
INTEGRATED FEATURE SUBSET
SELECTION/EXTRACTION WITH

APPLICATIONS IN BIOINFORMATICS

By

Xian Xu

August 16, 2006

A DISSERTATION SUBMITTED TO THE

FACULTY OF THE GRADUATE SCHOOL OF STATE

UNIVERSITY OF NEW YORK AT BUFFALO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

c© Copyright 2006

by

Xian Xu

ii

To my dear wife, without her infinite patience and love, the completion of this thesis is

simply impossible. And to my parents, for obvious reasons.

Acknowledgement

Doing research is not always fun. Sometime I’d rather be playing video games. My ad-

visor Professor Aidong Zhang provided me constant support, both in academic training

and in four years of financial support. From her I learnt the meaning of dedication and

professionalism. I can not thank her more.

I also want to thank the Department of Computer Science and Engineering in the State

University of New York at Buffalo, for the financial support during my study. Many thanks

to Professor Murali Ramanathan and Professor Matthew Beal for sitting in my Ph.D. com-

mittee and gave me many valuable suggestions and questions. Thanks to Professor Yulan

Liang for being outside reader for my thesis. Thanks to my colleagues Dr. Liangjiang

Wang, Dr. Pengjun Pei, Dr. Daxin Jiang and Dr. Wei Wang for discussion of ideas and

support.

i

Abstract

Feature subset selection and extraction algorithms are actively and extensively studied in

machine learning literature to reduce the dimensionality of feature space, since high di-

mensional data sets are generally not efficiently and effectively handled by a large array of

machine learning and pattern recognition algorithms. When we stride into the analysis of

large scale bioinformatics data sets, such as microarray gene expression data sets, the high

dimensionality of feature space compounded with the low dimensionality of sample space,

creates even more problems for data analysis algorithms.

Two foremost characteristics of microarray gene expression data sets are: 1. the correla-

tion between features (genes) and 2. the availability of domain knowledge in computable

format. In this dissertation, we will study effective feature selection and extraction algo-

rithms with applications to the analysis of the new emerging data sets in the bioinformat-

ics domain. Microarray gene expression data set, the result of large scale RNA profiling

techniques, is our primary focus in this thesis. Several novel feature (gene) selection and

ii

extraction algorithms are proposed to deal with peculiarities on microarray gene expression

data set.

To address the first characteristic of the microarray gene expression data set, we first pro-

pose a general feature selection algorithm called Boost Feature Subset Selection (BFSS)

based on permutation analysis to broaden the scope of selected gene set and thus improve

classification performance. In BFSS, subsequent features to be selected focus on those

samples where previously selected features fail. Our experiments showed the benefit of

BFSS for t-score and S2N (signal to noise) based single gene scores on a variety of pub-

licly available microarray gene expression data sets.

We then examine the correlations among features (genes) explicitly to see if such corre-

lations are informative for the purpose of sample classification. This results in our gene

extraction algorithm called virtual gene. A virtual gene is a group of genes whose expres-

sion levels are combined linearly. The combined expression levels of a virtual gene instead

of the real gene expression levels are used for sample classification. Our experiments con-

firm that by taking into consideration the correlations between gene pairs, we could indeed

build a better sample classifier.

Microarray gene expression data set only represents one aspect of our knowledge of the un-

derlying biological system. Currently there are lots of biological knowledge in computable

format that can be accessed from Internet. Continue to address the second characteristic of

iii

the microarray gene expression data set, we investigate the integration of domain knowl-

edge, such as those imbedded in gene ontology annotations, for the use of gene selection

and extraction. GO annotation enables us to investigate correlations among bigger groups

of genes in an informed way and thus expand beyond pairwise virtual gene algorithm.

Correlations between biologically related genes are examined and used for sample classi-

fication. Our experiments showed considerable improvement in the term of classification

accuracy. GO annotations also enable us to suppress false positives in selected gene set,

which becomes an increasing problem for gene selection algorithms on microarray gene

data set due to the limited number of samples.

iv

List of Figures

1.1.1 The k-nearest neighbor algorithm. A set of positive and negative labeled

data points are shown in figure a). The query point is xq. Using a 1-nearest

neighbor algorithm, xq will be classified as a negative instance since its

nearest neighbor is a negative instance. However, when considering three

nearest neighbors of xq, two of them are positive labeled. Thus using 3-

nearest neighbor algorithm, xq should be labeled as positive. Figure b)

in the right shows the potential decision boundary for 1-nearest neighbor

algorithm of five data points. Each line is a potential decision boundary

depending on how the data points are labeled. 11

1.1.2 Algorithm: K-nearest neighbor algorithm. 12

v

1.1.3 FLD classifier. The bigger figure in left bottom shows original data plotted

on a 2D surface. The bold line represents the FLD projection direction and

thinner line represents the decision boundary formed by an FLD classifier.

The smaller figure on top right corner shows the 1D layout of data points

after data being projected onto the FLD projection direction. 13

1.1.4 The basic idea of an SVM’s maximal margin classifier. Decision boundary

is a hyperplane in feature space that separates sample of different class

labels by maximal margin. The figure illustrates a linearly separable 2D

case. When data points are not linearly separable, an SVM classifier uses

the kernel trick to project data points onto a higher dimension feature space,

in which projected data points become linearly separable. 19

1.1.5 Using kernel function to map problems that are not linearly separable in

the input space to higher dimension feature space where patterns become

linearly separable. 20

1.3.1 DNA is formed by coupling the nucleotides between the phosphate group

from a nucleotide (which is positioned on the 5th C-atom of the sugar

molecule) with the hydroxyl on the 3rd C-atom on the sugar molecule of

the previous nucleotide [122]. A-G-C-T form the four bases of a DNA

molecular. 34

vi

1.3.2 The table of all twenty amino acids found in proteins [3]. Their names and

chemical makeups. 35

1.3.3 The central dogma of molecular biology. This figure illustrates the process

of DNA replication, DNA transcription into messenger RNA and messen-

ger RNA translation into protein [122]. 37

1.3.4 Genetic Coding: Encoding of amino acids using four bases (A,C,U,G)

found in RNA molecular. Every three bases form a codon, which encodes

one amino acid [4]. Amino acids are the building stones of proteins. The

DNA T base is substituted by a RNA U base. 39

1.3.5 The workflow of cDNA microarray experiment. Tissue samples from dif-

ferent sample classes are processed by RT/PCR for mRNA amplification

and labeled using fluorescent material. They are then exposed to cDNA

chip for hybridization. Resulting chip is then scanned and processed to

produce a two dimensional numerical array of microarray gene expression

data set that is used by data analysis algorithms. [65]. There are other

techniques to build microarrays. 41

vii

1.3.6 The microarray data set after processing. It is a two dimensional numeri-

cal array with genes as rows and tissue samples as columns. Samples are

labeled by some external labels, such as normal or cancer. 42

1.3.7 The GO hierarchy. The figure shows all GO terms leading to GO term

GO:0003700, or “transcription factor activity”. This GO term lies in the

molecular function branch of gene ontology. GO terms form a DAG (di-

rected acyclic graph). There are two paths leading from root GO node to

GO:0003700, either from the GO term “binding” or through the GO term

“transcription regulator activity” [96]. 43

1.3.8 The GO annotations are provided by participating databases [27], such as

Flybase [45] and SGD [105]. This figure illustrates the annotations of vari-

ous genes and gene products using one GO term GO:0005388, or “calcium

transporting ATPase activity”, by different biological database groups. . . . 45

viii

2.1.1 An illustrating example for the BFSS algorithm: redundancy in a selected

gene set. Genes with high individual discriminative scores may not be

overall good choices for a gene subset. Gene 1 and Gene 2 have higher

individual discriminative scores, yet their expression levels are highly cor-

related across different experimental samples. Gene 3 on the other hand

provides new information, although its discriminative score is lower. . . . 55

2.3.1 DLD prediction accuracy on colon cancer data set for five different feature

selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise

virtual gene. 68

2.3.2 KNN (k=3) prediction accuracy on colon cancer data set for five different

feature selection algorithms: t-score, S2N, boost t-score, boost S2N and

pairwise virtual gene. 69

2.3.3 SVM prediction accuracy on colon cancer data set for five different feature

selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise

virtual gene. 70

2.3.4 DLD prediction accuracy on leukemia data set for five different feature

selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise

virtual gene. 72

ix

2.3.5 KNN (k=3) prediction accuracy on leukemia data set for five different fea-

ture selection algorithms: t-score, S2N, boost t-score, boost S2N and pair-

wise virtual gene. 73

2.3.6 SVM prediction accuracy on leukemia data set for five different feature

selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise

virtual gene. 74

2.3.7 DLD prediction accuracy on multi-class data set for five different feature

selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise

virtual gene. 77

2.3.8 KNN (k=3) prediction accuracy on multi-class data set for five different

feature selection algorithms: t-score, S2N, boost t-score, boost S2N and

pairwise virtual gene. 78

2.3.9 SVM prediction accuracy on multi-class data set for four different feature

selection algorithms: t-score, S2N, boost t-score and boost S2N. 79

x

3.1.1 The idea behind the virtual gene algorithm: examples of gene pair being

better predictor of class labels than any constituent single gene. Both a

synthetic and a real world example are given here. The real world example

comes from colon cancer data set [8]. In the figures, two genes are not good

predictor of sample class labels individually. However, when combined,

they become much better predictors. 85

3.4.1 Result of experiment alon.1. Prediction accuracy of four feature selection

methods: t-score, S2N, pairwise t-score and pairwise virtual gene on colon

cancer data set using DLD classifier. Left figure shows prediction accuracy

against the number of genes used to build DLD classifier. Right figure

shows the standard deviation of prediction accuracy against the number of

genes. 94

3.4.2 Result of experiment alon.2. Prediction accuracy of four feature selection

methods: t-score, S2N, pairwise t-score and pairwise virtual gene on colon

cancer data set using KNN classifier (k=3). Left figure shows prediction

accuracy against the number of genes used to build KNN classifier. Right

figure shows the standard deviation of prediction accuracy against the num-

ber of genes. 95

xi

3.4.3 Result of experiment alon.3. Prediction accuracy of four feature selection

methods: t-score, S2N, pairwise t-score and pairwise virtual gene on colon

cancer data set using SVM classifier. In this experiment, we used a radial

kernel for SVM. Left figure shows prediction accuracy against the number

of genes used to build SVM classifier. Right figure shows the standard

deviation of prediction accuracy against the number of genes. 96

3.4.4 Prediction accuracy and its standard deviation of KNN (k=3) using differ-

ent number of clusters in k-means algorithm (stage 1 of algorithm 4) on

colon cancer data set. The prediction accuracy degrades as the number of

clusters increase. However, the within-cluster gene pairs (256-cluster ver-

sion vs. 8-cluster version) retain much information as a reduction of 99.9%

of pairs results only around 2% decrease in prediction accuracy. 100

3.4.5 The boxplot of mean KNN (k=3) classification accuracy using pairwise

virtual gene algorithm with 20 different initial clusters on colon cancer

data set. 101

xii

3.4.6 Prediction accuracy of four feature selection methods: t-score, S2N, pair-

wise t-score and pairwise virtual gene on leukemia data set using DLD clas-

sifier. Left figure shows prediction accuracy against the number of genes

used to build DLD classifier. Right figure shows the standard deviation of

prediction accuracy against the number of genes. 104

3.4.7 Prediction accuracy of four feature selection methods: t-score, S2N, pair-

wise t-score and pairwise virtual gene on leukemia data set using KNN

classifier (k=3). Left figure shows prediction accuracy against the num-

ber of genes used to build KNN classifier. Right figure shows the standard

deviation of prediction accuracy against the number of genes. 105

3.4.8 Prediction accuracy of 4 feature selection methods: t-score, S2N, pairwise

t-score and pairwise virtual gene on multi-class data set using KNN clas-

sifier (k=3). Left figure shows prediction accuracy against the number of

genes used to build KNN classifier. Right figure shows the standard devia-

tion of prediction accuracy against the number of genes. 108

xiii

3.4.9 Prediction accuracy of 4 feature selection methods: t-score, S2N, pairwise

t-score and pairwise virtual gene on multi-class data set using DLD clas-

sifier. Left figure shows prediction accuracy against the number of genes

used to build KNN classifier. Right figure shows the standard deviation of

prediction accuracy against the number of genes. 109

4.2.1 Main data structures used in Algorithms 5 (GO gene counter) and Algo-

rithm 6 (Best GO Adjusted Score). 121

4.2.2 Setup of experiment data set for studying the alleviation of false positive

rate on microarray expression data set. 125

5.1.1 Structure of gene ontology and its annotation. Solid lines between genes

and GO terms indicate direct annotation and dotted lines indicate inferred

annotation by the property of transitivity of GO annotations. 134

5.2.1 Flowchart of our virtual gene feature extraction algorithm for sample clas-

sification on microarray data set by integrating domain knowledge in the

form of GO annotations. 139

xiv

List of Tables

2.3.1 Classification accuracy (%) without FSS on three publicly available data

sets: colon cancer, leukemia and multi-class. 67

4.1.1 Gene selection on randomized data set. Each entry shows the number of

genes that score greater than cutoff t-scores in each data set (original and

random generated.) . 114

4.3.1 Performance of GO adjusted scores as measured in false positive rate using

S2N score. 128

4.3.2 Performance of GO adjusted scores as measured in false positive rate using

t-score. 129

xv

5.3.1 Performance (classification accuracy) of GO based virtual gene feature ex-

traction algorithm (GOF), compared with single gene based algorithms:

t-test score (tscore) [15], signal-to-noise ratio (S2N) [53], on colon can-

cer data set. Numbers in parenthesis are the number of genes. vg stands

for virtual gene and rg stands for real gene. We also report classification

performance when no feature selection algorithm is used (ALL column). . . 147

5.3.2 Standard deviation of classification accuracy of GO based virtual gene fea-

ture extraction algorithm (GOF), compared with single gene based algo-

rithms: t-test score (tscore) [15], signal-to-noise ratio (S2N) [53], on colon

cancer data set. 147

5.3.3 Performance (classification accuracy) of GO based virtual gene feature ex-

traction algorithm (GOF), compared with single gene based algorithms:

t-test score (tscore) [15], signal-to-noise ratio (S2N) [53], on leukemia data

set. Numbers in parenthesis are the number of genes. vg stands for virtual

gene and rg for real gene. We also report classification performance when

no feature selection algorithm is used (ALL column). 150

xvi

5.3.4 Standard deviation of classification accuracy of GO based virtual gene

feature extraction algorithm (GOF), compared with single gene based al-

gorithms: t-test score (tscore) [15], signal-to-noise ratio (S2N) [53], on

leukemia data set. 150

xvii

List of Algorithms

1 WorstSampleSet : Calculate the worst set of samples using a greedy algo-

rithm . 59

2 BFSS : Boost Feature Subset Selection . 60

3 gen vg : Calculating Virtual Gene From Training Data 86

4 pairwise vg : Pairwise Virtual Gene Selection 88

5 GO gene counter(goroot ,scores,θ,∈,←) Compute genes/informative genes

for each GO term . 122

6 bS(go,scores,G,β,γ): Best GO Adjusted Score 123

xviii

Contents

Acknowledgement i

Abstract ii

List of Figures . iv

List of Tables . xiv

List of Algorithms . xvii

1 Introduction 1

1.1 A Gentle Introduction to Data Mining and Machine Learning 4

1.1.1 Machine Learning and Data Mining 4

xix

1.1.2 Feature Space . 6

1.1.3 Training and Testing Data Sets . 8

1.1.4 Classifiers . 9

1.1.5 Estimate Classification Accuracy 18

1.2 Feature Selection and Extraction Algorithms 24

1.2.1 What Does Feature Selection Do? 25

1.2.2 Feature Subset Selection Based on Single Feature Discriminative

Scores . 26

1.2.3 Correlation Based Feature Selection 28

1.2.4 General Feature Subset Selection Algorithms 30

1.2.5 Feature Extraction Algorithms . 31

1.3 Some Biology Background . 32

1.3.1 DNA, Genes and Proteins . 33

1.3.2 Microarray Experiment . 38

xx

1.3.3 Gene Ontology and Gene Annotations 42

1.4 Gene Selection for Microarray Experiments 46

1.4.1 Formulation of Our Problem . 46

1.4.2 The Limitations of Existing Gene Selection Algorithms and Our

Proposed Approaches . 49

1.5 Organization of This Thesis . 50

2 BFSS: Boost Feature Subset Selection 52

2.1 A Motivating Example . 54

2.2 BFSS: Boost Feature Subset Selection . 57

2.2.1 BFSS: Boost Feature Subset Selection Algorithm 57

2.2.2 Computational Complexity of BFSS 62

2.3 Experiments . 63

2.3.1 Data Sets and Data Preparation . 64

2.3.2 Feature Selection and Classification Algorithms 65

xxi

2.3.3 Experiments on Colon Cancer Data Set 67

2.3.4 Experiments on Leukemia Data Set 72

2.3.5 Experiments on Multi-class Cancer Data Set 75

2.4 Conclusion and Discussion . 76

3 Virtual Gene: Correlation Base Gene Selection 82

3.1 An Example: The Problem of Single Feature Based Discriminative Score . 83

3.2 Virtual Gene and Pairwise Virtual Gene Algorithm 84

3.3 Complexity of the Pairwise Virtual Gene Algorithm 89

3.4 Experiments . 90

3.4.1 Colon Cancer Data set . 91

3.4.2 Leukemia Data Set . 102

3.4.3 Multi-class Cancer Data Set . 106

3.5 Conclusion and Future Work . 107

xxii

4 Dealing with False Positives Using Gene Ontology 112

4.1 The Problem of Gene Selection on Small Sized Samples 113

4.2 Integrating Biological Knowledge into Gene Selection 115

4.2.1 GO Adjusted Scores . 116

4.2.2 Complexity of Best GO Adjusted Score 120

4.2.3 Experiment Setup . 124

4.3 Experiments . 126

4.4 Conclusion and Future Work . 128

5 Integration of Gene Ontology with Virtual Gene 132

5.1 The Hierarchical Structure in Feature Space 133

5.2 Feature Extraction by Integrating Ontology Distance with Gene Expression

Data Set . 138

5.3 Experiments and Discussion . 144

5.4 Conclusion . 149

xxiii

6 Conclusion of the Thesis 153

7 List of Publications 162

i

Chapter 1

Introduction

It is widely believed that thousands of genes and their products in a living organism func-

tion in a complicated and orchestrated way that creates the mystery of life [2]. Molecular

biology used to be about one gene at a time. However, with the completion of genome

sequencing project for several spices [44, 37, 60] and the advent of microarray technology

for large scale RNA profiling [128], it becomes possible to quantize molecular states of a

living cell. Although crude, such technique offers biologist first time in history a look at bi-

ological system at genome level. Biology is transforming from a data poor discipline into a

data rich one. However, efficient analysis of the large amount of data generated by various

biological protocols has proven to be even more difficult than collecting such data itself.

1

CHAPTER 1. INTRODUCTION 2

Bioinformatics as an inter-discipline field, is gaining traction. Broadly speaking, bioin-

formatics describes any use of computers to handle biological information. In a narrower

sense, bioinformatics is more related to computational molecular biology: use computer

programs to characterize molecular components of living things [1].

Among the various mountains of data collected during the course of last decade, microarray

gene expression data set is one of the most common functional data set. The expression

levels of thousands of mRNAs (messenger RNA) or ESTs (Expressed Sequence Tag) [78]

are measured simultaneously in one experiment. A typical microarray gene expression

data set is a two dimensional array of numbers with thousands of rows (genes) and tens

to hundreds of columns (experiments). Computational algorithms are needed to extract

meaningful information out of the vast amount of data. Microarray data sets are used for

studying cell cycle [112], stress response [51, 50], clustering [70], sample classification

[111, 8, 22, 73, 131] and phenotype detection [114], etc.. The problem interests me most

is the sample classification problem using microarray data set, which is the main focus

of this dissertation. The expression levels of thousands of genes span a feature space for

each sample tissue, characterizing its molecular state. Sample classification algorithms

using microarray data set try to automatically discover a model to explain the correlation

between the molecular states of the tissues and the phenotypes of the tissues. If such a

model can be successfully built, it can be used to diagnose disease more accurately and to

discover new subtypes of a disease, for example.

CHAPTER 1. INTRODUCTION 3

Emerging data sets such as the microarray gene expression data sets pose special challenge

for pattern recognition algorithms. The main obstacle is the limited number of samples

due to practical and financial concerns. This results in the situation where the number of

features (or genes) well outnumbers the number of observations. The term “curse of di-

mensionality” and “peaking phenomenon” are coined in the machine learning and pattern

recognition community, referring to the phenomenon that inclusion of excessive features

may actually degrade the performance of a classifier if the number of training examples

used to build the classifier is relatively small compared to the number of features [69].

Typical treatment is to reduce the dimensionality of feature space before classification us-

ing feature selection and feature extraction algorithms. Feature extraction algorithms create

new features based on transformation and/or combination of original features while feature

selection algorithms aim to select a subset of original features. Those new/selected features

preserve most variation of data in the feature space. Techniques like PCA (principal com-

ponent analysis) and SVD (singular value decomposition) [10] have been used to create

salient features [59, 73] for sample classification on microarray data sets. Feature selec-

tion, or in our case, gene selection generates a small set of informative genes, which not

only leads to better classifiers, but also enables further biological investigation.

In this chapter, both biological and computational background surrounding our work will be

presented to familiarize readers on these subjects. We will introduce the concept of feature

space, classifiers, feature selection and extraction algorithms. We will also discuss how to

CHAPTER 1. INTRODUCTION 4

estimate the performance of classifiers. On the biological front, basic ideas of DNA, RNA,

protein and microarray experiment will be explained. The central dogma of molecular

biology will be also presented. A formal formulation of the problem of feature (gene)

selection on microarray gene expression data set is presented at the end of this chapter.

And finally, we will discuss the pitfalls of current gene selection algorithms used for the

microarray gene expression data analysis and briefly discuss our contributions in this area.

1.1 A Gentle Introduction to Data Mining and Machine

Learning

1.1.1 Machine Learning and Data Mining

To learn is to improve automatically with experience [87]. Machine learning, as a broad

subfield in artificial intelligence, is concerned with algorithms that could learn from experi-

ence. Among the vastly broad fields in machine learning research, classification, or pattern

recognition, is one of the most important class of problem studied. A pattern recognition

algorithm is concerned with finding models which could be used to automatically classify

new instances of unseen data. It is sometimes called supervised learning, as compared to

CHAPTER 1. INTRODUCTION 5

other learning paradigms where the eventual task of learning is not to assign some prede-

fined labels to data. Different classification algorithms have been widely studied, such as

decision trees, artificial neural networks, Bayesian learning, k-nearest neighbor learning,

support vector machines, etc. [87]. I will not be able to give detailed account for each of

those classifiers. I will briefly discuss some of these learning algorithms that are used in

this thesis later in this chapter.

On the contrary to supervised learning, clustering is often called unsupervised learning in

the sense that no extra labels are associated with each object. Unsupervised learning aims

to find patterns that exist in the data. Clustering is widely used in microarray expression

data analysis, to discover broad patterns in such data set. The most prevalent approaches

for gene clustering include hierarchical clustering [43], k-means [63], self organizing maps

(SOM) [113] and subspace clustering [123]. In those cases, the expression levels of genes

across different samples are used as features for genes. By clustering in the gene space,

meaningful co-expressed gene groups can be identified [70]. Other approaches to mining

gene expression data are also possible. For example, Tang [114] tried to discover hidden

phenotype structures underlying gene expression data. In their approach, like in sample

classification, each sample tissue is an object and expression levels of different genes are

viewed as features. This is one characteristic of microarray expression data set: the data

set itself can be viewed either from the gene space, or from the feature space, or from

both spaces as in subspace clustering. Still, a more interesting problem is presented in

CHAPTER 1. INTRODUCTION 6

[71] where an extra dimension is added to microarray gene expression data set: the time

dimension. Each cell in this three dimensional data set is the expression level of a certain

gene, in a certain tissue sample, at a certain specific time.

Data mining is a new discipline that is under rapid development in recent years. Data min-

ing aims to find novel, previously unknown and useful information from data. It includes

for example associate rules mining [6, 137]. A usually given example for associate rule

mining is the placement of products in a grocery store in such a way that those products

that tend to be purchased together by a customer are placed near each other to boost sales.

Association rules mining had been used to discover interesting rules from microarray data

set in [26]. Clustering algorithm mentioned in the previous paragraph is also a main focus

for data mining researches.

Please refer to Tom Mitchell’s Machine Learning [87] and Jiawei Han’s Data Mining: Con-

cepts and Techniques both first and second edition [57, 58] for more detailed treatment on

those two subjects.

1.1.2 Feature Space

Machine learning and data mining algorithms deal with every day objects, drawing conclu-

sions (classification and regression) or searching for patterns based on observations. Real

CHAPTER 1. INTRODUCTION 7

life objects require a consistent way of representation, such that same algorithm could be

applied to different data instances. In the literature of machine learning and data mining,

real life objects are usually represented using features, such that the properties of real life

objects can be manipulated and analyzed. Features can be numerical (continuous or dis-

crete), or categorical. Features, describing the states of objects under study, span a space of

all possible states of the object being modeled. Such space is often called the feature space

of a learning problem.

Feature space is usually represented as a d-dimensional space, where d is the number of

features. Depending on whether class labels are used or not, feature selection algorithms

can be categorized as supervised or unsupervised. In the case of supervised feature se-

lection, the goal of feature selection algorithms is to choose a set of features that allows

patterns belonging to different classes to occupy in rather compact and distinct region in

the feature space. In the case of unsupervised feature selection, newly selected features rep-

resent most variations amongst the data. Feature extraction algorithms on the other hand

transform original feature space into a secondary space such that patterns become clus-

tered in the new feature space. The effectiveness of feature representation is determined

by how well patterns can be separated, which is usually measured by the performance of a

classifier. Feature selection and extraction algorithms are the main focuses of this thesis.

CHAPTER 1. INTRODUCTION 8

1.1.3 Training and Testing Data Sets

In order to learn from experience, a set of data called training data set is presented to a

learner. The task of the learner is to build a model explaining the variations in the training

data set. Another independent data set called testing data set is normally used to test the

accuracy of the model a learner learnt. For bioinformatics and medical data sets such as

microarray expression data, the number of experiments are often limited due to financial

concerns. There are usually not enough data to serve as independent testing data set. This

problem is circumvented by using cross validation algorithms and bootstrap algorithms as

shown later in this chapter.

Data sets are represented as data points in the multi-dimensional feature space. In the case

of supervised learning (classification), each data point is also associated with a class label.

When each of the data point is associated with a numerical label, the learning problem

becomes a regression problem. Regression in the statistics community stands for approxi-

mation of a real valued function. The construction of efficient and effective learners is an

active research area for a long time. In the following sub-sections, we will introduce some

of the learners we used in this thesis. The performance of feature selection algorithms is

measured by the performance of sample classification later in this thesis.

CHAPTER 1. INTRODUCTION 9

1.1.4 Classifiers

Depending on the shape of decision boundary learnt, classifiers can be categorized as either

linear or as non-linear. It might look like non-linear classifiers are more powerful learners

because of their exotic decision boundaries. However, due to limited training data, it is not

always a good idea to use powerful classifiers. Intuitively, when a learner tries to fit a model

too exactly according to the limited training data set, it generally loses its generalization

power on unseen samples. This problem has been extensively studied in statistical learning

theories [121]. Statistical learning theory, or VC (Vapnik-Chervonenkis) theory, shows that

it is crucial to restrict the class of functions that the learning machine can implement to one

with a capacity that is suitable for the amount of available training data [62]. Otherwise,

the learnt model is tuned to the training data too much, sacrificing its power to generalize

to new unseen data. This problem is called “overfitting” in machine learning literature.

Overfitting is generally recognized to be a violation of Ockham’s razor principle, which

states that the explanation of any phenomenon should make as few assumptions as possible.

There are generally two stages of a learning algorithm: learning and classification. In the

learning stage, a learner is presented with a set of training samples, from which the learner

tries to find a conforming model. After a model is successfully learnt, a learner can then

be used to classify new unseen and unlabeled instances of data. It will label the unseen

data according to the model it learnt in the previous learning stage. Learners differ vastly

CHAPTER 1. INTRODUCTION 10

in how they operate in those two stages. Some are fast in learning yet slow in classifying;

while others are slow in learning yet fast in classifying when a model is already learnt.

In this section, we will introduce three vastly different classifiers: KNN (K-Nearest Neigh-

bor), FLD (Fisher Linear Discriminant) and SVM (Support Vector Machine). The per-

formance of our feature selection and extraction algorithms are later measured using those

three classifiers. The very nature of differences in those classifiers ensure that our proposed

feature selection and extraction algorithms are not tuned to some specific classification al-

gorithms.

KNN Classifier

The k-nearest neighbor classifier is an instance based classifier [87]. It was originally

proposed by Cover, etc. in [115]. Instead of learning an explicit model, instance based

classifiers simply store training data and defer the generalization beyond training instances

until a new instance must be classified. Instead of trying to find a global model, instance

based methods produce classifiers that are local for each new instance. Since the learning

is actually just storing training data internally instance based learning algorithms, such as

KNN, is very fast in learning.

Assuming objects are characterized by an n-dimensional space Rn. An object x is described

CHAPTER 1. INTRODUCTION 11

+ -
+

+

+
+

-

--

-

Xq

a b

.
.

.

.

.

.

Figure 1.1.1: The k-nearest neighbor algorithm. A set of positive and negative labeled data
points are shown in figure a). The query point is xq. Using a 1-nearest neighbor algorithm,
xq will be classified as a negative instance since its nearest neighbor is a negative instance.
However, when considering three nearest neighbors of xq, two of them are positive labeled.
Thus using 3-nearest neighbor algorithm, xq should be labeled as positive. Figure b) in the
right shows the potential decision boundary for 1-nearest neighbor algorithm of five data
points. Each line is a potential decision boundary depending on how the data points are
labeled.

by an n-dimensional feature vector (a1(x),a2(x), · · · ,an(x)). Euclidean distances d(xi,x j)

between two objects xi and x j is defined as

d(xi,x j) =

√
n

∑
r=1

(ar(xi)−ar(x j))2 (1.1.1)

Each of the data instance x is associated with a label f (x). For a new query data item xq,

the goal of classification is to find the value f (xq). The KNN classification algorithm is

described in Algorithm 1.1.2 and illustrated in Figure 1.1.1. The label of xq is determined

by a majority vote of xq’s k nearest neighbors in the sense of Euclidean distance (Equa-

tion 1.1.1). Other distance functions could also be used in place of the Euclidean distance.

The learning stage only involves remembering all training data points. In the classification

CHAPTER 1. INTRODUCTION 12

stage, first k nearest data points to the query data point xq are determined. The label that

occurs the most often in this neighborhood will be assigned as the label for the new data

instance. There will not be ties for two class problem when k is an odd number. Otherwise

ties can be broken arbitrarily. KNN classifier is generally fast. Even when training data set

is reasonably large. Spatial indexing algorithms, such as R-Tree [54] and R*-Tree [13], can

be used to store training data points so that k-nearest neighbor queries in the classification

stage can be efficiently answered.

Algorithm KNN training algorithm
For each training example < x, f (x) >, add it to list training examples.

KNN classification algorithm
Given a query instance xq to be classified

Let x1 · · ·xk denote the k instances from training examples that are nearest to xq

Return
f (xq)← argmax

v∈V
(∑k

i=1 δ(v, f (xi)))

where V is the collection of labels and δ(a,b) = 1 if a = b and where δ(a,b) = 0 otherwise.

Figure 1.1.2: Algorithm: K-nearest neighbor algorithm.

The decision boundary of a KNN classifier is a collection of hyperplanes as illustrated in

Figure 1.1.1 in the case for one nearest neighbor.

CHAPTER 1. INTRODUCTION 13

+

-

+
+

+

+

-
-

- -

Two dimensional space

++ + ++ - -- --

Projected to one
dimensional space

Decision Boundary

Decision Boundary

Figure 1.1.3: FLD classifier. The bigger figure in left bottom shows original data plotted
on a 2D surface. The bold line represents the FLD projection direction and thinner line
represents the decision boundary formed by an FLD classifier. The smaller figure on top
right corner shows the 1D layout of data points after data being projected onto the FLD
projection direction.

CHAPTER 1. INTRODUCTION 14

Fisher Linear Discriminant (FLD)

Fisher Linear Discriminant (FLD) can be used as a supervised classification algorithm [35].

FLD aims to find the best linear direction to project data points in an n-dimension space

such that the data of different class labels are separated to the maximum. Let us continue

to use notations from last section. Let us further define a counter for each class label C(v)

to be:

C(v) =
k

∑
i=1

δ(v, f (xi)) (1.1.2)

Class mean µ(v) of a label is defined to be the mean vector of observations belonging to

label v. We use x ∈ v to denote the fact that data instance x is labeled by class label v. We

also use a(x) to denote the n-dimensional feature vector for object x.

µ(v) =
1

C(v) ∑
∀x∈v

a(x) (1.1.3)

Grand mean µ is the mean vector for all data in the training set. n is the number of data

instances in the training set.

µ =
1
m ∑

x
a(x) (1.1.4)

CHAPTER 1. INTRODUCTION 15

We assume every data point is labeled by one and only one class label. Given this condition,

we have:

m = ∑
v

C(v) (1.1.5)

FLD aims to find the linear direction that separates objects from different classes maximally

while making objects within each class as compact as possible. The can be formulated

to simultaneously minimize the within class scatter while maximizing the between class

scatter. The within class scatter can be defined as follows:

Sw = ∑
x

(a(x)−µ(f (x)))(a(x)−µ(f (x)))t (1.1.6)

The between class scatter can be defined as:

Sb = ∑
v∈V

C(v)(µ(v)−µ)(µ(v)−µ)t , where V is the collection of labels. (1.1.7)

The criteria to optimize is with respect to a vector V :

J(V) =
det(V tSbV)
det(V tSwV)

(1.1.8)

CHAPTER 1. INTRODUCTION 16

The above equation can be solved by solving the generalized eigenvalue problem [5] SbV =

λSwV . As a special case, when Sw has full rank, the generalized eigenvalue problem can be

converted into a standard eigenvalue problem S−1
w SbV = λV .

Assume |V | denote the number of different classes. The generalized eigenvalue problem

Sbu = λSwu has at most |V | − 1 eigenvalues. Let u1,u2, · · · ,u|V |−1 be the corresponding

eigenvectors. The optimal projection matrix u to project original data to a k-dimensional

subspace is given by eigenvectors corresponds to the largest k eigenvalues.

For two class case, the optimal projection matrix u is actually a vector, projecting data

onto a line (one dimension). The classification is then done using a simple threshold as

shown in Figure 1.1.3. The decision boundary of an FLD classifier is always a hyperplane

in the n-dimensional feature space. In the learning stage, the FLD projection direction is

calculated based on the training data set. Then in the classification stage, new data instance

is projected onto the pre-calculated projection direction and the position of the projected

data point is used for classification.

CHAPTER 1. INTRODUCTION 17

Support Vector Machine (SVM)

Support vector machine (SVM) was introduced by Vapnik and his colleagues in a seminal

paper in COLT 1992 [18]. Two components characterize the SVM: a maximal margin clas-

sifier and a kernel function to map input space non-linearly to higher dimensional feature

space [106]. Figure 1.1.4 illustrates the idea of maximal margin classifier. This is different

from other classification methods where the decision boundary is determined by optimiz-

ing some global criteria function (such as MMSE, or minimum mean squared error for

partition based clustering and J(V) for FLD classifier). Maximal margin classifier makes

classification decision only based on boundary patterns (or support vectors). Linear deci-

sion boundary can be written as (w · x)+ b = 0,w ∈ RN ,b ∈ R, corresponding to decision

functions f (x) = sign((w · x) + b). The optimal hyperplane can be uniquely constructed

by solving a constrained quadratic optimization problem. Omitting detail calculation, one

critical property of the algorithm is that the calculation only involves dot products between

patterns. This is why the kernel trick can be introduced.

When training data is not linearly separable, SVM employs a clever kernel trick to map

patterns from input space onto a higher dimensional feature space, as illustrated by fig-

ure 1.1.5. The mapping is not done explicitly, but introduced using a kernel function. A

kernel function is a function k that for all x,z ∈ X satisfies

k(x,z) = < Φ(x),Φ(z) >, (1.1.9)

CHAPTER 1. INTRODUCTION 18

where Φ is a mapping from X to an feature space F

Φ : x→Φ(x) ∈ F. (1.1.10)

Replacing inner production in the maximal margin classifier with kernel functions, a SVM

is able to draw non-linear decision boundaries when input patterns are not linearly separa-

ble.

Support vector machines and kernel based methods have shown great potential to be good

classifiers. They are both powerful for the non-linear decision boundaries they can express

yet mathematically simple. The concept of kernel functions can be also applied to other

linear algorithms, e.g. kernel PCA [102], etc..

1.1.5 Estimate Classification Accuracy

After the construction of a learner, empirically evaluating the accuracy of models is a fun-

damental problem in machine learning. An accurate estimation of model accuracy is im-

portant to compare and choose different models for differen tasks. Training error refers to

the number of mistakes a learner makes on the training data set while testing error refers

to the number of mistakes a learner makes on the testing data set. Training error is also

called empirical error, which is a too optimistic estimate of classification error. It is always

possible to construct a classifier with zero training error. For example, a learner that records

CHAPTER 1. INTRODUCTION 19

Figure 1.1.4: The basic idea of an SVM’s maximal margin classifier. Decision boundary
is a hyperplane in feature space that separates sample of different class labels by maximal
margin. The figure illustrates a linearly separable 2D case. When data points are not
linearly separable, an SVM classifier uses the kernel trick to project data points onto a
higher dimension feature space, in which projected data points become linearly separable.

CHAPTER 1. INTRODUCTION 20

Figure 1.1.5: Using kernel function to map problems that are not linearly separable in the
input space to higher dimension feature space where patterns become linearly separable.

all training data set internally and report accordingly will archive zero training error. How-

ever, most probably it will not generalize well on the unseen testing data sets. It is also

proven theoretically that learners, each performing only slightly better than random, can

be combined to form arbitrarily good hypothesis (zero prediction error on the training set)

[72, 85]. Thus the construction of a good learner is an art to balance between classification

accuracy on training data set and the generalization power of the resultant classifier.

The task for estimation classifier accuracy is further complicated by the fact that the number

of samples is often limited. This is especially true in the domain of bioinformatics where

preparing extra experiments can be costly. There are two aspects of the problem of limited

samples: 1. the limited number of samples limits the statistical significance of the model

accuracy observed. 2. the limited number of samples also limit the size of both training

and testing data sets. While there is not much “clever” way to circumvent the first problem

CHAPTER 1. INTRODUCTION 21

besides enlarging the sample size, a lot of research has focused on finding an unbiased

estimator of the classification accuracy with low variance even when the size of the samples

is small. Since there is only limited samples in the first place for most of microarray

expression data sets, separate samples into independent training and testing group in a

holdout strategy does not work well.

Cross validation and bootstrapping are two popular estimators for classification accuracy

[39, 40, 75, 42, 19, 41]. Molinaro et al. studied classification estimators for small sampled

data sets that appear frequently in the bioinformatics domain [88]. Two common cross

validation schemes are k-fold cross validation and leave-one-out cross validation. The

leave-one-out scheme is a special case of k-fold scheme where k (the number of folds)

equals n (the number of samples). In a k-fold cross validation scheme, the available data

is partitioned into k mutually exclusive groups. Each group in turn is used as testing data

set, while the reminder are used as training data set. The classification accuracy estimates

are averaged to provide an overall accuracy estimate. Cross validation produces almost

unbiased estimates of classification accuracy, however, the estimate can be highly variable.

It can be shown that leave-one-out cross validation bias is in the order of O(1/N2) where

N is the number of samples.

Bootstrap method when used in estimating classification accuracy can be viewed as a

smoothed version of cross validation [42]. The simplest bootstrap approach generates B

CHAPTER 1. INTRODUCTION 22

bootstrap samples D1 · · ·DB and estimates model on each of them. Let us assume the mod-

els generated are h1 · · ·hB accordingly. The classification accuracy is then measured using

those models on the original data set. The classification error can be measured using Equa-

tion 1.1.11, assuming N to be the number of data points, yi is the label of data point xi.

Ebs =
1
B

B

∑
b=1

1
N

N

∑
i=1

δ(yi−hb(xi)) (1.1.11)

One problem of this simple bootstrap method is that we might use data points that belongs

to training set for testing. In particular it can be shown that the percentage of data points

belonging to both training and testing data sets in the simple bootstrap setup to be 63.2%,

thus making Ebs too optimistic. The remedy is to consider as test cases only those that

does not belong to bootstrap sample Db. Such an estimate is called E0 and defined in

Equation 1.1.12.

E0 =
1
N

N

∑
i=1

1
Bi

∑
b∈Ci

δ(yi−hb(xi)), (1.1.12)

where Ci is the set of bootstrap samples that do not contain sample i and Bi is the number

of such bootstrap samples.

E0 turns out to be a pessimistic estimate of classification error since the testing cases are all

“hard” ones. Intuitively when E0 is used, the testing set is “hard” because they are totally

CHAPTER 1. INTRODUCTION 23

new samples that are unknown to the learning process. More reliably and realistically, the

.632 estimate combines empirical error with E0 to produce a less biased bootstrap estimator

as defined in Equation 1.1.13.

E.632 = 0.368×Eemp +0.632×E0 (1.1.13)

One problem facing both cross validation and bootstrap method is that the distribution of

class labels in each random sampling could be significantly different from the original data

set. Stratification, or sampling within each class label, is one way to deal with this problem.

Stratified versions of cross validation and bootstrap are generally considered to work better.

It is worth noting that when the performance of feature selection algorithms is measured

using the classification accuracy of classifiers, the feature selection process must be con-

strained within the training data set in each turn of cross validation [110]. Otherwise, if

feature selection process uses data in the test data set, the result estimate would turn to be

too optimistic and is not a good estimator of generation error.

For wrapper based feature subset selection algorithms, where the classification accuracy

(or error) of some classifier is as a guidance in feature selection, Sima [109] compared

the performance of several error estimators: resubstitution, cross-validation, bootstrap and

bolstered error estimation [119] (Braga-Neto reported a comparative study similar to Sima

CHAPTER 1. INTRODUCTION 24

in [120]). They concluded bolstered works best for feature wrappers from small sized

samples, such as microarray data sets.

1.2 Feature Selection and Extraction Algorithms

Traditional pattern recognition algorithms do not work well when the dimensionality of

feature space is too high. Feature selection and feature extraction algorithms reduce the

dimensionality of feature space while preserving enough information for the underlying

learning problem [68]. Genomic studies in bioinformatics often result in high dimensional

data set with low sample dimensionality [98]. Feature selection and feature extraction

algorithms, especially gene selection and extraction algorithms, are the main focus of this

thesis.

Although there are a plenty of more general feature subset selection algorithms proposed

in the machine learning literature, gene selection algorithms proposed in the bioinformat-

ics literature are mostly single gene-based in the sense that the criteria used to determine

whether a gene is selected or not only deal with expression data of that single gene. Some

recent research considers selected gene set as a whole for optimization. One trend is to

remove redundant genes from selected gene set. In this section, we will introduce some of

the gene selection algorithms proposed in the literature.

CHAPTER 1. INTRODUCTION 25

1.2.1 What Does Feature Selection Do?

From the machine learning point of view, to overcome the curse-of-dimensionality prob-

lem, we can use feature subset selection algorithms to filter out a smaller set of salient genes

for classification. From the biologist point of view, smaller set of genes are more easy to

explain and conduct further experiments on. Gene selection has several advantages:

• It alleviates the curse of dimension problem and improves classification accuracy

when used on microarray data sets [81], [79], [80]).

• It is easier for biologists to gain insight into to smaller set of genes of the underlying

genetic mechanism [55].

• It reduces the cost of diagnosis when microarray technique is used in clinics. There

is no point of conducting diagnosis on microarray chip with thousands of genes when

only a handful of them can successfully diagnose disease [46].

In the following of this section, different feature/gene selection approaches proposed in the

literature are surveyed.

CHAPTER 1. INTRODUCTION 26

1.2.2 Feature Subset Selection Based on Single Feature Discriminative

Scores

A lot of researches in the statistics community focused on using some scores measuring

discriminant power of single gene in respect to sample class labels [24, 53, 14, 38, 118,

130, 94, 12, 93, 15, 116, 103, 129, 89]. Genes with top scores are selected and combined.

We list some of the single gene scores that have been proposed in the literature. The list is

by no means complete.

• t-score: in two class discriminant analysis, t test is a common statistical test used to

test the difference in sample mean. t-score can be used as a measure of how well val-

ues are separated in two sets of samples (with different labels) [15]. Assuming two

sets of samples coming from same normal distribution with same mean and standard

deviation, the larger the t-score is (or the smaller p-value is), the more confident we

can conclude that our assumption is actually not correct and the two sets of sam-

ples indeed come from two different distribution of different mean (rejecting null

hypothesis).

• S2N: signal to noise ratio was used in [53] for gene selection. S2N is defined as

S2N = | µ1−µ2
σ1+σ2

|, where µ1 and µ2 are the mean value of the respective classes and σ1

and σ2 are the standard deviation of the respective classes.

CHAPTER 1. INTRODUCTION 27

• TNoM score: threshold number of misclassifications [14]. Intuition behind this score

was that the expression levels of an informative gene should be very different in

different sample classes. A simple threshold value (decision stump) would be able

separate samples of different classes. T NoM(g, l) = min(d,t)Err(d, t|g, l) where d, t

are the parameters of a decision stump, g is a gene, l is the sample class labels,

Err(d, t|g, l) is the number of classification errors made by a decision stump (d, t).

• Information Gain: [129][130] this measure is adapted from information theory di-

rectly. Expression levels need to be discretized before applying this score. Informa-

tion gain is defined as I(X |Y) = H(X)+H(Y)−H(X ,Y) where H(X) is the entropy

of X . I(X |Y) is biased for excessively multi-valued nominal features. Symmetri-

cal uncertainty SU(X ,Y) = 2(I(X |Y)
H(X)+H(Y)) can be used for its remedy. Symmetrical

uncertainty can be viewed as a normalized version of the information gain measure-

ment.

• SAM [118]: significance analysis of microarrays, the uniqueness of SAM is it em-

ploys permutation tests to estimate the statistical significance of their single gene-

based score.

These discriminative scores are generally easy to compute, with time complexity of O(n).

Note that we do not include computation needed for sorting n genes since it depends on

implementation. For example, when top n′ out of n genes are selected, we can either sort

CHAPTER 1. INTRODUCTION 28

n gene scores and pick top n′, which results in O(n logn) time complexity; or we can

find top n′ largest gene scores, which can be done O(n′n). We find the total number of

discriminative scores an algorithm needs to compute is a more consistent measure of time

complexity of gene selection algorithms.

1.2.3 Correlation Based Feature Selection

Feature selection methods based on a single gene ignore correlations between genes. How-

ever, it is well known that gene expression levels are correlated with each other. Genes that

are regulated by same mechanism exhibit similar expression levels. As a matter of fact,

the correlation of expression levels between genes are the basis of gene expression cluster

analysis, which is a broad research area by itself [70]. Recent research in feature selec-

tion begins to tackle this problem [34, 56, 67, 138, 129, 126, 59]. While trying to include

genes with high individual scores, such feature selection algorithms also try to minimize

correlations between selected set of genes in the mean time.

• CBF: or correlation based feature selection [56]: general search strategy (forward

selection, backward elimination, best first) using Ms = nrc f√
n+n(n−1)r f f

as the measure

of merit for feature subset. n is the number of features in the feature set. rc f is the

mean feature-class correlation. r f f is the mean feature-feature inter-correlation. The

search criterion tries to maximize rc f while minimize r f f .

CHAPTER 1. INTRODUCTION 29

• Reduce correlation using clustering [67]: genes are first clustered using a fuzzy clus-

tering algorithm. Genes having top individual scores in each cluster are selected. The

number of genes selected from each cluster depends on the quality of respective gene

cluster, which is measured by cluster size and within cluster variation. More genes

are selected from big large-variance cluster.

• Redundancy based feature selection [138]: Two scoring function were used: individ-

ual C-correlation and combined C-correlation. Individual C-correlation is the single

gene discriminant score in this thesis. Combined C-correlation is a pairwise score

for the correlation of a pair of feature and the class labels. The author used informa-

tion gain based scores for both individual C-correlation and combined C-correlation.

Their RBF algorithm first selects top ranked feature using individual C-correlation.

All features whose combined C-correlation score with the selected feature is no bet-

ter than the selected feature’s individual C-correlation are removed from candidate

feature set. This process repeats until candidate feature set is empty.

• EFS: or efficient feature selection [129]: Feature importance was defined as Imp(fm)=

Bg(fm)× (1−Corr(fm,F∗)), where fm is an individual feature that has not been se-

lected and F∗ is the feature set that has already been selected. Bg is balanced infor-

mation gain and Corr is a measure of correlation between feature sets. Their EFS

algorithm iteratively selects top ranked feature based on its Imp value. Then all Imp

values of remaining features in candidate set are recalculated (F∗ changes in each

CHAPTER 1. INTRODUCTION 30

iteration).

• HykGene [126]: Hierarchical clustering is performed on top ranked genes. Repre-

sentative genes from each resulting cluster are then used for further analysis. The

assumption made in this work in that genes with in same cluster are correlated and

thus removed for redundancy. In this regards, it is similar to the Gene Shaving pro-

posed in [59]

1.2.4 General Feature Subset Selection Algorithms

General feature subset selection algorithms proposed in the machine learning literature

have also be used in the analysis of microarray data set. Although they have been used

successfully in other domains, the bioinformatics domain seems slow in picking up these

more sophisticated feature subset selection algorithms. Wrappers use classification accu-

racy on training data set as a measurement of how well a subset of features performs, thus

turn the problem of feature subset selection into a optimization problem. Various search al-

gorithms can be employed to navigate through the exponential space of feature set’s power

set. Sequential search algorithm [95] works as a greedy hill-climbing algorithm, including

or excluding one feature at a time while maintaining the current best feature subset. It has

been used to select informative genes in the context of cancer classification [66]. Relief

family (Relief [74], ReliefF [76], RReliefF [99]) [100] is used in microarray data analysis

CHAPTER 1. INTRODUCTION 31

in [125]).

Siedlecki and Sklansky [107] employed beam search in order to find best feature subset.

They [108] also employed genetic algorithm (GA) [86] for the purpose of feature selec-

tion. When feature selection criterion function is monotonic, the branch-and-bound (BB)

algorithm can be used to find optimal feature subset much more quickly than an exhaustive

search [90]. However, in more realistic case, the principle of optimality does not hold for

the problem of feature subset selection. Those algorithms tend to be more computational

intensive and may not scale well with larger data sets.

Those more general algorithms consider feature correlations to various degree. It addresses

the first problem of gene selection we identified in earlier section. However, no algorithm

has integrated domain knowledge for the feature selection process.

For a comparison of general purpose feature subset algorithms proposed in machine learn-

ing literature, please refer to [68, 33].

1.2.5 Feature Extraction Algorithms

In some application domains, original features may not be effective when used directly. For

example, in content based image retrieval systems, it is not meaningful to use each pixel’s

color value as features. Instead, various new features such as color histogram, various edge

CHAPTER 1. INTRODUCTION 32

texture features etc. are proposed to describe content of an image. Such feature extraction

algorithms are domain specific.

There are also general purpose feature space dimension reduction algorithms that compress

original feature space into a lower dimensional space in such a way that most variations

in original feature space are preserved. Techniques such as PCA (principal component

analysis), SVD (singular value decomposition) [10], SOM (self-organizing map) [61] and

FLD (Fisher linear discriminant) are good examples of general purpose feature extraction

algorithms.

One drawback of feature extraction algorithms when compared to feature selection algo-

rithms is that the new features created by feature extraction algorithms may not carry any

physical meaning of original features. Thus when design new feature extraction algorithms,

it makes sense to maintain the meaning of original features in some ways.

1.3 Some Biology Background

It is unavoidable to layout some biological background, as it is the source of peculiarities

we are dealing with in this thesis. This section provides a very basic coverage of molecular

biology pertaining to the microarray experiment. It is not intended to be comprehensive

guide or survey. Please refer to Genes VIII [78] for a complete account on molecular

CHAPTER 1. INTRODUCTION 33

biology.

1.3.1 DNA, Genes and Proteins

Life on earth began some 3.5 billion years ago, not long after earth itself came into being

some 4 billion years ago. All living things on earth share similar structures. The foremost

common point is that all hereditary information is passed alone in the form of DNA (de-

oxyribonucleic acid) or RNA (ribonucleic acid) in some cases. A DNA consists of two

strands of simpler components, called bases. The bases are so simple that there are actu-

ally only four possible choices: adenine (A), guanine (G), cytosine(C), and thymine (T),

as shown in Figure 1.3.1. Rapid development in biological technologies over past decades

has resulted in complete sequencing of DNA of several model systems, including human’s

(homo sapiens) [44, 37, 60]. Molecular biology enters the post genomic era [77] and it is

possible to decode the molecular mechanism of life for the first time in the human history.

Another common point for life on earth is that proteins play a central role in every life

on earth. Protein is a complex, high-molecular-mass, organic compound that consists of

amino acids joined by peptide bonds. There are twenty amino acids out there to form

proteins. Proteins perform various biological functions, from structural roles to enzymes

that catalyze chemical reactions, to immune responses. The sequence of amino acids in

a protein is called primary structure of a protein, which is determined by the gene that

CHAPTER 1. INTRODUCTION 34

Figure 1.3.1: DNA is formed by coupling the nucleotides between the phosphate group
from a nucleotide (which is positioned on the 5th C-atom of the sugar molecule) with the
hydroxyl on the 3rd C-atom on the sugar molecule of the previous nucleotide [122]. A-G-
C-T form the four bases of a DNA molecular.

CHAPTER 1. INTRODUCTION 35

Figure 1.3.2: The table of all twenty amino acids found in proteins [3]. Their names and
chemical makeups.

CHAPTER 1. INTRODUCTION 36

encodes the protein. In addition to the primary structure, a protein also demonstrates 3D

structures, called secondary structures and tertiary structures. As a matter of fact, in order

for a protein to function, it must be properly folded into a proper 3D shape.

The central dogma of molecular biology states: DNA → RNA (Ribonucleic Acid) →

Protein. It means that DNA encodes messenger RNA and is transcribed into messenger

RNA. Messenger RNA is then translated (after some post-transcription processing, e.g.

splicing) into protein molecular. DNAs are like blueprints, recording information of how

to construct proteins. On the other hand, day-to-day molecular functions are carried out

by proteins. RNA molecular has similar structure as DNA, but it is single stranded and the

thymine (T) base is replaced by uracil (U). The central dogma of molecular biology can be

more specifically stated as follows [30]:

• The information contained in DNA is duplicated via the replication process.

• DNA directs the production of encoded messenger RNA (mRNA) through a process

called transcription.

• In eukaryotic cells, the mRNA is then processed and migrates from the nucleus to

the cytoplasm of the cell.

• In the final stage of the information-transfer process, messenger RNA carries the

encoded information to protein-synthesizing structures called ribosomes. Through a

CHAPTER 1. INTRODUCTION 37

Figure 1.3.3: The central dogma of molecular biology. This figure illustrates the process of
DNA replication, DNA transcription into messenger RNA and messenger RNA translation
into protein [122].

CHAPTER 1. INTRODUCTION 38

process called translation, the ribosomes use this coded information to direct protein

synthesis.

How does DNA encodes proteins? It turns out to be quite simple, although discovery of it

is not. Using the four bases of adenine (A), guanine (G), cytosine (C), and uracil (U) for

RNA, every three consecutive bases, called a codon, encodes one amino acid. Given the

four base types, there are 64 codes available. Yet only 20 are used, as illustrated in 1.3.4.

For example GUU, GUC, GUA, GUG all encodes valine (Val).

Protein is the molecular that carries out most of life’s function. Although the expression

level of messenger RNA is not a direct indicator of corresponding protein level due to

post-transcription modifications, their expression levels can be measured relatively easily

and cheaply in large quantity given currently techniques (microarray experiments). The

resulting microarray expression data set is the primary data set we are dealing with in this

thesis. We will take a closer look at microarray experiment in the next section.

1.3.2 Microarray Experiment

Microarray technique enables biologists to monitor expression levels of thousands of genes

or ESTs simultaneously. Modern microarray technology was originated from the Southern

blot (named after E. M. Southern, a British biologist), which was the first array of genetic

CHAPTER 1. INTRODUCTION 39

Figure 1.3.4: Genetic Coding: Encoding of amino acids using four bases (A,C,U,G) found
in RNA molecular. Every three bases form a codon, which encodes one amino acid [4].
Amino acids are the building stones of proteins. The DNA T base is substituted by a RNA
U base.

CHAPTER 1. INTRODUCTION 40

material. The basic principle behind these techniques is that DNA and RNA strands can be

labeled for detection and then used to probe other nucleic acid molecules that have been

attached to a solid surface. In the most general form, a DNA array is a chip made of nylon

membrane, glass or plastic. Usually, the chip is arranged in a regular grid-like pattern and

segments of DNA strands are either deposited or synthesized within individual grids. Fig-

ure 1.3.5 shows the basic principles of microarray experiment. Once the array is prepared, a

microarray experiment involves three basic steps: sample preparation and labeling, sample

hybridization and washing, and microarray image scanning and processing. Gene chips are

well commercialized now, e.g., the first patented DNA microarray wafer chip, GeneChip

from Affymetrix, Inc.

After image scanning and processing, microarray experiments normally produce a two

dimensional array of numbers. In this thesis, genes are organized in the column direction

and samples organized in the row direction as shown in Figure 1.3.6. Each column in such

an array is the expression levels of all genes of one sample in the experiment. Each row is

the expression levels of one gene across different sample tissues. Computational algorithms

are used to analyze such data set, trying to discover novel correlations between genes and

sample tissues.

For a more detailed account of microarray gene expression experiment, please refer to

[84, 16].

CHAPTER 1. INTRODUCTION 41

Figure 1.3.5: The workflow of cDNA microarray experiment. Tissue samples from differ-
ent sample classes are processed by RT/PCR for mRNA amplification and labeled using
fluorescent material. They are then exposed to cDNA chip for hybridization. Resulting
chip is then scanned and processed to produce a two dimensional numerical array of mi-
croarray gene expression data set that is used by data analysis algorithms. [65]. There are
other techniques to build microarrays.

CHAPTER 1. INTRODUCTION 42

1.23

Sample 1 Sample 2 Sample M

-0.98 -0.37

. . .

.

.

.

Gene 1

Gene 2

Gene N

-0.22 -0.83 0.53

4.48 -5.73 -2.39

. . .

label labellabel

Figure 1.3.6: The microarray data set after processing. It is a two dimensional numerical
array with genes as rows and tissue samples as columns. Samples are labeled by some
external labels, such as normal or cancer.

1.3.3 Gene Ontology and Gene Annotations

Gene ontology (GO) [28] is a shared structured library of biological terms. Currently GO

is divided into three distinct parts: molecular function, biological process and cellular com-

ponent. Genes and their products in different organisms are annotated using this common

terminology by GO collaborators. GO annotations represent a large repository of biological

knowledge that is accessible to computational algorithms. SOURCE [32] from Stanford is

a good online database for querying available annotations on several model organisms. In

this thesis, we propose to use such biological knowledge database to facilitate gene selec-

tion.

CHAPTER 1. INTRODUCTION 43

Figure 1.3.7: The GO hierarchy. The figure shows all GO terms leading to GO term
GO:0003700, or “transcription factor activity”. This GO term lies in the molecular func-
tion branch of gene ontology. GO terms form a DAG (directed acyclic graph). There are
two paths leading from root GO node to GO:0003700, either from the GO term “binding”
or through the GO term “transcription regulator activity” [96].

CHAPTER 1. INTRODUCTION 44

Gene ontology consists of a set of shared biological terms and relationships such as “is-

part-of” and “is-a” between those terms. GO terms and their relationships form a DAG

(directed acyclic graph). Each GO term could have several “parent” terms and several

“child” terms. However, no cycle is allowed. GO can be downloaded from [27] in various

format and can be queried easily using [9, 96]. Figure 1.3.7 shows the hierarchical of part

of the ontology involving GO term “transcription factor activity”. Figure 1.3.8 shows the

annotated genes and gene products by different biological database groups for GO term

“calcium transporting ATPase activity”.

It is shown in the literature that gene ontology-based similarities between genes carry sig-

nificant information of the functional relationships [11]. Gene ontology has been incorpo-

rated into several microarray data analysis and visualization algorithms/tools for various

purposes, in the context of cluster validation [17], visualization of distribution of some

scores over GO terms [25]. Authors in [11, 124] concluded that the GO-driven similarity

and expression correlation are significantly interrelated. Another avenue of research fo-

cuses on detecting over-represented GO terms in a set of co-expressed genes [7]. Tuikkala

etc. used Gene Ontology to find relevant genes for estimating missing expression values

[117]. Huang [64] proposed to integrate known gene functions into a gene distance metric

and used it in the context of gene clustering.

CHAPTER 1. INTRODUCTION 45

Figure 1.3.8: The GO annotations are provided by participating databases [27], such as
Flybase [45] and SGD [105]. This figure illustrates the annotations of various genes and
gene products using one GO term GO:0005388, or “calcium transporting ATPase activity”,
by different biological database groups.

CHAPTER 1. INTRODUCTION 46

1.4 Gene Selection for Microarray Experiments

In this section, we formalize the problem we are trying to solve. A formal formulation of

our problem will be discussed in the first section. We then discuss the limitations of current

gene selection algorithms and our proposed improvements.

1.4.1 Formulation of Our Problem

In this section we formalize the problem of gene selection for microarray data sets.

Let R be the set of real numbers and N be the set of natural numbers. Let G= {g1,g2, · · · ,gn}

be the set of all genes that are used in one study, S= {s1,s2, · · · ,sm} be the set of all ex-

periments performed, L= {l1, l2, · · · , ll} be the set of sample class labels of interest. We

assume G,S,L are fixed for any given study. Let n = |G| be the total number of genes,

m = |S| be the total number of experiments and l = |L| be the total number of class labels.

A microarray expression data set used in our study can be defined as E= (G,S,L,L,E),

where L is a function S→ L such that for s ∈ S, L(s) ∈ L is the class label for sample s;

E is a function G×S→ R. For g ∈ G and s ∈ S, E(g,s) is the expression level of gene g in

experiment s. In the bioinformatics community, the function E is normally presented as a

two dimensional array of real numbers.

CHAPTER 1. INTRODUCTION 47

Sometimes we need to treat the set of samples S as a multiset (or bag). In this case we refer

to the set of samples as S1 = {(s1,1),(s2,1), · · · ,(sm,1)}. More formally, S1 is defined as a

pair (S,M1), where M1 is a function that is always 1 (M1(s) = 1,∀s∈ S). A multiset is a set

that allows duplication. In the case of S1, S is the underlying set and M1 is the multiplicity

function for elements in the underlying set. We refer to multiset (S,M) as the bootstrap

sample set, where M is an arbitrary function S→N. We will discuss the bootstrap sample

set in detail later in Chapter 2.

For simplicity of presentation, we use a subscripting scheme to refer to elements in E. Let

E(G,S) = (G,S,L(S),L,E) where G⊆ G and S is a bootstrap sample set (S,M). We further

use L(S) to denote the set of class labels for the set of experiments S. Since G is a subset

of G and the underlying set of S is S, functions L and E are well defined for E(G,S).

The task of sample classification is to design a classifier Ψ(D) that predicts the class label

c of a new experiment instance D = (d1,d2, ...,dn). D is a vector of expression levels of

n genes. Gene selection is performed before sample classification. Suppose n′ number of

genes are to be selected. Let Φ be a function mapping from feature sets G to G′, G′ ⊂ G and

|G′|= n′. The goal of feature selection is to find the best mapping Φ0 such that classifiers

trained using E(Φ0(G),S) perform best on unknown testing samples. In the case of single-

feature based feature selection, a scoring function F(E({g},S)) is defined, g ∈ G. Since

the second parameter stays same for all g ∈ G, we also write the scoring function simply as

CHAPTER 1. INTRODUCTION 48

F(g). Without loss of generality, we assume F to be non-negative and the larger F score

is, the more discriminative a gene is.

Gene ontology [28] is a controlled biological vocabulary, which specifies biological terms

as well as relationship among them. Currently relationships between GO terms form a DAG

(directional acyclic graph) [29]. GO annotations are produced by GO collaborators tagging

gene products of their biological functions with GO terms. We refer to the whole set of GO

terms as GO = {go} where go is an individual GO term. Given two GO terms gok and gol ,

we use gok ⇒ gol to represent the fact that there exists a path from gok to gol in some GO

hierarchy. When two GO terms have directly parent- child relationship in GO hierarchy,

we denote it using gok → gol . We further use notation g ∈ go to emphasize the fact that

gene g is annotated with GO term go. Following this notation, we sometimes treat a GO

term as a set of genes that are annotated with the corresponding GO term. Particularly,

we use notation |go| to represent the number of genes that are annotated with GO term

go. Gene annotations are assumed transitive in this work, in the sense that if g ∈ gok,

∀gol ⇒ gok,g ∈ gol .

CHAPTER 1. INTRODUCTION 49

1.4.2 The Limitations of Existing Gene Selection Algorithms and Our

Proposed Approaches

Current research in feature subset selection in the microarray expression data analysis gen-

erally ignores the relationships between genes deliberately. However, the assumption of

independence between genes over simplifies the complex relationship between genes in

biological systems. Genes are well known to interact with each other through gene regu-

latory networks. As a matter of fact, the common assumption of popular cluster analysis

on microarray expression data sets [70] is that co-regulated genes have similar expression

profiles. Bø [15] proposed to calculate discriminant scores for a pair of genes instead of

each individual gene. We showed in earlier research that the concept of virtual gene (corre-

lations between genes) [134] could help improve gene selection. A virtual gene is a linear

combination of real genes and the expression level of a virtual gene is calculated from the

linear combination of expression levels of constituent real genes. Pairwise virtual gene is

examined in [134]. Better sample classification performance is obtained using these virtual

genes instead of real genes. This topic is covered in more details in Chapter 3. Further in

Chapter 5 we integrated GO annotation and extended the concept of virtual gene to arbi-

trary sized gene groups (normally small biologically related gene groups). In Chapter 2,

we propose a novel gene selection algorithm called BFSS (Boost Feature Subset Selection)

CHAPTER 1. INTRODUCTION 50

based on permutation analysis. BFSS aims to broaden the variety of selected genes. It se-

lects subsequential genes based on the set of genes that has been selected so far and focuses

on previously difficult samples.

Also ignored by existing gene selection algorithms is the domain knowledge available

about genes and their products. Microarray gene expression data set reveals only part of

the overall biological process. The integration of other data sets, such as GO annotations of

genes and their products, with microarray gene expression data set could be proven useful.

In Chapter 5, a novel gene extraction algorithm is proposed by integrating gene annotations

with microarray expression data set for the purpose of sample classification. The sample

classification problem on microarray data set is fraught with the false positive problem due

to the skewed dimensionality. Gene annotations can be used to alleviate the false positive

problem to some extent as we demonstrate in Chapter 4.

1.5 Organization of This Thesis

This thesis is divided into six chapters. Chapter 1 introduces background both in the com-

putational science and the biological science surrounding the work in this thesis. Chap-

ter 2 introduces a novel meta feature selection algorithm based on permutation analysis

[135, 136]. Chapter 3 introduces pairwise virtual gene algorithm [133, 134]. Virtual gene

CHAPTER 1. INTRODUCTION 51

algorithm is a gene extraction algorithm that investigates correlation between genes for the

purpose of sample classification. From Chapter 4, we introduce domain knowledge into

the process of sample classification on microarray expression data set, by integrating GO

annotations of genes and their products. In Chapter 4, gene annotations are used to allevi-

ate the false positive rate problem in sample classification using microarray expression data

sets [132]. In Chapter 5, virtual gene algorithm is extended to investigate gene correlations

beyond pairs using gene annotations. We conclude this thesis in Chapter 6.

Chapter 2

BFSS: Boost Feature Subset Selection

As discussed in Chapter 1, one class of typical approach of feature selection is to calculate

some discriminative score using data associated with a single feature. Such discriminative

scores are then sorted and top ranked features are selected for further analysis. In the bioin-

formatics field, such single-feature based feature subset selection algorithms are widely

used to select informative genes from the microarray expression data set. However, such

an approach will result in redundant feature set since it ignores the complex relationships

between features (genes). Recent researches in feature subset selection began to tackle this

problem by limiting the correlations in the selected feature subset, also shown in Chapter 1

in the section of redundancy based feature selection algorithms. In this chapter, we propose

a novel general framework called BFSS (Boost Feature Subset Selection) to improve the

52

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 53

performance of single-feature based discriminative scores using bootstrapping techniques.

Features are selected from dynamically adjusted bootstraps of the training data set instead

of the training data set itself. We tested our algorithm on three well-known publicly avail-

able microarray expression data sets in bioinformatics community. Encouraging results are

reported here.

Closely related to our methodology is the bootstrap techniques used in ensemble classifier

design. Two popular algorithms: bagging [20] and boosting [47, 82] are proposed to train

individual classifiers using independently sampled training sets. The final classifier is a

majority vote of all individual classifiers. Bagging and boosting differ on how samples

are drawn from the training set for each constituent classifier. In bagging, the sampling

of the training set for each classifier is independent of each other. However, in the case

of boosting, which training samples are chosen for subsequent classifiers are based on the

performance of the current classifier. The sampling probabilities of those training samples

that are misclassified by current classifier are increased. In this way, subsequent classifiers

focus more on misclassified training samples. It is worth mentioning that boosting has its

roots in PAC (probably approximately correct) learners [101] and it is also proven theoret-

ically that learners, each performing only slightly better than random, can be combined to

form arbitrarily good hypothesis (zero prediction error on the training set) [72, 85].

This chapter is organized as follows. An illustrating example is given in Section 1. Our

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 54

BFSS algorithm is detailed in Section 2. Extensive experiment is performed and reported

in Section 3. We conclude this chapter in section 4.

2.1 A Motivating Example

Single-gene based discriminative scores, although simple, are widely used in gene selec-

tion. It is interesting to see those algorithms that are traditionally regarded as less capable

working relatively well on microarray expression data sets. It is probably due to the skewed

dimensionality of microarray expression data set, where the assumption of traditional fea-

ture subset selection breaks down.

The most obvious drawback of single-gene based gene selection algorithms is the fact that

those algorithms ignore the relationships that exist between genes. There is no guarantee

that the combination of two “good” features will necessarily produce a “better” classifier.

As an illustrating synthetic example in Figure 2.1.1, the expression levels of three genes

across 100 samples are plotted. Samples are labeled using two class labels: either cancer

(grey background) or normal (white background).

The first two genes, gene 1 and gene 2 behave similarly. In majority of the samples (samples

1 to 40 and samples 61 to 100, or 80% of samples), the expression levels of gene 1 or

gene 2 can be used to predict sample class labels effectively. Actually the expression levels

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 55

Figure 2.1.1: An illustrating example for the BFSS algorithm: redundancy in a selected
gene set. Genes with high individual discriminative scores may not be overall good choices
for a gene subset. Gene 1 and Gene 2 have higher individual discriminative scores, yet their
expression levels are highly correlated across different experimental samples. Gene 3 on
the other hand provides new information, although its discriminative score is lower.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 56

of these two genes are generally higher in cancer samples than in normal ones. However,

the expression levels of these two genes in samples 41 to 60 (20% of samples) are more

mixed across cancer/normal class distinction.

Gene 1 and gene 2 score high in terms of t-score and S2N scores as shown in Figure 2.1.1.

Gene 3 is obviously a less capable predictor when considered alone, compared to gene 1

and gene 2. Clear trend exists in the expression levels of gene 3 in samples 31 to sample

70 (40% of samples). However it varies across cancer/normal labels in the rest samples

(60%). Gene 3 scores much lower than gene 1 and gene 2 in terms of t-score and S2N as

expected. Using t-score and S2N, we can rank these three genes based on their salience in

predicting cancer/normal class labels as: gene 2 > gene 1 > gene 3.

However, t-score and S2N do not consider the fact that gene 1 and gene 2 behave similarly.

They both work well in samples 1 to 40 and samples 61 to 100. They both share more

difficult samples, namely samples 41 to 60. If two genes out of the three genes are to be

chosen for further data analysis tasks, would it be wise to use both gene 1 and gene 2, as

suggested by their relatively high single-gene based discriminative score (t-score and S2N)

rankings? This is the very problem we are addressing in this chapter. We empirically show

later that it is not the case. Choosing gene 2 and gene 3 might be a better idea as gene 3

“covers” the more difficult samples that gene 2 fails to cover. Our BFSS feature selection

algorithm works to focus subsequent feature selection on those more difficult samples that

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 57

previously selected genes failed.

2.2 BFSS: Boost Feature Subset Selection

In this section we formulate our boost feature subset selection algorithm (BFSS). It is worth

noting that our BFSS algorithm is a general feature subset selection algorithm although our

application focuses on gene selection. In this chapter, the word “feature(s)” and “gene(s)”

are used interchangeably in this context.

2.2.1 BFSS: Boost Feature Subset Selection Algorithm

In this section, we elaborate our new algorithm. First we will define some concepts and

then describe our BFSS algorithm. Several concepts are widely used elsewhere. For ex-

ample, bootstrapping as a method for estimating the sampling distribution of an estimator

by resampling with replacement from the original data set, is well defined in the statistics

community. We adapt these concepts using consistent notation defined in this chapter.

A bootstrap sample set Sb = (S,M) is a multiset of samples randomly drawn with replace-

ment from the original set of samples S. M(s),s ∈ S, is the multiplicity of item s. As a

result, the same sample s ∈ S can appear more than once or does not appear at all in Sb.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 58

The cardinality of Sb is denoted by mb. The sampling probability of each sample in S is

determined by a probability table p. For each s ∈ S, ps is the sampling probability. This

probability table is updated during the feature selection process in our algorithm.

Definition 2.2.1 A bootstrap sample set Sb = (S,M) of size mb is a multiset of samples

resulting from random sampling from S with replacement. The probability of each sample

s ∈ S being sampled is ps.

Definition 2.2.2 A bootstrap B of a training data set E = (G,S,L,L,E) using bootstrap

sample set Sb is a data set defined as

B = (G,Sb,L,L,E) (2.2.1)

Definition 2.2.3 The worst set of samples Sworst of size δ with respect to bootstrap data

set E(g,Sb) and a single-gene based scoring function F is defined as a multiset:

argmax
S⊆Sb and |S|=δ

(F(g,Sb−S)) (2.2.2)

Here Sb−S is a set by removing S from Sb. We also call Sb−Sworst the best set of samples.

A bootstrap of training set is defined using the definition of a bootstrap sample set. A

bootstrap B is a new data set and is also defined using the five-tuple notation we used to

define the microarray expression data set. The only difference is that the second element

is a bootstrap sample set. A bootstrap B of a microarray expression data set is defined as

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 59

(G,Sb,L,L,E). B shares the same set of genes G, same set of class labels L, same sample

class label mapping L, and same expression levels mapping E with E.

Given a bootstrap B, a gene g and a score function F , the worst set of sample of size δ is a

set of samples such that by removing them from the data set B, best F score for gene g is

achieved. We refer to all other samples in Sb other than those in the worst set of samples the

best set of samples. Both the worst set of samples and the best set of samples are multisets.

Algorithm 1 WorstSampleSet : Calculate the worst set of samples using a greedy algo-
rithm
Require: E = ({g},S,L(S),L,E), F as a single-gene based discriminative score
Require: δ is the size of worst set of samples
Ensure: S′ is the worst set of samples with respect to E and F

1: S′,S0 to be empty sets
2: for all s ∈ S do
3: S1 ← S−{s}
4: calculate F(E({g},S1)), add score to S0
5: end for
6: sort S0, add samples s corresponding to top δ scores in S0 to S′
7: return S′

By the definition of the worst set of samples with respect to gene g and score F , it is NP

hard to find such set of samples since the power set of samples needs to be examined. We

employ a simply greedy algorithm as described in Algorithm 1. For each sample s ∈ Sb, F

scores for gene g on each sample set Sb−{s} are computed. Such scores are ranked and

the samples corresponding to the best δ scores are treated as the worst set of samples. δ is

an input parameter of our algorithm. However, as shown later in this section, fixed value of

δ is used for all data sets we tested with good results.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 60

Algorithm 2 BFSS : Boost Feature Subset Selection

Require: E= (G,S,L(S),L,E); n′ as the number of genes to be selected; F as a single-gene
based discriminative score

Ensure: G′ as the selected gene set by BFSS using F .
1: Let p to be a vector of length m. Set initial value of p to be 1/m (m is the number of

samples in E). Set G′ as an empty set.
2: E′← E

3: for |G′|< n′ do
4: generate bootstrap sample set Sb and bootstrap B of training set E′ by random sam-

pling using probabilities p
5: calculate score F on bootstrap B, refer to this score as F ′, keep track of the best

score so far
6: add top ranked gene g based on F ′ to G′
7: find worst δ samples Sworst based on E(g,Sb) using Algorithm 1
8: reduce ps where s ∈ Sb−Sworst by a factor of ε and normalize p so that it represents

a distribution
9: remove g from E′

10: end for
11: return G′

Boost feature subset selection algorithm (BFSS) is shown in Algorithm 2. After some

initialization, the algorithm first generates a bootstrap B of training set E. This involves the

generation of a bootstrap sample set of size mb and then the bootstrap itself. We used the

function sample() provided in R [52] environment to generate the bootstrap sample set. It

is a sampling function with replacement using specific probability ps for each observations

in S. Bootstrap B is then generated by some subscripting using the generated bootstrap

sample set and training set E.

After bootstrap B of a training set is generated, the F score is then calculated for each

gene in B. Best F score so far is kept during the computation, so is the gene associated

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 61

with it. In the next step, the gene with best F score for current bootstrap B is selected

and added to the selected gene set. Based on the selected gene, BFSS then identifies the

worst set of samples with respect to the currently selected gene and the single-gene based

scoring function using Algorithm 1. The probability table p for generating bootstraps is

modified by reducing the probabilities for the best set of samples by a constant factor. The

probability of those good samples being selected in subsequent analysis is thus reduced,

focusing BFSS onto those samples that previously selected genes would not perform well.

The currently selected gene is then marked as selected and not considered further by the

BFSS algorithm. BFSS repeats this process until n′ genes are selected.

There are three parameters mb (size of bootstrap sample set), δ (size of worst set of sam-

ples), and ε (the degradation factor of sampling probability) used in our algorithm. We

experimentally chose δ to be 0.96 of the number of training samples in a data set and ε to

be 0.96. We set mb to be twice the number of samples in the training set so that a bootstrap

is more representative. After fixing these three parameters, there is virtually no more need

of tweaking our BFSS algorithm. We used these same parameters for all the three data sets

we experimented with and achieved good performance on most of them. This indicates

BFSS’s good property of requiring little tuning for different data sets.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 62

2.2.2 Computational Complexity of BFSS

Using notation defined previously, assume n′ number of genes are to be selected. Further

assume the computational complexity of single-gene based discriminative score F to be

ΘF(m). As defined earlier, mb is the size of the bootstrap sample set and m is the number

of samples in the training set.

First consider the WorstSampleSet algorithm (Algorithm 1). For each sample in a boot-

strap, we need to calculate F score. This will cost O(mb ×ΘF(mb − 1)). If the selec-

tion of δ best values is implemented using sorting, it will cost O(δ×mb logmb). Overall

WorstSampleSet requires O(mb× (ΘF(mb)+δ× logmb)).

The BFSS algorithm has main loop at line 3 that will repeat n′ times for each of the genes

to be selected. Within the loop body, line 4 generates bootstrap sample set, which can be

computed in O(mb× logm). Line 5 computes F score for each gene on bootstrap B, which

requires O(n×ΘF(mb)). The top ranked gene can be identified in constant time (line 6) if

we keep track of it in the previous step. Line 7 requires O(mb× (ΘF(mb)+δ× logmb)) as

analyzed in the previous paragraph. Line 8 requires O(m) time to degrade the probability

vector properly. And line 9 requires constant time to remove selected gene from training

data set. It is obvious that the computational cost is dominated by line 5 when single-gene

based discriminative score F for all genes on bootstrap B is computed.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 63

Overall, BFSS have time complexity of O(n′× n×ΘF(mb)), compared to original time

complexity of F to be O(n× (logn+ΘF(mb))). Since it is generally very fast to compute

function F and n′ is usually small, the computation of BFSS can be completed in reasonable

time.

Space required by BFSS algorithm is marginal compared to the size of input training data

set E. Most space needed is for storing bootstraps B. We omit detailed analysis here.

2.3 Experiments

We performed extensive experiments on three publicly available microarray expression data

sets. This section is organized as follows. In the first subsection, we briefly describe the

data sets we used and the preprocessing we did on those data sets. In the second subsection,

we describe how the performance of the feature selection algorithm is measured in our

experiments. Then in the rest of this section, detailed experimental results are reported on

each of the data set we used.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 64

2.3.1 Data Sets and Data Preparation

Three publicly available data sets: colon cancer [8], leukemia [53] and multi-class cancer

[97] are used in this study.

The first data set was published by Alon etc. [8] in 1999. It contains measurements of ex-

pression levels of 2000 genes over 62 samples, 40 samples were from colon cancer patients

and the other 22 samples were from normal tissues. The minimum value in this data set is

5.8163, thus no thresholding is done. We perform base 10 logarithmic transformation and

then for each gene, subtract mean and divide by standard deviation. We will refer to this

data set as colon cancer data set in the rest of the chapter.

The second data set was published by Golub etc. [53] in 1999. It consists of 72 samples,

of which 47 samples were acute lymphoblastic leukemia (ALL) and rest 25 samples were

acute myeloid leukemia (AML). 7129 genes were monitored in their study. This data set

contains a lot of negative intensity values. We use the following steps (similar to Dudoit

etc.[36]) to preprocess the data set before feeding to our algorithm. First we threshold the

data set with floor of 1 and ceiling of 16000. Then we filter out genes with max/min ≤

5 or (max−min) ≤ 500, where max and min are the maximum and minimum expression

values of a gene. After these two steps, the resulting 3927 genes are transformed using base

10 logarithmic and then the expression levels for each gene are normalized. We will refer

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 65

to this data set as Leukemia data set in the rest of this chapter.

The last data set used in this chapter is a multi-class cancer data set. Ramaswamy etc. [97]

in 2001 reported study of oligonucleotide microarray gene expression involving 218 tumor

samples spanning 14 common tumor types and 90 normal tissue samples. The expression

levels of 16063 genes and expressed sequence tags were monitored in their experiments.

The author separated the tumor samples into training set (144 samples) and testing set (54

samples). The rest 20 samples are poorly differentiated adenocarcinomas, which we do not

include in our study. The training tumor set of 144 samples and 90 normal tissue samples

are combined together for our study. As a data preprocessing step, we apply a thresholding

of 1 and filter out genes with max/min ≤ 5 or (max−min) ≤ 500. The resulting data set

has 11985 genes. Logarithmic transformation and normalization are then performed before

data are fed to gene selection algorithms. The original data set consists of 15 class labels

(14 cancers and normal). For our experiments, we only use the cancer/normal distinction.

We refer this data set as multi-class cancer data set in the rest of our chapter.

2.3.2 Feature Selection and Classification Algorithms

Performance of classifiers is used as a measure of the performance of feature subset selec-

tion algorithms. In order not to be biased on which classifiers we use, three very different

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 66

general purpose classifiers are used: DLD (diagonal linear discriminant) [83], KNN (k-

nearest neighbor, k=3) and SVM (support vector machine, with radial kernel) [23]. They

represent a linear classifier (DLD), a nonlinear classifier (KNN) and arguably the most

popular general purpose classifier (SVM). Since these three classifiers are fundamentally

different, the differences we observed in classification performance can be properly at-

tributed to the different feature subset selection algorithms. Cross-validation procedure is

used to estimate classification performance. We use a 2-fold cross-validation rather than the

commonly used 10-fold cross-validation since results generated by 10-fold cross-validation

varied too much in our case. The average performance of 100 runs is reported here as the

classification performance.

We systematically examine the performance of different feature subset selection algorithms

using these three classifiers with different number of genes selected. The number of genes

selected ranges from 2 to 100 in the increment of 2.

This chapter focuses on improving performance of single-feature based feature subset se-

lection algorithms. Although our algorithm works for most if not all single-feature based

feature subset selection algorithms, two simple widely used algorithms are used for testing:

t-score and S2N. We plug these two algorithms into our BFSS algorithm and refer to the

resulting new algorithms as “boost t-score” and “boost S2N” respectively. We also include

the performance of our previously proposed gene selection algorithm called virtual gene

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 67

Table 2.3.1: Classification accuracy (%) without FSS on three publicly available data sets:
colon cancer, leukemia and multi-class.

Classifier Alon Golub Multi-Class
DLD 0.647 0.653 0.772

KNN (k=3) 0.759 0.931 0.856
SVM (Radial) 0.713 0.920 0.834

[134] in most experiments. Virtual gene algorithm is the topic of Chapter 3. Performance

of all five FSS algorithms on all three data sets using all three classifiers are reported here

in the following subsections.

Before testing the performance of feature subset selection algorithms, Table 2.3.1 shows

the performance of the three classifiers on three data sets using all original features (after

preprocessing).

2.3.3 Experiments on Colon Cancer Data Set

As shown in Figures 2.3.1-2.3.3, boosted versions of single-gene based feature subset se-

lection algorithms outperform their original counterparts in all cases we tested. The per-

formance of gene selection generally increases as the number of selected genes increases.

There is an exception to this for DLD classifier, in which the performance of gene selection

peaks when around 16 genes are selected. The performance of t-score and S2N then begin

to decrease as more genes are selected. When more than 4 genes are selected, the boosted

version of t-score and S2N score outperform their original counterparts. The difference is

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 68

10 20 30 40 50 60 70 80 90 100

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

DLD Prediction Accuracy on Colon Cancer Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.1: DLD prediction accuracy on colon cancer data set for five different feature
selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual gene.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 69

10 20 30 40 50 60 70 80 90 100

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

KNN (k=3) Prediction Accuracy on Colon Cancer Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.2: KNN (k=3) prediction accuracy on colon cancer data set for five different
feature selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual
gene.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 70

10 20 30 40 50 60 70 80 90 100

0.74

0.76

0.78

0.8

0.82

0.84

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

SVM Prediction Accuracy on Colon Cancer Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.3: SVM prediction accuracy on colon cancer data set for five different feature
selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual gene.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 71

peaked at 4% of prediction accuracy when 100 genes are selected. In the case for KNN and

SVM classifiers, boosted versions of t-score and S2N improve the prediction performance

by 2-3% when 100 number of genes selected.

It is worth noting that our previously proposed virtual gene algorithm performs best when

DLD classifier is used. This might be attributed to the fact that the virtual gene algorithm

uses FLD (Fisher Linear Discriminant) internally. Thus when DLD classifier is used, vir-

tual gene algorithm becomes more like a feature wrapper than a feature filter, which gives

it some edges when compared to other algorithms. Using KNN classifier the performance

of boosted versions of t-score and S2N becomes comparable to virtual gene algorithm. In

the case of SVM classifier, boosted versions of t-score and S2N outperform virtual gene by

around 1% in classification accuracy.

Comparing to values listed in Table 2.3.1, it is clear that feature selection algorithms im-

prove classification performance on Alon data set by a big margin. The DLD classifier

is most susceptible to excessive features. Using original feature space, the DLD classifier

performs just a little bit better than random guessing. SVM and KNN are both more robust

with excessive features. However, by using top 100 genes, we see a more than 10% hike in

classification performance.

As a conclusion, BFSS algorithm performs consistently and considerably better using both

t-score and S2N algorithms on Alon data set when more than 4 genes are selected.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 72

10 20 30 40 50 60 70 80 90 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y
DLD Prediction Accuracy on Leukemia Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.4: DLD prediction accuracy on leukemia data set for five different feature selec-
tion algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual gene.

2.3.4 Experiments on Leukemia Data Set

Experimental results on Leukemia data set are summarized in Figures 2.3.4-2.3.6. Boosted

versions of t-score and S2N achieve consistently better classification accuracy than their

original counterparts using all three classifiers (DLD, KNN, SVM), although in this case

the improvement itself is less than what we have witnessed in colon cancer data set. This is

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 73

10 20 30 40 50 60 70 80 90 100
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

KNN (k=3) Prediction Accuracy on Leukemia Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.5: KNN (k=3) prediction accuracy on leukemia data set for five different feature
selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual gene.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 74

10 20 30 40 50 60 70 80 90 100
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

SVM Prediction Accuracy on Leukemia Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.6: SVM prediction accuracy on leukemia data set for five different feature se-
lection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual gene.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 75

probably due to the fact that classification accuracy on Leukemia data set is already high,

there is thus less space for improvement. When using the DLD classifier, the performance

increase is not much, only around 0.3%. However this gain in performance is consistent

no matter how many genes are selected. When the KNN classifier is used, boosted version

of S2N score performs best and outperforms the original S2N score by more than 0.5%. In

the case of SVM classifier, the boosted version of t-score outperforms original t-score by

as much as 1%.

When compared to virtual gene, boosted versions of t-score and S2N perform very well.

Virtual gene only has some edges when the DLD classifier is used. In other cases, boosted

versions of t-score and S2N perform better.

2.3.5 Experiments on Multi-class Cancer Data Set

Figures 2.3.7-2.3.9 summarize feature subset selection performance on multi-class data set.

The size of this data set is significantly larger than previously two data sets.

When the DLD classifier is used, boosted versions of t-score and S2N perform consistently

better than t-score and S2N score no matter how many genes are selected as shown in

Figure 2.3.7. The boosted version also outperform the virtual gene algorithm in most cases,

only loosing edge to virtual gene when more than 90 genes are selected. For the KNN

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 76

classifier, both boosted versions and original versions performs considerably well, better

than the virtual gene algorithm. When SVM classifier is used, both boosted versions of

t-score and S2N perform better than t-score and S2N. The advantage enjoyed by boosted

version is around 0.5% in terms of classification accuracy.

Comparing to Table 2.3.1, one interesting observation is that the performance of the KNN

classifier is actually better using original 11985 genes than using 100 top ranked genes. In

the case of SVM classifier the performance is about the same. This indicates that 100 genes

may not be enough for this data set. After all only less than 1% of the features are selected.

By selecting more genes we would expect the performance to further improve. We have

observed the same effect in the other experiments: when the number of selected genes is

too small, the classification performance suffers.

2.4 Conclusion and Discussion

In this chapter, we presented a novel general feature subset selection framework to improve

the performance of single-feature based discriminative scores. In our approach, genes are

selected from bootstraps of training set instead of training set itself. The sampling prob-

ability is dynamically adapted based on the performance of previously selected genes on

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 77

10 20 30 40 50 60 70 80 90 100
0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

DLD Prediction Accuracy on Multi−Class Cancer Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.7: DLD prediction accuracy on multi-class data set for five different feature
selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual gene.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 78

10 20 30 40 50 60 70 80 90 100
0.72

0.74

0.76

0.78

0.8

0.82

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

KNN (k=3) Prediction Accuracy on Multi−Class Data Set

t−score
S2N
boost t−score
boost S2N
virtual gene

Figure 2.3.8: KNN (k=3) prediction accuracy on multi-class data set for five different fea-
ture selection algorithms: t-score, S2N, boost t-score, boost S2N and pairwise virtual gene.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 79

10 20 30 40 50 60 70 80 90 100
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

Number of Genes

P
re

di
ct

io
n

A
cc

ur
ac

y

SVM Prediction Accuracy on Multi−Class Data Set

t−score
S2N
boost t−score
boost S2N

Figure 2.3.9: SVM prediction accuracy on multi-class data set for four different feature
selection algorithms: t-score, S2N, boost t-score and boost S2N.

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 80

different bootstrap samples. Extensive experiments were performed on three publicly avail-

able microarray expression data sets. According to our experiments, BFSS is able to boost

the performance of single-gene based discriminative scores in most cases. Boosted versions

of those single-gene based discriminative scores perform consistently better in most cases

and in many cases boosted versions perform considerably better than the original scores.

A nice feature of our approach is that most if not all single-gene based discriminative

scores can be plugged into our system and the resulted BFSS feature selectors are expected

to perform better than the original scores according to our experiments. Our approach is

also independent of the classifier used. Our experiments are performed using three vastly

different classification algorithms, all testifying the effectiveness of BFSS.

Although not targeted as feature selection algorithm for ensemble classifiers, our algorithm

may work well with such classifiers nonetheless. [92] reported better performance could be

achieved by diversifying the feature set selected for each member classifier. One extreme is

actually to train member classifiers using disjoint set of features. Since our BFSS algorithm

is based on bootstraps of the training set and sampling probability is dynamically adapted,

diversity of the selected features is already built in.

BFSS bears some similarity to the boosting algorithms, such as AdaBoost [48, 49]. A

boosting algorithm focuses on improving classification accuracy of a classifier. However,

CHAPTER 2. BFSS: BOOST FEATURE SUBSET SELECTION 81

we empirically showed in this chapter that applying boosting strategy to the feature se-

lection stage is still beneficial. It is also interesting to examine the behavior of BFSS

in conjunction with these ensemble classifiers, especially these bootstrap based ensemble

classifiers (bagging and boosting). Furthermore, since BFSS and bootstrap based ensem-

ble classifiers are all based on the bootstrapping concept, it is possible that they can be

combined into a uniform framework. We are currently researching into these directions.

Chapter 3

Virtual Gene: Correlation Base Gene

Selection

As mentioned in Chapter 1, traditional gene selection algorithms are mostly single-gene

based. Such algorithms ignore completely correlations between genes, although such cor-

relations is widely known. Genes interact with each other through various regulatory path-

ways and networks. In the previous chapter, we proposed a general feature selection al-

gorithm called BFSS that takes into consideration the correlation between genes. Genes

are selected in such a way that they perform collectively better than selecting genes only

based on their discriminative scores. In essence, correlations between features are inexplic-

itly accounted for. In this chapter, we propose to use rather than ignore such correlations

82

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 83

for gene selection. We examine explicitly the correlation between gene pairs as a first step.

Experiments performed on three public available gene expression data sets show promising

results.

We propose a new concept called virtual gene in this chapter. A virtual gene is a linearly

combined set of genes whose expression levels across different sample tissues are inferred

from the expression levels of the same set of genes. Finding the best virtual gene is a

problem of exponential complexity. In this chapter, we will confine us to pairwise virtual

genes. In Chapter 5, gene ontology annotations are used to allow us to consider bigger

virtual genes beyond gene pairs in a more intelligent manner.

This chapter is organized as follows. An illustrating example is given in Section 1. Our

virtual gene algorithm is detailed in Section 2. Extensive experiments are performed and

reported in Section 3. We conclude this chapter in section 4.

3.1 An Example: The Problem of Single Feature Based

Discriminative Score

Consider the following two examples as shown in Figure 3.1.1. In each figure, the expres-

sion levels of two genes are monitored across several samples. Samples are labeled either

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 84

cancerous or normal. In both cases, the expression levels of the selected genes vary ran-

domly across the sample classes. However, their correlation is a good predictor of class

labels. Virtual gene expression level is obtained using the Definition 3.2.2. In the case of

colon cancer [8] data set, the expression levels of H09719 are generally higher than that

of L07648 in cancer tissues. In normal tissues, on the contrary, L07648 expresses consis-

tently higher except in one sample. Such correlations could be good predictors of sample

class labels. However, all feature selection algorithms listed in the previous section can

not find and use such correlations. Single gene based algorithms will ignore both genes

since neither of them is a good predictor of sample class labels in its own right. Correlation

based algorithms will actually remove such correlations, should any of the genes have been

selected.

3.2 Virtual Gene and Pairwise Virtual Gene Algorithm

Definition 3.2.1 Virtual Gene is a triplet V G = (Gv,W,b) where Gv ⊆ G is a set of con-

stituent genes, |Gv|= nv, W is a matrix of size nv×1, b is a numeric value. The expression

levels of a virtual gene is determined using Definition 3.2.2.

Definition 3.2.2 (Virtual Gene Expression) Given a virtual gene V G = (Gv,W,b) and

gene expression matrix E, where |Gv| = nv, E is an nv×mv expression matrix, the virtual

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 85

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Experiment

E
xp

re
ss

io
n

Le
ve

ls

Synthetic Example

Gene 1
Gene 2
Virtual Gene

Cancer Tissue
Normal Tissue

10 20 30 40 50 60

−3

−2

−1

0

1

2

3

Experiment

E
xp

re
ss

io
n

Le
ve

ls
 (

lo
g1

0,
 n

or
m

al
iz

ed
)

Significant Gene Pair in Alon dataset

Gene 1360[H09719]
Gene 1873[L07648]
Virtual Gene

Cancer Tissue
Normal Tissue

Figure 3.1.1: The idea behind the virtual gene algorithm: examples of gene pair being
better predictor of class labels than any constituent single gene. Both a synthetic and a real
world example are given here. The real world example comes from colon cancer data set
[8]. In the figures, two genes are not good predictor of sample class labels individually.
However, when combined, they become much better predictors.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 86

gene expression V E of a virtual gene V G is a linear combination of expression matrix E.

V E(V G,E) = W ′×E +b, where W ′ is the transpose of W.

A virtual gene is a triplet V G = (G,W,b) as defined in Definition 3.2.1. Parameters W

and b are chosen using FLD (fisher linear discriminant) to maximize linear separability

between sample classes as listed in Algorithm 3. Discriminative power of a virtual gene

expression with respect to sample classes can be measured using normal single gene based

scores. We use t-score in this chapter for this purpose. Pairwise virtual gene is a special

case of virtual gene where the number of genes involved is limited to two. In this case, only

the correlations between a pair of genes are considered. By limiting virtual gene to gene

pairs, computation can be carried out efficiently. According to our experiments, it performs

well on three public available data sets.

Algorithm 3 gen vg : Calculating Virtual Gene From Training Data

Require: E = (G,S,L,E) as gene expression data.
Ensure: V G = (G,W,b) as a virtual gene.

1: (W,b)← f ld(E,L), (W,b) is the model returned by f ld algorithm.
2: return (G,W,b)

Definition 3.2.3 Pairwise virtual gene and its expression are special cases for virtual

gene and its expression, where the number of genes involved is limited to two.

Exhaustive examination of all pairwise virtual genes requires O(n2) computation where

n is the number of genes. For a large number of genes, exhaustive search of all gene

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 87

pairs becomes inefficient. Such exhaustive search also invites unwanted noise since not

all gene pairs bare biological meaning. For example, for genes that are expressed in dif-

ferent locations in a cell, in different biological processes, without biological interactions,

their relative abundance may not be biologically significant. Ideally, only gene pairs with

some biological interaction shall be examined. We approximate this using a gene clustering

approach. Each gene cluster corresponds roughly to some biological pathways. By limit-

ing search among the gene pairs from the same gene cluster, we not only focus ourselves

on these gene pairs that are more likely to interact biologically, but also make our gene

selection algorithm much faster.

Algorithm 4 details the pairwise virtual gene selection algorithm. Genes are first clustered

based on their expression levels. For each pair of genes in the same cluster, virtual gene

expression is calculated according to Definition 3.2.2. A single gene discriminative score

with respect to the sample class labels is then derived from the virtual gene expression.

All within-cluster pairwise virtual gene expression scores are calculated and stored for the

next stage of analysis. The best scored virtual gene is then selected and pairwise scores are

modified by two parameters. Pairwise scores of virtual genes that share constituent genes

with the selected virtual gene are degraded by a constant α ranging [0,1]. This dampens

the effect of a single dominant salient gene. In the extreme case where α is set to 0, once

a virtual gene is selected all virtual genes sharing constituent genes will not be further

considered. The second parameter affecting the virtual gene selection is β, which controls

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 88

Algorithm 4 pairwise vg : Pairwise Virtual Gene Selection

Require: E = (G,S,L,E); k as the number of genes to be selected;α;β
Ensure: VGS: as set of pairwise virtual genes V G = (G,W,b)

1: Initialize VGS to be an empty set. Initialize pair score to be a sparse n×n array.
2: Cluster genes based on their expression levels in E. Result stores in Clusters.
3: for each gene cluster G′ ∈Clusters do
4: for all gene g1 ∈ G′ do
5: for all gene g2 ∈ G′ and g2 6= g1 do
6: vg← gen vg(E((g1,g2),S))
7: ve← VE(vg,E((g1,g2),S))
8: pair score[g1,g2]← t-score(ve,L)
9: end for

10: end for
11: end for
12: for i = 1 to k do
13: (g1,g2)← argmax

(g1,g2)
(pair score[g1,g2])

14: vg← gen vg(E((g1,g2),S))
15: add vg to VGS
16: multiply pair score that involves g1 or g2 by α.
17: multiply pair score that involves genes in same cluster of g1 or g2 by β.
18: pair score[g1,g2]← minimum value
19: end for
20: return VGS

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 89

how likely virtual genes in the same gene cluster are selected. Different gene clusters cor-

respond to different regulatory processes in a cell. Choosing genes from different gene

clusters broadens the spectrum of the selected gene set. β also ranges [0,1]. In the extreme

situation where β = 0, only one virtual gene will be selected for each gene cluster. After

modifying pairwise scores, the algorithm begins next loop to find the highest scored vir-

tual gene. This process repeats until k virtual genes have been selected. For performance

comparison of the pairwise virtual gene algorithm and single gene based algorithms, each

pairwise virtual gene counts for two genes. For example, the performance of selecting 50

genes using single gene based algorithms would be compared to performance of selecting

top 25 pairwise virtual genes.

3.3 Complexity of the Pairwise Virtual Gene Algorithm

The pairwise virtual gene selection algorithm runs in three stages: (1) cluster genes based

on expression profile (lines 1-2), (2) calculate discriminative scores for the pairwise virtual

gene (lines 3-11), and (3) select pairwise virtual genes with best discriminative scores (lines

12-20). We assume gene cluster number to be θ and n,m,k,α,β as discussed above.

In the first stage of analysis, k-means algorithm runs in O(θn). In the second stage, the

actual number of gene pairs examined is O(n2

θ), assuming gene clusters obtained in the

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 90

previous stage are of roughly the same size. For each gene pair, the calculation of the

pairwise virtual gene and its discriminative score require O(m2). Time complexity of the

second stage is O(m2n2

θ). Stage three requires O(k(n2

θ + m2 + n + n
θ)) time. Putting them

together, we have time complexity of O(θn+ m2n2

θ +k(m2 + n2

θ)). The most time consuming

part in the previous expression is the term O(m2n2

θ). In our experiments, we choose θ ∼

Θ(n). Considering the fact that k < n, the time complexity of Algorithm 4 becomes O(n2 +

nm2). The O(n2) term is for k-means clustering, which runs rather quickly. If no clustering

is performed in stage 1 (or θ = 1, one gene cluster), the time complexity becomes O(n2m2 +

kn2). The savings in computation time is obvious.

Majority of space complexity for the pairwise virtual gene selection algorithm comes from

stage 2 in the algorithm where pairwise discriminative scores are recorded. The space

needed for that is O(n2

θ) using sparse array. Under typical situation if we choose θ∼Θ(n),

space complexity of Algorithm 4 becomes O(n), although with a large constant.

3.4 Experiments

In this section, we report extensive experimental results on three publicly available microar-

ray data sets [8, 53, 97]. In each case, we study the gene selection problem in the context

of two class sample classification.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 91

3.4.1 Colon Cancer Data set

Data Preparation

This data set was published by Alon [8] in 1999. It contains measurements of expression

levels of 2000 genes over 62 samples, 40 samples were from colon cancer patients and the

other 22 samples were from normal tissue. The minimum value in this data set is 5.8163,

thus no thresholding is done. We perform base 10 logarithmic transformation and then for

each gene, subtract mean and divide by standard deviation. We will refer to this data set as

colon cancer data set in the rest of the chapter.

Experiments

We performed three experiments on this data set to evaluate performance of the four feature

selection algorithms. The main purpose of each experiment is listed as follows:

1. Compare classification accuracy and the stability of classification accuracy between

single gene t-score [15], single gene S2N score [8], clustered pairwise t-score [15]

(their all pair method modified by limiting computation within gene clusters), pair-

wise virtual gene. We refer this experiment as alon.1 in this chapter.

2. Study how the choice of number of clusters in the pairwise virtual gene algorithm

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 92

affects classification accuracy and the stability of classification accuracy. We refer

this experiment as alon.2 in this chapter.

3. Study how the choice of initial cluster centers in the pairwise virtual gene algorithm

affects gene selection performance. The pairwise virtual gene algorithm uses the

k-means clustering algorithm to first divide genes into gene clusters. K-means al-

gorithm is not stable in the sense that by supplying different initial cluster centers,

different clustering results will be returned. We refer this experiment as alon.3 in this

chapter.

For experiment alon.1, we use three classification algorithms to measure the performance of

the feature selection algorithms. The classification algorithms we use are KNN (k-nearest

neighbor classifier, with k = 3) [87], SVM (support vector machine, with radial kernel)

[23] and a linear discriminant method DLD (diagonal linear discriminant analysis) [83].

For cross validation of classification accuracy, we use a 2-fold cross validation method,

which is the same as leave-31-out method used in [15]. We run 2-fold cross validation

100 times to obtain an estimate of classification accuracy. Standard error of classification

accuracy is also reported here. The number of genes to be selected is limited to 100, as it

is reported in the literature[8] that even top 50 genes produce good classifiers.

For experiment alon.2, we use KNN with k = 3 as classifier. We experimented with cluster-

ing genes into 8,16,32,64,128,256 clusters in stage one of pairwise virtual gene algorithm

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 93

and then measure 2-fold classification accuracy as stated in the previous paragraph.

For experiment alon.3, we use KNN with k = 3 as classifier. Same experiments are repeated

for 20 times with randomly generated initial cluster centers for stage one of pairwise virtual

gene algorithm. Performance of our feature selection methods is reported.

In all experiments, we measure performance of selecting from 2 to 100 genes, increasing by

2 at a time. We set α = 0,β = 1 in all these experiments. As stated before, when comparing

single gene-based gene selection algorithm with pairwise virtual gene algorithm, we treat

each pairwise virtual gene as two genes. Thus the performance of classifiers built from top

n genes are compared with the performance of classifiers built from top n
2 pairwise virtual

genes.

Results

Results of our experiment alon.1 are summarized in Figures 3.4.1,3.4.2,3.4.3. In each fig-

ure, the left part plots classification accuracy against number of genes used to build classi-

fier and the right part shows standard deviations of classification accuracy. By calculating

the standard deviation, we can roughly estimate how close the mean classification accuracy

is to the real classification accuracy. Each figure shows classification accuracy we archived

using different classification methods.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 94

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

dld prediction of Alon dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of genes

S
ta

nd
ar

d
de

vi
at

io
n

of
 p

re
di

ct
io

n
ac

cu
ra

cy

dld prediction std of Alon dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

Figure 3.4.1: Result of experiment alon.1. Prediction accuracy of four feature selection
methods: t-score, S2N, pairwise t-score and pairwise virtual gene on colon cancer data
set using DLD classifier. Left figure shows prediction accuracy against the number of
genes used to build DLD classifier. Right figure shows the standard deviation of prediction
accuracy against the number of genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 95

0 10 20 30 40 50 60 70 80 90 100
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

knn prediction of Alon dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

0 10 20 30 40 50 60 70 80 90 100
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

S
ta

nd
ar

d
de

vi
at

io
n

of
 p

re
di

ct
io

n
ac

cu
ra

cy

Number of genes

knn prediction std of Alon dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

Figure 3.4.2: Result of experiment alon.2. Prediction accuracy of four feature selection
methods: t-score, S2N, pairwise t-score and pairwise virtual gene on colon cancer data set
using KNN classifier (k=3). Left figure shows prediction accuracy against the number of
genes used to build KNN classifier. Right figure shows the standard deviation of prediction
accuracy against the number of genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 96

0 10 20 30 40 50 60 70 80 90 100
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

svm prediction of Alon dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

0 10 20 30 40 50 60 70 80 90 100
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Number of genes

S
ta

nd
ar

d
de

vi
at

io
n

of
 p

re
di

ct
io

n
ac

cu
ra

cy

svm prediction std of Alon dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

Figure 3.4.3: Result of experiment alon.3. Prediction accuracy of four feature selection
methods: t-score, S2N, pairwise t-score and pairwise virtual gene on colon cancer data set
using SVM classifier. In this experiment, we used a radial kernel for SVM. Left figure
shows prediction accuracy against the number of genes used to build SVM classifier. Right
figure shows the standard deviation of prediction accuracy against the number of genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 97

From these experiments, we conclude that on colon cancer data set, the pairwise virtual

gene algorithm performs the best. When DLD and KNN classifiers are used, pairwise vir-

tual gene algorithm is significantly better than other feature selection methods we tested.

When SVM is used, all FSS methods produce comparable prediction accuracy with pair-

wise virtual gene algorithm enjoying small advantage over single gene based algorithms.

The pairwise virtual gene algorithm is also most stable, in the sense that it has the smallest

standard deviation of classification accuracy.

When testing using DLD classifier, the pairwise virtual gene algorithm results in 5%-10%

increase in prediction accuracy over other FSS methods and almost 50% decrease in its

standard deviation. The experiment with KNN classifier generates similar result with the

pairwise virtual gene algorithm leading other FSS methods in classification accuracy by

2% and having the smallest variance.

Experiments with SVM generate more mixed results in which all four FSS methods hav-

ing comparable classification accuracy. The single gene t-score and single gene S2N gene

selection algorithms perform better than the pairwise virtual gene and pairwise t-score al-

gorithms when the number of genes selected is less than 20. When more genes are selected,

the pairwise virtual gene and pairwise t-score algorithms perform constantly better than the

single t-score and single gene S2N algorithms. When the number of genes selected is more

than 50, the pairwise virtual gene and pairwise t-score algorithms outperform the other two

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 98

FSS algorithms by 1% in classification accuracy. The variations in classification accuracy

still favors strongly towards pairwise methods with the pairwise virtual gene algorithm

having the smallest variation.

For experiment alon.2, we measure the performance of the pairwise virtual gene algorithm

setting the number of cluster in stage 1 of the algorithm to be 8,16,32,64,128,256. The

results are summarized in Figure 3.4.4. We see an overall trend of decline in performance as

the number of clusters increases. The classification performance peaks when 8/16 clusters

are used, indicating cluster numbers suitable for this data set in that range. Compare two

extremes, the 8-cluster version and the 256-cluster version, pairwise virtual gene algorithm

performs about 2% better in classification accuracy using KNN (k = 3) classifier when 8

clusters are used. This is somewhat we have expected since when using 256 clusters,

compared to the 8-clusters version, the computed pairwise score is around 1
322 or around

0.1%.

It is worth noting that we used a rather crude cluster analysis algorithm, the k-means al-

gorithm. By computing only 0.1% (or omitting 99.9%) of all possible pairs in a 8-cluster

version of the algorithm, we still get strong prediction accuracy, only losing about 2% of

it. This indicates that correlations between genes within clusters generated by the k-means

algorithm carry much more information on sample class distinction. We also expect to fur-

ther improve pairwise virtual gene algorithm by using more sophisticated cluster analysis

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 99

algorithms. One example is actually in Chapter 5 where domain knowledge imbedded in

gene ontology annotations are used to decide which sets of genes to explore. The algorithm

to find gene cliques in that chapter actually corresponds to a gene clustering algorithm. The

difference is that gene clustering algorithms base their decision on gene expression profiles,

yet the gene clique algorithm bases its decision in the “annotation profiles” of each gene.

Since the k-means cluster algorithm is not stable, in the sense that initial cluster center as-

signments will affect clustering result, we perform experiment alon.3 to determine how the

pairwise virtual gene algorithm is affected by it. We run 2-fold cross validation 100 times.

Each time, the pairwise virtual gene algorithm is run 20 times with randomly generated

initial gene clusters to select 20 different sets of virtual genes. The performance of 3-nn

classifier using each of the 20 virtual gene sets is measured. Figure 3.4.5 plots the mean

value of the classification accuracy, with its standard deviation. From this experiment, we

conclude although k-means cluster algorithm is not stable, it performs well enough to cap-

ture important gene pairs. Twenty different initial cluster centers result in twenty different

pairwise virtual gene selection. However, the final classification accuracy measured with

3-nn (3 nearest neighbor) classifier using these twenty different pairwise virtual gene se-

lections does not vary much (having standard deviation of 0.3% to 0.5%). This justifies the

use of the unstable k-means algorithm in our algorithm.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 100

10 20 30 40 50 60 70 80 90 100

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of genes

P
re

di
ct

io
n

A
cc

ur
ac

y

knn prediction on alon dataset using different number of cluster

8 clusters
16 clusters
32 clusters
64 clusters
128 clusters
256 clusters

0 10 20 30 40 50 60 70 80 90 100
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of genes

S
ta

nd
ar

d
de

vi
at

io
n

of
 p

re
di

ct
io

n
ac

cu
ra

cy

knn prediction on alon dataset using different number of cluster

8 clusters
16 clusters
32 clusters
64 clusters
128 clusters
256 clusters

Figure 3.4.4: Prediction accuracy and its standard deviation of KNN (k=3) using different
number of clusters in k-means algorithm (stage 1 of algorithm 4) on colon cancer data set.
The prediction accuracy degrades as the number of clusters increase. However, the within-
cluster gene pairs (256-cluster version vs. 8-cluster version) retain much information as a
reduction of 99.9% of pairs results only around 2% decrease in prediction accuracy.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 101

10 20 30 40 50 60 70 80 90 100

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Boxplot for different initial k−mean clusters

P
re

di
ct

io
n

ac
cu

ra
cy

Number of genes

Figure 3.4.5: The boxplot of mean KNN (k=3) classification accuracy using pairwise vir-
tual gene algorithm with 20 different initial clusters on colon cancer data set.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 102

3.4.2 Leukemia Data Set

Data preparation

This data set was published by Golub etc. [53] in 1999. It consists of 72 samples, of

which 47 samples were acute lymphoblastic leukemia (ALL) and rest 25 samples were

acute myeloid leukemia (AML). 7129 genes were monitored in their study. This data set

contains a lot of negative intensity values. We use the following steps (similar to Dudoit

etc.[36]) preprocessing the data set before feed to our algorithm. First we threshold the

data set with floor of 1 and ceiling of 16000. Then we filter out genes with max/min <=

5 or (max−min) <= 500, where max and min are the maximum and minimum expression

values of a gene. After these two steps, the resulting 3927 genes are transformed using base

10 logarithmic and then the expression levels for each gene are normalized. We will refer

to this data set as leukemia data set in the rest of this chapter.

Experiments

We perform experiments to compare feature selection performance on leukemia data set.

Two classifiers (KNN, DLD) are used. Classification accuracies of these classifiers using

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 103

four feature selection algorithms (single gene t-score[15], single gene S2N score[53], pair-

wise t-score, pairwise virtual gene) are reported here. In all experiments, we measure per-

formance of selecting from 2 to 100 genes, increasing by 2 at a time. We set α = 0,β = 0.8

in all experiments.

Results

This data set contains roughly four times the number of genes of colon cancer data set.

Straightforward computing of all gene pairs becomes intractable. Based on results ob-

tained in the previous section on colon cancer data set, we set the number of clusters to

be 256. Results are shown in Figures 3.4.6,3.4.7. For DLD classifier, when the number

of selected genes is larger than 20, pairwise virtual gene algorithm performs consistently

better than single gene based algorithms, though not by a large margin. For KNN clas-

sifier, pairwise virtual gene algorithm performs consistently better than all other methods

we tested. Standard deviations of the classification accuracy declines as number of genes

increase with one abnormal jump for single gene based methods using DLD classifier. All

feature selection methods have similar variations in the classification accuracy. Overall, the

pairwise virtual gene algorithm performs better than the single gene based algorithms on

this data set.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 104

0 10 20 30 40 50 60 70 80 90 100

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

dld prediction of Golub dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

0 10 20 30 40 50 60 70 80 90 100
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of genes

S
ta

nd
ar

d
de

vi
at

io
n

of
 p

re
di

ct
io

n
ac

cu
ra

cy

dld prediction of Golub dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

Figure 3.4.6: Prediction accuracy of four feature selection methods: t-score, S2N, pairwise
t-score and pairwise virtual gene on leukemia data set using DLD classifier. Left figure
shows prediction accuracy against the number of genes used to build DLD classifier. Right
figure shows the standard deviation of prediction accuracy against the number of genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 105

0 10 20 30 40 50 60 70 80 90 100
0.84

0.86

0.88

0.9

0.92

0.94

0.96

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

knn prediction of Golub dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

0 10 20 30 40 50 60 70 80 90 100
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Number of genes

S
ta

nd
ar

d
de

vi
at

io
n

of
 p

re
di

ct
io

n
ac

cu
ra

cy

knn prediction of Golub dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

Figure 3.4.7: Prediction accuracy of four feature selection methods: t-score, S2N, pairwise
t-score and pairwise virtual gene on leukemia data set using KNN classifier (k=3). Left
figure shows prediction accuracy against the number of genes used to build KNN classifier.
Right figure shows the standard deviation of prediction accuracy against the number of
genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 106

3.4.3 Multi-class Cancer Data Set

Ramaswamy etc. [97] reported study of oligonucleotide microarray gene expression in-

volving 218 tumor samples spanning 14 common tumor types and 90 normal tissue sam-

ples. The expression levels of 16063 genes and expressed sequence tags were monitored in

their experiments. The author separated the tumor samples into training set (144 samples)

and testing set (54 samples). The rest 20 samples are poorly differentiated adenocarcino-

mas, which we did not include in our study. The training tumor set of 144 samples and

90 normal tissue samples are combined together for our study. We refer this data set as

multi-class data set in the rest of our chapter.

Data preparation

Like the Leukemia data set, multi-class data set contains a lot of negative values. As a data

preprocessing step, we apply a thresholding of 1 and filter out genes with max/min <=

5 or (max−min) <= 500. The resulting data set has 11985 genes. Logarithmic transforma-

tion and normalization are then performed before data are fed to gene selection algorithms.

It is worth nothing that in the original paper by Ramaswamy, etc.[97] all 16063 genes (or

ESTs) were used for classification. For our study of feature selection, the application of

max/min <= 5 or (max−min) <= 500 filter makes sense since we are only interested in

several top ranked genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 107

Experiments

We measure performance of four feature selection algorithms using KNN and DLD classi-

fiers. 2-fold cross validation is performed 100 times. Experiments are in the same setting

as for colon cancer and leukemia data sets. In all experiments, we measure performance

of selecting from 2 to 100 genes, increasing by 2 at a time. We set α = 0,β = 0.8 in all

experiments.

Results

In this experiment, we set the number of clusters to be used to 400. Result of KNN classifier

shows single gene based algorithms performs better, but within 1% of accuracy compared

to pairwise virtual gene algorithm. Clustered pairwise t-score algorithm performs as good

as single gene based algorithms. As the number of genes selected increases, the differences

in performance gradually converge.

3.5 Conclusion and Future Work

Gene selection is crucial both for building a good sample classifier and for selecting smaller

gene set for further biological investigation. Feature extraction algorithms (PCA, SVD,

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 108

0 10 20 30 40 50 60 70 80 90 100
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

knn prediction of multi−class dataset

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

0 10 20 30 40 50 60 70 80 90 100
0.025

0.03

0.035

0.04

0.045

0.05
knn prediction of multi−class dataset

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

Figure 3.4.8: Prediction accuracy of 4 feature selection methods: t-score, S2N, pairwise
t-score and pairwise virtual gene on multi-class data set using KNN classifier (k=3). Left
figure shows prediction accuracy against the number of genes used to build KNN classifier.
Right figure shows the standard deviation of prediction accuracy against the number of
genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 109

0 10 20 30 40 50 60 70 80 90 100
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81
dld prediction of multi−class dataset

P
re

di
ct

io
n

ac
cu

ra
cy

Number of genes

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

0 10 20 30 40 50 60 70 80 90 100
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
dld predition of multi−class dataset

Number of genes

P
re

di
ct

io
n

ac
cu

ra
cy

single t−score
single S2N score
pairwise t−score
pairwise virtual gene

Figure 3.4.9: Prediction accuracy of 4 feature selection methods: t-score, S2N, pairwise
t-score and pairwise virtual gene on multi-class data set using DLD classifier. Left figure
shows prediction accuracy against the number of genes used to build KNN classifier. Right
figure shows the standard deviation of prediction accuracy against the number of genes.

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 110

etc.), single gene based discriminative scores (t-score, S2N, TNoM, information gain, etc.)

and correlation based algorithms have been proposed for this purpose. In this chapter, we

proposed a totally different approach. Instead of trying to minimize correlations within the

selected gene set, we examined whether such correlations are good predictors of sample

class labels. Virtual gene is a linear combination of a set of real genes. Our experiments

confirm our assumption that the correlations between genes are indeed good predictors of

sample class labels, better in many cases than single gene based discriminative scores.

There are biological explanation for this: genes interact with each other. The relative

abundance of genes is a better predictor than the absolute values. Using gene clustering

algorithms to limit gene pair selection seems promising. Our experiments show that by

calculating pairwise scores for only a very small portion (0.5%) of all possible gene pairs,

decent classification performance can be achieved. This in turn shows most useful pairwise

correlations are contained within gene clusters.

Our algorithm still has space for improvement. First but not least, we are interested in

combining single gene based scores and virtual gene. In contrast to correlation based gene

selection approaches, we can select top genes with high individual scores and top corre-

lations between genes. We used gene clustering algorithm to identify some biologically

related genes. Gene clusters represents genes with homogeneous expression profiles. We

have focused on the gene correlations within gene clusters. It is also interesting whether

gene correlations between gene clusters could be used for our purpose of effective sample

CHAPTER 3. VIRTUAL GENE: CORRELATION BASE GENE SELECTION 111

classification. There are actually gene selection algorithms that use such intuition. For

example the Gene Shaving algorithm proposed by Hastie et al. in [59].

We also want to examine larger virtual genes, virtual genes that combine more than two

genes. Gene clustering is only a crude way of grouping co-regulated genes. In Chap-

ter 5 we will present an extension of virtual gene algorithm that takes GO annotations into

consideration. Our algorithm is quite open, several other algorithms (e.g., cluster analysis

and discriminative power of single gene) can be plugged into our algorithm without much

modification. We leave this as future work as well.

Chapter 4

Dealing with False Positives Using Gene

Ontology

In the previous two chapters, we described two novel gene selection algorithms that take

into consideration relationships between genes. Improvement in sample classification ac-

curacy is observed. However, due to the characteristics of microarray technology and the

underlying biology, namely large number of genes and limited number of samples, the

statistical soundness of gene selection algorithm becomes questionable [31]. One ma-

jor problem is the high false discover rate. Microarray experiment is only one facet of

current knowledge of the biological system under study. In this chapter, we propose to

alleviate this high false discover rate problem by integrating domain knowledge into the

112

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 113

gene selection process. Gene Ontology represents a controlled biological vocabulary and

a repository of computable biological knowledge. It is shown in the literature that gene

ontology-based similarities between genes carry significant information of the functional

relationships [11, 124]. Integration of such domain knowledge into gene selection algo-

rithms enables us to remove noisy genes intelligently. We propose an add-on algorithm

applied to any single gene-based discriminative scores integrating domain knowledge from

gene ontology annotation. Preliminary experiments are performed on publicly available

colon cancer data set [8] to demonstrate the utility of the integration of domain knowledge

for the purpose of gene selection. Our experiments show interesting results.

4.1 The Problem of Gene Selection on Small Sized Sam-

ples

In this section, we give an example of the problems facing gene selection from limited sam-

ples. Alon [8] published their experimental results on colon cancer. The data set consists of

62 microarray experiments on normal and colon cancer tissues. Expression levels of 2000

genes are monitored. After log-transformation, expression levels in this data set range from

0.76 to 4.32 with mean of 2.30 and standard deviation of 0.49. This is a commonly used

benchmark data set for data analysis algorithms on microarray data sets.

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 114

Table 4.1.1: Gene selection on randomized data set. Each entry shows the number of genes
that score greater than cutoff t-scores in each data set (original and random generated.)

Number of Genes Top 50 Top 100 Top 200
Cutoff t-scores 3.82 3.23 2.7

Alon Orig log10 50 100 200
Random uniform 1.06±1.04 5.32±2.28 21±4.41
Random normal 0.81±0.89 4.69±2.19 19.55±4.43

Random empirical 0.71±0.83 4.475±1.97 19.5±4.04
Random relabel 0.86±6.39 4.50±22.35 20.98±62.32

Let us examine the statistical significance of gene selection on such data sets. We use

four approaches to assess the false discovery rate of gene selection algorithms based on

t-scores by calculating t-scores for randomly generated gene expression arrays. In the first

two approaches, we generate random expression arrays of the same size (2000×62) from

uniform/normal distribution with same parameters as original log transformed data set.

We also experimented generating from empirical distribution of original log transformed

data by assuming the histogram as an approximate probability density function. Later we

generate random expression array by randomly reassigning sample class labels. The cutoff

t-scores for choosing top 50, 100 and 200 genes from the original log transformed data set

are 3.82, 3.23 and 2.7, respectively. Experimental results summarized in Table 4.1.1 show

the number of random genes having larger-than-cutoff t-scores in each case. Those random

genes would have been selected by t-score based algorithms. All the random experiments

are repeated 1000 times.

From these experiments we observe that even randomly generated expression levels may

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 115

result in high discriminative scores. Suppose we merge the original data set with a random

data set, resulting in a 4000 genes by 62 sample expression matrix. If we were to choose top

200 genes using t-scores from such merged data set, more than 10% of selected genes would

come from the random generated portion of data. The situation becomes more hopeless if

we add more random genes or the number of samples is even smaller. When 8000 random

genes are added to the merged data set, the probability of selecting such random genes in

top 300 gene list is more than 30%.

4.2 Integrating Biological Knowledge into Gene Selection

One way to overcome this apparent drawback in the feature selection process is the integra-

tion of domain knowledge. Biologists have long been doing this. Gene selection is only the

starting point in many biological studies. Genes may be addded/removed to/from selected

gene set at a later stage pending on other biological evidences. However, to our surprise,

there are not many feature selection algorithms proposed in the literature to actually utilize

domain knowledge. Although there are already a plenty of online computable biological

knowledge bases.

In this section, we propose an add-on algorithm to existing single gene-based gene selection

algorithms. Given a single gene-based discriminative scores (of the sample class labels),

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 116

our algorithm processes the score using biological information contained within GO an-

notation. This results in a new class of discriminative scores prefixed with the name ”GO

adjusted”. This section is divided into several subsections. Background and notation used

are given in the first subsection. These notations will be used throughout this chapter. We

will then elaborate definitions of our algorithm. Time and space complexity of algorithm

is discussed in Subsection C. In the last subsection, we layout an experimental framework

for testing the effectiveness of our algorithm.

4.2.1 GO Adjusted Scores

Definition 4.2.1 Informative Genes are those genes having discriminative scores larger

than θ, or F(g) > θ.

Definition 4.2.2 Discriminative Power of a GO term is defined as the percentage of infor-

mative genes among all genes that are annotated with such GO term.

DP(go) =
|{g|g ∈ go∧F(g) > θ}|

|go| (4.2.1)

Definition 4.2.3 Informative GO Term is defined as those GO terms go whose discrimina-

tive power is larger than γ and the number of informative genes annotated with go is larger

than β.

DP(go) > γ and |{g|g ∈ go∧F(g) > θ}|> β (4.2.2)

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 117

Definition 4.2.4 GO adjusted discriminative score is defined using one single gene dis-

criminative score F(g) and a GO term go, where g ∈ go.

Fa(g,go) =

0 if go is not informative;

F(g) if go is informative.
(4.2.3)

Definition 4.2.5 Best GO adjusted discriminative score is defined as the best GO adjusted

discriminative score out of all possible GO annotations of a single gene.

Fb(g) = max
∀go,g∈go

Fa(g,go) (4.2.4)

In this section, we present our gene selection algorithm. Given a single gene-based dis-

criminative score F and three parameters θ,β,γ, our algorithm calculates a modified single

gene-based discriminative score named “best GO adjusted score.” The basic idea behind

our algorithm is straightforward. While the expression levels of random genes may corre-

late with sample class labels by chance, it is far less likely that majority of these random

genes will also have common GO annotation. In other words, it is far less likely that those

random genes will have valid biological connections, either participating in the same bio-

logical processes, or manifesting the same molecular functions, or being found in the same

cellular components.

Informative genes are defined by Def. 4.2.1 to be those genes whose single gene discrimina-

tive scores F pass threshold θ. Discriminative power of a GO term is defined by Def. 4.2.2

as the percentage of informative genes among all genes that are annotated with the GO

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 118

term in question. Discriminative power of a GO term with respect to sample class labels

measures the collective discriminative power of genes annotated with that GO term. This in

turn measures how different biological processes, cell components and molecular functions

are affected under different experimental conditions. The higher discriminative power of

a GO term, the stronger a GO term is correlated with sample class labels. The value of θ

has same range as the corresponding single gene discriminative score, which is the user’s

estimate of what a significant score is for F. We further call a GO term informative GO

term if such a GO term satisfies the two conditions in Def. 4.2.3. First, more than β infor-

mative genes needs to be annotated by a GO term in order for that GO term to be called

informative. Secondly, the percentage of informative genes among all genes annotated by

the GO term needs to surpass threshold γ. These two criteria are set to fend off the effect

of random genes. We will discuss how to choose these parameters later.

Single gene-based discriminative score F is then modified according to the discriminative

power of GO terms. To get rid of noisy genes, informative genes are only selected from

those informative GO terms. We essentially strengthen single gene-based scores if sig-

nificant amount of other genes that share common known biological annotation with the

given gene are also discriminative of sample class labels. We define “GO adjusted dis-

criminative score” Fa(g,go) according to Def. 4.2.4. The score is 0 if the annotating GO

term is non-informative, otherwise it is the same as the single gene discriminative score, or

Fa(g,go) = F(g). Here we assume single gene-based discriminative score is positive and

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 119

the larger the score is, the more discriminative the corresponding gene is. Each gene prod-

uct is annotated with potentially multiple GO terms. We define “best GO adjusted score”

Fb(g) to be the best “GO adjusted score” for a gene among all its annotation. We assume

the transitivity of gene annotation in this work. If the direct annotating GO term of a gene

is not informative, the gene may still be considered if any parent GO terms of the direct

annotating GO term are informative.

The algorithm to calculate “best GO adjusted score” is divided into three distinct stages.

In the first stage, single gene-based discriminative scores are calculated using traditional

methods. In the second stage, we compute for each GO term its discriminative power using

Algorithm 5. In the third stage, single gene-based discriminative scores and discriminative

power of GO terms are combined to produce the final score using Algorithm 6. We will

elaborate computation in stages two and three.

In order to compute stages two and three efficiently we define several data structures as

illustrated in Fig. 4.2.1. The central data structure is a DAG of GO terms. Each node in

this DAG contains the following information: the accession number of this GO term, the

genes that are annotated with this GO term, the informative genes (those genes whose F(g)

pass threshold θ) that are annotated with this GO term, list of genes that this GO term

directly annotates, list of children GO term nodes in the DAG and a flag ”visited“ for DAG

transversal algorithms. Three lists are also defined to facilitate computation. First is the list

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 120

of single gene-based discriminative scores for each gene. The second list is the list for each

gene pointers to its GO terms. The third list is a list of GO terms in the DAG.

We add a pseudo GO term “root” which is the common parent of the three ontology

branches. In this way, gene ontology becomes single rooted. We do notice biologists

in different domain may want to use different portion of gene ontology. No matter what

portion of GO is of interest, our algorithm remains the same and needs only minor mod-

ifications. Algorithm 5 employs a depth first traversal of the GO DAG from this pseudo

root node. In each visitation of a node, the lists of genes/informative genes that this GO

term annotates are calculated from the lists of genes/informative genes that this GO term

directly annotates and the lists of genes/informative genes its children GO terms annotate.

Later Algorithm 6 uses the genes/informative genes lists for each GO term to derive both

discriminative power of a GO term and the best GO adjusted scores for each gene.

4.2.2 Complexity of Best GO Adjusted Score

We analyze the computational cost for the best GO adjusted score. Assume the number of

GO terms to be |GO|, the number of genes to be |G|, the average number of genes to be

annotated by a GO term to be µ. Assume the average branching factor of the GO DAG

(only involving GO terms) to be ξ.

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 121

GO Term Pointers to children GO Terms

. . .

Genes

...

...

List of GO Terms

Info Genes

for Each Gene

Visited

...
3.2654
1.2345

Single Gene Based
Discriminative Scores

Directly Annotated Genes

List of GO Terms

GO:Term2

GO:Term1 GO:Term3GO:Term5

GO:Term4

GO:Term6

Figure 4.2.1: Main data structures used in Algorithms 5 (GO gene counter) and Algo-
rithm 6 (Best GO Adjusted Score).

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 122

Algorithm 5 GO gene counter(goroot ,scores,θ,∈,←) Compute genes/informative genes
for each GO term
Require: goroot : root of the GO DAG in Fig. 4.2.1, we use ∈,→ as described before;

scores as an associative array such that scores(g) = F(g); θ as threshold score.
Ensure: The Genes and In f o genes for each GO node properly set

1: if not goroot .visited then
2: for all gene ∈ goroot do
3: Add gene to goroot .Genes
4: if scores(gene) > θ then
5: Add gene to goroot .In f o genes
6: end if
7: end for
8: if goroot has child GO node then
9: for all go, such that goroot → go do

10: GO gene counter(go,scores,θ,∈,←)
11: Add unique go.In f o genes to goroot .In f o genes
12: Add unique go.Genes to goroot .Genes
13: end for
14: end if
15: else
16: return
17: end if

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 123

Algorithm 6 bS(go,scores,G,β,γ): Best GO Adjusted Score

Require: go: array of GO nodes, score(g): the single gene discriminative scores for each
gene, G: list of genes, β,γ as defined before

Ensure: bS: a list of best GO adjusted score for each gene in G
1: Initialize bS to be an associative array for each gene g ∈G with minimum initial value.
2: for all gene g ∈ G do
3: for all GO term go, such that g ∈ go do
4: if |go.In f o genes|> β and |go.In f o genes|

|go.Genes| > γ then
5: S← scores(g)
6: else
7: S← 0
8: end if
9: if bS(g) < S then

10: bS(g)← S
11: end if
12: end for
13: end for
14: return bS

The algorithm to calculate GO adjusted scores is naturally divided into three steps. First

step is to compute single gene-based discriminative scores whose complexity is not of

interest here. The second step involves systematically traversal of a GO DAG. For each

visitation of a GO node in the DAG traversal, we need first to analyze each gene that

is annotated directly with such GO term, which takes O(µ) time; and then, we need to

integrate gene lists from child GO terms into gene lists in current GO term, which takes

O(|G| × log |G| × ξ) time in the worst case. Altogether step two takes O(|GO| × (µ +

|G|× log |G|× ξ)) in computation time. The third step examines each gene/GO term pair

which takes O(|GO|× µ) time. All these analysis are based on using the data structure in

Fig. 4.2.1.

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 124

We would also like to consider complexity of building the initial data structure. GO flat

file lists all GO terms one by one. Entry of a GO term also lists all its children GO terms.

The time it takes to locate a GO term in the list of sorted GO terms is O(log(|GO|)). For

each GO term, ξ number of children GO terms needs to be located. The time it takes to

build an GO DAG without annotations is O(|GO| × ξ× log(|GO|)). The total number of

GO annotation is O(|GO| × µ). And the total time to insert GO annotations into our GO

DAG is O(|GO|× µ× log(|GO|)). Thus the total time needed to initialize data structures

used in our algorithm is O(|GO|× log(|GO|)× (µ+ξ)). This is an one time investment.

Space requirement for data structures mentioned in Fig. 4.2.1 is O(|GO|) for the list of GO

terms, O(|GO|×µ) for the list of GO terms for each gene, O(|G|) for the list of single gene

discriminative scores and O(|GO|× |G|+ |GO|×µ+ |GO|×ξ) for the GO DAG. The total

space requirement for our algorithm is then O(|GO|× (|G|+µ+ξ)).

4.2.3 Experiment Setup

In this section, we describe the experimental structure we used. Our primary concern is

the false discovery rate of any given single gene-based algorithm. We measure this false

discovery rate by repeating experiments on randomized data set. Our experimental data

set consists of the original data set from public available data sources and the random

portion that are generated as noise. We measure for each single gene-based algorithm the

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 125

Random Dataset

��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������

...
.

g1’

...
.

g1’’

Oringal Dataset

...
.

Random Dataset

g1’’’

g1

Random Dataset

Figure 4.2.2: Setup of experiment data set for studying the alleviation of false positive rate
on microarray expression data set.

percentage of genes that are selected coming from the randomized portion of data and use

this number as an estimate of the false discovery rate.

As shown in Fig. 4.2.2, the original data set is appended with several repetition of blocks

of random data. Each random block has the same number of genes and same number

of experiments as the original data set. The expression levels in each random block is

generated using normal distribution with same parameters as the original log transformed

data set. Each gene in a random block corresponds to a real gene in the original data set

and share the same GO annotations of it. For example in Fig. 4.2.2 the original data set is

augmented by random data set three times its size. We call this experimental setup random

sized 3. For each experimental setup, we generate 200 sets of random data and report the

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 126

average number of false positive.

4.3 Experiments

Data Preparation The data used in this work are all publicly available. We choose the

widely used benchmark microarray data set: colon cancer [8]. For gene ontology, we

downloaded a copy from GO web site at 10/15/2004. We collected GO annotation for genes

used in alon colon cancer microarray experiment from SOURCE [32] online database on

11/1/2004. We do notice that SOURCE annotation may have been updated. However, the

data set suffices to test our algorithm.

Not all genes in the original data set have GO annotation in SOURCE database. However,

a decent majority of the original genes have been annotated. For colon cancer data set, out

of original 2000 genes, we found 1495 of them have been annotated with at least one of

the 9137 GO annotation. That is, on average, a little more than 6 GO annotation per gene.

Since our algorithm relies on gene ontology to provide necessary biological insight, we

choose only those genes that currently have GO annotation for further analysis. We expect

more and more GO annotation will be available in the future.

Result Table 4.3.1 and 4.3.2 summarizes our experimental result on colon cancer data set. It

shows the false positive rate measured as the number of random genes being chosen by four

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 127

single gene-based gene selection algorithms: S2N (signal to noise ratio) t-score and their

GO adjusted counterpart. For each experiment we also show the number of overlapping

genes, genes that are selected both both original single gene based discriminative scores

and their GO adjusted counterparts. From this table, we observe that GO adjusted scores

perform consistently better as less random genes (10%) are chosen by GO adjusted scores

as informative genes. The trends shown in the tables are clear: the more random genes

included the more false positive; the more number genes selected the more false positive.

We generally have no knowledge and control of how many genes included in microarray

data set are random with respect to sample class labels. However, we do know now that

selecting excessive informative genes from microarray data set becomes troublesome. We

also report the number of genes selected by both original discriminative score and the

best GO adjusted score. The percentage of overlapping genes range from 60% to 80%,

indicating majority of genes selected by original single gene based algorithms also cluster

in GO annotation.

Now we describe how we choose the three parameters required by GO adjusted scores:

θ,β,γ in these experiments. For θ, we set it to the cutoff score of selected genes. This

essentially states that if user is to choose top 100 genes, we deem top 100 ranked genes

as informative genes. Using the transitivity assumption of GO annotation, the virtual top

GO node in our algorithm annotates every genes in question. Let the ratio between the

number of informative genes and the number of genes in the virtual top GO node be γ0,

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 128

Table 4.3.1: Performance of GO adjusted scores as measured in false positive rate using
S2N score.

Random # of S2N GO S2N Diff S2N Gene
Size Genes score score score Overlap

1 50 1.40 1.15 0.25 42.45
2 50 2.40 2.15 0.25 39.05
3 50 4.15 3.75 0.40 39.85
4 50 4.05 3.55 0.50 28.64
1 100 5.30 4.09 1.21 68.63
2 100 8.78 7.57 1.21 68.06
3 100 17.24 14.84 2.40 56.38
4 100 15.02 12.55 2.47 59.63
1 200 19.10 17.45 1.65 167.85
2 200 33.15 30.30 2.85 153.90
3 200 43.10 39.45 3.65 144.10
4 200 49.60 46.90 2.70 132.65

experiments show good results when γ is set to 1.4-1.6 times γ0. When γ is set to γ0, GO

adjusted scores revert to original single gene-based discriminative score since the virtual

top GO node becomes informative. With the increase in γ, we are taking information in

GO annotation more assertively. In our experiments β is set to 1. We tested β values from

0 to 2, results are similar.

4.4 Conclusion and Future Work

Gene selection plays an important role in the analysis of microarray data set. Genes that

express differently in different sample conditions are selected for further biological inves-

tigation. However, due to the limited sample size and complex underlying biology, gene

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 129

Table 4.3.2: Performance of GO adjusted scores as measured in false positive rate using
t-score.

Random # of t GO t Diff t Gene
Size Genes score score score Overlap

1 50 1.40 1.20 0.20 41.85
2 50 2.90 2.25 0.65 38.60
3 50 3.95 3.3 0.65 38.10
4 50 4.90 4.25 0.65 38.55
1 100 5.15 4.26 0.89 66.28
2 100 9.06 7.38 1.68 74.06
3 100 18.11 16.49 1.62 60.14
4 100 15.58 13.20 2.38 67.76
1 200 19.40 17.60 1.80 166.35
2 200 31.95 30.15 1.80 155.30
3 200 44.70 42.30 2.40 136.75
4 200 53.35 49.65 3.70 129.45

selection algorithms are haunted by excessive false positive rate. In this work, we proposed

to integrate biological domain knowledge imbedded in gene ontology and its annotation

into the process of gene selection. This is the first attempt of such integration, to our best

knowledge. Our experimental result shows this is a promising direction. Using gene on-

tology and its annotation, the probability of selecting random genes in our experiments is

reduced more than 10% on average. Our algorithm is a wrapper algorithm upon any if not

all single gene based discriminative scores. Our algorithm behaves differently with differ-

ent choice of one parameter γ, taking GO annotation into consideration within the feature

selection process at various degrees. This provides an interesting way to integrate “old”

knowledge in GO ontology with “new” information from microarray experiments.

We ignored genes without GO annotation in this work for simplicity. Although majority of

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 130

genes (75%) in our study are annotated by at least one GO term, genes that are not currently

annotated may be of interest nonetheless. For these genes, traditional discriminative scores

can be used instead. Best GO adjusted score defined by Def 4.2.5 is comparable to original

discriminative scores since they are essentially the same if the annotating GO term is in-

formative. A straightforward way to handle gene selection for genes that are not currently

annotated would be to compute original discriminative scores. Such discriminative scores

can then be combined with best GO adjusted scores for the purpose of gene selection.

The discriminative power of a GO term is defined to describe the correlation between GO

terms and sample class labels. This is different from the previous research in the correlation

between gene expression similarity and GO annotation similarity [11, 124], which has some

interesting implication by itself. It provides a bridge between gene ontology and disease

ontology. The ability of coupling GO terms and disease symptoms may prove useful to

provide biologist new insight into disease pathology.

Some recent research [104] has focused on integration of different genomic data sets for

inferring pathways and regulative networks. However we have not found much work on

integration of genomic data sets for gene selection. Our work naturally extends to the idea

of integration of other genomic data sets for the purpose of target selection. This is the

future work we will actively pursue.

This chapter represents our first attempt to integrate gene ontology and its annotations into

CHAPTER 4. DEALING WITH FALSE POSITIVES USING GENE ONTOLOGY 131

feature selection process for microarray expression data set. In the next chapter, we extend

virtual gene approach using gene annotations. Virtual genes now are not limited to pairs as

in Chapter 3. Encouraging results are achieved using certain branch of GO structures.

Chapter 5

Integration of Gene Ontology with

Virtual Gene

In the previous chapters, we examined the use of gene ontology to reduce false positive

rate problem facing gene selection algorithms with small sized samples. We also examined

selecting informative genes based on gene correlations. More specifically, in Chapter 3

In this chapter, we present a novel feature extraction algorithm based on the concept of

virtual genes by integrating gene expression data sets with domain knowledge imbedded in

gene ontology annotations. GO distance is defined between a pair of genes based on their

annotating GO terms and the relationships between those GO terms. Groups of genes that

are similar to each other based on their GO annotations are identified. Correlations in gene

132

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 133

expression levels within those groups of genes (virtual genes) are then analyzed and used

to build better sample classifiers. Unlike other feature extraction techniques such as PCA

and SVD, each virtual gene corresponds to a linearly combined collection of real genes and

to some extent preserves their original meaning.

This chapter is organized as follows. In Section 1, we introduce a new way to measure

distance between genes based on their GO annotations. The new feature extraction algo-

rithm that integrates GO annotation distance is proposed in Section 2. Experimental result

is provided in Section 3. In Section 4, we conclude this chapter.

5.1 The Hierarchical Structure in Feature Space

In this section, we will explain the hierarchical structure that exists for genes in term of

Gene Ontology (GO) and GO annotations. We will define how to measure the specificity

of GO terms and how to measure distance between genes based on their GO annotations.

In certain application domains, there exist hierarchical structures in the feature space. For

example, in content based image retrieval, features can be classified either as colors or as

textures. Genes are considered features of a microarray expression data set for the purpose

of sample classification. Each gene on the other hand is annotated by some GO terms. The

databases of GO annotations store an important part of our current biological knowledge

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 134

Figure 5.1.1: Structure of gene ontology and its annotation. Solid lines between genes and
GO terms indicate direct annotation and dotted lines indicate inferred annotation by the
property of transitivity of GO annotations.

of the genes and their products under investigation.

The Gene Ontology (GO) project is a collaborative effort to address the need for consistent

descriptions of gene products in different databases [28]. Gene Ontology (GO) is first a

collection of shared biological terms so that biologists of different branches could share the

vocabulary. It also specifies certain relationships between terms such as “is-a” and “part-of”

relationship. The GO terms and their relationships form a DAG (directed acyclic graph)

[29] as indicated in Figure 5.1.1. The GO collaborators are developing three structured,

controlled vocabularies (ontologies) that describe gene products in terms of their associated

biological processes, cellular components and molecular functions in a species-independent

manner [28].

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 135

Definition 5.1.1 The coverage of a GO term is defined as the percentage of genes, out of

all genes involved in one study, a GO term annotates.

Definition 5.1.2 The GO distance of two genes is defined to be the coverage of their most

specific common annotating GO term.

Definition 5.1.3 The gene distance graph is an undirected weighted graph A(Va,Ea) where

vertices Va is the set of genes in a study and edges Ea is the GO distance between corre-

sponding vertices (genes).

Definition 5.1.4 The gene connectivity graph B(Vb,Eb) is an undirected unweighted graph

inferred from A(Va,Ea) and a parameter mine, where Vb = Va and (v1,v2) ∈ Eb if and only

if Ea(v1,v2) < mine. Ea(v1,v2) is the edge weight of (v1,v2) in graph A.

Figure 5.1.1 illustrates the structure of five GO terms and five genes which are annotated

by some of those five GO terms. Although simple, it captures the major structural elements

in GO and GO annotations: 1. GO terms form a DAG; 2. each gene is annotated by one

or more GO term(s). E.g. in Figure 5.1.1 GO:Node3 has two parent GO terms, GO:Node1

and GO:Node2. Gene g4 is annotated by both GO:Node3 and GO:Node4.

The relationship between GO terms is part-to-whole or specific-to-general. It is reasonable

to assume when a gene is annotated by a GO term, it is also annotated by all the more

general GO terms on the path from that GO term to the root in the GO DAG structure. We

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 136

call this property of transitivity of GO annotations. In Figure 5.1.1 solid lines are used to

connect genes to their direct annotating GO terms. On the other hand, dotted lines are used

to show the annotations inferred using the transitivity property.

The specificity of a GO term measures how broad the concept associated with the corre-

sponding GO term is. How do we measure the specificity of a GO term? In this chapter, the

coverage of a GO term is defined to be the percentage of genes it annotates out of all genes

in question, including both direct annotations and annotations inferred from transitivity

property. The smaller the coverage of a GO term is, the more specific the concept associ-

ated with the GO term is. The root (virtual) GO term has the largest coverage value, which

is 1 in case all genes in a study have some GO annotations (the root GO term annotates

every gene). The coverages of GO terms from root to leaf form a non-increasing sequence,

ranging from 1 to 0. The numbers in the top right corners of GO nodes in Figure 5.1.1

indicate the coverage of the corresponding GO term in our example.

Genes that are annotated by the same GO terms are similar to each other in some biological

aspects to a certain degree. Given a set of genes that are annotated by the same GO term,

the more specific this GO term is, the more specific biological processes, cellular location

or molecular functions this set of genes share. Using the definition of GO term coverage

and GO annotations of genes, we can gauge how similar two genes are based on their GO

annotations. The GO distance between two genes are formally defined in Definition 5.1.2.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 137

Two genes are close to each other in GO distance if they are both annotated by some

specific GO terms. We use the coverage of the most specific common annotating GO term

as a measurement of distance between two genes based on information imbedded in GO

annotations. Continue with our running example in Figure 5.1.1, the GO distance between

genes g3 and g4 is 0.4 and the GO distance between g2 and g4 is 0.6. We further define the

GO diameter of a set of genes to be the maximum pairwise GO distance among this set of

genes.

The genes under investigation in a study and their GO distances form a graph, which is

referred to as the gene distance graph in this chapter. The vertices of this graph are genes

and edges between vertices are the GO distances between corresponding pair of genes. For

simplicity, gene distance graph is thresholded by a parameter mine. Edges with weight

larger than mine are removed from gene distance graph, resulting in gene connectivity

graph. A clique in a graph is a full connected subgraph. Within gene connectivity graph,

each clique identifies a tightly related set of genes, in respect to the GO distances. Such

cliques found in the gene connectivity graph are further referred to as gene cliques in this

chapter. Parameter mine is mainly used to control the size of each gene clique. We choose

to control the maximum size of gene clique in this chapter to be around 20.

Gene clique has a special role in this chapter. It identifies a set of biologically related genes,

genes that participate in related biological processes or exhibit similar molecular function

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 138

or exist in similar cellular components. The evidences supporting such clustering all come

from gene annotations imbedded in online databases.

5.2 Feature Extraction by Integrating Ontology Distance

with Gene Expression Data Set

As mentioned before, gene selection as a process to identify the best subset of genes for

sample classification tasks is exponentially hard. Traditional feature selection algorithms

ignore the correlation between genes. However, such correlation is an integral part of the

underlying biological system. Genes collaborate with each other in various biochemical

pathways. In fact, the common assumption underpinning clustering analysis of gene ex-

pression data is that genes with similar functions tend to expression similarly [70]. We

have shown in [134] that pairwise correlation between genes could be used to construct

meaningful classifiers.

Single gene based discriminative scores and exhaustive search of the power set of genes can

be viewed as two extremes in the field of feature selection. On one hand, single gene based

discriminative scores ignore all interactions between genes; on the other hand, exhaustive

search of the power set of genes examines all possible interactions among all genes, no

matter whether there is any biological evidence supporting the existence of such interaction.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 139

.

.

.

New virtual gene data set
is created by integrating
gene cliques with original
microarray data set.

Single-gene based
discriminative scores, e.g.
t-score is used to rank
virtual genes. Top ranked
virtual genes are used for
sample classification tasks
in the same manner as
original genes in original
microarray.

Find all maximum
cliques in gene
connectivity graph

Integrating gene cliques with
Microarray data set, generating
virtual genes

Genes annotated by GO Terms

g1 g2 g4g3

GO1

GO2 GO3

Gene Connectivity Graph

g1
g4

g5

g7

g10

g2
g12

g3

. . .

Gene Cliques

{g1, g4, g5, g7}
{g2, g3, g10}
{g10, g12}
{g5, g10}
{g2, g7}
...

g1

g2

g3

s1 s2 s3

2.3 2.6 2.4

.

Microarray Data Set

s4 s5 s6

1.3 1.4 1.1

Cancer Normal

.

.

.

vg1={g1, g4, g5, g7}
vg2={g2, g3, g10}
vg3={g10, g12}
...

s1 s2 s3

3.2 4.9 4.7

.

Virtual Gene Data Set

s4 s5 s6

1.0 1.8 0.9

Cancer Normal

vg1

vg2

vg3

Calculate pairwise
GO distance between
each pair of genes

g1

g2

g3

g1 g2 g3

0.0 0.3 0.4

0.3 0.0 0.6

0.4 0.6 0.0

. . .

. . .

. . .

Gene Distance Matrix

. . .

.

.

.

Thresholding gene
distance graph

Figure 5.2.1: Flowchart of our virtual gene feature extraction algorithm for sample classi-
fication on microarray data set by integrating domain knowledge in the form of GO anno-
tations.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 140

Neither one is a sound solution. Some other feature selection algorithms sit in the middle of

these two extremes. The float selection (SFFS) algorithms could be viewed as compromises

that examine a selected subset of feature (genes) by adding or removing one gene at a time.

Although there is not much biological justifications of the selection of such gene subsets.

Is there more efficient way to guide the search between these two extremes? For biological

systems under investigation, we observe the following characteristics:

• The correlation between features is an integral part of information of the underlying

system. Ignoring any interaction between genes has to be an oversimplification.

• The number of genes in typical biochemical pathways are limited to a rather small

number. Investigating correlations among a big set of genes not only increases com-

putation exponentially, but also invites unwanted noise.

In this chapter, we propose to use GO and its annotations to guide this search process. Using

the GO distance defined in the previous section, genes that are more similar to each other

based on GO annotations are further examined whether certain linear combination of them

serves a good predictor of sample class labels. If there exists such a linear combination, we

further create a new “feature” called virtual gene to capture it. The sample classification

algorithm later uses those virtual genes instead of original genes as features describing

molecular states of samples under investigation.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 141

In this section, we will first introduce the concept of virtual gene and virtual gene ex-

pression we used in an earlier chapter [134]. We copied some definitions here for easy

reference. A virtual gene is a group of genes that work collectively in the eye of a classifier.

Thus virtual genes can be viewed as new features extracted from the original microarray

data set. It consists of the constituent gene set and parameters to combine them together.

Given a virtual gene and a set of gene expressions of the constituent genes, virtual gene

expression can be derived according to Definition 5.2.2. The parameters of a virtual gene

represent the best linear direction to which the constituent genes can be best combined to

form a linear classifier distinguishing different sample class labels. We used FLD (Fisher

Linear Discriminant) [127] to find such best linear direction. For details of the virtual gene

algorithm please refer to our earlier chapter.

Definition 5.2.1 Virtual Gene is a triplet V G = (Gv,W,b) where Gv ⊆ G is a set of con-

stituent genes, G is the set of genes under study, W is a matrix of size |Gv|×1, b is a numeric

value. The expression levels of a virtual gene is determined using Definition 6.

Definition 5.2.2 (Virtual Gene Expression) Given a virtual gene V G = (Gv,W,b) and

gene expression matrix E, where |Gv| = nv, E is an nv×mv expression matrix, the virtual

gene expression V E of a virtual gene V G is a linear combination of expression matrix E.

V E(V G,E) = W ′×E +b, where W ′ is the transpose of W.

Figure 5.2.1 shows the flow of our virtual gene feature extraction algorithm. Overall, our

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 142

algorithm works in three stages. The first stage generates possible gene subsets of interest

with GO diameter less than or equal to some predefined parameter mine, which are the

gene cliques mentioned earlier. Biological knowledge imbedded in the GO annotations is

abstracted into the GO distance measurement between genes. Treating each gene clique

as constituent genes, a virtual gene is created for each gene clique in the second stage by

integrating it with the microarray gene expression data set. Virtual gene expressions are

also computed in this stage. Knowledge integration is archived in the second stage. The

final stage uses a single gene based discriminative score and selects the best virtual genes

from the pool of virtual genes. We used the common t-test score in stage 3 for this chapter,

although other implementations are possible too.

The first stage of our algorithm generates gene cliques used in the later stages of our al-

gorithm. It starts from the GO DAG with genes attached to their annotating GO terms.

Pairwise GO distance is computed for every pair of genes, resulting in the gene distance

graph (matrix). Then the gene distance graph is truncated using parameter mine into an

unweighted gene connectivity graph. Two genes are connected in the gene connectivity

graph if and only if their GO distance is smaller than mine. Now we are finally ready to

compute the maximum gene cliques from the gene connectivity graph.

There are two intensive computational problems involved in this stage. The first is to calcu-

late the gene distance graph, which involves computing all pairwise GO distances between

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 143

genes. The second intensive computation is to find cliques in the gene connectivity graph.

Finding maximal cliques has been proven to be NP hard problem. In our case, we have

limited the connectivity of our graph using a truncating factor mine. The resulting gene

connectivity graph normally contains cliques with less than 20 genes. This makes a con-

temporary PC capable of handling the clique finding problem. The truncation of the gene

distance graph is reasonable since the number of genes that tends to interact with each other

is small, based on other biological evidence. We used an algorithm similar to [21] to find

all cliques in our gene connectivity graph.

In the second stage, a new feature called virtual gene is created for each gene clique in the

gene connectivity graph by integrating it with the microarray data set. Given a set of genes

and their expression levels on different sample classes, genes are used as features describing

molecular states of samples. FLD (Fisher Linear Discriminant) [127] is used to identify the

best linear direction that separates sample class labels. Genes are used as features. Each

sample becomes a data point in a multi-dimensional space. Such data points are labeled

by sample class labels. FLD computes the best linear direction in this multi-dimensional

space such that projection of data points onto this direction produces best linear classifier

of two class labels. If there is only a single gene in a gene clique, the real gene is used in the

place of a virtual gene. The parameters such as the best linear direction and the intersect are

stored for each virtual gene so that virtual gene expression could be computed for testing

data sets.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 144

In the final stage, some single gene-based discriminative score, such as t-test score, is

calculated for every virtual gene. Such scores are sorted and the top ranked genes (virtual

or real) are used for the purpose of sample classification tasks.

5.3 Experiments and Discussion

Extensive experiments are performed on two publicly available data sets: colon cancer data

set [8] and leukemia data set [53]. Gene annotations are extracted from the SOURCE [32]

database using the gene bank accession id provided in the original papers. Colon cancer

data set contains measurements of expression levels of 2000 genes over 62 samples, 40

samples were from colon cancer patients and the other 22 samples were from normal tis-

sues. Leukemia data set consists of 7129 genes and 72 samples, of which 47 samples were

acute lymphoblastic leukemia (ALL) and rest 25 samples were acute myeloid leukemia

(AML).

Gene ontology is categorized into three rather distinct structures: biological process (BP),

molecular function (MF) and cellular component (CC). We performed experiments sepa-

rately using each of those structures. Not all genes used in the original microarray studies

are annotated by some GO terms. In order to compare performance of our GO based al-

gorithm fairly with other approaches, we only use those annotated genes for other feature

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 145

selection/extraction methods. This requirement results in 1253 genes for cellular compo-

nent ontology, 1364 genes for biological process ontology and 1388 genes for molecular

function ontology on colon cancer data set; 3936 genes for cellular component ontology,

4317 genes for biological process ontology and 4282 genes for molecular function ontology

on leukemia data set. Thus six different data sets are experimented in total.

The performance of feature selection (extraction) algorithms are measured using the sam-

ple classification performance of three vastly different classifiers: DLD (Diagonal Linear

Discriminant) [83], KNN (K-Nearest Neighbor, with k=3) [87] and SVM (Support Vector

Machine with radial kernel) [23]. DLD is a linear classifier. KNN is an instance-based

nonlinear classifier. And SVM is arguably the most popular general purpose classifier. The

vast difference of the three chosen classifiers ensure any performance difference we ob-

serve in sample classification accuracy can be properly attributed to the different feature

selection/extraction methods used. We programmed all the experiments in R [52].

We use a two-fold cross validation scheme to estimate the classification accuracy. In our

experience, two-fold cross validation produces results with less variance as compared to the

more usually used leave-one-out cross validation. Less variability means more statistically

significance for the comparison of results. Two-fold cross validation works as follows:

the samples available are divided into two roughly equal sized groups. The numbers of

samples of different sample classes are also kept roughly identical for each groups. One

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 146

of the two groups is used for training and the other is used for testing. Genes are first

selected/extracted from the training data set. Then classification performance of the three

selected classifiers are measured using those genes or gene extraction models on the test

data set. We randomly repeat this two-fold cross validation setup for 100 times and the

average performance is reported here in Table 5.3.1 and Table 5.3.3.

Genes with GO annotations are further filtered to remove genes without significant changes

across samples. Gene expression data in colon cancer data set is well formatted and thus

not filtered. Gene expression data in leukemia data set contains excessive negative values.

Using criteria similar to [14], we first threshold the data to the range from 0 to 16000.

Further, genes with expression level change less than 5 fold or absolute change less than

500 are removed. Resultant gene expression levels are log transformed and normalized

before used in our experiments.

We experimented with three gene selection and extraction algorithms:t-test score [15],

signal-to-noise ratio (S2N) [8] and our GOF (Gene Ontology based Feature extraction).

T-test score and S2N do not use gene annotations. In order to compare fairly with gene

ontology based algorithms, we only use those genes that are annotated for t-test score and

S2N. This results in six different data sets for the two data sets we used in our experi-

ment: colon cancer, leukemia combined with the three gene ontology structures: molecular

function, biological process, and cellular component.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 147

Table 5.3.1: Performance (classification accuracy) of GO based virtual gene feature extrac-
tion algorithm (GOF), compared with single gene based algorithms: t-test score (tscore)
[15], signal-to-noise ratio (S2N) [53], on colon cancer data set. Numbers in parenthesis are
the number of genes. vg stands for virtual gene and rg stands for real gene. We also report
classification performance when no feature selection algorithm is used (ALL column).

GO Class. ALL tscore % S2N % GOF %
(# genes) alg. % (# genes) (# genes) (# of vg/rg)

CC(1253)
DLD 63.8 75.3(12) 75.4(12) 86.9(31/298)
KNN 77.0 82.3(82) 81.9(92) 85.5(71/389)
SVM 70.5 79.8(52) 80.0(62) 85.0(31/298)

BP(1364)
DLD 63.4 77.5(12) 76.7(12) 86.6(131/634)
KNN 77.1 83.0(92) 82.5(82) 83.2(191/695)
SVM 70.5 80.8(62) 80.4(32) 85.4(171/677)

MF(1388)
DLD 64.7 77.4(12) 76.9(12) 83.5 (81/682)
KNN 78.1 83.1(122) 82.6(82) 81.2(191/886)
SVM 70.9 80.0(82) 80.6(82) 81.2(61/609)

Table 5.3.2: Standard deviation of classification accuracy of GO based virtual gene fea-
ture extraction algorithm (GOF), compared with single gene based algorithms: t-test score
(tscore) [15], signal-to-noise ratio (S2N) [53], on colon cancer data set.

GO Class. ALL tscore S2N GOF
(# genes) alg. % % % %

CC(1253)
DLD 13.2 7.6 7.6 4.2
KNN 6.3 7.5 7.8 5.5
SVM 4.4 8.0 8.1 5.6

BP(1364)
DLD 13.1 8.3 8.6 4.3
KNN 6.2 7.2 7.2 5.9
SVM 4.5 7.7 7.6 5.1

MF(1388)
DLD 12.8 8.4 8.4 5.1
KNN 6.2 6.7 6.6 6.3
SVM 4.6 6.7 7.0 5.1

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 148

Table 5.3.1 and Table 5.3.3 summarize the classification accuracy for three feature selection

(extraction) algorithms: t-test score, S2N and our GOF (Gene Ontology based Feature

extraction). Also showed in parenthesis are the genes (virtual or real) used in each scenario

when applicable. For single gene based discriminative scores, the number represents the

number of genes selected that results in best classification performance. For our GOF

algorithm, both the number of virtual genes and the number of real genes that produce

those virtual genes are reported. We used bold font to distinguish those cases where GOF

outperforms other algorithms significantly. Since we do not have prior knowledge of how

many genes should be chosen, the best classification accuracy and the number of selected

genes in those best cases are reported here.

On colon cancer data set (Table 5.3.1), when cellular component ontology is used, GOF

performs consistently and significantly better than the other two gene selection algorithms.

The performance increases ranging from 5% to more than 10%. Biological process ontol-

ogy is also useful on colon cancer data set, with the exception of KNN classifier. On the

contrary, molecular function ontology is only useful for DLD classifier. It is also worth

noting that the variance of the classification accuracy for GOF is much smaller than those

of the two single gene-based algorithms in our experiment, as reported in Table 5.3.2. From

those experiment, we conclude the gene groups associated with the cellular component on-

tology contains valuable information of the distinction between colon cancer and normal

tissues. Further biological investigation is needed to further our understanding in this area.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 149

On leukemia data set 1, we get more mixed result. GOF outperforms single gene based

algorithms when SVM classifier and cellular component/molecular function ontology are

used. One explanation is that the classification performance of all three classification algo-

rithms are already pretty good on leukemia data set, ranging in the mid-90s. The room for

improvement is quite limited.

There is one parameter mine in our algorithm, which is used to control size of gene cliques.

The reason to control the size of gene clique is two-fold. First of all, computing maximum

cliques of a graph with thousands of nodes is only feasible if the clique size is kept small.

Secondly, genes tend to form small groups rather than large groups in biological processes.

In our experiment, we choose mine to be 0.5% to 1%, keeping the size of maximum gene

cliques to be around 20.

5.4 Conclusion

In this chapter, we proposed a novel feature extraction algorithm based on the concept of

virtual gene by integrating gene expression data set with domain knowledge imbedded in

gene ontology annotations. In order to do this, we first proposed a new way to measure dis-

tance between genes based on their gene ontology annotations, namely GO distance. Genes

1DLD classifier failed because the data is exactly singular when all genes are used.

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 150

Table 5.3.3: Performance (classification accuracy) of GO based virtual gene feature extrac-
tion algorithm (GOF), compared with single gene based algorithms: t-test score (tscore)
[15], signal-to-noise ratio (S2N) [53], on leukemia data set. Numbers in parenthesis are the
number of genes. vg stands for virtual gene and rg for real gene. We also report classifica-
tion performance when no feature selection algorithm is used (ALL column).

GO Class. ALL tscore % S2N % GOF %
(# genes) alg. % (# genes) (# genes) (# of vg/rg)

CC (3936)
DLD NA 1 96.5(202) 96.2(152) 96.4(111/528)
KNN 92.8 95.9(392) 96.4(362) 95.5(231/668)
SVM 89.3 93.5(22) 94.7(392) 96.2(51/428)

BP (4317)
DLD NA 1 96.4(142) 96.4(92) 95.8(241/1049)
KNN 92.0 95.9(392) 96.2(392) 94.2(71/638)
SVM 88.5 93.5(22) 95.5(252) 93.0(121/827)

MF (4282)
DLD NA 1 96.3(92) 96.1(112) 96.8(261/1235)
KNN 91.6 96.1(382) 96.1(382) 95.4(291/1280)
SVM 88.1 92.7(32) 95.1(252) 95.0(251/1220)

Table 5.3.4: Standard deviation of classification accuracy of GO based virtual gene fea-
ture extraction algorithm (GOF), compared with single gene based algorithms: t-test score
(tscore) [15], signal-to-noise ratio (S2N) [53], on leukemia data set.

GO Class. ALL tscore S2N GOF
(# genes) alg. % % % %

CC(1253)
DLD NA 1 2.4 3.9 2.5
KNN 3.6 2.7 2.5 2.6
SVM 4.4 3.7 4.6 3.1

BP(1364)
DLD NA 1 2.4 2.3 3.0
KNN 3.8 2.6 2.8 3.7
SVM 4.3 3.6 4.2 4.2

MF(1388)
DLD NA 1 2.2 3.9 2.7
KNN 3.7 2.9 2.8 3.1
SVM 4.4 3.6 4.5 4.0

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 151

are then clustered based on such GO distance. Each of the resulting gene cluster (clique)

is analyzed whether it is a good group of genes whose expression levels separates sample

class labels well. Each of such clusters is transformed into a virtual gene. Top ranked

virtual genes are then selected for sample classification. We experimented our algorithm

on two publicly available data sets. Consistent and significant improvement is achieved on

colon cancer data set using cellular component ontology. This demonstrates the benefit of

integrating domain knowledge information with the gene expression data set.

This is our second attempt trying to integrate gene ontology annotations directly in the gene

selection (extraction) process. Currently a virtual gene is created for each gene clique.

It also makes sense to run wrapper algorithms within each gene clique to identify gene

subgroups that explain sample variation well. Since each gene clique is of limited size

by controlling parameter mine, it will not be prohibitively expensive to do an exhaustive

search within gene cliques. The obstacle facing us right now is how to decide which and

how many gene subgroups within each gene clique to choose for sample classification. We

are currently examining this topic.

During the actual classification stage, we only used virtual gene generated from gene

cliques. As there’s no fundamental difference between virtual gene expression levels and

real gene expression levels. We could have attempted to just combine the virtual gene data

set with original data set and run single gene based feature selection algorithm. The result

CHAPTER 5. INTEGRATION OF GENE ONTOLOGY WITH VIRTUAL GENE 152

is a mixture of virtual genes and real genes. The problem with this approach is that vir-

tual genes normally have higher discriminative power. Some balance needs to be sought

between virtual genes and real genes.

Chapter 6

Conclusion of the Thesis

Bioinformatics as a new and active research domain, poses a lot of new and interesting

problems for both computer scientists and biologists. It encompasses biology, statistics

and computer science and examines the fundamental question of life on earth.

Owing to the rapid advances in biological techniques, large scale profiling of RNA/protein

levels produces enormous amount of data, far beyond the processing capability of any sin-

gle person. Computational algorithms are needed to find patterns in those data sets and

draw valid biological conclusions in order to advance our understanding of living organ-

isms.

Microarray gene expression data set under investigation in this thesis is one of the first

153

CHAPTER 6. CONCLUSION OF THE THESIS 154

RNA large scale profiling data set available. It provides us for the first time in history a

peek into molecular states of tissue samples in question. Although mRNA level is not a

direct indicator of protein level due to various post-transcriptional modification, it provides

a rough indicator of it.

During our study on microarray gene expression data set, we observed the following char-

acteristics for this kind of data set.

• The dimensionality of the data set is ill formed for machine learning and pattern

recognition algorithms. More precisely, the abundance of features and scarcity of

samples makes classification algorithm less effective. It also amplifies noise, making

computational result less statistically significant. As a comparison, a benchmark

microarray expression data set [8] consists of 2000 genes (features) and 62 samples;

while of the 27 data sets studied in a classic paper in machine learning literature [47],

the number of training examples ranges from 47 to 20000 and the number of features

used ranges from 4 to 69. Feature selection/extraction algorithms are direly needed

in the bioinformatics field in order for the learning to be effective.

• Unlike widely used assumption of independence between features, features (genes)

are correlated with each other through various biological pathways. Could the corre-

lations among features be used for the purpose of sample classification?

• The expected number of genes interacting with each other is expected to be small.

CHAPTER 6. CONCLUSION OF THE THESIS 155

Interacting genes and proteins normally form small groups. This derives from the

fact that pathways and interacting protein groups tend to be small.

• The microarray expression data set itself is not isolated. There are a plenty of domain

knowledge on each features (genes) and samples (experiments). There are a plenty of

other kinds of data sets that uncover other aspect of underlying biological processes.

Different data sets can be used to reinforce each other. More specifically, there are a

lot of domain knowledge about the genes in microarray expression data set.

During our study, we identified the deficiency of current gene selection/extraction algo-

rithms in the literature as follows:

• Correlations among genes are often ignored. Most previous gene selection approaches

are single gene-based. These methods simply assume genes are independent while

ignoring the correlation between genes.

• Microarray expression data set is used alone for sample classification. Although there

is a plenty of relevant information, not much research has attempted to integrate it

with microarray expression data set for better sample classification.

In this thesis, we examined how to build effective classifiers for sample classification prob-

lems using microarray expression data set. We focused on feature selection/extraction al-

gorithms that are tailored to those characteristics of gene expression data set mentioned

CHAPTER 6. CONCLUSION OF THE THESIS 156

above. Four novel feature selection algorithms are proposed in this thesis to address differ-

ent aspects of gene selection/extraction tasks. We summarize them here as the follows:

• We first examine correlation between genes using permutation based method (BFSS:

Boost Feature Subset Selection [136]). Subsequential genes are selected based on

those genes that have previously been selected, emphasizing on previously difficult

samples.

• Continue to examine correlations between features, we proposed the concept of vir-

tual gene that explicitly measures correlations between a group of genes and sample

classes. The combined expression levels, or virtual gene expression levels, are used

for sample classification. Even pairwise virtual gene shows improvement over single

gene-based gene selection algorithms [134].

• In [132], we examined the integration of gene ontology annotations with microarray

expression data set, in the context of reducing false positive rate. We showed by

integrating GO annotation, genes selected are less likely coming from randomness in

their expression.

• In the final chapter of this thesis, virtual gene algorithms is expanded with the inte-

gration of gene ontology annotations. We used GO annotation to generate a catego-

rization of genes. Genes are grouped based on such categorization. This enables us

to go beyond pairwise virtual gene. Bigger gene groups (usually up to 20 genes) are

CHAPTER 6. CONCLUSION OF THE THESIS 157

examined for meaningful correlations. Significant improvement in sample classifica-

tion accuracy is observed in some cases.

BFSS (Chapter 2) is a novel general feature subset selection framework to improve the

performance of single-feature based discriminative scores. Genes (features) are selected

from bootstraps of training set instead of training set itself. The sampling probability is

dynamically adapted based on the performance of previously selected genes on different

bootstrap samples. In this way, the gene selection process is tilted toward those samples

that previously selected genes work less than satisfactory. A nice feature of our approach is

that most if not all single-gene based discriminative scores can be plugged into our system

and the resulted BFSS feature selectors are expected to perform better than the original

scores according to our experiments.

As shown in the case of BFSS, considering correlation between genes is beneficial for the

task of feature selection. In Chapter 3, we proposed virtual gene that examines pairwise

correlations between every gene pairs. Instead of trying to minimize correlations within

the selected gene set as some research in the literature did, we examined whether such cor-

relations are good predictors of sample class labels. Virtual gene is a linear combination of

a set of real genes. Our experiments confirm our assumption that the correlations between

genes are indeed good predictors of sample class labels, better in many cases than single

gene based discriminative scores. However, in Chapter 3, we have limited the size of virtual

CHAPTER 6. CONCLUSION OF THE THESIS 158

gene to 2 (pairwise) because of computation cost of bigger virtual genes. Such constraint

is circumvented in Chapter 5 by using heuristics from domain knowledge. In Chapter 5,

biologically related genes are examined for correlation.

BFSS and pairwise virtual gene algorithms do not integrate domain knowledge. However,

domain knowledge is always an important factor in any branch of science. It is extremely

so for biology. First step has been taken to make such knowledge accessible to computer

algorithms. Gene ontology [28] is an effort to create a common vocabulary that biologists

working on different organisms can share. GO annotations use GO terms to label genes

and their products. Online databases such as NCBI [91] become new hubs for scientists

working in bioinformatics to search for relevant information.

We further investigated how to integrate domain knowledge into the feature selection/extraction

process for the special problems in bioinformatics domain. In Chapter 4, gene annotations

are used to alleviate the false positive rate problem for gene selection on microarray ex-

pression data set by modifying single gene-based scores using “GO adjusted scores” and

“best GO adjust scores”. Gene selection on microarray expression data generally suffers

the false positive rate problem because of the skewed dimensionality of the data set itself.

Even randomly generated features of this size will contain some “significant” genes. In

our algorithm, genes with similar annotations reinforce each other’s scores. The feature

CHAPTER 6. CONCLUSION OF THE THESIS 159

selection process is thus tilted toward well know gene clusters that have been well anno-

tated. We actually betted on those random genes are not likely to be clustered with same

GO annotations. This is our first attempt to integrate gene annotations. The “GO adjusted

scores” are defined rather coarsely using a “take it all or leave it” formula.

Gene annotation is also used in Chapter 5 to enable virtual gene algorithms to go beyond

gene pairs. The basic idea of virtual gene algorithm is to use combined expression levels

of virtual genes for classification. The problem is which group of genes to choose as

the constituent genes for a virtual gene. As our second attempt of knowledge integration

with gene expression data set, a novel and more robust gene distance called GO distance

is defined using GO structures and gene annotations. Two genes are similar if they are

annotated by some common specific GO terms. By “specific”, we mean the less number of

genes that are annotated by a GO term, the more specific this GO term is. Because of the

transitivity of GO annotations, this generally means the deeper a node in GO hierarchy, the

more specific it is. By our definition, two genes are similar if they appear in rather confined

(specific) cellular locations, for example, when cellular component ontology is used. Genes

are clustered based on their GO similarities. The resulting gene groups are called gene

cliques. Each gene clique forms a virtual gene. The correlations of each virtual gene is then

examined and top ranked virtual genes based on some single gene-based discriminative

scores are then selected for sample classification. One drawback of our GO distance is that

it is not a metric. We have to use clique finding algorithms to find gene clusters based on

CHAPTER 6. CONCLUSION OF THE THESIS 160

this similarity. If we can make GO similarity a metric, the whole virtual gene algorithm

could be significantly sped up. Our experiments confirmed that using proper branch of GO

annotations, significant gain in sample classification accuracy can be obtained.

Feature selection and extraction algorithm is the first and an important step in designing

a successful machine learning system. Although we are dealing with the rather specific

microarray gene expression data set in this thesis, the basic discoveries in this thesis are

applicable to other domains where machine learning touches as well. Our discoveries can

be condensed into two points. 1. Feature correlations could be important information we

have on sample class labels. 2. Different types of data sets in a domain contain different

information of the underlying system, intelligent integration of different data sets proves to

be very useful in this thesis.

Those principles are understood and used in various research domains. For example, in

content based image retrieval (CBIR) systems, images are not represented using the native

RGB pixel values. Rather, various manmade features are created, such as color histogram,

edge texture, etc.. Those manmade features are better correlated with the manmade con-

cepts in an image that such system tries to discover. Those principles could be used in

general feature selection and extraction algorithms as well. This thesis showed so for mi-

croarray gene expression data sets.

We concentrated on the two class sample classification problems. Data sets that we dealt

CHAPTER 6. CONCLUSION OF THE THESIS 161

with in this thesis always have binary class labels (cancer v.s. normal). There also exists

more complex data sets where multiple labels are recorded. One of the data set we used

is actually of multiple sample class labels (the multi-class data set). Since our algorithms

only deal with binary class labels in their current forms, only cancer/normal distinction is

used. One interesting question though is whether it is easy to expand our algorithms to

the general case of multiple class labels. We could convert a multiple labeled data set into

several “one v.s. all” binary labeled data sets and solve the sample classification problem

for each of those data sets. Classification results could later be fused using an ensemble

classifier. This is the normally followed method as construction and analyzing of a binary

classifier is much easier than that of a multi-class classifier.

Chapter 7

List of Publications

Xian Xu, Aidong Zhang, “Virtual Gene: A Gene Selection Algorithm for Sample Clas-

sification on Microarray Datasets”, Computational Science C ICCS 2005: 5th Interna-

tional Conference, 2005 International Workshop on Bioinformatics Research and Applica-

tions, Atlanta GA, USA, 2005.

Xian Xu, Aidong Zhang, “Virtual Gene: Using Correlations Between Genes to Select

Informative Genes on Microarray Datasets”, LNCS Transactions on Computational Sys-

tems Biology II, LNBI 3680, 138-152, 2005.

Xian Xu, Aidong Zhang, “Selecting Informative Genes from Microarray Dataset by

Incorporating Gene Ontology”, In Proceedings of IEEE BIBE 2005, Minneapolis MN,

162

CHAPTER 7. LIST OF PUBLICATIONS 163

USA, 2005.

Xian Xu, Aidong Zhang, “Improving Feature Subset Selection By Boosting: An Em-

pirical Study On Microarray Data Set”, Computational Science C ICCS 2006: 6th In-

ternational Conference, 2006 International Workshop on Bioinformatics Research and Ap-

plications, Reading UK, 2006.

Xian Xu, Aidong Zhang, “Improving Feature Subset Selection By Boosting: An Em-

pirical Study On Microarray Expression Data Set”, IEEE/ACM Transaction on Com-

putational Biology and Bioinformatics, to appear, 2006.

Xian Xu, Aidong Zhang, “Feature Extraction By Incorporating Gene Ontology Anno-

tations For Microarray Expression Data Set”, Bioinformatics, submitted, 2006.

Bibliography

[1] bioinformatics.org, http://bioinformatics.org/faq/#definitions.

[2] Gene-chips, http://www.gene-chips.com/.

[3] http://en.wikipedia.org/wiki/amino acid.

[4] http://medstat.med.utah.edu/block2/biochem/formosa/menu.html.

[5] http://www.ws.binghamton.edu/fridrich/562/fld.pdf.

[6] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules

between sets of items in large databases. In in Proc. of ACM SIGMOD 1993, 1993.

[7] Ftima Al-Shahrour, Ramn Daz-Uriarte, and Joaqun Dopazo. Fatigo: a web tool

for finding significant associations of gene ontology terms with groups of genes.

Bioinformatics, 20(4):578–580, 2004.

164

BIBLIOGRAPHY 165

[8] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine.

Broad patterns of gene expression revealed by clustering analysis of tumor and nor-

mal colon tissue probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. U.S.A.,

96(12):6745–50, 1999.

[9] Amigo. Amigo, http://www.genedb.org/amigo/perl/go.cgi.

[10] Howard Anton. Elementary Linear Algebra, 8th edition. Wiley, 2000.

[11] Francisco Azuaje and Olivier Bodenreider. Incorporating ontology-driven similarity

knowledge into functional genomics: An exploratory study. In In Proc. of IEEE

BIBE 2004, 2004.

[12] P. Baldi and A. D. Long. A bayesian framework for the analysis of microarray

expression data: regularized t-test and statistical inferences of gene changes. Bioin-

formatics, 17(6):509–519, 2001.

[13] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient

and robust access method for points and rectangles. In In proceedings of the SIG-

MOD Conference 1990, pages 322–331, 1990.

[14] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini.

Tissue classification with gene expression profiles. volume 7, pages 559–83, 2000.

BIBLIOGRAPHY 166

[15] T.H. Bø and I. Jonassen. New feature subset selection procedures for classification

of expression profiles. Genome Biology, 3(4):research0017.1–0017.11, 2002.

[16] G. V. Bobashev, S. Das, and A. Das. Experimental design for gene microarray exper-

iments and differential expression analysis. Methods of Microarray Data Analysis

II, pages 23–41, 2001.

[17] Nadia Bolshakova, Francisco

Azuaje, and Pdraig Cunningham. A knowledge-driven approach to cluster validity

assessment. Bioinformatics, 21(10):2546–2547, 2005.

[18] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for

optimal margin classifiers. In Computational Learing Theory, pages 144–152, 1992.

[19] U. M. Braga-Neto and E. R. Dougherty. Is cross-validation valid for small-sample

microarray classification? BIOINFORMATICS, 20(3):374–380, 2004.

[20] Leo Breiman. Bagging predictors. Machine Learning, 1996.

[21] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected

graph. Communications of the ACM, 16(9):575–77, 1973.

[22] Debouck C. and Goodfellow PN. Dna microarrays in drug discovery and develop-

ment. Nature Genetics, 21(1 suppl):48–50, 1999.

BIBLIOGRAPHY 167

[23] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector ma-

chines.

[24] Y. Chen, E.R. Dougherty, and M.L. Bittner. Ratio-based decisions and the quantita-

tive analysis of cdna microarray images. J. Biomed. Opt., 2:364–67, 1997.

[25] J Cheng, S Sun, A Tracy, E Hubbell, J Morris, V Valmeekam, A Kimbrough,

MS Cline, G Liu, R Shigeta, D Kulp, and MA. Siani-Rose. Netaffx gene ontol-

ogy mining tool: a visual approach for microarray data analysis. Bioinformatics,

20(9):1462–1463, 2004.

[26] G. Cong, K. H. Tung, X. Xu, F. Pan, and J. Yang. Farmer: finding interesting rule

groups in microarray datasets. In In Proc. of SIGMOD 2004, 2004.

[27] GO Consortium. Go consortium, http://www.geneontology.org/.

[28] G.O. Consortium. The gene ontology (go) database and informatics resource. Nu-

cleic Acids Research, 32:D258–D261, 2004.

[29] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[30] F. Crick. Central dogma of molecular biology. Nature, 227(5258):561–563, 1970.

[31] Xiangqin Cui and Gary A. Churchill. Statistical tests for differential expression in

cdna microarray experiments. Genome Biol., 4(4):210, 2003.

BIBLIOGRAPHY 168

[32] Maximilian Diehn, Gavin Sherlock, et al. Source: a unified genomic resource of

functional annotations, ontologies, and gene expression data. Nucleic Acids Re-

search,, 31(1):219–223, 2003.

[33] T. G. Dietterich. Machine learning research: Four current directions. AI Magazine,

18(4):97–136, 1997.

[34] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene

expression data. In Proc. Computational Systems Bioinformatics, page 523, 2003.

[35] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-

Interscience, 2000.

[36] S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination methods for

the classification of tumors using gene expression data. Journal of the American

Statistical Association, 97(457):77–87, 2002.

[37] I. Dunham, N. Shimizu, B.A. Roe, S. Chissoe, A.R. Hunt, J.E. Collins,

R. Bruskiewich, D.M. Beare, M. Clamp, L.J. Smink, R. Ainscough, J.P. Almeida,

A. Babbage, C. Bagguley, J. Bailey, K. Barlow, K.N. Bates, O. Beasley, C.P. Bird,

S. Blakey, A.M. Bridgeman, D. Buck, J. Burgess, W.D. Burrill, and K.P. OBrien.

The dna sequence of human chromosome 22. Nature, 402(6761):489–95, 1999.

[38] B. Efron, R. Tibshirani, J.D. Storey, and V. Tusher. Empirical bayes analysis of a

microarray experiment. J. Am. Stat. Assoc., 2001.

BIBLIOGRAPHY 169

[39] Bradley Efron. The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM,

1982.

[40] Bradley Efron. An Introduction to the Bootstrap. Chapman & Hall/CRC, 1994.

[41] Bradley Efron. The estimation of prediction error: Covariance penalties and cross-

validation. Journal of the American Statistical Association, 99(467):619–42, 2004.

[42] Bradley Efron and Robert Tibshirani. Improvements on cross-validation: The .632+

bootstrap method. Journal of the American Statistical Association, 92(438):548–

560, 1997.

[43] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display

of genome-wide expression patterns. PNAS, 95:14863C14868, 1998.

[44] R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R.

Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, and J.M. Merrick. Whole-

genome random sequencing and assembly of haemophilus influenzae. Science,

269(5223):496–512, 1995.

[45] Flybase. Flybase, http://flybase.bio.indiana.edu/.

[46] Roth F.P. Bringing out the best features of expression data. Genome Res., 11:1801–

1802, 2001.

BIBLIOGRAPHY 170

[47] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.

In in Proc. ICML 1996, 1996.

[48] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

(1):119–139, 1997.

[49] Yoav Freund and Robert E. Schapire. A short introduction to boosting. Journal of

Japanese Society for Artificial Intelligence, (5):771–780, 1999.

[50] A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, and P.O. Brown. Ge-

nomic expression responses to dna-damaging agents and the regulatory role of the

yeast. Molecular Biology of the Cell, 12(10):2987–3003, 2001.

[51] A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz,

D. Botstein, , and P.O. Brown. Genomic expression programs in the response of

yeast cells to environmental changes. Molecular Biology of the Cell, 11(12):4241–

57, 2000.

[52] Robert Gentleman, Vince Carey, Wolfgang Huber, Rafael Irizarry, and Sandrine Du-

doit. Bioinformatics and Computational Biology Solutions Using R and Bioconduc-

tor. Springer, 2005.

[53] T. R. Golub et al. Molecular classifications of cancer: Class discovery and class

prediction by gene expression monitoring. Science, 286(5439):531–7, 1999.

BIBLIOGRAPHY 171

[54] A. Guttman. R-trees: a dynamic index structure for spatial searching. In In proceed-

ings of the SIGMOD Conference 1984, pages 47–57, 1984.

[55] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classifi-

cation using support vector machines. Machine Learning, 46:389–422, 2002.

[56] M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD thesis,

University of Waikato, 1999.

[57] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann Pub, 2001.

[58] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques 2nd

edition. Morgan Kaufmann, 2006.

[59] T. Hastie, R. Tibshirani, M.B. Eisen, A. Alizadeh, R. Levy, L. Staudt, W.C. Chan,

D. Botstein, and P. Brown. ’gene shaving’ as a method for identifying distinct sets

of genes with similar expression patterns. Genome Biology, 1(2), 2000.

[60] M. Hattori, A. Fujiyama, T.D. Taylor, H. Watanabe, T. Yada, H.S. Park, A. Toyoda,

K. Ishii, Y. Totoki, D.K. Choi, E. Soeda, M. Ohki, T. Takagi, Y. Sakaki, S. Taudien,

K. Blechschmidt, A. Polley, U. Men-zel, J. Delabar, K. Kumpf, R. Lehmann, D. Pat-

terson, K. Reichwald, A. Rump, M. Schillhabel, and A. Schudy. The dna sequence

of human chromosome 21. Nature, 405(6784):311–19, 2000.

BIBLIOGRAPHY 172

[61] Simon Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Pren-

tice Hall, 1998.

[62] M.A. Hearst, B. Schlkopf, S. Dumais, E. Osuna, and Platt. J. Trends and controver-

sies - support vector machines. IEEE Intelligent Systems, 13(4):18–28, 1998.

[63] R. Herwig, A.J. Poustka, C. Muller, C. Bull, H. Lehrach, and J. OBrien. Large-scale

clustering of cdna-fingerprinting data. Genome Res., 9:1093–1105, 1999.

[64] Desheng Huang and Wei Pan. Incorporating biological knowledge into distance-

based clustering analysis of microarray gene expression data. Bioinformatics,

22(10):1259–68, 2006.

[65] National Human Genome Research Institute. National human genome research in-

stitute: http://www.accessexcellence.org/rc/vl/gg/microarray.html.

[66] I. Inza, B. Sierra, R. Blanco, and P. Larra naga. Gene selection by sequential search

wrapper approaches in microarray cancer class prediction. Journal of Intelligent and

Fuzzy Systems, 12(1):25–34, 2002.

[67] J. Jaeger, R. Sengupta, and W. L. Ruzzo. Improved gene selection for classification

of microarrays. In Proc. PSB, 2003.

BIBLIOGRAPHY 173

[68] A. K. Jain and D. Zongker. Feature selection: Evaluation application, and small

sample performance. IEEE Trans. Pattern Analysis and Machine Intelligence,

19(2):153–158, 1997.

[69] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical pattern recognition:

A review. IEEE Transactions on pattern analysis and machine intelligence, 22(1):4–

37, 2000.

[70] D. Jiang, C. Tang, and A. Zhang. Cluster analysis for gene expression data: A survey.

IEEE Transactions on Knowledge and Data Engineering, 16(11):1370–1386, 2004.

[71] Daxin Jiang, Jian Pei, Murali Ramanathan, Chun Tang, and Aidong Zhang. Mining

coherent gene clusters from gene-sample-time microarray data. In In proceedings of

the KDD Conference 2004, 2004.

[72] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae

and finite automata. Journal of the ACM, 41(1):67–95, 1994.

[73] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold,

M. Schwab, C.R. Antonescu, and C. Peterson. Classification and diagnostic predic-

tion of cancers using gene expression profiling and artificial neural networks. Nature

Medicine, 7(6):673–9, 2001.

[74] K. Kira and L. A. Rendell. A practical approach to feature selection. In In Proc. of

Machine Learning: Proceedings of International Conference, 1992 ICML, 1992.

BIBLIOGRAPHY 174

[75] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. In IJCAI, pages 1137–1145, 1995.

[76] I. Kononenko and E. Simec.

[77] Thomas Lengauer. Bioinformatics: From the pre-genomic to the post-genomic era.

ERCIM News, 2000.

[78] Benjamin Lewin. Genes VIII. Prentice Hall; 1st edition, 2003.

[79] T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and

multiclass classification methods for tissue classification based on gene expression.

Bioinformatics, 20:2429–2437, 2004.

[80] H. Liu, J. Li, and L. Wong. A comparative study on feature selection and classi-

fication methods using gene expression profiles and proteomic patterns. Genome

Inform., 13:51–60, 2002.

[81] Y. Lu and J. Han. Cancer classification using gene expression data. Genome Inform.,

28:243–268, 2003.

[82] Richard Maclin and David W. Opitz. An empirical evaluation of bagging and boost-

ing. In in Proc. AAAI-97, 1997.

[83] K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, 1979.

BIBLIOGRAPHY 175

[84] Geoffrey J. McLachlan, Kim-Anh Do, and Christophe Ambroise. Analyzing Mi-

croarray Gene Expression Data. Wiley, 2004.

[85] Ron Mier and Gunnar Ratsch. An introduction to boosting and leveraging. Advanced

Lectures on Machine Learning, LNCS, pages 119–184, 2003.

[86] Malanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press, 1998.

[87] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[88] Annette M. Molinaro, Richard Simon, and Ruth M. Pfeiffer. Prediction error es-

timation: a comparison of resampling methods. Bioinformatics, 21(15):3301–07,

2005.

[89] S. Mukherjee and S. J. Roberts. A theoretical analysis of the selection of differen-

tially expressed genes. Bioinformatics, 2004.

[90] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset

selection. IEEE Transactions on Computers, C-26(9):917–922, 1977.

[91] NCBI. National center for biotechnology information, http://www.ncbi.nih.gov.

[92] D. Opitz. Feature selection for ensembles. In in Proc. of 16th National Conf. on

Artificial Intelligence, AAAI 1999, pages 379–384, 1999.

BIBLIOGRAPHY 176

[93] W. Pan. A comparative review of statistical methods for discovering differentially

expressed genes in replicated microarray experiments. Bioinformatics, 18(4):546–

554, 2002.

[94] P. J. Park, M. Pagano, and M. Bonetti. A nonparametric scoring algorithm for iden-

tifying informative genes from microarray data. In Proc. PSB, 2001.

[95] P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature selection.

Pattern Recognition Letters, 15(11):1119–1125, 1994.

[96] QuickGO. Quickgo, http://www.ebi.ac.uk/ego/.

[97] S. Ramaswamy, P. Tamayo, R. Rifkin, S Mukherjee, C.H. Yeang, M. Angelo,

C. Ladd, M. Reich, E. Latulippe, J.P. Mesirov, T. Poggio, W. Gerald, M. Loda, E. S.

Lander, and T.R. Golub. Multiclass cancer diagnosis using tumor gene expression

signatures. PNAS, 98(26):15149–15154, 2001.

[98] D.F. Ransohoff. Rules of evidence for cancer molecular marker discovery and vali-

dation. Nature Reviews/Cancer, 4:309–13, 2004.

[99] M. Robnik Sikonja and I. Kononenko. An adaptation of relief for attribute estima-

tion in regressionn. In In Proc. of Machine Learning: Proceedings of International

Conference, 1997 ICML, pages 296–304, 1997.

BIBLIOGRAPHY 177

[100] Marko Robnik-Sikonja and Igor Kononenko. Theoretical and empirical analysis of

relieff and rrelieff. Machine Learning Journal, 53:23–69, 2003.

[101] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–

227, 1990.

[102] Alex Smola Klaus-Robert Mller Matthias Scholz Gunnar Rtsch Sebastian Mika,

Bernhard Schlkopf. Kernel pca and de-noising in feature spaces. In In proceed-

ings of the NIPS Conference 1999, 1999.

[103] P. Sebastiani, E. Gussoni, I. S. Kohane, and M. Ramoni. Statistical challenges in

functional genomics. Statistical Science, 18(1):33–70, 2003.

[104] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein

interaction and gene expression data. BIOINFORMATICS, 19(Suppl 1):264–272,

2003.

[105] SGD. Sgd, http://www.yeastgenome.org/.

[106] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.

Cambridge, 2004.

[107] W. Siedlecki and J. Sklansky. On automatic feature selection. International Journal

of Pattern Recognition and Articial Intelligence, 2(2):197–220, 1988.

BIBLIOGRAPHY 178

[108] W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-scale feature

selection. Pattern Recognition Letters, 10:335–347, 1989.

[109] Chao Sima, Ulisses Braga-Neto, and Edward R. Dougherty. Superior feature-

set ranking for small samples using bolstered error estimation. Bioinformatics,

21(7):1046–1054, 2005.

[110] R. Simon, M.D. Radmacher, K. Dobbin, and L.M. McShane. Pitfalls in the use

of dna microarray data for diagnostic and prognostic classification. Journal of the

National Cancer Institute, 95(1):14–18, 2003.

[111] D. K. Slonim. From patterns to pathways: gene expression data analysis comes of

age. Nature Genetics, 32:502–8, 2002.

[112] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O.

Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-

regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.

Molecular Biology of the Cell, 9(12):3273–3297, 1998.

[113] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E.S. Lan-

der, and T.R. Golub. Interpreting patterns of gene expression with self-organizing

maps: methods and application to hematopoietic differentiation. PNAS, 96:2907–

2912, 1999.

BIBLIOGRAPHY 179

[114] C. Tang and A. Zhang. Mining multiple phenotype structures underlying gene ex-

pression profiles. In Proceedings of the 2003 CIKM Conference, 2003.

[115] P.E. Hart T.M. Cover. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, (1):21–27, 1967.

[116] O. G. Troyanskaya, M. E. Garber, P. O. Brown, D. Botstein, and R. B. Altman.

Nonparametric methods for identifying differentially expressed genes in microarray

data. Bioinformatics, 18(11):1454–61, 2002.

[117] Johannes Tuikkala, Laura Elo, Olli S. Nevalainen, and Tero Aittokallio. Improving

missing value estimation in microarray data with gene ontology. Bioinformatics,

22(5):566–72, 2006.

[118] Virginia Goss Tusher, Robert Tibshirani, and Gilbert Chu. Significance analysis of

microarrays applied to the ionizing radiation response. PNAS, 98(9):5116–5121,

April 2001.

[119] U.M. and E.R. Dougherty. Bolstered error estimation. Pattern Recognition,

37:1267–1281, 2004.

[120] U.M. and E.R. Dougherty. Is cross-validation valid for small-sample microarray

classification? Bioinformatics, 20:374–380, 2004.

[121] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

BIBLIOGRAPHY 180

[122] Andy Vierstraete. http://users.ugent.be/˜avierstr.

[123] H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large

data sets. In Proceedings of the 2002 ACM SIGMOD International Conference on

Management of Data, 2002.

[124] Haiying Wang and Francisco Azuaje. Gene expression correlation and gene

ontology-based similarity: An assessment of quantitative relationships. In In Proc.

of IEEE CIBCB 2004, 2004.

[125] Yuhang Wang and Fillia Makedon. Application of relief-f feature filtering algorithm

to selecting informative genes for cancer classication using microarray data. In Pro-

ceedings of the 2004 CSB Conference, 2004.

[126] Yuhang Wang, Fillia S. Makedon, James C. Ford, and Justin Pearlman. Hykgene:

a hybrid approach for selecting marker genes for phenotype classification using mi-

croarray gene expression data. Bioinformatics, 21(8):1530–1537, 2005.

[127] Andrew Webb. Statistical Pattern Recognition. Newnes, 1999.

[128] Andrew Webb. Statistical Analysis of Gene Expression Microarray Data. Chapman

& Hall/CRC, 2003.

BIBLIOGRAPHY 181

[129] Y. Wu and A. Zhang. Feature selection for classifying high-dimensional numeri-

cal data. In IEEE Conference on Computer Vision and Pattern Recognition 2004,

volume 2, pages 251–258, 2004.

[130] E. P. Xing, M. I. Jordan, and R. M. Karp. Feature selection for high-dimensional

genomic microarray data. In Proc. 18th International Conf. on Machine Learning,

pages 601–608. Morgan Kaufmann, San Francisco, CA, 2001.

[131] M. Xiong, L. Jin, W. Li, and E. Boerwinkle. Computational methods for gene

expression-based tumor classification. BioTechniques, 29(6):1264–1270, 2000.

[132] Xian Xu and Aidong Zhang. Selecting informative genes from microarray dataset

by incorporating gene ontology. In In Proceedings of IEEE BIBE 2005, 2005.

[133] Xian Xu and Aidong Zhang. Virtual gene: A gene selection algorithm for sample

classification on microarray datasets. In Computational Science ICCS 2005: 5th

International Conference, 2005 International Workshop on Bioinformatics Research

and Applications. Springer-Verlag GmbH, 2005.

[134] Xian Xu and Aidong Zhang. Virtual gene: Using correlations between genes to se-

lect informative genes on microarray datasets. LNCS Transactions on Computational

Systems Biology II, LNBI 3680, pages 138–152, 2005.

[135] Xian Xu and Aidong Zhang. Improving feature subset selection by boosting: An

empirical study on microarray data set. In Computational Science ICCS 2006: 6th

BIBLIOGRAPHY 182

International Conference, 2006 International Workshop on Bioinformatics Research

and Applications. Springer-Verlag GmbH, 2006.

[136] Xian Xu and Aidong Zhang. Improving feature subset selection by boosting: An

empirical study on microarray expression data set. IEEE/ACM Transaction on Com-

putational Biology and Bioinformatics, 2006 to appear.

[137] S. Ben Yahia, T. Hamrouni, and E. Mephu Nguifo. Frequent closed itemset based

algorithms: A thorough structural and analytical survey. SIGKDD Explorations,

8(1):93–104, 2006.

[138] L. Yu and H. Liu. Redundancy based feature selection for microarray data. In Proc.

of SIGKDD, 2004.

