
NOVEL TECHNIQUES FOR DATA WAREHOUSING AND
ONLINE ANALYTICAL PROCESSING IN EMERGING

APPLICATIONS

by

Moonjung Cho

September 1, 2006

A dissertation submitted to the

Faculty of the Graduate School of

State University of New York at Buffalo

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science and Engineering

To my eternal mentor Daisaku Ikeda

i

Acknowledgements

This thesis could not have been written without the invaluable support of my advisor, Dr. Jian

Pei. His promptness, sincerity, patience, and challenging spirit are great forces for me to break

through every deadlock in the process of researches. It is impossible for me to express how

much I appreciate to his unflagging trust and encouragements.

I am very grateful to Dr. Xin He and Dr. Venugopal Govindaraju for review and advices

on my thesis. Also, I should not omit to express my thanks to Dr. Kenneth W. Regan for his

encouragement, and Dr. Guozhu Dong for a thorough review and comments.

My family has provided support from behind the scenes. This thesis is dedicated to my

parents, to whom I owe the most. I wish to thank to my six roommates in Buffalo and many

friends in the world. I will not forget our precious memories of hearty laughs, smiles, tears, and

joy. I also strongly hope that all of my friends will fulfill their dreams and goals. I especially

thank to eternal friends in SGI for unlimited and unconditional encouragements. They have

shown me what true friendship is and how wonderful and powerful heart-to-heart connections

are.

I am for sure that the only way to pay my gratitude in debt to all is to never stop developing

myself so that I am able to contribute something more positive value to this world. I will not let

you down.

iii

Abstract

A data warehouse is a collection of data for supporting of decision making process. Data cubes

and on-line analytical processing(OLAP) have become very popular techniques to help users

analyze data in a warehouse. Even though previous studies on a data warehouse and data cube

have been proposed and developed, as new applications emerging, there are still technical chal-

lenges which have not been addressed well.

We propose effective and efficient solutions to the challenging problems in the areas of (1)

mining iceberg cube from multiple tables, (2) online answering ad-hoc aggregate queries on

data streams, and (3) warehousing pattern-based clusters.

Firstly, we argue that the materialized base table assumption in most of the previous studies

on computing iceberg cubes is often infeasible in practice. Instead, a data warehouse is often

organized with multiple tables in schemas such as star schema, snowflake schema, and constel-

lation schema. We propose a novel approach to compute an iceberg cube from multiple tables

in a data warehouse in order to avoid costly materialization of a base table. Secondly, it is infea-

sible to compute a full data cube for answering ad-hoc aggregate queries on data streams due to

a rapid data input and the huge size of data. We develop a new method to answer online ad-hoc

aggregate queries on data streams, which is to maintain and index a small subset of aggregate

cells on a designed data structure. Last, we extend the data warehousing and OLAP techniques

to tackle pattern-based clusters. We propose an efficient method to construct a data warehouse

of non-redundant pattern-based clusters.

v

Table of Contents

Acknowledgements iii

Abstract v

Table of Contents vii

1 Introduction 1

1.1 Data warehouse and OLAP . 1

1.2 Motivations . 2

1.3 Contributions . 4

1.4 Dissertation Outline . 5

2 Computing data cube and iceberg cube from data warehouses 7

2.1 Preliminaries . 7

2.2 Problem Definition and Related Work . 10

2.2.1 Problem Definition . 10

2.2.2 Related Work . 14

2.3 CTC: A Cross Table Cubing Algorithm . 16

2.3.1 Propagation Across Tables . 17

2.3.2 Computation of Local Iceberg Cubes 19

2.3.3 Computation of Global Iceberg Cubes 21

2.4 Experimental Results . 24

2.4.1 The Synthetic Data . 25

2.4.2 The Real Data and Setting . 31

2.4.3 Summary . 33

2.5 Discussion . 34

3 Online answering ad-hoc aggregate queries on data streams 37

3.1 Preliminaries . 37

3.1.1 The Framework . 40

3.2 Related Work . 43

vii

viii TABLE OF CONTENTS

3.3 Prefix Aggregate Tree (PAT) . 45

3.3.1 Data Structure . 46

3.3.2 Comparison:PATvs. Previous Methods 51

3.3.3 PATConstruction . 52

3.3.4 Incremental Maintenance . 54

3.4 Aggregate Query Answering . 58

3.4.1 Answering Point Queries . 58

3.4.2 Answering Range Queries . 61

3.5 Experimental Results . 62

3.5.1 Building Prefix Aggregate Trees . 63

3.5.2 Incremental Maintenance . 65

3.5.3 The Order of Dimensions . 67

3.5.4 Results on the Weather Data Set . 68

3.5.5 Query Answering . 69

3.5.6 Summary . 70

4 Warehousing pattern-based clusters 73

4.1 Preliminaries . 73

4.2 Problem Definition and Related Work . 76

4.2.1 Pattern-Based Clustering . 76

4.2.2 Comparison Between Pattern-Based Clustering and Partition-Based Clus-

tering . 77

4.2.3 Maximal Pattern-Based Clustering . 78

4.2.4 Maximal Pattern-based Clusters As Skyline Pattern-based Clusters . . . 79

4.2.5 p-Clustering: A δ-pCluster Mining Algorithm 81

4.2.6 Related Work . 83

4.2.7 Complexity . 85

4.3 AlgorithmsMaPleandMaPle+ . 85

4.3.1 An Overview ofMaPle . 85

4.3.2 Computing and Pruning MDSs . 88

4.3.3 Progressively Refining, Depth-first Search of Maximal pClusters 91

4.3.4 MaPle+: Further Improvements . 96

4.4 Empirical Evaluation . 99

4.4.1 The Data Sets . 99

4.4.2 Results on Yeast Data Set . 100

4.4.3 Results on Synthetic Data Sets . 101

5 Conclusion 105

TABLE OF CONTENTS ix

Bibliography 108

List of Figures

2.1 The auto data warehouse in star schema. 8

2.2 A simple case of computing iceberg cube from two tables. 9

2.3 Data warehouseDW as the running example. 11

2.4 The universal base tableTbase. 12

2.5 Top-down computation in MultiWay. 15

2.6 Bottom-up computation inBUCand H-Cubing. 15

2.7 AlgorithmCTC. 17

2.8 The propagated dimension tables. 18

2.9 Computing global iceberg cells containing some non-∗ values in the attributes

in fact table. 22

2.10 The H-tree for foreign key attribute values. 23

2.11 Joining local iceberg cells in dimension tables to form global ones. 25

2.12 Scalability with respect to number of dimension tables. 27

2.13 Scalability with respect to cardinality in each dimension. 28

2.14 Scalability with respect to Zipf factor. 29

2.15 Scalability with respect to number of non-foreign key dimensions. 29

2.16 Scalability with respect to iceberg condition threshold. 30

2.17 Scalability with respect to number of tuples in the fact table. 30

2.18 Scalability with respect to size of data sets. 32

2.19 Scalability with respect to size of data sets. 32

2.20 Scalability with respect to number of dimension tables. 33

2.21 Snowflake schema: an example. 34

3.1 The framework of warehousing data streams. 41

3.2 The tuples at instants1 and2 in streamS(T,A,B,C,D,M). 46

3.3 Archiving a data stream in a prefix tree. 46

3.4 Prefix aggregate tree (the aggregate tables for infix links are omitted to make

the graph easy to read). 49

3.5 ThePATconstruction algorithm by scanning tuples one by one. 55

3.6 ThePAT incremental maintenance algorithm. 56

xi

xii LIST OF FIGURES

3.7 The tuples at instant3. 56

3.8 Prefix aggregate tree at instant3. 57

3.9 The algorithm answering point queries. 59

3.10 Results on constructingPAT. 63

3.11 Results on incremental maintenance ofPAT. 66

3.12 The effect of orders of dimensions. 67

3.13 Results on real data set Weather. 68

3.14 Results on query answering using PATs. 70

4.1 A set of objects as a motivating example. 74

4.2 ThepScoreof two objectsrx andry on attributesav andau. 76

4.3 A comparison between partition-based clustering and pattern-based clustering. . 78

4.4 Finding MDS for two objects. 81

4.5 A prefix tree of object-pair MDSs. 83

4.6 The attribute-first-object-later search. 86

4.7 AlgorithmMaPle. 87

4.8 The database and attribute-pair MDSs in our running example. 89

4.9 Pruning using Lemma 6. 90

4.10 The algorithm of pruning MDSs. 91

4.11 The algorithm of projection-based search. 91

4.12 The attribute-pair MDSs in Example 4.6. 97

4.13 Number of pClusters on Yeast raw data set. 100

4.14 Runtime vs.δ on the Yeast data set,mina = 6 andmino = 60. 101

4.15 Runtime vs. minimum number of objects in pClusters. 102

4.16 Runtime vs.δ. 103

4.17 Scalability with respect to the number of objects in the data sets. 103

4.18 Scalability with respect to the number of attributes in the data sets. 104

Chapter 1

Introduction

Data warehousing and online analytic processing are essential facilities for data analysis tasks

supporting a user’s decision in a business. This dissertation reports the novel techniques for data

warehousing and online analytical processing in emerging applications. It especially focuses on

the challenges in data warehouse and online analytical processing and presents new techniques

to tackle those challenges. In this chapter, we begin with a general overview of data warehouse

and online analytical processing concepts, and then motivations and contributions are presented.

Section 1.1 gives the overview of data warehouse and OLAP concepts and applications.

Section 1.2 shows what motivates our researches on data warehouse and OLAP. Our contribu-

tions responding to the motivations are described in the Section 1.3. Section 1.4 outlines the

rest of the dissertation.

1.1 Data warehouse and OLAP

Data warehousing is an architecture to help business executives to understand and organize data

and make a business decision. A data warehouse is asubject oriented, integrated, time variant,

non volatilecollection of data in support of decision making processes(Inmon, 2002). Data

warehousing approach is to integrate information and heterogeneous sources in advance, store

the historical information in a warehouse and support complex multidimensional queries. On-

1

2 Chapter 1. Introduction

Line Analytical Processing(OLAP) manages data warehouses for data analysis and provides

calculations such as summarization and aggregation in advance, and manages information at

different levels of granularity. OLAP has become very popular techniques to help users analyze

data by providing multiple views of the data.

Data warehouses and OLAP tools are based on a multidimensional data model. A data cube

is a model for multi-dimensional database and is defined by dimensions and facts(or measures).

Dimensions are entities of records which a company want to keep, and facts are numerical mea-

sures or quantities. Given a base table consisting of dimensions and measures and an aggregate

function, a data cube consists of the complete set of group-bys on any subsets of dimensions

and their aggregates using the aggregate function. The number of group-bys(cuboids) is ex-

ponential to the number of dimensions. A data cube in practice is often huge due to the very

large number of possible dimension value combinations. Even many detailed aggregate cells

whose aggregate values are too small may be trivial in data analysis. To overcome the curse of

dimensionality, an iceberg cube has been proposed.

An iceberg cube consists of only the set of group-bys whose aggregates are no less than

a user-specified aggregate threshold, and does not compute a complete cube. Mining iceberg

cubes is an important research problem in both online analytic processing (OLAP) and data

mining. It can be to answer group-by queries, mine multidimensional association rules, and

identify interesting subsets of the cube for precomputation(Beyer & Ramakrishnan, 1999).

Based on the concept of data warehouses and OLAP methods, we like to present what

motivated our researches.

1.2 Motivations

As we mentioned in the previous section, data warehouses and OLAP techniques have devel-

oped for users to understand data and make a decision. However, the techniques in a data

warehouse have still challenges in situations where a data warehouse may have complicated

schemas instead of materialized single base table, and manage a data streams. Among many

1.2. Motivations 3

of those challenges on data warehouse and data cube, we propose several interesting ones we

would like to address.

• Mining Iceberg Cubes. A data warehouse is often organized in a schema of multi-

ple tables, such as star schema or snowflake schema, in practice. Several efficient algo-

rithms, such asBUC (Beyer & Ramakrishnan, 1999), MultiWay (Y. Zhao et al., 1997),

H-Cubing (Han et al., 2001), Star-Cubing (Xin et al., 2003), and Range Cube (Feng et al.,

2004), have been proposed to compute iceberg cubes efficiently from asinglebase table,

with simple or complex measures. Although mining iceberg cube from a single table be-

comes more efficient, such algorithms cannot be applied directly to real data warehouses

in many applications. Also the cost to materialize single base table from a data ware-

house is high in space and time due to the redundancy and multiple scans of dimensional

tables. This observations become a motivating question:“Can we compute iceberg cubes

efficiently from multiple tables without materializing a universal base table?”

• Aggregate Queries on a Data Stream.Recently, several important applications see the

strong demands of online answeringad hoc aggregate queriesover fast data streams. In

those applications, it is required tomaintain the recent data in a sliding window, and

provide online answers to ad hoc aggregate queries over the current sliding window.

Unfortunately, a traditional data warehouse often updates in batch periodically and such

updates are often conducted offline. Therefore, online aggregate queries about the most

recent data cannot be answered by the traditional data warehouses due to the delay of the

incremental updates. Moveover, as a data cube, the complete set of aggregate cells on a

multidimensional base table over a data stream can be huge. Herein we have a motivating

question to address: “Can we materialize and incrementally maintain a small subset of

aggregates by scanning the data stream only once, and still retain the high performance

of online answering ad hoc aggregate queries?”

• Warehouse Pattern-based Clusters.Clustering data is a challenging data mining task

with many important applications. Clustering methods need similarity measures defined

4 Chapter 1. Introduction

globally on set of attributes/dimensions. However, in some applications, it is hard or even

infeasible to define a good similarity measure on a global subset of attributes to serve

the clustering. As indicated by some recent studies (Jiang et al., 2003,0; Liu & Wang,

2003; L. Zhao & Zaki, 2005; H. Wang et al., 2002), pattern-based clustering is introduced

and useful in many applications. In general, given a set of data objects, a subset of

objects forms a pattern-based clusters if these objects follow a similar pattern in a subset

of dimensions. Comparing to the conventional clustering, pattern-based clustering has

two distinct features. First, pattern-based clustering does not require a globally defined

similarity measure. Instead, it specifies quality constrains on clusters. Different clusters

can follow different patterns on different subsets of dimensions. Second, the clusters are

not necessarily exclusive. In other words, an object can appear in more than one cluster.

Due to the non-exclusiveness of clusters, a lot of redundancy exist in the complete set

of pattern-based clusters. Pattern-based clustering problem is proposed and a mining

algorithm is developed by H. Wang et al. (2002). Our motivating question is “What is the

effective representation of non-redundant pattern-based clusters? Moreover, how can we

construct a data warehouse of non-redundant pattern-based clusters efficiently?”

1.3 Contributions

Responding to the challenges in the previous section, our contributions are as follows:

• We develop a novel methodCTC which directly computes iceberg cubes from a star

schema in a data warehouse without materializing the universal base table. It removes

high cost taken by materialization of the universal base table as an input to the previous

methods for computation of iceberg cubes. It computes local iceberg cells in each dimen-

sional table, and then derives the global ones using key relations between a fact table and

dimensional tables. Due to the usage of local iceberg cells from dimensional tables, it

avoids redundancy of data caused by the materialization of the universal base table. The

experimental results ofCTCclearly indicate thatCTCis efficient and scalable in comput-

1.4. Dissertation Outline 5

ing iceberg cubes for large data warehouses in a star schema. Also, the idea ofCTCcan

be generalized and extended to handle more complicated schemas.

• In response to strong demands of online answering ad hoc aggregate queries over fast data

streams, a novelPAT data structure is proposed to construct an online data warehouse.

Efficient algorithms are also developed to construct and incrementally maintain aPAT

over a data stream, and answer various ad hoc aggregate queries. The key points of this

work are as follows:

1. A PAT maintains a small subset of aggregates from a recent data over a sliding

window, not the complete set of aggregate cells.

2. It scans the data stream only once.

3. It answers various ad hoc aggregate queries over a recent data over a sliding window

exactly instead of approximately.

This work certainly opens a way to apply mining iceberg cubes to a online data ware-

housing over a data stream.

• For an effective representation of non-redundant pattern-based clusters, we proposemaxi-

malpattern-based clusters, which are non-redundant clusters. We also developMaPleand

MaPle+, two efficient and scalable algorithms, for mining maximal pattern-based clus-

ters in large databases. By removing the redundancy, it reduces the cost to find redundant

clusters so that the effectiveness of the mining can be improved substantially.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows.

Chapter 2 describes the problem of computing iceberg cubes from data warehouses. An al-

gorithmCTCavoids materializing the universal base table, instead it facilitates the local iceberg

cubes of the dimension tables. We also show by experiments thatCTC is more efficient than

6 Chapter 1. Introduction

any other methods. Some ideas to handle more complicated schemas such as snowflake schema

and constellation schema are discussed.

Chapter 3 proposes a novelPAT data structure to construct an online data warehouse. It

maintains the data stream within a sliding window in main memory. We present efficient al-

gorithms to maintain aPATand answer essential aggregate queries, including point and range

queries.

Chapter 4 studies the pattern-based clustering and proposes the mining of maximal pattern-

based clusters which are non-redundant pattern-based clusters. It also presents two efficient

algorithms calledMaPleandMaPle+.

Chapter 5 concludes the works on data warehouse and data cubing in the dissertation. Inter-

esting future research topics are also discussed.

Chapter 2

Computing data cube and iceberg cube

from data warehouses

2.1 Preliminaries

Mining iceberg cubes from a data warehouse is a very useful technology since it serves only

data cells satisfying specified aggregate threshold. This chapter describes inherent challenges

of previous mining iceberg cubes algorithms and our novel method to solve the challenge.

Example 2.1 (Motivating example).The data warehouse in Figure 2.1 records the information

about sales of automobiles, and is organized in a star schema. TableSalesis the fact table and

tablesCustomer, Brand, Model are dimension tables. Attributeprofit in the fact table is the

measure.

A sales manager may want to compute an iceberg cube with conditionavg(pro f it) ≥
$3,000, i.e., finding the groups of sales that bring in a profit of3,000dollars or more on aver-

age. Such group-bys, such as “sales to customers of 30s buying 6-cylinder cars with sun-roof

have average profit of$3,500” may be interesting to her, since she can use the information to

promote the 6-cylinder cars with sun-roof to the target customer group.

Example 2.1 shows how mining iceberg cubes can be used in a business and also a data

warehouse in practice has multiple tables in a simple schema such as star schema, snowflake

7

8 Chapter 2. Computing data cube and iceberg cube from data warehouses

brand

country

Brand

car−loan

ext−warrantee

profit

model #

transimission

sun roof

convertible

engine type

Modelincome

address

name

cust−id

Customer

age

Sales (fact table)

cust−id

brand

model #

Figure 2.1: The auto data warehouse in star schema.

schema, not a huge universal base table. However, previous efficient algorithms (Beyer &

Ramakrishnan, 1999; Y. Zhao et al., 1997; Han et al., 2001; Xin et al., 2003; Feng et al., 2004)

have assumed a single universal base table as an input. Let us come up a rudimentary approach

to compute iceberg cubes from multiple tables.

Given a data warehouse with multiple tables, one rudimentary approach may have two

steps to mining iceberg cubes. First, a universal base table is formed by joining the related

tables. Take the auto data warehouse in Figure 2.1 as an example, we can compute a base table

Salesbase= Sales1 Customer1 Brand1 Model. Once the base table is formed, we can apply

an existing iceberg cube computation method to derive the iceberg cube.

Although the rudimentary method is simple, it may not be efficient or may not be even

feasible in a real application. Usually, a large data warehouse may contain tens of dimensions

and millions of tuples. It is often unaffordable in both space and time to join the related tables

and form the universal base table.

Then, the purpose is to compute iceberg cubes efficiently from multiple tables without mate-

rializing a universal base table. Surprisingly, our investigation indicates that computing iceberg

cube from multiple tables directly without materializing a universal base table may be even

more efficient in both space and runtime than computing from the universal base table even

though we assume that the universal base table is already instantiated. While the systematic

study will be presented in Section 2.3, we highlight the intuition in the following example.

2.1. Preliminaries 9

Example 2.2 (Intuition). Consider computing the iceberg cube from tablesF andD in Fig-

ure 2.2. Suppose attributeM is the measure.

K A1 · · · An M

k a1,1 · · · a1,n m1

· · · · · · · · · · · · · · ·
k al ,1 · · · Al ,n ml

K B1 · · · Bm

k b1 · · · bm

A1 · · · An K B1 · · · Bm M

a1,1 · · · a1,n k b1 · · · bm m1

· ·
al ,1 · · · al ,n k b1 · · · bm ml

TableF TableD Universal base tableB = F 1 D

Figure 2.2: A simple case of computing iceberg cube from two tables.

A rudimentary method may first compute a universal base tableB = F 1 D, as also shown

in the figure, and then compute the iceberg cube fromB. However, such a rudimentary method

may suffer from two non-trivial costs.

• Space cost.As shown in the figure, the tuple in tableD is replicatedl times in the universal

base tableB, wherel is the number of tuples in the fact table. Moreover, every attribute

in the tables appears in the universal base table. Thus, the universal base table is wider

than any table in the original database. In real applications, there can be a large number

of tuples in the fact table, and hundreds of attributes in the database. Then, the dimension

information may be replicated many times, and the universal base table may be very wide

– containing hundreds of attributes.

• Time cost.The large base table may have to be scanned many times and many combina-

tions of attributes may have to be checked. As the universal base table can be much wider

and larger than the original tables, the computation time can be dramatic.

Can we compute iceberg cubes directly fromF and D without materializing the universal

base tableB? The following two observations help.

First, for any combination of attributes in tableD, the aggregate value ism= aggr({m1, . . . ,ml}).
Therefore, ifm satisfies the iceberg condition, then every combination of attributes inD is an

iceberg cell. Please note that we compute these iceberg cells using tableD only, which contains

only 1 tuple. In the rudimentary method, we have to use many tuples in tableB to compute

these iceberg cells. The saving is significant!

10 Chapter 2. Computing data cube and iceberg cube from data warehouses

Second, for any iceberg cell involving attributes in tableF , the aggregate value can be

computed from tableF only. In order words, if we find an iceberg cell inF , we can enumerate

a whole bunch of iceberg cells by inserting more attributes inD and the aggregate value retains.

Please note that we only useF , which has only(n+ 1) attributes, to compute these iceberg

cells. In the rudimentary method, we have to compute these iceberg cells using a much wider

universal base tableB. This is another significant saving.

In the Section 2.3, we tackle the problem of mining iceberg cubes from data warehouses,

and make the following contributions.

First, we address the problem of mining iceberg cubes from data warehouses of multiple

tables. Particularly, we formulate the problem of computing iceberg cubes from star schema

and propose efficient algorithms. Our approach can be easily extended to handle other schemas

in data warehouses, such as snowflake schema.

Second,we develop an efficient algorithm,CTC (for Cross Table Cubing), to compute ice-

berg cubes from star schema. Our method does not need to materialize the universal base table.

Instead,CTCworks in three steps. First,CTCpropagates the information of keys and measure

to each dimension table. Second, the local iceberg cube in each table is computed. Last, the

global iceberg cube is derived from the local ones. We show thatCTCcan be more efficient in

both space and runtime than computing iceberg cube from a materialized universal base table.

Last, we conduct an extensive performance study on synthetic data sets to examine the effi-

ciency and the scalability of our approach. The experimental results show thatCTC is efficient

and scalable for large data warehouses.

2.2 Problem Definition and Related Work

2.2.1 Problem Definition

We first consider only data warehouses in star schema. However, the techniques developed

can be extended to handle data warehouses in more complicated schemas, such as snowflake

2.2. Problem Definition and Related Work 11

Fact

M
E
B
A

D2

H
G
F
ED1

D
C
B

A B E M

a1 b1 e1 1
a2 b2 e2 3
a3 b3 e3 2
a1 b1 e2 4
a2 b4 e4 2

(a) The star schema (b) Fact tableFact

B C D

b1 c1 d1

b2 c1 d2

b3 c1 d3

b4 c2 d1

E F G H

e1 f1 g1 h1

e2 f1 g2 h2

e3 f1 g1 h2

e4 f2 g1 h1

(c) Dimension tableD1 (d) Dimension tableD2

Figure 2.3: Data warehouseDW as the running example.

schema. We will discuss the extensions in Section 2.5.

Definition 2.1 (Star schema).A star schemais a set of tablesF,D1, . . . ,Dn, where

• F = (K1, . . . ,Kn,M) is called thefact table. K1, . . . ,Kn are thedimensionsandM is the

measure. Ki (1≤ i ≤ n) is the foreign key referencing to dimension tableDi ; and

• D1, . . . ,Dn are called thedimension tables. Ki is the primary key inDi (1≤ i ≤ n).

TableB = F 1 D1 1 · · · 1 Dn is called theuniversal base table.

In Figure 2.1, tableSalesis the fact table, and tablesCustomer, Brand, and Model are

the dimension tables. Dimensionscar-loan andext-warranteedo not have further attributes.

In other words, the dimension tables for those two dimensions contain only the dimension

themselves and thus can be trivially omitted.

Attributescust-id, brand, andmodel#serve as the foreign keys in the fact table and reference

to the primary keys in the dimension tables, respectively.

As another example, consider the data warehouseDW in Figure 2.3. We will use this data

warehouse as the running example in the rest of this chapter.

The star schema is shown in Figure 2.3(a). In data warehouseDW, the fact tableFact

has3 dimensions, namelyA, B and E. The measure isM. DimensionsB and E reference

12 Chapter 2. Computing data cube and iceberg cube from data warehouses

to dimension tablesD1 andD2, respectively. In data warehouseDW, the universal base table

Tbase= Fact 1 D1 1 D2 is shown in Figure 2.4.

A B C D E F G H M

a1 b1 c1 d1 e1 f1 g1 h1 1
a2 b2 c1 d2 e2 f1 g2 h2 3
a3 b3 c1 d3 e3 f1 g1 h2 2
a1 b1 c1 d1 e2 f1 g2 h2 4
a2 b4 c2 d1 e4 f2 g1 h1 2

Figure 2.4: The universal base tableTbase.

Definition 2.2 (Iceberg cube).LetB=(A1, . . . ,Am,M) be a universal base table, whereA1, . . . ,Am

are either dimensions or attributes in dimension tables. A cellc = (a1, . . . ,am) is called anag-

gregate cell, whereai ∈ Ai or ai = ∗ (1≤ i ≤ m). Thecoverof c is the set of tuples inB that

match all non-∗ ai ’s, i.e.,cov(c) = {t ∈ B|∀ai 6= ∗, t.Ai = ai}.
For an aggregate functionaggr() on the domain ofM, aggr(c) = aggr(cov(c)).

For an iceberg conditionC, whereC is defined using some aggregate functions, a cellc is

called aniceberg cellif c satisfiesC. An iceberg cubeis the complete set of iceberg cells.

Example 2.3 (iceberg cube).In base tableTbase(Figure 2.4), for aggregate cellc=(∗,b1,∗,d1,∗, f1,∗,∗),
cov(c) contains2 tuples, the first and the fourth tuples inTbase, because they matchc in dimen-

sionsB, D andF . We haveCOUNT(cov(c)) = 2.

Consider iceberg conditionC≡ (COUNT(c) ≥ 2). Aggregate cellc satisfies the condition

and thus is in the iceberg cube.

Problem definition. The problem of computing iceberg cube from a data warehouseis that,

given a data warehouse in star schema and an iceberg condition, compute the iceberg cube.

In general, an iceberg condition can take any form. As indicated by previous studies, a spe-

cific category of iceberg conditions calledmonotonic conditionsare often of particular interest.

For aggregate cellsc = (a1, . . . ,am) andc′ = (a′1, . . . ,a
′
m), c is called anancestorof c′ and

c′ a descendantof c if for any ai 6= ∗, a′i = ai (1≤ i ≤m), denoted byc′ v c. Immediately, we

have the following result.

2.2. Problem Definition and Related Work 13

Lemma 1. For aggregate cellsc andc′, if c′ v c, thencov(c′)⊆ cov(c).

An iceberg conditionC is calledmonotonicif for any aggregate cellc, if C holds forc, then

C also holds for every ancestor ofc. Some typical examples of monotonic iceberg conditions

includeCOUNT(c) ≥ v, MAX(c) ≥ v, MIN(c) ≤ v, SUM(c) ≥ v (if the domain of the measure

consists of only non-negative numbers).

Example 2.4 (Monotonic iceberg condition).Consider iceberg conditionC≡ (COUNT(c) ≥
2). It is monotonic. For example, as shown in Example 2.3, aggregate cellc=(∗,b1,∗,d1,∗, f1,∗,∗)
satisfies the condition. According to Lemma 1, every ancestor ofc, such asc1 =(∗,∗,∗,d1,∗, f1,∗,∗)
andc2 = (∗,b1,∗,∗,∗,∗,∗,∗), has a cover as a superset ofcov(c), and thus has aCOUNT() value

greater than or equal to that ofc. In other words, every ancestor ofc also satisfies the condition

and thus is in the iceberg cube.

As another example, the cover of aggregate cellc′ = (a3,∗,∗,∗,∗,∗,∗,∗) has only one tuple,

the third tuple inTbase(Figure 2.4). It fails the condition and thus is not in the iceberg cube. The

cover of every descendant ofc′ must have no more tuples than that ofc′ and thus cannot honor

the condition, either. Thus, we do not even need to compute and search them in the iceberg

cube mining.

Monotonic iceberg conditions enable efficient pruning in iceberg cube mining. As shown

by Han et al. (2001) and K. Wang et al. (2003) for many non-monotonic iceberg conditions,

the corresponding iceberg cubes can be computed by adopting some weakened but monotonic

conditions to approximate the original ones and push deep into the computation.

In this chapter, we focus on monotonic iceberg conditions written in a distributive aggre-

gate function1, and use conditionCOUNT(c) ≥ v as the illustration. The techniques developed

here are general and can be used for any monotonic iceberg conditions. Moreover, the tech-

niques (see Han et al., 2001; K. Wang et al., 2003) can be adopted and integrated into our

framework, so that non-monotonic conditions can be handled.
1According to (Gray et al., 1997), an aggregate functionaggr() is distributive if it can be evaluated in a dis-

tributed manner as follows. There exists a functionf such that, for any set of dataD, D can be partitioned into an
arbitrary number of exclusive subsetsD1, . . . ,Dn and∪n

i=1Di = D, we haveaggr(D) = f (aggr(D1), . . . ,aggr(Dn)).
In (Gray et al., 1997), it is shown thatCOUNT(), MIN(), MAX() andSUM() are all distributive. In fact,f = aggr for
MIN(), MAX() andSUM(), and f =SUMfor COUNT().

14 Chapter 2. Computing data cube and iceberg cube from data warehouses

2.2.2 Related Work

The data cube operator (Gray et al., 1997) is one of the most influential operators in OLAP.

Many approaches (Beyer & Ramakrishnan, 1999; Ross & Srivastava, 1997; Ross & Zaman,

2000; Y. Zhao et al., 1997) have been proposed to compute data cubes efficiently from scratch.

In general, they speed up the cube computation by sharing partitions, sorts, or partial sorts for

group-bys with common dimensions.

It is well recognized that the space requirements of data cubes in practice are often huge.

Some studies investigate partial materialization of data cubes (Beyer & Ramakrishnan, 1999;

Han et al., 2001; Harinarayan et al., 1996). Methods to compress data cubes are studied in (Lak-

shmanann et al., 2002; Lakshmanan et al., 2003; Shanmugasundaram et al., 1999; Sismanis et

al., 2002; W. Wang et al., 2002). Moreover, many studies(Barbara & Sullivan, 1997; Barbar &

Wu, 2000; Vitter et al., 1998) investigate various approximation methods for data cubes.

In the rest of this Section, we review the major methods on computing (iceberg) cubes.

MultiWay (Y. Zhao et al., 1997) is an array-based top-down approach to computing com-

plete data cube. The basic idea is that a high level aggregate cell can be computed from its

descendants instead of the base table. For example, aggregate cell(a,b,∗,∗) can be derived

from aggregate cells(a,b,c1,∗), (a,b,c2,∗), etc.

To compute a data cube on a base tableT(A,B,C,D), MultiWay first scans the base table

once and computes group-bys(A,B,C,D), (∗,B,C,D), (∗,∗,C,D), (∗,∗,∗,D) and(∗,∗,∗,∗).
These group-bys can be computed simultaneously without resorting the tuples in the base ta-

ble. Once these group-bys are computed, we do not need to scan the base table any more.

For example, group-bys(A,B,C,∗), (A,B,∗,D) and(A,∗,C,D) can be derived from group-by

(A,B,C,D). The computation order is summarized in Figure 2.5.

MultiWay may not be efficient in computing iceberg cubes with monotonic iceberg condi-

tions, because the top-down search cannot use the monotonic iceberg condition to prune.

Fang et al. (1998) proposed the concept of iceberg queries and developed some sampling

algorithms to answer such queries. Beyer & Ramakrishnan (1999) introduced the problem of

iceberg cube computation in the spirit of the paper by Fang et al. (1998) and developed algorithm

2.2. Problem Definition and Related Work 15

(A, *, C, *) (A, *, *, D) (*, B, C, *) (*, B, *, D) (*, *, C, D)

(A, *, *, *) (*, B, *, *) (*, *, C, *) (*, *, *, D)

(*, *, *, *)

(A, B, C, *) (A, B, *, D) (A, *, C, D) (*, B, C, D)

(A, B, C, D)

(A, B, *, *)

Figure 2.5: Top-down computation in MultiWay.

BUC. BUC conducts bottom-up computation and can use the monotonic iceberg conditions to

prune. To compute a data cube on a base tableT(A,B,C,D), BUC first partitions the table

according to dimensionA, i.e., computing group-bys(A,∗,∗,∗). If an aggregate cell(a,∗,∗,∗)
fails the monotonic iceberg condition, any descendant of it, such as(a,b,∗,∗), (a,∗,c,∗) must

also fail the condition and thus does not need to be computed. Otherwise,BUC recursively

searches the partition ofcov(a,∗,∗,∗), and computes the further aggregates in depth-first search

manner. The computation order is summarized in Figure 2.6.

(A, *, C, *) (A, *, *, D) (*, B, C, *) (*, B, *, D) (*, *, C, D)

(A, *, *, *) (*, B, *, *) (*, *, C, *) (*, *, *, D)

(*, *, *, *)

(A, B, C, *) (A, B, *, D) (A, *, C, D) (*, B, C, D)

(A, B, C, D)

(A, B, *, *)

Figure 2.6: Bottom-up computation inBUCand H-Cubing.

BUC is efficient in computing iceberg cubes with monotonic iceberg conditions. It also

employs counting sort to make partitioning efficient.

H-cubing (Han et al., 2001) uses a hyper-tree data structure called H-tree to compress the

base table. Then, the H-tree can be traversed bottom-up to compute iceberg cubes. It also

can prune unpromising branches of search using monotonic iceberg conditions. Moreover, a

strategy was developed by Han et al. (2001) to use weakened but monotonic conditions to

approximate non-monotonic conditions to compute iceberg cubes.

The strategies of pushing non-monotonic conditions into bottom-up iceberg cube computa-

tion were further improved by K. Wang et al. (2003). A new strategy, divide-and-approximate,

was developed. The general idea is that the weakened but monotonic condition can be made up

for each sub-branch search and thus the approximation and pruning power can be stronger.

16 Chapter 2. Computing data cube and iceberg cube from data warehouses

Xin et al. (2003) developed Star-Cubing by extending H-tree to Star-Tree and integrating

the top-down and bottom-up search strategies. Feng et al. (2004) proposed another interesting

cubing algorithm, Range Cube, which uses a data structure called range trie to compress data

and identify correlation in attribute values.

On the other hand, since iceberg cube computation is often expensive in both time and space,

parallel and distributed iceberg cube computation has been investigated. For example, Ng et al.

(2001) studied how to compute iceberg cubes efficiently using PC clusters.

All of the previous studies on computing iceberg cubes make an implicit assumption:a uni-

versal base table is materialized. However, this assumption may not be always true in practice

– many data warehouses are stored in tens or hundreds of tables. It is often unaffordable to

compute and materialize a universal base table for iceberg cube computation. This observation

motivates the study in this section.

2.3 CTC: A Cross Table Cubing Algorithm

In this section, we developCTC, a cross table cubing algorithm. We first present the general

ideas and the framework of the algorithm, and then devise the details of the algorithm step by

step.

Algorithm CTCworks in three steps. First, the aggregate information is propagated from the

fact table to each dimension tables. Then, the iceberg cubes in the propagated dimension tables

as well as in the fact table (i.e., thelocal iceberg cubes) are mined independently using the same

iceberg cube condition. Last, the iceberg cells involving attributes in multiple dimension tables

are derived from the local iceberg cubes.

The correctness of the above three-step procedure is supported by the following basic ob-

servation:for an iceberg cellc with respect to a monotonic iceberg condition, its projections

on the fact table and the dimension tables must also be local iceberg cells. The observation is

formulated as follows.

Lemma 2 (Extended a priori property). In a base tableB = (A1, . . . ,An,M) whereM is the

2.3. CTC: A Cross Table Cubing Algorithm 17

Algorithm CTC
Input: a data warehouseDW in star schema, a monotonic iceberg conditionC;
Output: an iceberg cube;
Method:

1: propagate the information about aggregates from the fact table to the dimension tables;
2: compute local iceberg cube for each dimension table;
3: compute the iceberg cells on the fact table and join the local iceberg cells to derive the

global ones

Figure 2.7: AlgorithmCTC.

measure, ifc = (a1, . . . ,an) is an iceberg cell with respect to a monotonic iceberg conditionC,

then, for any subset of attributes{Ai1, . . . ,Ai l} (1≤ i1 < · · ·< i l ≤ n), (ai1, . . . ,ai l) is an iceberg

cell in table σAi1,...,Ail ,M
(B) with respect toC, whereσ is the multi-set (i.e., bag) projection

operator.

Proof. This lemma can be regarded as the a priori property (Agrawal & Srikant, 1994) on

dimensions of iceberg cube. To show the correctness, consider cellc′ such thatc′.Ai j = ai j

(1≤ j ≤ l) and all other attributes ofc′ take value∗. Then,c′ is an ancestor ofc. Sincec

satisfies the monotonic iceberg conditionC, so doesc′. It is easy to see that cell(ai1, . . . ,ai l) on

tableσAi1,...,Ail ,M
(B) has the exactly same aggregate value asc′, and thus also satisfiesC.

Based on Lemma 2, instead of directly computing the iceberg cube from a universal base

table, we can compute local iceberg cubes from the fact table and the dimension tables, respec-

tively. Then, we can try to derive the global iceberg cube from the local ones.

To enable the computation of local iceberg cubes on dimension tables and the derivation of

global iceberg cubes from local ones, before we compute the local iceberg cubes, we have to

propagate the aggregate information from the fact table to the dimension tables.

Based on the above idea, the framework ofCTC is shown in Figure 2.7. The details in

algorithmCTCare presented step by step in the following subsections.

2.3.1 Propagation Across Tables

Example 2.5 (Propagating aggregate information).To propagate the aggregate information

from the fact tableFact to the dimension tablesD1 andD2, we create a new attributeCount

18 Chapter 2. Computing data cube and iceberg cube from data warehouses

in every dimension table. By scanning the fact table once, the number of occurrences of each

foreign key value in the fact table can be counted. Such information is registered in the column

of Countin the dimension tables, as shown in Figure 2.8. Hereafter, the propagated dimension

tables are denoted asPD1 andPD2, respectively, to distinguish from the original dimension

tables.

B C D Count

b1 c1 d1 2
b2 c1 d2 1
b3 c1 d3 1
b4 c2 d1 1

E F G H Count

e1 f1 g1 h1 1
e2 f1 g2 h2 2
e3 f1 g1 h2 1
e4 f2 g1 h1 1

(a) PropagatedPD1 (b) PropagatedPD2

Figure 2.8: The propagated dimension tables.

In the rest of the computation, we only use the fact table and the propagated dimension

tablesPD1 andPD2. We will show that the iceberg cube computed from these three tables is

the same as the one computed from the universal base table.

This computation of the aggregates on the keys is implemented as group-by aggregate

queries on the key attributes in the fact table. Only the fact table is needed to conduct such

queries. The aggregate information is appended to the records in the dimension tables after the

aggregates are computed. In general, we extend every dimension table to include a measure

column.

The difference between aggregate propagation and joining the fact table and the dimension

tables to materializing the universal base table is as follows:CTC never really joins multiple

tables. Instead, it only conducts group-by queries on each key attribute and propagates the

aggregates to the corresponding dimension table. When there are multiple dimension tables,

propagating the aggregates is much cheaper than joining multiple tables and materializing a

universal base table.

2.3. CTC: A Cross Table Cubing Algorithm 19

2.3.2 Computation of Local Iceberg Cubes

Local iceberg cubes on propagated dimension tables can be computed using any algorithms for

iceberg cube computation, as reviewed in Section 2.2.2. For each iceberg cellc, we maintain

the histogram of primary key values that the tuples incov(c) carry as the signature.

Definition 2.3. (Signature of iceberg cells in propagated dimension tables)Let D be a di-

mension table andK be a primary key attribute such thatK is used in the fact table as the

foreign key referencing toD. For an iceberg cellc in D, thesignature of c, denoted asc.sig, is

the set of primary key values (i.e., values inK) that appear in the tuples incov(c) in D.

Example 2.6 (Computing local iceberg cube).Let us compute the iceberg cube on propagated

dimension tablePD2 (Figure 2.8(b)) with respect to conditionC≡COUNT(c)≥ 2. Here, we use

an adaption of algorithmBUC (Beyer & Ramakrishnan, 1999).

First, we sort the tuples inPD2 in attributeE using counting sort by at most2 scans of the

table. The sum of counts of tuples havinge1 is 1. Thus,(e1,∗,∗,∗) and any of its descendants

cannot satisfy the condition and cannot be an iceberg cell.

Since the sum of counts of tuples havinge2 is 2, cell (e2,∗,∗,∗):2 is an iceberg cell.

Moreover, since there is only tuple(e2, f1,g2,h2):2 in PD2 has valuee2, we can enumerate

all descendants of(e2,∗,∗,∗), namely,(e2, f1,∗,∗), (e2, f1,g2,∗), (e2, f1,g2,h2), (e2, f1,∗,h2),

(e2,∗,g2,∗), (e2,∗,g2,h2) and(e2,∗,∗,h2). Their counts must also be2 and thus are iceberg

cells.

As can be observed here, one advantage of computing iceberg cubes on propagated dimen-

sion tables is that one tuple in the propagated dimension table may summarize multiple tuples in

the corresponding projection of the universal base table. Thus, we reduce the number of tuples

in the computation.

Similar to the case ofe1, we can find that(e3,∗,∗,∗) and(e4,∗,∗,∗), as well as their de-

scendants, cannot be iceberg cells.

Then, we move to the next attribute,F . By sortingPD2 in F , we find iceberg cells(∗, f1,∗,∗)
with count4. We also record the set of primary key values{e1,e2,e3} that the tuples havingf1

20 Chapter 2. Computing data cube and iceberg cube from data warehouses

carry. This is called thesignatureof the iceberg cell. It will be used in the future to derive global

iceberg cells. To maintain the signature, we can use a vector ofm bits for every iceberg cell,

wherem is the number of distinct values appearing in attributeE (the primary key attribute) in

tablePD2.

To find iceberg cells among descendants of(∗, f1,∗,∗), we sort the tuples incov(∗, f1,∗,∗)
on attributeG. Recursively, we find iceberg cells(∗, f1,g1,∗):2with signature{e1,e3}, (∗, f1,g2,∗):2
and(∗, f1,g2,h2):2 both with signature{e2}. By sortingcov(∗, f1,∗,∗) on attributeH, we find

iceberg cell(∗, f1,∗,h2):3 with signature{e2,e3}.
The remaining local iceberg cells can be computed similarly.

Based on Example 2.6, we formulate the notation of signature, which will be used to derive

global iceberg cells from local ones.

Clearly, to maintain the signatures inD, we only needm bits, wherem is the number of

distinct values inK that appear in the fact table.m is at most the number of tuples inD, and no

more than the cardinality ofK.

The algorithm of computing local iceberg cubes on propagated dimension tables is largely

the same as the existing iceberg cube computation algorithms. The only adaption is that the

signatures of the iceberg cells should be maintained by a bitmap vector attached to every iceberg

cell.

Lemma 3 (Computing local iceberg cubes).In a star schema(F,D1, . . . ,Dn), whereM is the

measure attribute inF, let B = F 1 D1 1 · · · 1 Dn. For any dimension tableDi (1≤ i ≤ n),

the iceberg cube from the propagated dimension tablePDi is identical to the iceberg cube from

σDi∪{M}(B).

Proof. Proof Sketch The propagated dimension tablePDi can be viewed as a summarization of

the projectionσDi∪{M}(B), where the tuples sharing the same key value inKi are summarized

by the extended measure attribute value inPDi .

An advantage of computing iceberg cubes from the propagated dimension tablePDi is that

it often has (many) fewer tuplesthan the universal base table. In real applications, a fact table

2.3. CTC: A Cross Table Cubing Algorithm 21

may easily have millions of tuples, but the cardinality of a dimension may be in tens.

2.3.3 Computation of Global Iceberg Cubes

The set of global iceberg cells can be divided into two exclusive subsets: the ones having some

non-∗ values on the dimension attributes in the fact table, and the ones whose projections on the

fact table are(∗, . . . ,∗). We handle them separately.

Example 2.7 (Iceberg cell in fact table and beyond).Let us compute the iceberg cells from

our running example data warehouseDW (Figure 2.3) with respect to conditionC≡COUNT(c)≥
2. In this example, we consider the iceberg cells that contain some non-∗ values in the dimen-

sion attributes in fact tableFact.

To find such iceberg cells, we start from applying an iceberg cube computing algorithm,

such asBUC (Beyer & Ramakrishnan, 1999), to the fact table.

For example, we find(a1,∗,∗) : 2 is an iceberg cell in the fact table. In the cover of(a1,∗,∗)
(i.e., the first and the fourth tuples in Figure 2.3(b)),b1 appears in attributeB, which refer-

ences to dimension tableD1. Thus, for any local iceberg cellc in PD1 whose signature con-

tains b1, such as(b1,∗,∗), (∗,c1,∗), and (∗,c1,d1), the “join”2 of (a1,∗,∗) and c, such as

(a1,b1,∗,∗,∗,∗,∗), (a1,∗,c1,∗,∗,∗,∗,∗) and (a1,∗,c1,d1,∗,∗,∗,∗), must be a global iceberg

cell of count 2 (yielding to the measure of the iceberg cell in the fact table).

For iceberg cell(a1,∗,c1,∗,∗,∗,∗,∗), e1 ande2 appear in attributeE, which reference to

dimension tableD2. Thus, for any local iceberg cellc in PD2 whose signature containse1 or e2,

such as(∗, f1,∗,∗), can be a global iceberg cell, if the overlap of the signatures can lead to an

aggregate value satisfying the iceberg condition. Then, we can further join them to get iceberg

cell (a1,∗,c1,∗,∗, f1,∗,∗).
It can be verified that, in such a recursive way, we can find all the global iceberg cells that

contain some values in the attributes in fact tableFact.

We formulate the operation of joining two aggregate cells.

2We will define the operation precisely soon.

22 Chapter 2. Computing data cube and iceberg cube from data warehouses

1: apply an iceberg cube computation algorithm to compute the iceberg cells in the fact table
2: once an iceberg cell in the fact table is found search iceberg cellsc′ in the dimension tables

by signatures such thatc 1 c′ is a global iceberg cell
3: usec = c 1 c′ to conduct recursive search in other dimension tables until no iceberg cells

in the dimension tables can be joined

Figure 2.9: Computing global iceberg cells containing some non-∗ values in the attributes in
fact table.

Definition 2.4 (Join of aggregate cells).Let c1 andc2 be aggregate cells on tablesT1 andT2,

respectively, such that ifT1 and T2 have any common attribute thenc1 and c2 have the same

value in every such common attribute. Thejoin of c1 andc2, denoted asc1 1 c2, is the tuplec

such that (1) for any attributeA that c1 has a non-∗ value,c has the same value asc1 on A; (2)

for any attributeB thatc2 has a non-∗ value,c has the same value asc2 onB; (3) c has value∗
in all other attributes.

It is easy to show that the join operation has the commutative and associative properties.

Lemma 4 (Properties of join). Let c1, c2 andc3 are aggregate cells onT1, T2 andT3, respec-

tively. Then,c1 1 c2 = c2 1 c1 and(c1 1 c2) 1 c3 = c1 1 (c2 1 c3).

In general, once an iceberg cellc is found from the fact table, we can extractc.sig, the sig-

nature ofc, and search the iceberg cells in the dimension tables whose signatures have overlap

with c.sig. Suppose iceberg cellc′ in a dimension table is found andc.sig∩c′.sig= {k1, . . . ,kl},
i.e., k1, . . . , kl are the keys in both signatures. Then, whetherc 1 c′ is a global iceberg cell is

determined by the aggregate on the tuples incov(c) having valuesk1, . . . , orkl . This can be

easily derived from the fact table.

The algorithm of computing global iceberg cells involving attributes in the fact table is sum-

marized in Figure 2.9. As can be seen, we never need to join the fact table with any dimension

tables to generate a global iceberg cell. Instead, we join the local iceberg cells based on the

signatures. Recall that since we maintain the signatures using bitmap vectors, the matching of

signatures is efficient. To facilitate matching, we also index the iceberg cells in the dimension

tables by their signatures.

Another advantage of the algorithm is that, a local iceberg cell is found only once but is

2.3. CTC: A Cross Table Cubing Algorithm 23

used many times to join with other local iceberg cells to form global ones. If we compute the

global iceberg cells from the universal base table, we may have to search the same portion of

the universal base table for the (local) iceberg cell many times for different global iceberg cells.

The cross table algorithm eliminates the redundancy in the computation.

Now, let us consider how to compute the global iceberg cells that have no non-∗ value in

attributes in the fact table.

Example 2.8 (Joining local iceberg cells).We consider how to compute the global iceberg

cells in data warehouseDW (Figure 2.3) that do not contain any non-∗ value in attributes in

the fact table. Those global iceberg cells can be divided into two subsets: (1) the descendants

of some local iceberg cells inPD1, and (2) the descendants of some local iceberg cells inPD2

but not descendant of any local iceberg cells inPD1. In both cases, we only consider the cells

that do not contain any non-∗ value in the key attributes, otherwise, they are taken care by

Example 2.7 and the algorithm in Figure 2.9.

To find the first subset, we consider the local iceberg cells inPD1 one by one. For example,

(∗,c1,∗) is a local iceberg cell inPD1 with signature{b1,b2,b3}. To find the local iceberg cells

in PD2 that can be joined with(∗,c1,∗) to form a global iceberg cell, we should collect all the

tuples in the fact table that contain eitherb1, b2 or b3, and find their signature on attributeE.

Clearly, to derive the signature on attributeE for a local iceberg cell in tablePD1 by collect-

ing the tuples in the fact table is inefficient, since we have to scan the fact table once for each

local iceberg cell. To tackle the problem, we build an H-tree (Han et al., 2001) using only the

foreign key attributes in the fact table, as shown in Figure 2.10.

root

e4:1

b4:1

e3:1

b3:1

e2:1

b2:1b1:2

e2:1e1:1

Figure 2.10: The H-tree for foreign key attribute values.

With the H-tree, for a given signature on attributeB, it is efficient to retrieve the correspond-

ing signature on attributeE. For example, for(∗,c1,∗), its signature (onB) is {b1,b2,b3}. From

24 Chapter 2. Computing data cube and iceberg cube from data warehouses

the H-tree, we can retrieve its signature onE is {e1,e2,e3}, i.e., the union of the nodes at level

E that are descendants ofb1, b2 or b3.

Then, we can search the iceberg cells in dimension tablePD2. For example, iceberg cell

(∗,∗,g1∗) in dimension tablePD2 has signature{e1,e3,e4}. The intersection of the two signa-

tures is{e1,e3}. From the H-tree, we know that the total aggregate of tuples havinge1 or e3

andb1, b2 or b3 is 2 (the sum of the first and the fourth leaf nodes in the H-tree). Thus, the two

iceberg cells can be joined and(∗,∗,c1,∗,∗,∗,g1,∗) is a global iceberg cell.

Moreover, if we have more than2 foreign key attributes, once all the global iceberg cells

that are descendants of local iceberg cells in dimension tablePD1 are computed, the level of

attributeB in the H-tree can be removed and the remaining sub-trees can be collapsed according

to the next attribute,E. That will further reduce the tree size and search cost.

The second subset of global iceberg cells, i.e., the ones that are descendants of some local

iceberg cells inPD2, but not ofPD1, are exactly(∗,∗,∗,) 1 c, wherec is a local iceberg cell in

PD2.

Please note that, in general, the space complexity of the H-tree inCTC is O(kn), wherek is

the number of dimension tables andn is the number of tuples in the fact table. In many cases,

the H-tree is smaller than the fact table and much smaller than the universal base table. The

signatures of local iceberg cells can be stored on disk and do not have to be maintained in main

memory.

The algorithm is summarized in Figure 2.11. Again, we use the local iceberg cells to gen-

erate the global ones. The matching is based on the signatures and an H-tree. This avoids the

redundant searches on some common parts of the universal base table many times.

2.4 Experimental Results

In this section, we report an extensive performance study on computing iceberg cubes from data

warehouses in star schema, using synthetic data sets. All the experiments are conducted on a

Dell Latitude C640 laptop computer with a2.0 GHzPentium 4 processor,20 Ghard drive, and

2.4. Experimental Results 25

1: build an H-tree on the foreign key attributes in the fact table;
optimization: only the key attributesai should be considered if(∗, . . . ,ai , . . . ,∗) is an ice-
berg cell

2: let D1, . . . ,Dn be then dimension tables;
3: for i = 1 to n do
4: for each local iceberg cellc in dimension tableDi do
5: recursive search local iceberg cells inDi+1, . . . ,Dn that can be joined to form descen-

dants ofc and are global iceberg cells;
6: end for
7: remove the level ofDi in the H-tree
8: end for

Figure 2.11: Joining local iceberg cells in dimension tables to form global ones.

512 MBmain memory, running the Microsoft Windows XP operating system.

We compare two algorithms:BUC (Beyer & Ramakrishnan, 1999) andCTC. Both algo-

rithms are implemented in C++.

2.4.1 The Synthetic Data

Data Generator and Settings

We generate the synthetic data sets following the Zipf distribution. Our data generator takes the

following parameters to generate the data sets.

• To generate the fact table, the data generator needs the number of dimensions, the number

of tuples, and the cardinality in each dimension in the fact table. By default, the fact table

has5 dimensions,1 million tuples and the cardinality of each dimension is set to10.

• To generate dimension tables, the data generator needs the number of dimension tables

and the number of attributes in each dimension table. Please note that the number of

tuples in a dimension table is equal to the cardinality in the corresponding dimension in

the fact table. By default, we set3 dimension tables, and each dimension table has3

attributes.

• The Zipf factor. We assume that all the data in the data warehouse follows the same

distribution. By default, the Zipf factor is set to1.0.

26 Chapter 2. Computing data cube and iceberg cube from data warehouses

In a data warehouse generated by the above data generator, if there aren dimensions in the

fact table andk dimension tables(n≥ k), and there arel attributes in each dimension table, then

the universal base table has(l · k+(n− k)) dimensions. Thus, by default, the data warehouse

generated by the data generator has3×3+(5−3) = 11dimensions.

In all our experiments, we use aggregate functioncount (). Therefore, the domain, cardi-

nality and distribution on the measure attribute have no effect on the experimental results. By

default, we set the iceberg condition to “COUNT(∗)≥ number of tuples in fact table×5%”.

In all our experiments, the runtime ofCTC is the elapsing time thatCTCcomputes iceberg

cube from multiple tables, including the CPU time and I/O time. However, the runtime of

BUC is only the time thatBUC computes iceberg cube from the universal base table, including

the CPU time and I/O time. That is,the time of deriving the universal table is not counted in

the BUC runtime. The rationale is that a universal base table can be computed once and used

multiple times. To achieve this,BUC is always fed with a universal base table. We believe that

such a setting is fair for both algorithms and does not bias towardsCTC.

To simplify the comparison, we assume that the universal base table can be held into main

memory in our experiments. When the universal base table cannot be held into main memory,

the performance ofBUC will be degraded substantially.CTC does not need to store all the

tables in main memory. Instead, it loads tables one by one. The local iceberg cells can be

indexed and stored on disk. One major consumption of main memory inCTC is to store the H-

tree for the fact table. As shown before, the H-tree is often smaller than the fact table and much

smaller than the universal base table. When the H-tree is too large to fit into main memory,

the disk management techniques as discussed in (Han et al., 2001) and also the techniques for

disk-basedBUCcan be applied.

Scalability w.r.t. Factors of Dimension Tables

The major feature distinguishingCTCfrom other iceberg cube algorithms is that it can compute

iceberg cubes from multiple tables without joining them. In this subsection, we test the perfor-

mance ofCTCon mining data warehouses in star schema with different number of dimension

2.4. Experimental Results 27

tables and different number of attributes in each dimension table.

To test the scalability with respect to the number of dimension tables, we vary the number

of dimension tables from3 to 7, set the number of dimensions in the fact table to the number

of dimension tables plus three (i.e., we put3 dimensions in the fact table that do not have

dimension tables), and adopt the default values for other parameters. We test the runtime and

main memory usage ofBUCandCTC, which are shown in Figures 2.12(a) and (b), respectively.

Please note that in Figure 2.12(a), the runtime (Y-axis) is plotted in logarithmic scale.

 10

 100

 1000

 10000

 3 4 5 6 7

R
un

 T
im

e
(s

ec
on

ds
)

of Dimension Tables

BUC
CTC

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 3 4 5 6 7

M
em

or
y

U
sa

ge
 (

M
)

of Dimension Tables

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.12: Scalability with respect to number of dimension tables.

When the number of dimension tables goes up from3 to 7, the total number of dimensions

in the universal base table goes up from12to 24. Clearly,CTCis more efficient in both runtime

and memory usage thanBUC. As the number of dimension tables goes up, the number of

dimensions in the universal table goes up, too. The runtime ofBUC goes up dramatically. The

runtime ofCTC also goes up, but in a much more moderate trend. That is because using the

local iceberg cells in dimension tables to derive the global ones is more efficient than computing

from the universal base table, and thus is less sensitive to the increase of the number of total

dimensions.

In terms of main memory usage, both algorithms use more memory as the number of di-

mensions goes up. When there are more dimension tables and dimensions,CTC has a taller

H-tree and needs more space to store the signatures for the local iceberg cells.

We also test the scalability with respect to the number attributes in each dimension table.

The trends are similar to the cases on the number of dimension tables (Figure 2.12).

28 Chapter 2. Computing data cube and iceberg cube from data warehouses

Scalability w.r.t. Global Factors

There are several global factors that affect the data distribution in a data warehouse and the

performance of iceberg cube computation, including (1) the cardinality of each dimension; (2)

the Zipf factor; (3) the number of non-foreign key dimensions in the fact table; (4) the iceberg

condition threshold; and (5) the number of tuples in the fact table. We test the effects of these

factors on the scalability of bothCTCandBUC.

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

R
un

 T
im

e
(s

ec
on

ds
)

Cardinality

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 10 20 30 40 50 60 70 80 90 100

M
em

or
y

U
sa

ge
 (

M
)

Cardinality

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.13: Scalability with respect to cardinality in each dimension.

Figures 2.13(a) and (b) show the runtime and main memory usage ofCTCandBUCwith re-

spect to the cardinality in each dimension, respectively. The other parameters are set to default.

When the cardinality increases, the data set becomes sparser, that is, the number of iceberg

cells decreases. Therefore, the runtime ofBUC decreases. The runtime ofCTCalso decreases

slightly. In terms of main memory usage,BUC is stable since it mainly holds the complete

universal base table in main memory.CTCneeds more memory to hold a larger H-tree as the

cardinality goes up, since the average fan-out of each node in the tree increases. However, in a

sparse data set, the number of one dimensional iceberg cells (i.e., the iceberg cells having only

one non-∗ value) also decrease. That slows down the increase of the size of H-tree.

In Figure 2.14, we set the Zipf factor in the range of0 to 3.0 and adopt the default values for

other parameters to test the runtime and main memory usage ofBUC andCTCwith respect to

Zipf factor. With a larger Zipf factor, the data is more skewed and thus there are more iceberg

cells. In sequel, the runtime of bothBUCandCTC increase in general, butCTC is clearly more

scalable.BUCandCTCare stable in main memory usage.

2.4. Experimental Results 29

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3

R
un

 T
im

e
(s

ec
on

ds
)

Zipf Factor

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.5 1 1.5 2 2.5 3

M
em

or
y

U
sa

ge
 (

M
)

Zipf Factor

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.14: Scalability with respect to Zipf factor.

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12

R
un

 T
im

e
(s

ec
on

ds
)

of Non-Foreign Key Dimensions

BUC
CTC

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12

M
em

or
y

U
sa

ge
 (

M
)

of Non-Foreign Key Dimensions

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.15: Scalability with respect to number of non-foreign key dimensions.

In real applications, some dimensions may not have dimension tables. We call themnon-

foreign key dimensions. To test the effect of the number of non-foreign key dimensions in the

fact table, we set the number of dimensions in the fact table from5 to 15 and adopt the default

values for other parameters. In such a setting, the number of non-foreign key dimensions in the

fact table varies from2 to 12. The experimental results are shown in Figure 2.15. As can be

seen, the runtime ofBUC goes up dramatically as the number of non-foreign key dimensions

goes up, and the runtime ofCTC is more scalable. The main memory usages of bothBUC and

CTCare linear to the increase of number of non-foreign key dimensions.

In order to test the scalability ofBUC andCTC with respect to the iceberg condition, we

set the parameters of data warehouse to default values, and vary the thresholdv in the iceberg

condition “COUNT(∗) ≥ v” from 100,000 (i.e., 10%) to 500 (i.e., 0.05%). The runtime and

main memory usage ofBUCandCTCare shown in Figures 2.16(a) and (b), respectively.

30 Chapter 2. Computing data cube and iceberg cube from data warehouses

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(s

ec
on

ds
)

Iceberg Condition Threshold (%)

BUC
CTC

 20

 25

 30

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
sa

ge
 (

M
)

Iceberg Condition Threshold (%)

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.16: Scalability with respect to iceberg condition threshold.

When the threshold goes down, the number of iceberg cells increases dramatically. The

runtime of bothBUC andCTC increase accordingly.CTC is consistently3 to 5 times faster.

The main memory usage ofBUC is stable, since it only keeps the universal base table in main

memory. When the threshold is not very low,CTC uses much less main memory thanBUC.

When the threshold is very low, the main memory usage ofCTCgoes up. The reason is that,

in our current implementation, we load the local iceberg cells and indexes into main memory

before they are joined. When the threshold is very low, the number of local iceberg cells can be

many times larger than the number of tuples in the universal base table.

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7

R
un

 T
im

e
(s

ec
on

ds
)

The Number of Tuples in Fact Table (in Millions)

BUC
CTC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7

M
em

or
y

U
sa

ge
 (

M
)

The Number of Tuples in Fact Table (in Millions)

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.17: Scalability with respect to number of tuples in the fact table.

Last, we test the scalability ofBUC and CTC on the number of tuples in the fact table.

We vary the number of tuples in the fact table from1 million to 7.5 million, and set the other

parameters to default. The runtime and the main memory usage ofBUC andCTC are shown

in Figures 2.17(a) and (b), respectively. Clearly, both algorithms are linearly scalable in both

2.4. Experimental Results 31

runtime and main memory usage, andCTC is faster and more efficient in main memory usage.

2.4.2 The Real Data and Setting

In this section, we report the experimental results on TPC-H (TPC, 1998). TPC-H is an ad-hoc,

decision support benchmark. The schema of datasets of TPC-H is the constellation schema. In

order to experiment withCTCon TPC-H, we changed the schema into a star schema by joining

dimension tables with relationships. The initially created tables from TPC-H consist of one fact

table and seven dimension tables in the constellation schema. The dimension tables are joined

and then we have one fact table and four dimension tables in the star schema.

We use10 MB size of total database population in TPC-H as default size of data set. The

number of dimensions of fact table is16 and the sum of the number of dimensions of four di-

mension tables is46. The size of fact table in the database is around68 %of the total database

population by default setting of TPC-H. We set the iceberg conditionv to 10 %of COUNT(∗)
by default.

Scalability w.r.t. Size of Data Sets

In this section, we test the performance ofCTC in the different total size of data sets. We

change the total size of data sets from1 MB to 20 MB, whose the size of fact table is68 %of

the total size of data sets. The runtime and main memory usage ofCTCandBUC are shown in

Figure 2.18(a) and (b), respectively. Please note that we usesCTCnot using Htree and we will

compareCTCusing Htree withCTCnot using Htree soon.

SinceCTCcomputes local iceberg cubes in each dimension tables avoiding duplicate com-

putation in the fact table, the runtime ofCTC is more efficient thanBUC. We note that the

number of iceberg cells is approximately30 K at the1 MB data set and 1K at the5 MB, 10 MB,

and20 MB data sets. Since the number of iceberg cells at1 MB data set is extraordinarily huge,

BUCsuffers in the runtime at the size of1 MB of data set.CTC is more efficient in the runtime

thanBUC in the situation where the number of iceberg cells are high, whereasCTCsuffers in

32 Chapter 2. Computing data cube and iceberg cube from data warehouses

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

R
un

 T
im

e
(s

ec
on

ds
)

The size of database

BUC
CTC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20

M
em

or
y

U
sa

ge
 (

M
)

The size of database

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.18: Scalability with respect to size of data sets.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

R
un

 T
im

e
(s

ec
on

ds
)

The size of database

CTC with H-tree
BUC

CTC without H-tree

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

M
em

or
y

U
sa

ge
 (

M
)

The size of database

CTC with H-tree
BUC

CTC without H-tree

(a) Runtime (b) Main memory usage

Figure 2.19: Scalability with respect to size of data sets.

the memory usage more thanBUC sinceCTC needs to store all local iceberg cubes with the

signatures.

CTC uses H-tree to join the global iceberg cells efficiently. However, we find out that to

use H-tree inCTC is not always efficient in all data sets. Figure 2.19 shows the performance

of CTCwith H-tree,CTCwithout H-tree, andBUC in 10 MB data set and default iceberg con-

dition. We can see thatCTC with H-tree is slower thanCTC without H-tree and evenBUC.

Since the cardinality of the dimensions referencing to dimension tables in the fact table is much

larger than the synthetic data set whose cardinality is 10 as default in the Section 2.4.1, H-tree

for dimensions referencing to dimension tables in the fact table is bush so that the cost of run

time and memory usage to handle H-tree is more expensive than to deal with the dimensions of

foreign keys in the fact table itself.

2.4. Experimental Results 33

Scalability w.r.t. Number of Dimension Tables

We vary the number of dimension tables from 1 to 4 to show the performance of computing

the local iceberg cells in each dimension table. Each dimension table in the data has different

numbers of dimension which are 9, 12, 21, and 4, respectively. The Figure 2.20(a) and (b) show

the runtime and memory usage ofBUCandCTC.

In the both of runtime and memory usage,CTCis more efficient thanBUC. Since the differ-

ence between 2 and 3 on the number of dimensions is the highest one, the runtime and memory

usage go up more sharply than others. The runtime ofBUC increases faster thanCTC since

BUCsuffers more with the increasing number of dimensions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

R
un

 T
im

e
(s

ec
on

ds
)

The number of dimension tables

BUC
CTC

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 2 3 4

M
em

or
y

U
sa

ge
 (

M
)

The number of dimension tables

BUC
CTC

(a) Runtime (b) Main memory usage

Figure 2.20: Scalability with respect to number of dimension tables.

2.4.3 Summary

By the extensive performance study using synthetic and real data sets, we show thatCTC is

consistently more efficient and more scalable thanBUC. The performance ofBUC in our ex-

periments is consistent in trend with the results reported in (Beyer & Ramakrishnan, 1999).

CTC is a general framework for computing iceberg cube from data warehouses directly,

without joining the tables. It can use any iceberg cube computation algorithm to compute

local iceberg cells on dimension tables and fact table. In our experiments, we useBUC. We

believe that the observations from the performance study are general for any other iceberg cube

computation methods. In order words, the advantage of computing global iceberg cube by local

34 Chapter 2. Computing data cube and iceberg cube from data warehouses

iceberg cells still retains, no matter which iceberg cube computation approach is adopted.

2.5 Discussion

In the previous sections, we developCTCthat computes iceberg cube from star schema without

computing the universal base table. The central idea inCTC is that it uses the information of

foreign key dimension values in the fact table to join local iceberg cells in various dimension

tables. This idea can be generalized and extended to handle other kinds of schemas for data

warehouses. We use snowflake schema as an example.

The snowflake schema is a variant of the star schema model, where some dimension tables

are further normalized, and thus further splitting the data into additional tables. The major

advantage of the snowflake schema is that the dimension tables of the snowflake model are

stored in normalized form to reduce redundancies. An example is shown in Figure 2.21. As can

be seen, the dimension tables are in more than1 level.

time−key

date

sales (fact table)

time

(level−1 dim tab)

item−key

brand

supplier−key

item

(level−1 dim tab)

supplier−key

supplier−name

(level−2 dim tab)

supplier

location−key

street

city−key

(level−1 dim tab)
location

city−key

city

country

(level−2 dim tab)

cityprofit

time−key

item−key

location−key

Figure 2.21: Snowflake schema: an example.

To extendCTCto handle snowflake schema, we can first propagate the measure information

from the fact table to the level-1 dimension tables, and then from the level-1 dimension tables

to the level-2 dimension tables, and so on.

As the second step, the local iceberg cells can be computed for each table. To join the

local iceberg cells and derive the global ones, we build an H-tree for the fact table and each

intermediate dimension table (i.e., a level-i dimension table containing some foreign key at-

tribute referencing to level-(i + 1) dimension table, such as tablesitem and location in

2.5. Discussion 35

Figure 2.21). As the last step, the H-trees can be combined as a global H-tree and the local

iceberg cells can be joined.

Similarly, we can also handle some other complicated cases, such as fact constellation

schema.

Chapter 3

Online answering ad-hoc aggregate

queries on data streams

3.1 Preliminaries

A data warehouse materializes a large set of aggregates from a given base table. Various aggre-

gate queries(OLAP queries) can be answered online by proper indexes in a data warehouse.

In general, the complete set of aggregate cells on a multidimensional base table can be huge.

For example, if a base table has20dimensions and the cardinality of each dimension is10, then

the total number of aggregate cells is1120≈ 6.7×1020. Even if only on average one out of1010

aggregate cells is non-empty (i.e., covering some tuple(s) in the base table), the total number of

non-empty aggregate cells still can be up to6.7×1010! Thus, computing and/or materializing

a complete data cube is often expensive in both time and space, and hard to be online.

Recently, several important applications see the strong demands of online answeringad hoc

aggregate queriesover fast data streams. In this chapter, we are particularly interested in the

applications where theaccurate instead of approximate answersto the queries are mandatory.

For example, trading in futures market is often a high-risk and high-return business in many

financial institutions. Transactional data and market data are collected timely. Dealers often

raise various ad hoc aggregate queries about the data in recent periods, such as “list the total

37

38 Chapter 3. Online answering ad-hoc aggregate queries on data streams

transaction amounts and positions in the last4 hours, by financial products, counter parties,

time-stamp (rounded to hour), mature date and their combinations.” In those applications, it

is required tomaintain the recent data in a sliding window,andprovide accurate and online

answers to ad hoc aggregate queries over the current sliding window. As another example, a

large sensor network is often deployed to monitor the hydraulic, hydrologic and water quality

data from a large-scale river network. To dynamically monitor and model the transport of toxic

contaminants or sediment, it is important to online answer various ad hoc aggregate queries

about the data in recent periods, such as “to see the effect of the heavy rain last night, list the

density of toxic contaminants in the last24 hours, by areas, branches, reservoirs, categories of

toxic contaminants, time (rounded to hour) and their possible combinations”.

Many previous studies proposed approximate methods to monitor aggregates over very fast

and high cardinality data streams, such as network traffic data streams where the speed of a data

stream can be of gigabytes per second and the cardinality of the IP addresses is232. In such

situations, it is impossible to obtain accurate answers. Approximate answers usually provide

sufficiently good insights. However, the target applications investigated in this chapter, such as

the transactional data streams in business, are substantially different. First, accurate answers

are mandatory in many business applications. This is particularly important for some business

applications such as those in the financial industry. Second, the data streams studied here often

are not extremely fast, and the cardinality of the data is not very huge. Instead, they have a

manageable speed. For example, since the modern computers easily have gigabytes of main

memory and typically the transactions in those applications will be in the scale of millions per

day, it is reasonable to assume that the current sliding window of transactions can be held into

main memory. Thus, it is possible to obtain accurate answers to ad hoc aggregate queries, even

though the task is still challenging.

Given a data stream, what we want to do is that (1) to maintain the current sliding window

of transactions in main memory, (2) to provide accurate answers to OLAP queries. Several

approaches may be proposed to this task.

First,Can traditional data warehousing techniques meet the requirement?A traditional data

3.1. Preliminaries 39

warehouse often updates in batch periodically, such as daily maintenance at nights or weekly

maintenance during weekends. Such updates are often conducted offline. Online aggregate

queries about the most recent data cannot be answered by the traditional data warehouses due

to the delay of the incremental updates.

Second,Then, can we maintain a materialized data cube over the sliding window?Unfor-

tunately, the size of a data cube is likely exponential to the dimensionality and much larger than

the sliding window. Moreover, the cubing runtime is also exponential to the dimensionality and

often requires multiple scans of the tuples in the sliding window or the intermediate results.

However, in a typical data stream, each tuple can be seen only once, and the call-back opera-

tions can be very expensive. Thus, a data cube resulted from a reasonably large sliding window

is usually too large in space and costly in time to be materialized and incrementally maintained

online.

Unfortunately, the above two approaches have shortcomings to meet the requirements of the

task. In order to meet the requirement of this take,we materialize and incrementally maintain

only a small subset of aggregates online by scanning the data stream only once, and still retain

the high performance of online answering ad hoc aggregate queries.In other words, we get

a good tradeoff between efficiency of the query answering and the efficiency of indexing and

maintenance (i.e., the size of index and the time of building and maintaining the index). In

online answering aggregate queries, there are three factors needed to be considered, namely the

space to store the aggregates, the time to create and maintain the aggregates, and the query an-

swering time. While the existing static data cubing methods focus on reducing the last of them,

the goal of this chapter is to trade off the query answering time a little bit against the space and

time of incremental maintenance. Particularly, due to the inherent requirements of data stream

processing, the data stream can be scanned only once, and the space to store the aggregates is

highly desirable to be linear in the stream. In this chapter, we address the following challenges.

Challenge 1: Can we avoid computing the complete cube but still retain the capability of an-

swering various aggregate queries efficiently?

Our contribution: We propose a solution that the transient segment (i.e., a sliding window)

40 Chapter 3. Online answering ad-hoc aggregate queries on data streams

of a data stream is maintained in an online data warehouse, which is enabled by the idea of

materializing only theprefix aggregate cellsand theinfix aggregate cells. We show that they

form just a small subset of the complete data cube, and the total number of prefix aggregate

cells islinear to the number of tuples in the sliding window and the dimensionality. With such

a small set of aggregates cells, many aggregate queries, including both point queries and range

queries, still can be answered efficiently.

Challenge 2: How can we compute, maintain and index the selected aggregates from a data

stream?

Our contribution: We devise a novel data structure,prefix aggregate tree(PAT), to store and

index the prefix aggregate cells and the infix aggregate cells. The size ofPAT is bounded. Al-

gorithms are developed to construct and incrementally maintainPAT. Our experimental results

indicate thatPAT is efficient and scalable for fast and large data streams.

Challenge 3:How can we answer various aggregate queries efficiently?

Our contribution: We develop efficient algorithms to answer essential aggregate queries, in-

cluding point queries and range queries. Infix links and the locality property of side-links of

PAT enable various aggregate queries to be answered efficiently. An extensive performance

study shows that the query answering is efficacious over large and fast data streams.

The remainder of this study is organized as follows. In the remainder of this Section 3.1,

we describe the framework and review related work. The prefix aggregate tree structure as

well as its construction and incremental maintenance are presented in Section 3.3. The query

answering algorithms are developed in Section 3.4. The extensive experimental results are

reported in Section 3.5.

3.1.1 The Framework

In this study, we model adata streamas an (endless)base tableS(T,D1, . . . ,Dn,M), whereT

is an attribute oftime-stamps, D1, . . . ,Dn aren dimensionsin discrete domains, andM is the

measure. For the sake of simplicity, we use positive integers starting from1 as time-stamps.

In data stream processing, records are often collected in temporal order. Thus, it is reason-

3.1. Preliminaries 41

The data stream

online update/maintain
sliding windowarchive

Central data warehouse

Data in the futureThe historical segment The transient segment

warehouse
Online data

Figure 3.1: The framework of warehousing data streams.

able to assume that the tuples having time-stampτ arrive before the ones having time-stamp

(τ+1). Tuples having the same time-stamp may be in arbitrary order.

Traditional data warehouses can answer various aggregate queries efficiently. However,

those data warehouses have to be incrementally maintained periodically and the maintenance

is often offline. It is difficult to answer aggregate queries on the recent data that has not been

loaded into the data warehouse in the last update.

To tackle this problem, it is natural to divide a data stream into two segments: thehistorical

segmentand thetransient segment, as illustrated in Figure 3.1. Conceptually, the historical

segment is the data arrived before the last update of the central data warehouse and thus has been

archived. The transient segment, in turn, is the data that has not been archived in the central

data warehouse, and should be updated and maintained online in an online data warehouse.

Such a framework of historical and transient segments appears in multiple applications and

some prototype implementations of commercial databases. However, to the best of our knowl-

edge, there exists no previous study on how to construct and maintain an online data warehouse

for the transient segment.

Technically, should the online data warehouse store only the data in the transient segment?

Consider the scenario that the central data warehouse is just updated. Then, the online data

warehouse contains very little data and many aggregate queries about the recent data cannot be

answered using the online data warehouse. To avoid this problem,the online data warehouse

should maintain the tuples whose time-stamps are in a sliding window of sizeω, whereω is the

length of the periodicity that the central data warehouse conducts an regular update.

In other words, at instantt (t ≥ ω), we assume that all the queries in the online data

warehouse are about multi-dimensional aggregates of tuples falling in the sliding window of

42 Chapter 3. Online answering ad-hoc aggregate queries on data streams

[t−ω+1, t].

Aggregate functions can be used in the queries, such asSUM, MIN, MAX, COUNTandAVG

in SQL. We consider the following two kinds of queries in this study.

• Point queries. At instantt, a point query is in the form of aquery cell(τ,d1, . . . ,dn),

wheret−ω+1≤ τ≤ t or τ = ∗, anddi ∈ Di ∪{∗}. For example, consider a data stream

of transaction records in an endless tabletransaction (Time-stamp, Branch-id, Prod-id,

Counter-party-id, Amount)whereBranch-id, Prod-id and Counter-party-idare the di-

mensions, andAmountis the measure. Suppose the sliding window is of size24 hours.

A point query may ask for “the total amount of ‘gold’ at 10 am”, where the query cell is

(10am, *, gold, *). Here, the symbols “∗” in dimensionsBranch-idandCounter-party-id

mean every transaction in any branch and with any counter-party counts.

Particularly, whenτ = ∗, the aggregate over the whole sliding window is returned. As

another example, query cell (*, Paris, *, *) stands for the total trading amount in Paris in

the current sliding window, including all products and all customers.

• Range queries. A range query specifies ranges instead of a specific value in some dimen-

sions. Thus, a range query may cover multiple query cells. For example, a range query

may ask for “the total amount of ‘gold’ and ‘oil’ in Paris and London in the current

sliding window”, denoted as(∗,{Paris, London},{gold, oil},∗).

The answer to a range query is one aggregate over all the tuples falling in the range.

For example, the above range query is answered by one total amount that covers all the

transactions in the two cities and about the two products, in the last two hours.1

The above two kinds of OLAP queries are essential, though more complex queries can be

raised. Many complex OLAP queries can be decomposed into a set of queries in the above two

categories.

1Alternatively, a list of the aggregates of the query cells falling in the range can be returned. For example, the
above range query may be answered by a list of4 aggregates corresponding to the combinations of values in the
ranges of dimensionBranch-idandProduct. The two forms of answers can be derived by similar techniques.

3.2. Related Work 43

Now, the problem becomeshow to construct and incrementally maintain an online data

warehouse and answer ad hoc aggregate queries.

Problem statement. Given a data streamS and a size of sliding windowω. We want to

construct and maintain an online data structureW(t) so that, at any instantt in the sliding

windowω, any point queries and range queries can be answered precisely and efficiently based

onW(t).

To be feasible for streaming data processing,W(t) should satisfy the following two condi-

tions.

1. The size ofW(t) is linear to the number of tuples in the current sliding window and the

dimensionality; and

2. W(t) can be constructed and maintained by scanning the tuples in the stream only once,

and unnecessarily holding the sliding window in main memory.

W is called theonline data warehouseof streamS.

3.2 Related Work

(Chaudhuri & Dayal, 1997; Widom, 1995) are excellent overviews of the major technical pro-

gresses and research problems in data warehousing and OLAP. It has been well recognized that

OLAP is more efficient if a data warehouse is used.

The data cube operator (Gray et al., 1997) is one of the most influential operators in OLAP.

Many approaches have been proposed to compute data cubes efficiently from scratch (Beyer

& Ramakrishnan, 1999; Ross & Srivastava, 1997; Ross & Zaman, 2000; Y. Zhao et al., 1997).

In general, they speed up the cube computation by sharing partitions, sorts, or partial sorts for

group-bys with common dimensions.

It is well recognized that the space requirements of data cubes in practice are often huge.

Some studies investigate partial materialization of data cubes (Beyer & Ramakrishnan, 1999;

Han et al., 2001; Harinarayan et al., 1996). Methods to compress data cubes are studied

44 Chapter 3. Online answering ad-hoc aggregate queries on data streams

in (Shanmugasundaram et al., 1999; Sismanis et al., 2002; W. Wang et al., 2002; Lakshmanann

et al., 2002; Lakshmanan et al., 2003). Moreover, many studies (Barbara & Sullivan, 1997;

Barbar & Wu, 2000; Vitter et al., 1998) investigate various approximation methods for data

cubes.

How to implement and index data cubes efficiently is a critical problem. Cubetree (Rous-

sopoulos et al., 1997) and Dwarf (Sismanis et al., 2002) are proposed by exploring the prefix

and suffix sharing among dimension values of aggregate cells. Quotient cube (Lakshmanann

et al., 2002) is a non-redundant compression of data cube by exploring the semantics of ag-

gregate cells, and QC-tree (Lakshmanan et al., 2003) is an effective data structure to store and

index quotient cube. As compressions of a data cube, they can be used to answer queries di-

rectly, and quotient cube can further support some advanced semantic OLAP operations, such

as roll-up/drill-down browsing.

Many studies have been conducted on how to answer various queries effectively and effi-

ciently using fully or partially materialized data cubes (Cohen et al., 1999; Johnson & Shasha,

1997; Levy et al., 1995; Mendelzon & Vaisman, 2000; Srivastava et al., 1996). To facilitate the

query answering, various indexes have been proposed. Sarawagi (1997) provides an excellent

survey on related methods. A data warehouse may need to be updated timely to reflect the

changes of data. In 1990’s, the maintenance of views in data warehouses was actively stud-

ied (Gupta et al., 1993; Mumick et al., 1994; Quass et al., 1996; Quass & Widom, 1997).

Recently, intensive research efforts have been invested in data stream processing, such as

monitoring statistics over streams and query answering (Babu & Widom, 2001; Dobra et al.,

2002; Datar et al., 2002; Gehrke et al., 2001) and multi-dimensional analysis (Chen et al., 2002).

Please see (Babcock et al., 2002) for a comprehensive overview. While many of them focus on

answeringcontinuous queries, few of them consider answeringad hoc queriesby warehousing

data streams. Probably the work most related to this paper is done by Chen et al. (2002), where

a linear-regression based approach is proposed to accumulate the multi-dimensional aggregates

from a data stream, and a variation of the H-tree structure (Han et al., 2001) is used to mate-

rialize some selected roll-up/drill-down paths for OLAP. However, their method assumes that

3.3. Prefix Aggregate Tree (PAT) 45

the streaming data can be summarized effectively by linear regression and can only provide ap-

proximate answers to aggregate queries, and no efficient method is presented to answer various

ad hoc aggregate queries in general. Moreover, the selected roll-up/drill-down paths are hard

to determine. It is unclear how the H-tree structure can be stored and incrementally maintained

effectively for data streams.

Particularly, this work is related to the research on mining frequent itemsets from data

streams (Arasu & Manku, 2004; Chang & Lee, 2003; Cormode et al., 2003; Cormode & Muthukr-

ishnan, 2003; Giannella et al., 2004; Karp et al., 2003; Teng et al., 2003; Yu et al., 2004). Ba-

sically, for a given stream of transactions, where a transaction is a set of items, the frequent

itemset mining problem for data streams is to maintain the set of itemsets that appear at least

∆ ·n times in the transactions seen so far, where∆ is a minimum support threshold, andn is the

number of transactions seen so far. Some methods put weights to transactions, and the more

recent transactions have heavier weights. Frequency can be viewed as a type of aggregates.

However, all of the previous methods are approximate approaches. They cannot provide the

exact answers, though some methods can provide different types of quality guarantees.

To the best of our knowledge, this is the first study on warehousing and indexing data in a

sliding window over data stream and answering ad hoc aggregate queries accurately.

On the other hand, tree and prefix-tree structures have been frequently used in data mining

and data warehousing indices, including cube forest (Johnson & Shasha, 1997), FP-tree (Han et

al., 2004), H-tree (Han et al., 2001), Dwarf structure (Sismanis et al., 2002) and QC-tree (Lak-

shmanan et al., 2003).PAT is also a prefix tree data structure. We will further compare our

approaches to several important previous studies in Section 3.3.2, after the major technical

ideas ofPATare brought up.

3.3 Prefix Aggregate Tree (PAT)

In this section, we devise the prefix aggregate tree (PAT) data structure. We also develop algo-

rithms to construct and incrementally maintain prefix aggregate tree. Hereafter, all aggregate

46 Chapter 3. Online answering ad-hoc aggregate queries on data streams

queries are ad hoc ones.

3.3.1 Data Structure

Consider a data streamS(T,D1, . . . ,Dn,M). Let the size of sliding window beω. In order to

answer any aggregate query about the data in the sliding window, we have to store the tuples

in the sliding window. An intuitive way to store the tuples compactly is to use a prefix tree, as

shown in the following example.

Example 3.1. Let the data stream as our running example beS(T,A,B,C,D,M) whereT and

M are the attributes of time-stamps and the measure, respectively. The tuples at instants1 and

2 are shown in Figure 3.2. Suppose aggregate functionSUMis used, and the size of sliding

window ω = 2.

T A B C D M

1 a1 b2 c1 d1 6
1 a1 b1 c1 d1 2
2 a1 b1 c2 d2 3
2 a2 b1 c2 d1 4

Figure 3.2: The tuples at instants1 and2 in streamS(T,A,B,C,D,M).

If we ignore the time-stamps and measures, the tuples in the sliding window can be orga-

nized into a prefix tree, as shown in Figure 3.3(a).

d1

c2

b1

d1

c1

a2

b2

d2d1

c2c1

b1

a1

root

2 4d1

c2

b1

a22 3
1 8

2 4

2 7
1 8

root

a1

b1

2 4

2 42 3

2 3d2

c2

1 2

1 2

d1

c1 2 3

1 2
1 6

1 6

1 6d1

c1

b2

(a) Storing tuples into a prefix tree. (b) Prefix tree with aggregate table at each node.

Figure 3.3: Archiving a data stream in a prefix tree.

3.3. Prefix Aggregate Tree (PAT) 47

In order to store the information about the time-stamps and measures, we can register the

information at the tree nodes, as shown in Figure 3.3(b). Each tree node has anaggregate table,

such that the time-stamps and the aggregates by instants are registered.

Clearly, the leaf nodes in the prefix tree record the tuples in the sliding window. Each

internal node in the tree registers the aggregate of the tuples whose paths go through this node.

For example, the nodea1 in the tree registers the aggregates of tuples havinga1 and stores them

by instants.

In a prefix tree, one node can be represented by the path from the root of the tree to the node.

Hereafter, we will write a node as a string of dimension values, such asa1, a1b1 anda1b1c2.

In the prefix tree shown in Figure 3.3(b), an internal node registers the aggregates of tuples

sharing the “prefix” from the root to the node. They are called prefix aggregate cells.

Definition 3.1 (Prefix aggregate cell).Consider a data streamS(T,D1, . . . ,Dn,M), whereT

and M are attributes of time-stamps and measure, respectively. For any tuple, we always list

the dimension values in the order ofD1, . . . ,Dn. LetSt be the set of tuples in the current sliding

window[(t−ω+1), t] of S. An aggregate cellc = (τ,d1, . . . ,dn) is aprefix aggregate cellif (1)

there exists ak such that1≤ k≤ n, d1, . . . ,dk are not∗ anddk+1, . . . ,dn are all ∗; and (2) there

exists at least one tuplec′ = (d′1, . . . ,d
′
n) in St such thatdi = d′i for (1≤ i ≤ k).

Theorem 3.1. By storing only the prefix aggregate cells, any ad hoc aggregate queries about

the current sliding window can be answered.

Proof. Clearly, the answer to any ad hoc aggregate query about the current sliding window can

be derived from the complete set of tuples in the window. Let us consider tuples in the current

window. If a tuplet is unique in the current sliding window,t is (trivially) a prefix aggregate

cell. If t is not unique, then there exists a prefix aggregate cell which has the same value ast on

every dimension. In other words, the set of prefix aggregate cells covers all tuples in the current

sliding window.

48 Chapter 3. Online answering ad-hoc aggregate queries on data streams

Theorem 3.2 (Numbers of aggregate cells/prefix aggregate cells).Given a base table ofn

dimensions andk tuples, letnaggr and np be the number of aggregate cells and that of prefix

aggregate cells, respectively. Then,2n≤ naggr≤ (k·(2n−1)+1) and(n+1)≤ np≤ (k·n+1).

Proof. When tuples share some values in some dimensions, they share the corresponding ag-

gregate cells. When all tuples in the base table have the same value on every dimension,naggr

is minimized. When thek tuples do not share any common value in any dimension, each tuple

leads to(2n−1) unique aggregate cells, and all tuples share aggregate cell(∗, . . . ,∗). Thus,nnp

is maximized to(k · (2n−1)+1).

When tuples share some prefixes, they share the corresponding prefix aggregate cells. When

all tuples in the base table have the same value on every dimension,np is minimized. When the

k tuples do not share any prefix, each tuple leads ton prefix aggregate cells, and all tuples share

aggregate cell(∗, . . . ,∗). Thus,naggr is maximized to(k ·n+1).

Theorem 3.2 indicates that the number of prefix aggregate cells is, in the worst cases, linear

to the number of tuples in the sliding window and the dimensionality, and thus is substantially

smaller than that of all aggregate cells. It suggests that the set of prefix aggregate cells is a

promising candidate of an online data warehouse for a data stream.

Given a prefix tree of the prefix aggregate cells, aggregate queries can be answered by

browsing the tree and extracting the related tuples in the current sliding window. However, if

the current sliding window is large and thus the prefix tree is also large, browsing a large tree

may not be efficient. We should build some light-weight index in the tree to facilitate the search.

Let us consider how to derive the aggregate for(∗,b1,∗,∗) from the prefix tree in Fig-

ure 3.3(b). To answer this query, we need to access all the tuples having valueb1 on dimension

B. To facilitate the search, it is natural to introduce theside linksthat link all nodes carrying the

same label together.

Can we add side links arbitrarily?Let us consider how to compute aggregate(a1,∗,c1,∗)
from the tree in Figure 3.3(b). To answer this query, we want to access the nodes carrying label

c1 in the subtree rooted at nodea1. That is, we want alocal linked list of nodes having labelc1

3.3. Prefix Aggregate Tree (PAT) 49

in the subtree rooted at nodea1.

Clearly, maintaining multiple linked lists is not a good idea. Instead, we should construct

a linked list that has thelocality property: in any subtree, the nodes carrying the same label

should be linked consecutively.

Moreover, if we can register the aggregate of all tuples havingc1 in thea1-subtree, the query

can be answered even faster. This information can be registered as the head of the sub-linked

list of c1 in thea1-subtree.

To accommodate the above ideas, we can construct a linked list of all nodes havingc1 in the

a1-subtree, and set up a pointer to the head of the sub-linked list at nodea1. The corresponding

aggregate,(a1,∗,c1,∗) should also be stored and associated with the head of the linked list.

The above ideas can be generalized. For example, side links can be built in the prefix tree

in Figure 3.3(b), resulting in aprefix aggregate treestructure, as shown in Figure 3.4.

side link

infix link

tree edge root

a2a1

b1 b1b2

d1d1d2

c2c1c2

d1

c1

2 42 3 1 61 2

2 41 62 31 2

2 3
1 2

2 3
1 8

2 7
1 8

2 4

2 41 6

Figure 3.4: Prefix aggregate tree (the aggregate tables for infix links are omitted to make the
graph easy to read).

Definition 3.2 (Prefix aggregate tree).In general, given the current sliding window of a data

stream, aprefix aggregate tree(PAT for short) is a prefix tree of the prefix aggregate cells in

the window with the following two kinds of links.

• Side links. All nodes having the same dimension value as the label are linked together

such that the locality property is hold: For any subtree, all the nodes carrying the same

label in the subtree are linked consecutively.

50 Chapter 3. Online answering ad-hoc aggregate queries on data streams

• Infix links . At nodev = d1 · · ·dk (1≤ k≤ (n−2)), for every dimension valuedi, j on di-

mensionDi ((k+2)≤ i ≤ n) that appears in the subtree rooted atv, all the nodes carrying

label di, j in the subtree rooted atv are linked consecutively by side-links. Aninfix link

is built fromv to the head of the sublist, and an aggregate table is stored and associated

with the infix link recording the aggregates ofc = (d1, . . . ,dk,∗, . . . ,∗,di, j ,∗, . . . ,∗). c is

called aninfix aggregate cell.

Theorem 3.3. Consider base table ofn dimensions and the cardinality of each dimension isl .

In the worst case, the number of infix aggregate cells (and thus the infix links in a PAT) is

∑n−2
i=1 l i(n− i−1).

Proof. From the definition ofPAT, the number of infix aggregate cells and that of infix links

are identical. The worst case happens when every possible combination of dimension values

appears in the base table, where the base table hasln unique tuples. Each internal node in

thePAThasl children. Thus we have the upper bound. In such a situation, there are(l + 1)n

aggregate cells.

Theorem 3.2 and 3.3 shows that, in the worst case, the set of prefix aggregate cells and

infix aggregate cells is still a small subset of all the aggregate cells. Practical data is usually

skewed. As verified by our experimental results, thePAT is much smaller than the size of all

the aggregate cells.

The size of a node in aPAT is regular. For a prefix aggregate cell(d1, . . . ,dk,∗, . . . ,∗), the

corresponding node in the tree is at thek-th level (the root node is at level0), and stores the

following pieces of information: (1) The aggregate table, which has2 columns, the time-stamp

and the aggregate, and at mostω records; (2) Pointers to up tolk+1 children, wherelk+1 is the

cardinality of dimensionDk+1; (3) At most∑n
i=k+2 l i infix aggregate links and corresponding

aggregate tables, wherel i is the cardinality of dimensionDi ; and (4) A side link to the next node

at the same level carrying the same label.

The total size of such a tree node isO(ω+ lk+1+ω ·∑n
i=k+2 l i +1) = O(ω ·∑n

i=k+1 l i). Com-

paring to the number of tuples in a base table, which can be easily in millions, the number of

3.3. Prefix Aggregate Tree (PAT) 51

dimensions and the cardinality in each dimension are often pretty small. All nodes at the same

level of the tree have the same size. APATcan be easily stored and managed in main memory

or on disk.

We assume that an order of dimensions is used to construct aPAT. In fact, the order of

dimensions affects the size of the resultingPAT. Heuristically, if we order the dimensions in

cardinality ascending order, then the tuples may have good chances to share prefixes and thus

the resultingPATmay have a small number of nodes. The tradeoff is that the tree nodes may

be large due to the large number of infix links. On the other hand, if we sort dimensions in the

cardinality descending order, then the number of nodes may be large but the nodes themselves

may be small. Theoretically, finding the best order to achieve a minimalPAT is an NP-hard

problem. This problem is similar to the problem of computing a minimal FP-tree by ordering

the frequent items properly. In Section 3.5, we will study the effect of ordering on the size of

PATby experiments.

3.3.2 Comparison:PAT vs. Previous Methods

Prefix tree (trie) structures have been extensively used in the previous studies on data mining

and data warehousing.PAT is another prefix tree structure. At first glance,PAT may look

similar to some of the previous structures, including Cube forest (Johnson & Shasha, 1997),

FP-tree (Han et al., 2004), H-tree (Han et al., 2001), Dwarf structure (Sismanis et al., 2002) and

QC-tree (Lakshmanan et al., 2003).

An FP-tree (Han et al., 2004), a data structure for frequent itemset mining, records transac-

tions in a prefix tree structure such that transactions sharing common prefixes also collapses to

the same prefix in the tree. There are three critical differences between an FP-tree and aPAT.

First, FP-tree is for transaction data andPAT is for relation data. While transactions may have

different lengths, all tuples stored in aPAThave the same length. Infix links do not appear in

an FP-tree. Second, FP-tree does not bear the locality property. Instead, the side links in an

FP-tree are built as transactions arrive. As shown later, the locality property in a PAT facilitates

the aggregate query answering substantially. Last, an FP-tree is for frequent itemset mining.

52 Chapter 3. Online answering ad-hoc aggregate queries on data streams

During the mining, an FP-tree is scanned multiple times, and the mining results are output. A

PAT is for aggregate query answering. It is built and maintained by one scan of the data stream.

A query answering algorithm searches thePAT to answer aggregate queries.

Cube forest (Johnson & Shasha, 1997), H-tree (Han et al., 2001), Dwarf structure (Sismanis

et al., 2002) and QC-tree (Lakshmanan et al., 2003) are for data warehousing. PAT distinguishes

itself from those designs in the following two aspects.

First, PAT stores only prefix and infix aggregates, while most of the previous structures,

except forH-tree, potentially store all aggregates. In sequel, the number of nodes inPAT

is linear to the number of tuples in the sliding window and the dimensionality, while those

structures are exponential to the dimensionality. Moreover, the size of tree nodes inPAT is

regular, as analyzed before. The advantages on size and regularity of tree nodes makePAT

feasible for streaming data.

An H-tree is a prefix tree of the tuples in base table. Thus, it is also linear to the dimension-

ality. However,H-treedoes not have infix link and thus the query answering onH-treedirectly

can be very costly. Furthermore,H-tree is designed as an internal data structure for computing

iceberg cells, and is not for data streams.

Second,PAT is indexed by infix links and side-links, and the side-links have the locality prop-

erty. As will be shown soon, the locality property and the infix links facilitate query answering

substantially. In most of the previous structures, the search is based on values dimension by

dimension.

In terms of size, aPAT is larger than anH-tree: the difference is infix aggregates and infix

links. The size of the infix aggregates and the infix links is quantified in 3.3. The infix links have

to meet the locality requirement. Theorem 3.4 will discuss the procedure. As will be shown, it

takes the extra cost in time linear in the dimensionality to maintain the locality.

3.3.3 PAT Construction

We consider constructing aPATby reading tuples into main memory one by one (or batch by

batch), and each tuple can be read into main memory only once. The algorithm is presented in

3.3. Prefix Aggregate Tree (PAT) 53

Figure 3.5 and elaborated in this subsection.

Example 3.2.Let us construct aPATby reading the tuples in Figure 3.2 one by one.

A PATis initialized as a tree with only one node, the root. Then, The first tuple,(1,a1,b2,c1,d1,6),

is read and inserted into the tree. For each node in the path, a row(1,6) is registered in the aggre-

gate table. The infix links fromroot to a1b2, a1b2c1 anda1b2c1d1, infix links from a1 to a1b2c1

anda1b2c1d1, and infix links froma1b2 to a1b2c1d1 are created. The corresponding infix aggre-

gate cells are(∗,b2,∗,∗), (∗,∗,c1,∗), (∗,∗,∗,d1), (a1,∗,c1,∗), (a1,∗,∗,d1) and(a1,b2,∗,d1),

respectively. Once the information is recorded in the tree, we do not need the tuple any more.

Then, we read the second tuple(1,a1,b1,c1,d1,2) and insert it into the tree. The aggregate

values at nodesroot anda1 should be both updated to(1,8), since they are on the path of the

inserted tuple. The infix links fromroot to a1b1 and froma1b1 to a1b1c1d1 are created and

associated with the infix aggregate cells(∗,b1,∗,∗) and(a1,b1,∗,d1), respectively.

The remaining tuples can be inserted similarly. It can be verified that the resultingPAT is

exactly the one shown in Figure 3.4.

The construction of aPATby scanning tuples one by one has two major components: build-

ing the prefix tree, which is straightforward, and creating/maintaining the correct infix links

and side-links, which should follow the procedure justified in the following theorem so that the

locality property is respected.

Theorem 3.4. Let T be a PAT that satisfies the locality property. When a new nodev of label

di is created, the following procedure adjusts the side-links and infix-links so that the resulting

PAT preserves the locality property: Ifv is a child of the root noder, no infix link and side-link

are needed; else, the side-links and infix links with respect tov should be adjusted as follows:

1. The closest ancestorv′ of v should be allocated such thatv′ has an infix link ofdi ;

2. If v′ does not exist, then an infix link should be built from every ancestor ofv in the tree

to v, except for the parent node ofv.

54 Chapter 3. Online answering ad-hoc aggregate queries on data streams

3. Otherwise, letu be the node pointed by thedi-infix link of v′. LetV be the set of ancestor

nodes ofv′ whosedi-infix links also point tou.

(a) If u is not the first node of global side link withdi(in other words, the root noder

does not exist inV), v should be inserted into the front of the sublist pointed by the

di-infix link of v′ and thedi-infix link of v′ should point tov.

(b) If u is the first node of side link withdi globally in the tree(in other words, the root

noder exists inV), v should be inserted into the front of the sublist pointed by the

di-infix link of v′ and thedi-infix link of v′ and nodes inV should point tov.

Proof. The correctness of Step 2 is clear since in such a case,v is the first node carrying label

di . The corresponding infix links should be created.

SupposePATT already has some nodes carrying labeldi . To preserve the locality property,

v should be inserted to the head of the non-empty consecutive sublist of its closest ancestor. If

v is the first node of side links withdi , the infix links of ancestor nodes ofv′ should point tov.

Once the locality property holds for the smallest subtree containing the new node, the locality

property holds for any larger subtrees containing the smallest subtree, since thePATbefore the

insertion has the locality property.

The complexity of the procedure described in Theorem 3.4 is linear in the dimensionality.

At each node, a table of aggregates is maintained. Each table has two columns: time-stamp and

aggregate, and at mostω rows. The aggregate at instantt should be stored at the(t modω)-th

row. Therefore, the cost of maintaining and searching the table is constant.

3.3.4 Incremental Maintenance

Suppose that we have aPATat instantt. At instant(t +1), the new data tuples should be read

in and inserted into the tree, and the data at instant(t−ω + 1) should be removed, so that the

sliding window is moved forward to[t−ω+2, t +1]. The algorithm is shown in Figure 3.6. We

explain the critical details as follows.

3.3. Prefix Aggregate Tree (PAT) 55

Algorithm Tree construction
Input: the current sliding windowB
Output: a PAT
Method:

1: initialize a tree with only the root node;
2: read the tuples into main memory one by one, one at each time;
3: for each tupledo
4: insert the tuple into the tree;
5: for each node on the path of the inserted tupledo
6: update the aggregate at the node;
7: if it is a new nodethen
8: adjust infix links and side-links according to Theorem 3.4
9: end if

10: end for
11: end for

Figure 3.5: ThePATconstruction algorithm by scanning tuples one by one.

To be efficient, should insertions of tuples at instant(t + 1) go first or deletions of tuples

at instant(t −ω + 1) first? Consider a tree nodev whose aggregate table contains only an

aggregate at instant(t−ω+1). Suppose that some tuples from the stream at instant(t +1) will

contribute a new row inv’s aggregate table. If deletions go first, the node would be removed

since its aggregate table is empty after the deletion. Then, the insertion of the tuples at instant

(t + 1) will have to recreate the node. To avoid such an unnecessary deletion-and-re-creation,

we should let the insertions of tuples at instant(t +1) go first before the deletions of tuples at

instant(t−ω+1).

Insertion of tuples at instant(t + 1) can be done in the way similar to Algorithm in Fig-

ure 3.5, the tree construction by scanning the tuples one by one. That is, we take the existing

PATat instantt, and insert the tuples at instant(t +1) into the tree.

Please note that, during the insertion, we do not need to scan any tuples in the previous

instants. The only tuples scanned are those at instant(t +1).

Now, let us considerhow to delete the tuples whose time-stamps are(t−ω + 1). A näıve

method is as follows. We search thePAT. For each node that contains an aggregate at instant(t−
ω +1) in its aggregate table, the corresponding row in the aggregate table should be removed.

If the aggregate table becomes empty, then the node should be deleted.

The above näıve method is costly. There can be many nodes in the tree containing aggregates

56 Chapter 3. Online answering ad-hoc aggregate queries on data streams

Algorithm Incremental maintenance
Input: thePATT at instantt,and the tuples at instant(t +1)
Output: thePATat instant(t +1)
Method:

1: insert tuples at instant(t +1) into T,
2: for each nodev on the pathdo
3: if v’s aggregate table contains a row of instant(t−ω+1) then
4: remove the row from the aggregate table;
5: if v is a leaf nodethen
6: putv into the LUT list ofLUT = t +1;
7: end if
8: end if
9: end for

10: for each nodev in the LUT list ofLUT = t−ω+1 do
11: searchv’s ancestors upward until a node having aggregates after instantt−ω+1 is encountered;
12: removev and those ancestors ofv, and the infix links, adjust the related side-links,too
13: end for

Figure 3.6: ThePAT incremental maintenance algorithm.

T A B C D M

3 a1 b2 c2 d2 5
3 a2 b2 c1 d2 1

Figure 3.7: The tuples at instant3.

at instant(t−ω +1). Aggressively updating a large number of nodes may degrade the online

performance. Moreover, how to locate the nodes containing aggregates at instant(t−ω+1) is

another problem. Browsing the whole tree can be very expensive.

Here, we propose alazy approach: the nodes whose aggregate table has only rows of instants

(t−ω+1) or earlier have to be removed at instant(t +1), in order to release the space. Other

than that, the deletions of the old aggregates of instant(t−ω +1) from the nodes are deferred

and conducted as a byproduct of future insertions. The idea is elaborated in the following

example.

Example 3.3. Suppose the tuples at instant3 are as shown in Figure 3.7. Since the size of the

sliding windowω = 2, the tuples at instant3 should be inserted and the tuples of instant1 should

be removed. Let us consider how thePAT in Figure 3.4 should be incrementally maintained.

We first insert the tuples at instant3 into thePAT. Tuple(3,a1,b2,c2,d2,5) is inserted from

the root node as a path “a1-b2-c2-d2”. A record (3,5) will be stored at the first row of the ag-

3.3. Prefix Aggregate Tree (PAT) 57

3 1

tree edge

side link

infix link

c2 c2

d2 d1

b2 b1b1

a1

root

3 5
2 3

3 5

c2 3 5

d2 3 5

b2

c1

d2

3 6
2 7

a2
2 4
3 1

2 3

1 2
2 3

2 3 2 4

2 4 3 1

3 12 4

Figure 3.8: Prefix aggregate tree at instant3.

gregate table, since3 mod2= 1. It overwrites record(1,8) automatically. Similarly, we update

the aggregate tables at nodesa1 anda1b2, and the aggregate tables for the related infix links,

respectively. Please note that the removal of data at instant1 from these nodes are conducted

as abyproductof the insertions, i.e., we do not actively search for the nodes whose aggregate

tables having rows of instant1. To complete the insertion, two new nodes,a1b2c2 anda1b2c2d2,

are created. Following Theorem 3.4, the aggregate tables at these nodes as well as the appropri-

ate side-links and infix links are adjusted. The second tuple,(3,a2,b2,c1,d2,1) can be inserted

similarly.

Then, we should remove all those nodes whose aggregate tables contain only rows of instant

1. To find such nodes, we maintain an integer for each leaf node, called thelast update time-

stamp(LUT), which is the latest time-stamp that the node is updated. All leaf nodes having

the same LUT are linked together as a linked list. By browsing the linked list for LUT= 1, we

remove the leaf nodes and their ancestors that have only aggregates at instant1. The upward

search stops when the first ancestor having aggregates at instant other than1 is encountered. In

this example, nodesa1b1c1, a1b1c1d1, a1b2c1, anda1b2c1d1 are removed. The resulting tree is

shown in Figure 3.8.

Please note that the aggregate table at nodea1b1 still contains the aggregate at instant1.

However, this information does not affect our query answering. This row will be removed in

the future. At instant4, if there is a new tuple havinga1b1 as a prefix, the row will be overwritten

and the node will be updated. Otherwise, the node will be removed when we clean up nodes

58 Chapter 3. Online answering ad-hoc aggregate queries on data streams

containing only aggregates at instant2 or earlier.

In summary, at instant(t +1), the incremental maintenance algorithm only scans the tuples

having time-stamp(t +1) once, and inserts them into the existingPAT. By following the LUT

list of (t−ω+1), the maintenance algorithm removes those tree nodes and corresponding infix

links whose aggregate tables have only rows of instant(t−ω +1) or earlier. It never browses

the completePATduring the incremental maintenance.

Theorem 3.5. The time complexity of constructing and incrementally maintaining aPAT is

O(nl), wheren is the number of tuples needed to be inserted into thePAT, andl is the cardinal-

ity.

Proof. The complexity follows the algorithms in Figures 3.5 and 3.6. For each tuple, the inser-

tion time and the time to maintain the locality of the infix links are linear in the dimensionality

l .

Moreover, if the incremental tuples can be held into main memory, then, they can be sorted

and inserted in batch.

3.4 Aggregate Query Answering

We consider how to answer queries of two categories: point queries and range queries.

3.4.1 Answering Point Queries

Point queries can be answered efficiently using aPAT. The algorithm is shown in Figure 3.9.

We illustrate the major idea in the following example.

Example 3.4 (Point query answering).Let us use thePAT shown in Figure 3.4 to answer

some illustrative point queries about the sliding window[1,2] in the data stream of our running

example.

3.4. Aggregate Query Answering 59

Algorithm Answering point queries
Input: thePATT at instantt, and a query cellq(τ,d1, . . . ,dn)
Output: the aggregate of the query cell
Method:

1: if τ 6= ∗ and the root’s aggregate table does not have a row aboutτ then
2: RETURN(null);
3: end if
4: let current-node=root;
5: m= search(current-node, q);
6: RETURN(m);

Function search(current-node, q-cell)

1: supposeq-cell = (τ,d1, . . . ,dl);
2: if d1 6= ∗ then
3: if current-nodehas a childv of labeld1 then
4: if τ 6= ∗ and there is no row of instantτ in the aggregate table ofv then
5: RETURN(null);
6: else
7: current-node= v; q′ = (τ,d2, . . . ,dl); m= search(current-node,q′);
8: RETURN(m);
9: end if

10: else
11: RETURN(m);
12: end if
13: else
14: if d1 = · · ·= dl = ∗ then
15: RETURN the aggregate atcurrent-node;
16: end if
17: let di be the first dimension non-∗ value inq;
18: if current-nodehas no infix link of labeldi then
19: RETURN(m);
20: end if
21: if τ 6= ∗ and the aggregate table of the infix link ofdi has no row ofτ then
22: RETURN(m);
23: end if
24: m= 0;
25: follow the side links, visit every node carrying labeldi in the subtree ofv,
26: for each nodev′ in the linked listdo
27: let current-node= v′; q′ = (di+1, . . . ,dl); m= aggr(m,search(current-node, q′));
28: end for
29: RETURN(m)
30: end if

Figure 3.9: The algorithm answering point queries.

60 Chapter 3. Online answering ad-hoc aggregate queries on data streams

First, consider query cellq1 = (1,a1,b1,∗,∗), which itself is a prefix aggregate cell. Its

aggregate,2, is registered in the aggregate table of nodea1b1. Following the path from the root

to the node, we retrieve the answer immediately.

Let us consider query cellq2 = (∗,∗,b1,∗,∗). It is not a prefix aggregate cell. Instead, it is

an infix aggregate cell. Thus, by the aggregate table associated with the infix link of labelb1 at

noderoot, we can retrieve the aggregate. Please note that the aggregates are stored by instants

in the aggregate table, i.e., two rows(1,2) and(2,7) are in the aggregate table of the infix link.

We need to get the sum of them sinceτ = ∗ in this query cell.

As the third example, letq3 = (∗,∗,b1,∗,d1). This query cannot be answered by one node

in the tree. Instead, following the infix link of labelb1 at noderoot, we can reach the linked list

of all nodes havingb1. Following the side-links, we can access all the nodes ofb1 in the tree.

For each node in the linked list, we recursively retrieve the aggregates from the infix link of

labeld1 at the node. For example, at nodea1b1, by the infix link of d1, we immediately know

the aggregate of(∗,a1,b1,∗,d1) is 1 even without visiting any node ofd1. Similarly, at node

a2b1, we can retrieve the aggregate of(∗,a2,b1,∗,d1), 4, from the infix link. The sum of the

aggregates from the infix aggregate cells,6, answers the query.

As another example, let us consider query cellq4 = (∗,a2,∗, c2,d2). Following the tree

edgeroot-a2 and infix link ofc2 at nodea2, we reach the local linked list ofc2 in the subtree of

a2. The locality property of the side-links and the infix link avoids the search of the complete

linked list of c2. Sincea2b1c2 has only one child, which isa2b1c2d1, the query returnsnull.

Here,null means there is not any tuple matching the aggregate cell.

The aggregate tables can also be used to prune the search. For example, consider query

cell q5 = (2,a1,b2,∗,d1). It follows the patha1b2 in thePAT. However, the aggregate table at

nodea1b2 does not contain any row of instant2. Thus, we can returnnull immediately without

searching the subtree any more.

As can be seen, in answering point queries, infix links and side-links are used to search only

the related tuples. Moreover, the locality property of side-links guarantees that we do not need

to search any unnecessary nodes or branches.

3.4. Aggregate Query Answering 61

3.4.2 Answering Range Queries

In principle, a range query can be rewritten as a set of point queries. Then, Algorithm of

answering point queries in Figure 3.9 can be called repeatedly to answer the queries. However,

calling the algorithm of answering point queries and thus searching the PAT repeatedly may not

be efficient.

Here, we propose aduel pruningapproach, as exemplified in the following example.

Example 3.5 (Range query answering).Let us consider how to answer range query

(2,∗,{b0,b1},∗,{d1,d2}). The query cell can be rewritten as a set of4queries cells:(2,∗,b0,∗,d1),

(2,∗,b0,∗,d2), (2,∗,b1,∗,d1) and(2,∗,b1,∗,d2). Algorithm in Figure 3.9 can be called four

times to answer the point queries, respectively, and the sum, 7, should be returned.

Instead of calling algorithm of answering point queries four times, we can search thePAT

as follows.

We start from the root node, since the first non-∗ dimension value in the query cell should

be eitherb0 or b1 on dimensionB, we search the infix links ofb0 andb1 from the root node.

Since there exists no infix link ofb0, we prune the range query cell to(2,∗,b1,∗,{d1,d2}). At

the same time, we only need to search subtrees rooted at the nodes having labelb1, which are

linked by the side-links. That is, a part of the search space is also pruned.

There are two nodes carrying labelb1 in thePAT, a1b1 anda2b1. We search them one by

one. For nodea1b1, since the next non-∗ dimension value in the query cell should be eitherd1

or d2, and the time-stamp is2, only the infix links ofd1 andd2 are searched, and only the infix

link of d2 has a row of time-stamp2. Thus, the aggregate3 is extracted. Similarly, aggregate

value4 is extracted from the subtree ofa2b1. Thus, the sum7 is returned.

As shown in Example 3.5, the major idea of progressive pruning method for answering

range queries is that, instead of searching aPATmany times, we conduct the search using the

range query from the root of aPAT. At each node under the search, the query range is narrowed

using the information of the available infix links and the corresponding aggregate tables, and

the unnecessary nodes are pruned from the search space using the range specification in the

62 Chapter 3. Online answering ad-hoc aggregate queries on data streams

query. By progressive pruning, we search thePATonly once for any range query.

3.5 Experimental Results

In this section, we report the experimental results from a systematic performance study. All

the algorithms are implemented in C++ on a laptop PC with a2.8 GHz Pentium 4 processor,

60 G hard drive, and512 MB main memory, running Microsoft Windows XP. In all of our

experiments, the PATs reside in main memory.

We generate the synthetic data sets following the Zipf distribution. To generate the data

sets, our data generator takes the parameters of the Zipf factor, the dimensionality, the number

of tuples, and the cardinality in each dimension. To generate a tuple, we generate the data for

each dimension independently following the Zipf distribution.

Such a data generation method is popularly used in many previous studies (Beyer & Ra-

makrishnan, 1999; Ross & Srivastava, 1997; W. Wang et al., 2002; Sismanis et al., 2002) on

data cube and data warehouse computation. To some extent, it is a benchmark approach to

generating synthetic data sets for data cube computation.

In our test, we also used the weather data set (Hahn, 1994) which is a real data set. The

weather data set is well accepted a benchmark data set for data cube computation (Beyer &

Ramakrishnan, 1999; Ross & Srivastava, 1997; W. Wang et al., 2002; Sismanis et al., 2002).

We tested three methods: thePATmethod developed in this dissertation, theBUCmethod (Beyer

& Ramakrishnan, 1999) and a baseline method. The baseline method just simply stores and

sorts all tuples in the current sliding window. As expected, the baseline method uses the least

main memory to store the data and costs the least runtime to maintain the current sliding win-

dow. The tradeoff is the slowest query answering performance. To answer any query, the

baseline method has to scan the tuples in the current sliding window. A binary search can be

used to locate the tuples matching the time interval of the query. On the other hand, theBUC

method computes the whole data cube. It costs the most in computing the whole cube and stor-

ing the aggregates. We measure both the main memory cost ofBUC and the size of the data

3.5. Experimental Results 63

cube computed byBUC, which is stored on disk. To answer a query,BUConly needs to conduct

a binary search to allocate the corresponding aggregate tuple. Thus, the query answering time

is fast.PAT is in between: to compute and store the aggregates for the current sliding window,

it costs more space and runtime than the baseline method but less than theBUCmethod; on the

other hand, in query answering, it searches less than the baseline method accordingly.

3.5.1 Building Prefix Aggregate Trees

We tested the size of the data cube computed byBUC, the size ofPAT, the number of aggregates

computed, the memory usage (the highest watermark of memory usage during the running of

the programs) and scalability (runtime) of the three methods. Four factors are considered: the

Zipf factor, the dimensionality, the cardinality of the dimensions and the number of tuples in

the current sliding window. The results are consistent. Some results are shown in Figure 3.10.

 0

 20

 40

 60

 80

 100

 120

 1.5 2 2.5 3 3.5 4

R
un

 ti
m

e
(s

ec
on

ds
)

Zipf Factor

BUC
PAT

BaseLine

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.5 1 1.5 2 2.5

S
iz

e
of

 C
ub

e/
T

re
e

(M
)

Number of Tuples (M)

BUC
PAT

BaseLine

(a) Runtime vs. Zipf factor (dim=10, cardinal-
ity=10, #tuples=500K)

(b) Size of cube/tree vs. #tuples (Zipf=2,
dim=10, cardinality=10)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 5 10 15 20 25

N
um

be
r

of
 C

el
ls

/N
od

es
 (

K
)

Cardinality

BUC
PAT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 4 5 6 7 8 9 10 11 12

M
em

or
y

U
sa

ge
 (

M
)

Dimensionality

BUC
PAT

BaseLine

(c) #aggregates vs. cardinality (Zipf=2,
dim=10, #tuples=500K)

(d) Memory usage vs. dimensionality
(Zipf=2, cardinality=10, #tuples=500K)

Figure 3.10: Results on constructingPAT.

64 Chapter 3. Online answering ad-hoc aggregate queries on data streams

As shown Figure 3.10(a), the baseline method is not sensitive to the Zipf factor at all, since

it simply maintains the tuples in the current sliding window and does not pre-compute any

aggregate. BothBUC and PAT are sensitive to the Zipf factor: the smaller the Zipf factor,

the more distinct aggregates exist in the data set. However,PAT runs faster thanBUC since it

computes much less aggregate cells thanBUC.

Figure 3.10(b) measures the size of the data cube ofBUC, the size of thePATand the size

of the current sliding window in Baseline. The size ofPATcounts both the prefix aggregates,

infix aggregates and links. The number of tuples varies from 500 thousand to 2.5 million so that

the scalability of the methods are tested. All three methods are roughly linear on the number

of tuples, butPATand the baseline method generate much smaller results thanBUC. In other

words, Baseline does not generate any aggregates but only the base tuples are maintained. PAT

generates the prefix aggregates and the infix aggregates, which form a substantially small subset

of all the aggregates generated byBUC. Even when the whole data cube is over2.5 GB, thePAT

including the links occupies less than500 MB, which is less than 3 times of the size of all base

tuples and can be easily accommodated in main memory.

Figure 3.10(c) shows that the number of aggregate cells (including prefix aggregates and

infix aggregates) inPAT is linear in the cardinality of the dimensions. The trend is mild. When

the cardinality increases, the data set becomes sparse and thus the total number of aggregates

also increases.BUC computes all aggregates. As shown in the same figure, the increase of all

aggregates is sub-linear in our experiments, but the number of all aggregates is much larger than

the number of prefix aggregates and infix aggregates computed byPAT.

Figure 3.10(d) shows the memory usage of the three methods. Please note thatBUC stores

the aggregates on disk. It only maintains the base table in main memory. Thus, it uses the same

amount of main memory as the baseline method. Since thePAT resides in main memory, the

memory usage of constructing aPAT increases as the dimensionality increases. When there are

many dimensions,PAThas many levels.

In summary, aPAT is usually much smaller than the size of a data cube. Constructing aPAT

is also much faster than computing a data cube usingBUC.

3.5. Experimental Results 65

3.5.2 Incremental Maintenance

When testing the performance of incremental maintenance, we always set the number of tuples

at each instant to a constant. A sliding window of10 instants was used. We set the number of

tuples in the originalPATto 500 K. We only compare thePATmethod and the baseline method.

For BUC, there is not incremental maintenance algorithm. Thus, to incrementally maintain all

the aggregates, we have to compute the data cube on the new data and merge the new aggregates

with the existing ones. It has a similar performance as shown in Section 3.5.1. Some results are

shown in Figure 3.11.

Figure 3.11(a) shows the maintenance runtime versus the Zipf factor. It is consistent with

Figure 3.10(a). With a lower Zipf factor, the data set is sparser and thusPAT computes more

prefix aggregates and infix aggregates. The baseline method is constant since it does not com-

pute any aggregates. However, by comparing Figures 3.11(a) and 3.10(a), we can see that the

incremental maintenance time is much shorter, since many paths in the existingPAT can be

reused in the incremental maintenance.

As shown in Figure 3.11(b), the incremental maintenance time ofPAT increases as the

dimensionality increases, since the tree becomes larger and taller on high dimensional data

sets. The maintenance time of Baseline also increases, but it is linear.

In Figure 3.11(c), we tested the scalability of the incremental maintenance ofPATand Base-

line with respect to the number of new tuples at each instant. The result shows that bothPAT

and Baseline have an approximately linear scalability. This is consistent with the analysis of the

PAT incremental maintenance algorithm.

Figure 3.11(d) examines the size of thePAT with respect to the number of new tuples at

each instant. Interestingly, we observed that, under a given data distribution, the size of thePAT

is stable and insensitive to the number of tuples in the incremental part. In other words, the size

of PATmainly depends on the number of tuples in the sliding window, and is stable during the

incremental maintenance. This is a nice property for data stream processing: no matter how

large the data stream is, we will have an index structure of a stable size.

Figure 3.11(e) shows the memory usage with respect to the Zipf factor. Again, when the

66 Chapter 3. Online answering ad-hoc aggregate queries on data streams

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 2.5 3 3.5 4

M
ai

nt
en

an
ce

 R
un

 T
im

e
(s

ec
on

ds
)

Zipf Factor (50K tuples)

PAT
Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 3 4 5 6 7 8 9 10
M

ai
nt

en
an

ce
 R

un
 T

im
e

(s
ec

on
ds

)

Dimensionality (50K tuples)

PAT
Baseline

(a) Runtime vs. Zipf factor (dim=10, cardinal-
ity=10, #new tuples=50K)

(b) Runtime vs. dimensionality (Zipf=2, car-
dinality=10, #new tuples=50K)

 0

 2

 4

 6

 8

 10

 12

 14

 550 600 650 700 750 800 850 900 950 1000

M
ai

nt
en

an
ce

 R
un

 T
im

e
(s

ec
on

ds
)

Number of Tuples in Maintenance (K)

PAT
Baseline

 170

 175

 180

 185

 190

 195

 200

 550 600 650 700 750 800 850 900 950 1000

S
iz

e
of

 T
re

e
(M

)

Number of Tuples in Maintenance (K)

PAT

(c) Runtime vs. #new tuples (Zipf=2, dim=10,
cardinality=10)

(d) Size of tree vs. #new tuples (Zipf=2,
dim=10, cardinality=10)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1.5 2 2.5 3 3.5 4

M
em

or
y

U
sa

ge
 (

M
)

Zipf Factor (50K tuples)

PAT
Baseline

(e) Memory usage vs. Zipf factor (dim=10,
cardinality=10,#new tuples=50K)

Figure 3.11: Results on incremental maintenance ofPAT.

3.5. Experimental Results 67

Zipf factor is small, the data is sparse and thus not many prefixes can be shared. When the Zipf

factor becomes larger, the data becomes more skewed, and thePATbecomes smaller due to the

more sharing of the prefixes. The baseline uses constant memory in the maintenance, since it

only needs to load the current sliding window into main memory.

In summary, incremental maintenance of aPAT is scalable in both runtime and space usage

with respect to the size of sliding window.

3.5.3 The Order of Dimensions

We also tested the effect of different orders of dimensions on the size of thePATsand the

runtime ofPAT construction. We made up a synthetic data set of10 dimensions, Zipf factor

3 and1 million tuples. Thei-th dimension(1≤ i ≤ 10) has a cardinality ofi. We tested the

effects of the following4 orders of dimensions:

• R1: cardinality ascending order;

• R2: cardinality descending order;

• R3: D5-D6-D4-D7-D3-D8-D2-D9-D1-D10; and

• R4: D1-D10-D2-D9-D3-D8-D4-D7-D5-D6.

Order Runtime #nodes Tree size (bytes)

R1 16.37 6,433 1,521,640
R2 16.67 16,441 2,548,404
R3 17.14 8,694 2,180,736
R4 16.74 8,575 1,812,868

Figure 3.12: The effect of orders of dimensions.

The results are shown in Figure 3.12. ThePATconstruction time is insensitive to the order

of dimensions, since the number of tree node accesses is basically the same no matter which

order is used.

Both the number of nodes in thePATand the size of the tree are sensitive to the orders. With

orderR1, putting dimensions of low cardinality ahead strongly facilitates the prefix sharing,

68 Chapter 3. Online answering ad-hoc aggregate queries on data streams

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2 3 4 5 6 7 8 9

S
iz

e
of

 C
ub

e/
T

re
e

(M
)

Dimensionality

BUC
PAT

Baseline

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9

R
un

 ti
m

e
(s

ec
on

ds
)

Dimensionality

BUC
PAT

Baseline

(a) Size of the tree. (b) Construction time.

Figure 3.13: Results on real data set Weather.

and leads to the smallest number of nodes. As discussed at the end of Section 3.3.1, at leveli,

the size of the tree nodes is proportional to the sum of cardinalities in dimensionsDi+1 to Dn.

Therefore, the average size of tree nodes using orderR1 is the largest. However, the advantage

of reduction on number of nodes well overcomes the disadvantage of large tree node size. Thus,

orderR1 achieves the smallest tree. OrderR2 suffers from deficiency in sharing the prefixes.

Although its average tree node size is the smallest, the tree size turns out to be the largest.

OrdersR3 andR4 stay in between.

Based on this experiment, we recommend ordering the dimensions in cardinality ascending

order to explore possible sharing of prefixes. However, there is no theoretical guarantee that the

cardinality ascending order always leads to the smallest tree.

3.5.4 Results on the Weather Data Set

We also tested thePAT construction using the well-accepted weather data set (Hahn, 1994),

which contains1,015,367 tuples and9 dimensions. The dimensions with the cardinalities of

each dimension are as follows: station-id(7,037), longitude(352), solar-altitude(179), latitude

(152), present-weather(101), day (30), weather-change-code(10), hour (8), and brightness

(2). 8 data sets with2 to 9 dimensions are generated by projecting the weather data set on the

first k dimensions(1≤ k≤ 9). Figure 3.13 shows the results.

Interestingly, the size of thePAT on the complete data set is only263 MB, comparable to

3.5. Experimental Results 69

the size of QC-tree (241.2 Mb reported in (Lakshmanan et al., 2003)), a recently developed data

cube compression method. However, to construct a QC-tree, the base table has to be scanned

and sorted multiple times, and incremental maintenance of a QC-tree is more costly thanPAT.

ThePATconstruction is also much faster than computing the whole cube usingBUCbut slower

than Baseline(Figure 3.13(b)). As indicated in (Lakshmanann et al., 2002), construction of a

quotient cube is slower thanBUC, since extra work is needed to achieve compression.

In summary, the experimental results on the real data set are consistent with the observations

that we obtained from the experiments on the synthetic data sets.

3.5.5 Query Answering

We reported the performance of answering point queries. The results on range queries are

similar. In each test, we randomly select1,000aggregate cells from the data cube and use them

as the point queries. In other words, all queries are on non-empty aggregates.

Beyer & Ramakrishnan (1999) do not give a query answering algorithm forBUC. In this

performance study, we store the whole data cubein main memoryas a table, and all tuples

are sorted according to the dictionary order. Therefore, answering any point query using the

whole cube can be done by a binary search. This is probably the best case of query answering

using a data cube. In real applications, usually a whole data cube cannot be held into main

memory. To this extent, our experiments favor the query answering using the whole cube. In

the Figure 3.14, we measure the query answering time taken by1,000queries. All curves are

plotted in logarithmic scale.

From the figures, we can clearly see that bothPAT and BUC have a much better query

answering performance than the baseline method. The baseline method is two orders of magni-

tudes slower. That simply indicates that, in order to answer aggregate queries online, material-

izing some aggregate cells in very effective.

PAT andBUC have comparable performance in terms of query answering. However, re-

member thatPATcomputes and materializes much fewer aggregate cells thanBUC. In sequel,

the space over head for storing aPAT is much smaller than the space for all the aggregate cells

70 Chapter 3. Online answering ad-hoc aggregate queries on data streams

 0.01

 0.1

 1

 10

 100

 1.5 2 2.5 3 3.5

Q
ue

ry
 A

ns
w

er
in

g
T

im
e

(s
ec

on
ds

)

Zipf Factor

BUC
PAT

BaseLine

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25

Q
ue

ry
 A

ns
w

er
in

g
T

im
e

(s
ec

on
ds

)

Cardinality

BUC
PAT

BaseLine

(a) Runtime vs. Zipf factor (dim=10, cardinal-
ity=10, #tuples=500K, #queries=1K)

(b) Runtime vs. cardinality (Zipf=2, dim=10,
#tuples=500K, #queries=1K)

 0.01

 0.1

 1

 10

 100

 1000

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Q
ue

ry
 A

ns
w

er
in

g
T

im
e

(s
ec

on
ds

)

Number of Tuples (M)

BUC
PAT

BaseLine

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9

Q
ue

ry
 A

ns
w

er
in

g
T

im
e

(s
ec

on
ds

)

Dimensionality

BUC
PAT

Baseline

(c) Runtime vs. #tuples (Zipf=2, dim=10, car-
dinality=10, #queries=1K)

(d) The Weather data set

Figure 3.14: Results on query answering using PATs.

computed byBUC, as shown in the previous experiments. Moreover,BUC needs to scan the

base table multiple times to compute a complete data cube. Thus,PATis a nice tradeoff between

space and query answering time.

3.5.6 Summary

Based on the above experimental results, we have the following observations. First, the size of

aPAT is substantially smaller than that of a data cube. That makes thePATfeasible in space for

data streams. Second, our algorithms for constructing and incrementally maintaining aPATare

efficient and highly scalable for data streams. The construction and maintenance cost is dramat-

ically smaller than the cost of materializing the whole cube. Third, query answering using aPAT

is comparable to the best cases using a full cube. It is much faster than the baseline method.

The PAT approach can be regarded as a good tradeoff between the construction/maintenance

3.5. Experimental Results 71

cost and the query answering performance.

Chapter 4

Warehousing pattern-based clusters

4.1 Preliminaries

Clustering large databases is a challenging data mining task with many important applications.

Most of the previously proposed methods are based on similarity measures defined globally on

a (sub)set of attributes/dimensions. However, in some applications, it is hard or even infeasible

to define a good similarity measure on a global subset of attributes to serve the clustering.

To appreciate the problem, let us consider clustering the5 objects in Figure 4.1(a). There

are5 dimensions, namelya, b, c, d ande. No patterns among the5 objects are visibly explicit.

However, as elaborated in Figure 4.1(b) and (c), respectively, objects1, 2 and 3 follow the

same pattern in dimensionsa, c andd, while objects1, 4 and5 share another similar pattern

in dimensionsb, c, d ande. If we use the patterns as features, they form twopattern-based

clusters.

The flexibility of pattern-based clustering may provide interesting and important insights

in some applications where conventional clustering methods may meet difficulties. For ex-

ample, in DNA micro-array data analysis, the gene expression data are organized as matrices,

where rows represent genes and columns represent samples/conditions. The number in each cell

records the expression level of the particular gene under the particular condition. The matrices

often contain thousands of genes and tens of conditions. It is important to identify subsets of

73

74 Chapter 4. Warehousing pattern-based clusters

0

10

20

30

40

50

60

70

80

(b) Pattern−based cluster 1(a) The data set

a

(c) Pattern−based cluster 2

edcb

0

10

20

30

40

50

60

70

80

dc

40

50

60

70

80

30

Object 5

Object 4

Object 3

Object 2

Object 1

Dimensions

edcba

0

10

20

Figure 4.1: A set of objects as a motivating example.

genes whose expression levels change coherently under a subset of conditions. Such informa-

tion is critical in revealing the significant connections in gene regulatory networks. As another

example, in the applications of automatic recommendation and target marketing, it is essential

to identify sets of customers/clients with similar behavior/interest. As a concrete example, sup-

pose that the ranks of movies given by customers are collected. To identify customer groups, it

is essential to find the subsets of customers who rank subsets of movies similarly. In the above

two examples, pattern-based clustering is the major data mining task.

The pattern-based clustering problem is proposed and a mining algorithm is developed by

H. Wang et al. (2002). However, some important problems remain not thoroughly explored. In

particular, we address the following two fundamental issues and make corresponding contribu-

tions in this chapter.

• What is the effective representation of pattern-based clusters?As can be imagined, there

can exist many pattern-based clusters in a large database. Given a pattern-based cluster

C, any non-empty subset of the objects in the cluster is trivially a pattern-based cluster

on any non-empty subset of the dimensions. Mining and analyzing a huge number of

pattern-based clusters may become the bottleneck of effective analysis.Can we devise a

succinct representation of the pattern-based clusters?

Our contributions. In this chapter, we propose the mining ofmaximal pattern-based

4.1. Preliminaries 75

clusters. The idea is to report only those non-redundant pattern-based clusters, and skip

their trivial sub-clusters. We show that, by mining maximal pattern-based clusters, the

number of clusters can be reduced substantially. Moreover, many unnecessary searches

for sub-clusters can be pruned and thus the mining efficiency can be improved dramati-

cally as well.

• How to mine the maximal pattern-based clusters efficiently?Our experimental results

indicate that the algorithmp-Clustering(H. Wang et al., 2002) may not be satisfactorily

efficient or scalable in large databases. The major bottleneck is that it has to search many

possible combinations of objects and dimensions.

Our contributions. In this chapter, we develop two novel mining algorithms,MaPleand

MaPle+ (MaPle for Maximal Pattern-based Clustering). They conduct a depth-first, pro-

gressively refining search to mine maximal pattern-based clusters. We propose techniques

to guarantee the completeness of the search and also prune unpromising search branches

whenever it is possible.MaPle+ also integrates several interesting heuristics further.

An extensive performance study on both synthetic data sets and real data sets is reported.

The results show thatMaPleandMaPle+ are significantly more efficient and more scal-

able in mining large databases than methodp-Clustering(H. Wang et al., 2002). In many

cases,MaPle+ is better thanMaPle.

The remainder of the chapter is organized as follows. In Section 4.2, we define the problem

of mining maximal pattern-based clusters, review related work, compare pattern-based clus-

tering and traditional partition-based clustering, and discuss the complexity. Particularly, we

exemplify the idea of methodp-Clustering(H. Wang et al., 2002). In Section 4.3, we develop

algorithmsMaPleandMaPle+. An extensive performance study is reported in Section 4.4.

76 Chapter 4. Warehousing pattern-based clusters

4.2 Problem Definition and Related Work

In this section, we propose the problem of maximal pattern-based clustering and review related

work. In particular,p-Clustering, a pattern-based clustering method developed by H. Wang et

al. (2002), will be examined in detail.

4.2.1 Pattern-Based Clustering

Given a set of objects, where each object is described by a set of attributes. A pattern-based

cluster(R,D) is a subset of objectsR that exhibit a coherent pattern on a subset of attributesD.

To formulate the problem, it is essential to describe, given a subset of objectsR and a subset

of attributesD, how coherent the objects are on the attributes. The measurepScoreserves this

purpose.

Definition 4.1 (pScore (H. Wang et al., 2002)).Let DB = {r1, . . . , rn} be a database withn

objects. Each object hasm attributesA = {a1, . . . ,am}. We assume that each attribute is in the

domain of real numbers. The value on attributeai of objectr j is denoted asr j .ai . For any objects

rx, ry∈DBand any attributesau,av∈A, thepScore is defined aspScore

rx.au rx.av

ry.au ry.av

 =

‖(rx.au− ry.au)− (rx.av− ry.av)‖.

The meaning ofpScoreis shown in Figure 4.2.pScoredescribes the difference of changes

between two objects on two attributes. As illustrated in Figure 4.2, the smaller thepScorevalue,

the more similar the two objects on the two dimensions.

au av

pScorerx

ry

Figure 4.2: ThepScoreof two objectsrx andry on attributesav andau.

Pattern-based clusters can be defined as follows.

4.2. Problem Definition and Related Work 77

Definition 4.2 (Pattern-based cluster (H. Wang et al., 2002)).Let R⊆ DB be a subset of

objects in the database andD ⊆ A be a subset of attributes.(R,D) is said a δ-pCluster

(pCluster is for pattern-based cluster) if for any objectsrx, ry∈Rand any attributesau,av∈D,

pScore

rx.au rx.av

ry.au ry.av

≤ δ, whereδ≥ 0.

Given a database of objects, the pattern-based clustering is to find the pattern-based clusters

from the database. In a large database with many attributes, there can be many coincident,

statistically insignificant pattern-based clusters, which consist of very few objects or on very few

attributes. A cluster may be consideredstatistically insignificantif it contains a small number

of objects, or a small number of attributes. Thus, in addition to the quality requirement on the

pattern-based clusters using an upper bound onpScore, a user may want to impose constraints

on the minimum number of objects and the minimum number of attributes in a pattern-based

cluster.

In general, given (1) a cluster thresholdδ, (2) anattribute thresholdmina (i.e., the min-

imum number of attributes), and (3) anobject thresholdmino (i.e., the minimum number of

objects), the task ofmining delta-pClustersis to find the complete set ofδ-pClusters(R,D)

such that(‖R‖ ≥ mino) and(‖D‖ ≥ mina). A δ-pCluster satisfying the above requirement is

calledsignificant.

4.2.2 Comparison Between Pattern-Based Clustering and Partition-Based

Clustering

It is interesting to note that pattern-based clustering and (traditional) partition-based clustering

(e.g.,k-means) are defining clustering from two different angles.

In traditional partition-based clustering, such ask-means, the task is to partition the objects

into several subsets such that the similarity between objects in the same subset is as high as pos-

sible. This can be regarded as an optimization procedure. The number of clusters is often small.

We usually need a similarity measure defined for any two objects. Moreover, a quality function

78 Chapter 4. Warehousing pattern-based clusters

such as the sum of similarity between objects in the same clusters is used for optimization.

The partition-based clustering problem defined in many forms is NP-Complete. Thus, many

approximation algorithms are proposed.

On the other hand, pattern-based clustering specifies quality requirements on clusters, such

as thepScore, the minimum number of objects and the minimum number of attributes in a

cluster. The task is to search for all subsets of objects as clusters and the corresponding subsets

of attributes that satisfy the quality requirement. It can be regarded as an enumeration problem.

As will be shown later, the pattern-based clustering problem is also NP-Complete. That is

partially due to its inherent difficulty of enumerating all combinations that satisfy the quality

requirements. Algorithmp−Clusteringand the two algorithms developed in this chapter are

not approximations methods. Instead, they return the complete set of answers if they can finish.

We summarize the above comparison in Figure 4.3.

Partition-based Clustering Pattern-based Clustering

Input A similarity measure, a quality
function

A set of requirements on quality of
each cluster

Task Optimize the quality function Search for all combinations of ob-
jects as clusters and the correspond-
ing subsets of attributes that satisfy
the quality requirements

Difficulty NP-Complete NP-Complete
Typical solutions Approximation methods Search for complete answers with

heuristics to speed up the search

Figure 4.3: A comparison between partition-based clustering and pattern-based clustering.

4.2.3 Maximal Pattern-Based Clustering

Although the attribute and object thresholds are used to filter out insignificant pClusters, there

still can be some “redundant” significant pClusters. For example, consider the objects in Fig-

ure 4.1. Letδ = 5, mina = 3 and mino = 3. Then, we have6 significant pClusters:C1 =

({1,2,3},{a,c,d}),C2 =({1,4,5},{b,c,d}),C3 =({1,4,5},{b,c,e}),C4 =({1,4,5},{b,d,e}),
C5 = ({1,4,5},{c,d,e}), andC6 = ({1,4,5},{b,c,d,e}). Among them,C2, C3, C4 andC5 are

4.2. Problem Definition and Related Work 79

subsumed byC6, i.e., the objects and attributes in the four clusters,C2-C5, are subsets of the

ones inC6.

In general, a pClusterC1 = (R1,D1) is called asub-clusterof C2 = (R2,D2) provided(R1⊆
R2)∧ (D1 ⊆ D2)∧ (‖R1‖ ≥ 2)∧ (‖D1‖ ≥ 2). C1 is called aproper sub-clusterof C2 if either

R1⊂ R2 or D1⊂ D2. Pattern-based clusters have the following property.

Lemma 5 (Monotonicity). LetC = (R,D) be aδ-pCluster. Then, every sub-cluster(R′,D′) is

a δ-pCluster.

Proof. The Lemma follows the definition ofδ-pCluster immediately.

Clearly, mining the redundant sub-clusters is tedious and ineffective for analysis. Therefore,

it is natural to mine only the “maximal clusters”, i.e., the pClusters that are not sub-cluster of

any other pClusters.

Definition 4.3 (maximal pCluster). A δ-pClusterC is saidmaximal (or called aδ-MPC for

short) if there exists no any otherδ-pClusterC′ such thatC is a proper sub-cluster ofC′.

Problem Statement (mining maximalδ-pClusters). Given (1) a cluster thresholdδ, (2) an at-

tribute thresholdmina, and (3) an object thresholdmino, the task ofmining maximalδ-pClusters

is to find the complete set of maximalδ-pClusters with respect tomina andmino.

4.2.4 Maximal Pattern-based Clusters As Skyline Pattern-based Clusters

Intuitively, maximal pattern-based clusters capture the non-redundant clusters. In pattern-based

clustering analysis, two measures are often of particular interest, namely the set of objects and

the set of attributes covered by a cluster. A cluster is called a skyline if it is not subsumed by

some other cluster in both the set of objects and the set of attributes. Following the definition of

maximal pattern-based clusters, we have the following result immediately.

Theorem 4.1. Every maximal pattern-based cluster is a skyline cluster. That is, there exist no

two maximal pattern-based clusters(R1,D1) and(R2,D2) such thatR1⊆ R2 andD1⊆ D2 and

at least one equivalence does not hold.

80 Chapter 4. Warehousing pattern-based clusters

Theorem 4.1 shows that the set of maximal pattern-based clusters is not redundant. On

the other hand, any non-maximal pattern-based clusters are redundant given the quality re-

quirements ofδ, the object threshold and the attribute threshold. The fact that a non-maximal

pattern-based clusterC satisfies the quality requirements can be derived from any of the max-

imal pattern-based clustersC′ that is a super-cluster ofC. Please be note that, as discussed in

Section 4.2.2, in pattern-based clustering, the quality requirements are given as input and the

task is to search for all clusters that satisfy the quality requirements. We do not distinguish the

difference in quality between clusters satisfying the quality requirements. Among all pattern-

based clusters, theirδ values may vary, but all of them are no greater than the threshold given

as input.

Since maximal pattern-based clusters are skylines, they can be used to answer any queries

about clusters with a preference function. For example, let us consider two forms of preference

functions,

f1 = α ·# objects+β ·# attributes

whereα andβ are positive real numbers, and

f2 = # objects·# attributes.

We have the following result.

Corollary 4.1. Any δ-pCluster maximizing preference functionf1 or f2 must be a maximal

pattern-based cluster.

Proof. The corollary is straightforward. For any pClusterC that is not maximal, letC′ be a

maximal pCluster such thatC is a sub-cluster ofC′. Then,C′ must have a higher preference

value thanC sinceC′ either has more attributes or has more objects thanC.

4.2. Problem Definition and Related Work 81

4.2.5 p-Clustering: A δ-pCluster Mining Algorithm

A pattern-based clustering method (H. Wang et al., 2002),p-Clustering1, is proposed. Ac-

cording to the extensive performance study reported in the paper,p-Clusteringoutperforms all

previous methods.

The method works in the following three steps.

Step 1: Finding attribute-pair and object-pair MDSs.

Clearly, a pCluster must have at least two objects and two attributes. Intuitively, we can

use those pClusters containing only two objects or two attributes to construct larger pClusters

having more objects and attributes. An object/attribute-pair MDS (for maximal dimension set)

is a maximalδ-MPC containing only two objects/attributes.

Given a pair of objects, how to compute the object-pair MDS efficiently?For example,

Figure 4.4(a) shows the attribute values of two objects. The last row shows the differences of

the attribute values.

Object Attributes
a b c d e f g h

o1 13 11 9 7 9 13 2 15
o2 7 4 10 1 12 3 4 7

o1−o2 6 7 −1 6 −3 10 −2 8

fhbdacge

108766−1−2−3

(a) The attribute values of two objects (b) Finding MDS

Figure 4.4: Finding MDS for two objects.

To compute the object-pair MDS,p-Clusteringsorts the attributes in the difference ascend-

ing order, as shown in Figure 4.4(b). Supposeδ = 2. P-Clusteringruns through the sorted list

using a sliding window of variable width. Clearly, the attributes in the sliding window form a

δ-pCluster provided the difference between the rightmost element and the leftmost one is no

more thanδ. For example,p-Clusteringfirstly sets the left edge of the sliding window at the

left end of the sorted list, and moves the right edge of the window until it sees the first6. The

attributes in between,{e,g,c}, is the set of attributes of an object-pair MDS. Then,p-Clustering

1H. Wang et al. (2002) did not give a specific name to their algorithm. We call itp-Clusteringsince the main
function in the algorithm ispCluster() and we want to distinguish the algorithm from the pclusters.

82 Chapter 4. Warehousing pattern-based clusters

moves the left edge of the sliding window to attributeg, and repeats the process until the left

end of the window runs through all elements in the list. In total, three MDSs can be found, i.e.,

({o1,o2},{e,g,c}), ({o1,o2},{a,d,b,h}) and({o1,o2},{h, f}).
A similar method can be used to find the attribute-pair MDSs.

Step 2: Pruning Unpromising MDS.

In an object-pair MDS({o1,o2},D), if the number of attributes inD is less thanmina, then

o1 and o2 cannot appear together in any significant pCluster. Similarly, in an attribute-pair

MDS (R,{a1,a2}), if the number of objects inR is less thanmino, thena1 anda2 cannot appear

together in any significant pCluster. Such MDSs should be pruned.

After the pruning, each object-pair MDS must have at leastmina attributes, and each attribute-

pair MDS must have at leastmino objects. Trivially, if mina=2 or mino=2, the mining is

done. Formina > 2 andmino > 2, p-Clusteringconducts the dual pruning between the object-

pair MDSs and the attribute-pair MDSs. For example, suppose({o0,o2},{a0,a1,a2}) is an

object-pair MDS, buto0 does not appear in the attribute-pair MDS of{a0,a2}, then MDS

({o0,o2},{a0,a1,a2}) can be pruned, since{a0,a2} and o0 cannot appear in the same sig-

nificant pCluster. Such a dual pruning can be repeated until no MDS can be pruned further.

Step 3: Generating significant pClusters.

After the pruning in Step 2,p-Clusteringinserts the surviving object-pair MDSs into a prefix

tree. For each object-pair MDS, all attributes are sorted according to a global orderR and then

inserted into the tree. The two objects are registered in the last node of the path corresponding

to the sorted attribute list. If two object-pair MDSs share the same prefix with respect toR ,

then they share the corresponding path from the root in the tree. Figure 4.5 exemplifies a prefix

tree.

Clearly, since every object-pair MDS surviving from the pruning must have at leastmina

attributes, no object will be registered in any node whose depth is less thanmina. After all

object-pair MDSs are inserted into the tree,p-Clusteringtreats each node in the tree whose

depth is at leastmina as a candidate pCluster, and verifies whether the objects registered at the

node really form a pCluster. Moreover, according to Lemma 5, if all objects at a node in the

4.2. Problem Definition and Related Work 83

a
b

c

b
c

d

d
e

f

min_a

Figure 4.5: A prefix tree of object-pair MDSs.

tree form a pCluster, any ancestor of the node in the tree registering the same set of objects also

form a pCluster. Therefore, a post-order traversal of the prefix tree is conducted to examine the

nodes whose depths are no less thanmin a, and generate the pClusters.

According to the performance study ofp-Clustering(H. Wang et al., 2002) and our exper-

imental results, this step is the bottleneck of the mining. For each node,p-Clusteringhas to

examine the possible combinations of objects on the attributes registered in the path. The worst

case complexity of prefix-tree depth-first clustering is exponential with respect to the number

of attributes. This is the major cause thatp-Clusteringmay not be efficient or scalable in large

databases with many attributes.

4.2.6 Related Work

The study of pattern-based clustering is related to the previous work on subspace clustering and

frequent itemset mining.

The meaning of clustering in high dimensional data sets is often unreliable (Beyer et al.,

1999). Some recent studies (Agrawal et al., 1998; Aggarwal & Yu, 2000; Aggarwal et al., 1999;

C. Cheng et al., 1999) focus on mining clusters embedded in some subspaces. For example,

CLIQUE (Agrawal et al., 1998) is a density and grid based method. It divides the data into

hyper-rectangular cells and use the dense cells to construct subspace clusters.

Subspace clustering can be used to semantically compress data. An interesting study (Ja-

gadish et al., 1999) employs a randomized algorithm to find fascicles, the subsets of data that

share similar values in some attributes. While their method is effective for compression, it does

not guarantee the completeness of mining the clusters.

84 Chapter 4. Warehousing pattern-based clusters

In some applications, global similarity-based clustering may not be effective. Still, strong

correlations may exist among a set of objects even if they are far away from each other as

measured by distance functions (such as Euclidean) used frequently in traditional clustering al-

gorithms. Many scientific projects collect data in the form of Figure 4.1(a), and it is essential to

identify clusters of objects that manifest coherent patterns. A variety of applications, including

DNA microarray analysis, E-commerce collaborative filtering, will benefit from fast algorithms

that can capture such patterns.

Y. Cheng & Church (2000) propose the biclustering model, which captures the coherence

of genes and conditions in a sub-matrix of a DNA micro-array. J. Yang et al. (2002) develop a

move-based algorithm to find biclusters more efficiently.

Recently, some variations of pattern-based clustering have been proposed. For example, the

notion of OP-clustering (Liu & Wang, 2003) is developed. The idea is that, for an object, the

list of dimensions sorted in the value ascending order can be used as its signature. Then, a set

of objects can be put into a cluster if they share a part of their signature. OP-clustering can be

viewed as a (very) loose pattern-based clustering. That is, every pCluster is an OP-cluster, but

not vice versa.

On the other hand, a transaction database can be modelled as a binary matrix, where columns

and rows stand for items and transactions, respectively. A cellr i, j is set to1 if item j is contained

in transactioni. Then, the problem of mining frequent itemsets (Agrawal et al., 1993) is to find

subsets of rows and columns such that the sub-matrix is all1’s, and the number of rows is more

than a given support threshold. If a minimum length constraintmina is imposed to find only

frequent itemsets of no less thanmina items, then it becomes a problem of mining0-pClusters

on binary data. Moreover, a maximal pattern-based cluster in the transaction binary matrix is

a closed itemset (Pasquier et al., 1999). Interestingly, a maximal pattern-based cluster in this

context can also be viewed as a formal concept, and the sets of objects and attributes are exactly

the extent and intent of the concept, respectively (Ganter & Wille, 1996).

Although there are many efficient methods (Agarwal et al., 2001; Agrawal & Srikant, 1994;

Han et al., 2004; Zaki et al., 1997) for frequent itemset mining, they cannot be extended to

4.3. Algorithms MaPleand MaPle+ 85

handle the general pattern-based clustering problem since they can only handle the binary data.

4.2.7 Complexity

About the complexity of the problem of mining maximal pattern-based clusters, we have the

following result.

Theorem 4.2. The problem of finding the complete set of maximal pattern-based clusters is in

NP-Complete.

Proof. As shown in section refmaple-sec:relatedwork, mining frequent closed itemsets from a

transaction database is a special case of mining 0-pClusters on binary data. In such a case,mino

is the minimum support threshold, andmina is set to 1.

G. Yang (2004) showed that mining frequent closed itemsets is in NP-Complete. Thus,

mining the complete set of maximal pattern-based clusters is in NP-Complete.

4.3 Algorithms MaPleand MaPle+

In this section, we develop two novel pattern-based clustering algorithms,MaPle(for Maximal

Pattern-based Clustering) andMaPle+. An early version ofMaPle (Pei et al., 2003) is prelim-

inarily proposed.MaPle+ integrates some interesting heuristics on the top ofMaPle.

We first overview the intuitions and the major technical features ofMaPle, and then present

the details.

4.3.1 An Overview ofMaPle

Essentially,MaPleenumerates all the maximal pClusters systematically. It guarantees the com-

pleteness of the search, i.e., every maximal pCluster will be found. On the other hand,MaPle

also guarantees the non-redundancy of the search, i.e., each combination of attributes and ob-

jects will be tested at most once.

86 Chapter 4. Warehousing pattern-based clusters

The general idea of the search inMaPleis as follows.MaPleenumerates every combination

of attributes systematically according to an order of attributes. For example, suppose that there

are four attributes,a1, a2, a3 and a4 in the database, and the alphabetical order, i.e.,a1-a2-

a3-a4, is adopted. Let attribute thresholdmina = 2. For each subset of attributes, we can

list the attributes alphabetically. Then, we can enumerate the subsets of two or more attributes

according to the dictionary order, i.e.,a1a2, a1a2a3, a1a2a3a4, a1a2a4, a1a3, a1a3a4, a1a4, a2a3,

a2a3a4, a2a4, a3a4.

For each subset of attributesD, MaPle finds the maximal subsets of objectsR such that

(R,D) is aδ-pCluster. If(R,D) is not a sub-cluster of another pCluster(R,D′) such thatD⊂D′,

then(R,D) is a maximalδ-pCluster. This “attribute-first-object-later” search is illustrated in

Figure 4.6.

2.
 f

in
d

th
e

la
rg

es
t

su
bs

et
(s

)
of

 o
bj

ec
ts

1. search a subset of attributes

a possible maximal pCluster

ob
je

ct
s

attributes

Figure 4.6: The attribute-first-object-later search.

There can be a huge number of coombinations of attributes.MaPleprunes many combina-

tions unpromising forδ-pClusters. Following Lemma 5, for subset of attributesD, if there exists

no subset of objectsR such that(R,D) is a significant pCluster, then we do not need to search

any superset ofD. On the other hand, when search under a subset of attributesD, MaPleonly

checks those subsets of objectsRsuch that(R,D′) is a pCluster for everyD′ ⊂D. Clearly, only

subsetsR′⊆Rmay achieveδ-pCluster(R′,D). Such pruning techniques are applied recursively.

Thus,MaPleprogressively refines the search step by step.

Moreover,MaPlealso prunes searches that are unpromising to find maximal pClusters. It

detects the attributes and objects that can be used to assemble a larger pCluster from the current

4.3. Algorithms MaPleand MaPle+ 87

pCluster. IfMaPlefinds that the current subsets of attributes and objects as well as all possible

attributes and objects together turn out to be a sub-cluster of a pCluster having been found

before, then the recursive searches rooted at the current node are pruned, since it cannot lead to

a maximal pCluster.

Why doesMaPleenumerate attributes first and then objects later, but not in the reverse way?

In real databases, the number of objects is often much larger than the number of attributes.

In other words, the number of combinations of objects is often dramatically larger than the

number of combinations of attributes. In the pruning using maximal pClusters discussed above,

if the attribute-first-object-later approach is adopted, once a set of attributes and its descendants

are pruned, all searches of related subsets of objects are pruned as well. Heuristically, the

attribute-first-object-later search may bring a better chance to prune a more bushy search sub-

tree.2 Symmetrically, for data sets that the number of objects is far smaller than the number of

attributes, a similar object-first-attribute-later search can be applied.

Essentially, we rely on MDSs to determine whether a subset of objects and a subset of

attributes together form a pCluster. Therefore, as a preparation of the mining, we compute all

non-redundant MDSs and store them as a database before we conduct the progressively refining,

depth-first search.

Based on the above discussion, we have the framework ofMaPleas shown in Figure 4.7.

Input: databaseDB, cluster thresholdδ, attribute thresholdmina and object thresholdmino;
Output: the complete set of maximalδ-pClusters;
Method:
(1) compute and prune attribute-pair MDSs and object-pair MDSs; // Section 4.3.2
(2) progressively refining, depth-first search for maximalδ-pClusters; // Section 4.3.3

Figure 4.7: AlgorithmMaPle.

Comparing top-Clustering, MaPlehas several advantages.

• First, in the third step ofp-Clustering, for each node in the prefix tree, combinations of the

object registered at the node will be explored to find pClusters. This can be expensive if

2However, there is no theoretical guarantee that the attribute-first-object-later search is optimal. There exist
counter examples that object-first-attribute-later search wins.

88 Chapter 4. Warehousing pattern-based clusters

there are many objects at a node. InMaPle, the information of pClusters is inherited from

the “parent node” in the depth-first search and the possible combinations of objects can

be reduced substantially. Moreover, once a subset of attributesD is determined hopeless

for pClusters, the searches of any superset ofD will be pruned.

• Second,MaPleprunes non-maximal pClusters. Many unpromising searches can be pruned

in their early stages.

• Last, new pruning techniques are adopted in the computing and pruning of MDSs. That

also speeds up the mining.

In the remainder of the section, we will explain the two steps ofMaPle in detail.

4.3.2 Computing and Pruning MDSs

Given a databaseDB and a cluster thresholdδ. A δ-pClusterC1 = ({o1,o2},D) is called an

object-pair MDSif there exists noδ-pClusterC′1 = ({o1,o2},D′) such thatD⊂D′. On the other

hand, aδ-pClusterC2(R,{a1,a2}) is called anattribute-pair MDSif there exists noδ-pCluster

C′2 = (R′,{a1,a2}) such thatR⊂ R′.

MaPle computes all attribute-pair MDSs asp-Clusteringdoes. The method is illustrated

in Figure 4.4(b). Limited by space, we omit the detailed algorithm here and only show the

following example.

Example 4.1 (Running example – finding attribute-pair MDSs). Let us consider mining

maximal pattern-based clusters in a databaseDB as shown in Figure 4.8(a). The database has6

objects, namelyo1, . . . ,o6, while each object has5 attributes, namelya1, . . . ,a5.

Supposemina = 3, mino = 3 andδ = 1. For each pair of attributes, we calculate the attribute

pair MDSs. The attribute-pair MDSs returned are shown in Figure 4.8(b).

Generally, as shown in Figure 4.4, a pair of objects may have more than one object-pair

MDS. Symmetrically, a pair of attributes may have more than one attribute-pair MDS.

4.3. Algorithms MaPleand MaPle+ 89

Object a1 a2 a3 a4 a5

o1 5 6 7 7 1
o2 4 4 5 6 10
o3 5 5 6 1 30
o4 7 7 15 2 60
o5 2 0 6 8 10
o6 3 4 5 5 1

Objects Attribute-pair

{o1,o2,o3,o4,o6} {a1,a2}
{o1,o2,o3,o6} {a1,a3}
{o1,o2,o6} {a1,a4}
{o1,o2,o3,o6} {a2,a3}
{o1,o2,o6} {a2,a4}
{o1,o2,o6} {a3,a4}

(a) The database (b) The attribute-pair MDSs

Figure 4.8: The database and attribute-pair MDSs in our running example.

We can also generate all the object-pair MDSs similarly. However, if we utilize the infor-

mation on the number of occurrences of objects and attributes in the attribute-pair MDSs, the

calculation of object-pair MDSs can be speeded up.

Lemma 6 (Pruning MDSs). Given a databaseDB and a cluster thresholdδ, object threshold

mino and attribute thresholdmina.

1. An attribute a cannot appear in any significantδ-pCluster if a appears in less than

mino·(mino−1)
2 object-pair MDSs, or appears in less than(mina−1) attribute-pair MDSs;

2. An objectocannot appear in any significantδ-pCluster ifoappears in less thanmina·(mina−1)
2

attribute-pair MDSs, or appears in less than(mino−1) object-pair MDSs.

Proof. We prove the first half of the lemma. The second half can be proved dually. Let(R,D)

be a significantδ-pCluster, anda∈ D be an attribute.

For any objectsoi ,o j ∈R, there must be an object-pair MDS({oi ,o j},Di j) such thata∈Di j .

There are at least‖R‖(‖R‖−1)
2 such object-pair MDSs. Since‖R‖ ≥ mino, a appears in at least

mino·(mino−1)
2 object-pair MDSs. On the other hand, following Lemma 5, for any attributea′ ∈D,

(R,{a,a′}) is also aδ-pCluster. Therefore, there must be some attribute-pair MDS(R′,{a,a′})
such thatR⊆ R′. There are(‖D‖−1) such attribute-pair MDSs. Since‖D‖ ≥mina, a appears

in at least(mina−1) attribute-pair MDSs.

Example 4.2 (Pruning using Lemma 6).Let us check the attribute-pair MDSs in Figure 4.8(b).

Objecto5 does not appear in any attribute-pair MDS, and objecto4 appears in only1 attribute-

90 Chapter 4. Warehousing pattern-based clusters

pair MDS. According to Lemma 6,o4 ando5 cannot appear in any significantδ-pCluster. There-

fore, we do not need to check any object-pairs containingo4 or o5.

There are6 objects in the database. Without this pruning, we have to check6×5
2 = 15 pairs

of objects. With this pruning, only four objects,o1, o2, o3 ando6 survive. Thus, we only need

to check4×3
2 = 6 pairs of objects. A60%of the original searches is pruned.

Moreover, since attributea5 does not appear in any attribute-pair MDS, it cannot appear in

any significantδ-pCluster. The attribute can be pruned. That is, when generating the object-pair

MDS, we do not need to consider attributea4.

In summary, after the pruning, only attributesa1, a2, a3 anda4, and objectso1, o2, o3 ando6

survive. We use these attributes and objects to generate object-pair MDSs. The result is shown

in Figure 4.9(a). In methodp-Clustering, it uses all attributes and objects to generate object-pair

MDSs. The result is shown in Figure 4.9(b). As can be seen, not only the computation cost in

MaPle is less, the number of object-pair MDSs inMaPle is also one less than that in method

p-Clustering.

Object-pair Attributes

{o1,o2} {a1,a2,a3,a4}
{o1,o3} {a1,a2,a3}
{o1,o6} {a1,a2,a3,a4}
{o2,o3} {a1,a2,a3}
{o2,o6} {a1,a2,a3,a4}
{o3,o6} {a1,a2,a3}

Object-pair Attributes

{o1,o2} {a1,a2,a3,a4}
{o1,o6} {a1,a2,a3,a4}
{o2,o3} {a1,a2,a3}
{o1,o3} {a1,a2,a3}
{o2,o6} {a1,a2,a3,a4}
{o3,o4} {a1,a2,a4}
{o3,o6} {a1,a2,a3}

(a) Object-pair MDSs inMaPle. (b) Object-pair MDSs in methodp-Clustering

Figure 4.9: Pruning using Lemma 6.

Once we get the initial object-pair MDSs and attribute-pair MDSs, we can conduct a mutual

pruning between the object-pair MDSs and the attribute-pair MDSs, as methodp-Clustering

does. Furthermore, Lemma 6 can be applied in each round to get extra pruning. The pruning

algorithm is shown in Figure 4.10.

4.3. Algorithms MaPleand MaPle+ 91

(1) REPEAT
(2) count the number of occurrences of objects and attributes in the attribute-pair MDSs;
(3) apply Lemma 6 to prune objects and attributes;
(4) remove object-pair MDSs containing less thanmina attributes;
(5) count the number of occurrences of objects and attributes in the object-pair MDSs;
(6) apply Lemma 6 to prune objects and attributes;
(7) remove attribute-pair MDSs containing less thanmino objects;
(8) UNTIL no pruning takes place

Figure 4.10: The algorithm of pruning MDSs.

4.3.3 Progressively Refining, Depth-first Search of Maximal pClusters

The algorithm of the progressively refining, depth-first search of maximal pClusters is shown

in Figure 4.11. We will explain the algorithm step by step in this subsection.

(1) letn be the number of attributes; make up an attribute listAL = a1-· · ·-an;
(2) FORi = 1 TOn−mino +1 DO //Theorem 4.3, item 1
(3) FOR j = i +1 TOn−mino +2 DO
(4) find attribute-maximal pClusters(R,{ai ,a j}); //Section 4.3.3
(5) FOR EACHlcoal maximal pCluster(R,{ai ,a j}) DO
(6) callsearch(R,{ai ,a j});
(7) END FOR EACH
(8) END FOR
(9) END FOR
(10)
(11) FUNCTIONsearch(R,D); // (R,D) is a attribute-maximal pCluster.
(12) computePD, the set of possible attributes; //Optimization 1 in Section 4.3.3
(13) apply optimizations in Section 4.3.3 to prune, if possible;
(14) FOR EACHattributea∈ PD DO //Theorem 4.3, item 2
(15) find attribute-maximal pClusters(R′,D∪{a}); //Section 4.3.3
(16) FOR EACHattribute-maximal pCluster(R′,D∪{a}) DO
(17) callsearch(R′,D∪{a});
(18) END FOR EACH
(19) IF (R′,D∪{a}) is not a subcluster of some maximal pCluster having been found
(20) THENoutput(R′,D∪{a});
(21) END FOR EACH
(22) IF (R,D) is not a subcluster of some maximal pCluster having been found
(23) THENoutput(R,D);
(24) END FUNCTION

Figure 4.11: The algorithm of projection-based search.

92 Chapter 4. Warehousing pattern-based clusters

Dividing Search Space

By a list of attributes, we can enumerate all combinations of attributes systematically. The idea

is shown in the following example.

Example 4.3 (Enumeration of combinations of attributes).In our running example, there are

four attributes survived from the pruning:a1, a2, a3 anda4. We list the attributes in any subset

of attributes in the order ofa1-a2-a3-a4. Sincemina = 3, every maximalδ-pCluster should have

at least3 attributes. We divide the complete set of maximal pClusters into3 exclusive subsets

according to the first two attributes in the pClusters: (1) the ones having attributesa1 anda2,

(2) the ones having attributesa1 anda3 but noa2, and (3) the ones having attributesa2 anda3

but noa1.

Since a pCluster has at least2 attributes,MaPlefirst partitions the complete set of maximal

pClusters into exclusive subsets according to the first two attributes, and searches the subsets

one by one in the depth-first manner. For each subset,MaPle further divides the pClusters in

the subset into smaller exclusive sub-subsets according to the third attributes in the pClusters,

and search the sub-subsets. Such a process proceeds recursively until all the maximal pClusters

are found. This is implemented by line (1)-(3) and (14) in Figure 4.11. The correctness of the

search is justified by the following theorem.

Theorem 4.3 (Completeness and non-redundancy ofMaPle). Given an attribute-listAL : a1-

· · ·-am, wheremis the number of attributes in the database. Letmina be the attribute threshold.

1. All attributes in each pCluster are listed in the order ofAL. Then, the complete set of max-

imal δ-pClusters can be divided into(m−mina+2)(m−mina+1)
2 exclusive subsets according to

the first two attributes in the pClusters.

2. The subset of maximal pClusters whose first2 attributes areai and a j can be further

divided into(m−mina + 3− j) subsets: thekth (1 ≤ k ≤ (m− j −mina− 1)) subset

contains pClusters whose first3 attributes areai , a j anda j+k.

4.3. Algorithms MaPleand MaPle+ 93

Proof. We prove the first item of the theorem. The second item can be shown similarly.

Trivially, every pCluster must have at least2 attributes. Clearly, according toAL, the first

two attributes in every pCluster are determined. Therefore, there exists no a pClusterC such

thatC is in more than one subset, i.e., the subsets are exclusive. Since a maximal pClusterC

must be significant,C must have at leastmina attributes. The first attribute ofC must be from

a1 to am−mina+1. Suppose the first attribute ofC is ai . The, the second attribute ofC must be

from ai+1 to am−mina+2. In total, there are(m−mina+2)(m−mina+1)
2 possible combinations. So we

have the theorem.

Finding Attribute-maximal pClusters

Now, the problem becomes how to find the maximalδ-pClusters on the subsets of attributes.

For each subset of attributesD, we will find the maximal subsets of objectsR such that(R,D)

is a pCluster. Such a pCluster is a maximal pCluster if it is not a sub-cluster of some others.

Given a set of attributesD such that(‖D‖ ≥ 2). A pCluster(R,D) is called aattribute-

maximalδ-pClusterif there exists no anyδ-pCluster(R′,D) such thatR⊂ R′. In other words,

a attribute-maximal pCluster is maximal in the sense that no more objects can be included so

that the objects are still coherent on the same subset of attributes. For example, in the database

shown in Figure 4.8(a),({o1,o2,o3,o6},{a1,a2}) is a attribute-maximal pCluster for subset of

attributes{a1,a2}.
Clearly, a maximal pCluster must be a attribute-maximal pCluster, but not vice versa. In

other words, if a pCluster is not a attribute-maximal pCluster, it cannot be a maximal pCluster.

Given a subset of attributesD, how can we find all attribute-maximal pClusters efficiently?

We answer this question in two cases.

If D has only two attributes, then the attribute-maximal pClusters are the attribute-pair

MDSs forD. Since the MDSs are computed and stored before the search, they can be retrieved

immediately.

Now, let us consider the case where(‖D‖ ≥ 3). SupposeD = {ai1, . . . ,aik} where the at-

tributes inD are listed in the order of attribute-listAL. Intuitively, (R,D) is a pCluster ifR is

94 Chapter 4. Warehousing pattern-based clusters

shared by attribute-pair MDSs from any two attributes fromD. (R,D) is a attribute-maximal

pCluster ifR is a maximal set of objects.

One subtle point here is that, in general, there can be more than one attribute-pair MDS for

given attributesau,av. Thus, there can be more than one attribute-maximal pCluster on a subset

of attributesD. Technically,(R,D) is a attribute-maximal pCluster if for each pair of attributes

{au,av} ⊂ D, there exists an attribute-pair MDS({au,av},Ruv), such thatR=
⋂
{au,av}⊂D Ruv.

Recall thatMaPlesearches the combinations of attributes in the depth-first manner, all attribute-

maximal pClusters for subset of attributesD−{a} is found before we search forD, wherea is

the last attribute inD according to the attribute list. Therefore, we only need to find the subset

of objects in a attribute-maximal pCluster ofD−{a} that are shared by attribute-pair MDSs of

ai j ,aik (j < k).

Pruning and Optimizations

Several optimizations can be used to prune the search so that the mining can be more efficient.

We explain them as follows.

Optimization 1: Only possible attributesshould be considered to get larger pClusters.

Suppose that(R,D) is a attribute-maximal pCluster.For every attributea such thata is

behind all attributes inD in the attribute-list, can we always find a significant pCluster(R′,D∪
{a}) such thatR′ ⊆ R?

If (R′,D∪{a}) is significant, i.e., has at leastmin o objects, thena must appear in at least

mino(mino−1)
2 object-pair MDSs({oi ,o j},Di j) such that{oi ,o j} ⊆ R′. In other words, for an

attributea that appears in less thanmino(mino−1)
2 object-pair MDSs of objects inR, there exists

no attribute-maximal pCluster with respect toD∪{a}.
Based on the above observation, an attributea is called apossible attributewith respect to

attribute-maximal pCluster(R,D) if a appears inmino(mino−1)
2 object-pair MDSs({oi ,o j},Di j)

such that{oi ,o j} ⊆ R. In line (12) of Figure 4.11, we compute the possible attributes and only

those attributes are used to extend the set of attributes in pClusters.

Optimization 2: Pruning local maxiaml pClusters having insufficient possible attributes.

4.3. Algorithms MaPleand MaPle+ 95

Suppose that(R,D) is a attribute-maximal pCluster. LetPD be the set of possible attributes

with respect to(R,D). Clearly, if ‖D∪PD‖ < mina, then it is impossible to find any maximal

pCluster of a subset ofR. Thus, such a attribute-maximal pCluster should be discarded and all

the recursive search can be pruned.

Optimization 3: Extracting common attributes from possible attribute set directly.

Suppose that(R,D) is a attribute-maximal pCluster with respect toD, andD′ is the corre-

sponding set of possible attributes. If there exists an attributea ∈ D′ such that for every pair

of objects{oi ,o j}, {a}∪D appears in an object pair MDS of{oi ,o j}, then we immediately

know that(R,D∪{a}) must be a attribute-maximal pCluster with respect toD∪{a}. Such an

attribute is called acommon attributeand should be extracted directly.

Example 4.4 (Extracting common attributes).In our running example,({o1,o2,o3,o6},{a1,a2})
is a attribute-maximal pCluster with respect to{a1,a2}. Interestingly, as shown in Figure 4.9(a),

for every object pair{oi ,o j}⊂{o1,o2,o3,o6}, the object-pair MDS contains attributea3. There-

fore, we immediately know that({o1,o2,o3,o6},{a1,a2,a3}) is a attribute-maximal pClus-

ter.

Optimization 4: Prune non-maximal pClusters.

Our goal is to find maximal pClusters. If we can find that the recursive search on a attribute-

maximal pCluster cannot lead to a maximal pCluster, the recursive search thus can be pruned.

The earlier we detect the impossibility, the more search efforts can be saved.

We can use thedominant attributesto detect the impossibility. We illustrate the idea in the

following example.

Example 4.5 (Using dominant attributes to detect non-maximal pClusters).Again, let us

consider our running example. Let us try to find the maximal pClusters whose first two at-

tributes area1 anda3. Following the above discussion, we identify a attribute-maximal pCluster

({o1,o2,o3,o6},{a1,a3}).
One interesting observation can be made from the object-pair MDSs on objects in{o1,o2,o3,o6}

(Figure 4.9(a)): attributea2 appears in every object pair. We calleda2 adominant attribute. That

96 Chapter 4. Warehousing pattern-based clusters

means{o1,o2,o3,o6} also coherent on attributea2. In other words, we cannot have a maximal

pCluster whose first two attributes area1 anda3, sincea2 must also be in the same maximal

pCluster. Thus, the search of maximal pClusters whose first two attributes area1 anda3 can be

pruned.

The idea in Example 4.5 can be generalized. Suppose(R,D) is a attribute-maximal pCluster.

If there exists an attributea such thata is before the last attribute inD according to the attribute-

list, and{a}∪D appears in an object-pair MDS({oi ,o j},Di j) for every({oi ,o j} ⊆R), then the

search from(R,D) can be pruned, since there cannot be a maximal pCluster having attribute set

D but noa. Attributea is called adominant attributewith respect to(R,D).

4.3.4 MaPle+: Further Improvements

MaPle+ is an enhanced version ofMaPle. In addition to the techniques discussed above, the

following two ideas are implemented inMaPle+.

Block-based Pruning of Attribute-pair MDSs

In Step 2 of algorithmp-Clustering(please see Section 4.2.5) andMaPle (please see Sec-

tion 4.3.2), an MDSs can be pruned if it cannot be used to form larger pClusters. The pruning

is based on comparing an MDS with the other MDSs.

Since there can be a large number of MDSs, the pruning may not be efficient. Instead, we

can adopt a block-based pruning as follows.

For an attributea, all attribute-pair MDSs thata is an attribute form thea-block. We consider

the blocks of attributes in the attribute-list order.

For the first attributea1, thea1-block is formed. Then, for an objecto, if o appears in any

significant pCluster that has attributea1, o must appear in at least(mina−1) different attribute-

pair MDSs in thea1-block. In other words, we can remove an objecto from thea1-block MDSs

if its count in thea1-block is less than(mina−1). After removing the objects, the attribute-pair

MDSs in the block that do not have at least(mino−1) objects can also be removed safely.

4.3. Algorithms MaPleand MaPle+ 97

Moreover, according to Lemma 6, if there are less than(mina− 1) MDSs in the resulted

a1-block, thena1 cannot appear in any significant pCluster, and thus all the MDSs in the block

can be removed.

The blocks can be considered one by one. Such a block-based pruning is more effective. In

Section 4.3.2, we prune an object from attribute-pair MDSs if it appears in less thanmina·(mina−1)
2

different attribute-pair MDSs (Lemma 6). In the block-based pruning, we consider pruning

an object with respect to every possible attribute. It can be shown that any object pruned by

Lemma 6 must also be pruned in some block, but not vice versa, as shown in the following

example.

Example 4.6 (Block-based pruning of attribute-pair MDSs).Suppose we have the attribute-

pair MDSs as shown in Figure 4.12, andmino = mina = 3.

Attribute-pairs objects

{a1,a2} {o1,o2,o4}
{a1,a3} {o2,o3,o4}
{a1,a4} {o2,o4,o5}
{a2,a3} {o1,o2,o3}
{a2,a4} {o1,o3,o4}
{a2,a5} {o2,o3,o5}

Figure 4.12: The attribute-pair MDSs in Example 4.6.

In thea1-block, which contains the first three attribute-pair MDSs in the table, objectso1,

o3 ando5 can be pruned. Moreover, all attribute-pair MDSs in thea1-block can be removed.

However, inMaPle, sinceo1 appears3 times in all the attribute-pair MDSs, it cannot be

pruned by Lemma 6, and thus attribute-pair MDS({a1,a2},{o1,o2,o4}) cannot be pruned,

either.

The block-based pruning is also more efficient. To use Lemma 6 to prune inMaPle, we

have to check both the attribute-pair MDSs and the object-pair MDSs mutually. However, in

the block-based pruning, we only have to look at the attribute-pair MDSs in the current block.

98 Chapter 4. Warehousing pattern-based clusters

Computing Attribute-pair MDSs Only

In many data sets, the numbers of objects and attributes are different dramatically. For example,

in the microarray data sets, there are often many genes (thousands or even tens of thousands),

but very few samples (up to one hundred). In such cases, a significant part of the runtime in

bothp-ClusteringandMaPle is to compute the object-pair MDSs.

Clearly, computing object-pair MDSs for a large set of objects is very costly. For example,

for a data set of10,000 objects, we have to consider10000×9999÷2 = 49,995,000 object

pairs!

Instead of computing those object-pair MDSs, we develop a technique to compute only the

attribute-pair MDSs. The idea is that we can compute the attribute-maximal pClusters on-the-fly

without materializing the object-pair MDSs.

Example 4.7 (Computing attribute-pair MDS’s only). Consider the attribute-pair MDS’s in

Figure 4.8(b) again. We can compute the attribute-maximal pCluster for attribute set{a1,a2,a3}
using the attribute-pair MDS’s only.

We observe that an object pairou are in an attribute-maximal pCluster of{a1,a2,a3} if and

only if there exist three attribute-pair MDS’s for{a1,a2}, {a1,a3}, and{a2,a3}, respectively,

such that{ou,ov} are in the object sets of all those three attribute-pair MDS’s. Thus, the inter-

section of the three object sets in those three attribute-pair MDS’s is the set of objects in the

attribute-maximal pCluster.

In this example,{a1,a2}, {a1,a3}, and{a2,a3} have only one attribute-pair MDS, respec-

tively. The intersection of their object sets are{o1,o2,o3,o6}. Therefore, the attribute-maximal

pCluster is({o1,o2,o3,o6},{a1,a2,a3}).

When the number of objects is large, computing the attribute-maximal pClusters directly

from attribute-pair MDS’s and smaller attribute-maximal pClusters can avoid the costly materi-

alization of object-pair MDS’s. The computation can be conducted level-by-level from smaller

attribute sets to their supersets.

Generally, if a set of attributesD has multiple attribute-maximal pClusters, then its superset

4.4. Empirical Evaluation 99

D′ may also have multiple attribute-maximal pClusters. For example, suppose{a1,a2} has

attribute-pair MDS’s(R1,{a1,a2}) and(R2,{a1,a2}), and(R3,{a1,a3}) and(R4,{a2,a3}) are

attribute-pair MDS’s for{a1,a3} and{a1,a3}, respectively. Then,(R1∩R3∩R4,{a1,a2,a3})
and(R2∩R3∩R4,{a1,a2,a3}) should be checked. If the corresponding object set has at least

mino objects, then the pCluster is an attribute-maximal pCluster. We also should check whether

(R1∩R3∩R4) = (R2∩R3∩R4). If so, we only need to keep one attribute-maximal pCluster for

{a1,a2,a3}.
To compute the intersections efficiently, the sets of objects can be represented as bitmaps.

Thus, the intersection operations can be implemented using the bitmapANDoperations.

4.4 Empirical Evaluation

We testMaPle, MaPle+ andp-Clusteringextensively on both synthetic and real life data sets.

In this section, we report the results.

MaPleandMaPle+ are implemented using C/C++. We obtained the executable of the im-

proved version ofp-Clustering(H. Wang et al., 2002) from the authors. Please note that the

authors ofp-Clusteringimproved their algorithm dramatically after their publication in SIG-

MOD’02. The authors ofp-Clusteringalso revised the program so that only maximal pClusters

are detected and reported. Thus, the output of the two methods are comparable directly. All the

experiments are conducted on a PC with a P41.2 GHzCPU and384 M main memory running

a Microsoft Windows XP operating system.

4.4.1 The Data Sets

The algorithms are tested against both synthetic and real life data sets. Synthetic data sets

are generated by a synthetic data generator (H. Wang et al., 2002). The data generator takes

the following parameters to generate data sets: (1) the number of objects; (2) the number of

attributes; (3) the average number of rows of the embedded pClusters; (4) the average number

of columns; and (5) the number of pClusters embedded in the data sets. The synthetic data

100 Chapter 4. Warehousing pattern-based clusters

generator can generate only perfect pClusters, i.e.,δ = 0.

We also report the results on a real data set, the Yeast microarray data set (Tavazoie et al.,

2000). This data set contains the expression levels of2,884 genes under17 conditions. The

data set is preprocessed as described in the paper by H. Wang et al. (2002).

4.4.2 Results on Yeast Data Set

The first issue we want to examine is whether there exist significant pClusters in real data sets.

We test on the Yeast data set. The results are shown in Figure 4.13. From the results, we can

obtain the following interesting observations.

δ mina mino # of max-pClusters # of pClusters

0 9 30 5 5520
0 7 50 11 N/A
0 5 30 9370 N/A

Figure 4.13: Number of pClusters on Yeast raw data set.

• There are significant pClusters existing in real data. For example, we can find pure pClus-

ter (i.e.,δ = 0) containing more than30 genes and9 attributes in Yeast data set. That

shows the effectiveness and utilization of mining maximal pClusters in the real data sets.

• While the number of maximal pClusters is often small, the number of all pClusters can

be huge, since there are many different combinations of objects and attributes as sub-

clusters to the maximal pClusters. This shows the effectiveness of the notation of maximal

pClusters.

• Among the three cases shown in Figure 4.13,p-Clusteringcan only finish in the first

case. In the other two cases, it cannot finish and outputs a huge number of pClusters that

overflow the hard disk. In contrast,MaPle andMaPle+ can finish and output a small

number of pClusters, which cover all the pClusters found byp-Clustering.

4.4. Empirical Evaluation 101

To test the efficiency of mining the Yeast data set with respect to the tolerance of noise, we

fix the thresholds ofmina = 6 andmino = 60, and vary theδ from 0 to 4. The results are shown

in Figure 4.14.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
un

tim
e

(s
ec

on
ds

)

Delta

p-Clustering
MaPle

MaPle+

Figure 4.14: Runtime vs.δ on the Yeast data set,mina = 6 andmino = 60.

As shown, bothp-ClusteringandMaPle+ are scalable on the real data set with respect to

δ. Whenδ is small,MaPle is fast. However, it scales poorly with respect toδ. The reason

is that, as the value ofδ increases, a subset of attribute has more and more attribute-maximal

pClusters on average. Similarly, there are more and more object-pair MDS’s. Managing a

large number of MDS’s and conducting iteratively pruning still can be costly. The block-based

pruning technique and the technique of computing attribute-maximal pClusters from attribute-

pair MDS’s, as described in Section 4.3.4, helpsMaPle+ to reduce the cost effectively. Thus,

MaPle+ is substantially faster thanp-ClusteringandMaPle.

4.4.3 Results on Synthetic Data Sets

We test the scalability of the algorithms on the three parameters, the minimum number of objects

mino, the minimum number of attributesmina in pClusters, andδ. In Figure 4.15, the runtime

of the algorithms versusmino is shown. The data set has6000objects and30attributes.

As can be seen, all the three algorithms are in general insensitive to parametermino, but

MaPle+ is much faster thanp-ClusteringandMaPle. The major reason that the algorithms are

insensitive is that the number of pClusters in the synthetic data set does not changes dramatically

102 Chapter 4. Warehousing pattern-based clusters

 0

 20

 40

 60

 80

 100

 120

 20 25 30 35 40 45 50 55 60 65 70

R
un

tim
e

(s
ec

on
ds

)

Minimum number of objects (min_o)

p-Clustering
MaPle

MaPle+

Figure 4.15: Runtime vs. minimum number of objects in pClusters.

asmino decreases and thus the overhead of the search does not increase substantially. Please

note that we do observe the slight increases of runtime in all the three algorithms asmino goes

down.

One interesting observation here is that, whenmino > 60, the runtime ofMaPledecreases

significantly. The runtime ofMaPle+ also decreases from2.4 seconds to1 second. That is

because there is no pCluster in such a setting.MaPle+ andMaPle can detect this in an early

stage and thus can stop early.

We observe the similar trends on the runtime versus parametermina. That is, both algorithms

are insensitive to the minimum number of attributes in pClusters, butMaPle is faster thanp-

Clustering. The reasoning similar to that onmino holds here.

We also test the scalability of the algorithms onδ. The result is shown in Figure 4.16. As

shown, bothMaPle+ andpClusteringare scalable with respect to the value ofδ, while MaPle

is efficient when theδ is small. When theδ value becomes large, the performance ofMaPle

becomes poor. The reason is as analyzed before: when the value ofδ increases, some attribute

pairs may have multiple MDS’s and some object pairs may have multiple MDS’s.MaPlehas to

check many combinations.MaPle+ uses the block-based pruning technique to reduce the cost

substantially. Among the three algorithms,MaPle+ is clearly the best.

We test the scalability of the three algorithms on the number of objects in the data sets. The

result is shown in Figure 4.17. The data set contains30attributes, where there are30embedded

4.4. Empirical Evaluation 103

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

R
un

tim
e

(s
ec

on
ds

)

Delta

p-Clustering
MaPle

MaPle+

Figure 4.16: Runtime vs.δ.

clusters. We fixmina = 5 and setmino = nob j ·1%, wherenob j is the number of objects in the

data set.δ = 1.

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000

R
un

tim
e

(s
ec

on
ds

)

Number of objects

p-Clustering
MaPle

MaPle+

Figure 4.17: Scalability with respect to the number of objects in the data sets.

The result in Figure 4.17 clearly shows thatMaPle performs substantially better thanp-

Clusteringin mining large data sets.MaPle+ is up to two orders of magnitudes faster thanp-

ClusteringandMaPle. The reason is that bothp-ClusteringandMaPleuse object-pair MDS’s

in the mining. When there are10000objects in the database, there are10000×9999
2 = 49995000

object-pairs. Managing a large database of object-pair MDS’s is costly.MaPle+ only uses

attribute-pair MDS’s in the mining. In this example, there are only30×29
2 = 435attribute pairs.

Thus,MaPle+ does not suffer from the problem.

To further understand the difference, Figure 4.17 shows the numbers of local maximal

104 Chapter 4. Warehousing pattern-based clusters

pClusters searched byMaPleandMaPle+. As can be seen,MaPle+ searches substantially less

thanMaPle. That partially explains the difference of performance of the two algorithms.

We also test the scalability of three algorithms on the number of attributes. The result is

shown in Figure 4.18. In this test, the number of objects is fixed to3,000 and there are30

embedded pClusters. We setmino = 30 andmina = nattr ·20%, wherenattr is the number of

attributes in the data set.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

R
un

tim
e

(s
ec

on
ds

)

Number of attributes

p-Clustering
MaPle

MaPle+

Figure 4.18: Scalability with respect to the number of attributes in the data sets.

The curves show that all the three algorithms are approximately linearly scalable with re-

spect to number of attributes, andMaPle+ performs consistently better thanp-Clusteringand

MaPle.

In summary, from the tests on synthetic data sets, we can see thatMaPle outperformsp-

Clusteringclearly.MaPle is efficient and scalable in mining large data sets.

Chapter 5

Conclusion

In this dissertation we described emerging challenges and our approaches to tackle them in data

warehousing and OLAP. As seen so far, a data warehousing and OLAP are useful facilities for

a decision making of users. A data warehouse stores summarized and compressed information

and data cubes and iceberg cubes are tools for access to a data warehouse efficiently. We delve

into challenges which each area of data warehouse technology faces. This chapter summarizes

the contributions of this dissertation and discusses potential future research topics.

Mining iceberg cubes is to compute aggregates to find aggregate values satisfying specified

threshold. Since a data warehouse has large amount of data in general, the computation of ice-

berg cubes should use little memory and fewer scans over data. In order to compute iceberg

cubes efficiently, we focus on an assumption of previous methods to compute iceberg cubes

from a data warehouse, which is the computation of iceberg cubes based on a universal base

table. Materializing the universal base table costs high in time and space due to the redundancy

of dimensional data in the universal base table and multiple scans of dimensional table. A new

method is required to compute iceberg cube without materializing universal base table. It con-

tributes to the computation of iceberg cubes technology since it reduces the cost of computation

of iceberg cubes.

An algorithm CTC(Cross Table Cubing) is developed. Unlike all of the previous methods,

CTCavoids materializing the universal base table. Instead, it computes local iceberg cells and

105

106 Chapter 5. Conclusion

derives the global iceberg cells from local ones. It removes redundancy and multiple scans of

dimensional data. It does not access dimensional tables after computation of local iceberg cells.

The investigation and the experimental results clearly indicate thatCTCis efficient and scalable

in computing iceberg cubes for large data warehouses. It is consistently more efficient and more

scalable thanBUC. We also show how the techniques inCTCcan be generalized to handle more

complicated schemas, such as snowflake schema.

Online warehousing data streams and answering ad hoc aggregate queries are interesting

and challenging research problems with broad applications. Since a data stream has high rate

of data input and it is often infeasible to maintain all data in memory, online data warehousing

is required to maintain the recent data in a sliding window, and provide online answers to ad

hoc aggregate queries over the current sliding window. We propose a novelPATdata structure,

which is a prefix tree and has links facilitating online ad hoc query answers efficiently. It stores

a subset of aggregate cells,prefix aggregates cellsand infix aggregate cells, from the recent

data in a slinding window. Efficient algorithms are developed to construct and incrementally

maintain aPATover a data stream, and answer various ad hoc aggregate queries from aPAT. A

systematic performance study to examine the effectiveness and efficiency of our design shows

that the size of aPAT is small enough to be feasible in space for data streams and the cost of

construction and maintenance for aPAT is smaller than the cost of materialization of the whole

cube. This work extends data warehousing technology to applications with the properties of a

data stream.

Pattern-based clustering is a practical data mining task with many applications. However,

mining pattern-based clusters efficiently and effectively is still challenging. Since a pattern-

based cluster consists of a subset of attributes/dimensions, the number of output pattern-based

clusters may too huge to be understood well and there may exist redundancy between clusters.

We propose the mining of maximal pattern-based clusters, which are non-redundant pattern-

based clusters and develop two efficient and scalable algorithms,MaPleandMaPle+, for min-

ing maximal pattern-based clusters in large databases. Test results on both real life data sets

and synthetic data sets show thatMaPle+ clearly outperforms the best method previously pro-

107

posed. Recently, there are several interesting variations of pattern-based clustering, such as

OP-clustering (Liu & Wang, 2003). As future work, it is interesting to use ideas inMaPle to

develop efficient algorithms for mining such clusters.

As a future research, there are a few interesting topics as the extended researches of this

thesis in data warehousing and data cube. One of the topics is the combination of data cub-

ing techniques and classification for finding interesting decision factors from multidimensional

data. As an motivating example, suppose we have a multidimensional data of real estate. A

realtor wants to analyze her customers according to their attributes such as income level, age,

ethnic groups, education, family size. She may have two types of queries: (1) comparison of

the decision making factors from two groups of data, i.e., What is the difference of decision

factors between a group of customers with annual income [200 k,100 k] and the whole group

of customers in terms of purchasing a new house?, and (2) specific decision making pattern

analysis, i.e., in which other groups hold a specific purchase pattern same as Asian customer

group does? None of recent studies can be used to efficiently answer these queries and conduct

the analysis. The general idea for thisassociative classification cubesis to maintain a classi-

fier for every non-empty group of attribute value combination, i.e., a cell in a data cube, and

store rules by materializing a data cube such that each cell stores only the class distribution, and

present a set of fundamental operations for analysis based on associative classification cubes:

Rule Extraction and Group Comparison.

Warehousing distributed databases and data cubing on other types of non-relational data

are interesting extended researches of warehousing central and static databases. In practice,

databases are often distributed in multiple data sources of the network environments and the

formats of data are the non-relational types such as time-series data and XML. Since types and

framework of data are different from those of previous warehousing and data cubing techniques,

many sub problems are needed to be addressed, such as the network communication cost, data

integration from multiple sources in the network, definition of aggregate functions on non-

relational data, etc. These potential researches will help to broaden the applications of data

warehouse and data cube.

References

Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V. (2001). A tree projection algorithm

for generation of frequent item sets.Journal of Parallel and Distributed Computing, 61(3),

350–371.

Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C., & Park, J. S. (1999, June). Fast algorithms

for projected clustering. InSigmod ’99: Proceedings of the 1999 acm sigmod international

conference on management of data(p. 61-72). Philadelphia, PA.

Aggarwal, C. C., & Yu, P. S. (2000, May). Finding generalized projected clusters in high

dimensional spaces. InSigmod ’00: Proceedings of the 2000 acm sigmod international

conference on management of data(p. 70-81). Dallas, TX.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic subspace clustering

of high dimensional data for data mining applications. InSigmod ’98: Proceedings of the

1998 acm sigmod international conference on management of data(pp. 94–105). New York,

NY, USA: ACM Press.

Agrawal, R., Imielinski, T., & Swami, A. N. (1993). Mining association rules between sets

of items in large databases. In P. Buneman & S. Jajodia (Eds.),Sigmod ’93: Proceedings

of the 1993 acm sigmod international conference on management of data(pp. 207–216).

Washington, D.C.

Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In

109

110 REFERENCES

Vldb ’94: Proceedings of the 1994 vldb international conference on very large data bases(p.

487-499). Santiago, Chile.

Arasu, A., & Manku, G. S. (2004). Approximate counts and quantiles over sliding windows. In

Pods ’04: Proceedings of the twenty-third acm sigmod-sigact-sigart symposium on principles

of database systems(pp. 286–296). New York, NY, USA: ACM Press.

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in

data stream systems. InPods ’02: Proceedings of the twenty-first acm sigmod-sigact-sigart

symposium on principles of database systems(pp. 1–16). New York, NY, USA: ACM Press.

Babu, S., & Widom, J. (2001). Continuous queries over data streams.SIGMOD Record, 30,

109-120.

Barbar, D., & Wu, X. (2000). Using loglinear models to compress datacube. InWaim ’00:

Proceedings of the first international conference on web-age information management(pp.

311–322). London, UK: Springer-Verlag.

Barbara, D., & Sullivan, M. (1997). Quasi-cubes: Exploiting approximation in multidimen-

sional databases.SIGMOD Record, 26, 12-17.

Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999, January). When is “nearest

neighbor” meaningful? In C. Beeri & P. Buneman (Eds.),Icdt ’99: Proceedings of the 4th

international international conference on database theory(p. 217-235). Berlin, Germany.

Beyer, K., & Ramakrishnan, R. (1999, June). Bottom-up computation of sparse and iceberg

cubes. InSigmod ’99: Proceedings of the 1999 acm sigmod international conference on

management of data(p. 359-370).

Chang, J. H., & Lee, W. S. (2003, August). Finding recent frequent itemsets adaptively over on-

line data streams. InKdd ’03: Proceedings of the ninth acm sigkdd international conference

on knowledge discovery and data mining(p. 487-492). Washinton D.C.

REFERENCES 111

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and olap technology.

SIGMOD Record, 26(1), 65–74.

Chen, Y., Dong, G., Han, J., Wah, B. W., & Wang, J. (2002, August). Multi-dimensional

regression analysis of time-series data streams. InVldb ’02: Proceedings of the 2002 vldb

international conference on very large data bases(pp. 323–334). Hongkong, China.

Cheng, C., Fu, A. W., & Zhang, Y. (1999). Entropy-based subspace clustering for mining

numerical data. InKdd ’99: Proceedings of the fifth acm sigkdd international conference on

knowledge discovery and data mining(pp. 84–93). New York, NY, USA: ACM Press.

Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. InIsmb ’00: Proceedings

of the 8th international conference on intelligent system for molecular biology(p. 93-103).

Cohen, S., Nutt, W., & Serebrenik, A. (1999). Rewriting aggregate queries using views. In

Pods ’99: Proceedings of the eighteenth acm sigmod-sigact-sigart symposium on principles

of database systems(p. 155-166). Philadelphia, Pennsylvania: ACM Press.

Cormode, G., Korn, F., Muthukrishnan, S., & Srivastava, D. (2003, September). Finding hierar-

chical heavy hitters in data streams. InVldb ’03: Proceedings of the 2003 vldb international

conference on very large data bases.Berline, Germany.

Cormode, G., & Muthukrishnan, S. (2003). What’s hot and what’s not: tracking most frequent

items dynamically. InPods ’03: Proceedings of the twenty-second acm sigmod-sigact-sigart

symposium on principles of database systems(p. 296-306). New York, NY.

Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002, January). Maintaining stream statistics

over sliding windows. InSoda ’02: Proceedings of 13th annual acm-siam symposium on

discrete algorithms(pp. 635–644).

Dobra, A., Garofalakis, M., Gehrke, J., & Rastogi, R. (2002). Processing complex aggregate

queries over data streams. InSigmod ’02: Proceedings of the 2002 acm sigmod international

conference on management of data(pp. 61–72). New York, NY, USA: ACM Press.

112 REFERENCES

Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., & Ullman, J. D. (1998, 24–

27). Computing iceberg queries efficiently. InVldb ’98: Proceedings of the 1998 vldb

international conference on very large data bases(pp. 299–310).

Feng, Y., Agrawal, D., Abbadi, A. E., & Metwally, A. (2004). Range cube: Efficient cube

computation by exploiting data correlation. InIcde’04: Proceedings of the 2004 ieee inter-

national conference on data engineering(p. 658-670).

Ganter, B., & Wille, R. (1996).Formal concept analysis – mathematical foundations. Springer.

Gehrke, J., Korn, F., & Srivastava, D. (2001). On computing correlated aggregates over contin-

ual data streams. InSigmod ’01: Proceedings of the 2001 acm sigmod international confer-

ence on management of data(pp. 13–24). New York, NY, USA: ACM Press.

Giannella, C., Han, J., Pei, J., & Yu, P. S. (2004).Mining frequent patterns in data streams at

multiple time granularities. AAAI/MIT.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., et al. (1997).

Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.

Journal of Data Mining and Knowledge Discovery, 1(1), 29–53.

Gupta, A., Mumick, I. S., & Subrahmanian, V. S. (1993). Maintaining views incrementally. In

Sigmod ’93: Proceedings of the 1993 acm sigmod international conference on management

of data(pp. 157–166). New York, NY, USA: ACM Press.

Hahn. (1994). Edited synoptic cloud reports from ships and land stations over the globe,

1892-1991.(http://cdiac.ornl.gov/ftp/ndp026b/)

Han, J., Pei, J., Dong, G., & Wang, K. (2001, May). Efficient computation of iceberg cubes

with complex measures. InSigmod ’01: Proceedings of the 2001 acm sigmod international

conference on management of data(pp. 1–12). Santa Barbara, California.

REFERENCES 113

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate gener-

ation: A frequent-pattern tree approach.Journal of Data Mining and Knowledge Discovery,

8(1), 53–87.

Harinarayan, V., Rajaraman, A., & Ullman, J. D. (1996, June). Implementing data cubes

efficiently. InSigmod ’96: Proceedings of the 1996 acm sigmod international conference on

management of data(pp. 205–216). Montreal, Canada.

Inmon, W. H. (2002).Building the data warehouse. John Wiley Sons, Inc.

Jagadish, H. V., Madar, J., & Ng, R. (1999, September). Semantic compression and pattern

extraction with fascicles. InVldb ’99: Proceedings of the 1999 vldb international conference

on very large data bases(p. 186-198). Edinburgh, UK.

Jiang, D., Pei, J., Ramanathan, M., Tang, C., & Zhang, A. (2004). Mining coherent gene clusters

from gene-sample-time microarray data. InKdd ’04: Proceedings of the tenth acm sigkdd

international conference on knowledge discovery and data mining(pp. 430–439). New York,

NY, USA: ACM Press.

Jiang, D., Pei, J., & Zhang, A. (2003). Dhc: A density-based hierarchical clustering method

for time series gene expression data. InBibe ’03: Proceedings of the 3rd ieee symposium on

bioinformatics and bioengineering(p. 393). Washington, DC, USA: IEEE Computer Society.

Johnson, T., & Shasha, D. (1997). Some approaches to index design for cube forests.Bulletin

of the Technical Committee on Data Engineering, 20(1), 27-35.

Karp, R. M., Papadimitrious, C. H., & Shanker, S. (2003, March). A simple algorithm for

finding frequent elements in streams and bags.ACM Transactions on Database Systems,

28(1), 51–55.

Lakshmanan, L. V. S., Pei, J., & Zhao, Y. (2003). Qc-trees: an efficient summary structure for

semantic olap. InSigmod ’03: Proceedings of the 2003 acm sigmod international conference

on management of data(pp. 64–75). New York, NY, USA: ACM Press.

114 REFERENCES

Lakshmanann, L. V. S., Pei, J., & Han, J. (2002, August). Quotient cube: How to summarize the

semantics of a data cube. InVldb ’02: Proceedings of the 2002 vldb international conference

on very large data bases(p. 778-789). Hong Kong, China.

Levy, A. Y., Mendelzon, A. O., Sagiv, Y., & Srivastava, D. (1995). Answering queries using

views. InPods ’95: Proceedings of the fourteenth acm sigmod-sigact-sigart symposium on

principles of database systems(pp. 95–104). San Jose, California.

Liu, J., & Wang, W. (2003, November). Op-cluster: Clustering by tendency in high dimensional

space. InIcdm’03: Proceedings of the 2003 ieee international conference on data mining

(pp. 187–194). Melbourne, Florida.

Mendelzon, A. O., & Vaisman, A. A. (2000). Temporal queries in olap. InVldb ’00: Pro-

ceedings of the 26th international conference on very large data bases(pp. 242–253). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Mumick, I. S., Quass, D., & Mumick, B. S. (1994, May). Maintenance of data cubes and

summary tables in a warehouse. InSigmod ’94: Proceedings of the 1994 acm sigmod inter-

national conference on management of data(pp. 100–111). Tucson, Arizona.

Ng, R. T., Wagner, A., & Yin, Y. (2001). Iceberg-cube computation with pc clusters. InSigmod

’01: Proceedings of the 2001 acm sigmod international conference on management of data

(pp. 25–36). New York, NY, USA: ACM Press.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999, January). Discovering frequent closed

itemsets for association rules. InIcdt ’99: Proceedings of the 4th international international

conference on database theory(p. 398-416). Jerusalem, Israel.

Pei, J., Zhang, X., Cho, M., Wang, H., & Yu, P. S. (2003). Maple: A fast algorithm for maximal

pattern-based clustering. InIcdm ’03: Proceedings of the third ieee international conference

on data mining(p. 259). Washington, DC, USA: IEEE Computer Society.

REFERENCES 115

Quass, D., Gupta, A., Mumick, I. S., & Widom, J. (1996, December). Making views self-

maintainable for data warehousing. InPdis ’96:proceedings of the 4th international confer-

ence on parallel and distributed information systems(pp. 158–169). Miami Beach, Florida.

Quass, D., & Widom, J. (1997). On-line warehouse view maintenance. InSigmod ’97: Proceed-

ings of the 1997 acm sigmod international conference on management of data(pp. 393–404).

New York, NY, USA: ACM Press.

Ross, K. A., & Srivastava, D. (1997, 25–27). Fast computation of sparse datacubes. In M. Jarke,

M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, & M. A. Jeusfeld (Eds.),Vldb

’97: Proceedings of the 1997 vldb international conference on very large data bases(pp.

116–125). Morgan Kaufmann.

Ross, K. A., & Zaman, K. A. (2000). Optimizing selections over datacubes. InSsdbm ’00:

Proceedings of the 12th international conference on scientific and statistical database man-

agement(p. 139). Washington, DC, USA: IEEE Computer Society.

Roussopoulos, N., Kotidis, Y., & Roussopoulos, M. (1997, May). Cubetree: Organization of

and bulk updates on the data cube. InSigmod ’97: Proceedings of the 1997 acm sigmod

international conference on management of data(pp. 89–99). Tucso, Arizona.

Sarawagi, S. (1997). Indexing OLAP data.Data Engineering Bulletin, 20(1), 36–43.

Shanmugasundaram, J., Fayyad, U., & Bradley, P. S. (1999). Compressed data cubes for olap

aggregate query approximation on continuous dimensions. InKdd ’99: Proceedings of the

fifth acm sigkdd international conference on knowledge discovery and data mining(pp. 223–

232). New York, NY, USA: ACM Press.

Sismanis, Y., Deligiannakis, A., Roussopoulos, N., & Kotidis, Y. (2002). Dwarf: shrinking the

petacube. InSigmod ’02: Proceedings of the 2002 acm sigmod international conference on

management of data(pp. 464–475). New York, NY, USA: ACM Press.

116 REFERENCES

Srivastava, D., Dar, S., Jagadish, H. V., & Levy, A. Y. (1996, September). Answering queries

with aggregation using views. InVldb ’02: Proceedings of the 2002 vldb international con-

ference on very large data bases(pp. 318–329). Bombay, India.

Tavazoie, S., Hughes, J., Campbell, M., Cho, R., & Church, G. (2000).Yeast micro data set.

(http://arep.med.harvard.edu/biclustering/yeast.matrix)

Teng, W. G., Chen, M. S., & Yu, P. S. (2003, September). A regression-based temporal pattern

mining scheme for data streams. InVldb ’03: Proceedings of the 2003 vldb international

conference on very large data bases(pp. 93–104). Berlin, Germany.

TPC. (1998).Tpc transaction processing performance council.(http://www.tpc.org/tpch)

Vitter, J., Wang, M., & Iyer, B. (1998, November). Data cube approximation and histograms

via wavelets. InCikm ’98: Proceedings of the 7th international conference on information

and knowledge management(pp. 96–104). Washington D.C.

Wang, H., Wang, W., Yang, J., & Yu, P. S. (2002). Clustering by pattern similarity in large

data sets. InSigmod ’02: Proceedings of the 2002 acm sigmod international conference on

management of data(pp. 394–405). New York, NY, USA: ACM Press.

Wang, K., Jiang, Y., Yu, J. X., Dong, G., & Han, J. (2003). Pushing aggregate constraints by

divide-and-approximate. InIcde’03: Proceedings of the 2003 ieee international conference

on data engineering(p. 291- 302).

Wang, W., Lu, H., Feng, J., & Yu, J. X. (2002). Condensed cube: An effective approach to

reducing data cube size. InIcde’02: Proceedings of the 2002 ieee international conference

on data engineering(p. 155-165).

Widom, J. (1995). Research problems in data warehousing. InCikm ’95: Proceedings of the

4th international conference on information and knowledge management(pp. 25–30). New

York, NY, USA: ACM Press.

REFERENCES 117

Xin, D., Han, J., Li, X., & Wah, B. W. (2003). Star-cubing: Computing iceberg cubes by top-

down and bottom-up integration. InVldb ’03: Proceedings of the 2003 vldb international

conference on very large data bases.

Yang, G. (2004). The complexity of mining maximal frequent itemsets and maximal frequent

patterns. InKdd ’04: Proceedings of the tenth acm sigkdd international conference on knowl-

edge discovery and data mining(pp. 344–353). New York, NY, USA: ACM Press.

Yang, J., Wang, W., Wang, H., & Yu, P. S. (2002, April).δ-cluster: Capturing subspace corre-

lation in a large data set. InIcde’02: Proceedings of the 2002 ieee international conference

on data engineering(pp. 517–528). San Fransisco, CA.

Yu, J. X., Chong, X., Lu, H., & Zhou, A. (2004, August). False positive or false negative: Min-

ing frequent itemsets from high speed transactional data streams. InVldb ’04: Proceedings

of the 2004 vldb international conference on very large data bases(pp. 204–215). Toronto,

ON, Canada.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997, August). New algorithms for fast

discovery of association rules. InKdd ’97: Proceedings of the third acm sigkdd international

conference on knowledge discovery and data mining(p. 283-286). Newport Beach, CA.

Zhao, L., & Zaki, M. J. (2005). Tricluster: an effective algorithm for mining coherent clusters

in 3d microarray data. InSigmod ’05: Proceedings of the 2005 acm sigmod international

conference on management of data(pp. 694–705). New York, NY, USA: ACM Press.

Zhao, Y., Deshpande, P. M., & Naughton, J. F. (1997). An array-based algorithm for simul-

taneous multidimensional aggregates. InSigmod ’97: Proceedings of the 1997 acm sigmod

international conference on management of data(pp. 159–170). New York, NY, USA: ACM

Press.

