
Technical Report No. 2007-09
Task Scheduling and Lightpath Establishment in

Optical Grids
Xin Liu, Wei Wei, Chunming Qiao

Department of Computer Science
and Engineering

SUNY Buffalo, NY 14260, USA
Email: xliu8@buffalo.edu

Ting Wang
NEC Laboratories America
Princeton, NJ 08540, USA
Email: ting@nec-labs.com

Weisheng Hu, Wei Guo, Min-You Wu
State Key Lab of Advanced Optical

Communication Systems and Networks
SJTU, Shanghai 200030, China

Email: wshu@sjtu.edu.cn

Abstract—Data-intensive Grid applications require huge data
transferring between multiple geographically separated comput-
ing nodes where computing tasks are executed. For a future
WDM network to efficiently support this type of emerging
applications, traditional approaches to establishing lightpaths
between given source destination pairs are not sufficient because
a computing task may be executed on any one of several
computing nodes having the necessary resources. Therefore,
lightpath establishment has to be considered jointly with task
scheduling to achieve best performance. In this paper, we study
the optimization problems of jointly scheduling both computing
resources and network resources. We first present the formulation
of two optimization problems with the objectives being the
minimization of the completion time of a job and minimization
of the resource usage/cost to satisfy a job with a deadline. When
the objective is to minimize the completion time, we devise an
optimal algorithm for a special type of applications. Furthermore,
we propose efficient heuristics to deal with general applications
with either optimization objective and demonstrate their good
performances in simulation.

I. I NTRODUCTION

We envision that a future WDM network will provide
efficient support for many distributed computing applications
that require both execution by multiple geographically sepa-
rated computing nodes and data transferring between them.
Each instance of these distributed applications, called a “job”
hereafter, may be logically partitioned into multiple tasks for
execution on different nodes, and some tasks may need to
communicate with other tasks (e.g., exchange data, intermedi-
ate results and/or other information).

In this work, we will consider the problem of efficiently
scheduling such jobs over a WDM network using wavelength
routing. The edge nodes in the WDM network provide direct
access to the computing nodes with various computing re-
sources. We assume that a given task may be executed on any
one of several candidate nodes having the necessary computing
resources required by this task, with possibly different execu-
tion times. We refer to the problem of deciding the spatial and
temporal assignment of the tasks to the computing nodes as the
task schedulingproblem, which has been an essential aspect of
parallel and distributed systems or more recent works on grid

computing. In task scheduling, a job is usually represented
as a directed acyclic graph (DAG), where a node represents
a task and an arc represents the communication between two
tasks.

In a WDM network, a submitted job request can be blocked
(dropped or delayed) not only due to the unavailability of
the computing resources at the nodes but also due to the
lack of network (wavelength) resources. This is because each
lightpath will exclusively occupy a wavelength along its route.
Accordingly, we will have to consider potential contentionon
the wavelength resources with task scheduling. We refer to
the problem of efficiently allocating network resources for
data transferring among tasks as thelightpath establishment
problem.

The objective of this work is to design and evaluate ap-
proaches to the joint optimization of the task scheduling and
lightpath establishment (TSLE) problem. For each accepted
job request, the set of nodes chosen to execute the tasks, and
the lightpaths established among them form what we call an
Application Specific and Agile Private (or ASAP) network.
This is the first work that considered the joint optimization
of allocating both network and computing resources. One
of the major contributions of this work is the formulation
of two optimization problems with the objectives being the
minimization of the completion time of job and minimization
of the resource usage/cost to satisfy a job with a deadline.
Another major contribution is to devise an optimal algorithm
when the objective is to minimize the completion time for a
special type of DAGs, and the final contribution is to propose
efficient heuristics to deal with general DAGs with either
optimization objective.

The rest of the paper is organized as follows. Section II
discusses some related works. Section III describes the major
challenges of solving the TSLE problem. In Section IV, we
present the formal formulation of the TSLE problem. In the
following two sections, we present novel algorithms to solve
the TSLE problem with different objectives. The simulation
results are presented in Section VII and Section VIII concludes
the paper.

2

II. RELATED WORKS

Several optical network architectures, control software and
technologies have been proposed in [1]–[3] to efficiently
support grid services. In general, these architectures canbe
based on either optical circuit switching (OCS) (via wave-
length routing) or optical burst switching (OBS), depending
on the bandwidth or delay requirement of Grid applications.
In [1], an OCS based approach (or Grid-over-OCS) was
proposed for applications requiring huge bandwidth for a
long period. In this approach, the Grid and optical-layer
resources can be managed either separately in an overlay
manner or jointly by extending the optical control plane for
Grid-resource provisioning. Another type of architectureto
support Grid services is based on OBS (or Grid-over-OBS),
which is suitable for applications having small job sizes [2],
[3]. The approaches used in this study are based on OCS where
we establish lightpaths between computing nodes to form an
ASAP network.

A recent work [4] considered the problem of jointly
scheduling computing and network resources for one DAG.
The authors in [4] formulated the problem assuming that a
(SONET/SDH) connection of sub-wavelength granularity can
be used to satisfy the communication requirements of a pair
of tasks and proposed a heuristic approach to minimize the
completion time of the job.

In this work, we consider a similar but different problem
where 1) lightpaths are required for communicating nodes; 2)
multiple jobs (some of them may have deadlines) may arrive
one after another and accordingly, the objective is to minimize
the resource usage, subject to the job’s deadline constraint. In
addition, when the objective is to minimize the completion
time of a job, we obtain an optimal solution for a pipelined
DAG, and based on this, we also devise an efficient algorithm
for a general DAG. As far as we know, this is the first work
that addresses these optimization problems.

In retrospect, this work also differs from previous works on
traditional lightpath establishment (static or dynamic) where
the source and destination pairs are given [5]. Because here,
the source and destination nodes depend on how tasks are
assigned, so is the traffic matrix when multiple nodes (or
multiple tasks) are involved. Moreover, the problem of forming
an ASAP network for each job differs from virtual topology
(VT) design, where a common VT is designed to optimally
support traffic aggregated from several different applications,
and thus only one (or very few) VT is needed at a time
[6]. Only when the change of the traffic matrix exceeds a
threshold is reconfiguration process triggered to form a new
virtual topology [7]. However, for the envisioned applications,
different ASAP networks need to be formed for different
jobs. Accordingly, not only the number of concurrent ASAP
networks will be much larger than that of VT, ASAP networks
also come and go as jobs are admitted and finished, which has
a much faster rate than that of VT reconfiguration. In addition,
when jobs have deadlines, the TSLE problem is also different
from the problems related to scheduled lightpath and sliding

scheduled lightpath demands [8], [9].

III. C HALLENGES

The TSLE problem has not been addressed previously and
it raises new challenges in both optical networking and grid
computing research. Two major challenges are as follows.

A. How to measure or estimate communication cost?

In previous works on task assignment in parallel and
distributed systems or more recent works on job scheduling
for grid computing applications, the underlying physical net-
work’s connectivity is often taken for granted, and at best
is assigned a constant “communication cost” between two
nodes. However, in a WDM network supporting dynamic
jobs, link usage changes dynamically, and it is possible that
one cannot establish a lightpath between two communicating
nodes at the time when it is needed. Besides, it is difficult
to attach a price tag (the communication cost) to the use
of networking resources in a way that is consistent with or
comparable to the costs of using other computing resources.
In contrast to the previous research, this work takes a cross-
layer joint optimization approach that aims to address the
fundamental interdependency between the computing resource
allocation and networking resource allocation strategieswithin
the context of supporting distributed computing applications
over WDM networks.

B. How to optimize the allocation of computing and network
resources jointly?

Unlike the classic model in a parallel and distributed system,
where all processors are fully connected and all communi-
cations can be performed concurrently, the edge nodes in a
WDM network are connected only when lightpaths can be
established between them and two lightpaths cannot use the
same wavelength on a link at the same time. Thus an optimal
schedule without considering the underlying limited network
resources can perform badly or worse, cannot be executed due
to the lack of wavelengths in a WDM network. This calls for a
joint allocation of computing and network resources. However,
this problem is hard to solve since a part of TSLE, the task
scheduling problem is NP-hard in general [13].

IV. M ODELS AND FORMULATIONS

In this section, we first introduce the network model that
includes an optical network with attached computing nodes
and the task graph to represent a job. We then formulate the
TSLE problem mathematically using Integer Linear Program-
ming (ILP).

A. Network model

The optical network with attached computing resource
nodes can be formulated as an edge-weighted undirected graph
Gn = (V, E, r, l, s). The first four elements characterize
the static properties ofGn. More specifically, the vertex
set V and the edge setE correspond to the network nodes
and the links interconnecting the nodes respectively. In this
study, we assume only one computing node is attached to

3

one edge node in the WDM network. Thus we will use the
term “node” to loosely refer to either an edge node in the
WDM network or the attached computing node hereafter. Each
nodev ∈ V provides one ofR categories of resources, such
as computation, storage and visualization and letrv denote
the category of resources the nodev provides. There are
Mi, i = 1, 2, . . . , R nodes in categoryi. Finally, le represents
the physical length or cost of the edgee ∈ E. In addition to the
above four, we have one more elements, which represents the
dynamic status (or the “snapshot”) of the resource utilization.
More specifically,s = (w, c), wherew records the earliest
idle time of every wavelength on every link andc stores the
earliest idle time of every resource nodev.

B. Task Graph

A task graphis commonly used to represent the commu-
nication requirements and precedences between tasks of a job
[10]. A task graph can be formulated as a directed acyclic
graph (DAG) Gt = (N, L, r, e, b, d). Each noden ∈ N
represents a task andrn denotes the type of the resources
required by taskn. A task n with type rn can be executed
on any one ofMrn

resource nodes having the necessary
computing resources required by this task. To illustrate the the
heterogeneity of computing nodes, a|N|×|V| matrixe is given
as a part of the description of the task graph. More specifically,
env represents the estimated execution time of taskn ∈ N
when it is assigned to nodev ∈ V (and if taskn cannot be
executed on nodev, then the corresponding execution time will
be set to infinity). An arclij = (ni, nj) ∈ L indicates there
will be data transferring from nodeni to nodenj afterni has
been executed and beforenj could be executed. An estimated
average bandwidth (in terms of the number of wavelengths,
i.e., no sub-wavelength request is considered) and duration of
the data transferring (or transmission delay) associated with
lij are given byblij

anddlij
respectively.

C. Problem Statement

In addition to the above models, we assume tasks of
different jobs can be queued at a node. Similarly, every edge
node in the optical network can store any amount of data
until they are transferred to a remote node. In other words, we
assume both edge node and computing node have unlimited
buffer. We refer to this assumption as the queueing model
in contrast to the dropping model, where a task (and the
corresponding job) requiring the resources at a node has to
be dropped if the node is busy running another task.

For the purpose of simplicity, we only employend technique
[10], which means that at timet, the scheduler can only
schedule a job on the resources which are free in[t,∞]. In
other words, idle time slots between reserved time slots will
not be used. Based on this assumption, we need to maintain
two sets of time-stamps:tei

v , the earliest idle time on node
v ∈ V andtei

vivj
, the earliest idle time on lightpath betweenvi

andvj .
Based on the above models and assumptions, for a given

job we need to 1) decide an optimal assignment of each node

of the task graph to a computing node and each arc of the
task graph to a lightpath in the WDM network 2) decide the
exact operation time of this assignment as shown in Figure 1.
We refer to the assignment and the time of performing it as a
schedule.

Job

Task1

Task3

Task2

1

2

3

4

5

Lightpath

Task1 Task2

Task4 Task3

Task4

Map to

Job

Task1

Task3

Task2

1

2

3

4

5

Lightpath

Task1 Task2

Task4 Task3

Task4

Map to

Fig. 1. An illustration of mapping a task graph onto an optical network

Once an optimal or near-optimal schedule is decided for
a job, computing resources will be reserved on the assigned
computing nodes according to the schedule. In addition, an
ASAP network is formed by establishing|L | lightpaths dy-
namically using advanced reservation and the exact setup and
release time of these lightpaths are decided by the schedule.

The following notations will be used in the mathematical
formulas which describe the TSLE problem.

• Γ: the assignment function fromN to V. Γ(n) = v
indicates that the schedule assigns taskn to be executed
on nodev.

• tsnv, t
f
nv: the starting time and finish time of taskn

scheduled on nodev = Γ(n). Whenv is not specific, we
just use the shorter termtsn, tfn to represent the starting
time and finish time of taskn. Obviously, we have
tfnv = tsnv + env.

• tslij
, tflij

: the starting time and finish time of the commu-

nication associated withlij . Obviously, we havetflij
=

tslij
+ dlij

.

D. Constraints

The following two constraints (computing resource con-
straint and precedence constraint) are adopted from [10] for
task scheduling.

• computing resource constraint:

Γ(n) = v ⇒ tsnv ≥ cv, n ∈ N (1)

Γ(ni) = Γ(nj) = v ⇒

{

tfniv
≤ tsnjv or

tfnjv ≤ tsniv

, ni, nj ∈ N

(2)
Constraint (1) ensures a task can only be scheduled on
a node after its initial earliest idle time. Constraint (2)
ensures that if any two tasks are scheduled on a node,
their execution time intervals must be disjoint.

4

• precedence constraint:

tsnj
≥ max

lij∈L
tflij

, ni, nj ∈ N (3)

tslij
≥ tfni

, ni ∈ N, lij ∈ L (4)

where lij = (ni, nj) represents an arc fromni to
nj . Constraint (3) ensures a task must wait for all the
required data from its predecessors to start execution. The
righthand side formula is defined to be the data ready time
tdrt
nj

= max
lij∈L tflij

. Constraint (4) reflects the fact that
the data transferring fromni must start after the execution
of ni has finished.

As mentioned before, the network resources are limited
and a job can be blocked due to the lack of wavelengths.
Thus in addition to the classic task scheduling constraints, a
feasible schedule is subject to the following constraints related
to wavelength resources.

• network resource constraint:
For any arcl ∈ L scheduled on the lightpathp and for
any wavelengthk used on linke alongp, we have

tsl ≥ wek
(5)

where ek represents thekth wavelength on linke and
recall thatwek

denotes the initial earliest idle time of
wavelengthek.
For any two arcsl, l′ ∈ L scheduled on the lightpathsp, p′

respectively, ifp andp′ share an identical wavelength on
a common physical link, then

tfl ≤ tsl′ or tfl′ ≤ tsl (6)

These two constraints are similar in form to the com-
puting resource constraint but more complicated because
an arc is scheduled on a lightpath, which can use many
different wavelengths on many links whereas a task is
only scheduled on one computing node. Note that the
contention on wavelength resources will delay the data
ready time and thus influence task scheduling.

Since we only have a limited number of wavelengths
available (W per link), the following capacity constraint must
hold,

• capacity constraint:
Recall that a subset of arcsL ′ ⊆ L corresponds to a
set of lightpathsP after assignment. If the paths inP
cause contention in both spatial domain and temporal
domain, i.e., they share a physical link and their busy
times (tslij

, tflij
), lij ∈ L′ share a common time interval,

then we have
∑

l∈L ′

bl ≤W (7)

Finally, in some situation, we may require the job to be
executed within certain time,

• (optional)deadline constraint:

max
n∈N

tfn ≤ D (8)

E. Objectives

Based the given models and assumptions, possible objec-
tives could be,

• minimize the completion time of a given job (without
deadline constraint):

minimize max
n∈N

tfn (9)

The completion time is also called schedule length or
makespan. This objective is commonly adopted in the context
of parallel systems and grid computing. Another objective is
to minimize execution and communication cost when there
is a deadline for the given job. This objective is important
from the view of either economics or resource utilization.
The user sometimes wants to minimize the cost of leasing
an ASAP network to execute a job as long as it’s finished on
time. In addition, service provider prefers to spend as little
resources as possible on executing a job such that the network
can accommodate more jobs or other types of traffic. More
specifically, the second objective is:

• minimize the cost (with deadline constraint):

minimize Cc

∑

l∈L
bldl|pl|+ Ce

∑

n∈N
env (10)

where |pl| is the physical length of the lightpath on which
l is scheduled. In this study, we assume the cost of leasing
a lightpath is a linear function of bandwidthbl, durationdl

and path length. Similarly the cost of leasing a computing
node is proportional to the execution time.Cc and Ce are
two constants representing the communication unit cost and
execution unit cost respectively.

V. M INIMIZE THE COMPLETION TIME

In this section, we focus on the TSLE problem when the
objective is to minimize the completion time. Hereafter, we
refer to the TSLE problem of minimizing the completion
time as themin-timeproblem. Accordingly, we havemin-time
solutions andmin-timealgorithms. First, an algorithm which
yields optimal solution is presented for a special case, where
the task graph is in the form of a pipeline. Second, we employ
this algorithm to improve an existing heuristic approach to
solve the general case.

A. Optimal Solution for a Pipelined DAG

If the task graph is a in the form of a pipeline, i.e.,
L = {(ni, ni+1)|1 ≤ i ≤ |N| − 1}, an algorithm extended
from [11] can be used to obtain minimum completion time
in polynomial time. The authors in [11] considered the task
assignment problem (without scheduling) in the context of par-
allel and distributed computing and suggested a transformation
from a pipelined task graph to an extended graphGe. More
specifically, we define the following transformations:

• A noden ∈ N is mapped toMrn
nodes inGe, each of

which corresponds to an assignment ofn to a computing
nodev ∈ V.

5

• An arc lij = (ni, nj) ∈ L is mapped toMr ni
×Mrnj

arcs inGe, each of which corresponds to one of possible
connections fromΓni

to Γnj
.

• A dummy source nodes and a dummy destination node
t are added inGe. s is connected to all the nodes
transformed from source noden1 and all the nodes
transformed from sink noden|N| are connected tot.

111 12 13

2 21 22

s

t

Fig. 2. An illustration of transforming a two-node task graph

Figure 2 shows an example of the transformation from a
simple two-node graph, whereMrn1

= 3 andMr n2
= 2. The

basic idea is that by assigning execution times and lightpath
durations as weights to nodes and arcs respectively, one can
use Dijkstra’s algorithm to find a shortest path froms to t,
which corresponds to an optimal assignment with minimum
completion time. However, in the context of scheduling, this
algorithm cannot be used directly because the availabilityof
both computing and networking resource have to be considered
to generate a feasible schedule. Thus we need to modify the
“Relax” procedure in a standard Dijkstra’s algorithm [12] as
shown below. We also refer to the Dijkstra’s algorithm which
uses the following “Relax” procedure as Algorithm 1.

Algorithm 1 Relax(u′, v′)

1: u′, v′ ∈ Ge correspond toni, nj ∈ N and vi, vj ∈ V
respectively.

2: if vi = vj then
3: tei

vj
← tfu′ + enjvj

4: else
5: tei

vj
← max(max(tfu′ , tei

vivj
) + dlij

, tei
vj

) + enjvj

6: end if
7: if tfv′ > tei

vj
then

8: tfv′ ← tei
vj

9: end if

In this excerpt of the modified Dijkstra’s algorithm, let
ni, nj ∈ N be the tasks andvi, vj ∈ V be the computing
nodes corresponding tou′, v′ ∈ Ge respectively.u′ is a node
in Ge whose shortest distance (which is defined to be the finish
time of ni if scheduled onvi) from sources has been found
and recorded andv′ is adjacent tou′. This procedure is used
to find out if the shortest distance ofv′ can be shortened by
going throughu′.

If ni andnj are scheduled on the same node, then there is
no transmission delay. In this case, tasknj can be executed
immediately after taskni is finished. On the other hand, if task
ni, nj are scheduled on different nodes, the data can only be
transmitted after taskni is finished and the lightpath between
vi and vj has sufficient bandwidth. After all the data arrive
at vj , only when it’s free can nodevj start to executenj . If
the new path throughu′ is shorter than the recorded one, the
value of shortest distancetfv′ is updated.

The initial value of earliest idle timetei
v of a nodev ∈ V

is given as a part of the description of the optical network,
i.e., initially tei

v = cv. Its value is updated in each iteration
of “Relax” operation as shown above. Similarly, the earliest
idle time tei

vivj
of a path betweenvi and vj can be decided

by simply searching the maximum earliest time over all links
along the path when sufficient bandwidthbl is available.

Algorithm 1 is optimal only if fix routing is assumed, i.e.,
the shortest path is used between any two nodes inV [5]. This
is because a path froms to t in Ge corresponds to a possible
assignment and vice versa. Thus the shortest path returned
from Dijkstra’s algorithm corresponds to the optimal schedule.
If alternate routing is used, one can enumerate all the possible
paths betweenvi and vj and select the one with the earliest
idle time in line 5. If adaptive routing is allowed (with much
higher complexity of course), an algorithm proposed in [4]
can be used to find a path with earliest idle time. Algorithm
1 does not guarantee optimality if either alternate routingor
adaptive routing is used but it’s still effective. In this paper, we
assume the number of nodes in each category of resources are
the same, which is denoted byM . Thus there areO(M |N|)
nodes andO(M

2
|L |) arcs inGp and the time complexity of

this algorithm isO(M |N| log (M |N|) + M
2
|L |) according to

[12].

B. A Heuristic for a General DAG

The above Algorithm 1 is optimal only when the task
graph is a pipeline, i.e., tasks are executed sequentially and
thus no contention will occur when allocating computing
resources and network resources. For a general DAG, where
the contention from parallel executions happens commonly in
both computing nodes and underlying networks, Algorithm 1
can not be employed directly to solve the TSLE problem.

The general scheduling problem of minimizing schedule
length is NP-hard [13]. The best known solution of this
scheduling problem assuming a general DAG in the context
of parallel and distributed computing is a heuristic, namely
list scheduling [14], where the tasks are ordered according
to some priority scheme and then scheduled one by one to
achieve the objective greedily. The downside of list scheduling
is obviously that it doesn’t guarantee optimal solution. Infact,
the performance of list scheduling on a pipelined DAG would
be much worse than that of Algorithm 1 as shown in the
simulation studies.

The above discussions thus motivate us to embed Algorithm
1 into a list heuristic approach. Because many practical task
graphs have subgraphs in the form of a pipeline, we could take

6

advantage of Algorithm 1 to achieve a better performance than
a common list scheduling.

Algorithm 2 A list scheduling heuristic to minimize the
completion time

1: Short-circuit all pipelines and obtain a new task graphGp.
2: Compute bottom levels and sort tasksn ∈ N into a listQ.
3: for eachnj ∈ Q in the decreasing order of the bottom

levelsdo
4: for eachvj such thatvj can executenj and letΓ(nj) =

vj do
5: for eachni such that(ni, nj) ∈ Gp in the decreasing

order of the bottom levelsdo
6: Find the finish times of all the pipelines or normal

arcs betweenni andnj

7: end for
8: tdrt

nj
← max

lij=(ni,nj)∈L tflij

9: tfnjvj
← max(tei

vj
, tdrt

nj
) + enjvj

10: end for
11: Γ(nj)← argminvj

tfnjvj

12: tfnj
← minvj

tfnjvj

13: tei
Γ(nj)

← tfnj

14: update the earliest idle time of all the used wavelengths
along the paths betweenΓ(nj) and its predecessors.

15: end for

Algorithm 2 is a formal implementation of the above idea.
First, all the pipelines inGt are recognized and short-circuited.
The new graphGp formed by this operation is identical toGt

except that every pipeline inGt is now an arc inGp. This can
be done by merging each node which has one parent and one
child with its incident nodes iteratively. Second, as shownin
[15], the priority scheme based on thebottom levelachieves
the best performance among other priority schemes. The
bottom level, which is recursively defined below, represents the
length (in terms of the sum of execution and communication
time) of the longest path leaving the node,

bl(ni) = eni
+ max

lij=(ni,nj)∈L
(bl(nj) + dlij

) (11)

whereeni
denote the average execution time of taskni.

The rationale behind this scheme is that by allowing the task
with higher bottom level to be executed earlier, the long path
behind it can be finished earlier. We use the bottom level as the
priority scheme in line 2. Note that an arc inGp corresponds to
a pipelinepl in Gt, thus its cost is computed as

∑

ni∈pl eni
+

∑

lij∈pl dlij
. Next, we schedule tasks one by one according to

the priority scheme.
Because the availability of network resources has to be

considered, the scheduling order of arcs betweennj and its
predecessors is also important since different order can yield
different resource allocation and accordingly different data
ready timetdrt

nj
. We still use the decreasing order of the bottom

levels. InGp, an arc could be a pipeline or a normal arc inGt.
For a pipelineplij betweenni andnj , the modified Dijkstra’s
algorithm is used and the its finish time is recorded in line 6.

For a normal arc(ni, nj) ∈ L , the modified “Relax” procedure
is used to update the arc finish timetflij

.
After enumerating all possible candidate nodes, tasknj is

scheduled on the node with earliest finish time and accord-
ingly, the earliest idle time on the computing node and all the
used wavelengths along the lightpaths connectingΓ(nj) and
its predecessors are updated.

We will refer to a general list scheduling heuristic, i.e.,
without short-circuiting pipelines in line 1, as themin-time
algorithm. The time complexity of finding the finish time of
an arc isO(|E|W log W) because we first need to sort the
earliest idle time of wavelengths on each link alongpl to find
the earliest idle time of each link and then obtain the earliest
idle time of pathpl. Accordingly, the time complexity of the
min-timealgorithm isO(M(|N|+ |L ||E|W log W)) according
to [10]. In the presence of pipelines, the time complexity of
list heuristic depends on the exact number of pipelines and the
number of nodes along each pipeline, thus a general analysis
of the time complexity is omitted here.

VI. M INIMIZE THE COST WITH DEADLINE CONSTRAINT

In this section, we focus on the problem of scheduling a job
constrained by a deadline with a different objective, whichis
to minimize the execution cost and communication cost. This
problem will be calledmin-cost problem to differentiate it
from the min-timeproblem. We aim to solve it by giving an
efficient min-costheuristic.

Algorithm 3 A list scheduling heuristic to minimize the cost
with deadline constraint

1: for each tasknj of remaining dp tasks in Q in the
decreasing order of the bottom levelsdo

2: for eachvj such thatvj can executenj and letΓ(nj) =
vj do

3: Find the finish time of tasknj if Γ(nj) = vj .
4: Find the introduced costCc · (

∑

ni
blij

dlij
|plij
|) +

Ce · enjvj
.

5: end for
6: Assign nj to vj which achieves the minimum cost in

this iteration and update the total cost.
7: Update the earliest idle time of nodes and wavelengths.
8: end for

First of all, the feasibility issue of themin-costproblem
can be solved based on amin-timesolution. If the minimum
completion timeF of a given job returned by an optimalmin-
timesolution is larger than the given deadlineD, then there is
no feasible solution. Otherwise, the optimalmin-timesolution
is also a feasible solution to themin-costproblem. Note that
themin-timealgorithm is a heuristic, which does not guarantee
the optimal solution. Thus the feasibility verification based on
it is an approximation.

Secondly, themin-timealgorithm can be modified to obtain
the minimum cost as shown in Algorithm 3. This algorithm
is similar to themin-timealgorithm except that in addition to
finish times, we also obtain and record the communication cost

7

of arcs (Cc ·
∑

ni
blij

dlij
|plij
|) and the execution cost ofnj on

vj (Ceenjvj
). Because the objective of Algorithm 3 is not to

minimize completion time but to minimize cost, it is possible
that a job can not be scheduled within its deadline even though
a feasible solution exists. In this case, the algorithm reports a
failed scheduling. As Algorithm 3 is not sufficient to solve the
min-costproblem because it does not consider the deadline,
we devise another heuristic as described next.

A. A Heuristic based on Perturbation

This heuristic is based on the idea of perturbation. In
Algorithm 4, we try to obtain the minimum cost by perturbing
the schedule of some tasks from amin-time solution. More
specifically, the output of this algorithm is a hybrid schedule,
where the firstk tasks in the listQ follow the min-time
schedule and the remaining|N| − k (which is referred to as
theperturbation degreedp hereafter) tasks are scheduled by a
min-costalgorithm, such as Algorithm 3. Such hybrid schedule
with perturbation degreedp is also called adp-schedule.

Algorithm 4 A hybrid scheduling algorithm to minimize the
cost with deadline constraint

1: Invoke themin-timealgorithm to get the minimum com-
pletion timeF , priority list Q and scheduleS.

2: if F > D then
3: then there is no feasible solution. stop.
4: else
5: Use binary search recursively to find the largest pertur-

bation degreedp such that the completion time of either
dp-schedule or either(dp + 1)-schedule is smaller than
D.

6: Use upward and downward linear search arounddp with
the radiuslog |N| and obtain the cost and the completion
time of thedp-schedule.

7: end if
8: Return the schedule with the minimum cost provided it

finishes before deadline.

Note that in line 5 and 6, given adp, we use themin-time
algorithm to schedule first|N| − dp tasks inQ and Algorithm
3 to schedule the remainingdp tasks.

Intuitively, asdp increases, adp-schedule will yield a longer
completion time but with smaller cost. Thus if ideally, the
completion time is a strictly increasing function ofdp and
the cost is a strictly decreasing function ofdp, we can just
use a binary search procedure to locate a suitable perturbation
degreedp, such that the correspondingdp-schedule finishes
within the deadlineD but the(dp +1)-schedule does not. The
cost of this schedule should be a good approximation of the
minimum cost we are looking for. However, as shown in the
simulation studies, the completion time turns out to be a very
complicated function ofdp even though in the long run, it
will generally increase asdp increases. As an approximation,
we use multiple iterations of binary search to find the largest
perturbation degreedp such that the completion time of either
dp-schedule or either(dp + 1)-schedule is smaller thanD.

Because every binary search will generate a suitabledp, we
can then search fromdp to |N| to find a larger one. Based
on the observation that the cost is generally smaller with a
largerdp, the largestdp found in line 5 of Algorithm 4 will be
treated as a good starting point for a local linear search with a
log |N| radius. Finally, the schedule with the minimum cost and
without exceeding the deadline is returned. The performance
of this heuristic is studied in Section VII.

VII. S IMULATION STUDIES

In this section, we have implemented above proposed algo-
rithms on task scheduling and lightpath establishment overa
WDM network (100 wavelengths per link) with a NSFNET
topology (16 nodes) and each edge node is connected to one
computing node. For simplicity, fixed routing is used. The
performance of these algorithms is evaluated and compared
below.

A. Minimize the Completion Time

In order to study the performance of proposed Algorithm
2, we compare it with a general list scheduling approach
described in [4] and [10], which has the same structure as
Algorithm 2 except that no pipelines are short-circuited and
the order of enumerating the predecessors of a task (see line
5 in Algorithm 2) is different. In [4], the predecessors of a
task are sorted in an increasing order of their earliest starting
times, which is also suggested in [10].

In addition to pipelined DAGs, we also compare the above
algorithms over randomly generated DAGs. To generate DAGs
randomly, three main parameter are used: the number of nodes
(|N|), the average in-degree and out-degree (assumed to be
identical) of a nodeδ and the radio of average communi-
cation time (or lightpath duration) to average execution time
rce = d/e. More specifically, after|N| is decided,δ|N| arcs
are added into the task graph one by one provided that the
task graph is connected and acyclic. The endpoints and the
direction of each arc are chosen randomly from all possible
combinations with the same probability. The execution timeof
tasks on computing nodes follows Gaussian distribution with
the averagee and the transmission time also follows Gaussian
distribution with the averaged. In both cases, we assume the
variance is twice the average.

In the following, we refer to our proposed Algorithm 2 as
the “New” one and the general list scheduling in [4] and [10]
as the “Classic” one. We compare them in term of schedule
length over the following three types of DAGs.

• Pipeline:|N| ∈ {20, 40, 60, 80, 100}, δ ≈ 1, rce = 1, 10.
We can see from Figure 3 that the proposed algorithm

generally yields a shorter schedule length than the “classic”
algorithm does (approximately 10% shorter whenrce = 10).
When the number of tasks orrce increases, the difference
between them is bigger. This shows that the advantage of the
proposed Algorithm 2 becomes more significant when the size
of the pipelined DAG is larger and the communication time
are longer.

• Parallel workflow:|N| = 15, δ ≈ 1, rce = 1 or 10.

8

(a) (b)

20 40 60 80 100
0

100

200

300

400

500

600

S
c
h
e
d
u
le
 l
e
n
g
th

Num of tasks

 Classic

 New

20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

S
c
h
e
d
u
le
 l
e
n
g
th

Num of tasks

 Classic

 New

Fig. 3. Comparison of Algorithm 2 and “classic” list scheduling in terms of
schedule length on pipelined DAGs when (a)rce = 1, (b)rce = 10

0 1 2 3

4 6 6 7

9 10 11

12 13 14

8

(a)

0

100

200

300

400

500

 = 1
ce
r = 10

ce
r

S
c
h
e
d
u
le
 l
e
n
g
th

 Classic

 New

(b)

Fig. 4. Comparison of Algorithm 2 and “classic” list scheduling in terms of
schedule length on a specific DAG. (a) A specific DAG for a parallel workflow
(b) Comparison results whenrce = 1 andrce = 10

In addition to the above pipelined DAGs, the subgraphs of
many other DAGs can be pipelines, as shown in Figure 4(a)
(adopted from [16]). In this type of DAGs, the results from
Figure 4(b) show that the proposed algorithm also reduces the
schedule length significantly.

• Random DAG:|N| ∈ {20, 40, 60, 80, 100}, δ = 2, rce =
1 or 10.

20 40 60 80 100
0

50

100

150

200

250

 Classic

 New

S
c
h
e
d
u
le
 l
e
n
g
th

Num of tasks

20 40 60 80 100
0

200

400

600

800

1000

1200

1400

 Classic

 New

S
c
h
e
d
u
le
 l
e
n
g
th

Num of tasks
(a) (b)

Fig. 5. Comparison of Algorithm 2 and “classic” list scheduling in terms of
schedule length on random DAGs when (a)rce = 1, (b)rce = 10

Finally, we investigate the performance of Algorithm 2
on random DAGs. A randomly generated DAG can have
pipelines as subgraphs. Thus in this general case, the proposed
Algorithm 2 still have advantages but not as significant as
in previous two cases (see Figure 5). Whenδ increases, the
probability that a randomly generated DAG has pipelines as
subgraphs will become very small and thus Algorithm 2 will
behaves the same as the “classic” list scheduling.

B. Minimize the Cost with Deadline Constraint

In the above discussions, the objective is to minimize the
completion time of one job without considering other jobs
or other types of traffic. However, in the presence of other
traffic, the execution of one job could be significantly delayed
if the network is congested and most of the wavelengths are
already reserved for other traffic. This is shown in Figure 6,
where we assume that only a limited number of wavelengths
are available for a job or in other words, the earliest idle time
of other wavelengths are extremely large. We can see that
schedule length (or job completion time) can be extremely
long with a smallerW . This is because when many requests
compete for a wavelength, they have to be scheduled one by
one, which delays the total completion time.

4 5 6 7 8

200

250

300

350

400

450

S
c
h
e
d
u
le
 l
e
n
g
th

W

Fig. 6. The relation between schedule length and the number of available
wavelengths

To effectively deal with such situations, we use Algorithm
3 and Algorithm 4 to minimize the resource usage/cost with
deadline constraint. As mentioned before, the schedule length
obtained from Algorithm 2 is not a strictly increasing function
of perturbation degreedp as shown in Figure 7(a). However,
based on the observation that the schedule length roughly
increases withdp and only a fewdp-schedules achieve the
same completion time, we can use binary search multiple times
to find a suitabledp as described in Algorithm 4. We can also
see from Figure 7(b) that the cost roughly decreases withdp.

0 20 40 60 80 100

240

260

280

300

320

340

S
c
h
e
d
u
le
 l
e
n
g
th

Perturbation degree

0 20 40 60 80 100
950

1000

1050

1100

1150

1200

C
o
s
t

Perturbation degree

(a) (b)

Fig. 7. The relation between (a) schedule length, (b)cost and the perturbation
degree

Figure 8 shows the schedule length and the cost with dif-
ferent deadlines assuming a random DAG (|N| = 100, δ = 3,

9

rce = 1). In addition, we define the ratio of communication

cost to execution cost to beCce = Ccbd|p|
Cee

, where |p| is
the average number of links along a lightpath. In this study,
we let Cce = 1 and then decideCc and Ce accordingly.
As we can see from Figure 8(b), the cost decreases when a

240 260 280 300 320 340

240

260

280

300

320

340

S
c
h
e
d
u
le
 l
e
n
g
th

Deadline

(a)

240 260 280 300 320 340

950

1000

1050

1100

1150

1200

 C
o
s
t

Deadline

(b)

Fig. 8. The (a) schedule length and (b)cost obtained from Algorithm 4 with
different deadlines

larger deadline is given and the actual schedule lengths are
all below the deadline (the dash line in Figure 8(a)). The
minimum completion time is around240 time unit and thus
no feasible solutions exist if the deadline is lower than this
value. The minimum cost corresponds to the longest schedule
length in this figure since in each iteration of scheduling tasks,
we minimize the introduced cost instead of the finish time as
long as the deadline is met. Since this is the first time such a
problem is studied, there is no existing methods to compare
our approach with. Nonetheless, we believe that these results
provide useful insights and lay down basis for further studies.

VIII. C ONCLUSION

We have defined a joint optimization problem called task
scheduling and lightpath establishment (TSLE) in the con-
text of providing efficient support for emerging distributed
computing applications in a future wavelength routed WDM
network using the concept of Application Specific and Agile
Private (ASAP) networking. We have formulated the TSLE
problem using ILP and proposed Algorithm 2 to minimize

the completion time of a job. Our simulation results have
shown that it performs better than a traditional list scheduling
algorithm. In addition, the proposed Algorithm 4 is the first
attempt to minimize the cost with a deadline constraint in
optical grids.

This work opens up many research issues and we are
currently investigating the potential benefits of using optical
burst switching (OBS) or polymorphous OBS (POBS) [17]
to form ASAP networks, over optical circuit switching. In
addition, ongoing and future works will also investigate 1)the
performance of other types of approaches, such as duplicated
heuristics [18] and clustering heuristic [19] applied in optical
grids and 2) new scheduling algorithms under various QoS
constraints.

REFERENCES

[1] D. Simeonidou, et al.,Dynamic optical-network architectures and tech-
nologies for existing and emerging grid services, Journal of Lightwave
Technology, 23(10), pp. 3347–3357, 2005.

[2] M. De Leenheer, et al.,A view on enabling-consumer oriented grids
through optical burst switching, IEEE Communications Magazine, 44(3),
pp. 124–131, 2006.

[3] G. Zervas, et al.,A Fully Functional Application-aware Optical Burst
Switched Network Test-bed, OFC/NFOEC 2007, OWC2.

[4] Y. Wang, et al.,Joint scheduling for optical grid applicaitons, Journal of
Optical Networking, 6(3), pp. 304-318, 2007.

[5] Hui Zang, Jason P. Jue, and Biswanath Mukherjee,A review of routing and
wavelength assignment approaches for wavelength-routed optical WDM
networks, SPIE Optical Networks Magazine, vol. 1, no. 1, Jan. 2000.

[6] Rudra Dutta and George Rouskas,Survey of Virtual Topology Design
Algorithms for Wavelength Routed Networks, Optical Networks (SPIE)
Vol 1, No 1, pp. 73-89, January 2000.

[7] Dhritiman Banerjee and Biswanath Mukherjee,Wavelenth-Routed Optical
Networks: Linear Formulation, Resource Budgeting Tradeoffs, and a
Reconfiguration Study, IEEE/ACM Transactions on Networking, 8(5), pp.
598–607, 2000.

[8] J. Kuri, et al.,Routing and wavelength assignment of scheduled lightpath
demands, IEEE JSAC, 21, 8, 2003, pp. 1231-1240.

[9] B. Wang, et al.,On service provisioning under a scheduled traffic model
in reconfigurable WDM optical networks, Broadband Networks, 13-22,
2005

[10] O. Sinnen and L.A. Sousa,Communication contention in task schedul-
ing, IEEE Transactions on Parallel and Distributed Systems, 16(6), pp.
503–515, 2005.

[11] S.H. Bokhari,A Shortest Tree Algorithm for Optimal Assignment Across
Space and Time in a Distributed Processor System, SE-7(6), pp. 583–589,
1981.

[12] H. Thomas, et al.,Introduction to Algorithms, The MIT Press, 2001.
[13] J.D. Ullman,NP-Complete Scheduling Problems, J. Computing System

Science, vol. 10, pp. 384-393, 1975.
[14] T.L. Adam, K.M. Chandy, and J.R. Dickson,A Comparison of List

Schedules for Parallel Processing Systems, Comm. ACM, vol. 17, pp.
685-689, 1974.

[15] O. Sinnen and L. Sousa,List Scheduling: Extension for Contention
Awareness and Evaluation of Node Priorities for Heterogeneous Cluster
Architectures, Parallel Computing, vol. 30, no. 1, pp. 81-101, Jan. 2004.

[16] Y. Zhao, et al.,Grid Middleware Services for Virtual Data Discovery,
Composition, and Integration, In 2nd Workshop on Middleware for Grid
Computing, October 18, 2004, Toronto, Canada.

[17] X. Liu, et al., Approaches to support various types of traffic in WDM
networks, OFC/NFOEC 2007, OThQ4.

[18] S. Darbha and D.P. Agrawal,Optimal Scheduling Algorithm for Dis-
tributed Memory Machines, in IEEE Trans. on Parallel and Distributed
Systems, vol. 9, no. 1, pp. 87-95, January 1998.

[19] A. Geras,A Comparison of Clustering Heuristics for Scheduling Di-
rected Acyclic Graphs on Multiprocessors, in J. of Parallel and Distributed
Computing, Vol. 16, No.4, pp.276-291, 1992.

