 
   forall I in 1..11: 
    (sum J in 1..12:(IntEnv.Meta[I].Moles[J] –       
                 IntEnv.Meta[I].Moles[J]’) *   
                           IntEnv.Flux[J]) + 
    (sum K in 1..8: (IntEnv.Meta[I].Moles[K] -    
                 IntEnv.Meta[I].Moles[K]’) *   
                             TransFlux[K])  
    = 0; 
 
 
   IntEnv.Meta[2].Moles[2]` = IntEnv.Meta[2].Moles[2] – 1,    
   IntEnv.Meta[3].Moles[2]` = IntEnv.Meta[3].Moles[2] + 1,  
   IntEnv.Meta[10].Moles[2]` = IntEnv.Meta[10].Moles[2]+ 2,  
   IntEnv.Meta[11].Moles[2]` = IntEnv.Meta[11].Moles[2] + 2   
   :- IntEnv.Meta[2].Moles[2] >= 1, RPb.Moles == 0; 
    
   . 
   . <other regulated reactions> 
   . 
   . 
 
   ExtEnv.Carbon1.Moles` = ExtEnv.Carbon1.Moles – 1,  
   IntEnv.Meta[1].Moles[13]` = IntEnv.Meta[1].Moles[13] + 1    
   :- ExtEnv.Carbon1.Moles >= 1; 
 
   . 
   . <other transport reactions> 
   . 
   . 
 
   ExtEnv.Bio.Moles` = ExtEnv.Bio.Moles + 1,  
   IntEnv.Meta[3].Moles[20]` = IntEnv.Meta[3].Moles[20]– 1,  
   IntEnv.Meta[6].Moles[20]` = IntEnv.Meta[6].Moles[20]– 1,  
   IntEnv.Meta[8].Moles[20]` = IntEnv.Meta[8].Moles[20]– 1,  
   IntEnv.Meta[10].Moles[20]` =IntEnv.Meta[10].Moles[20]–10  
                          :- IntEnv.Meta[3].Moles[20] >= 1,  
              IntEnv.Meta[6].Moles[20] >= 1,  
              IntEnv.Meta[8].Moles[20] >= 1,  
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           IntEnv.Meta[10].Moles[20] >= 10; 
 
 preferences 
   max (ExtEnv.Bio.Moles). 
 constructors metabolicPathway(MC1,MC2,MOxy,MFext,MHext,  
                               MRPO2,MRPc1,MRPh,MRPb)  
{ 
   RPO2.Moles = MRPO2; 
   RPc1.Moles = MRPc1; 
   RPh.Moles = MRPh;                     
   RPb.Moles = MRPb; 
    
   forall I in 1..8: TransFlux[I] = 0; 
   IntEnv = new InternalEnv();  
   ExtEnv = new externalEnv(MC1,MC2,MOxy,MFext,MHext); 
 } 
} 

 

Applications 
 
Using the model above, we can determine the unknown fluxes through 

reactions R1, R2a, R2b, R3, R4,R5a, R5b, R6, R7, R8a, R8b, Rres and 

the transport processes Tc1, Tc2, Tf, Th, Te, Td, T02. During each run the 

reaction rules are executed thereby causing a change in concentrations 

of the substrates and metabolites. The resultant fluxes through these 

reactions can be determined by optimizing on some criteria such as 

minimize ATP production or maximize metabolite production or minimize 

nutrient uptake or maximize biomass production etc. Depending on the 

optimization criteria we choose when determining these fluxes, it would 

enable us to find specific routes through the pathway that can be 

optimized to achieve desired cell objective. By constraining the 

concentration of metabolites we can understand how the cell would 

respond to changes in the environment for example addition or deletion 

of a substance, the effects of gene deletion and thus the cell behavior in 

adverse environmental conditions. The flux values will also help us 

understand the contribution of different components in attaining cell 

objective for a given criteria.  This would enable directed manipulation of 
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gene content of an organism to obtain desired results. Some of these 

applications bear significant importance in the field of drug discovery. 

 
Advantages 
 
A purely constraint based model provides a reaction based mathematical 

perspective, and thus fails to capture the structural essence of biological 

systems. In such models system parameters are invariably considered as 

isolated variables related through some set of reactions that impose 

constraints on their interaction. However, in reality these parameters 

could be attributed to system (sub) components whose behavior can be 

defined in terms of the constraints acting on these attributes. When 

larger systems are assembled from these smaller objects, their attributes 

are further constrained by the interactions they share with other 

components in these systems. As can be seen from the Cob 

representation of the metabolic network above, each entity is defined as 

an independent object with a distinct set of attributes and constraints 

that captures and defines the essential structural and behavioral 

features of that entity. More complex structures can be built as an 

aggregation of these smaller entities with well defined interface and 

structural signatures. Besides, Cob offers some of the traditional 

advantages of an object-oriented language such as aggregation/ 

inheritance hierarchies, encapsulation etc.  

 

Glycolysis Pathway 
 
Consider the glycolysis pathway as shown in the figure below. Glycolysis 

is the sequence of reactions that metabolizes one molecule of glucose to 

two molecules of pyruvate accompanied with the net production of two 

molecules of ATP [2]. Similarities can de drawn with metabolic network in 

figure 4.2 in terms of the network structure, reaction interconnections, 
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regulatory constraints, etc. The level of detail is comparable to the 

network we modeled using Cob environment. Thus, we believe the 

approach we have presented here can be applied towards modeling more 

complex biological networks. 

 

 
Glycolysis Pathway (Source Wikipedia http://en.wikipedia.org/wiki/Glycolysis) 
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Summary 
 

In this chapter we analyzed a hypothetical metabolic network, explored 

the biological constraints acting on it and detailed a dynamic Cob 

representation for the same. We then looked at some of the advantages in 

employing the Cob paradigm over traditional modeling methodologies 

and discussed some of the applications of the model. In the next chapter 

we present our conclusions from this study and some open issues for 

future work in this area. 
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Chapter 5

Conclusions and Future Work 

 
In this thesis we have proposed and explored the constrained object 

approach to systems biology.  The motivation for this work stems from 

the large amounts of molecular data being generated and the need to 

integrate and understand this data from a systems perspective. 

Biological systems exhibit emergent behavior that cannot be predicted 

solely from an understanding of the behavior of the individual 

components of these systems. The network of connectivity and 

interrelatedness between these components is hard to comprehend using 

purely analytical techniques. Different approaches have been explored 

towards modeling biological systems. The need to model structural 

characteristics was identified by some researchers as the first step in 

understanding biological entities. However, the lack of information 

required to build a detailed model of the cell using structural information 

alone has been an impediment to this approach. Using constraint-based 

approaches helps to overcome this lack of information by successive 

identification and imposition of constraints on the behavioral solution 

space. But a purely constraint-based approach tends to treat system 

components as independent entities related mathematically through 

some reactions. This fails to capture the structural characteristics 

inherent of all biological systems.  

 

The constrained object approach we proposed, in this thesis, offers a 

unified approach to modeling biological systems, by facilitating a 

compositional specification of the structure of the system through 

objects, declarative specification of its behavior through constraints, and 

visual development and manipulation of the underlying model.  Since the 
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traditional Cob model is limited at modeling dynamic behavior exhibited 

biological networks, we explored the application of dynamic constrained 

objects in modeling such networks. We also saw that Cob facilitates 

objective exploration of different behaviors exhibited by these under-

determined networks through the application of preference predicates.  

We illustrated these ideas by modeling an abstract metabolic network 

using the Cob environment. Towards the end we presented the glycolysis 

pathway as a detailed extension of the abstract network we modeled 

using Cob.  

 

Implementation issues 

We found the current implementation of the constrained object paradigm 

limited at integrating the several concepts we have proposed in this 

thesis. However, we were able to simulate some of the proposed modeling 

behaviors by employing isolated Cob constructs. For example, we were 

able to simulate the behavior of underdetermined networks. The results, 

as expected, were returned as internal SICStus variables. However, the 

implementation was unable to support subsequent exploration of a 

specific behavioral trait, using simultaneous application of optimization 

through preference predicates. On the other hand, the preference 

predicates, by themselves, were employed and computed by the 

implementation when functioning within a system of isolated equations. 

This problem of enforcing optimization in under-determined systems has 

been a standard topic in linear algebra and has been studied extensively 

elsewhere [45,46]. We also proposed the concept of enforcing optimization 

in a dynamic environment. Under such conditions it remains debatable 

whether future implementations of the system should employ 

optimization using a local or global perspective. However, we believe the 

appropriateness of the constrained object framework would encourage a 

more robust implementation capable of supporting the kind of 
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exhaustive modeling scenarios like the one we have explored in this 

thesis. 

 

Future Work 

 

The model needs to be tested with metabolic networks of micro-

organisms. That would help us understand how well the model scales to 

incorporate larger systems.  

We would also like to link the model to online knowledgebase such as 

EcoCyc, KEGG, etc., that provide information on the genes, enzymes and 

pathways employed in the model. These resources provide species 

specific information on metabolic pathway structures, references to 

regulatory information etc. 

We also need to incorporate feedback mechanism into the model to 

facilitate incremental development. The model will be used as basis to 

form hypothesis which should then be tested using in-vivo or in-vitro 

methods. Any deviation in the experimental observation and the model 

prediction should be used to refine the model.  

We would also like to build state transition graphs using the model. This 

would help us understand the action taken by the network at each stage 

in satisfying the system objective.  

We would also like to provide visual interfaces for building complex 

systems using the Cob environment. This would facilitate observation 

and interaction with the model through the interface. We also foresee the 

development of pluggable components once sufficient information is 

available from molecular databases about system components and their 

behavior. 

Finally, the Cob environment sometimes exhibits performance 

degradation when handling large number of constraints and objects. This 

is an area of concern that needs to be addressed as we scale up and 

model more realistic biological systems.  
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Appendix A 
 
Cob Model for Metabolic Network shown in Fig. 4.2. 
 
 
dynamic class metabolite { 
  attributes 
    series real Moles[20]; 
  constraints 
   forall I in 1..20 : Moles[I] >= 0; 
  constructor metabolite(Conc,M) { 
    ConcPool<1> = Conc; 
    forall I in 1..20: Moles[I]<1> = M[I]; 
  } 
} 
 
 
dynamic class substrate { 
 attributes 
   series real Moles; 
 constraints  
   Moles >= 0; 
 constructor substrate(M) { 
   Moles<1> = M; 
 } 
} 
 
class biomass { 
 attributes 
   series real Moles; 
 constraints  
   Moles >= 0; 
 constructor biomass(M) { 
   Moles<1> = M; 
 } 
} 
 
class externalEnv { 
  attributes 
    substrate Carbon1, Carbon2, Oxygen,Fext,Ext,Dext,Hext; 
    biomass Bio; 
  constraints 
    Carbon1.Moles >= 0; 
    Carbon2.Moles >= 0; 
    Oxygen.Moles >= 0; 
    Fext.Moles >= 0; 
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    Eext.Moles >= 0; 
    Dext.Moles >= 0; 
    Hext.Moles >= 0; 
    Bio.Moles >= 0; 
  constructor externalEnv(C1,C2,Oxy,Fe,He) { 
    Carbon1 = new substrate(C1); 
    Carbon2 = new substrate(C2);  
    Oxygen = new substrate(Oxy); 
    Fext = new substrate(Fe); 
    Hext = new substrate(He); 
    Eext = new substrate(0); 
    Dext = new substrate(0); 
    Bio = new biomass(0); 
  } 
} 
 
dynamic class internalEnv { 
  attributes 
    metabolite [11] Meta; 
    series real [12] Flux; 
  constraints 
    Meta[1].Moles[1]` = Meta[1].Moles[1] – 1,  
    Meta[10].Moles[1]` = Meta[10].Moles[1] – 1,  
    Meta[2].Moles[1]` = Meta[2].Moles[1] + 1,  
       :- Meta[1].Moles[1] >=1,  
        Meta[10].Moles[1] >=1; 
     
    Meta[3].Moles[3]` = Meta[3].Moles[3] – 1,  
    Meta[10].Moles[3]` = Meta[10].Moles[3] – 2,   
    Meta[11].Moles[3]` = Meta[11].Moles[3] – 2,  
    Meta[2].Moles[3]` = Meta[2].Moles[3] + 1  
       :- Meta[3].Moles[3] >= 1,  

   Meta[10].Moles[3] >= 2,  
            Meta[11].Moles[3] >= 2; 
     
    Meta[2].Moles[4]` = Meta[2].Moles[4] – 1,  
    Meta[6].Moles[4]` = Meta[6].Moles[4] + 1  

    :- Meta[2].Moles[4] >= 1; 
 
    Meta[3].Moles[5]` = Meta[3].Moles[5] – 1,  
    Meta[7].Moles[5]` = Meta[7].Moles[5] + 1 

    :- Meta[3].Moles[5] >= 1; 
     
    Meta[4].Moles[8]` = Meta[4].Moles[8] + 3,  
    Meta[10].Moles[8]` = Meta[10].Moles[8] + 2,   
    Meta[3].Moles[8]` = Meta[3].Moles[8] - 1   

    :- Meta[3].Moles[8] >= 1; 
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    Meta[7].Moles[11]` = Meta[7].Moles[11] + 1,  
    Meta[8].Moles[11]` = Meta[8].Moles[11] – 1,  
    Meta[10].Moles[11]` = Meta[10].Moles[11] + 1,  
    Meta[11].Moles[11]` = Meta[11].Moles[11] + 2   

    :- Meta[8].Moles[11] >= 1; 
 
  constructor internalEnv(X) { 
    Meta[1] = new metabolite([0,0,0,0,0,0,0,0,0,0,0,0,1,1,0, 
                                     0,0,0,0,0]); 
    Meta[2] = new metabolite([1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,  
                                    0,0,0,0,0]); 
    Meta[3] = new metabolite([0,1,0,0,0,0.8,0.8,0,1,0,0,0,0,  
                                    0,0,0,0,0,0,0]); 
    Meta[4] = new metabolite([0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,  
                                    0,0,0,0]); 
    Meta[5] = new metabolite([0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,  
                                    0,0,0,0]); 
    Meta[6] = new metabolite([0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,  
                                    0,0,0,0]); 
    Meta[7] = new metabolite([0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,  
                                    0,0,0,0,0]); 
    Meta[8] = new metabolite([0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,  
                                    0,1,0,0]); 
    Meta[9] = new metabolite([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  
                                    0,0,0,1,0]); 
    Meta[10] = new metabolite([0,2,0,0,0,0,0,2,0,1,1,1,0,0,  
                                      0,0,0,0,0,0]); 
    Meta[11] = new metabolite([0,2,0,0,0,2,2,0,0,0,2,0,0,  
                                     0,0,0,0,0,0,0]); 
  }  
} 
 
dynamic class metabolicPathway { 
 attributes 
   internalEnv IntEnv; 
   externalEnv ExtEnv; 
   series real [8] TransFlux; 
   enzyme RPO2,RPc1,RPh,RPb;  
 constraints 
   RPO2.Moles = 0 :- ExtEnv.Oxygen.Moles > 0; 
   RPc1.Moles = 1 :- ExtEnv.Carbon1.Moles > 0; 
   RPc1.Moles = 0 :- ExtEnv.Carbon1.Moles = 0; 
   RPh.Moles = 1 :- TransFlux[6] > 0; 
   RPh.Moles = 0 :- TransFlux[6] <= 0; 
   RPb.Moles = 1 :- IntEnv.Flux[3] > 0; 
   RPb.Moles = 0 :- IntEnv.Flux[3] <= 0; 
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   for all I in 1..11 
   (sum J in 1..12:  
    (IntEnv.Meta[I].Moles[J] – IntEnv.Meta[I].Moles[J]’) *  
                              IntEnv.Flux[J]) + 
   (sum K in 1..8:  
     (IntEnv.Meta[I].Moles[K] - IntEnv.Meta[I].Moles[K]’) *  
                                 TransFlux[K])  
    = 0; 
 
 
   IntEnv.Meta[2].Moles[2]` = IntEnv.Meta[2].Moles[2] – 1,    
   IntEnv.Meta[3].Moles[2]` = IntEnv.Meta[3].Moles[2] + 1,  
   IntEnv.Meta[10].Moles[2]` = IntEnv.Meta[10].Moles[2]+ 2,  
   IntEnv.Meta[11].Moles[2]` = IntEnv.Meta[11].Moles[2] + 2   
       :- IntEnv.Meta[2].Moles[2] >= 1,  
           RPb.Moles = 0; 
    
   IntEnv.Meta[7].Moles[6]` = IntEnv.Meta[7].Moles[6] – 1,  
   IntEnv.Meta[3].Moles[6]` = IntEnv.Meta[3].Moles[6]+ 0.8,  
   IntEnv.Meta[11].Moles[6]` = IntEnv.Meta[11].Moles[6] + 2  
       :- IntEnv.Meta[7].Moles[6] >= 1,  
                       RPO2.Moles = 0; 
    
   IntEnv.Meta[7].Moles[7]` = IntEnv.Meta[7].Moles[7] – 1,  
   IntEnv.Meta[3].Moles[7]` = IntEnv.Meta[3].Moles[7]+ 0.8,  
   IntEnv.Meta[11].Moles[7]` = IntEnv.Meta[11].Moles[7] + 2  

   :- IntEnv.Meta[7].Moles[7] >= 1,  
 RPO2.Moles > 0; 

 
    
  IntEnv.Meta[3].Moles[9]` = IntEnv.Meta[3].Moles[9] – 1,  
  IntEnv.Meta[11].Moles[9]` = IntEnv.Meta[11].Moles[9] – 4,  
  IntEnv.Meta[5].Moles[9]` = IntEnv.Meta[5].Moles[9] + 3 
      :- IntEnv.Meta[3].Moles[9] >= 1,  
         IntEnv.Meta[11].Moles[9] >= 4,  
                       RPb.Moles = 0; 
 
  IntEnv.Meta[7].Moles[10]`= IntEnv.Meta[7].Moles[10] – 1,  
  IntEnv.Meta[10].Moles[10]`= IntEnv.Meta[10].Moles[10]– 1,  
  IntEnv.Meta[11].Moles[10]`= IntEnv.Meta[11].Moles[10]– 2,  
  IntEnv.Meta[8].Moles[10]`= IntEnv.Meta[8].Moles[10] + 1 

  :- IntEnv.Meta[7].Moles[10] >= 1,    
     IntEnv.Meta[10].Moles[10] >= 1,  

        IntEnv.Meta[11].Moles[10] >= 2,  
                    RPh.Moles = 0; 
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  IntEnv.Meta[11].Moles[12]`= IntEnv.Meta[11].Moles[12]– 1,  
  IntEnv.Meta[9].Moles[12]` = IntEnv.Meta[9].Moles[12] – 1,  
  IntEnv.Meta[10].Moles[12]` = IntEnv.Meta[10].Moles[12]+ 1 

  :- IntEnv.Meta[9].Moles[12] >= 1,  
     IntEnv.Meta[11].Moles[12] >= 1,  

                    RPO2.Moles = 0; 
 
   ExtEnv.Carbon1.Moles` = ExtEnv.Carbon1.Moles – 1,  
   IntEnv.Meta[1].Moles[13]` = IntEnv.Meta[1].Moles[13] + 1    
        :- ExtEnv.Carbon1.Moles >= 1; 
 
   ExtEnv.Carbon2.Moles` = ExtEnv.Carbon2.Moles – 1,  
   IntEnv.Meta[1].Moles[14]` = IntEnv.Meta[1].Moles[14] + 1    

   :- ExtEnv.Carbon2.Moles >= 1,  
 RPc1.Moles = 0; 

 
   ExtEnv.Fext.Moles` = ExtEnv.Fext.Moles – 1,  
   IntEnv.Meta[6].Moles[15]` = IntEnv.Meta[6].Moles[15] + 1    

   :- ExtEnv.Fext.Moles >= 1; 
 
   ExtEnv.Dext.Moles` = ExtEnv.Dext.Moles + 1,  
   IntEnv.Meta[4].Moles[16]` = IntEnv.Meta[4].Moles[16] - 1    

   :- IntEnv.Meta[4].Moles[16] >= 1; 
 
   ExtEnv.Eext.Moles` = ExtEnv.Eext.Moles + 1,  
   IntEnv.Meta[5].Moles[17]` = IntEnv.Meta[5].Moles[17] - 1    

   :- IntEnv.Meta[5].Moles[17] >= 1; 
 
   ExtEnv.Hext.Moles` = ExtEnv.Hext.Moles - 1,  
   IntEnv.Meta[8].Moles[18]` = IntEnv.Meta[8].Moles[18] + 1    

   :- IntEnv.Meta[8].Moles[18] >= 1; 
 
   ExtEnv.Oxygen.Moles` = ExtEnv.Oxygen.Moles - 1,  
   IntEnv.Meta[9].Moles[19]` = IntEnv.Meta[9].Moles[19] + 1    

   :- ExtEnv.Oxygen.Moles >= 1; 
 
   ExtEnv.Bio.Moles` = ExtEnv.Bio.Moles + 1,  
   IntEnv.Meta[3].Moles[20]` = IntEnv.Meta[3].Moles[20]– 1,  
   IntEnv.Meta[6].Moles[20]` = IntEnv.Meta[6].Moles[20]– 1,  
   IntEnv.Meta[8].Moles[20]` = IntEnv.Meta[8].Moles[20]– 1,  
   IntEnv.Meta[10].Moles[20]`=IntEnv.Meta[10].Moles[20]– 10  

:- IntEnv.Meta[3].Moles[20] >= 1,     
   IntEnv.Meta[6].Moles[20] >= 1,  

            IntEnv.Meta[8].Moles[20] >= 1,    
                       IntEnv.Meta[10].Moles[20] >= 10; 
 
 preferences 
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   maximize (ExtEnv.Bio.Moles); 
  
constructor metabolicPathway(MC1,MC2,MOxy,MFext, MHext,  
                              MRPO2,MRPc1,MRPh,MRPb)  
 { 
   RPO2 = new enzyme(MRPO2); 
   RPc1 = new enzyme(MRPc1); 
   RPh  = new enzyme(MRPh);                     
   RPb = new enzyme(MRPb); 
    
   forall I in 1..8: TransFlux[I] = 0; 
   IntEnv = new InternalEnv();  
   ExtEnv = new externalEnv(MC1,MC2,MOxy,MFext,MHext); 
 } 
} 
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