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Abstract—Data-intensive Grid applications require huge data computing. In task scheduling, a job is usually represented
transferring between multiple geographically separated omput-  as a directed acyclic graph (DAG), where a node represents

ing nodes where computing tasks are executed. For a future 5 a5k and an arc represents the communication between two
WDM network to efficiently support this type of emerging tasks

applications, traditional approaches to establishing liptpaths . .
between given source destination pairs are not sufficient rause N @ WDM network, a submitted job request can be blocked

a computing task may be executed on any one of several(dropped or delayed) not only due to the unavailability of
computing nodes having the necessary resources. Therefore the computing resources at the nodes but also due to the
lightpath establishment has to be considered jointly with ask lack of network (wavelength) resources. This is becaush eac

scheduling to achieve best performance. In this paper, we sty . - . .
the optimization problems of jointly scheduling both computing  19htpath will exclusively occupy a wavelength along itsite.

resources and network resources. We first present the formation ~ Accordingly, we will have to consider potential contentiom
of two optimization problems with the objectives being the the wavelength resources with task scheduling. We refer to

minimization of the completion time of a job and minimization the problem of efficiently allocating network resources for

of the resource usage/cost to satisfy a job with a deadline. Mén  4at5 transferring among tasks as fightpath establishment
the objective is to minimize the completion time, we devisera problem

optimal algorithm for a special type of applications. Furthermore, L . . .
we propose efficient heuristics to deal with general applidions The objective of this work is to design and evaluate ap-
with either optimization objective and demonstrate their gopod proaches to the joint optimization of the task schedulind an

performances in simulation. lightpath establishment (TSLE) problem. For each accepted
job request, the set of nodes chosen to execute the tasks, and
the lightpaths established among them form what we call an
We envision that a future WDM network will provide Application Specific and Agile Private (or ASAP) network.
efficient support for many distributed computing applioa This is the first work that considered the joint optimization
that require both execution by multiple geographicallyassepof allocating both network and computing resources. One
rated computing nodes and data transferring between thesh.the major contributions of this work is the formulation
Each instance of these distributed applications, calleppla’* of two optimization problems with the objectives being the
hereafter, may be logically partitioned into multiple taflor minimization of the completion time of job and minimization
execution on different nodes, and some tasks may needofothe resource usage/cost to satisfy a job with a deadline.
communicate with other tasks (e.g., exchange data, intirmeAnother major contribution is to devise an optimal algarith
ate results and/or other information). when the objective is to minimize the completion time for a
In this work, we will consider the problem of efficientlyspecial type of DAGs, and the final contribution is to propose
scheduling such jobs over a WDM network using wavelengtfficient heuristics to deal with general DAGs with either
routing. The edge nodes in the WDM network provide direcptimization objective.
access to the computing nodes with various computing re-The rest of the paper is organized as follows. Section Il
sources. We assume that a given task may be executed ondisgusses some related works. Section Il describes thermaj
one of several candidate nodes having the necessary cargputhallenges of solving the TSLE problem. In Section IV, we
resources required by this task, with possibly differerdaex present the formal formulation of the TSLE problem. In the
tion times. We refer to the problem of deciding the spatial arfollowing two sections, we present novel algorithms to solv
temporal assignment of the tasks to the computing node®asttie TSLE problem with different objectives. The simulation
task schedulingroblem, which has been an essential aspect fsults are presented in Section VII and Section VIII codeki
parallel and distributed systems or more recent works ah gthe paper.

I. INTRODUCTION



[l. RELATED WORKS scheduled lightpath demands [8], [9].

Several optical network architectures, control softward a lIl. CHALLENGES
technologies have been proposed in [1]-[3] to efficiently The TSLE problem has not been addressed previously and
support grid services. In general, these architecturesbeanit raises new challenges in both optical networking and grid
based on either optical circuit switching (OCS) (via wavezomputing research. Two major challenges are as follows.
length routing) or optical burst switching (OBS), depemdin . L
on the bandwidth or delay requirement of Grid applicationé' How to measure or estimate communication cost?
In [1], an OCS based approach (or Grid-over-OCS) wasIn previous works on task assignment in parallel and
proposed for applications requiring huge bandwidth for @stributed systems or more recent works on job scheduling
long period. In this approach, the Grid and optical-layder grid computing applications, the underlying physicat-n
resources can be managed either separately in an ove@yk's connectivity is often taken for granted, and at best
manner or jointly by extending the optical control plane fois assigned a constant “communication cost” between two
Grid-resource provisioning. Another type of architectwoe Nodes. However, in a WDM network supporting dynamic
support Grid services is based on OBS (or Grid-over-OBS9ps, link usage changes dynamically, and it is possiblé tha
which is suitable for applications having small job size} [20ne cannot establish a lightpath between two communicating
[3]. The approaches used in this study are based on OCS wheeges at the time when it is needed. Besides, it is difficult
we establish lightpaths between computing nodes to form #hattach a price tag (the communication cost) to the use
ASAP network. of networking resources in a way that is consistent with or

A recent work [4] considered the problem of jointlycomparable to the costs of using other computing resources.
scheduling computing and network resources for one DA®) contrast to the previous research, this work takes a €ross
The authors in [4] formulated the problem assuming that/@yer joint optimization approach that aims to address the
(SONET/SDH) connection of sub-wavelength granularity cdfndamental interdependency between the computing resour
be used to satisfy the communication requirements of a p@llocation and networking resource allocation strategiisin
of tasks and proposed a heuristic approach to minimize tHte context of supporting distributed computing appliasi
completion time of the job. over WDM networks.

In this work, we consider a similar but different problenp_ How to optimize the allocation of computing and network
where 1) lightpaths are required for communicating nods; gsources jointly?
multiple jobs (some of them may have deadlines) may arrive
one after another and accordingly, the objective is to mizém
the resource usage, subject to the job’s deadline conisthain

Unlike the classic model in a parallel and distributed syste
where all processors are fully connected and all communi-
. e L ._cations can be performed concurrently, the edge nodes in a
addition, when the objective is to minimize the completio P y, the edg

DM network are connected only when lightpaths can be

time of a job, we obtain an optimal solution for a pipeline . .
DAG, and based on this, we also devise an efficient algorith(?r'%tablISheOI between them and two lightpaths cannot use the

for a general DAG. As far as we know, this is the first worlfame wave!ength on a_I|nk_ at the same t|me. '_I'h_us an optimal
. schedule without considering the underlying limited netwo
that addresses these optimization problems.

resources can perform badly or worse, cannot be executed due

In_ retrospect, this work 6.“50 differs frqm previous WOFkS Ot the lack of wavelengths in a WDM network. This calls for a
traditional lightpath establishment (static or dynamid)ene joint allocation of computing and network resources. Hogrev

the source and destination pairs are given [5]. Because h ffs problem is hard to solve since a part of TSLE, the task
the source and destination nodes depend on how tasks &fieduling problem is NP-hard in general [13] '

assigned, so is the traffic matrix when multiple nodes (or

multiple tasks) are involved. Moreover, the problem of forgn IV. M ODELS AND FORMULATIONS

an ASAP network for each job differs from virtual topology |n this section, we first introduce the network model that
(VT) design, where a common VT is designed to optimally,cludes an optical network with attached computing nodes
support traffic aggregated from several different applices, and the task graph to represent a job. We then formulate the

and thus only one (or very few) VT is needed at a timgsLE problem mathematically using Integer Linear Program-
[6]. Only when the change of the traffic matrix exceeds ging (ILP).

threshold is reconfiguration process triggered to form a new

virtual topology [7]. However, for the envisioned applicats, A- Network model

different ASAP networks need to be formed for different The optical network with attached computing resource
jobs. Accordingly, not only the number of concurrent ASARodes can be formulated as an edge-weighted undirected grap
networks will be much larger than that of VT, ASAP networkss,, = (V, E, r, I, s). The first four elements characterize
also come and go as jobs are admitted and finished, which izes static properties of7,,. More specifically, the vertex

a much faster rate than that of VT reconfiguration. In addjtioset V and the edge sdt correspond to the network nodes
when jobs have deadlines, the TSLE problem is also differemtd the links interconnecting the nodes respectively. Is th
from the problems related to scheduled lightpath and glidistudy, we assume only one computing node is attached to



one edge node in the WDM network. Thus we will use thef the task graph to a computing node and each arc of the
term “node” to loosely refer to either an edge node in thiask graph to a lightpath in the WDM network 2) decide the
WDM network or the attached computing node hereafter. EaeRact operation time of this assignment as shown in Figure 1.
nodev € V provides one ofR categories of resources, suchie refer to the assignment and the time of performing it as a
as computation, storage and visualization andr]edenote schedule.
the category of resources the nodeprovides. There are

M;,i=1,2,..., R nodes in category. Finally, |, represents 4.
the physical length or cost of the edge E. In addition to the

above four, we have one more elemgnivhich represents the m -

dynamic status (or the “snapshot”) of the resource utiliwat

More specifically,s = (w, c), wherew records the earliest
idle time of every wavelength on every link awdstores the
earliest idle time of every resource node

B. Task Graph

A task graphis commonly used to represent the commu-
nication requirements and precedences between tasks bf a jo
[10]. A task graph can be formulated as a directed acyclic
graph (DAG)G; = (N, L, r, e, b, d). Each noden € N
represents a task ang, denotes the type of the resourcesFig- 1. Andillustration of mapping a task graph onto an optivatwork
required by taskn. A task n with typer, can be executed
on any one of My resource nodes having the necessary Once an optimal or near-optimal schedule is decided for
computing resources required by this task. To illustra¢ettie a job, computing resources will be reserved on the assigned
heterogeneity of computing nodesNi x |V| matrix e is given computing nodes according to the schedule. In addition, an
as a part of the description of the task graph. More spedificalASAP network is formed by establishing | lightpaths dy-

e,, represents the estimated execution time of task N namically using advanced reservation and the exact setip an
when it is assigned to node € V (and if taskn cannot be release time of these lightpaths are decided by the schedule
executed on node, then the corresponding execution time will The following notations will be used in the mathematical
be set to infinity). An ard,;; = (n;,n;) € L indicates there formulas which describe the TSLE problem.

will be data transferring from node; to noden; aftern; has o I: the assignment function frol to V. T'(n) = v
been executed and befong could be executed. An estimated indicates that the schedule assigns tasko be executed
average bandwidth (in terms of the number of wavelengths, on nodev.

i.e., no sub-wavelength request is considered) and duarafio . ¢5 ¢/ : the starting time and finish time of task

the data transferring (or transmission delay) associatiéd w scheduled on node = I'(n). Whenw is not specific, we

l;; are given byb;,; andd,,; respectively. just use the shorter terny,, ¢t/ to represent the starting
time and finish time of task:. Obviously, we have
th =15, + eny-

In addition to the above models, we assume tasks of, ¢ ¢/ :the starting time and finish time of the commu-
different jobs can be queued at a node. Similarly, every edge ...~
node in the optical network can store any amount of data
until they are transferred to a remote node. In other words, w
assume both edge node and computing node have unlimifgdConstraints
buffer. We refer to this assumption as the queueing model
in contrast to the dropping model, where a task (and tlg
corresponding job) requiring the resources at a node has
be dropped if the node is busy running another task.

For the purpose of simplicity, we only empleynd technique
[10], which ‘means that at time, the_ scheduler can only T(n)=v = 5, >¢Cp, neN 1)
schedule a job on the resources which are fre@ ino]. In

C. Problem Statement

nication associated with;. Obviously, we havet-l’ij =
tlsij + dli]..

The following two constraints (computing resource con-
raint and precedence constraint) are adopted from [10] fo
task scheduling.

« computing resource constraint:

other words, idle time slots between reserved time slotk wil tf, <t5 , or

not be used. Based on this assumption, we need to maintain (ni) =T(nj) =v = { th < tfjv »mi,n €N

two sets of time-stamps<, the earliest idle time on node ! ' (2)
veV andtf,fvj, the earliest idle time on lightpath between Constraint (1) ensures a task can only be scheduled on
andv;. a node after its initial earliest idle time. Constraint (2)

Based on the above models and assumptions, for a given ensures that if any two tasks are scheduled on a node,
job we need to 1) decide an optimal assignment of each node their execution time intervals must be disjoint.



« precedence constraint: E. Objectives

tfzj > max t'zf.» ni,nj € N ©) Based the given models and assumptions, possible objec-
el Y tives could be,
tzsw- > t£ i €N, I €L (4) « minimize the completion time of a given job (without
deadline constraint):
where [;; = (n;,n;) represents an arc from; to
n;. Constraint (3) ensures a task must wait for all the minimize maxt/ (9)
required data from its predecessors to start execution. The neN

righthand side formula is defined to be the data ready tirfédve completion time is also called schedule length or
tnjrt =max; | tlf I Constraint (4) reflects the fact thatmakespan. This objective is commonly adopted in the context
the data transferring from; must start after the executionof parallel systems and grid computing. Another objectwe i
of n; has finished. to minimize execution and communication cost when there
As mentioned before, the network resources are limitég @ deadline for the given job. This objective is important
and a job can be blocked due to the lack of wavelengttfsom the view of either economics or resource utilization.
Thus in addition to the classic task scheduling constramts The user sometimes wants to minimize the cost of leasing

feasible schedule is subject to the following constraialsted an ASAP network to execute a job as long as it's finished on

to wavelength resources. time. In addition, service provider prefers to spend aselitt
« network resource constraint: resources as possible on executing a job such that the retwor
For any arcl € L scheduled on the lightpath and for Can accommodate more jobs or other types of traffic. More
any wavelength: used on linke alongp, we have specifically, the second objective is:
t5>w ) « minimize the cost (with deadline constraint):
= ek
where ), represents théth wavelength on linke and minimize C. ) bidilpi| +Ce ) € (10)
recall thatw,, denotes the initial earliest idle time of tel neN
wavelengthey. where |p;| is the physical length of the lightpath on which

For any two arcé, !’ € L scheduled on the lightpathsp’ | s scheduled. In this study, we assume the cost of leasing
respectively, ifp andp’ share an identical wavelength org |ightpath is a linear function of bandwidth, durationd,
a common physical link, then and path length. Similarly the cost of leasing a computing

tzf <t5 or tzf/ <t (6) node is proportional to _the execution tir_n(é’c_ and C_’e are

_ o two constants representing the communication unit cost and

These two constraints are similar in form to the comexecution unit cost respectively.
puting resource constraint but more complicated because
an arc is scheduled on a lightpath, which can use many V. MINIMIZE THE COMPLETION TIME

different wavelengths on many _Iinks whereas a task is | this section, we focus on the TSLE problem when the
only scheduled on one computing node. Note that hgective is to minimize the completion time. Hereafter, we
contention on wavelength resources will delay the dafgfer to the TSLE problem of minimizing the completion
ready time and thus influence task scheduling. time as themin-timeproblem. Accordingly, we havein-time
Since we only have a limited number of wavelengthsolutions andnin-timealgorithms. First, an algorithm which
available {V per link), the following capacity constraint mustyie|ds optimal solution is presented for a special case revhe
hold, the task graph is in the form of a pipeline. Second, we employ
o capacity constraint: this algorithm to improve an existing heuristic approach to
Recall that a subset of ards’ C L corresponds to a solve the general case.
set of lightpathsP after assignment. If the paths i
cause contention in both spatial domain and tempordl Optimal Solution for a Pipelined DAG
domain, i.e., they share a physical link and their busy If the task graph is a in the form of a pipeline, i.e.,
times (#;, ,#{ ),l;; € L' share a common time interval,L = {(n;,n;11)|1 < i < |N| — 1}, an algorithm extended

then we have from [11] can be used to obtain minimum completion time
Z by <W (7) in polynomial time. The authors in [11] considered the task
1el’ assignment problem (without scheduling) in the contextaof p

Finally, in some situation, we may require the job to pallel and distributed computing and suggested a transfiooma
executed within certain time, from a pipelined task graph to an extended gr&dgh More
. (optional)deadline constraint: specifically, we define the following transformations:
o Anoden € N is mapped taMr  nodes inG,, each of
maxt! < D (8) which corresponds to an assignmentafo a computing
neN nodev € V.



e An arcl;; = (n;,n;) € L is mapped toMr,,. X Mrnj If n; andn; are scheduled on the same node, then there is
arcs inG., each of which corresponds to one of possibleo transmission delay. In this case, taskcan be executed
connections fronT’,,, to I, . immediately after task; is finished. On the other hand, if task

o A dummy source node and a dummy destination noden;,n; are scheduled on different nodes, the data can only be
t are added inG.. s is connected to all the nodestransmitted after task; is finished and the lightpath between
transformed from source node; and all the nodes v; andwv; has sufficient bandwidth. After all the data arrive
transformed from sink node,;, are connected to. atv;, only when it's free can node; start to executer;. If

the new path through’ is shorter than the recorded one, the
value of shortest distanag, is updated.
° The initial value of earliest idle time®’ of a nodev € V
is given as a part of the description of the optical network,
0 @ e i.e., initially ¢ = Cy. Its value is updateq i_n each iteratipn
of “Relax” operation as shown above. Similarly, the eatlies
—_ »“{ idle time t:jjvj of a path betweem; andv; can be decided
@ e by simply searching the maximum earliest time over all links
along the path when sufficient bandwidihis available.
Algorithm 1 is optimal only if fix routing is assumed, i.e.,

@ the shortest path is used between any two nod&s[ii. This
is because a path fromto ¢ in G. corresponds to a possible
Fig. 2. An illustration of transforming a two-node task drap assignment and vice versa. Thus the shortest path returned

from Dijkstra’s algorithm corresponds to the optimal sahled

Figure 2 shows an example of the transformation from l&alternate routing is used, one can enumerate all the plessi
simple two-node graph, wherer, = 3 andMy, = 2. The paths betweem; andv; and select the one with the earliest
basic idea is that by assigning execution times and lightpatlle time in line 5. If adaptive routing is allowed (with much
durations as weights to nodes and arcs respectively, one bigher complexity of course), an algorithm proposed in [4]
use Dijkstra’s algorithm to find a shortest path frento ¢, can be used to find a path with earliest idle time. Algorithm
which corresponds to an optimal assignment with minimud does not guarantee optimality if either alternate routing
completion time. However, in the context of schedulings thiadaptive routing is used but it’s still effective. In thisges, we
algorithm cannot be used directly because the availatblity assume the number of nodes in each category of resources are
both computing and networking resource have to be considethe same, which is denoted by. Thus there are) (M |N|)
to generate a feasible schedule. Thus we need to modify Hses ancO(H2|L|) arcs inG,, and the time complexity of

“Relax” procedure in a standard Dijkstra’s algorithm [12] aypig algorithm isO(M|N|log (|N|) +M2|L|) according to
shown below. We also refer to the Dijkstra’s algorithm whiclmz]_

uses the following “Relax” procedure as Algorithm 1.

B. A Heuristic for a General DAG
Algorithm 1 Relax/’, v') The above Algorithm 1 is optimal only when the task
graph is a pipeline, i.e., tasks are executed sequentially a
thus no contention will occur when allocating computing
resources and network resources. For a general DAG, where

1. v/ ,v" € G, correspond ton;,n; € N andv;,v; € V
respectively.

2: if v; =v; then . . -

3 et Lo the contention from parallel executions happens commanly i

4: elsg “ v both computing nodes and underlying networks, Algorithm 1
5 tij - max(max(t;’:,,tgﬁvj) n dlwatii.) +enu, can not be employed dlrectly to solve the_T.SL.E. problem.

6 end if The general scheduling problem of minimizing schedule
7 if +/, > ¢ then length is NP-hard [13]. The best known solution of this

: tlf}‘f ;’gi scheduling problem assuming a general DAG in the context
2: englif(_ Y of parallel and distributed computing is a heuristic, namel

list scheduling [14], where the tasks are ordered according
to some priority scheme and then scheduled one by one to
In this excerpt of the modified Dijkstra’s algorithm, letachieve the objective greedily. The downside of list scliadu
n;,n; € N be the tasks and;,v; € V be the computing is obviously that it doesn’t guarantee optimal solutionfdat,
nodes corresponding @, v’ € G. respectivelyw’ is a node the performance of list scheduling on a pipelined DAG would
in G. whose shortest distance (which is defined to be the finise much worse than that of Algorithm 1 as shown in the
time of n; if scheduled orv;) from sources has been found simulation studies.
and recorded and’ is adjacent ta:’. This procedure is used The above discussions thus motivate us to embed Algorithm
to find out if the shortest distance of can be shortened by 1 into a list heuristic approach. Because many practicil tas
going throughu'. graphs have subgraphs in the form of a pipeline, we could take




advantage of Algorithm 1 to achieve a better performance thior a normal ar¢n;, n;) € L, the modified “Relax” procedure
a common list scheduling. is used to update the arc finish timﬁ;.
After enumerating all possible candidate nodes, tasks
Algorithm 2 A list scheduling heuristic to minimize thescheduled on the node with earliest finish time and accord-
completion time ingly, the earliest idle time on the computing node and &l th
1: Short-circuit all pipelines and obtain a new task grégh used wavelengths along the lightpaths conneclifg,) and
2: Compute bottom levels and sort tasks N into a listQ. its predecessors are updated.
3: for eachn; € Q in the decreasing order of the bottom We will refer to a general list scheduling heuristic, i.e.,

levelsdo without short-circuiting pipelines in line 1, as thmin-time
4:  for eachv; such thab; can execute; and letl’(n;) = algorithm. The time complexity of finding the finish time of
v; do an arc isO(|E|W log W) because we first need to sort the
5: for eachn; such that(n;,n;) € G, in the decreasing earliest idle time of wavelengths on each link algngo find
order of the bottom leveldo the earliest idle time of each link and then obtain the estrlie
6: Find the finish times of all the pipelines or normaldle time of pathp;. Accordingly, the time complexity of the
arcs betweem,; andn; min-timealgorithm isO(M (|N| + |L||E|W log W')) according
7 end for to [10]. In the presence of pipelines, the time complexity of
8: tgjrt cmaxy el tl{j list heuristic depends on the exact number of pipelines had t
9 th .« max(te tdrt) 4 €n;v; number of nodes along each pipeline, thus a general analysis
100 end for o of the time complexity is omitted here.
1 T(ny) — argmin, ¢}, VI. MINIMIZE THE COST WITH DEADLINE CONSTRAINT

12 tf «— min,, t] . . . .
13: t?{ _ t;j v In this section, we focus on the problem of scheduling a job
: I'(n; n;

(1 i . onstrained by a deadline with a different objective, which
14:  update the earliest idle time of all the used wavelengths' .~ . . R .
) t0 minimize the execution cost and communication cost. This
along the paths betwedr(n,) and its predecessors. . . : . :
problem will be calledmin-costproblem to differentiate it
15: end for N . . o
from the min-timeproblem. We aim to solve it by giving an

. . : _ ., efficient min-costheuristic.
Algorithm 2 is a formal implementation of the above idea.

First, all the pipelines iit7; are recognized and short-circuitedajgorithm 3 A list scheduling heuristic to minimize the cost
The new graplt, formed by this operation is identical t@;  ith deadline constraint

except that every pipeline i¥; is now an arc inG,,. This can 1 for each taskn; of remainingd, tasks inQ in the
be done by merging each node which has one parent and onedecreasing order of the bottom levels

child with its incident nodes iteratively. Second, as shawn 5.  for eachv; such thaw; can execute,; and letl'(n;) =

[15], the priority scheme based on thettom levelachieves v; do
the best performance among other priority schemes. Theg Find the finish time of task; if I'(n;) = v;.
bottom level, which is recursively defined below, represéime 4. Find the introduced cost. - (3", by, du, |pi,]) +
length (in terms of the sum of execution and communication C. - enu.. '
time) of the longest path leaving the node, s endfor
bl(n;) =%n, + max  (bl(n;)+dy,) 11 © A;si_gn n; 10 v which achieves the minimum cost in
Lij=(ni,n;)el ! this iteration and update the total cost.

7. Update the earliest idle time of nodes and wavelengths.

wheree,,, denote the average execution time of task :
g end for

The rationale behind this scheme is that by allowing the tas
with higher bottom level to be executed earlier, the longhpat
behind it can be finished earlier. We use the bottom levelas th First of all, the feasibility issue of thenin-costproblem
priority scheme in line 2. Note that an arc@h, corresponds to can be solved based onnain-time solution. If the minimum
a pipelinepl in G, thus its cost is computed @niepz €,, + completion timeF of a given job returned by an optimatlin-
Zzijepz d;;;. Next, we schedule tasks one by one according tine solution is larger than the given deadlifg then there is
the priority scheme. no feasible solution. Otherwise, the optinmain-timesolution
Because the availability of network resources has to fgalso a feasible solution to thin-costproblem. Note that
considered, the scheduling order of arcs betwegrand its themin-timealgorithm is a heuristic, which does not guarantee
predecessors is also important since different order cald yithe optimal solution. Thus the feasibility verification bdson
different resource allocation and accordingly differemttad it is an approximation.
ready timetgjrt. We still use the decreasing order of the bottom Secondly, thanin-timealgorithm can be modified to obtain
levels. InG),, an arc could be a pipeline or a normal arécdp  the minimum cost as shown in Algorithm 3. This algorithm
For a pipelinepl;; betweenn,; andn;, the modified Dijkstra’s is similar to themin-timealgorithm except that in addition to
algorithm is used and the its finish time is recorded in line @inish times, we also obtain and record the communicatioh cos




of arcs CC~ZM b;,;di.; |pi,,;]) and the execution cost af; on  Because every binary search will generate a suitapleve

vj (Ce€n;v;). Because the objective of Algorithm 3 is not tccan then search fromi, to |N| to find a larger one. Based
minimize completion time but to minimize cost, it is possiblon the observation that the cost is generally smaller with a
that a job can not be scheduled within its deadline even thou@rgerd,, the largestl, found in line 5 of Algorithm 4 will be

a feasible solution exists. In this case, the algorithm rsp@ treated as a good starting point for a local linear search ait
failed scheduling. As Algorithm 3 is not sufficient to soNet log |N| radius. Finally, the schedule with the minimum cost and
min-costproblem because it does not consider the deadlingithout exceeding the deadline is returned. The performanc
we devise another heuristic as described next. of this heuristic is studied in Section VII.

A. A Heuristic based on Perturbation VII. SIMULATION STUDIES

This heuristic is based on the idea of perturbation. In In this section, we have implemented above proposed algo-
Algorithm 4, we try to obtain the minimum cost by perturbingithms on task scheduling and lightpath establishment aver
the schedule of some tasks fromnan-time solution. More WDM network (100 wavelengths per link) with a NSFNET
specifically, the output of this algorithm is a hybrid schiegu topology (16 nodes) and each edge node is connected to one
where the firstk tasks in the listQ follow the min-time computing node. For simplicity, fixed routing is used. The
schedule and the remainiriyl| — & (which is referred to as performance of these algorithms is evaluated and compared
the perturbation degreel,, hereafter) tasks are scheduled by helow.
min-costalgorithm, such as Algorithm 3. Such hybrid schedul

with perturbation degreé, is also called ai,-schedule. A. Minimize the Completion Time

In order to study the performance of proposed Algorithm

Algorithm 4 A hybrid scheduling algorithm to minimize the2: W€ compare it with a general list scheduling approach
cost with deadline constraint described in [4] and [10], which has the same structure as

1: Invoke themin-timealgorithm to get the minimum com- Algorithm 2 except thz_ﬂ no pipelines are short-circuited an
pletion time F, priority list Q and schedulss. the order of enumerating the predecessors of a task (see line
- if F> D then 5 in Algorithm 2) is different. In [4], the predecessors of a
then there is no feasible solution. stop. task are sorted in an increasing order of their earliestistar
else times, which is also suggested in [10].

Use binary search recursively to find the largest pertur- N @ddition to pipelined DAGs, we also compare the above

bation degree,, such that the completion time of either@/gorithms over randomly generated DAGs. To generate DAGs
d,-schedule or eithefd, + 1)-schedule is smaller than randomly, three main parameter are used: the number of nodes

D (IN]), the average in-degree and out-degree (assumed to be

6: Uée upward and downward linear search arouinaith identical) of a nodes and the radio of average communi-
the radiugog [N| and obtain the cost and the completioiation time (or lightpath duration) to average executioneti
time of thed,-schedule. ree = d/e. More specifically, aftefN| is decided,§|N| arcs

7 end if are added into the task graph one by one provided that the
8: Return the schedule with the minimum cost provided [&Sk graph is connected and acyclic. The endpoints and the
finishes before deadline. direction of each arc are chosen randomly from all possible

combinations with the same probability. The execution tohe

tasks on computing nodes follows Gaussian distributiof wit
the average and the transmission time also follows Gaussian
distribution with the averagé. In both cases, we assume the

a RN

Note that in line 5 and 6, given &,, we use thamin-time
algorithm to schedule firgN| — d,, tasks inQ and Algorithm
3 to schedule the remaining, tasks.

Intuitively, asd,, increases, d,-schedule will yield a longer valrla?;:e f'S”tW'(_:e the avefrag;e. d Algorithm 2
completion time but with smaller cost. Thus if ideally, the n e loflowing, we refer 1o our proposed Agonthm = as

completion time is a strictly increasing function df, and thethNe“vZHone_ ?nd thev\g;jeneral list St(;]hedl'!“n? n [4]f antrj] [50}
the cost is a strictly decreasing function &f, we can just as the "Llassic’ one. Vve compare thém in term ot schedule

use a hinary search procedure to locate a suitable peritmnba{ength_ ovgr the following three types Of_ DAGs.

degreed,, such that the correspondingj-schedule finishes * PiPeline:|N| € {20,40,60,80,100},0 ~ 1,7 = 1,10.
within the deadlineD but the(d,, + 1)-schedule does not. The We can see from Figure 3 that the proposed algorithm
cost of this schedule should be a good approximation of tggnerally yields a shorter schedule length than the “@assi
minimum cost we are looking for. However, as shown in thelgorithm does (approximately ¥0shorter wherr.. = 10).
simulation studies, the completion time turns out to be g ve¥Vhen the number of tasks or.. increases, the difference
complicated function ofd, even though in the long run, it between them is bigger. This shows that the advantage of the
will generally increase a8, increases. As an approximationproposed Algorithm 2 becomes more significant when the size
we use multiple iterations of binary search to find the large@f the pipelined DAG is larger and the communication time
perturbation degreé, such that the completion time of eitherare longer.

d,-schedule or eithefd, + 1)-schedule is smaller tha. « Parallel workflow:|N| = 15,0 ~ 1,7 = 1 or 10.



B. Minimize the Cost with Deadline Constraint

In the above discussions, the objective is to minimize the
completion time of one job without considering other jobs
or other types of traffic. However, in the presence of other
traffic, the execution of one job could be significantly deldy
if the network is congested and most of the wavelengths are

already reserved for other traffic. This is shown in Figure 6,
T ot " mottats where we assume that only a limited number of wavelengths
@ ® are available for a job or in other words, the earliest idheeti
Fig. 3. Comparison of Algorithm 2 and “classic” list scheidglin terms of Of other wavelengths are extremely large. We can see that
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Schedule length
Schedule length

schedule length on pipelined DAGs whenr(@)= 1, (b)rce = 10 schedule length (or job completion time) can be extremely
long with a smalled¥. This is because when many requests
e 0 e compete for a wavelength, they have to be scheduled one by

one, which delays the total completion time.
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Fig. 4. Comparison of Algorithm 2 and “classic” list schedglin terms of 250 - — e
schedule length on a specific DAG. (a) A specific DAG for a paralorkflow
(b) Comparison results whef.e = 1 andrc. = 10

In addition to the above p|p_)el|r_1ed DAGs, the .SUbgraphs |]c . 6. The relation between schedule length and the numbavailable
many other DAGs can be pipelines, as shown in Figure 4(@dvelengths
(adopted from [16]). In this type of DAGs, the results from

Figure 4(b) show that the proposed algorithm also reduees th To effectively deal with such situations, we use Algorithm

schedule length significantly. 3 and Algorithm 4 to minimize the resource usage/cost with
« Random DAGIN| € {20,40,60,80,100},5 = 2,r.. = deadline constraint. As mentioned before, the schedulgthen
1 or 10. obtained from Algorithm 2 is not a strictly increasing fuioct
of perturbation degred, as shown in Figure 7(a). However,
ZW’ESE;sic “007:‘&“; ‘ ‘ 1 based on the observation that the schedule length roughly
1200 - [ New 1

N
8
8

increases withd,, and only a fewd,-schedules achieve the
same completion time, we can use binary search multiplestime
to find a suitablei, as described in Algorithm 4. We can also
see from Figure 7(b) that the cost roughly decreases ajjith

g

8
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Fig. 5. Comparison of Algorithm 2 and “classic” list schedglin terms of
schedule length on random DAGs whenr(@)= 1, (b)rce = 10
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Finally, we investigate the performance of Algorithm 2 =f — I
on random DAGs. A randomly generated DAG can have ° *__® % & 1@ o g o

Perturbation degree Perturbation degree
(b)

pipelines as subgraphs. Thus in this general case, the ggdpo @

Algorlthm 2 still have advantf’a‘ges but I’IOE _as significant %g. 7. The relation between (a) schedule length, (b)codttiaa perturbation

in previous two cases (see Figure 5). Wheimcreases, the gegree

probability that a randomly generated DAG has pipelines as

subgraphs will become very small and thus Algorithm 2 will Figure 8 shows the schedule length and the cost with dif-
behaves the same as the “classic” list scheduling. ferent deadlines assuming a random DAR|(= 100, § = 3,




ree = 1). In addition, we define the ratio of communicatiorthe completion time of a job. Our simulation results have
cost to execution cost to b€, — c.bdpp] where [p] is shown that it performs better than a traditional list schiedu
e L

the average number of links along a Iiéhtpath. In this Stud?,!gorithm. In addition, the proposed Algorithm 4 is the first
we let C.. = 1 and then decide”, and C. accordingly. attempt to minimize the cost with a deadline constraint in

As we can see from Figure 8(b), the cost decreases whefRdical grids. _

This work opens up many research issues and we are
' ' ' ' ' ' currently investigating the potential benefits of usingicgdt
sor o burst switching (OBS) or polymorphous OBS (POBS) [17]
to form ASAP networks, over optical circuit switching. In
addition, ongoing and future works will also investigatetig
_ performance of other types of approaches, such as duglicate
heuristics [18] and clustering heuristic [19] applied irtiogl
: grids and 2) new scheduling algorithms under various QoS
constraints.
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