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Abstract

In many novel database applications inconsistency becomes an important issue that cannot

be addressed with simple techniques like data cleaning. For instance, data conflicts can arise

during the integration of independent data sources, and the user may not have privileges

to resolve the inconsistencies. The framework of consistent query answers (CQA) aims

to alleviate the impact of inconsistencies on query evaluation by considering all possible

(minimal) repairs of the original database. The consistent answers are the answers present

in every repair. Because the repairs are not materialized, this approach does not modify

the state of the database i.e., no information is physically removed from the database. In

this thesis we advance the research on consistent query answers in several directions.

First, we address the open question of the complexity of computing consistent query

answers in the presence of universal constraints. We show that in general the problem is

ΠP
2 -complete, but we also show that for acyclic sets of full tuple-generating dependencies

and denial constraints, the problem is tractable.

Second, we implement a practical system Hippo for computing consistent answers to a

broad class of queries w.r.t. an acyclic set of full tuple-generating dependencies and denial

constraints. The efficiency of this approach, however, suffers from an excessive number of

database calls. We devise several optimizations addressing this problem, which make our

system capable of handling large databases.

Next, we investigate extending the CQA framework with user-specified preferences on

how to resolve conflicts. In the data integration scenario, for instance, the user may possess

partial information on the reliability of the data sources. This kind of information can

be used to further refine the quality of consistent query answers. We propose a general
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framework of preference-based conflict resolution, identify a set of desired properties, and

investigate their computational implications.

Finally, we propose adapting the framework of CQA to semi-structured databases. This

direction of study is inspired by the observation that many violations of consistency are

encountered in the context of XML applications. We propose the framework of valid query

answers, study its computational implications, and identify tractable cases. We also present

an experimental evaluation of our approach.
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Chapter 1

Introduction

1.1 Motivation

The main role of integrity constraints is to express the semantic properties of data stored

in a database. These properties are often actively used to effectively perform operations on

the stored data [AHV95, RG00]. Traditionally, the DBMS is responsible for maintaining

database consistency with the integrity constraints. Typically, any data manipulation that

leads to an integrity violation cannot be performed.

This simple prevention approach, however, is no longer feasible to handle violations of

integrity constraints arising in many novel database applications. A typical example is data

integration of multiple data sources; even if the individual sources are consistent, together

they can contribute conflicting information. At the same time the data sources are often

autonomous, and their contents cannot be changed easily or at all.

Example 1.1 Consider the schema

Mgr(Name, Dept, Salary)

together with with two key dependencies:

Name → Dept Salary, (fd1)

Dept → NameSalary. (fd2)
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2 CHAPTER 1. INTRODUCTION

In an instance of this schema a tuple Mgr(x, y, z) denotes the fact that x manages the

department y and receives the salary z. A person can manage only one department and

each department can have only one manager.

Now, suppose we integrate the following (consistent) source instances:

s1 = {Mgr(Mary, R&D, 40k), Mgr(John, PR, 50k), Mgr(Peter, IT, 45k)}

and

s2 = {Mgr(Mary, PR, 30k), Mgr(John, R&D, 45k), Mgr(Peter, AD, 35k)}

to obtain the target instance r = s1∪s2. We note that this is one of the simplest integration

scenarios. Typically, the sources have different schemata that overlap only partially, and

the state of the target instance is defined using mapping rules [Ull97, Lib06]. The target

instance r contains five conflicts (violations of functional dependencies):

1. Mgr(Mary, R&D, 40k) and Mgr(Mary, PR, 30k) w.r.t. fd1,

2. Mgr(John, PR, 50k) and Mgr(John, R&D, 45k) w.r.t. fd1,

3. Mgr(Peter, IT, 45k) and Mgr(Peter, AD, 35k) w.r.t. fd1,

4. Mgr(Mary, R&D, 40k) and (John, R&D, 45k) w.r.t. fd2,

5. Mgr(Mary, PR, 30k) and Mgr(John, PR, 50k) w.r.t. fd2.

These conflicts may result from changes that are not yet fully propagated. For instance,

Mary may have been promoted to manage R&D, whose previous manager was moved to

manage PR, or conversely, John may have been moved to manage R&D, while Mary was

moved from R&D to manage PR. Similarly, Peter may have been moved to manage IT ,

while previously being the manager of AD, or Peter may have been moved from IT to AD.

Violations of integrity constraints also occur naturally in the context of long and complex

data manipulations, delayed updates on data warehouses, and legacy databases. Finally,

integrity enforcement may be deactivated for efficiency reasons.

One way of handling inconsistent databases is data cleaning [Lom00, DJ03, EBR+01].

Typically, this solution uses conflict resolution rules to specify actions (tuple deletion, tuple
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insertion, attribute modification, etc.) that need to be performed to restore consistency.

Although data cleaning can be very successful, in most cases it is a semi-automatic process

requiring a significant amount of user attention. But even then, the user may lack the

knowledge or privileges to decide how to resolve every conflict. Also, data cleaning perma-

nently alters the state of the database, and the user may be inclined to consider several

possible resolutions rather than committing to a particular one. Finally, occasional viola-

tions of integrity constraints may simply indicate exceptions from general rules expressed

by the constraints; then, data cleaning leads to information loss.

The semantic properties captured by integrity constraints play a very important role in

the way the user formulates a query. If, however, the query is evaluated over an inconsistent

database, the results may be wrong and misleading.

Example 1.2 (cont. of Example 1.1) Consider the query Q1, which asks if Peter earns

more than Mary:

Q1 ≡ ∃d1, s1, d2, s2.Mgr(Peter, d1, s1) ∧ Mgr(Mary, d2, s2) ∧ s1 > s2.

The answer to Q1 in r is true, but this is misleading because r may not correspond to the

actual state of the world.

1.2 Consistent query answers

To identify answers that are affected by integrity violations, and therefore may be wrong,

Arenas et al. proposed a formal characterization of consistent query answer [ABC99]. An

answer is consistent if it is present in every possible repair. A repair is a consistent instance

minimally different from the original one. Intuitively, the answer is consistent if it is obtained

regardless of the way the consistency of the database is restored. This framework has

served as a foundation for most of the subsequent work in the area of querying inconsistent

databases (for the surveys of the area, see [BC03, Ber06, CM05, Cho07]).
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Example 1.3 (cont. of Example 1.2) The set of repairs of r consists of four instances:

r1 = {Mgr(Mary, R&D, 40k), Mgr(John, PR, 50k), Mgr(Peter, IT, 45k)},

r2 = {Mgr(Mary, R&D, 40k), Mgr(John, PR, 50k), Mgr(Peter, AD, 35k)},

r3 = {Mgr(Mary, PR, 30k), Mgr(John, R&D, 45k), Mgr(Peter, IT, 45k)},

r4 = {Mgr(Mary, PR, 30k), Mgr(John, P&D, 45k), Mgr(Peter, AD, 35k)}.

True is not a consistent answer to Q1 because Q1 is false in r2.

The notion of minimality originally used to define repairs also uses the symmetric set

difference. Other investigated notions of minimality use asymmetric set difference [CLR03]

and the cardinality of the symmetric difference [ABC03a, LB07] (leading to Dalal repairs).

Finally, various notions of minimality have been considered to accommodate repairs ob-

tained by attribute value modifications [LB07, BBFL05, Lop06, BFFR05, Wij03].

1.2.1 Computational complexity

It has been observed very early in the research on consistent query answers that the number

of possible (minimal) repairs may be exponential [ABC+03b]. A näıve approach to compute

consistent query answers by materializing all repairs and consequently evaluating the query

in every repair can be highly inefficient. Therefore, the central question of research in

the area of consistent query answers is the tractability of the framework. To answer this

important question, two fundamental decision problems have been investigated: (1) repair

checking – finding if a given database is a repair, and (2) consistent query answering –

finding if an answer to a query is present in every repair. Most of the research in the area

of consistent query answers uses the notion of data complexity which allows to express the

complexity of the problems in terms of the database size only (the set of integrity constraints

and the query are assumed to be fixed). The data complexity of computing consistent query

answers is:

• PTIME for the class of binary universal constraints and a restricted class of conjunc-

tive queries [ABC99].
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• PTIME for the class of denial constraints and quantified-free ground queries [CM05].

• PTIME when at most one primary key per relation is present and the queries belong

to a restricted class of conjunctive queries Cforest [FM05, Fux07].

• coNP-complete for primary keys and arbitrary conjunctive queries [CM05].

• Πp
2-complete for arbitrary sets of functional dependencies and inclusion dependen-

cies [CM05]. We note that this problem has been studied for a variety of different

semantics of consistent query answers, and we cite the result for only one of them.

However, our work does not focus on general inclusion dependencies.

1.2.2 Effective computation of consistent query answers

In general, three different approaches to compute consistent query answers have been pro-

posed: query rewriting, logic programs, and using compact repair representations.

Query rewriting

Query rewriting was the original approach proposed to compute consistent query answers

[ABC99]. A query Q is rewritten into a query Q′, which upon evaluation returns the set of

consistent answers to Q. The main advantages of this approach are the ease of incorporating

it into existing database applications and a relatively small overhead in terms of running

time. The main shortcoming of this approach is that it cannot be applied to every query:

certain classes of conjunctive queries have been shown not to have rewritings [CM05].

To our best knowledge there is only one system implementing the approach of query

rewriting to compute consistent answers: ConQuer [FFM05]. This system handles a prac-

tical subclass Cforest of conjunctive queries in the presence of key dependencies (at most

one per relation).

Compact representation of repairs

For certain classes of integrity constraints, it is possible to construct a compact representa-

tion of all repairs that is polynomial in the size of the database instance. An example of
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such a construction is the conflict graph [CM05]. The vertices of a conflict graph are tuples

from the database, and an edge is a set of tuples whose mutual existence in the database

violates a denial constraint. Special algorithms have been developed to use conflict graphs

to effectively compute consistent query answers to quantifier-free queries [CM05] and scalar

aggregation queries [ABC+03b].

Another compact representation of all repairs is nucleus [Wij03, Wij05]. In this ap-

proach all repairs are represented by a tableau (a table with free variables), and queries

are evaluated in the standard way (answers with variables are discarded). We note that

for some classes of constraints, constructing the nucleus may take an exponential time to

complete.

There is a significant analogy between computing consistent query answers using query

rewriting and compact representation of repairs: both approaches try to find if there exists

a repair for which the query answer is not present. In query rewriting this is accomplished

by executing subqueries constructed from the set of integrity constraints. Because compact

representations of repairs contain all the information necessary to find whether it is possible

to construct a repair containing some tuple(s), the execution of subqueries can be eliminated.

This observation suggests that systems using compact representations of repairs might have

better scalability properties.

Logic programs

Several different approaches have been developed to specify all repairs of a database using

logic programs with disjunction and classical negation [ABC03a, BB03, EFGL03, GGZ01,

GGZ03, VNV02]. Usually, every (stable) model corresponds to a repair, and consistent

query answers to a query can be obtained by using reasoning under cautious semantics.

Such programs can then be evaluated using an existing logic programming system like

dlv [EFLP00]. These approaches have the advantage of generality, as typically arbitrary

first-order queries and universal constraints (or even some referential integrity constraints

[ABC03a]) can be handled. However, the generality comes at a price: reasoning under

the cautious semantics for the classes of logic programs used is known to be Πp
2-complete.

Another shortcoming of this approach is that systems like dlv perform grounding of the
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specified program, which limits its practical uses for large databases.

To address the described difficulties, the INFOMIX system [EFGL03] uses several opti-

mizations geared toward efficient evaluation of logic programs computing consistent query

answers. One is localization of conflict resolution. Another is encoding tuple membership

in individual repairs using bit-vectors, which makes possible efficient computation of consis-

tent query answers using bit-wise operators. However, it is known that even in the presence

of one functional dependency there may be exponentially many repairs. With only 80 tu-

ples involved in conflicts, the number of repairs may exceed 1012! It may be impractical to

efficiently manipulate bit-vectors of that size, which may limit scalability of this approach.

Very recently, [EFGL07] proposed to address this deficiency with repair factorization.

1.3 Our contributions

In this document we describe our research in several directions relevant to consistent query

answers.

Universal constraints

Denial constraints allow the user to specify sets of tuples that cannot be all present in the

database at the same time: those tuples create a conflict. Their simultaneous presence in

the database is recorded in the conflict graph which is used to efficiently compute consistent

query answers [CM05].

At the same time, Arenas et al. in [ABC99] present a rewriting technique for computing

consistent query answers to binary universal constraints. Universal constraints allow to

express conflicts created not only by the presence of some tuples but also by a simultaneous

absence of other tuples.

In Chapter 3 we address the open question of the complexity of computing consistent

query answers in the presence of universal constraints. We investigate an extended version of

conflict graph, which captures conflicts w.r.t. universal constraints. Although, the extended

conflict graph does not have exactly the same properties as its basic form, we use it to

compute consistent query answers in polynomial time in the presence of denial constraints
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and acyclic full tuple-generating dependencies. We also show that dropping the restriction

of acyclicty leads to coNP-completeness and that computing consistent query answers in

the presence of arbitrary universal constraints is Πp
2-complete.

System Hippo

Despite a considerable amount of research devoted to the study of computational complexity

of consistent query answers, there has been relatively limited effort in investigating practical

aspects of computing consistent query answers. In Chapter 4 we pursue this interesting

challenge and construct a practical and efficient system Hippo. As theoretical foundations

we use the results from Chapter 3 and [CM05]. Hippo computes consistent answers to

projection-free queries in the presence of denial constraints and acyclic full tuple-generating

dependencies. Thanks to various optimizations, the system is very efficient: virtually no

overhead is needed to compute consistent answers to Select-Join queries, and queries with

union take about twice the time of evaluating the query against the database.

Preference-driven conflict resolution

In many applications, the user has a preference on how some conflicts should be resolved.

Typical information used to express the preference includes:

• the timestamp of creation/last modification of the tuple: the conflicts can be resolved

by removing from consideration old, outdated tuples;

• the source of the information of the tuple: the user can consider the data from one

source to be more reliable than the data from the other;

• and some attributes of the conflicting tuples.

Example 1.4 (cont. of Example 1.3) Suppose that for a conflict created by two tuples

referring to the same person (a violation of fd1), the user prefers to resolve the conflict

by removing the tuple with the smaller salary. This preference expresses the belief that

if a manager is being reassigned, her salary is not lowered. In r this preference applies

to Conflict 3: the tuple Mgr(Peter, IT, 45k) is preferred over Mgr(Peter, AD, 30k) as the

resolution of Conflict 3. This preference also applies to Conflicts 1 and 2. It doesn’t apply,
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however, to Conflicts 4 and 5 because both of them involve tuples referring to different

persons.

Unfortunately, the standard framework of consistent query answers does not provide a

way to include user preferences. To address this deficiency, in Chapter 5 we extend the

framework of consistent query answers to use preference information. We define a set of

preferred repairs (a subset of all repairs.) Query answers present in every preferred repair

are called preferred consistent query answers. Naturally, there may be more than one way

to select the preferred repairs. We investigate three different ones.

In Example 1.4 we eliminate from considerations the repairs r2 and r4 because the pref-

erence information applies to Conflict 3. Similarly, by applying the preference information

to Conflicts 1 and 2, we may also eliminate the repair r3. Then, the repair r1 is the only

preferred repair and true is the preferred consistent answer to Q1. This way of selecting

preferred repairs is captured by the notion of global optimality of a repair. In this example

global optimality of a repair coincides with another investigated notion of a common repair,

which uses the preference information to guide a procedural approach for constructing a

preferred repair.

However, one may find the reasons for eliminating repair r3 insufficient: there is no pref-

erence information that applies to Conflicts 4 and 5, yet not all of their possible resolutions

are considered. In that case the set of preferred repairs consists of r1 and r3. This way of

selecting preferred repairs is captured by a weaker notion of Pareto optimality.

Consistent query answers for XML databases

XML is rapidly becoming the standard format for the representation and exchange of semi-

structured data over the Internet. In most contexts, documents are processed in the pres-

ence of a schema, typically a Document Type Definition (DTD) or an XML Schema. Al-

though currently there exist various methods for maintaining the validity of semi-structured

databases, many XML-based applications operate on data that is invalid with respect to

a given schema. A document may be the result of an integration of several documents of

which some are not valid. Parts of an XML document could be imported from a document
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that is valid w.r.t. a schema slightly different than the given one. For example, the schemata

may differ with respect to the constraints on the cardinalities of elements. The presence

of legacy data sources may even result in situations where schema constraints cannot be

enforced at all. Also, violations of the schema are often caused by manual data entry.

At the same time, DTDs and XML Schemas capture important information about the

expected structure of an XML document. This information plays a crucial role when defining

queries and transformations of the documents. Similar to the relational case, executing

queries and transformations on invalid documents may lead to results that are insufficiently

informative or do not conform to the expectations of the user.

In Chapter 6 we investigate the problems of repairing and querying invalid XML doc-

uments. We adopt the notion of repair and consistent query answers to semi-structured

databases. In this scenario we capture the differences between documents using sequences

of editing operations: inserting a subtree, deleting a subtree, and modifying the label of

a node. Such operations are commonly used in the context of XML document change

detection [CRGMW96, CAM02] and incremental integrity maintenance of XML docu-

ments [AMR+98, BPV04, BFG05].

We present an efficient algorithm for construction of the trace graph, which is a compact

representation of all repairs of an invalid XML document. We investigate using this structure

to compute edit distance between the document and the DTD and to evaluate XPath queries

in a validity-sensitive fashion.



Chapter 2

Preliminaries

In this chapter we review the standard notions of relational databases [AHV95] and present

the standard framework of consistent query answers [ABC99] for relational databases.

2.1 Relational model

A database schema S is a set of relation names of fixed arity. Relation attributes are drawn

from an infinite set of names U . We use A, B, C, . . . to denote elements of U and X, Y, Z, . . .

to denote finite subsets of U .

Every element of U is typed and we consider only two disjoint domains: Q (decimals)

and D (uninterpreted constants). We assume that two constants are equal if and only if

they have the same name. We also use the natural interpretation of the built-in relation

symbols =, 6=, <, ≤, >, ≥ over Q.

Formally, a tuple is a (partial) function which takes an attribute and returns a value

from the attribute domain. We use t, t′, t′′, s, . . . to denote tuples. By t[A] we denote the

value of t on the attribute A. Typically, however, we assume an order among the attributes

for which a tuple t is defined and then we use subsequent natural numbers 1, . . . , k to

refer to the attributes. This allows us to view the tuple t as a finite sequence of values:

(t[1], t[2], . . . , t[k]) ≡ (t1, . . . , tk). Also, t[i, . . . , j] stands for the tuple consisting of values of

t on attributes i, . . . , j, i.e. the tuple (ti, . . . , ti).

Because we deal with schemata with several relation names, when describing the contents

11
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of a database instance we additionally assign to a tuple the relation name the tuple belongs

to. In other words, when describing tuples of a database we equate the notion of a tuple

with the notion of a positive ground fact.

A database instance (or simply an instance) is a finite set of tuples (together with

relation names). We use I, I ′, I ′′, J, . . . to denote instances. We also view the instance I

as its standard model: a first-order structure over the vocabulary consisting of S and the

built-in binary relation symbols in which the set of true ground facts is equal to I.

2.1.1 Query languages

Throughout this document we use two languages to query relational database instances:

relational algebra and first-order logic.

We consider the class of first-order logic (FOL) queries defined as follows:

ϕ ::= R(x̄) | ϕ1 ∧ ϕ2 | ¬ϕ | ∃x.ϕ,

where R is a relation name of S and x̄ is a compatible vector of variables and constants,

∧, ¬, ∃ are the disjunction operator, the negation operator, and the existential quantifier

respectively. We also use the standard macros: ϕ1∨ϕ2 ≡ ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1∨ϕ2,

and ∀x.ϕ ≡ ¬∃x.¬ϕ. We define the set of free-variables of ϕ in the standard way and ϕ is

closed if and only if ϕ has no free variables; otherwise the query is open and we explicitly

identify its free variables: ϕ(x̄). True is the answer to a closed FOL query ϕ if and only if

I |= ϕ (in the standard model-theoretic way). The set of answers to an open FOL query

ϕ(x̄) in I is the set of all tuples compatible with x̄ which after substitution make the formula

true in I, i.e.:

QA(ϕ(x̄), I) = {t|I |= ϕ[t]}.

The class of relational algebra (RA) expressions we consider is defined by the following

grammar:

E ::= R | σϑ(E) | πX(E) | E1 × E2 | E1 ∪ E2 | E1 \ E2,

where R ∈ S is any relation name, σ, π,×,∪, \ are the selection, projection, Cartesian
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product, union, and set difference operators respectively. In the selection condition ϑ and

the attribute list X, we identify attributes with their position (a natural number). For an

relational expression E, by |E| we denote its arity. A tuple t is compatible with an expression

E if the arities and corresponding types of t and E agree.

We evaluate an RA expression E over I in the standard way and we denote the results by

QA(I, E). We recall that for every RA expression there exists an equivalent first-order logic

formula and vice versa. Moreover, for any π-free RA expression there exists an equivalent

quantifier-free FOL query (the converse, however, is not necessarily true).

We also construct extended relational algebra expressions using left outer join operator

E
ϑ
←− E′, where ϑ is the join condition. We use E.i and E′.j in ϑ to identify the attributes

of the expressions E and E′. We denote the null value by ⊥. We also note that we do

not consider database instances with null values, and therefore the null values can only be

present in the result of an expression with an outer join.

2.1.2 Integrity constraints

In general, an integrity constraint is any closed first-order formula over the vocabulary S

and the set of built-in binary relation symbols. Given a set of constraints F , a database I

is consistent w.r.t. F if and only if I |= F ; otherwise I is inconsistent.

In this document we investigate constraints belonging to the class of universal constraints

of the following form:

∀x̄
[
¬Ri1(x̄1) ∨ . . . ∨ ¬Rin(x̄n) ∨ ¬ρ ∨ Pj1(ȳ1) ∨ . . . ∨ Pjm(ȳm)

]
. (2.1)

where x̄i and ȳi are vectors of variables such that ȳ1∪ȳ2∪. . .∪ȳm ⊆ x̄1∪x̄2∪. . .∪x̄n = x̄ and

ρ is a boolean formula using only variables x̄i and ȳi, constants, and the standard built-it

operators. We also denote a universal constraints of the form 2.1 with an implication:

Ri1(x̄1) ∧ . . . ∧ Rin(x̄n) ∧ ρ(x̄) → Pj1(ȳ1) ∨ . . . ∨ Pjm(ȳm). (2.2)

Also, We call the relation names Pj1 , . . . , Pjm the head of the constraint and the relation
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names Ri1 , . . . , Rin the body of the constraint.

We observe that the class of universal constraints contains the following classes of in-

tegrity constraints:

1. full tuple-generating dependencies (full TGDs) when m = 1;

2. denial constraints when m = 0;

3. functional dependencies (FDs). An FD denoted as R : X → Y stands for the following

formula:

∀x̄, ȳ.R(x̄) ∧ R(ȳ) ∧
∧

A∈X

x̄[A] = ȳ[A] ∧
∨

B∈Y

x̄[B] 6= ȳ[B] → false.

Constraint grounding

Given a database instance I and a set of integrity constraints F , the active domain of I and

F , denoted by adom(I, F ), is the set of all constants used in I and F . Note that because

we consider only finite database instance and finite sets of integrity constraints, the active

domain is also a finite set.

Definition 2.1 (Ground rule) For a universal constraint of the form (2.2), the implica-

tion t1 ∧ . . . ∧ tn → s1 ∨ . . . ∨ sm is a ground rule of the constraint if there exists a (total)

substitution substitution1 θ of the variables x̄ such that R(x̄i)θ = ti for i ∈ {1, . . . , n},

R(ȳj)θ = sj for j ∈ {1, . . . , m}, and ρθ holds. By ground(I, F ) we denote the set of all

ground rules obtained from the constraints in F with substitutions that assign values in

adom(I, F ).

Also, for a ground rule t1 ∧ . . . ∧ tn → s1 ∨ . . . ∨ sm we call the set of tuples {t1, . . . , tn} a

premise of sj for every j ∈ {1, . . . , m}.

Acyclic constraints

Definition 2.2 (Acyclic constraints) The dependency graph D(F ) of a set of universal

constraints F is a directed graph whose set of vertices is S and there is an edge coming

1We use the postfix notation fθ to denote substituting the term f with θ.
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from R to P if there exists a constraint in F having R in its body and P in its head. F is

acyclic if and only if D(F ) is acyclic.

We also note that if F is acyclic, then the length of a directed path in D(F ) is bounded by

the size of S.

Immediate consequence operator

Now, we consider only sets integrity constraints containing full TGDs and denial constraints

only. We observe that because a full TGD contains only one relation name in the head, it

explicitly indicates the tuple that must be present in the instance if all the tuples from its

body are present and the condition ρ in the body is satisfied. To identify the instance after

adding potentially missing tuples we use standard Datalog constructs [AHV95, Bar03].

Definition 2.3 (Immediate consequence operator and its fix point) For a set of full

TGDs and denial constraints F and a set of tuples J , the immediate consequence of F in J

is defined as

TF (J) = J ∪ {s | t1 ∧ . . . ∧ tn → s ∈ ground(I, F ) and {t1, . . . , tn} ⊆ J}.

The closure or the fix-point of the immediate consequence operator, denoted by T ∗
F , is

defined in the standard way.

Given an instance I, a tuple is base if t ∈ I; otherwise t is non-base.

2.1.3 Repairs

For two databases I1, I2 their (symmetric) difference ∆(I1, I2) is

∆(I1, I2) = I1 \ I2 ∪ I2 \ I1.

Given an instance I we define the relative proximity relation ≤I on instances as follows:

I1 ≤I I2 ⇐⇒ ∆(I, I1) ⊆ ∆(I, I2).
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We note that for any I, the relation ≤I is a partial ordering of all database instances. We

use I1 <I I2 to denote I1 6= I2 and I1 ≤I I2.

Definition 2.4 (Repair) Given an instance I and a set of universal constraints F , an

instance I ′ is a repair of I w.r.t. F if and only if I ′ is a <I -minimal instance consistent with

F . By Rep(I, F ) we denote the set of all repairs of I w.r.t. F .

We note that even if we restrict the set of constraints to one functional dependency, the

number of repairs can be exponential in the number of tuples in the database [ABC+03b].

Example 2.5 Consider schema consisting of one relation name R(A, B) and an FD R :

A → B. For any n ∈ N the instance

In = {R(1, 0), R(1, 1), . . . , R(n, 0), R(n, 1)}

has 2n repairs.

Definition 2.6 (Consistent answers to closed FOL queries) Given an instance I, a

set of universal constraints, and a closed FOL query Q, true is the consistent answer to Q

in I w.r.t. F , denoted by I |=F Q, if and only if true is an answer to Q in every repair of I

w.r.t. F .

Definition 2.7 (Consistent answers to RA expressions) Given an instance I, a set

of universal constraints, and an RA expression E, a tuple t is a consistent answer to E in

I w.r.t. F if and only if t ∈ QA(I ′, E) for every I ′ ∈ Rep(I, F ). We denote the set of all

consistent answers to E by CQA(I, E, F ).

2.1.4 Conflicts and conflict hypergraphs

We propose the notion of a conflict to identify constraints violations.

Definition 2.8 (Conflict) For a constraint of the form (2.2) and any substitution θ of the

universal variables such that ρθ holds, the set of ground facts

{Ri1(x̄1)θ, . . . , Rin(x̄n)θ,¬Pj1(ȳ1)θ, . . . ,¬Pjm(ȳm)θ}
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is a conflict w.r.t. (2.1).

A conflict is a denial conflict if it contains no negative facts. Naturally, denial conflicts

result only from violations of denial constraints. For denial conflicts we recall the notion of

conflict hypergraph that represents all repairs of an instance.

Definition 2.9 (Conflict hypergraph [ABC+03b, CM05]) Given a database instance

I and a set of denial constraints F , the conflict hypergraph G(I, F ) is a hypergraph whose

set of vertices is I and the set of hyperedges consists of all conflicts among the elements of

I.

If we restrict the integrity constraints to FDs, every conflict is binary and we obtain a

standard graph (whose edges connect exactly two vertices).

Example 2.10 The conflict graph for the instance r of Example 1.1 is in Figure 2.1.

Mgr(Mary, R&D, 40k)

Mgr(Mary, PR, 30k)

Mgr(John, PR, 50k)

Mgr(John, R&D, 45k)

Mgr(Peter, IT, 45k)

Mgr(Peter, AD, 35k)

Figure 2.1: A conflict graph.

In the original framework of [ABC99], two operations, inserting a tuple and deleting a tuple,

are considered when repairing an inconsistent instance. In the presence of denial constraints

adding new tuples cannot remove any conflicts, and therefore the repairs are obtained by

removing tuples only.

Fact 2.11 A maximal independent set of a conflict hypergraph G(I, F ) is any maximal set

of vertices that contains no hyperedge. Any maximal independent set of G(I, F ) is a repair

of I w.r.t. F and vice versa.

In Chapter 3 we show how to extend the conflict hypergraph to capture repairs w.r.t.

universal constraints.
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2.1.5 Data complexity

To investigate tractability of the framework of consistent query answers (and its extensions)

we use the notion of data complexity [Var82]. When using this notion we describe the

complexity of the problems in terms of the size of the database only and assume other

parts of the input, like the set of integrity constraints or the query, to be fixed. There

are two classical decision problems that are investigated in the context of consistent query

answers [CM05]:

(i) repair checking – determining if a database instance is a repair of a given database

instance, i.e. the complexity of the following set

BF = {(I, I ′) : I ′ ∈ Rep(I, F )}.

(ii) consistent query answering – determining if true the consistent answer to a given

closed FOL query in a given database w.r.t. to a given set of integrity constraints,

i.e. the complexity of the following set

DF,Q = {I : I |=F Q}.



Chapter 3

Universal constraints

In this chapter we address the question of tractability of consistent query answer in the

presence of universal constraints.

3.1 Extended conflict hypergraph

We recall that when considering repairs in the presence of denial constraints, the repairs are

obtained by deleting tuples only, and hence every repair is a subset of the original database.

In the case of universal constraints a violation can be repaired not only by deletion but also

by insertion of a tuple. We note that in the case of violations of universal constraints the

tuples that can be inserted to resolve the conflict are uniquely identified.

Definition 3.1 (Hull) Given a database instance I and a set of universal constraints F ,

the hull H(I, F ) of I w.r.t. F is the minimal set satisfying the following conditions:

1. I ⊆ H(I, F ),

2. if a set of facts e is a conflict w.r.t. F and every positive fact of e belongs to H(I, F ),

then for every negative fact ¬t in e, both ¬t and t belong to H(I, F ).

We extend the notion of the conflict hypergraph [ABC+03b, CM05] which represents all

repairs using space polynomial in the size of the database. Because conflicts w.r.t. universal

constraints involve also negative facts, to use the notion of independent set to capture

19
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consistent instances, we need to introduce also edges between any pair of t and ¬t. This

way an independent set of the extended conflict graph does not contain contradictory facts.

Definition 3.2 (Extended conflict hypergraph) The extended conflict hypergraph of I

w.r.t. F is G(I, F ) = (H(I, F ), E(I, F )), where E(I, F ) contains two types of hyperedges:

1. conflict hyperedges e ⊆ H(I, F ) such that e is a conflict w.r.t. F ,

2. stabilizing edges {t,¬t} if both t and ¬t belong to H(I, F ).

An independent set of an extended conflict hypergraph G(I, F ) is any subset of H(I, F )

that contains no hyperedges.

We also note that the conflict hyperedges can be viewed as a set of rules obtained from

grounding the constraints from F with tuples of H(I, F ), i.e. t1 ∧ . . . ∧ tn → s1 ∨ . . . ∨ sm

corresponds to {t1, . . . , tn,¬s1, . . . ,¬sm}.

For a given set of universal constraints F the definition of the hull yields a simple

negation-free Datalog program which generates the set of all facts in the hull. Therefore,

Fact 3.3 For every F and every I the extended conflict hypergraph G(I, F ) can be con-

structed in time polynomial in the size of I and using space polynomial in the size of I.

For a set of (positive and negative) facts J its positive projection, denoted by J+, is the

set of all positive facts in J (basically a database instance containing all positive facts of

J). The correspondence between independent sets of the extended conflict hypergraph and

repairs is stated by the following lemma.

Lemma 3.4 Any repair of I is an independent set of the extended conflict hypergraph.

Moreover, for any independent set M of G(I, F ) either M+ is a repair or there exists an

independent set N such that N+ <I M+.

Proof

(i) Suppose there exists a repair I ′ ∈ Rep(I, F ) such that I ′ is not an independent set

of G(I, F ). Because I ′ is consistent, I ′ contains no edges in G(I, F ). Therefore,

I ′ 6⊆ H(I, F ). Take the set I ′′ = H(I, F ) ∩ I ′. We claim that I ′′ is consistent;
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otherwise I ′ is not consistent or H(I, F ) is not the hull. Now, because I ⊆ H(I, F )

we have that I ′′ <I I ′ which contradicts I ′ being a repair.

(ii) Take any independent set M such that M+ is not a repair. Note that M+ is consistent

and therefore there exists a repair I ′ such that I ′ <I M+. By (i) I ′ is an independent

set of G(I, F ).

2

Note: Because all repairs consist of tuples contained in H(I, F ), from now on,

if we quantify over tuples (or sets of tuples) we mean only tuples in H(I, F )+.

3.2 Complexity of universal constraints

Theorem 3.5 Consistent query answering for universal constraints is Πp
2-complete. The

reduction uses an atomic query and a set of 3 integrity constraints: one functional depen-

dency, one denial constraint with two atoms, and one universal constraint with one atom

in its body and 2 atoms in its head.

Proof The membership of DF,Q to Πp
2 follows from the definition of consistent query an-

swers: query is not consistently true if and only if it is false in some repair; each repair is

a subset of the hull of the given instance (and thus of a polynomial size) and checking if a

set of tuples is a repair is in coNP (see the proof of Corollary 3.6). We show Πp
2-hardness

below.

Consider the following ∀∗∃∗QBF3 formula:

ψ = ∀x1, . . . , xn.∃xn+1, . . . , xn+m.ϕ,

where ϕ = c1 ∧ . . . ∧ ck is quantifier-free 3CNF i.e., cj are clauses of three literals lj,1 ∨

lj,2 ∨ lj,3. For ease of reference, we call the variables x1, . . . , xn universal and the vari-

ables xn+1, . . . , xn+m existential. Checking satisfiability of such formulas is a classical Πp
2-

complete problem [Pap94].
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We construct the database instance Iψ over the schema consisting of only one rela-

tion name: R(A, B, V0, S0, A1, B1, V1, S1, A2, B2, V2, S2, A3, B3, V3, S3, V
′
3 , S

′
3). The set of

integrity constraints F consists of:

R : A → B, (3.1)

R(A, B, 0, . . . , 0) ∧ R(C1, C2, 0, . . . , 0) ∧ C2 > 0 ∧ B > C2 → false, (3.2)

R(A, B,V0, S0, A1, B1, V1, S1, A2, B2, V2, S2, A3, B3, V3, S3, V
′
3 , S

′
3) →

R(A1, B1, V1, S1, A2, B2, V2, S2, A3, B3, V3, S3, V
′
3 , S

′
3, 0, 0, 0, 0) ∨

R(V0, S0, 0, . . . , 0).

(3.3)

We use the following two auxiliary functions on literals of ϕ:

var(xi) = i sgn(xi) = 0

var(¬xi) = i sgn(¬xi) = −1.

To construct the database instance we use the following types of tuples:

• a dummy tuple

O = R(0, . . . , 0);

• a special tuple

s = R(n + m + 1, n, 0, . . . , 0);

• vi- and v̄i-tuples corresponding resp. to the positive and negative valuation of the

variable xi (for i ∈ {1, . . . , n + m})

vi = R(i, 0, 0, . . . , 0), v̄i = R(i,−1, 0, . . . , 0);
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• dj-tuples corresponding to the conjunct cj (for j ∈ {1, . . . , k})

dj = R( − 4i, 0, n + m + 1, n,

3 − 4i, 0, var(lj,3), sgn(lj,3),

2 − 4i, 0, var(lj,2), sgn(lj,2),

1 − 4i, 0, var(lj,1), sgn(lj,1), var(lj,1), sgn(lj,1));

• d3
j -tuples corresponding to the disjunction of the three literals of conjunct cj (for

j ∈ {1, . . . , k})

d3
j = R(3 − 4j, 0, var(lj,3), sgn(lj,3),

2 − 4j, 0, var(lj,2), sgn(lj,2),

1 − 4j, 0, var(lj,1), sgn(lj,1),

var(lj,1), sgn(lj,1), 0, 0, 0, 0);

• d2
j -tuples corresponding to the disjunction of the first two literals of conjunct cj (for

j ∈ {1, . . . , k})

d2
j = R(2 − 4j, 0, var(lj,2), sgn(lj,2),

1 − 4j, 0, var(lj,1), sgn(lj,1),

var(lj,1), sgn(lj,1), 0, 0,

0, 0, 0, 0, 0, 0);

• d1
j -tuples corresponding to (the disjunction of) the first literal of conjunct cj (for

j ∈ {1, . . . , k})

d1
j = R(1 − 4j, 0, var(lj,1), sgn(lj,1),

var(lj,1), sgn(lj,1), 0, 0,

0, 0, 0, 0,

0, 0, 0, 0, 0, 0).
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We observe that the type of a tuple is determined by its values on the first two attributes

and hence now two different tuples can be confused.

For the clarity of further considerations by Lj,p we denote the tuple corresponding to

the satisfying valuation of the literal lj,p, i.e.

Lj,p =







vi when lj,p = xi,

v̄i when lj,p = ¬xi.

Also, to remove unnecessary technical details we instantiate the integrity constraints to the

following set of implications:

vi ∧ v̄i → false for i ∈ {1, . . . , n + m}, (H1)

vi ∧ s → false and v̄i ∧ s → false for i ∈ {n + 1, . . . , n + m}, (H2)

vi → O and v̄i → O for i ∈ {1, . . . , n + k}, (H3)

s → O, (H4)

d1
j → Lj,1 for j ∈ {1, . . . , k}, (H5)

d2
j → d1

j ∨ Lj,2 for j ∈ {1, . . . , k}, (H6)

d3
j → d2

j ∨ Lj,3 for j ∈ {1, . . . , k}, (H7)

dj → d3
j ∨ s for j ∈ {1, . . . , k}, (H8)

The rules (H1) are obtained from grounding the constraint (3.1) and the rules (H2) are ob-

tained from grounding the constraint (3.2). The remaining rules are obtained from ground-

ing the constraint (3.3).

For the formula ψ we construct the following instance:

Iψ = {O, v1, v̄1, . . . , vn+m, v̄n+m, d1
1, d

2
1, d

3
1, . . . , d

1
k, d

2
k, d

3
k, d1, . . . , dk}

Figure 3.1 contains the extended conflict hypergraph for an instance obtained from the

formula ∀x1, x2, x3.∃x4, x5.(¬x1 ∨ x4 ∨ x2) ∧ (x3 ∨ ¬x5 ∨ ¬x2).
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O

¬O

s

v1 v̄1 v4 v̄4 v2 v̄2 v5 v̄5 v3 v̄3

H3, H4

H1

H2

¬v̄1

d1
1

¬d1
1

¬v4

d2
1

¬d2
1

¬v2

d3
1

¬d3
1 ¬s

d1

¬v3

d1
2

H5

¬v̄5 ¬d1
2

d2
2

H6

¬v̄2 ¬d2
2

d3
2

H7

¬d3
2

d2

H8

Figure 3.1: Extended conflict hypergraph of Iψ for ψ = ∀x1, x2, x3.∃x4, x5.(¬x1 ∨x4 ∨x2)∧
(x3 ∨ ¬x5 ∨ ¬x2).

The query used in the reduction is Q = ¬s. We claim that

|= ψ ⇐⇒ Iψ |=F Q,

where |= ψ denotes that ψ is true.

⇒ Assume |= ψ and suppose there exists a repair I ′ ∈ Rep(Iψ, F ) such that s ∈ I ′. We

observe the following facts:

(i) O ∈ I ′ (from <Iψ
-minimality),

(ii) for i ∈ {1, . . . , n} either vi or v̄i belongs to I ′ (from <Iψ
-minimality),

(iii) for i ∈ {n + 1, . . . , n + m} neither vi nor v̄i belongs to I ′ (from (H2)).

(iv) {d1, . . . , dk} ⊆ I ′ (from <Iψ
-minimality).
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We construct a valuation V1 of universal variables (well defined by (ii)):

V1(xi) =







true if vi ∈ I ′,

false if v̄i ∈ I ′.

Since |= ψ there exists a valuation V2 of existential variables such that V1 ∪ V2 |= ϕ. Using

V = V1 ∪ V2 we construct the following instance:

I ′′ = {O} ∪ {vi|i ∈ {1, . . . , n + m} ∧ V (xi) = true}

∪ {v̄i|i ∈ {1, . . . , n + m} ∧ V (xi) = false}

∪ {dp
j |j ∈ {1, . . . , k} ∧ p ∈ {1, 2, 3} ∧ V |= lj,1 ∨ . . . ∨ lj,p}

∪ {d1, . . . , dk}.

We make two claims about I ′′:

a) I ′′ |= F ,

b) I ′′ <Iψ
I ′.

Proof a) The fulfillment of rules (H1), (H2), (H3), and (H4) follows trivially from the

construction of I ′′: I ′′ contains O and only one from {vi, v̄i} for every i ∈ {1, . . . , n +

m}, and s does not belong to I ′′. W also note note that d1
j′ ∈ I ′′ if and only if

V |= lj′,1. This is equivalent to Lj′,1 ∈ I ′′, and hence (H5) is satisfied. The fulfillment

of rules (H6) and (H7) is proved analogously. Finally, to show that the rule (H8) is

satisfied note that for every V |= dj and therefore d3
j ∈ I ′′. At the same time dj ∈ I ′′

and s 6∈ I ′′.
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b) First we note that

∆(I ′′, Iψ) ={vi|i ∈ {1, . . . , n + m} ∧ V1(xi) 6= true} ∪

{v̄i|i ∈ {1, . . . , n + m} ∧ V1(xi) 6= false} ∪

{vi|i ∈ {1, . . . , n + m} ∧ V2(xi) 6= true} ∪

{v̄i|i ∈ {1, . . . , n + m} ∧ V2(xi) 6= false} ∪

{dp
j |j ∈ {1, . . . , k} ∧ p ∈ {1, 2, 3} ∧ V 6|= lj,1 ∨ . . . ∨ lj,p}.

Take any tuple t from ∆(I ′′, Iψ) and consider the following cases:

• If t is a vi-tuple for some i ≤ n, then V1(xi) = false. From construction of V1

this implies that v̄i ∈ I ′ and hence vi 6∈ I ′. Therefore vi ∈ ∆(I ′, Iψ).

We handle the case where t is a v̄i-tuple for some i ≤ n analogously.

• If t is a vi- or v̄i-tuple for some i > n, then we recall that I ′ contains neither vi

nor v̄i (by (iii)) and hence t ∈ ∆(I ′, Iψ).

• If t is a d1
j -tuple for some j, then by (H5) Lj,1 6∈ I ′′ and V 6|= lj,1. If lj,1 is a literal

using an existential variable xi (i > n), then neither vi-tuple nor v̄i belong to I ′.

Consequently, Lj,1 6∈ I ′ and d1
j 6∈ I ′. If lj,1 is a literal using a universal variable

xi (i ≤ n), then from the construction of V1 and V we have that Lj,1 6∈ I ′ and

by (H5) d1
j 6∈ I ′.

We handle the cases where t is a d2
j - and d3

j -tuple analogously.

Finally, we observe that s ∈ ∆(I ′, Iψ) and s 6∈ ∆(I ′′, Iψ) which shows that ∆(I ′′, Iψ) ⊂

∆(I ′, Iψ).

We finish by observing that a) and b) contradicts I ′ being a repair of Iψ.

⇐ Assume Iψ |=F Q and suppose 6|= ψ, i.e. for some valuation V1 of universal variables

there is no valuation of existential variables which together with V1 satisfies ϕ.
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We claim that the following instance I ′ is a repair of Iψ:

I ′ = {O, s} ∪ {vi|i ∈ {1, . . . , n} ∧ V1(xi) = true}

∪ {v̄i|i ∈ {1, . . . , n} ∧ V1(xi) = false}

∪ {dp
j |V1 |= lj,q for some q < p s.t. lj,q uses a universal variable}

∪ {d1, . . . , dk}.

We show that I ′ |= F . The rules (H1), (H2), (H3), (H4), and (H8) are satisfied trivially

from the construction of I ′. To prove the rule (H5) take any j ∈ {1, . . . , k} such that

lj,1 ∈ I ′. From the construction of I ′ this implies that lj,1 uses a universal variable and

V |= lj,p. Hence, dj,1 ∈ I ′. The fulfillment of the rules (H6) and (H7) is shown analogously.

Next, we show that I ′ is <Iψ
-minimal by contradiction. Suppose there exists an instance

I ′′ such that I ′′ |= F and I ′′ <Iψ
I ′. We take I ′′ to be <Iψ

-minimal. Because for each

i ∈ {1, . . . , n} the instance I ′ contains either vi or v̄i and the instance I ′′ fulfills (H1) the

instance I ′ and I ′′ agree on the tuples v1, v̄1, . . . , vn, v̄n. Also {d1, . . . , dk} ⊆ I ′′. We consider

the following two cases:

• s ∈ I ′′. By (H2) the instance I ′′ does not contain any of the existential variables, i.e.

the instances I ′ and I ′′ agree on all variables. Therefore I ′′ <Iψ
I ′ only if for some j

the tuple dp
j belongs to I ′′ but not to I ′. If p = 1, then by (H5) the instance I ′′ contains

Lj,1. W.l.o.g. we assume that lj,1 = xq for some q, i.e. I ′′ contains vq. Because I ′′

does not contains any of the existential variables, q ≤ n. From the construction of I ′

we observe that dj,1 6∈ I ′ implies that V1 6|= xq. This in turn implies that v̄q ∈ I ′ and

because I ′ and I ′′ agree on the universal variables, v̄q. This means that I ′′ violates

(H1); a contradiction. We prove the claim for p > 1 analogously.

• s 6∈ I ′′. From <Iψ
-minimality for every i ∈ {1, . . . , n + m} either vi or v̄i belongs to

I ′′: if for some i neither vi nor v̄i belongs to I ′′, then I ′′ ∪ {vi} is also consistent and
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I ′′ ∪ {vi} <Iψ
I ′′. Consider the following valuation of all variables:

V (xi) =







true if vi ∈ I ′′,

false if v̄i ∈ I ′′.

We note that V extends the valuation V1 and we claim that V |= ϕ. Suppose otherwise,

i.e. that there exists a conjunct cj which is not satisfied by V . Assume that d1
j belongs

to I ′′. Then by (H5) so does Lj,1, which implies that V |= lj,1; a contradiction;

Similarly we show that neither of the tuples d2
j and d3

j belongs to I ′′. Since s 6∈ I ′′

then dj 6∈ I ′′ or (H8) is violated. This however contradicts with our earlier observation

that {d1, . . . , dk} ⊆ I ′′.

We finish the proof of Π2
p-hardness with the observation that the presented reduction can

be implemented in time polynomial in the size of the formula ψ. 2

Corollary 3.6 Repair checking for universal constraints is coNP-complete. The reduction

uses a set of three constraints: one functional dependency, one denial constraint with two

atoms, and one universal constraint with one atom in its body and 2 atoms in its head.

Proof To show that the problem is in coNP we note that for given instances I and I ′ we

check if I ′ is a repair of I by:

1. checking if I ′ is consistent (can be easily preformed in time polynomial in the size of

I ′);

2. nondeterministically checking if for every independent set M of G(I, F ) we have that

M+ 6<I I ′.

Soundness and completeness of this procedure follows from Lemma 3.4.

We prove coNP-hardness by reducing BF to the complement of 3SAT. We use the

transformation from Theorem 3.5 by treating a 3CNF formula as a ∀∗∃∗QBF formula with

an empty sequence of universally quantified variables. Let Iϕ be the instance obtained from

a 3CNF formula ϕ. We claim that

ϕ 6∈ 3SAT ⇐⇒ I ′ϕ ∈ Rep(Iϕ, F ),
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where I ′ϕ = {d1, . . . , dk, s}. The proof of this claim is analogous to the proof of Theorem 3.5.

2

3.3 Complexity of full tuple-generating dependencies

In this section we focus on consistent query answers in the presence of full tuple-generating

dependencies and denial constraints.

Theorem 3.7 The repair checking for full tuple-generating dependencies is in PTIME.

To prove this theorem we first show an alternative characterization of a repair.

Lemma 3.8 For a set F of full TGDs and denial constraints and an instance I, a set of

tuples I ′ is a repair of I w.r.t. F if and only if the following conditions are satisfied:

(i) I ′ is consistent,

(ii) T ∗
F (I ′ ∩ I) = I ′,

(iii) for every t ∈ I \ I ′ if T ∗
F (I ′ ∪ {t}) is consistent, then T ∗

F (I ′ ∪ {t}) \ I 6⊆ I ′ \ I.

Proof For the only if part take any I ′ ∈ Rep(I, F ) and note that (i) holds trivially.

To show (ii) we note that T ∗
F (I ∩ I ′) ⊆ I ′ because I ′ is consistent (and in particular it

satisfies all full TGDs). We also note that T ∗
F (I ∩ I ′) is consistent; as the result of T ∗

F it

satisfies all full TGDs from F and it does not violate a denial constraint or I ′ ⊇ T ∗
F (I ∩ I ′)

violates the constraint as well. Therefore, I ′ ⊆ T ∗
F (I ∩ I ′) or I ′ is not <I -minimal.

To show (iii) suppose that there exists a tuple t ∈ I \ I ′ such that T ∗
F (I ′ ∪ {t}) is

consistent and T ∗
F (I ′ ∪ {t}) \ I ⊆ I ′ \ I. Then J2 <I I ′ which implies I ′ is not a repair; a

contradiction.

For the if part suppose there exists a repair I ′′ ∈ Rep(I, F ) such that I ′′ <I I ′. This

implies that I ′ ∩ I ⊂ I ′′ ∩ I, and consequently I ′ ∩ I ⊆ I ′′. Because I ′′ is consistent, also

T ∗
F (I ′∩I) ⊆ I ′′ which by (ii) gives us I ′ ⊆ I ′′. Using again I ′′ <I I ′ we get I ′′\I ′ ⊆ I. I ′′\I ′

is non-empty or I ′′ and i′ coincide. Take then any tuple t ∈ I ′′ \ I ′ and note that t ∈ I \ I ′.

We also note that I ′ ∪ {t} ⊆ I ′′, hence T ∗
F (I ′ ∪ {t}) is consistent, and TF (I ′ ∪ {t}) ⊆ I ′′. By
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(iii) we have that I ′′ \ I 6⊆ I ′ \ I. This, however, contradicts I ′′ <I I ′. 2

It is easy to see that the characterization of repair in Lemma 3.8 can be used to perform

repair checking in polynomial time. This proves Theorem 3.7.

Theorem 3.9 The consistent query answering in the presence of full tuple-generating de-

pendencies is coNP-complete. The reduction uses a ground atomic query and a cyclic set of

three constraints: one FD and two full tuple-generating dependencies.

Proof The membership of DF,Q to coNP follows from the definition of consistent query

answer and Theorem 3.7.

We show coNP-hardness by reducing the complement of 3COL to DF,Q. 3COL is a

classic NP-complete decision problem of testing weather a graph has a 3-coloring [Pap94].

3-coloring is an assignment of one of 3 colors to each of the vertices so that no two adjacent

vertices have the same color. Take then any graph G = (V, E) and let V = {v1, . . . , vn}

and E = {e1, . . . , em}. For technical reasons we assume that G has no isolated vertices (i.e.

vertices incident to no edge).

We construct an instance over the schema consisting of 3 relation names: R(V, C, E, E′),

P (E, E′), and Q(E). The set F of integrity constraints consists of one FD:

R : V → C

and two full tuple-generating dependencies

R(V1, C1, E1, E
′
1) ∧ R(V2, C2, E2, E

′
2) ∧ E1 = E2 ∧ C1 6= C2 → P (E1, E

′
1),

P (E1, E
′
1) ∧ Q(E2) ∧ E1 = E2 → Q(E′

1).

We use the following types of tuples in the reduction:

• xk
i,j = R(i, k, j, j + 1) which corresponds to a copy of the vertex vi with color k and

incident to the edge ej (we consider a separate copy for each edge incident to the

vertex);

• yj = P (j, j +1) which corresponds to the edge ej connecting properly colored vertices

(vertices of two different colors);
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• qj = Q(j) which corresponds to edges e1, . . . , ej−1 connecting properly colored ver-

tices.

The set of integrity constraints can be instantiated into the following set of implications:

• for any i ∈ {1, . . . , n}, any j1, j2 ∈ {j|j ∈ {1, . . . , m} ∧ xi ∈ ej}, and any two different

colors k1 and k2:

xk1

i,j1
∧ xk2

i,j2
→ false (C1)

• for any i1, i2 ∈ {1, . . . , n}, j such that ej = {vi1 , vi2}, and any color k ∈ {1, 2, 3, }

xk
i1,j ∧ xk

i2,j → yj (C2)

• for any j ∈ {1, . . . , m}

yj ∧ qj → qj+1 (C3)

For G we construct the following instance:

IG = {xk
i,j |for i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, and k ∈ {1, 2, 3} such that vi ∈ ej}∪{q1}.

The query used in this reduction is Q = ¬qm+1. We claim that:

IG |=F Q ⇐⇒ G 6∈ 3COL.

⇒ Suppose G ∈ 3COL, take any 3-coloring f : V → {1, 2, 3} of G, and consider the

following instance:

I ′ ={x
f(vi)
i,j | for i ∈ {1, . . . , n} and j ∈ {1, . . . , m} such that vi ∈ ej} ∪

{y1, . . . , ym, q1, . . . , qm+1}.

We claim that I ′ is a repair. Naturally, I ′ is consistent. Suppose that I ′ is not <IG
-minimal

consistent instance, i.e. there exists an instance I ′′ such that I ′′ <IG
I ′. Obviously, I ′

and I ′′ must agree on tuples from IG. Hence I ′′ contains tuples q1 and x
f(vi)
i,j for all i, j,
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and vi ∈ ej . I ′′ cannot contain xk
i,j unless k = f(vi) or I ′′ violates (C1). Because f is a

3-coloring, I ′′ also contains y1, . . . , ym or I ′′ is violates (C2). Because I ′′ contains the tuples

q1 and y1, . . . , ym the instance I ′′ also contains q2, . . . , qm+1 or I ′′ is not consistent with rule

(C3). This shows that I ′′ = I ′; a contradiction. Finally, w note that I ′ 6|= Q which implies

that IG 6|=F Q.

⇐ Suppose there exists a repair I ′ such that qm+1 ∈ I ′. <I -minimality implies that I ′

has xk
i,j tuples for each i ∈ {1, . . . , n} and consistency of I ′ implies that for every i all xk

i,j

tuples have the same color (k). Therefore the following function is properly defined:

f(vi) = k such that xk
i,j ∈ I ′ for some j.

By (C3) qm+1 ∈ I ′ and <IG
-minimality of I ′ we have that that {q1, . . . , qm+1} ⊆ I ′ and

{y1, . . . , ym} ⊆ I ′. By (C1) and (C2) this means that no edge connects vertices with the

same color assigned by f . Hence, f is a 3-coloring of G and G ∈ 3COL; a contradiction.

We finish the proof with the observation that the presented reduction can be imple-

mented in time polynomial in the size of the input graph G. 2

3.4 Complexity of acyclic full tuple-generating dependencies

In this section we show that consistent query answering is tractable if we consider acyclic sets

of integrity constraints. We assume a fixed acyclic set of full TGDs and denial constraints

F .

Recall that a tuple is base if it belongs to t; otherwise the tuple is non-base. Also, if

t1 ∧ . . . ∧ tn → s, then we call the set of tuples {t1, . . . , tn} a premise of s.

Definition 3.10 (Support) A support of a tuple t is a set of base tuples defined as follows:

1. if t ∈ I, then {t} is the only support of t;

2. if t 6∈ I and t1 ∧ . . . ∧ tn → t, then for every support S1, . . . , Sn of t1, . . . , tn resp. the

set S1 ∪ . . . ∪ Sn is a support of t.

S(t) is the set of all supports of t.
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Definition 3.11 (Depth of a support) Given a tuple t, the depth of a support S of t is

the minimum of the following values:

1. 0 if t is a base tuple, or

2. k + 1 if t1 ∧ . . . ∧ tn → t, the sets S1, . . . , Sn are supports of t1, . . . , tn respectively,

S = S1 ∪ . . . ∪ Sn, and k is the maximum depth of the supports S1, . . . , Sn.

Example 3.12 Consider the schema S = {R(A, B), P (B, C), Q(A, C)} with the set of

integrity constraints F = {R(x, y) ∧ P (y, z) → Q(x, z)} and the instance

I = {R(1, 2), R(1, 3), P (2, 1), P (3, 1)}.

Naturally, for any tuple t ∈ I the only support of t is the set {t}. However, for the tuple

P (1, 1) (which belongs to H(I, F )) the supports are: {R(1, 2), P (2, 1)} and {R(1, 3), R(3, 1)}.

Lemma 3.13 For every repair I ′ and every tuple t

t ∈ I ′ ⇐⇒ ∃S ∈ S(t).S ⊆ I ′.

Proof We fix the repair I ′.

⇐ We prove the implication by induction on the depth of support.

1. The implication is trivial for any support of depth 0.

2. Assume that the hypothesis holds for every support of depth < k and take a support

S of t such that S ∈ S(t) and the depth of S is k. We know that there exist tuples

t1, . . . , tn with their resp. supports S1, . . . , Sn, each of depth < k, such that t1 ∧ . . .∧

tn → t and S = S1 ∪ . . .∪Sn. Therefore Si ⊆ I ′ and consequently ti ∈ I ′. Thus t ∈ I ′

or I ′ violates t1 ∧ . . . ∧ tn → t.

⇒ We construct the following set:

T = {t ∈ I ′|∀S ∈ S(t).S 6⊆ I ′}.

We make the following claims:
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1. T is a set of non-base tuples. Suppose otherwise and take any base tuple t ∈ T . The

only support of this tuple is {t} which obviously is included in I ′ and hence t 6∈ T ; a

contradiction.

2. T contains no tuple t whose premise is contained in I ′\T . Otherwise, if t1∧. . .∧tn → t

and ti ∈ I ′ \ T for every i, then there exist supports S1, . . . , Sn of t1, . . . , tn resp. and

all of them are contained in I ′. Thus the support S1 ∪ . . . ∪ Sn of t is also contained

in I ′ and hence t 6∈ T ; a contradiction.

3. T is empty. Otherwise, consider the instance I ′′ = I ′ \ T . Because T contains only

non-base tuples, we have that I ′′ <I I ′. Also, because T contains only tuples with

no premise in I ′ the instance I ′′ is consistent. Suppose otherwise, i.e. there exists a

conflict e in I ′′. e cannot be a denial conflict or else e would also be present in I ′.

Thus e = {t1, . . . , tn,¬s}, t1, . . . , tn belong to I ′′ and consequently to I ′, and s belongs

to T . Then, however, s has a premise in I ′; a contradiction.

2

Definition 3.14 (Block) A block of a tuple t is a pair consisting of a set of base tuples

and a set of non-base tuples defined as follows:

1. if t 6∈ I, then (∅, {t}) is the only block of t;

2. if t ∈ I and there is a conflict {t, t1, . . . , tn}, then for every support S1, . . . , Sn of

t1, . . . , tn resp. the set (S1 ∪ . . . ∪ Sn, ∅) is a block of t;

3. if t ∈ I and t∧ t1 ∧ . . .∧ tn → s, then for every support of S1, . . . , Sn of t1, . . . , tn resp.

and every block (B, N) of s the pair (S1 ∪ . . . ∪ Sn ∪ B, N) is a block of t.

B(t) is the set of all blocks of t.

Definition 3.15 (Depth of a block) Given a tuple t, the depth of a block (B, N) of t is

the minimum of the following values:

1. 0 if N = ∅,
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2. k + 1 if t∧ t1 ∧ . . .∧ tn → s, S1, . . . , Sn are supports of t1, . . . , tn respectively, (B′, N)

is a block of s of depth k, and B = S1 ∪ . . . ∪ Sn ∪ B′.

Example 3.16 Consider the schema S = {R(A, B), P (A, B)} with the set of integrity con-

straints F = {R(x, y) → P (x, y), P : A → B} and the instance I = {R(1, 1), P (1, 1), P (1, 2)}.

The only block of P (1, 1) is ({P (1, 2)}, ∅) and the only block of P (1, 2) is ({P (1, 1)}, ∅).

The only block of R(1, 1) is ({P (1, 2)}, ∅).

Lemma 3.17 If F is acyclic, then for every repair I ′ and every tuple t

t 6∈ I ′ ⇐⇒ ∃(B, N) ∈ B(t).B ⊆ I ′ ∧ N ∩ I ′ = ∅.

ProofWe fix a repair I ′.

⇐ We prove the implication by induction on the depth of a block:

1. Trivial for blocks of depth 0.

2. Suppose the hypothesis holds for every block of depth < k and take any block (B, N)

of t of depth k such that B ⊆ I ′ and N ∩ I ′ = ∅. From the construction of (B, N)

there exist tuples t1, . . . , tn, s such that t∧ t1 ∧ . . .∧ tn → s. Also, there exists a block

(Bs, Ns) of s of depth < k such that B = S1 ∪ . . . ∪ Sn ∪ Bs and N = Ns. Because

B ⊆ I ′, the tuples t1, . . . , tn are present in I ′, and because additionally N ∩ I ′ = ∅,

the tuple s is not present in I ′. Therefore t is not present in I ′ or I ′ is inconsistent.

⇒ For a tuple t 6∈ I, a block (B, N) is proper if B ⊆ I ′ and N ∩ I ′ = ∅. Let’s select the

set of tuples that don’t have a proper block:

T = {t 6∈ I ′|∀(B, N) ∈ B(t).B 6⊆ I ′ ∨ N ∩ I ′ 6= ∅}

We claim the following:

1. T ⊆ I, i.e. T contains only base tuples. Suppose otherwise that there exists a tuple

t ∈ T \ I. Then consider the only block (∅, {t}) of t. Obviously, it is a proper block;

a contradiction.
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2. No tuple from T creates a denial conflict with tuples from I ′. Otherwise, if some t ∈ T

and some t1, . . . , tn ∈ I ′ create a denial conflict {t, t1, . . . , tn}, then for any supports

S1, . . . , Sn of t1, . . . , tn resp. the pair (S1 ∪ . . . ∪ Sn, ∅) is a proper block of t and

consequently t 6∈ T ; a contradiction.

3. For every t ∈ T there exist t1, . . . , tn ∈ I ′ such that t∧ t1∧ . . .∧ tn → s for some s ∈ T .

To prove it we make the following observations:

(a) Suppose there exists t ∈ T for which there is no such t1, . . . , tn ∈ I ′ that t ∧ t1 ∧

. . . ∧ tn → s for any s. Then by 2 above the instance I ′ ∪ {t} is consistent and

by 1 above I ′ ∪ {t} <I I ′; a contradiction.

(b) Suppose there exists t ∈ T such that for every t1, . . . , tn ∈ I ′ if t∧ t1 . . .∧ tn → s,

then s ∈ I ′. Then again I ′ ∪ {t} is a consistent instance and I ′ ∪ {t} <I I ′; a

contradiction.

(c) Suppose there exists t ∈ T such that there exists t1, . . . , tn ∈ I ′ such that t∧ t1 ∧

. . . ∧ tn → s and s 6∈ T . By (b) s also does not belong to I ′. Therefore there

exists a block (B, N) of s such that B ⊆ I ′ and N ∩ I ′ = ∅. Then the block of

t constructed in case 3 of Definition 3.14 using s, t1, . . . , tn is proper and hence

t 6∈ T ; a contradiction.

4. T = ∅. Otherwise we construct an infinite sequence s0, s1, . . . , of tuples from T as

follows. For s0 select any tuple of T . For i > 0 as si choose any tuple s from T

such that si−1 ∧ t1 ∧ . . . ∧ tn → s for any t1, . . . , tn from I ′. Such tuple exists by

3 above. Now, let Rj0 , Rj1 , . . . be the sequence of relation names of tuples s0, s1, . . .

respectively. Naturally, for every i there is an edge in the dependency graph D(F )

coming from Rji
to Rji+1

. Since D(F ) has a finite number of vertices, it must have a

cycle. This implies that F is not acyclic; a contradiction.

2

Lemma 3.18 If F is acyclic, then for any tuple t the sizes of S(t) and B(t) are polynomial

in the size of I.



38 CHAPTER 3. UNIVERSAL CONSTRAINTS

Proof First we observe that because the set of constraints is acyclic, the depth of all sup-

ports and all blocks is bound by a constant (equal to the number of different relation names).

With a simple induction by the depth of a support we can show that the size of any support

of depth k is O(nk), where n is the maximum number of a atoms in a head of a full TGD

in F . Because we assume F to be fixed, the size of any support is bound by a constant

K = nk. The number of different subsets of tuples from I is therefore O(IK). We prove

the claim for blocks analogously. 2

Lemma 3.19 For any set of base tuples P and any set of non-base tuples N a repair

containing all tuples of P and disjoint with N exists if and only if T ∗
F (P ) is consistent and

disjoint with N .

Proof The only if part of the proof is trivial. For the if part consider a set C of consistent

instances that contain P and that are disjoint with N . Because T ∗
F (P ) is consistent and

disjoint with N this set is nonempty (T ∗
F (P ) is one of its elements). Now, from C we select

any <I -minimal instance I ′. We claim that I ′ is a repair. Suppose otherwise, i.e. there

exists a consistent instance I ′′ such that I ′′ <I I ′. We observe that:

1. P ⊆ I ′′ or otherwise I ′′ 6<I I ′ (because P is a subset of base tuples).

2. T ∗
F (P ) ⊆ I ′′ or otherwise I ′′ is not consistent.

3. N ∩ I ′′ 6= ∅ or otherwise I ′ is not a <I -minimal element of C.

Now, take any t ∈ N ∩ I ′′ and recall that N ∩ I = ∅. Thus t ∈ ∆(I, I ′′) but t 6∈ ∆(I, I ′).

This contradicts I ′′ <I I ′. We finish the proof with the observation that I ′ contains T ∗
F (P )

and is disjoint with N . 2

Theorem 3.20 Consistent query answering is in PTIME for any acyclic set of full tuple-

generating dependencies and denial constraints and any ground quantifier-free query.

Proof We extend the algorithm computing consistent query answer in the presence of denial

constraints from [CM05] to handle acyclic sets of constraints.
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Take any query Q and assume it is in CNF, i.e.

Q = Q1 ∧ . . . ∧ Qw,

where Ql is a disjunction of literals. We note that true is not the consistent query answer

to Q if and only if there exists a repair I ′ such that I ′ |= ¬Ql for some l ∈ {1, . . . , w}. The

algorithm attempts to find if there exists such a repair iteratively for each l ∈ {1, . . . , w}.

Fix l and let

¬Ql = t1 ∧ . . . ∧ tn ∧ ¬s1 ∧ . . . ∧ ¬sm. (3.4)

We assume that the tuples t1, . . . , tn, s1, . . . , sm belong to H(I, F ). Otherwise if ti 6∈ H(I, F )

for some i ∈ {1, . . . , n}, there is no repair satisfying Ql and if sj 6∈ H(I, F ) for some

j ∈ {1, . . . , m}, we can remove ¬sj from the conjunction.

For every i ∈ {1, . . . , n} the algorithm nondeterministically chooses a support Si of ti.

Next, for j ∈ {1, . . . , m} the algorithm nondeterministically chooses a block (Bj , Nj) of

sj . If there is no block for sj , then the algorithm fails for this l. Finally, the algorithm

constructs two sets:

P =
n⋃

i=1

Si ∪
m⋃

j=1

Bj , and N =
m⋃

j=1

Nj .

A repair satisfying ¬Ql exists if and only if T ∗
F (P ) is consistent and disjoint with N . To

prove soundness and correctness of this procedure we note that by Lemma 3.19, T ∗
F (P ) is

consistent and disjoint with N if and only if there exists a repair I ′ containing P and disjoint

with N . Because of the nondeterministic construction of P and N by Lemma 3.13 and

Lemma 3.17 this is equivalent to I ′ containing {t1, . . . , tn} and disjoint with {s1, . . . , sm},

i.e. I ′ |= ¬Ql.

We finish the proof with the observation that the algorithm makes a fixed number of

nondeterministic choices and every choice is made from a set whose size is polynomial in

the size of I. Hence, the algorithm works in time polynomial in the size of I. 2
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3.5 Related work

For a complete survey of the topic we refer the reader to [Ber06, BC03, Cho07]. Here, we

discuss only work focused on the computational complexity of consistent query answers.

Discussion of system-oriented work is in Section 4.7.

Our work was inspired by positive results for denial constraints presented in [CM05].

Repairs of databases inconsistent w.r.t. denial constraints are obtained by deletion of some

(conflicts) tuples only. In [CM05] the repairs obtained by deletion of tuples only are also

used to define consistent query answers in the presence of inclusion dependencies (IND),

i.e. constraints of the form

∀x̄1∃x̄3R(x̄1) → P (x̄2, x̄3),

where x̄2 ⊆ x̄1. An IND of the form above is often denoted by R[X] ⊆ P [Y ], where X

and Y are the sets of attributes corresponding to x̄2. Also, the IND R[X] ⊆ P [Y ] is a

foreign-key constraint if Y is the key of the relation P .

We note that universal constraints capture only full INDs, i.e. INDs with no existentially

quantified variables. Considering repairs obtained by deleting tuples only is natural in

the scenarios like data warehousing, where the data is complete but may be incorrect; In

particular we can assume that if a fact is not present in the original database, then it is not

true.

Example 3.21 Consider the database schema S = {R(A, B), P (C, D)} with the set of

integrity constraints F = {R : A → B, P [D] ⊆ R[A]} and take the following database

I = {R(1, 1), R(1, 2), P (3, 1), P (5, 6)}.

Then, there are two minimal repairs obtained by deleting tuples only:

I1 = {R(1, 1), P (3, 1)}

and

I2 = {R(1, 2), P (3, 1)}.
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We note that if we restrict the set of integrity constraints to one key dependency per relation

and foreign-key constraints, then the discussed approach has an interesting property. Every

repair can be obtained in two steps: In the first step we repair only violations of foreign-

key constraints which yields exactly one instance; Next, we repair the violations of key

dependencies.

Example 3.22 (cont. of Example 3.21) Repairing I w.r.t P [D] ⊆ R[A] yields the in-

stance I ′ = {R(1, 1), R(1, 2), P (3, 1)}. Note that consecutive repairing I ′ w.r.t R : A → B

does not violate the foreign-key constraint because every repair of I ′ has a tuple R(1, x) for

some x. Hence, I1 and I2 are repairs (in the sense of Definition 2.4) of I ′ w.r.t. R : A → B.

Naturally, this observation allows to use any method for computation of consistent query

answers in the presence of key constraints. [CM05] also shows that relaxing the restriction

on the set of integrity constraints leads to intractability and consistent query answering to

arbitrary sets of INDs and FDs becomes Πp
2-complete.

Obtaining repairs by deletion of tuples only is not necessarily a natural approach in the

scenarios where we cannot assume that information missing in the database is untrue, for

instance in the context of integration of sources that may be missing some information.

Then, we might want to consider standard repairs obtained by deleting and inserting a

minimal set of tuples, i.e. repairs in the sense of Definition 2.4. We observe, however,

that while in the case of universal constraints the missing tuples that create conflicts are

implicitly defined, the presence of existentially quantified variables in INDs leads to possibly

infinite number of repairs.

Example 3.23 (cont. of Example 3.21) The set of standard repairs for I w.r.t F con-

sists of the following instances:

Ix = {R(1, 1), R(6, x), P (3, 1), P (5, 6)} for any x

and

Ix = {R(1, 2), R(6, x), P (3, 1), P (5, 6)} for any x.

Cali et al. in [CLR03] show that consistent query answering becomes undecidable for arbi-
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trary sets of INDs and FDs. The problem becomes tractable when the set of integrity con-

straints is restricted to non-key-conflicting INDs; IND R[X] ⊆ P [Y ] is non-key-conflicting if

Y is not a strict superset of the key of P . Then, the problem of consistent query answering

is Π2
p-complete.



Chapter 4

The system Hippo

In this chapter we present the system Hippo for computing consistent query answers to

π-free relational algebra queries in the presence of full tuple generating dependencies and

denial constraints.

4.1 System architecture

The flow of data in the system is presented in Figure 4.1. The only output of the system

E : σ,∪, \,×

Enveloping

E′ : σ,∪, \,×

Evaluation Envelope Grounding

Translation

ϕE : ∧,∨,¬

DB Conflict Detection Conflict Graph Prover

IC

Answer Set

Figure 4.1: Data flow in the Hippo system

43
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is the Answer Set consisting of consistent answers to the input query E in the database

instance DB w.r.t. the set of integrity constraints IC.

Before processing any input query, the system performs Conflict Detection and creates

the Conflict Hypergraph. In Section 4.2 we observe that for the purposes of computing

consistent query answers we do not need to store the whole extended hypergraph, but only

hyperedges representing conflicts relevant to computing consistent query answers.

The processing of a query E starts with Enveloping it to obtain a query E′ which after

Evaluation returns an Envelope, a superset of the consistent query answers to E. Next,

the system performs the Translation of the query E into a quantifier-free first-order logic

formula ϕE . We use this formula to perform Grounding (ground substitution) for every

tuple from the Envelope yielding a ground quantifier-free query. For such a query the

Prover uses the algorithm from Section 3.4 to check if true is the consistent answer to the

query. Consequently, depending if the result of this check is positive or not the tuple is

placed into the Answer Set or discarded.

We note that the Prover does not need a direct knowledge of IC; all needed information

is stored in the Conflict Hypergraph. We recall, however, from Section 3.4 that to check if

true is the consistent answer to ϕE grounded with a tuple Prover needs to find out if other

tuples are present in the database.

4.2 Conflict hypergraph construction

We start by identifying tuples that may be inserted into a repair to resolve inconsistencies.

From now on we assume a fixed acyclic set F of full TGDs and denial constraints.

4.2.1 Hull, core, and shell

Definition 4.1 (Hull) For any R ∈ S the hull expression for R in the presence of F ,

denoted H(R, F ), is an expression consisting of the union of R and the union of the following

expressions for every rule in F of the form Ri1(x̄1) ∧ . . . ∧ Rim(x̄m) ∧ ρ → R(ȳ):

πY (σρ(H(Ri1 , F ) × . . . × H(Rim , F ))),



4.2. CONFLICT HYPERGRAPH CONSTRUCTION 45

where Y are the positions of ȳ variables and ρ is the selection expression obtained from ρ

and a conjunction of equality (join) conditions for variables that repeat among x̄i vectors.

Given an instance I, its hull w.r.t F , denoted H(I, F ), is the union of all hull expressions

evaluated over I, i.e. formally:

H(I, F ) = {R(t)|R ∈ S ∧ t ∈ QA(I, H(R, F ))}.

We note that because F is acyclic, there is no cycle in the definitions of hull expressions.

We also note that the hull presented here coincides with the more general version in Defi-

nition 3.1. We present the expressions to emphasize that for for an acyclic set of full TGDs

and denial constraints the hull can be constructed with SQL expressions (use of recursive

Datalog is not necessary). We also note that for acyclic TGDs and denial constraints the

hull can be characterized as follows.

Fact 4.2 For any instance I and set of integrity constraints F , the hull H(I, F ) is the

minimal set of tuples such that :

1. I ⊆ H(I, F ) and

2. if t1 ∧ . . . ∧ tn → t and {t1, . . . , tn} ⊆ H(I, F ), then t ∈ H(I, F ).

Example 4.3 Consider a schema consisting of two binary relation names R(A, B) and

P (A, B), and the following (acyclic) set of integrity constraints

F = {R : A → B, P : A → B, R(A, B) ∧ R(B, C) ∧ A ≤ C → P (A, C)}.

The hull expressions are:

H(R, F ) = R,

H(P, F ) = P ∪ π1,4(σ1≤4∧2=3(R × R)).

We note, however, that the hull of I is not necessarily the union of all repairs of I.
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Example 4.4 We use the schema and the set of constraints F from Example 4.3 and take

the instance I = {R(1, 1), R(1, 2), P (1, 1)}. The hull is

H(I, F ) = {R(1, 1), R(1, 2), P (1, 1), P (1, 2)}.

We note that the tuple P (1, 2) is not present in either of the repairs of I w.r.t. F : I1 =

{R(1, 1), P (1, 1)} and I2 = {R(1, 2), P (1, 1)}.

Now, we identify the tuples that are not removed from the original instance when construct-

ing a repair.

Definition 4.5 (Core) For any R ∈ S the core expression for R in the presence of F ,

denoted C(R, F ), is an expression consisting of the difference between R and the union of

the following expressions:

• for every denial constraint R(x̄) ∧ Ri1(x̄1) ∧ . . . ∧ Rim(x̄m) ∧ ρ → false in F

πX(σρ(H(R, F ) × H(Ri1 , F ) × . . . × H(Rim , F ))),

where X are the positions corresponding to x̄ variables and ρ is obtained from ρ and

a conjunction of equality (join) conditions for repeated variables;

• for every full TGD R(x̄) ∧ Ri1(x̄1) ∧ . . . ∧ Rim(x̄m) ∧ ρ → P (ȳ) in F

πX(σρ(H(R, F ) × H(Ri1 , F ) × . . . × H(Rim , F ) × (H(P, F ) \ C(P, F )))),

where X are positions corresponding to x̄ variables and ρ is obtained from ρ and a

conjunction of equality (join) conditions for repeated variables.

Given an instance I, its core w.r.t F , denoted C(I, F ), is the union of all core expressions

evaluated over I, i.e. formally:

C(I, F ) = {R(t)|R ∈ S ∧ t ∈ QA(I, C(R, F ))}.

Again, we note that because F is acyclic, the definitions of hull expression are not cyclic.



4.2. CONFLICT HYPERGRAPH CONSTRUCTION 47

Example 4.6 Take the schema and the set of integrity constraints from of Example 4.3

and recall that the functional dependency P : A → B stands for the formula

∀x1, x2, x3, x4.P (x1, x2) ∧ P (x3, x4) ∧ x1 = x2 ∧ x2 6= x4 → false.

Similar formula exists for R : A → B. The core expressions are:

C(P, F ) = P \ (π1,2(σ1=2∧36=4(H(P, F ) × H(P, F )))),

C(R, F ) = R \ (π1,2(σ1=2∧36=4(R × R))

∪π1,2(σ1<4∧2=3∧1=5∧4=6(H(R, F ) × H(R, F ) × (H(P, F ) \ C(P, F ))))

∪π3,4(σ1<4∧2=3∧1=5∧4=6(H(R, F ) × H(R, F ) × (H(P, F ) \ C(P, F ))))).

We note that the full TGD produces two subexpressions (but with different projection lists)

because the relation name R is present twice in the full TGD. Relation names are present

twice also in the formulas expressing the FDs, however, the resulting subexpressions are

equivalent and therefore need not to be repeated.

We also observe an alternative characterization of the core.

Fact 4.7 For any instance I, the core C(I, F ) is the maximal set of tuples of I such that:

1. if {t1, . . . , tn} ⊆ H(I, F ) is a denial conflict, then {t1, . . . , tn} ∩ C(I, F ) = ∅,

2. if t1 ∧ . . . ∧ tn → s and {t1, . . . , tn, s} ⊆ H(I, F ), then {t1, . . . , tn, s} ∩ C(I, F ) = ∅.

We note that, similarly to the hull, the core it is not necessarily the intersection of all

repairs, i.e. the core is not the core instance commonly used in the literature [ABC+03b,

EFGL03].

Example 4.8 We assume the setting of Example 4.4. The core C(I, F ) is empty while the

tuple P (1, 1) is present in both repairs I1 and I2.

Corollary 4.9 For any database instance I and any repair I ′ ∈ Rep(I, F )

C(I, F ) ⊆ I ′ ⊆ H(I, F ).
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Proof We get I ′ ⊆ H(I, F ) from Lemma 3.4. Suppose there exists x ∈ C(I, F ) such that

x 6∈ I ′, then {x} ∪ I ′ is consistent (by Fact 4.7) and because C(I, F ) ⊆ I, I ′ ∪ {x} <I I ′; a

contradiction. 2

Definition 4.10 (Shell) Given an instance I its shell w.r.t. F , denoted S(I, F ), is

S(I, F ) = H(I, F ) \ C(I, F ).

Lemma 4.11 For any tuple t ∈ S(I, F ) every support and every block of t is contained in

S(I, F ), i.e.

∀S ∈ S(t).S ⊆ S(I, F ),

∀(P, N) ∈ B(t).P ⊆ S(I, F ) ∧ N ⊆ S(I, F ).

Proof We prove the claim for the supports by induction over the depth of a support

(Definition 3.11).

1. Trivial for supports of depth 0.

2. Consider a support S of t of depth k + 1 > 0. Take the ground rule t1 ∧ . . . ∧ tn → t

and the supports S1, . . . , Sn of t1, . . . , tn respectively such that S = S1 ∪ . . . ∪ Sn

and the maximum degree of S1, . . . , Sn is k. Then by Facts 4.2 and 4.7 we have

{t1, . . . , tn} ⊆ S(I, F ) and by induction hypothesis S1 ∪ . . . ∪ Sn ⊆ S(I, F ).

The claim for blocks is proved by induction over the depth of a block:

1. Trivial for block of depth 0 of the form ({t}, ∅).

2. For any other block (B, ∅) of depth 0, let {t, t1, . . . , tn} be a conflict such that B =

S1 ∪ . . . ∪ Sn, where S1, . . . , Sn are the supports of t1, . . . , tn. By Fact 4.7 we have

{t1, . . . , tn} ⊆ S(I, F ) and from the claim for supports S1 ∪ . . . ∪ Sn ⊆ S(I, F ).

3. For a block (B, N) of depth k + 1 > 0, let t ∧ t1 ∧ . . . ∧ tn → s be such a ground rule

that B = S1∪ . . .∪Sn∪B′, where S1, . . . , Sn are supports of t1, . . . , tn respectively and
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(B′, N) is the block of s of depth k. Then by Facts 4.7 and 4.2 we have {t1, . . . , tn, s} ⊆

S(I, F ) and by induction hypothesis and the claim for supports we have that S1 ∪

. . . ∪ Sn ∪ B′ ⊆ S(I, F ) and N ⊆ S(I, F ).

2

Lemma 4.12 For any instance I and any J ⊆ S(I, F ) we have that T ∗
F (J) ⊆ S(I, F ).

Proof By Fact 4.2 TF (J) ⊆ H(I, F ) and by Fact 4.7 TF (J) ⊆ S(I, F ). Hence, T ∗
F (J) ⊆

S(I, F ). 2

4.2.2 Active conflict hypergraph

We use the shell of an instance to identify the conflicts that are necessary to find if true is

a consistent answer to a ground FOL query.

Definition 4.13 (Active extended conflict hypergraph) The active extended conflict

hypergraph GA(I, F ) is the subgraph of G(I, F ) induced by S(I, F ). With every tuple of

S(I, F ) we also store the information if the tuple is base or not (i.e. if it belongs to I or

not).

Now, we revisit the algorithm finding if true is the consistent answer to a ground FOL

query (Theorem 3.20) and make the following observations:

1. We can assume that the query (3.4)

¬Ql = t1 ∧ . . . ∧ tn ∧ ¬s1 ∧ . . . ∧ ¬sm

contains only tuples from S(I, F ). If for some i ∈ {1, . . . , n} the conjunct ti of Ql

belongs to C(I, F ) (i.e. it belongs to I and does not belong to S(I, F )), then it can

be removed from consideration because every repair of I contains t. Similarly, if for

some j ∈ {1, . . . , m} the conjunct ¬sj of ¬Ql belongs to C(I, F ), then there is no

repair satisfying Ql.
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2. The set of supports and the set of blocks of any tuple from S(I, F ) can be constructed

from GA(I, F ) (Lemma 4.11).

3. The transitive closure of a subset of S(I, F ) can be computed using GA(I, F ) only

(Lemma 4.12).

4.3 Basic enveloping

We begin by observing that consistent answers to a query need not to be contained in the

set of answers to the query.

Example 4.14 Suppose the schema consists of two relation names R(A, B) and S(A, B, C, D).

The set of integrity consists of one functional dependency F = {R : A → B}. Con-

sider the instance I = {R(1, 1), R(1, 2), S(1, 1, 1, 2) and a relational algebra query E =

S \σ26=4(R×R). The set of answers to E is empty, while the set of consistent query answers

is {(1, 1, 1, 2)}.

Therefore to get a superset of consistent query answer we introduce the following expression.

Definition 4.15 (Envelope expression) Given an RA expression E and a set of integrity

constraints we define the envelope expression of E w.r.t. F , denoted by Env(E, F ), as

follows (by mutual recursion with an auxiliary expression Cert(E, F )):

Env(R,F ) = H(R,F ), Cert(R) = C(R,F ),

Env(σχ(E), F ) = σχ(Env(E,F )), Cert(σχ(E), F ) = σχ(Cert(E,F )),

Env(πX(E), F ) = πX(Env(E,F )), Cert(πX(E), F ) = πX(Cert(E,F )),

Env(E1 × E2, F ) = Env(E1, F ) × Env(E2, F ), Cert(E1 × E2, F ) = Cert(E1, F ) × Cert(E2, F ),

Env(E1 ∪ E2, F ) = Env(E1, F ) ∪ Env(E2, F ), Cert(E1 ∪ E2, F ) = Cert(E1, F ) ∪ Cert(E2, F ),

Env(E1 \ E2, F ) = Env(E1, F ) \ Cert(E2, F ), Cert(E1 \ E2, F ) = Cert(E1, F ) \ Env(E2, F ).

Proposition 4.16 For any instance I, any repair I ′ ∈ Rep(I, F ), and any expression E

QA(I, Cert(E, F )) ⊆ QA(I ′, E) ⊆ QA(I, Env(E, F )).



4.4. TUPLE CHECKS AND KNOWLEDGE GATHERING 51

Proof[by induction over the structure of E] The base case follows from Corollary 4.9. For

the monotonic operators σ, π, ×, and ∪ the thesis holds trivially by induction hypothe-

sis. For the expression involving the set difference operator E1 \ E2 assume by induction

hypothesis that

QA(I ′, E1) ⊆ QA(I, Env(E1, F )) and QA(I, Cert(E2, F )) ⊆ QA(I ′, E2).

for any I ′ ∈ Rep(I, F ). Fix the repair I ′ and note that if A ⊆ B and C ⊆ D, then

A \ D ⊆ B \ C. Therefore:

QA(I ′, E1 \ E2) = QA(I ′, E1) \ QA(I ′, E2) ⊆ QA(I, Env(E, F )) \ QA(I, Cert(E, F )).

Similarly we prove that

QA(I, Cert(E1 \ E2, F )) ⊆ QA(I ′, E1 \ E2).

2

Recall that CQA(I, E) =
⋂

I′∈Rep(I,F ) QA(I ′, E). Therefore,

Corollary 4.17 For any instance I and any expression E

QA(I, Cert(E, F )) ⊆ CQA(I, E) ⊆ QA(I, Env(E, F )).

4.4 Tuple checks and knowledge gathering

We recall that for every instance of ϕE grounded with a tuple from Envelope the Prover

needs to perform tuples checks, i.e. find if other tuples are present in the database instance.

A naive implementation performs a membership query for each tuple check. Because in

virtually all relational database systems performing a query requires an allocation of a

significant amount of resources, this approach may yield a high overhead. To address this

issue we show how to avoid some of the tuple check by performing knowledge gathering. We

show how to extend the envelope expression to provide all information that can be needed

by Prover.
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We start by identifying the tuple checks that can be performed by Prover. We obtain the

set of facts relevant to computing consistent answers to a ground query ϕE(t) by following

the standard translation of E into ϕE and the grounding of ϕE with a tuple t from Envelope.

Definition 4.18 (Relevant facts) For a given π-free expression E and a tuple t compat-

ible with E, the set TC(E, t) of relevant facts is defined recursively:

TC(R, t) = {R(t)},

TC(σχ(E), t) = TC(E, t),

TC(E1 × E2, t1 · t2) = TC(E1, t1) ∪ TC(E2, t2),

TC(E1 ∪ E2, t) = TC(E1, t) ∪ TC(E2, t),

TC(E1 \ E2, t) = TC(E1, t) ∪ TC(E2, t).

The following example illustrates that the tuple t used to ground ϕE may allow to infer

if some of the relevant facts of TC(E, t) are in the database instance I. Consequently, this

information can be used to answer some of the tuple checks without performing membership

queries.

Example 4.19 Consider the relational schema consisting of two binary relation names

S = {R(A, B), P (A, B)} with the set of integrity constraints F = {R : A → B, P : A → B}

and the following query E = σ1=a(R × (R ∪ P )). We also have an instance I, but we

do not assume any knowledge of the instance. The set of relevant facts is TC(E, t) =

{R(a, b), R(c, d), P (c, d)}.

Because H(R, F ) = R and H(P, F ) = P , the envelope expression coincides with original

query, i.e. Env(E, F ) = E. Now, suppose that a tuple t = (a, b, c, d) is an answer to

Env(E, F ) in I.

Naturally, t ∈ QA(I, E) implies that R(a, b) ∈ I. At the same time, although we know

that R(c, d) or P (c, d) must be in I, we don’t have sufficient information to say exactly if I

contains R(c, d), P (c, d), or both.

We attempt to infer information about the state of the database instance based on the

results of evaluating the envelope expression and the active conflict hypergraph. We call
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this process knowledge gathering.

Definition 4.20 (Knowledge gathering) For any database instance I, any π-free ex-

pression E, and any tuple t compatible with E, the set KG(E, t) is defined as follows:

KG(R, t) =







∅, if t is a non-base tuple of GA(I, F ),

{R(t)}, otherwise,

KG(σρ(E), t) = KG(E, t),

KG(E1 × E2, t1 · t1) = KG(E1, t1) ∪ KG(E2, t2),

KG(E1 ∪ E2, t) = KG(E1, t) ∩ KG(E2, t),

KG(E1 \ E2, t) = KG(E1, t).

We note that KG(E, t) is always nonempty and its size is linear in the size of the query E.

With a simple induction over the structure of the expression we can show

Fact 4.21 For any instance I, any π-free expression E, and any tuple t compatible with E

KG(E, T ) ⊆ TC(E, t).

Now, we state that knowledge gathering is a sound derivation of facts holding in the

database.

Theorem 4.22 (Soundness of KG) For any instance I and any π-free expression E

∀t ∈ QA(I, Env(E, F )).∀t′ ∈ TC(E, t).t′ ∈ KG(E, t) ⇒ t′ ∈ I.

We prove this results together with the following claim.

Theorem 4.23 (Completness of KG for {σ, ×}-queries) For any instance I and any

{σ,×}-expression E

∀t ∈ QA(I, Env(E, F )).∀t′ ∈ TC(E, t).t′ ∈ KG(E, t) ⇔ t′ ∈ I.
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Proof[of Theorems 4.22 and 4.23] We start by proving the completeness of {σ,×}-expressions

using induction over the structure of E.

• Let E = R for some relation name R. Take any t ∈ QA(I, H(R, F )) and observe

that TC(R, t) contains only one element R(t). We also note that t ∈ QA(I, H(R, F ))

implies R(t) ∈ H(I, F ) and consequently R(t) belongs either to C(I, F ) or S(I, F ).

Recall that the active conflict hypergraph GA(I, F ) contains only tuples from S(I, F )

and stores the information if a tuple from S(I, F ) is base (i.e., belongs to I). Therefore

R(t) belongs to I if and only if R(t) is not a non-base tuple of GA(I, F ), i.e. R(t) ∈

KG(R, t).

• Consider the expression σρ(E), take any t ∈ QA(I, Env(σρ(E), F )), and observe

that t ∈ QA(I, Env(E, F )). For any t′ ∈ TC(σρ(E), t) = TC(E, t) we have t′ ∈

KG(E, t) = KG(σρ(E), t) if and only if t′ ∈ I by induction hypothesis.

• Consider the expression E1 × E2, take any t ∈ QA(I, Env(E1 × E2, F )), and note

that t = t1 · t2 and ti ∈ QA(I, Env(Ei, F )) for i ∈ {1, 2}. Now, take any t′ ∈

TC(E1 × E2, t) = TC(E1, t1) ∪ T (E2, t2). For the only if part, suppose that t′ ∈

KG(E, t). This implies that t′ ∈ KG(Ei, ti) for some i ∈ {1, 2}. By Fact 4.21

t′ ∈ TC(Ei, ti) and by induction hypothesis t′ ∈ I. For the if part, suppose t′ ∈ I.

Because t′ ∈ TC(Ei, ti) for some i ∈ {1, 2} by induction hypothesis t′ ∈ KG(Ei, ti)

and consequently t′ ∈ KG(E, t).

Next, we extend the inductive argument above to show soundness for expressions that use

also the difference and union operators.

• Consider the expression E = E1 ∪ E2, take any t ∈ QA(I, Env(E, F )), and note that

t ∈ QA(I, Env(Ei, F )) for some i ∈ {1, 2}. Now, take any t′ ∈ KG(E, t) and suppose

that t′ ∈ KG(E, t). This implies that t′ ∈ KG(E1, t), by Fact 4.21 we have that

t′ ∈ KG(E1, t), and by induction hypothesis t′ ∈ I.

• Consider the expression E = E1 \ E2, take any t ∈ QA(I, Env(E, F )), and note that

t ∈ QA(I, Env(E1, F )). Now, take any t′ ∈ TC(E, t) and suppose t′ ∈ KG(E, t) =

KG(E1, t). Then, by induction hypothesis t ∈ I.
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2

4.5 Extended enveloping

Soundness of knowledge gathering, although helpful, is not sufficient to allow the system

to be scalable to queries whose envelopes are large. Executing even one membership query

for every tuple maybe very cost prohibitive. To further improve the process of knowledge

gathering we propose to extend the envelope expression so that the resulting tuple carry

enough information to derive all relevant facts. We illustrate this approach in the following

example.

Example 4.24 (cont. of Example 4.19) For the previously considered expression E =

σ1=a(R × (R ∪ P )) the extended envelope is σ1=a(R × (R ∪ P ))
3,4
←−− R

3,4
←−− P , where ←

is the left outer join operator1. Suppose now, I = {R(a, b), R(e, f), P (c, d), P (e, f)}. Then

the evaluation of the extended envelope expression yields the following:

σ1=a(R × (R ∪ P ))
3,4
←−− R

3,4
←−− P

a b a b a b ⊥ ⊥

a b c d ⊥ ⊥ c d

a b e f e f e f

Now, consider the tuple (a, b, c, d,⊥,⊥, c, d). We can decompose it into two parts (a, b, c, d)

and (⊥,⊥, c, d). The first part is simply the tuple from the envelope Env(E, F ), and it can

be used to infer the fact R(a, b) as described in the previous example. The second part

allows us to make two other important inferences. Namely, R(c, d) 6∈ I and P (c, d) ∈ I.

Our goal is to minimally extend the envelope expression with outer join expression so

that we can derive all relevant facts. To identify what information cannot be gathered from

evaluating the standard envelope expression we generalize the definition TC and KG to

dummy tuples consisting of distinct variables. For TC the definition remains the same. The

definition of KG needs to be augmented for the base case KG(R, x̄). Because in this case

1For clarity we simplify the notion of the outer join condition. When writing S
3,4
←−− T we mean

S
S.3=T.1∧S.4=T.2
←−−−−−−−−−−− T , and we assume the left join operator is left associative
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knowledge gathering is complete, we identify the fact that the information is derived with

the following rule

KG(R, x̄) = {R(x̄)}.

We note that for dummy tuples we do not need GA(I, F ) to evaluate KG. Finally, we

observe that because neither TC nor KG operator permutes the elements of the tuples,

they result in a set of atomic formulas having always consecutive elements of the input

tuple.

Fact 4.25 For any E and any sequence of variables and constants v̄ = (v1, . . . , v|E|), if u

is an element of TC(E, v̄) or KG(E, v̄), then u = R(vi, . . . , vi+|R|−1) for some R ∈ S and

some i ∈ {1, . . . , |E|}. Moreover, KG(E, x̄) ⊆ TC(E, x̄).

Fact 4.26 For any E and any t compatible with E

TC(E, t) = {R(ti, . . . , ti+|R|−1)|R(xi, . . . , xi+|R|−1) ∈ TC(E, x̄)},

where x̄ = (x1, . . . , x|E|).

Fact 4.27 For any instance I, any π-free E, and any t ∈ QA(I, Env(E, F ))

KG(E, t) = {R(ti, . . . , ti+|R|−1)|R(xi, . . . , xi+|R|−1 ∈ TC(E, x̄) and

(ti, . . . , ti+|R|−1) is not a non-base tuple of GA(I, F ),

where x̄ = (x1, . . . , x|E|).

Example 4.28 (cont. of Example 4.24) For the expression E = σ1=a(R×(R∪P )) and

x̄ = (x1, x2, x3, x4) we have:

TC(E, x̄) = {R(x1, x2), P (x3, x4), R(x3, x4)},

KG(E, x̄) = {R(x1, x2)}.

R(x1, x2) ∈ TC(E) means that for any tuple t = (t1, t2, t3, t4) from the evaluation of

the envelope expression for E, Prover may perform the tuple check R(t1, t2). We have
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also R(x1, x2) ∈ KG(E) and therefore we are able to answer this check using knowledge

gathering. On the other hand R(x3, x4) ∈ TC(E) means that for t Prover may also perform

a tuple check R(t3, t4). However, R(x3, x4) 6∈ KG(E), which means that we can answer the

tuple check R(t3, t4) without executing a membership query on the database, even though

we are able to answer the tuple check R(t1, t2).

Similar examples can be used to show that the simple knowledge gathering is not sufficient

to avoid membership checks when processing expressions with the difference operator.

Now, we observe that KG on dummy tuples identifies the tuple checks that can be

always answered from the standard envelope expression.

Lemma 4.29 For any instance I, any t ∈ QA(I, Env(E, I)), and any R(ti, . . . , ti+|R|−1) ∈

TC(E, t) if R(xi, . . . , xi+|R|−1) ∈ KG(E, (x1, . . . , x|E|)), then R(ti, . . . , ti+|R|−1) ∈ I ⇔

R(ti, . . . , ti+|R|−1) ∈ KG(E, t).

Proof By induction over the structure of E. We note that the cases of R, σρ(E), and

E1 × E2 are proved by Theorem 4.23 and Fact 4.27. For the cases of E1 ∪ E2 and E1 \ E2

we need to show only the ⇒ implication; the implication in the opposite direction follows

from Theorem 4.22 and Fact 4.27.

Consider the expression E = E1 ∪ E2, take any t ∈ QA(I, Env(E, F )), and any

R(ti, . . . , ti+|R|−1) ∈ TC(E, t) such that R(x̄′) ∈ KG(E, x̄), where x̄ = (x1, . . . , x|E|) and

x̄′ = (xi, . . . , xi+|R|−1). We observe that R(xi, . . . , xi+|R|−1) belongs to both KG(E1, (x1, . . . , x|E1|))

and KG(E2, (x|E1|+1, . . . , x|E1|+|E2|)). Then regardless if R(ti, . . . , ti+|R|−1) belongs to TC(E1, t)

or TC(E2, t), by induction hypothesis if R(ti, . . . , ti+|R|−1) ∈ I then R(ti, . . . , ti+|R|−1) ∈

KG(E, t). The case E = E1 \ E2 is proved analogously. 2

Definition 4.30 (Complementary set) For a given π-free expression E, the complemen-

tary set Γ(E) is defined as follows:

Γ(E) = TC(E, x̄) \ KG(E, x̄),

where x̄ = (x1, . . . , x|E|).
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Example 4.31 (cont. of Example 4.28) The complementary set for the expression E =

σ1=a(R × (R ∪ P )) is:

Γ(E) = {R(x3, x4), P (x3, x4)}.

Next, we show how to use the complementary set to obtain an extended envelope expression

allowing to infer all relevant facts.

Definition 4.32 (Extended envelope expression) For a π-free expression the extended

envelope ExtEnv(E, F ) is defined as

ExtEnv(E, F ) = Env(E, F )

V|R|
j=1

E.(i+j−1)=R.j
←−−−−−−−−−−−−−−−
R(xi,...,xi+|R|−1)∈Γ(E)

R.

The notation means that we have as many outer joins as there are elements in Γ(E). They

can appear in any order. To facilitate knowledge gathering we define an auxiliary expression

Aux(E) of a signature compatible with ExtEnv(E, F ):

Aux(E) = E × ×
R(xi,...,xi+|R|−1)∈Γ(E)

R.

For both ExtEnv(E, F ) and Aux(E) the elements of Γ(E) need to be considered in the

same order.

Because we assume the set semantics for our database instance and use π-free expres-

sions, using outer joins results in a one-to-one correspondence between the tuples of the

envelope and the tuples of extended envelope.

Fact 4.33 For a given instance I and a π-free expression E, the map t 7→ t[1, . . . , |E|] is a

one-to-one map of QA(I, ExtEnv(E, F )) onto QA(I, Env(E, F )).

To infer information about the database instance state based on the tuples of extended

envelope we need to further extend knowledge gathering to handle null values:

KG(R, (⊥, . . . ,⊥)) = ∅.

Then by Lemma 4.29 and Fact 4.33 we get the following.
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Corollary 4.34 (Soundness and completeness of extended knowledge gathering)

For any instance I and any π-free expression E

∀t ∈ QA(I, ExtEnv(E, F )).∀t′ ∈ TC(E, t[1, . . . , |E|]).t′ ∈ KG(Aux(E), t) ⇔ t′ ∈ I.

4.6 Experimental evaluation

4.6.1 The setting for the experiments

In this section we present results of an experimental evaluation of the Hippo system. The

system has been implemented to handle denial constraints only. Among available methods

for computing consistent query answers, only the query rewriting technique [ABC99] seems

to be feasible for large databases. This is why in this work we compare the following engines:

SQL An engine that executes the given query on the underlying RDBMS, and returns

the query result. This method doesn’t return consistent query answers, but provides

a baseline to observe the overhead of computing consistent query answers using the

proposed methods.

QR Using the SQL engine, we execute the rewritten query constructed as described in

[ABC99]. More details on this approach can be found in Section 4.7.

KG This method constructs the basic envelope expression and uses knowledge gathering

(Section 4.4).

ExtKG This engine constructs the extended envelope expression (Section 4.5).

Generating test data

Every test was performed with the database containing two tables P and Q, both having

three attributes X, Y, Z. For the constraints, we took a functional dependency X → Z in

each table. The test databases had the following parameters:

• n : the number of base tuples in each table,

• m : the number of additional conflicting tuples.
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The content of the tables is generated in the following way:

1. Insert n different base tuples with X and Z being equal and taking subsequent values

0, . . . , n − 1, and Y being randomly drawn from the set {0, 1}.

2. Insert m different conflicting tuples with X taking subsequent values {0, ⌈n/m⌉, ⌈2 ∗

n/m⌉, . . . , ⌈(m − 1) ∗ n/m⌉}, Z = X + 1, and Y being randomly drawn from the set

{0, 1}.

In addition, we materialize the core expressions C(R, F ) and C(P, F ) in auxiliary tables

Pcore and Qcore.

Example 4.35 For n = 4 and m = 2 the contents of P can be generated as follows.

1. First we insert the base tuples (0, 1, 0), (1, 0, 1), (2, 0, 2), and (3, 1, 3) into P .

2. Then we insert the following conflicting tuples (0, 1, 1) and (2, 0, 3) into P .

3. Pcore contains only the tuples (1, 0, 1) and (3, 1, 3).

In every table constructed in the such a manner the number of tuples is n + m, and the

number of conflicts is m.

The environment

The implementation is done in Java2, using PostgreSQL (version 7.3.3) as the relational

back-end. All test have been performed on a PC with a 1.4GHz AMD Athlon processor

under SuSE Linux 8.2 (kernel ver. 2.4.20) using Sun JVM 1.4.1.

4.6.2 Test results

Testing a query with a given engine consisted of computing the consistent2 answers to the

query and then iterating over the results. Iteration over the result is necessary, as the

subsequent elements of the consistent query answer set are computed by Hippo in a lazy

manner (this allows us to process results bigger than available main memory). Every test

has been repeated three times and the median taken. Finally, we note that the cost of

2Except when using SQL engine.
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computing the conflict hypergraph, which is incurred only once per session, is ignored while

estimating the time of the query evaluation. To identify the time required for hypergraph

construction we performed separate experiments (presented at the end of this section).

Simple queries

We first compared performance of the different engines on simple queries: join, union, and

difference. Because we performed the tests for large databases, we added a range selection

to the given query to obtain small query results, factoring out the time necessary to write

the outputs. As parameters in the experiments, we considered the database size, the conflict

percentage, and the estimated result size.

Figure 4.2 shows the execution time for join as a function of the size of the database.

In the case of {σ,×}-expressions (thus also joins), the execution times of KG, ExtKG and

SQL are essentially identical. Since no membership queries have to be performed, it means

that for simple queries the work done by Prover for all tuples is practically negligible.
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Figure 4.2: Execution time for a join query: σX<200(PJoin).

Figure 4.3 contains the results for union. It shows that basic knowledge gathering KG

is not sufficient to efficiently handle union. The cost of performing membership queries for

all tuples is very large. Note that query rewriting is not applicable to union queries.

Figure 4.4 contains the results for set difference. Because the execution time for KG
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Figure 4.3: Execution time for a union query: σX<200(P ∪ Q).

was much larger than values of other solutions, for readability it has not been included on

this figure. Here, the execution time is a function of the percentage of conflicts. We note

that ExtKG performs as well as QR and both are approximately twice slower than SQL.

Complex queries

In order to estimate the cost of extending the envelope we considered a complex union query

σX<d(P 1X Q 1X P 1X Q ∪ Q 1X P 1X Q 1X P ),

with d being a parameter that will allow us to control the number of tuples processed by each

engine. To assure no membership queries will be performed, we have to add 8 outer joins.

The main goal was to compare two versions of knowledge gathering: KG and ExtKG.

We have also included the results for SQL. (It should be noted here that this query has

common subexpressions and RDBMS might use this to optimize the query evaluation plan.

PostgreSQL, however, does not perform this optimization.)

In Figure 4.5 we see that KG outperforms ExtKG only in the case when the number

of processed tuples is very small. As the result size increases, the execution time of ExtKG

grows significantly slower than that of KG. We notice also that ExtKG needs 2–3 times



4.7. RELATED WORK 63

2 4

0.5

1

1.5

2

Conflicts (%)

T
im

e 
(s

ec
.)

 

 

SQL
QR
extKG

DB size:100k

Figure 4.4: Execution time for a difference query σX<200(P \ Q).

more time than SQL but the execution times of both grow in a similar fashion.

Hypergraph computation

The time of constructing the hypergraph is presented on Figure 4.6). It depends on the

total number of conflicts and the size of the database.

It should be noticed here that the time of hypergraph construction consists mainly of the

execution time of conflict detection queries. Therefore, the time of hypergraph computation

depends also on the number of integrity constraints and their arity.

4.7 Related work

In general, three different approaches to compute consistent query answers have been pro-

posed: query rewriting, logic programming, and compact representation of repairs. Hippo

is a system following the last approach using conflict hypergraphs.

4.7.1 Query rewriting

Query rewriting was the first approach proposed to compute consistent query answers [ABC99].

A query Q is rewritten into a query Q′ whose evaluation returns the set of consistent query
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Figure 4.5: Impact of the result size for the query σX<d(P 1X Q 1X P 1X Q ∪ Q 1X

P 1X Q 1X P ).

answers to Q. An indisputable advantage of this approach is the ease of its incorporation

into already existing applications. However, applicability of this approach is limited and

certain conjunctive queries are known not to have rewritings [CM05].

[ABC99] uses the notion of residues obtained from constraints to identify potential im-

pact of integrity violations on the query results. The residues are used to construct rewriting

rules for the atoms used in the query. This approach has been shown to be applicable to

quantifier-free conjunction of literals in the presence of binary universal constraints.

Example 4.36 Consider schema consisting of two relation names S = {R(A, B), P (C, D)}

and let the set of integrity constraints consist of the following two formulas:

∀x, y, y′.¬R(x, y) ∨ ¬R(x, y′) ∨ y = y′, (4.1)

corresponding to the functional dependency R : A → B and

∀x, y.¬P (x, y) ∨ R(x, y) (4.2)

corresponding to the full IND P [C, D] ⊆ R[A, B]. The rule obtained from the con-
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Figure 4.6: Hypergraph computation time.

straint (4.1) is3

R(x, y) 7→ R(x, y){∀y′.¬R(x, y′) ∨ y = y′} (4.3)

and the rules obtained from the constraint (4.2) are

P (x, y) 7→ P (x, y){R(x, y)}, (4.4)

¬R(x, y) 7→ ¬R(x, y){¬P (x, y)}. (4.5)

Intuitively, the rules specify the conditions assuring that the atom is not affected by integrity

violations. For instance the rule (4.4) states that an atom P (a, b) is not involved in violation

of the full IND P [C, D] ⊆ R[A, B] if R(a, b) is also present in database. Therefore, if we

consider the query Q = P (x, y), it has to be rewritten into the following one

P (x, y) ∧ R(x, y).

Because the atom R(a, b) can be involved in violations of the FD R : A → B, the rule (4.3)

3Actually for an FD we obtain two rules, one for each literal in the constraint, but the formulas are
equivalent.
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is used to further augment the query

P (x, y) ∧ R(x, y) ∧ (∀y′.¬R(x, y′) ∨ y = y′).

For similar reasons we apply the rule (4.5) to finally obtain the rewritten query

Q′ = P (x, y) ∧ R(x, y) ∧ (∀y′.(¬R(x, y′) ∧ ¬P (x, y′)) ∨ y = y′).

Naturally, Q′ returns the consistent answers to Q.

Chomicki and Marcinkowski [CM05] observe that if the set of constraints contains one

FD per relation only, the conflict graph is a union of disjoint full multipartie graphs. This

simple structure allows to construct rewriting for conjunctive queries without repeated

relation names and no variable sharing. They also show that relaxing the conditions imposed

on the queries and constraints leads to intractability: consistent query answering becomes

coNP-complete. This also proves that there exist conjunctive queries for which rewriting

does not exists; any first-order query can be evaluated in AC0 and no coNP-complete

problem belongs to this complexity class [Pap94].

The result of Chomicki and Marcinkowski has been further generalized by Fuxman and

Miller [FM05] to allow restricted variable sharing (joins) in the conjunctive queries. The

class Cforest of allowed queries is defined using the notion of join graph of a query whose

vertices are the literals used in the query and an edge runs from a literal Ri to literal Rj if

there is a variable which occurs on a non-key attribute of Ri and any attribute of Rj (both

occurrences have to be different if i = j). The class Cforest consist of queries whose join

graph is a forest, the joins are full and the join conditions are non-key to key4.

In [FFM05] Fuxman et al. present the ConQuer system which computes consistent

answers to queries from Cforest. The queries can also use aggregates, and then range-

consistent answers are computed [ABC+03b]: minimal intervals containing the set of values

of the aggregate obtained over the repairs. This allows the system to compute consistent

answer to 20 out of 22 queries of the TCP-H decision support benchmark. The experimental

4Essentially, those are foreign-key joins, but we note that the discussed framework does not handle
violations of foreign-key constraints.
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evaluation of the system shows that the system performs reasonably well and is scalable

w.r.t. both the size of the database and the number of conflicts in the database. We observe

that the rewritten queries are obtained from the original queries by adding subexpression

checking for conflicts. This leads to an overhead; executing the rewritten query takes

on average twice the time of executing the original query. However, as shown by our

experiments, the overhead can be avoided if the conflicts are detected once and stored

in main memory. On the other hand, the rewriting approach is scalable to the number

of conflicts, although it is yet to be seen if databases with large numbers of conflicts are

common in practice (and if querying them can be informative at all).

Very recently Lembo et al. [LRR06] extended the rewriting for queries from Cforest to

include union. However, no experimental evaluation has been performed so far.

4.7.2 Logic programs

Several different approaches have been developed to compute consistent query answers using

logic programs with disjunction and classical negation [ABC03a, BB03, EFGL03, GGZ01,

GGZ03, VNV02]. Essentially, all of them use disjunctive rules to model the process of

repairing violations of constraints. In this way stable models of a program corresponds to

the repairs of the inconsistent database. A query evaluated under the cautious semantics

returns the answers present in every model, which naturally yields the consistent query

answers.

Example 4.37 Recall the schema from Example 4.36: S = {R(A, B), P (C, D)} with F =

{R : A → B, P [C, D] ⊆ R[A, B]}. We assume that the database facts, the extensional

database, are given with the predicates P (X, Y ) and R(X, Y ). The repairing program

defines the repairs using intentional predicates P ′(X, Y ) and R′(X, Y ) resp. The program

consists of the following rules:

• Triggering rules which specify the possible repairing actions if a constraint violation
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is detected.

¬P ′(X, Y ) ∨ R′(X, Y ) ← P (X, Y ),notR(X, Y ).

¬R′(X, Y ) ∨ ¬R′(X, Y ′) ← R(X, Y ), R(X, Y ′), Y 6= Y ′.

• Stabilizing rules which ensure that the integrity constraints are satisfied in the con-

structed repair.

R′(X, Y ) ← P ′(X, Y ).

¬P ′(X, Y ) ← ¬R′(X, Y ).

¬R′(X, Y ) ← R′(X, Y ′), R(X, Y ), Y 6= Y ′.

• Persistence rules which copy facts from the original database to the repair unless the

fact has been removed in the repairing process.

R′(X, Y ) ← R(X, Y ),not¬R′(X, Y ).

P ′(X, Y ) ← P (X, Y ),not¬P ′(X, Y ).

Assume that the intentional database contains two facts R(1, 1) and P (1, 2), then the re-

pairing program has two stable models:

M1 = {R(1, 1), P (1, 2), R′(1, 1),¬P ′(1, 2)},

M2 = {R(1, 1), P (1, 2), R′(1, 2), P ′(1, 2),¬R′(1, 1)}.

Now, if we consider the query Q(x) = ∃y.R(x, y), the corresponding Datalog query is

Q′(X) ← R′(X, Y ).

The set of answers to this query under the cautious semantics is {(1)}, which is also the set

of consistent answers to Q(x).
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The main advantage of using this approach is its generality: typically arbitrary first-

order (or even Datalog¬) queries are handled in the presence of universal constraints. Also,

the repairing programs can be easily evaluated with exciting logic program environments

like Smodels or dlv [EFLP00]. We note, however, that the systems computing answers to

logic programs usually perform grounding, which may be cost prohibitive if we are to work

with large databases. Another disadvantage of this approach is the fact that the class of

disjunctive logic programs is known to be Π2
p-complete.

These difficulties are addressed in the INFOMIX system [EFGL03] with several opti-

mizations geared toward effective execution of repairing programs. One is localization of

conflicts with identification of the affected database which consists of all tuples involved

in constraint violations and all syntactically propagated conflict-bound tuples (analogous

to applying T ∗
F ). We observe that in the presence of full TPGs and denial constrains the

affected database is identical to the shell instance. Another optimization involves using bit-

vectors to encode tuple membership to each repair and subsequent use of bitwise aggregate

function to find tuples present in every repair. This optimization, however, may be insuffi-

cient to handle databases with large numbers of conflicts because typically the number of

repairs is exponential in the number of conflicts.

Very recently, this deficiency has been addressed with repair factorization [EFGL07].

Essentially, the affected database is decomposed into parts that are conflict-disjoint (no two

mutually conflicting tuples are in separate parts). When computing consistent answers to

a query only parts that are simultaneously spanned by the query are considered at a time.

Again, we note the analogy to computing consistent query answers using hypergraphs: when

finding whether true is the consistent answer to a ground query our algorithm considers only

the repairs obtained with enumeration of edges adjacent to the tuples from the query. The

presented experimental results validate this approach: the system computes consistent query

answers in a reasonable time and is scalable w.r.t. the size of the database and the number

of conflicts. Tests with up to 2001000 conflicts are reported. We note, however, that while

for quantifier-free queries, the number of parts that have to be considered is bounded by the

size of the query (and hence can be considered fixed), when handling queries with quantifiers

the number of parts can be arbitrarily large. Consequently, the repair factorization strategy
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may turn out to be unsuccessful. It is yet to be seen if the structure of conflicts in practical

scenarios allows to benefit from this optimization.



Chapter 5

Preferences

In this chapter we extend the standard framework of repairs and consistent query answer

to include preference information.

We start by introducing priorities to define families of preferred families of repairs in

Section 5.1. In Section 5.2 we list desired properties of families of preferred repairs. In

Section 5.3 we present three different families of preferred repairs, discuss their mutual

relationships, and investigate the computational implications of introducing preferences in

the framework of consistent query answers. Section 5.4 contains discussion of related work.

We use the standard relational model and restrict integrity constraints to functional

dependencies only. Recall that in the presence of FDs only, the conflict hypergraph becomes

a standard graph (edges connect exactly two vertices) and also every repair is a subset of

the original instance. Then, for a tuple t, the neighborhood of t, denoted by n(t), is the set

of all tuples adjacent to t in the conflict graph.

5.1 Priorities and families of preferred repairs

From now on we assume a fixed instance I with a fixed set of functional dependencies F .

Definition 5.1 (Orientation) An orientation of a graph G = (V, E) is a binary relation

≻ ⊆ V × V such that if v ≻ u then {v, u} ∈ E. An orientation is acyclic if it contains no

cyclic (directed) path.

71
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To represent the preference information, we use acyclic orientations of some (not nec-

essarily all) edges of the conflict graph. Orientations allow us to express the preferences at

the level of single conflicts and acyclicity ensures unambiguity of the preference.

Definition 5.2 (Priority) A priority ≻ (of I w.r.t. F ) is an acyclic orientation of G(I, F ).

A priority ≻ is total if for every edge {t1, t2} of G(I, F ) either t1 ≻ t2 or t1 ≻ t2. A prioritized

conflict graph G(I, F,≻) is a conflict graph G(I, F ) with a priority ≻ of I w.r.t. F .

From the point of the user interface it is often more natural to define the priority as some

acyclic binary relation on tuples of I and then consider the restriction of the priority relation

to the conflicting tuples. Clearly, those approaches are equivalent.

Example 5.3 Recall from Example 1.4 the schema Mgr(Name, Dept, Salary) with two

FDs F = {Name → Dept Salary, Dept → NameSalary} and the user preference for

conflict resolution: for a conflict created by two tuples referring to the same person, the user

prefers to resolve the conflict by removing the tuple with the smaller salary. The prioritized

conflict graph for the priority obtained from this preference is presented in Figure 5.1.

Mgr(Mary, R&D, 40k)

Mgr(Mary, PR, 30k)

Mgr(John, PR, 50k)

Mgr(John, R&D, 45k)

Mgr(Peter, IT, 45k)

Mgr(Peter, AD, 35k)

Figure 5.1: A prioritized conflict graph.

We note that in our framework we do not assume any other properties of the priority. In

particular, it does not have to be transitive.

Extending an orientation consists of orienting some edges that were not oriented before.

Formally, an orientation ≻′ is an extension of a priority ≻ if ≻′ is a priority and ≻′ ⊇ ≻.

Note that ≻′ is also acyclic and defined only for pairs of tuples that create a conflict.

Definition 5.4 (Preferred repairs) A family of preferred repairs is a function X Rep de-

fined on triplets (I, F,≻), where ≻ is a priority in I w.r.t. a set of FDs F , such that

X Rep(I, F,≻) ⊆ Rep(I, F ). We say that a family Y Rep subsumes a family X Rep, denoted

X Rep ⊑ Y Rep, if for every (I, F,≻) we have that X Rep(I, F,≻) ⊆ Y Rep(I, F,≻).
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5.1.1 Preferred consistent query answers

We generalize the notion of consistent answers to closed FOL queries (Definition 2.6) by

considering only preferred repairs when evaluating a query (instead of all repairs). We can

easily generalize our approach to open queries along the lines of Chapter 4. Recall that for

a closed query Q true is an answer to Q in I if I |= Q in the standard model-theoretic sense.

Definition 5.5 (X -preferred consistent query answer) Given a closed query Q, a triple

(I, F,≻), and a family of preferred repairs X Rep, true is the X -preferred consistent query

answer to Q in I w.r.t. F and ≻, written I |=X
F,≻ Q, if for every I ′ ∈ X Rep(I, F,≻) we have

I ′ |= Q.

Note that we obtain the original notion of consistent query answer (Definition 2.6) if we

consider the family of all repairs Rep(I, F ). Also, note that if Y Rep ⊑ X Rep then I |=X
F,≻ Q

implies I |=Y

F,≻ Q.

5.1.2 Data complexity

We also adapt the decision problems to include the priority. Note that the priority relation

is of size polynomial in the size of the database instance, and therefore it is natural to make

it a part of the input. For a family XRep of preferred repairs the decision problems we

study are defined as follows:

(i) X -preferred repair checking i.e., the complexity of the following set

BX
F = {(I,≻, I ′) : I ′ ∈ XRep(I, F,≻)}.

(ii) X -preferred consistent query answering i.e., the complexity of the following set

DX
F,Q = {(I,≻) : ∀I ′ ∈ XRep(I, F,≻).I ′ |= Q}.
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5.2 Properties of families of preferred repairs

In this section we investigate desirable properties of arbitrary families of preferred repairs.

We fix an instance I and a set of functional dependencies F .

P1 Non-emptiness

Because the set of preferred repairs is used to define preferred consistent query answers,

it is important that for any preference information the framework is not trivialized by an

empty set of preferred repairs:

X Rep(I, F,≻) 6= ∅.

P2 Monotonicity

The operation of extending the preference allows to improve the state of our knowledge of

the real world. The better such knowledge is the finer the (preferred consistent) answers

we should obtain. This is achieved if extending the preference can only narrow the set of

preferred repairs:

≻1 ⊆ ≻2 =⇒ X Rep(I, F,≻2) ⊆ X Rep(I, F,≻1).

P3 Non-discrimination

Removing repairs from consideration must be justified by existing preference information.

In particular, no repair should be removed if no preference is given:

X Rep(I, F, ∅) = Rep(I, F ).

P4 Categoricity

Ideally, a preference that cannot be further extended (priority is total) should specify how

to resolve every conflict:

≻ is total =⇒ |X Rep(I, F,≻)| = 1.
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P5 Conservativeness

We also note that properties P2 and P3 imply that preferred repairs are a subset of all

repairs:

X Rep(I, F,≻) ⊆ Rep(I, F ).

5.3 Prioritized repairing

In this section we investigate several different families of preferred repairs. Again, I denotes

a fixed instance and F a set of functional dependencies.

5.3.1 Globally optimal repairs

We start from investigating a notion of repair optimality inspired by work done in preferred

models of logic programs [VNV02] and preferential reasoning [Hal97].

Definition 5.6 (Globally optimal repairs GRep) A repair I ′ is globally optimal if no

nonempty subset X of tuples from I ′ can be replaced with a nonempty set Y of tuples from

I such that

∀x ∈ X.∃y ∈ Y.y ≻ x

and the resulting set of tuples is consistent. GRep(I, F,≻) is the set of all globally optimal

repairs of I.

The notion of global optimality identifies repairs whose compliance with the priority cannot

be further improved; In Example 1.4 only I1 is globally optimal. Before investigating the

properties of GRep we present an alternative characterization of globally optimal repairs.

Proposition 5.7 For a given priority ≻ and two different repairs I1 and I2, we say that

I1 dominates I2, denoted I1 ≫ I2, if

∀x ∈ I2 \ I1. ∃y ∈ I1 \ I2. y ≻ x.

The following facts hold:
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1. a repair is globally optimal if and only if it is ≫-maximal;

2. if ≻ is acyclic, then so is ≫.

Proof (1) For the if part take any ≫-maximal repair I ′, any nonempty set X of tuples

from I ′, and any nonempty set Y of tuples from I such that (I ′ \ X) ∪ Y is consistent.

Take Y ′ = Y \ I ′ and note that by <I -minimality of I ′ for every y ∈ Y ′ there exists x ∈ I ′

conflicting with y. Moreover, all tuples conflicting with any y ∈ Y must be contained in

the set X or (I ′ \ X) ∪ Y would not be consistent. Therefore, any repair I ′′ containing

(I ′ \ X) ∪ Y is disjoint with X. This implies that X = I ′ \ I ′′ and Y ′ ⊆ I ′′ \ I ′. Finally,

by ≫-maximality of I ′ (I ′′ 6≫ I ′) we observe that ∀x ∈ X.∃y ∈ Y ′.y ≻ x cannot be true.

Because none of the tuples from Y ∩ I ′ conflicts with any tuple from I ′, this also implies

that I ′ is globally optimal.

For the only if part take any globally optimal repair I ′ and any repair I ′′. If we consider

X = I ′ \ I ′′ and Y = I ′′ \ I ′, then global optimality of I ′ implies that I ′′ 6≫ I ′.

(2) Suppose ≫ is cyclic. Then there exists an infinite sequence of repairs (with repeti-

tions)

. . . ≫ In ≫ . . . ≫ I2 ≫ I1.

Naturally, Ii \ Ii+1 is nonempty for any i ≤ 1. Consider an infinite sequence of tuples

t1, t2, . . . defined as follows:

• t1 is any tuple from I1 \ I2,

• ti+1 is any tuple from Ii+1 \ Ii such that ti+1 ≻ ti (there exists at least one by

Ii+1 ≫ Ii).

Because I has only finitely many elements, the sequence (ti)
∞
i=1 must have repetitions and

so ≻ is cyclic; a contradiction. 2

Proposition 5.8 GRep satisfies the properties P1-P4.

The proof of Propositions 5.8, 5.16, and 5.21 can be found in the appendix.

Theorem 5.9 G-preferred repair checking is coNP-complete and G-preferred consistent

query answering is Πp
2-complete.
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Proof The membership of G-preferred repair checking to coNP follows from Proposition 5.7:

to prove that an instance I ′ is not globally optimal it enough to guess a consistent instance

I ′′ such that I ′′ ≫ I ′ and I ′′ is repair (which can be checked in polynomial time [CM05]).

Similarly, the membership of G-preferred consistent query answering in Πp
2 follows from

Definition 5.5: true is not the G-preferred consistent answer to a query if the query is not

true in some globally optimal repair.

We show Πp
2-hardness of D

G

F,Q by reducing the satisfaction of ∀∗∃∗QBF formulas to

D
G

F,Q. Consider the following formula:

ψ = ∀x1, . . . , xn.∃xn+1, . . . , xn+m.φ, (5.1)

where φ is quantifier-free and is in 3CNF, i.e φ equals to c1 ∧ . . . ∧ cs, and ck are clauses of

three literals lk,1 ∨ lk,2 ∨ lk,3. We call the variables x1, . . . , xn universal and xn+1, . . . , xn+m

existential. We use the function q to identify the type of a variable with a given index:

q(i) = 1 for i ≤ n and q(i) = 0 for i > n. A valuation is a (possibly partial) function

assigning a boolean value to the variables.

We construct an instance Iψ over the schema with a single relation

R(A1, B1, A2, B2, A3, B3, A4, B4)

and an acyclic priority ≻ψ. The set of integrity constraints is F = {A1 → B1, A2 →

B2, A3 → B3, A4 → B4}.

We define the following two auxiliary functions var and sgn on literals of φ:

var(xi) = var(¬xi) = i, sgn(xi) = 1, sgn(¬xi) = −1.

The reduction uses the following types of tuples:

• vi and v̄i corresponding to the positive and negative valuations of xi resp.

vi = R(0, q(i), i, 1, i, 1, i, 1), v̄i = R(0, q(i), i,−1, i,−1, i,−1),
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• dk corresponding to ck

dk = R(0, 1, var(lk,1), sgn(lk,1), var(lk,2), sgn(lk,2), var(lk,3), sgn(lk,3)),

• t∃ and t∀ used to partition the set of all repairs

t∃ = R(0, 0, 0, 0, 0, 0, 0, 0), t∀ = R(0, 1, 0, 0, 0, 0, 0, 0).

For the ease of reference by Lk,p we denote the tuple corresponding to the satisfying valu-

ation of literal lk,p, i.e.:

Lk,p =







vi when lk,p = xi,

v̄i when lk,p = ¬xi.

The constructed instance is

Iψ = {v1, v̄1, . . . , vn+m, v̄n+m, d1, . . . , ds, t∀, t∃}.

The priority relation ≻ψ is the unique minimal relation satisfying the following conditions:

vi ≻ψ dk, if ck uses a positive literal xi,

v̄i ≻ψ dk, if ck uses a negative literal ¬xi,

t∃ ≻ψ vi, for all i ∈ {1, . . . , n},

t∃ ≻ψ v̄i, for all i ∈ {1, . . . , n},

t∃ ≻ψ t∀.

The query used in the reduction is Q = t∃.

In Figure 5.2 illustrates the reduction on the following formula:

ψ = ∀x1, x2, x3.∃x4, x5.(¬x1 ∨ x4 ∨ x2) ∧ (¬x2 ∨ ¬x5 ∨ ¬x3).
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v4 v̄4 t∃ v4 v̄4

v1 v̄1 v1 v̄1 v3 v̄3

d1 t∀ d2

Figure 5.2: The prioritized conflict graph for ψ. Dotted lines used to show the conflicts
created with A1 → B1.

We partition the set of all repairs of Iψ into two disjoint classes: ∃-repairs that contain

t∃ and ∀-repairs that do not contain t∃. We note that because of the FD A1 → B1 every ∀-

repair contains t∀. For the same reason, an ∀-repair is a subset of {v1, v̄1, . . . , vn, v̄n, d1, . . . , dn, t∀}

and an ∃-repair is a subset of {vn+1, v̄n+1, . . . , vn+m, v̄n+m, t∃}.

We use ∃- and ∀-repairs to represent all possible valuation of existential and universal

variables respectively. To easily move from a partial valuation of variables to a repair we

define the following two operations:

I∃[V ] ={vi|V (xi) = true ∧ q(i) = 0} ∪ {v̄i|V (xi) = false ∧ q(i) = 0} ∪ {t∃},

I∀[V ] ={vi|V (xi) = true ∧ q(i) = 1} ∪ {v̄i|V (xi) = false ∧ q(i) = 1} ∪ {t∀} ∪
{

dk

∣
∣
∣
∣
∣

if for every literal lk,i of ck s.t. V is defined on

the variable used in lk,i we have V 6|= lk,i

}

.

To move in the opposite direction, from a repair to a (possibly partial) valuation we use:

V [I ′](xi) =







true if vi ∈ I ′,

false if v̄i ∈ I ′,

undefined otherwise.

We observe that V [·] defines a one-to-one correspondence between ∃-repairs and total val-

uations of existential variables. A similar statement, however, does not hold for ∀-repairs,

as for some ∀-repair I ′ V [I ′] may be only a partial valuation of universal variables. To
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address this deficiency we identify strict ∀-repairs; a ∀-repair I ′ if and only if V [I ′] is a total

valuation universal variables. Now, V [·] defines a one-to-one correspondence between strict

∀-repairs and total valuation of the universal variables. The following result allows us to

remove non-strict ∀-repairs from consideration.

Lemma 5.10 Strict ∀-repairs are ≫-maximal ∀-repairs and vice versa.

Proof First, we prove that ≫-maximal ∀-repairs are strict. For that we show how for

any non-strict ∀-repair I ′ construct a strict ∀-repair I ′′ such that I ′′ ≫ I ′. Take the partial

valuation V ′ = V [I ′] and extend it to a total valuation V ′′ of universal variables by assigning

false value to variables undefined by V ′, i.e.

V ′′ = V ′ ∪ {(xi, false)|1 ≤ i ≤ n ∧ V ′(xi) is undefined}.

We take I ′′ = I∀[V
′′] and show that

∀t′ ∈ I ′ \ I ′′.∃t′′ ∈ I ′′ \ I ′.t′′ ≻ t′.

Because I ′ is an ∀-repair there are 3 cases of values of t′ to consider:

1. t′ = t∀ is not possible because both I ′ and I ′′ are ∀-repairs.

2. t′ = vi or t′ = v̄i for some i ∈ {1, . . . , n} is also impossible because from the construc-

tion of I ′′ we know that

I ′′ ∩ {v1, v̄1, . . . , vn, v̄n} ⊆ I ′ ∩ {v1, v̄1, . . . , vn, v̄n}.

3. t′ = dk for some k ∈ {1, . . . , s}. The neighborhood of t′ consists of tuples t∃, Lk,1,

Lk,2, and Lk,3. We observe that none of the tuples belongs to I ′. However, one of the

tuples must belong to I ′′ because t′ 6∈ I ′′ (by <Iφ
-minimality). Since I ′′ is an ∀-repair,

t∃ does not belong to I ′′ and therefore for some p ∈ {1, 2, 3} the tuple Lk,p belongs to

I ′′. Finally, t′′ = Lk,p ≻φ t′.

Now, we show that every strict ∀-repair is also ≫-maximal among ∀-repairs. Suppose

otherwise , i.e. for some strict ∀-repair I ′ there exists an ∀-repair I ′′ such that I ′ ≫ I ′′. Since
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I ′ is strict it contains vi or v̄i for every i ∈ {1, . . . , n}. By the construction of the priority

≻φ the repairs I ′ and I ′′ must agree on tuples v1, v̄1, . . . , vn, v̄n. Therefore I ′ = I∀[V [I ′′]]

and using the reasoning from the previous part we can show that I ′′ ≫ I ′. Since ≻ψ is

acyclic, this implies that I ′ = I ′′.

The central result in our reduction follows.

Lemma 5.11 For any total valuation V I∃[V ] ≫ I∀[V ] if and only if V |= φ.

Proof For the if part we note that because any ∀-repair is disjoint with any ∃-repair, it

is enough to show that for any tuple t′ ∈ I∀[V ] there exists a tuple t′′ ∈ I∃[V ] such that

t′′ ≻ t′. For any of the tuples t∀, v1, v̄1, . . . , vn, v̄n we simply choose t∃. If dk belongs to

I∀[V ], we note that none of the neighbors of dk belongs to I∀[V ]. This implies that none of

the literals using a universal variable is satisfied by V . Hence there must exist a literal lk,p

(using an existential variable) that is satisfied by V . Consequently, we have Lk,p ∈ I∃[V ]

and Lk,p ≻ dk.

For the only if part for any k ∈ {1, . . . , s} we consider the conjunct ck = lk,1 ∨ lk,2 ∨ lk,3.

If none of the literals which use universal variables is satisfied by V , then none of the

corresponding Lk,p belongs to I∀[V ] and consequently dk is in I∀[V ]. Then I∃[V ] must

contain a tuple Lk,p′ corresponding to one of the literals of ck using an existential variable.

This implies that V |= lk,p′ and consequently V |= ck.

This gives us.

Fact 5.12 The QBF ψ is true if and only if for any strict ∀-repair I ′ there exists a ∃-repair

I ′′ such that I ′′ ≫ I ′.

Because only a ∃-repair can dominate a strict ∀-repair and every non-strict ∀-repair is

dominated by a strict one, we can make a more general statement.

Fact 5.13 The QBF ψ is true if and only if for any ∀-repair I ′ there exists a repair I ′′

such that I ′′ ≫ I ′.
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∀-repairs are defined as repairs that do not contain the tuple t∃ and thus:

|= ψ ⇐⇒ |= ∀x1, . . . , xn.∃xn+1, . . . , xn+m.φ ⇐⇒

∀I ′ ∈ Rep(Iψ, F ).I ′ |= ¬R(t∃) ⇒ ∃I ′′ ∈ Rep(Iψ, F ).I ′′ ≫ I ′ ⇐⇒

∀I ′ ∈ Rep(Iψ, F ).[¬∃I ′′ ∈ Rep(Iψ, F ).I ′′ ≫ I ′] ⇒ I ′ |= R(t∃) ⇐⇒

∀I ′ ∈ GRep(Iψ, F,≻ψ).I ′ |= R(t∃) ⇐⇒ (Iψ,≻ψ) ∈ D
G

F,R(t∃).

Corollary 5.14 QBF ψ is true if and only if true is the G-preferred consistent answer to

R(t∃) in Iψ w.r.t. F and ≻ψ.

To show coNP-hardness of BG
F we use the previous transformation to reduce the com-

plement of 3SAT to BG
F ; a 3CNF formula is a ∀∗∃∗QBF with no universal variables. If Iφ is

the instance obtained from the transformation of φ, then {t∃} is a globally optimal repair

of Iφ if and only if φ 6∈ 3SAT . 2

Below, we propose two alternative families of preferred repairs with better computational

properties than GRep. One is obtained by relaxing the optimality conditions: it selects

a superset of globally optimal repairs. The other is obtained by considering the “most

grounded” repairs and this family selects a subset of globally optimal repairs. In the fol-

lowing we also state the lower bound on the computational complexity of consistent query

answers for general families of preferred repairs.

5.3.2 Pareto optimal repairs

We obtain the first alternative family of preferred repairs by using a notion of optimality

that requires a stronger support from the priority to remove a repair from consideration.

Definition 5.15 (Pareto optimal repairs PRep) A repair I ′ is Pareto optimal if no

nonempty subset X of tuples from I ′ can be replaced with a nonempty set Y of tuples from

I \ I ′ such that

∀x ∈ X.∀y ∈ Y.y ≻ x

and the resulting set of tuples is consistent. PRep(I, F,≻) is the set of all Pareto optimal

repairs of I.
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Pareto optimality is weaker than global optimality: in Example 1.4 both repairs I1 and I3

are Pareto optimal, while only I1 is globally optimal.

Proposition 5.16 PRep satisfies P1-P4. Also, GRep ⊑ PRep.

Theorem 5.17 For any family X Rep of Pareto optimal repairs satisfying P1 and P2 de-

ciding X -consistent query answering is coNP-hard.

Proof We show the hardness by reducing the complement of SAT to DX
F,Q.

Take then any CNF formula ϕ = c1∧ . . . ∧ ck over variables x1, . . . , xn and let cj = lj,1∨

. . .∨ lj,mj
. We assume that there are no repetitions of literals in a clause (i.e., lj,k1

6= lj,k2
).

We construct a relation instance Iϕ over the schema R(A1, B1, A2, B2) in the presence of

two functional dependencies F = {A1 → B1, A2 → B2}. The instance Iϕ consists of the

following tuples:

• wi = R(i, 1, i, 1) for to the positive valuation of xi (for every i = 1, . . . , n),

• w̄i = R(i,−1,−i, 1) for to the negative valuation of xi (for every i = 1, . . . , n),

• vj
i = R(n + j, 1,−i, 0) for the literal xi in the clause cj ,

• v̄j
i = R(n + j, 1, i, 0) for the literal ¬xi in the clause cj ,

• dj = R(n + j, 1, 0, 1) for the clause cj (for every j = 1, . . . , m),

• b = R(0, 0, 0, 0) for the formula ϕ.

The constructed priority ≻ϕ is the minimal priority on Iϕ (w.r.t. F ) such that:

w̄i ≻ϕ vj
i , vj

i ≻ϕ dj , dj ≻ϕ b,

wi ≻ϕ v̄j
i , v̄j

i ≻ϕ dj .

The query we consider is Q = ¬b.

Figure 5.3 presents prioritized conflict graph obtained from the formula ϕ = (¬x1∨x2∨

x3) ∧ (¬x3 ∨ ¬x4 ∨ x5).
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w̄1 w1 w̄2 w2 w̄3 w3 w̄4 w4 w̄5 w5 w̄6 w6

v̄1
1 v1

2 v1
3 v2

3 v̄2
4 v2

5 v̄2
5

d1 d2

b

Figure 5.3: The prioritized conflict graph for φ = (¬x1 ∨ x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x5).

Now we show that

(Iϕ,≻ϕ) ∈ DX
F,Q ⇐⇒ ∀I ′ ∈ X Rep(Iϕ, F,≻ϕ).b 6∈ I ′ ⇐⇒ ϕ 6∈ SAT.

⇒ Suppose there exists a valuation V such that V |= ϕ and consider the following

instance

I ′ ={wi|V (xi) = true} ∪ {w̄i|V (xi) = false} ∪

{vj
i |V (xi) = true} ∪ {v̄j

i |V (xi) = false} ∪ {b}.

First, we note that I ′ is a repair and a Pareto optimal one. Next, we show that

I ′ ∈ X Rep(Iϕ, F,≻ϕ). To prove this consider the following priority ≻′ = ≻ϕ ∪

{(vi, v̄i)|V (xi) = true} ∪ {(v̄i, vi)|V (xi) = false}. We note that I ′ is the only Pareto

optimal repair w.r.t. ≻′. By P1 X Rep is a nonempty family of Pareto optimal re-

pairs and hence I ′ ∈ X Rep(Iϕ, F,≻′). Since ≻ ⊆ ≻′ by P2 we get that I ′ belongs to

X Rep(Iϕ, F,≻). Finally, we observe that b ∈ I ′ which contradicts (Iϕ,≻ϕ) ∈ DX
F,Q.

⇐ Suppose there exists a repair I ′ ∈ X Rep(Iϕ, F,≻ϕ) such that b ∈ I ′. Obviously, for

every j ∈ {1, . . . , m} the tuple dj does not belong to I ′. Also, for every j at least one

tuple neighboring to dj other than b is present in I ′ or otherwise I ′ is not a Pareto

optimal repair. Similarly, I ′ has either wi or w̄i for every i ∈ {1, . . . , n} and hence the
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following valuation is properly defined:

V (xi) =







true if wi ∈ I ′,

false if w̄i ∈ I ′.

We claim that V |= ϕ. Suppose otherwise and take any clause cj unsatisfied by V . Let

x 6= b be the tuple neighboring to dj that is present in I ′. W.l.o.g we can assume that

x = v̄j,i0 for some i0 and then ¬xi0 is a literal of cj . Also then, wi0 does not belong to

I ′ and so V (xi0) = false. This implies that V |= ¬xi0 and V |= cj ; a contradiction.

We finish the proof with the observation that the described reduction requires time poly-

nomial in the size of the instance. 2

Corollary 5.18 P -preferred repair checking is in PTIME and P -preferred consistent query

answering is coNP-complete.

Proof To find if I ′ is a Pareto optimal repair of I we seek a tuple z ∈ I \ I ′ whose all

neighbors in I ′ are dominated by z. We claim that such a tuple exists if and only if I ′ is

not Pareto optimal. For the if part assume that there exist sets X ⊆ I ′ and Y such that

∀x ∈ X.∀y ∈ Y.y ≻ x. Since tuples X are to be replaced by Y , then Y ⊆ I \I ′. It’s sufficient

to take any element of Y for z. The only if part is trivial. Naturally, the search for z can

be performed in time polynomial in the size of the instance.

DP
F,Q belongs to coNP from the definition of P -preferred consistent query answers and

is coNP-complete by Theorem 5.17. 2

5.3.3 Common repairs

Definition 5.19 (Common repairs CRep) A repair I ′ is common if and only if I ′ ∈

X Rep(I, F,≻) for every family X Rep of Pareto optimal repairs that satisfies P1 and P2.

CRep(I, F,≻) is the set of all common repairs of I.

Interestingly, CRep has the following procedural characterization. A common repair is

constructed by iterative selection of non-dominated tuples, i.e. tuples defined with the
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winnow operator [Cho03]:

ω≻(I) = {t ∈ I|¬∃t′ ∈ I.t′ ≻ t}.

Theorem 5.20 Fix an instance I and a set of FDs F . For any repair I ′ and any priority

≻ the following statements are equivalent:

1. I ′ is a common repair w.r.t. ≻;

2. there exists a total priority ≻′ extending ≻ such that I ′ is the only Pareto optimal

repair w.r.t. ≻′;

3. I ′ is a result of Algorithm PCR (for ≻).

Algorithm PCR: Prioritized Conflict Resolution

1: J ← I

2: I ′ ← ∅

3: while ω≻(J) 6= ∅ do

4: choose any t ∈ ω≻(J)

5: I ′ ← I ′ ∪ {t}

6: J ← J \ ({t} ∪ n(t)) {n(t) is the neighborhood of t in G(I, F ).}

7: return I ′

Proof (1) ⇒ (2) Take any I ′ ∈ CRep(I, F,≻) and suppose there is no total extension ≻′

of ≻ such that I ′ is Pareto optimal w.r.t. ≻′. Consider then a family of Pareto optimal

repairs which returns all Pareto optimal repairs except I ′. This family satisfies P1 and P2.

Naturally, I ′ never belongs to this family of repairs which contradicts that I ′ is common.

(2) ⇒ (3) Let |I ′| = n and assume there is a total priority ≻′ ⊇ ≻ such that I ′ is Pareto

optimal w.r.t. ≻′.

First, we observe that by GRep ⊑ PRep and P4 for GRep the repair I ′ is also the only

globally optimal repair w.r.t. ≻′.

Next, we show that I ′ is a result of Algorithm PCR for ≻′. For that, we construct the

following sequence x1, . . . , xn of choices necessary to make in Step 5.20:

xi is any element of ω≻′

(
I \ ({x1, . . . , xi−1} ∪ n(x1) ∪ . . . ∪ n(xi−1))

)
∩ I ′.
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This sequence is well defined. Otherwise, take the minimal i such that the set ω≻′(I \

({x1, . . . , xi−1} ∪ n(x1) ∪ . . . ∪ n(xi−1))) ∩ I ′ is empty, and let X = {x1, . . . , xi−1} and

Y = I \ ({x1, . . . , xi−1} ∪ n(x1) ∪ . . . ∪ n(xi−1)). Then, ∀x ∈ X.∃y ∈ Y.y ≻′ x, which

contradicts global optimality of I ′.

Obviously, with the sequence x1, . . . , xn of choices made in Step 5.20 the repair I ′ is the

result of Algorithm PCR for ≻′. We finish the proof by observing that using a more general

priority in Step 5.20 does not restrict possible choices, i.e. ω≻′(s) ⊆ ω≻(s) for any ≻′ ⊇ ≻.

Hence I ′ can be constructed with Algorithm PCR for ≻ with the same sequence of choices.

(3) ⇒ (2) Assume that I ′ is a result of Algorithm PCR and let x0
1, . . . , x

0
n be the sequence

of consecutive choices made in Step 5.20.

For every x0
i let x1

i , . . . , x
mi

i be any ordering of n(x0
i )\({x0

1, . . . , x
0
i }∪n(x0

1)∪. . .∪n(x0
i−1))

that agrees with ≻ (any topological sorting). We note that if xj
i ∈ I \ I ′, then j > 0.

Next, we construct the following binary relation on I:

xj1
i1

≻′ xj2
i2

⇐⇒ {xj1
i1

, xj2
i2
} – conflict ∧ i1 < i2 ∨ (i1 = i2 ∧ j1 < j2).

It is easy to see that ≻′ is a priority (i.e. is acyclic), is total, and extends ≻.

Now, we show that I ′ is Pareto optimal w.r.t. ≻′. Suppose otherwise, i.e. that there is

a nonempty set X ⊆ I ′ and a nonempty set Y ⊆ I \ I ′ such that (I ′ \ X) ∪ Y is consistent

and ∀x ∈ X.∀y ∈ Y.y ≻′ x. We select the element x0
i1

∈ X with the minimum i1 index

and any element xj
i ∈ Y . We note that j > 0 and xj

i ∈ n(x0
i0

) because x0
i0

and xj
i create a

conflict and xj
i ∈ I \ I ′. Also, because (I ′ \X)∪ Y is consistent, xj

i conflicts with no x0
i′ for

any i′ < i0. Hence, from the construction of ≻′ we have that x0
i0
≻′ xj

i ; a contradiction.

(2) ⇒ (1) Assume that I ′ is Pareto optimal w.r.t. a total priority ≻′ ⊇ ≻. We note

that P4 for PRep implies that I ′ is the only Pareto optimal repair w.r.t. ≻′. Thus, every

family of Pareto optimal repair satisfying P1 and P2 must contain I ′. 2

Proposition 5.21 CRep satisfies P1-P4 and CRep ⊑ GRep.
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The introduced families of preferred repairs create a hierarchy:

CRep ⊑ GRep ⊑ PRep.

Recall from the previous section that PRep 6= GRep. The following example shows also

that CRep 6= GRep. Thus, the hierarchy is proper.

Example 5.22 Consider a relational instance I = {ta, tb, tc, td} whose prioritized conflict

graph is presented in Figure 5.4 (for brevity we omit the exact values of the tuples and the

constraints). The instance I has 3 repairs: I1 = {ta}, I2 = {tb}, and I3 = {tc, td}. All

tc td

ta tb

Figure 5.4: The prioritized conflict graph G(I, F,≻).

repairs are globally optimal, but only I1 and I2 are common.

We observe, however, that under certain conditions this hierarchy collapses.

Proposition 5.23 PRep, GRep, and CRep coincide under one of the following conditions:

1. the set of constraints F consists of one key dependency only;

2. the priority ≻ can be extended to acyclic orientations only.

Moreover, GRep and CRep coincide if

(3) the set of constraints F consists of one functional dependency only.

Proof In the cases (1) and (2) it’s enough to show PRep ⊑ CRep.

(1) We use the fact that in the presence of one key dependency only the conflict graph

is a union of pairwise disjoint cliques and every repair consists of one element selected from

each clique.

We fix an instance I, a key dependency F , and a priority ≻. Let c1, . . . , cn be the cliques

of G(I, F ). Take any I ′ ∈ PRep(I, F,≻) and let t1, . . . , tn be the elements of I ′ such that
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ti ∈ ci. We note that since I ′ is Pareto optimal, then for every i any y ∈ ci \ {ti} y 6≻ ti

and consequently ti ∈ ω≻(ci). Hence, t1, . . . , tn is a proper sequence of choices in Step 5.20

of Algorithm PCR. To finish the proof we note that n(ti) ∪ {ti} = ci which implies that

Algorithm PCR halts after consecutively choosing the elements t1, . . . , tn.

(2) We take any I ′ ∈ PRep(I, F,≻) and construct a total extension ≻′ of ≻ by priori-

tizing conflicts unprioritized by ≻ in favor of I ′, i.e. ≻′ is any total priority such that for

any x ∈ I ′ and any y conflicting with x if y 6≻ x then x ≻′ y. Since ≻ can be extended to

acyclic orientations only, ≻′ is acyclic.

Clearly, I ′ is a Pareto optimal repair w.r.t ≻′ and a unique one (by P4). Therefore

I ′ ∈ CRep(I, F,≻′) and by P2 we get I ′ ∈ CRep(I, F,≻).

(3) We show that GRep ⊑ CRep if we assume a single functional dependency F = {X →

Y } and we use the notions X-cluster and (X, Y )-cluster [ABC+03b] for an FD R : X → Y .

An (X, Y )-cluster is a maximal set of tuples of R in I that have the same attribute value in

X and Y . An X-cluster is the union of all (X, Y )-clusters with the same attribute value in

X. Clearly, every repair contains exactly one (X, Y )-cluster from each X-cluster. We also

note that conflicts are present only inside an X-cluster and two tuples from X-cluster form

a conflict if and only if they belong to two different (X, Y )-clusters.

Now, let the instance I be the sum of the X-clusters C1, . . . , Cn. Take any globally

optimal repair and let it be the sum of the (X, Y )-clusters D1, . . . , Dn (di ⊆ ci for every i).

By global optimality of I ′ we have that for every i

∃ti ∈ Di.∀y ∈ Ci \ Di.y 6≻ ti.

Therefore, Algorithm PCR can perform the first n iterations by choosing t1, . . . , tn. Because

n(Ti) = Ci \ Di and elements of Di conflict only with elements of Ci \ Di, the remaining

choices can consist of any ordering of (D1 \ {t1}) ∪ . . . ∪ (Dn \ {tn}). Hence, I ′ is a result

of Algorithm PCR. 2

We note that the conditions are necessary but not sufficient; for instance, the priority in

Figure 5.1 can be extended to a cyclic orientation, yet GRep and CRep coincide.

Corollary 5.24 C -preferred repair checking is in PTIME and C -preferred consistent query
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answering is coNP-complete.

Proof To check if a repair I ′ is common we use Algorithm PCR to simulate the construction

of I ′ by restricting the choice in Step 5.20 to tuples ω≻(J) ∩ I ′. The repair I ′ is common if

and only if such a simulation can be performed successfully (i.e. it produces I ′). Naturally,

DC
F,Q belongs to coNP and its coNP-completeness follows from Theorem 5.17. 2

5.3.4 Positive case

The intractability proofs use at least 2 FDs. Next, we investigate the case when only one

FD is present. Because for one FD the introduced families collapse (Proposition 5.23) we

do not need to differentiate between them.

Theorem 5.25 If the set of integrity constraints contains at most one functional depen-

dency per relation name and no other constraints, then computing preferred consistent an-

swers to quantifier-free queries is in PTIME for PRep, GRep, and CRep.

Proof First, we observe that if only functional dependencies are considered, tuples can

create conflict only with tuples from the same relation and therefore we can limit our

consideration to schema consisting on one relation name only.

We assume that the set of integrity constraints is F = {R : X → Y } and we use the

notions X-cluster and (X, Y )-cluster (see the proof of Proposition 5.23).

Now, we fix an instance I and a priority ≻. For every tuple t ∈ I, by Ct we denote the

X-cluster t belongs to and by Dt we denote its (X, Y )-cluster.

We adopt the algorithm from [CM05]. We assume that the query is in CNF, i.e. Φ =

Φ1 ∧ . . . ∧Φn. True is not a preferred consistent query answer to Φ in I if and only if there

exists a preferred repair I ′ and there exists i such that I ′ 6|= Φi. The algorithm attempts to

find if such a repair exists for every i. Fix i and consider

¬Φi = t1 ∧ . . . ∧ tk ∧ ¬tk+1 ∧ . . . ∧ ¬tm.

To find if a preferred repair satisfying ¬Φi exists we use one of the two following polynomial

tests depending on the family of preferred repairs we use. For simplicity, we assume that
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the tuples t1, . . . , tk and the tuples tk+1, . . . , tn belong to I; otherwise there is no repair

satisfying ¬Φi or we can remove the negative literal from ¬Φi respectively (because repairs

are subsets of I). Recall that globally optimal and common repairs coincide in the presence

of one FD.

Lemma 5.26 A globally optimal (common) repair I ′ satisfying ¬Φi exists if and only if

the following conditions are satisfied:

1. {t1, . . . , tk} is conflict-free;

2. {Dt1 , . . . , Dtk} ∩ {Dtk+1
, . . . , Dtm} = ∅;

3. Dtj ∩ ω≻(Ctj ) 6= ∅ for every j ∈ {1, . . . , k}.

4. ω≻(Ctj ) \ (Dtk+1
∪ . . . ∪ Dtn) 6= ∅ for every j ∈ {k + 1, . . . , n}.

Lemma 5.27 A Pareto optimal repair I ′ satisfying ¬Φi exists if and only if the following

conditions are satisfied:

1. {t1, . . . , tk} is conflict-free;

2. {Dt1 , . . . , Dtk} ∩ {Dtk+1
, . . . , Dtm} = ∅;

3. for every j ∈ {1, . . . , k}, for every tuple t ∈ Ctj \ Dtj there exists t′ ∈ Dtj such that

t 6≻ t′.

4. for every j ∈ {k + 1, . . . , n} there exists an (X, Y )-cluster D of Ctj different from

Dtk+1
, . . . , Dtn such that for every t ∈ Dtk+1

∪ . . . ∪ Dtn, there exists t′ ∈ D such that

t 6≻ t′.

Full proofs of these Lemmas are in the appendix. Here, we just observe that by 1 and 3 we

can construct a preferred repair containing t1, . . . , tk and by 2 and 4 the preferred repair

does not contain tk+1, . . . , tm. 2
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5.4 Related work

We limit our discussion to the work on using priorities to maintain consistency and facilitate

resolution of conflicts.

The first article to notice the importance of priorities in information systems is [FUV83].

There, the problem of conflicting updates in (propositional) databases is solved in a manner

similar to CRep. The considered priorities are transitive, which in our framework is too

restrictive. Also, in our framework this restriction does not bring any computational benefits

(the reductions can be modified to use only transitive priorities). [Bre89] is another example

of CRep-like prioritized conflict resolution of first-order theories. The basic framework is

defined for priorities which are weak orders. A partial order is handled by considering every

extension to weak order. This approach also assumes the transitivity of the priority.

In the context of logic programs, priorities among rules can be used to handle incon-

sistent logic programs (where rules imply contradictory facts). More preferred rules are

satisfied, possibly at the cost of violating less important ones. In a manner analogous to

Proposition 5.7, [VNV02] lifts a total order on rules to a preference on (extended) answers

sets. When computing answers only maximally preferred answers sets are considered.

A simpler approach to the problem of inconsistent logic programs is presented in [Gro97].

There, conflicting facts are removed from the model unless the priority specifies how to re-

solve the conflict. Because only programs without disjunction are considered, this approach

always returns exactly one model of the input program. Constructing preferred repairs in a

corresponding fashion (by removing all conflicts unless the priority indicates a resolution)

would similarly return exactly one database instance (fulfillment of P1 and P4). However,

if the priority is not total, the returned instance is not a repair and therefore P5 is not

satisfied. Such an approach leads to a loss of (disjunctive) information and does not satisfy

P2 and P3.

[FGZ04] proposes a framework of conditioned active integrity constraints, which allows

the user to specify the way some of the conflicts created with a constraint can be resolved.

This framework satisfies properties P1 and P2 and doesn’t satisfy P3 and P4. [FGZ04] also

describes how to translate conditioned active integrity constraints into a prioritized logic
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program [SI00], whose preferred models correspond to maximally preferred repairs.

[MAA04] uses ranking functions on tuples to resolve conflicts by taking only the tuple

with highest rank and removing others. This approach constructs a unique repair under

the assumption that no two different tuples are of equal rank (satisfaction of P4). If this

assumption is not satisfied and the tuples contain numeric values, a new value, called

the fusion, can be calculated from the conflicting tuples (then, however, the constructed

instance is not necessarily a repair in the sense of Definition 2.4 which means a possible loss

of information).

A different approach based on ranking is studied in [GSTZ04]. The authors consider

polynomial functions that are used to rank repairs. When computing preferred consistent

query answers, only repairs with the highest rank are considered. The properties P2 and

P5 are trivially satisfied, but because this form of preference information does not have

natural notions of extensions and maximality, it is hard to discuss postulates P3 and P4.

Also, the preference among repairs in this method is not based on the way in which the

conflicts are resolved.

An approach where the user has a certain degree of control over the way the conflicts

are resolved is presented in [GL04]. Using repair constraints the user can restrict considered

repairs to those where tuples from one relation have been removed only if similar tuples

have been removed from some other relation. This approach satisfies P3 but not P1. A

method of weakening the repair constraints is proposed to get P1, however this comes at

the price of losing P3.

In [AFM06], Andritsos et al. extend the framework of consistent query answers with

techniques of probabilistic databases. Essentially, only one key dependency per relation

is considered and user preference is expressed by assigning a probability value to each of

mutually conflicting tuples. The probability values must sum to 1 over every clique in the

conflict graphs. This framework generalizes the standard framework of consistent query

answers: the repairs correspond to possible worlds and have an associated probability. We

also note that no repairs are removed from consideration (unless the probability of the world

is 0). The query is evaluated over all repairs and the probability assigned to an answer is

the sum of probabilities of worlds in which the answer is present. Although the considered
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databases are repairs, the use of the associated probability values makes it difficult to

compare this framework with ours.



Chapter 6

XML databases

6.1 Data model

We adapt a model of XML documents and DTDs similar to those commonly used in the

literature [BPV04, BFG05, KSS03, Nev02].

Ordered labeled trees We view XML documents as labeled ordered trees with text

values. For simplicity we ignore attributes: they can be easily simulated using text values.

By Σ we denote a fixed (and finite) set of node labels and we distinguish a label PCDATA ∈ Σ

to identify text nodes. A text node has no children and is additionally labeled with an

element from an infinite domain Γ of text constants. For clarity of presentation, we use

capital letters A, B, C, . . . for elements from Σ and capital letters X, Y, Z . . . for variables

ranging over Σ. We assign a unique identifier to every node. Figure 6.1 contains an example

of a tree.

C
n0

A
n1

B
n3

B
n5

d
n2

e
n4 text nodes

PCDATA

Figure 6.1: Running example

We assume that the data structure used to store a document allows for any given node

95
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to get its label, its parent, its first child, and its immediate following sibling in time O(1).

For the purpose of presentation, we represent trees as terms over the signature Σ \

{PCDATA} with constants from Γ. For instance, the tree T1 from Figure 6.1 is represented

as C(A(d), B(e), B). Note that a text constant t ∈ Γ, viewed as a term, represents a tree node

with no children, that is labeled with PCDATA, and whose additional text label is t.

DTDs For simplicity our view of DTDs omits the specification of the root label. A DTD

is a function D that maps labels from Σ \ {PCDATA} to regular expressions over Σ. We use

regular expressions given by the grammar

E ::≡ ǫ |X |E + E |E · E |E∗,

where X ranges over Σ, ǫ denotes the empty string, and E +E, E ·E, E∗ denote the union,

concatenation and the Kleene closure, respectively. L(E) is the set of all strings over Σ

satisfying E. |E| stands for the size (length) of E. The size of D, denoted |D|, is the sum

of the lengths of the regular expressions occurring in D.

A tree T = X(T1, . . . , Tn) is valid w.r.t. a DTD D if: (1) Ti is valid w.r.t. D for every

i and, (2) if X1, . . . , Xn are labels of root nodes of T1, . . . , Tn respectively and E = D(X),

then X1 · · ·Xn ∈ L(E).

Example 6.1 Consider the following DTD D1:

D1(C) = (A · B)∗, D1(A) = PCDATA + ǫ, D1(B) = ǫ.

The tree T1 = C(A(d), B(e), B) is not valid w.r.t. D1 but the tree C(A(d), B) is.

To capture the sets of strings satisfying regular expressions we use the standard notion

of non-deterministic finite automaton (NFA) M = 〈Σ, S, q0, ∆, F 〉, where S is a finite set

of states, q0 ∈ S is a distinguished starting state, F ⊆ S is the set of final states, and

∆ ⊆ S × Σ × S is the transition relation. We note that we consider only ǫ-free NFAs and

recall the classic result that for every regular expression there exists an equivalent ǫ-free

NFA whose set of states is of size linear in the size of the expression [HMU01].
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6.1.1 Tree edit distance and repairs

A location is a sequence of natural numbers defined as follows: ε is the location of the root

node, and v · i is the location of i-th child of the node at location v. This notion allows us

to identify nodes without fixing a tree.

We consider the three standard tree operations [AMR+98, BPV04, BFG05, CRGMW96,

CAM02]:

1. Deleting a subtree rooted at a specified location.

2. Inserting a subtree at a specified location.

3. Modifying the label at a specified location.

With each operation we associate its cost. For deleting (inserting) it is the size of the deleted

(resp. inserted) subtree. The cost of label modification is 1.

The following example shows that the order of applying operations is important, and

therefore we consider sequences (rather than sets) of operations when transforming docu-

ments.

Example 6.2 Recall the tree T1 = C(A(d), B(e), B) from Figure 6.1. If we first insert D as a

second child of the root and then remove the first child of the root we obtain C(D, B(e), B).

If, however, we first remove the first child of the root and then add D as a second child of

the root we get C(B(e), D, B).

The cost of a sequence of operations is the sum of costs of its elements. Two sequences

of operations are equivalent on a tree T if their application to T yields the same tree. We

observe that some sequences may perform redundant operations, for instance an insertion

and subsequent removal of a subtree. Because we focus on finding cheapest sequences of

operations, we restrict our considerations to redundancy-free sequences (those for which

there is no equivalent but cheaper sequence). We also observe that some sequences of

operations may be unnecessarily long, for instance a subtree can inserted with a sequences

of operations inserting single nodes rather than one operation inserting the whole subtree at

one time. Both ways are equivalent and their cost is the same, therefore we further restrict
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our considerations to concise sequences of operations (those for which there is no equivalent

but shorter sequence).

Definition 6.3 (Edit distance) Given two trees T and T ′, the edit distance dist(T, T ′)

between T and T ′ is the minimum cost of transforming T into T ′.

Note that the distance between two documents (even if we consider only deletions and

insertions) is a metric i.e., it is positively defined, symmetric, and satisfies the triangle

inequality.

For a DTD D and a (possibly invalid) tree T , a sequence of operations is a sequence

repairing T w.r.t. D if the document resulting from applying the sequence to T is valid

w.r.t. D. We are interested in the optimal repairing sequences of T .

Definition 6.4 (Distance to a DTD) Given a document T and a DTD D, the distance

dist(T, D) of T to D is the minimum cost of transforming T into a document valid w.r.t. D.

Repairs

We use the notions of edit distance to capture the minimality of change required to repair

a document.

Definition 6.5 (Repair) Given a document T and a DTD D, a document T ′ is a repair

of T w.r.t. D if T ′ is valid w.r.t. D and dist(T, T ′) = dist(T, D).

Note that, if repairing a document involves inserting a text node, the corresponding text

label can have infinitely many values, and thus in general there can be infinitely many

repairs. However, as shown in the following example, even if the operations are restricted to

deletions there can be an exponential number of non-isomorphic repairs of a given document.

Example 6.6 Consider the following DTD D2:

D2(A) = (B · (T + F))∗, D2(T) = ǫ,

D2(B) = PCDATA, D2(F) = ǫ.
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The document A(B(1), T, F, . . . , B(n), T, F) consists of 4n+1 elements and has 2n repairs w.r.t.

D2. For instance, an example of a repair for the document T2 = A(B(1), T, F, B(2), T, F, B(3), T, F)

is the document A(B(1), T, B(2), F, B(3), T).

6.2 Trace graph

In this section we present a construction that allows to capture all repairs of an XML

document. For clarity of presentation, we limit operations to insertion and deletion. Later

on we show how to extend our approach to handle label modification as well.

The main element of this construction is a trace graph which is built for every node of

the tree. A trace graph captures all optimal ways to repair the document at a given node.

6.2.1 Restoration graph

We start the construction of a trace graph by building first a restoration graph which

captures all (not necessarily optimal) ways to repair the document at a given node.

Suppose T = X(T1, . . . , Tn) is a tree and X1, . . . , Xn the sequence of the root labels

of T1, . . . , Tn respectively. The DTD we work with is D and E = D(X). Let ME =

〈Σ, S, q0, ∆, F 〉 be the NDFA recognizing L(E).

The restoration graph for the root of T , denoted UT , contains vertices of the form qi for

q ∈ S and i ∈ {0, . . . , n}. The vertex qi is referred as the state q in the i-th column of UT .

qi corresponds to the state q being reached by ME after reading the elements X1, . . . , Xi

with possibly some elements deleted and some elements inserted. The edges of UT are:

• pi−1 Read
−−−−→ qi exists only if ∆(p, Xi, q) (we read Xi from the input and change the

state of ME accordingly);

• qi−1 Del
−−−→ qi for any state q ∈ S and any i ∈ {1, . . . , n} (we remove Xi from the input

but we don’t change the state of ME);

• pi Ins Y
−−−−−→ qi exists only if ∆(p, Y, q) (we don’t remove any symbol from the input but

we change the state of ME as if the symbol Y was read).

A repairing path in UT is a path from q0
0 to any accepting state in the last column of UT .
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Example 6.7 Recall the document T1 = C(A(d), B(e), B) and the DTD D1 from Exam-

ple 6.1. The automaton M(A·B)∗ consists of two states q0 and q1; q0 is both the starting and

the only accepting state; ∆ = {(q0, A, q1), (q1, B, q0)}. The restoration graph UT is presented

in Figure 6.2.
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Figure 6.2: Construction of the restoration graph

We note that the restoration graph is constructed for every node of the tree T . Now, we

show how to obtain a sequence of editing operations equivalent to a selection of a path in

every restoration graph of T . We translate recursively the path in UT as follows:

• qi−1 Del
−−−→ qi is mapped to a deletion of Ti,

• pi Ins Y
−−−−−→ qi is mapped to an insertion of a valid subtree with root label Y ,

• pi−1 Read
−−−−→ qi is mapped to a repairing sequence for Ti (obtained by induction from

UTi
).

Lemma 6.8 Given a tree T and a DTD D, for every repairing sequence of editing opera-

tions there exists an equivalent selection of repairing path in every restoration graph of T ,

and vice versa.

Proof We first observe that for every non-redundant and concise sequence of editing opera-

tions on T there exists an equivalent canonical sequence of editing operations, i.e. a sequence

of operation whose locations of subsequent editing operations follow the natural order of

the document (left-to-right prefix traversal). Because we consider only non-redundant and

concise sequences, every sequence can be transformed to an equivalent canonical one by

sorting (with possible updates of the locations caused by changes of the relative positions

of the editing operations).
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A canonical repairing sequence of operations can be partitioned into segments operating

on the subsequent subtrees of T : either repairing, inserting, or deleting a subtree. Naturally,

those segments correspond to equivalent edges in the restoration graph. Because we use

non-deterministic automata, a segment may correspond to more than one edge in UT ,

however, all corresponding edges represent the same operation. Finally, because we deal

with a repairing sequence of operations we can construct from the corresponding edges an

equivalent repairing path in UT .

For a repairing path in UT we construct a sequence of editing operations in the fashion

presented above. Naturally, we obtain a repairing sequence. 2

6.2.2 Compact representation of repairs

Now, to capture optimal repairing sequences of T we assign to the edges of UT the (mini-

mum) costs of the corresponding operations.

Definition 6.9 (Trace graph) The trace graph for T , denoted U∗
T , is the subgraph of UT

consisting of only the optimal repairing paths. The exact cost assigned to edges of UT is:

• qi−1 Del
−−−→ qi the cost is |Ti|,

• qi Ins Y
−−−−−→ pi the cost is equal to the minimal size of a valid subtree with root label Y

(this cost can be computed with a simple algorithm omitted here),

• qi−1 Read
−−−−→ pi the cost is the cost of the shortest repairing path in U∗

Ti
(obtained by

recursion).

Theorem 6.10 The distance between the tree T and the DTD D is the cost of an optimal

repairing path in U∗
T .

Proof By Lemma 6.8 for every repairing sequence of editing operations there is an equiva-

lent repairing path in the trace graph. We note that because we consider only non-redundant

and concise sequences of editing operations, the cost of the sequence of operations and the

corresponding path in the trace graph are the same. Also an optimal repairing sequence

of editing operation inserts only a minimal valid subtrees, or otherwise it is not optimal.
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Therefore, the cost of optimal repairing sequence is equal to the cost of the shortest path

in the trace graph. 2

Example 6.11 (cont. Example 6.7) Repairing the second child of T1 requires removing

the text node d and hence the cost assigned to q1
1

Read
−−−−→q2

0 is 1. For the DTD D1 all insertion

costs are 1. The trace graph U∗
T is presented in Figure 6.3. The repairing paths in the trace
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Figure 6.3: Construction of the trace graph

graph capture 3 different repairs:

1. q0
0

Read
−−−→ q1

1
Read
−−−→ q2

0
Ins A
−−−→ q2

1
Read
−−−→ q3

0 yields C(A(d), B, A, B) by repairing the second

child (which involves deleting the text node e), and inserting A;

2. q0
0

Read
−−−→ q1

1
Del
−−→ q2

1
Read
−−−→ q3

0 yields C(A(d), B) by deleting the second child;

3. q0
0

Read
−−−→ q1

1
Read
−−−→ q2

0
Del
−−→ q3

0 yields C(A(d), B) by repairing the second child and deleting

the third.

We note that although isomorphic, the repairs (2) and (3) are not the same because the

nodes labeled with B are obtained from different nodes in the original tree (resp. n5 and

n3).

Repairs and paths in the trace graph

Note that if UT has cycles, only Ins edges can be involved in them. Since the costs of

inserting operations are positive, U∗
T is a directed acyclic graph.

Suppose now that we have constructed a trace graph in every node of T . Every repair

can be characterized by selecting a repairing path in each of the trace graphs. Similarly a

choice of paths in each of the trace graphs yields a repair. It is important to note that a

choice of a path on the top-level trace graph of T may correspond to more than one repair
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(this happens when some subtree has more than one repair). Trace graphs can also be used

for interactive document repair.

Complexity analysis We note that for any vertex from the restoration graph UT the

incoming edges come from the same or the preceding column. Therefore, when computing

the minimum cost of a path to a given vertex we need to consider at most |Σ|× |S|+ |S|+1

values (up to |Σ| × |S| Ins edges, up to |S| Read edges, and one Del edge). We assume

that |S| is bounded by the size of D and that Σ is fixed.

Theorem 6.12 For a given tree T and a DTD D all trace graphs of T can be constructed

in O(|D|2 × |T |) time.

6.2.3 Handling label modification

In order to extend the trace graph to handle label modification we add the following edges:

• qi Mod Y
−−−−−−→ pi+1 which exists only if ∆(q, Y, p) and Y 6= Xi (we remove Xi from the

input, but we change the state of ME as if Y was read);

This edges corresponds to modification of the root label of Ti to Y and then recursively

repairing T ′
i (which is Ti with the root label changed to Y ). The cost assigned to this edge

is equal 1 + dist(T ′
i , D). We obtain the value dist(T ′

i , D) similarly to the way we obtained

dist(Ti, D): by first constructing the trace graph U∗
T ′

i
.

Handling label modification requires computing |Σ| values rather than 1, but since Σ is

assumed to be fixed, the asymptotic time and space complexity remains the same. Note,

however, that in this way a significant constant factor in the real running time of the

algorithm is introduced.

6.3 Validity-sensitive querying

We consider the class XCore of Core XPath queries [Mar04] which is known to capture XPath

1.0 [W3C99] restricted to its logical core (all axes but no attributes and no functions). This
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class of queries is defined with the following grammar:

Q ::≡ p1 ∪ . . . ∪ pn,

p ::≡ s1/s2/ . . . /sm,

s ::≡ a::n | a::n[f ],

a ::≡ ǫ | ⇓ | ⇑ | ⇐ | ⇒ | a∗,

n ::≡ ∗ |X | text(),

f ::≡ q | q = str | q1 = q2 | ¬f | f1 ∧ f2 | f1 ∨ f2.

A query is a union of path and every path is a sequence of steps. Every step consists of

axis specification, a node test and an optional filter expression. A node test can be either

the wildcard test ∗, a tag name from Σ, or text node test. A filter expression is a boolean

expression composed of other queries, textual value tests, and join conditions. We observe

that the used set of axes allows to express all standard XPath axes:

self ::n ≡ ǫ ::n,

child ::n ≡ ⇓ ::n,

descendant ::n ≡ ⇓∗ :: ∗ / ⇓ ::n,

descendant-or-self ::n ≡ ⇓∗ ::n,

parent ::n ≡ ⇑ ::n,

ancestor ::n ≡ ⇑∗ :: ∗ / ⇑ ::n,

ancestor-or-self ::n ≡ ⇑∗ ::n,

following-sibling ::n ≡ ⇒∗ :: ∗ / ⇒ ::n,

following ::n ≡ ⇑∗ :: ∗ / ⇒ :: ∗ / ⇒∗ :: ∗ / ⇓∗ ::n,

following-sibling ::n ≡ ⇐∗ :: ∗ / ⇐ ::n,

preceding ::n ≡ ⇑∗ :: ∗ / ⇐ :: ∗ / ⇐∗ :: ∗ / ⇓∗ ::n.
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As in the standard, the child axis is the default axis, i.e. if the axis is not specified, then

the ⇓ axis is assumed. This allows us to write a/b instead of the expression ⇓ :: a/ ⇓ :: b.

We also identify the following subclasses of queries:

• XC – no union, axes restricted to ⇓, ⇓∗, and ǫ, no disjunction and negation in the

filter expressions, and no join conditions.

• XC(∨) – XC with union and disjunction.

• XC(¬) – XC with negation.

• XC(=) – XC with join conditions.

• XC(⇑) – XC with the ascending axes ⇑ and ⇑∗.

• XC(⇐) – XC with the sliding axes ⇐ and ⇐∗.

• XC(⇒) – XC with the sliding axes ⇒ and ⇒∗.

6.3.1 Tree facts

We use the standard semantics of XPath queries [W3C99, Mar04], defined in a way geared

toward the computation of valid query answers. The main notion we use is that of a tree

fact which is a triple (x, Q, y), where y is an object (a node or a text label) reachable from

a node x with a query Q. We distinguish basic tree facts which capture the structure of the

tree and its textual contents.

Definition 6.13 (Basic tree facts) Given an tree T , the set of basic facts of T consists

of the following elements:

• (n, ǫ ::X, n) for any node n of T whose label is X;

• (n, ǫ :: text(), t) for any text node n of T whose text label is t (in addition to the fact

above);

• (p,⇓ :: ∗, n) and (n,⇑ :: ∗, p) for any node p of T and any child n of p;

• (n1,⇒ :: ∗, n2) and (n2,⇐ :: ∗, n1) for any pair of nodes n1 and n2 of T such that n2

is the immediate following sibling of n1.
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Other tree facts are derived using implications that follow the standard semantics of XPath.

We present the implications in Figure 6.4.

(x, p1 ∪ · · · ∪ pn, y) ← pi for i ∈ {1, . . . , n},

(x, s1/ · · · /sm, y) ← (x, s1/ · · · /si, z) ∧ (z, si+1/ · · · /sn, y) for i ∈ {1, . . . , m},

(x, a ::n, y) ← (x, a :: ∗, y) ∧ (y, ǫ :: n, y),

(x, a ::n[f ], y) ← (x, a ::n, y) ∧ (y, ǫ :: ∗[f ], y),

(x, a∗ :: ∗, x) ← (x, ǫ :: ∗, x),

(x, a∗ :: ∗, y) ← (x, a :: ∗, z) ∧ (z, a∗ :: ∗, y),

(x, ǫ :: ∗, x) ← (x, ǫ ::X, x),

(x, ǫ :: ∗[q], x) ← (x, ǫ :: ∗, x) ∧ (x, q, y),

(x, ǫ :: ∗[q = str], x) ← (x, ǫ :: ∗, x) ∧ (x, q, str),

(x, ǫ :: ∗[q1 = q2], x) ← (x, ǫ :: ∗, x) ∧ (x, q1, y) ∧ (x, q2, y),

(x, ǫ :: ∗[¬f ], x) ← not(x, ǫ :: ∗[f ], x),

(x, ǫ :: ∗[f1 ∧ f2], x) ← (x, ǫ :: ∗[f1], x) ∧ (x, ǫ :: ∗[fk], x),

(x, ǫ :: ∗[f1 ∨ f2], x) ← (x, ǫ :: ∗[f1], x),

(x, ǫ :: ∗[f1 ∨ f2], x) ← (x, ǫ :: ∗[f2], x).

Figure 6.4: Fact derivation rules.

Definition 6.14 (Query answer) x is an answer to Q in T if (r, Q, x) can be derived for

T , where r is the root node of T . We denote the set of all answers to Q in T with QA(T, Q).

We note that when computing answers to a query Q we need to use only a fixed number

of different derivation rules (which involve only subqueries of Q). If we use only positive

queries, then the rules do not contain negation. Therefore, the derivation of other tree facts,

similarly to negation-free Datalog programs, is a monotonic process i.e., adding new (basic)

facts cannot invalidate facts derived previously. This observation allows us to construct

Algorithm 6.1 for computing the set of all tree facts that are relevant to answering a positive

query Q (facts that use subqueries of Q). For every node it adds to the set of basic facts of

the node the facts obtained recursively for the children of the node. In every step we also

add any facts that can be derived with the derivation rules for the query Q; this operation

is denoted by the superscript (·)Q. Finally, we select from the computed set the answers to

Q.
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Algorithm 6.1 Computing QA(T, Q).

function Facts(T ,Q)
T = X(T1, . . . , Tn)
r, r1, . . . , rn are the root nodes of T, T1, . . . , Tn respectively.

1: F =

{{
({(r, ǫ ::X, r), (r, ǫ :: text(), t)})Q

}
if T is a text node t,

{
({(r, ǫ ::X, r)})Q

}
otherwise.

2: for i ∈ {1, . . . , n} do
3: if i > 1 then
4: F := (F ∪ {(ri−1,⇒ :: ∗, ri), (ri,⇐ :: ∗, ri−1)})

Q

5: F := (F ∪ {(r,⇓ :: ∗, ri), (ri,⇑ :: ∗, r)})Q

6: F := (F ∪ Facts(Ti, Q))Q

7: return F
end function

body
QA(T, Q) = {x|(r, Q, x) ∈ Facts(T, Q)}

end body

6.3.2 Valid query answers

Definition 6.15 (Valid query answers) Given a DTD D, a query Q, and a document

T , an object x (either a node or a text label) is a valid answer to Q in T w.r.t. D if and

only if x is an answer to Q in every repair of T w.r.t. D. By V QA(T, Q, D) we denote the

set of all valid answers to Q in T w.r.t. D.

Computational complexity

Recall that the combined complexity of computing answers to XPath queries is PTIME [GKP02].

Therefore, when we study tractability of computing query answers we include the query in

the input and assume the DTD to be fixed. Formally we characterize the computational

complexity of the membership problem for the following set

DD = {(x, Q, T ) |x is a valid answer to Q in T w.r.t. D}.

6.4 Tractable case

We start by presenting an exponential algorithm that computes valid query answers to any

positive query. Later, we show how in two steps modify the algorithm to compute valid
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query answers to XC queries in polynomial time.

Again for clarity we consider only inserting and deleting tree operations: the approach

can be extended to modifying operations in a way analogous to trace graphs in Section 6.2.3.

6.4.1 Exponential algorithm

Algorithm 6.2 computes valid query answers by (recursively) constructing a collection of sets

of facts that hold in repairs of the document. Basically, for every repairing path in the trace

graph the algorithm constructs the set of tree facts present in the repairs represented by

this path. These sets are constructed in an incremental fashion using a flooding technique:

V stores visited nodes and C(v) stores a collection of sets of facts for all paths from q0
0 to v.

For the empty path we only include basic tree facts of the root node. For every traversed

edge we append all sets in the collection corresponding to the edge: none for a Del edge; for

Read edge the collection of sets from the corresponding subtree; for Ins Y the collection

of sets of facts MY that are present in every minimal valid tree with root Y (computed

with a simple algorithm). The appending operation ⊎r is union which also adds basic facts

establishing parent-child relation (between r and the root node of the appended subtree)

and basic facts establishing sibling relation (and order) among appended trees. In every

step we also add any facts that can be derived with the derivation rules for the query Q;

this operation is denoted by the superscript (·)Q.

Proposition 6.16 The Algorithm 6.2 computes valid answers to a positive query Q.

6.4.2 Certain facts

The first proposed modification moves the intersection from the very last moment of com-

puting valid query answers to the place where the collection of sets computed for a whole

(sub)tree is returned. The set of facts obtained by intersection of all sets corresponding

to the repairs of a given tree is called certain facts. This approach is implemented in

Algorithm 6.3.

Example 6.17 Recall the tree T1 from Figure 6.1 and the DTD D1 from Example 6.1.

Consider the the query Q1 = ǫ::C/⇓∗/text(). The trace graph for T1 and D1 can be found
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Algorithm 6.2 Computing V QA(T, Q, D)

function Repaired(T ,D,Q)
T = X(T1, . . . , Tn) with the root node r
MD(X) = 〈Σ, S, q0, ∆, F 〉

in(v)
def
= {u ∈ U∗

T |u −→ v} (∗ incoming neighbors ∗)

precompute:
U∗

T – the trace graph of T .
MY – collection of sets of tree facts from every minimal tree with the root label Y ∈ Σ.
Mi := Repaired(Ti, D, Q) (for i ∈ {1, . . . , n}).

1: V := {q0
0}

2: C(q0
0) :=

{{
({(r, ǫ ::X, r), (r, ǫ :: text(), t)})Q

}
if T is a text node t,

{
({(r, ǫ ::X, r)})Q

}
otherwise.

3: while V 6= U∗
T do

4: choose any qi ∈ U∗
T such that in(qi) ⊆ V

5: V := V ∪ {qi}
6: C(qi) := ∅

7: if qi−1 Del
−−→ qi ∈ U∗

T then C(qi) := C(qi−1)

8: for pi Ins Y
−−−−→ qi ∈ U∗

T do
9: C(qi) := C(qi) ∪ {(C ⊎r CY )Q|C ∈ C(pi) ∧ CY ∈ MY }

10: for pi−1 Read
−−−→ qi ∈ U∗

T do
11: C(qi) := C(qi) ∪ {(C ⊎r Ci)

Q|C ∈ C(pi−1) ∧ Ci ∈ Mi}
12: return

⋃

q∈F∧qn∈U∗
T

C(qn)

end function

body
V QA(T, Q, D) = {x|(r, Q, x) ∈

⋂
Repaired(T, D, Q)}

end body

in Figure 6.3.

C(q0
0) = {B0}, where

B0 = ({(n0, ǫ :: C, n0), })
Q1 .

C(q1
1) = {B1}, where

B1 = (B0 ∪ C1 ∪ {(n0,⇓ :: ∗, n1)})
Q1 ,

and C1 is the set of certain facts for A(d)

C1 = ({(n1, ǫ :: A, n1), (n1,⇓, n2),

(n2, ǫ :: PCDATA, n2), (n2, ǫ :: text(), d)})Q1 .
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Algorithm 6.3 Computing V QA(T, Q, D)

function Certain(T ,D,Q)
T = X(T1, . . . , Tn) with the root node r
MD(X) = 〈Σ, S, q0, ∆, F 〉

in(v)
def
= {u ∈ U∗

T |u −→ v} (∗ incoming neighbors ∗)

precompute:
U∗

T – the trace graph for T .
CY – tree facts common for every valid tree with the root label Y ∈ Σ.
Ci := Certain(Ti, D, Q) (for i ∈ {1, . . . , n}).

1: V := {q0
0}

2: C(q0
0) :=

{{
({(r, ǫ ::X, r), (r, ǫ :: text(), t)})Q

}
if T is a text node t,

{
({(r, ǫ ::X, r)})Q

}
otherwise.

3: while V 6= U∗
T do

4: choose any qi ∈ U∗
T such that in(qi) ⊆ V

5: V := V ∪ {qi}
6: C(qi) := ∅

7: if qi−1 Del
−−→ qi ∈ U∗

T then C(qi) := C(qi−1)

8: for pi Ins Y
−−−−→ qi ∈ U∗

T do
9: C(qi) := C(qi) ∪ {(C ⊎r CY )Q|C ∈ C(pi)}

10: for pi−1 Read
−−−→ qi ∈ U∗

T do
11: C(qi) := C(qi) ∪ {(C ⊎r Ci)

Q|C ∈ C(pi−1)}
12: return

⋂ ( ⋃

qn∈U∗
T

C(qn)
)

end function

body
V QA(T, Q, D) = {x|(r, Q, x) ∈ Certain(T, D, Q)}

end body

C(q0
2) = {B2}, where

B2 = (B1 ∪ C2 ∪ {(n0,⇓ :: ∗, n3), (n3,⇐ :: ∗, n1)})
Q1 ,

and C2 is the set of certain facts for the second child (note that C2 doesn’t contain infor-

mation about n4)

C2 = ({(n3, ǫ :: B, n3)})
Q1 .

C(q2
1) = {B1, B3}, where

B3 = (B1 ∪ CA ∪ {(n0,⇓ :: ∗, i1), (i1,⇐ :: ∗, n3)})
Q1 ,

where CA is the set of certain facts for every valid tree with the root label A (i1 is a new

node)

CA = ({(i1, ǫ :: A, i1)})
Q1 .
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C(q3
0) = {B2, B4, B5}, where

B4 = (B3 ∪ C3 ∪ {(n0,⇓ :: ∗, n5), (n5,⇐ :: ∗, i1)})
Q1 ,

B5 = (B1 ∪ C3 ∪ {(n0,⇓ :: ∗, n5), (n5,⇐ :: ∗, n1)})
Q1 ,

where C3 is the set of certain facts for the third child

C3 = ({(n5, ǫ :: B, n5)})
Q1 .

Now the set of certain facts for T1 is C = B2 ∩ B4 ∩ B5. Note that (n0, Q1, d) ∈ C but

(n0, Q1, e) 6∈ C. Hence

V QA(T1, Q1, D1) = {d}.

If we compare the valid answers with QA(T1, Q1) = {d, e}, we note that e has been removed.

This is because D1 does not allow any (text) nodes under B.

We recall from Example 6.11 that our framework allows more than one isomorphic repair.

Therefore the set of valid answers to query ⇓∗::B in T1 is empty. This is a consequence of

our decision to query the invalid document without repairing it, and thus the valid answers

have to be given in terms of the original document.

Lemma 6.18 For any Q ∈ XC, any DTD D, and any document T Algorithm 6.3 computes

valid answers to Q in T w.r.t. D.

Proof[Sketch] We prove the lemma for queries using ⇓ axis only and having no conditions,

i.e. p = Y1/ · · · /Yk.

We prove by induction over the structure of the document T that (x, p, y) ∈ Cert(T, D, Q)

if and only if (x, p, y) is a fact of every repair of T w.r.t. D. For the base case (the document

is a single node), the hypothesis is trivial. Now, we assume that the hypothesis hold for

every subtree of T , in particular for T1, . . . , Tn.

⇒ Assume that (x, p, y) ∈ Cert(T, D, Q).

If x 6= r, then it means that every repairing path involved reading (or inserting) the

subtree that contains x. By induction hypothesis this fact belongs to every repair of

the given subtree and because every repairing path involves including this subtree,
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also every repair of T has a repair of the subtree. Hence, (x, p, y) is a fact present in

every repair of T as well.

Suppose that x = r. Then (r, Y1/ · · · /Yk, y) ∈ Cert(T, D, Q) implies that on every

repair path a child r′ of r is included such that (r′, Y2/ · · · /Yk, y) is a certain fact

of T ′ (where r′ can be either one of the children of r in T or the root of a subtree

inserted with an inserting edge). By induction hypothesis (r′, Y1/ · · · /Yk, y) belongs

to every repair of the subtree T ′. We note that although not every repair path has to

include the same tree that realizes the path fragment Y2/ · · · /Yk, there is at least one

such tree on every path. Hence, in every repair of T the fact (r, Y1/ · · · /Yk, y) can be

inferred.

⇐ If the fact (x, p, y) is present in every repair and x 6= r, then every repair must contain

a subtree having x. Consequently every repair path must include this subtree, and by

induction hypothesis this fact is in Cert(T, D, Q).

If x = r, then in every repair there must be a node r′ such that (r′, Y2/ · · · /Yk, y).

Although the node r′ does not have to be common for all repairs, it is common for

repairs obtained with the same repairing path because the p consists of descending

steps only. Therefore, on every repairing path there exists (r′, Y2/ · · · /Yk, y) and

together with (r, Y1, r
′) give allows to derive (r, p, y) on every repairing path.

2

6.4.3 Eager cut

The next step required to make the algorithm work in polynomial time for descending

queries is the heuristic of eager cut:

Let B1 and B2 be two sets from C(v) for some vertex v. Suppose that v −→ v′

and the edge is labeled with an operation that appends a tree (either Rep or

Ins). Let B′
1 and B′

2 be the sets for v′ obtained from B1 and B2 resp. as

described before. Instead of storing in C(v′) both sets B′
1 and B′

2 we only store

their intersection B′
1 ∩ B′

2.
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For instance, using this rule in Example 6.17 we obtain: C(q3
0) = {B2, B

′
4,5}, where B′

4,5 =

B4 ∩ B5.

Proof Take any two paths p1 and p2 from the vertex q0
0 to a node v and let p′ be the

path from v′ to an accepting state of U∗
T . Then a fact (x, p, y) on the paths p1 · v → v′ · p′

and p2 ·v → v′ ·p′ is contributed either on the subpath p′ and the eager cut does not involve

it or it is contributed in both of the subpaths p1 · v → v′ and p2 · v → v′ and then the

intersection does not remove it. 2

Algorithm 6.4 Computing V QA(T, Q, D) with eager cut

function Eager(T ,D,Q)
T = X(T1, . . . , Tn) with the root node r
MD(X) = 〈Σ, S, q0, ∆, F 〉

in(v)
def
= {u ∈ U∗

T |u −→ v} (∗ incoming neighbors ∗)

precompute:
U∗

T – the trace graph for T .
CY – tree facts common for every valid tree with the root label Y ∈ Σ.
Ci := Eager(Ti, D, Q) (for i ∈ {1, . . . , n}).

1: V := {q0
0}

2: C(q0
0) :=

{{
({(r, ǫ ::X, r), (r, ǫ :: text(), t)})Q

}
if T is a text node t,

{
({(r, ǫ ::X, r)})Q

}
otherwise.

3: while V 6= U∗
T do

4: choose any qi ∈ U∗
T such that in(qi) ⊆ V

5: V := V ∪ {qi}
6: C(qi) := ∅

7: if qi−1 Del
−−→ qi ∈ U∗

T then C(qi) := C(qi−1)

8: for pi Ins Y
−−−−→ qi ∈ U∗

T do
9: C(qi) := C(qi) ∪

⋂
{(C ⊎r CY )Q|C ∈ C(pi)}

10: for pi−1 Read
−−−→ qi ∈ U∗

T do
11: C(qi) := C(qi) ∪

⋂
{(C ⊎r Ci)

Q|C ∈ C(pi−1)}
12: return

⋂ ( ⋃

qn∈U∗
T

C(qn)
)

end function

body
V QA(T, Q, D) = {x|(r, Q, x) ∈ Eager(T, D, Q)}

end body

Using simple induction over the number of the column, we can easily prove that in

Algorithm 6.4 the number of sets stored in C(qi) is O(i × |S| × |Σ|).

Theorem 6.19 Algorithm 6.4 computes valid answers to XC queries in polynomial time.
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6.5 Intractable cases

In this section we show that XC is a maximal class of queries for which the problem

of consistent query answers is tractable: adding any of the additional features leads to

intractability. First we state the upper bound of computing consistent query answers.

Lemma 6.20 Valid query answering for XCore is in coNP.

Proof For a given DTD D, a given document T , a given query q, and a given object x we

use U∗
T to nondeterministically construct a repair T ′ such that x is not an answer to q in

T ′. 2

Theorem 6.21 Valid query answering for XC(¬) and XC(∨) is coNP-complete.

Proof We show coNP-hardness by reducing the complement of SAT to DD∨ for the following

DTD:

D∨(A) = V∗, D∨(T) = PCDATA,

D∨(V) = T + F, D∨(F) = PCDATA.

Take any CNF formula ϕ = c1 ∧ . . . ∧ ck over the set of variables {x1, . . . , xn}, where

cj = lj,1 ∨ . . . ∨ lj,mj
is a clause of mj literals for every j ∈ {1, . . . , s}. We construct the

following trees:

• for every i ∈ {1, . . . , n} by Vi we denote the tree V(T(i), F(i)) whose root node is vi;

• the tree T∨
ϕ is A(V1, . . . , Vn) and the root of T∨

ϕ is r.

We construct the following queries:

• for a literal lj,k we construct the filter expression λj,k = V[F = p] if lj,k = xp and

λj,k = V[T = p] if lj,k = ¬xp;

• for a clause ci we construct the filter expression di = λi,1 ∧ . . . ∧ λi,mi
;

• the query Q∨
ϕ is ǫ :: ∗[d1] ∪ . . . ∪ ǫ :: ∗[dk];

• the query Q∨
ϕ
′ is ǫ :: ∗[d1 ∨ . . . ∨ dk];
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• the query Q¬
ϕ is ǫ :: ∗[¬(¬d1 ∧ . . . ∧ ¬dk)].

Obviously, the queries Q∨
ϕ, Q∨

ϕ
′, and Q¬

ϕ are equivalent. We also observe that Q∨
ϕ
′, Q∨

ϕ ∈

XC(∨) and Q¬
ϕ ∈ XC(¬).

Figure 6.5 contains an example of the reduction for ϕ = (¬x1 ∨ x2) ∧ (x1 ∨ x3).

A

V

T

1

F

1

V

T

2

F

2

V

T

3

F

3

Q∨
ϕ = ǫ :: ∗

[
V[T = 1] ∧ V[F = 2]

]
∪ ǫ :: ∗

[
V[F = 1] ∧ V[F = 3]

]
.

Figure 6.5: T∨
ϕ and Q∨

ϕ for ϕ = (¬x1 ∨ x2) ∧ (x1 ∨ x3).

We observe a one-to-one correspondence between the repairs of T∨
ϕ and the valuations

of x1, . . . , xn. For a valuation V the corresponding tree is A(V ′
1 , . . . , V

′
n) where V ′

i = V(T(i))

if V (xi) = true and V ′
i = V(F(i)) if V (xi) = false for i ∈ {1, . . . , n}. Given a repair

T ′ ∈ RepD(T∨
ϕ ) corresponding to the valuation V , we observe that:

• (r, ǫ :: ∗[λj,l], r) is a fact of T ′ if and only if V 6|= lj,k for every j ∈ {1, . . . , s} and every

k ∈ {1, . . . , mj};

• (r, ǫ :: ∗[dj ], r) is a fact of T ′ if and only if V 6|= cj for every j ∈ {1, . . . , s};

• (r, Q∨
ϕ, r) is a fact of T ′ if and only if V 6|= ϕ;

Because there is one-to-one correspondence between the repairs of T∨
ϕ and the valuations

of ϕ we have that r is valid answer to Q∨
ϕ (Q∨

ϕ
′, and Q¬

ϕ) in T∨
ϕ w.r.t. D∨ if and only if

ϕ 6∈ SAT. 2

Theorem 6.22 Valid query answering for XC(⇑) is coNP-complete.



116 CHAPTER 6. XML DATABASES

Proof We show coNP-hardness by reducing the complement of SAT to DD⇑ for the following

DTD:

D⇑(A) = (A · V) + C∗, D⇑(C) = V · V · B∗, D⇑(T) = ǫ,

D⇑(V) = T + F, D⇑(B) = B + PCDATA, D⇑(F) = ǫ.

Take any CNF formula ϕ = c1 ∧ . . . ∧ ck over the set of variables {x1, . . . , xn}, where

cj = lj,1 ∨ . . . ∨ lj,mj
is a clause of mj literals for every j ∈ {1, . . . , k}. We construct the

following trees:

• for any i ∈ {1, . . . , n} and any j ∈ {1, . . . , k} we construct two trees:

Pi,j = B(. . . B(
︸ ︷︷ ︸

w

i) . . .), where w =







i if cj uses xi,

n + 2 otherwise,

and

Ni,j = B(. . . B(
︸ ︷︷ ︸

w

∼ i) . . .), where w =







i if cj uses ¬xi,

n + 2 otherwise;

• for any j ∈ {1, . . . , k} we construct the tree Cj = C(V(T), V(F), P1,j , . . . , Pn,j , N1,j , . . . , Nn,j)

whose root node is dj ;

• we construct the tree An+1 = A(C1, . . . , Ck) and recursively Ai = A(Ai+1, V(T, F)) for

i ∈ {n, . . . , 1};

• by T⇑
ϕ we denote the tree A1 whose root node is r.

We construct the following queries:

• for every i ∈ {1, . . . , n} we construct two filter expressions:

ωi =⇓∗ :: B[text() = i]/⇑ :: ∗/ · · · / ⇑ :: ∗
︸ ︷︷ ︸

n+2

/V/F,
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and

ω̄i =⇓∗ :: B[text() =∼ i]/⇑ :: ∗/ · · · / ⇑ :: ∗
︸ ︷︷ ︸

n+2

/V/T;

• the following query

Q⇑
ϕ = ǫ :: ∗

[
⇓∗ :: C[ω1 ∧ . . . ∧ ωn ∧ ω̄1 ∧ . . . ∧ ω̄n]

]
.

Figure 6.6 contains an example of the reduction for ϕ = (¬x1 ∨ x2)∧ (x1 ∨ x3). We observe
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2
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B

B

3
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B

B
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B

B

B

B
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∼ 2
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B
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B
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∼ 3

V

T F

V

T F

V

T F

Q⇑
ϕ = ǫ :: ∗

[
⇓∗ :: C[ ⇓∗ :: B[text() = 1]/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/V/F ∧

⇓∗ :: B[text() = 2]/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/V/F ∧

⇓∗ :: B[text() = 3]/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/V/F ∧

⇓∗ :: B[text() =∼ 1]/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/V/T ∧

⇓∗ :: B[text() =∼ 2]/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/V/T ∧

⇓∗ :: B[text() =∼ 3]/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/ ⇑ :: ∗/V/T]
]
.

Figure 6.6: T⇑
ϕ and Q⇑

ϕ for ϕ = (¬x1 ∨ x2) ∧ (x1 ∨ x3).
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that there is a one-to-one correspondence between the repairs of T⇑
ϕ and the valuations of

x1, . . . , xn. For a valuation V the corresponding repair is constructed as follows:

• A′
n+1 = A(C1, . . . , Ck);

• for i ∈ {n, . . . , 1} we construct A′
i = A(A′

i+1, Wi), where Wi = V(T) if V (xi) = true

and Wi = V(F) if V (xi) = false;

• the repair T ′ is A′
1.

Given a repair T ′ and the corresponding valuation V we observe that:

• for every j ∈ {1, . . . , k} and every i ∈ {1, . . . , n} the clause cj does not use xi or cj

uses xi and V 6|= xi if and only if (dj , ǫ :: ∗[ωi], dj) is a fact of T ′;

• for every j ∈ {1, . . . , k} and every i ∈ {1, . . . , n} the clause cj does not use ¬xi or cj

uses ¬xi and V 6|= ¬xi if and only if (dj , ǫ :: ∗[ω̄i], dj) is a fact of T ′;

• for every j ∈ {1, . . . , k} the clause cj is not satisfied by V if and only if (dj , ǫ :: ∗[ω1 ∧

ω̄1 ∧ . . . ∧ ωn ∧ ω̄n], dj) is a fact of T ′;

• V 6|= ϕ if and only if (r, Q⇑
ϕ, r) is a fact of T ′.

Because of one-to-one correspondence between the repairs of T⇑
ϕ and the valuations of

x1, . . . , xn, ϕ 6∈ SAT if and only if r is valid answer to Q⇑
ϕ in T⇑

ϕ w.r.t. D. 2

Theorem 6.23 Valid query answering for XC(=) is coNP-complete.

Proof We show coNP-hardness by reducing the complement of 3SAT to DD= for the fol-

lowing DTD:

D=(C) = (C · N1 · N2 · N3) + B∗, D=(N1) = PCDATA,

D=(B) = V∗, D=(N2) = PCDATA,

D=(V) = PCDATA, D=(N3) = PCDATA.

Take any 3CNF formula ϕ = c1 ∧ . . . ∧ ck over the set of variables {x1, . . . , xn}, where

cj = lj,1 ∨ lj,2 ∨ lj,3 is a clause of 3 literals for every j ∈ {1, . . . , k}. We construct the

following trees:
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• for every i ∈ {1, . . . , n} the tree Bi = B(V(i), V(∼ i));

• for every j ∈ {1, . . . , k} and every l ∈ {1, 2, 3} the tree Lj,l = Nl(∼ p) if lj,l = xp or

the tree Lj,l = Nl(p) if lj,l = ¬xp;

• the tree Ck+1 = C(B1, . . . , Bn) and for j ∈ {k, . . . , 1} recursively the trees Cj =

C(Cj+1, Lj,1, Lj,2, Lj,3) whose root node is dj ;

• by T=
ϕ we denote the tree C1.

We construct the following query:

Q= = ǫ
[
⇓∗ :: C[N1/text() =⇓∗ :: V/text() ∧

N2/text() =⇓∗ :: V/text() ∧

N3/text() =⇓∗ :: V/text()]
]
.

Figure 6.7 contains an example of reduction of ϕ = (¬x1 ∨ x2 ∨¬x3)∧ (¬x3 ∨ x4 ∨ x5). We

note that the query is not dependent on the formula.

C

N1

1

N2

∼ 2

N3

3C

N1
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N2

∼ 4

N3

∼ 5B

V

1

V

∼ 1

B

V

2

V

∼ 2

B

V

3

V

∼ 3

B

V

4

V

∼ 4

B

V

5

V

∼ 5

Figure 6.7: T=
ϕ for ϕ = (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x3 ∨ x4 ∨ x5).

We observe that there is a one-to-one correspondence between the repairs of T=
ϕ and

the valuations of x1 . . . , xn. For a validation V we construct the corresponding repairs as

follows:

• C ′
k+1 = C(W1, . . . , Wn), where Wi = B(V(i)) if V (xi) = true and Wi = B(V(∼ i)) if

V (xi) = false for i ∈ {1, . . . , n};
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• for j ∈ {k, . . . , 1} we construct C ′
j = C(C ′

j+1, Lj,1, Lj,2, Lj,3);

• the repair T ′ is C ′
1.

Given a repair T ′ and the corresponding valuation V we observe that:

• for any j ∈ {1, . . . , k} and any s ∈ {1, 2, 3} the literal lj,s is not satisfied by V if and

only if (dj , ǫ :: ∗[λs], dj) is a fact of T ′, where λs = (Ns/text() =⇓∗ :: V/text());

• for any j ∈ {1, . . . , k} the clause cj is not satisfied by V if and only if (dj , ǫ :: ∗[λ1 ∧

λ2 ∧ λ3], dj) is a fact of T ′;

• V 6|= ϕ if and only if (r, Q=, r) is a fact of T ′.

Because of the one-to-one correspondence between the repairs of T=
ϕ and the valuations of

x1, . . . , xn, ϕ 6∈ 3SAT if and only if r is a valid answer to Q= in T=
ϕ w.r.t. D=. 2

Theorem 6.24 Valid query answering for XC(⇐) is coNP-complete.

Proof We show coNP-hardness by reducing SAT to DD for the following DTD D:

D⇐(A) = C, D⇐(P) = PCDATA,

D⇐(C) = B · A · P∗ · A∗ · P∗ + V∗, D⇐(T) = PCDATA,

D⇐(V) = T + F D⇐(F) = PCDATA.

We take any CNF formula ϕ = c1 ∧ . . . ∧ ck over a set of variables {x1, . . . , xn}, where

cj = lj,1 ∨ . . . ∨ lj,mj
is a clause of mi literals for every j ∈ {1, . . . , k}. We construct the

following trees:

• for i ∈ {1, . . . , n} we construct

Vi = V(T(i), F(i)),

V P
i = V(T(i)),

V N
i = V(F(i));
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• we construct

C2k = C(V1, . . . , Vn),

CP
2k = C(V P

1 , . . . , V P
n ),

CN
2k = C(V N

1 , . . . , V N
n );

• for j ∈ {2k − 1, . . . , k + 1} we construct

Cj = C(B, A(Cj+1)),

CP
j = C(B, A(CP

j+1)),

CN
j = C(B, A(CN

j+1));

• we construct AP = A(CP
k+1) and AN = A(CN

k+1)

• for j ∈ {k, . . . , 1} we construct

Cj = C(B, A(Cj+1), Lj,1, . . . , Lj,mj
, AP , AN , U1, . . . , Uk1

, Ū1, . . . , Ūk2
),

where:

– Lj,s = P(p) if lj,s = xp and Lj,s = P(∼ p) if lj,s = ¬xp,

– k1 is the number of positive literals not used in the clause cj ,

– for s ∈ {1, . . . , k1} Us = P(p), where p is the index of s-th consecutive positive

literal not used in cj ,

– k2 is the number of negative literals not used in the clause cj ,

– for s ∈ {1, . . . , k2} Ūs = P(∼ p), where p is the index of s-th consecutive negative

literal not used in cj ,

– the root node of Cj is dj .

• the tree T⇐
ϕ is C1.
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Figure 6.8 contains an example of document constructed for ϕ = (x1 ∨ ¬x2) ∧ (¬x1 ∨

¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).
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Figure 6.8: T⇐
ϕ for ϕ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

We construct the following queries:

• for i ∈ {1, . . . , n} we construct

ωi = P[text() = i ∧⇐∗ :: A / C / A[⇐ :: B] / . . . C / A[⇐ :: B] /
︸ ︷︷ ︸

k−1

⇓∗ :: C / V / F = i];

• for i ∈ {1, . . . , n} we construct

ω̄i = P[text() =∼ i ∧⇐∗ :: A / C / A[⇐ :: B] / . . . C / A[⇐ :: B] /
︸ ︷︷ ︸

k−1

⇓∗ :: C / V / T = i];
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• the query

Q⇑
ϕ =⇓∗ :: C[ω1 ∧ . . . ∧ ωn ∧ ω̄1 ∧ . . . ∧ ω̄n].

Figure 6.9 contains the query Q⇐
ϕ obtained for the formula ϕ = (x1 ∨ ¬x2) ∧ (¬x1 ∨

¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

Q⇐
ϕ = ⇓∗ :: C

[
P[text() = 1 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / F = 1] ∧

P[text() = 2 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / F = 2] ∧

P[text() = 3 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / F = 3] ∧

P[text() = 4 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / F = 4] ∧

P[text() = 5 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / F = 5] ∧

P[text() = 6 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / F = 6] ∧

P[text() =∼ 1 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / T = 1] ∧

P[text() =∼ 2 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / T = 2] ∧

P[text() =∼ 3 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / T = 3] ∧

P[text() =∼ 4 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / T = 4] ∧

P[text() =∼ 5 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / T = 5] ∧

P[text() =∼ 6 ∧⇐∗ :: A / C / A[⇐ :: B] / C / A[⇐ :: B] /⇓∗ :: C / V / T = 6]
]
.

Figure 6.9: Query Q⇐
ϕ for ϕ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

We observe that there is one-to-one correspondence between the repairs of T⇐
ϕ w.r.t.

D⇑ and the valuations of x1, . . . , xn. For a valuation V the repair T ′ is constructed like the

tree T⇐
ϕ except that for i ∈ {1, . . . , n} instead of Vi we use V P

i if V (xi) = true and V N
i if

V (xi) = false.

Given a repair T ′ and the corresponding valuation V we observe that:

• for every j ∈ {1, . . . , k} and every i ∈ {1, . . . , n} the clause cj does not use xi or cj

uses xi and V 6|= xi if and only if (dj , ǫ :: ∗[ωi], dj) is a fact of T ′;

• for every j ∈ {1, . . . , k} and every i ∈ {1, . . . , n} the clause cj does not use ¬xi or cj

uses ¬xi and V 6|= ¬xi if and only if (dj , ǫ :: ∗[ω̄i], dj) is a fact of T ′;

• for every j ∈ {1, . . . , k} the clause cj is not satisfied by V if and only if (cj , ǫ :: ∗[ω1 ∧

. . . ∧ ωn ∧ ω̄1 ∧ . . . ∧ ω̄n], cj) is a fact of T ′;

• V 6|= ϕ if and only if (r, Q⇐
ϕ , r) is a fact of T ′.
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Because of one-to-one correspondence between the repairs of T⇐
ϕ and the valuations of

x1, . . . , xn, ϕ 6∈ SAT if and only if r is a valid answer to Q⇐
ϕ in T⇐

ϕ w.r.t. D⇐. 2

We observe that if in the proof above we take a mirror image of the tree T⇐
ϕ and in

the query Q⇐
ϕ change ⇐ to ⇒, we obtain a reduction and a coNP-completeness proof for

XC(⇒).

Corollary 6.25 Valid query answering for XC(⇒) is coNP-complete.

6.6 Experimental evaluation

The main goal of our experiments was to validate our approach and to discover possible

limitations to be addressed in the future. Because flat documents (documents of bounded

height) are very common among XML repositories, we tested the behavior of our solutions

on flat documents.

Data sets To observe the impact of the document size on the performance of algorithms we

first randomly generated a valid document. Next, we introduced the violations of validity

to a document by removing and inserting randomly chosen nodes. To measure the validity

violations of a document T we use the invalidity ratio dist(T, D)/|T |.

For most of the experiments, we used the following DTD

D(A) = B · C · D, D(B) = PCDATA + A,

D(C) = PCDATA + A, D(D) = PCDATA + A,

and the query ǫ :: A/B//C/text(). In experiments investigating the impact of the DTD size

on the performance, we used a family of DTDs Dn, n ≥ 0:

Dn(A) = (. . . ((PCDATA + A1) · A2 + A3) · A4 + . . . An)∗,

Dn(Ai) = A∗, for i ∈ {1, . . . , n}.

For documents generated for these DTDs we used a simple query ⇓∗/text().
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Implementation All compared algorithms were implemented in Java 5.0 and used common

programming tools including: a Pull model parser (STaX), a representation of regular

expressions and corresponding NDFAs, structures storing tree facts, and an implementation

of derivation rules. For ease of implementation, we considered a restricted class of XC which

involve only simple filter conditions (testing tag and text labels). We note that those queries

are most commonly used in practice and the restrictions allow to compute standard answers

to such queries in time linear in the size of the document.

Environment All tests were performed on an Intel Pentium Dual-Core 1.6GHz machine

running Windows XP with 1.5 GB MB RAM and 80 GB hard drive. We repeated each test

5 times, discarded extreme readings, and took the average of the remaining ones.

6.6.1 Trace graph construction

In the first part of the experiments, we measured the time necessary to construct the trace

graphs. We used algorithms MDist and Dist that constructed trace graphs (resp. with

and without label modification) to compute the edit distance of the document to the DTD.

As a base line we used the time necessary to parse the file containing the document (Parse).

We also compared the performance of our algorithms with Validate which validates the

database w.r.t. the DTD.

Figure 6.10 contains the results showing the impact of the document size on the per-

formance of our algorithms. The results confirm our analysis: trace graphs are constructed

in time linear in the size of the document. Note also that computation of the edit dis-

tance without using modifying operations introduces only small overhead over validation.

Note also that the overhead of Validate over Parse is small as well, which suggests that

the implementation of validation is efficient. We also observe that including modification

operation in the model leads to a significant increase in the computation time.

Figure 6.11 shows that Dist takes the time quadratic in the size of the DTD. We note,

however, that Validate behaves similarly and the overhead of Dist is small. Because in our

approach we don’t assume any particular properties of the automata used, we conjecture:

that any technique that optimize the automata to efficiently validate XML documents
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Figure 6.10: Trace graph construction for variable document size (1% invalidity ratio)

should also be applicable to efficiently construct trace graphs. By increasing the size of

DTD we also expand Σ whose size is a factor in the time of constructing trace graphs with

label modification. This explains why the observed execution time of MDist is cubic in the

size of |D|.

6.6.2 Valid query answer computation

In the second part of the experiments we measured the time needed to compute the valid

query answers. The algorithm QA for computing standard query answers (optimized version

of Algorithm 6.1) is used as the baseline. In the experiments we tested performance of two

algorithms MVQA and VQA computing valid query answers resp. with and without label

modification.

Figure 6.12 shows that for the DTD D0 computing valid query answers (without modi-

fying operations) is about 6 times longer than computing query answers with QA. Incorpo-

rating the modification operation into the model causes again a very significant evaluation

time increase.

Because the computation of valid answers involves constructing trace graphs, similarly

to computing edit distance, we observe in Figure 6.13 a quadratic dependence between the
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Figure 6.11: Trace graph construction for variable DTD size (1MB Document with 1%
invalidity ratio)

performance time and the size of DTD for VQA (because of significantly higher readings

of MVQA we omit them).

6.7 Related work

6.7.1 Other editing operations

By extending the repertoire of considered editing operations, our basic framework of repairs

could be adapted to handle other common causes of validity violations. We note, however,

those extensions may require new algorithms to compute valid answers.

Missing or superfluous inner nodes. The validity of a document that is missing (or has

a superfluous) an inner node can be restored by performing a general version of insertion

(resp. deletion) operation. A general insertion of a node takes a subsequence of subelements

and links them as the children of the inserted node. The general deletion works in the

opposite way: the children of the removed node are linked to the parent of the node. This

generalized notion of edit distance [SZ97, Bil03] subsumes ours (our notion is sometimes

called 1-degree edit distance [Sel77]). This notion has practical applications in information
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Figure 6.12: Valid query answers computation for variable document size (1% invalidity
ratio)

extraction [dCRGdSL04] and integration of XML repositories [GJK+02].

[Suz05] presents a polynomial algorithm for computing the generalized edit distance

between a document T and a DTD. This algorithm creates graph structures which, analo-

gously to trace graphs, are used to find optimal repairing sequences by selecting the shortest

paths. The construction of those structures takes O(|T |5) time. In our preliminary research

we were able to generalize the tract graph to handle general editing operations in time

O(|D|4 × |T |4). It is yet to be seen if the generalized version of the trace graph can be used

to compute valid query answers.

Element transpositions Validity violations caused by incorrect order of elements could

be addressed by an operation moving a subtree to a specified location [Bil03]. This kind of

an operation is studied (together with insertion, deletion, and modification) in the context

of detecting document changes [CRGMW96, CAM02] and document correction techniques

[BdR04]. It is an open question if our framework can be extended to include this operation,

however the intractability of the problem of calculating the string edit distance with moves

[BdR04, CM02] is discouraging.
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Figure 6.13: Valid query answers computation for variable DTD size (1 MB document with
1% invalidity ratio)

6.7.2 Query approximation

A framework for evaluating queries with none or only a partial knowledge of the schema

is proposed in [LYJ04]. A (refined) notion of Lowest Common Ancestor is used to identify

meaningful relationships between document elements in situations where expected docu-

ment structure is not known. In this approach, however, the schema is not used directly in

the query evaluation but rather the user is required to assess her knowledge of the schema

during query formulation and identify potential structural ambiguity. This contrasts with

our approach, where the user is assumed to possess a good knowledge of the expected

document structure but cannot or does not wish to identify all potential structural discrep-

ancies. Also, the schema is used during the query evaluation to alleviate the impact of

possible validly violations on the query answer.

6.7.3 Structural restoration

The problem of correcting a slightly invalid document is considered in [BdR04]. Under

certain conditions, the proposed algorithm returns a valid document whose distance from the

original one is guaranteed to be within a multiplicative constant of the minimum distance.
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The setting is different from ours: XML documents are encoded as binary trees, insertion

occurs on an edge and introduces two new nodes and two new edges, and deletion inverts

the effect of an insertion (performing those operations on a encoded XML document may

shift nodes between levels).

A notion equivalent to the distance of a document to a DTD (Definition 6.4) was used

to construct error-correcting parsers for context-free languages [AP72].

6.7.4 Consistent query answers for XML

[FFGZ03] investigates querying XML documents that are valid but violate functional de-

pendencies. Two repairing actions are considered: updating element values with a null

value and marking nodes as unreliable. This choice of actions prevents from introducing

further validity violations in the document upon repairing it. Nodes with null values or

marked as unreliable do not cause violations of functional dependencies but also are not

returned in the answers to queries. Repairs are consistent instances with a minimal set of

nodes affected by the repairing actions. Two types of query semantics are proposed: certain

answers – answers present in every repair; and possible answers – answers present in any

repair. A polynomial algorithm for computing certain and possible answers is presented.

We note that only simple descending path queries a1/a2/ . . . /an are considered. This work

contains no experimental evaluation of the proposed framework.

A set of operations similar to ours is considered for consistent querying of XML doc-

uments that violate functional dependencies in [FFGZ05]. Depending on the operations

used different notions of repairs are considered: cleaning repairs obtained only by deleting

elements, completing repairs obtained by inserting nodes, and general repairs obtained by

both operations. A set-theoretic notion of minimality is used when defining repairs: the set

of operations needed to repair a document is minimized with the preference for inserting

operations nodes (the document T1 = C(A(d), B(e), B) has only one repair C(A(d), B, A, B).

Again possible and certain answers are considered. For restricted classes of functional de-

pendencies and DTD’s a polynomial algorithm is proposed to compute certain answers to

conjunctions of path expressions (basically n-ary XC queries)

Also this work contains no experimental evaluation of the proposed framework.
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[Vll03] is another adaptation of consistent query answers to XML databases closely

based on the framework of [ABC99].
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Chapter 7

Conclusions and future work

7.1 Universal constraints

In Chapter 3 we investigated the complexity of computing consistent query answers in the

presence of universal constraints. We proposed an extended version of a conflict hypergraph

that allows to capture conflicts created not only by the presence of some tuples but also

by the simultaneous absence of other tuples. We also showed that an extended conflict

graph is a compact representation of all repairs: essentially every repair is a <I -minimal

independent set of the extended conflict graph. This property is essential for using extended

conflict graphs to compute consistent query answers.

Extending the notions of conflicts to include negative facts leads, however, to a significant

increase of computational complexity: computing consistent answers to atomic queries in the

presence of universal constraints is Π2
P -complete (in terms of data complexity). The problem

becomes coNP-complete when we restrict the conflicts to involve at most one missing tuple,

which corresponds to using constraints with at most one positive atom. If we further restrict

the integrity constraints to acyclic sets, then the problem of consistent answering becomes

tractable for quantifier-free queries. Consequently, we present an extension of the algorithm

of Chomicki and Marcinkowski [CM05] that finds if true is the consistent answer to a closed

quantifier-free FOL query.

The summary of computational complexity results is presented in Table 7.1; its last row

is taken from [CM05].

133
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Constraints Repair Consistent Answers to
Checking {∀,∃}-free queries conjunctive queries

Universal coNP-complete Π2
p-complete

Full TGDs PTIME coNP-complete

Acyclic full TGDs PTIME PTIME coNP-complete

Denial PTIME PTIME coNP-complete

Table 7.1: Summary of complexity results for universal constraints.

We envision several possible directions of future study. First, we note that in our

definition of universal constraints we restricted the set of the variables used in positive

atoms to be contained in the set of variables used in negative atoms. This a commonly

accepted safety requirement [AHV95] as constraints not satisfying this requirement may

have no database instance satisfying them. For instance, there is no database satisfying

the constraint ∀x.P (x). It is interesting to find if the restriction is removed, we observe an

increase of complexity of consistent query answering.

Another interesting challenge is generalization of the polynomial algorithm (Theorem 3.20)

to handle sets of constraints that are not acyclic or have more than one positive atom. Be-

cause of the negative complexity results, we cannot expect that a generalized algorithm

would work in polynomial time (unless P = NP ). We believe, however, that in most prac-

tical cases the algorithm should not require exponential time. Consequently, the algorithm

could be extended to handle FOL queries with quantifiers. We also note that in this case

we cannot guarantee that the algorithm would work in polynomial time as the problem of

consistent answering to arbitrary FOL queries is coNP-complete in the presence of denial

constraints [CM05].

7.2 The system Hippo

In Chapter 4 we used the positive results from Chapter 3 to build an effective system for

computation of consistent answers to projection-free SQL queries. We assumed that the

number of conflicts is small enough to allow the active part of the extended conflict hyper-

graph be stored in main memory. We also proposed a number of optimizations techniques

applicable in the context of computing consistent query answers.
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We performed a perliminary experimental evaluation of the Hippo system. The results

show that the system is very scalable w.r.t. the size of the database and the total number

of conflicts. The experiments also show that consistent query answering using conflict

hypergraphs is considerably faster than query rewriting.

The main shortcoming of the Hippo system lies in the limited class of queries and

integrity constraints for which consistent answers can be computed: only projection-free

SQL queries, full TGDs, and denial constraints are handled. Computing consistent answers

to queries with projection is known to be intractable in general. However, it would be

interesting to see if the rewriting techniques of Fuxman and Miller [FM05] could be adapted

to conflict hypergraphs and if combining those two approaches would minimize the overhead

inherent to rewriting techniques.

We also believe that the factorization techniques of INFOMIX [EFGL07] can be effec-

tively adapted to conflict graphs to compute consistent answer to queries with projections

in the presence of general universal constraints.

7.3 Preferences

In Chapter 5 we proposed a general framework of preferred repairs and preferred consistent

query answers. We also proposed a set of desired properties that a family of preferred

repairs should satisfy. We observe that introducing a non-trivial input, a priority, into the

framework of consistent query answers comes with the price of a significant increase in the

computational complexity. Computing G-preferred consistent query answers is Π2
p-complete.

To alleviate this situation we propose two computationally more attractive, “approxima-

tions”: P - and C -preferred consistent query answers. However, our results also show that

non-trivial computation of consistent query answers leads to intractability (Theorem 5.17).

Finally, we shown that for one FD per relation preferred consistent query answering is in

PTIME for all three presented families of preferred repairs.

The summary of computational complexity results is presented in Table 7.2; its first row

is taken from [CM05].

We envision several directions for further work. We plan to investigate other interesting
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Repair Consistent Answers to
Checking {∀,∃}-free queries conjunctive queries

Rep PTIME PTIME coNP-complete

GRep coNP-complete Π2
p-complete

PRep PTIME coNP-complete

CRep PTIME coNP-complete

Table 7.2: Summary of complexity results for preferences.

ways of selecting preferred repairs with priorities. Also, extending our approach to cyclic

priorities is an interesting and challenging issue. Including priorities in similar frameworks

of preferences [GL04] leads to losing P2 (monotonicity). A modified, conditional, version

of P2 monotonicity may be necessary to capture non-trivial families of repairs.

Along the lines of [ABC+03b], the computational complexity results could be further

studied by assuming the conformance of functional dependencies with BCNF.

Finally, one can extend our framework to handle a broader class of constraints. Conflict

graphs can be generalized to hypergraphs [CM05] that are necessary to deal with denial

constraints. Then, more than two tuples can be involved in a single conflict and the current

notion of priority does not have a clear meaning.

7.4 XML databases

In Chapter 6 we have investigated the problem of querying XML documents containing

violations of validity of a local nature, caused by missing or superfluous (leaf) nodes or

incorrect node labeling. We proposed a framework that considers possible repairs of a given

document, obtained by applying a minimum number of operations that insert, delete, or

rename nodes. We studied the complexity of computing the valid answers to a query, and

we showed that the problem is in PTIME if we consider only descending paths, i.e. no

union, sliding and ascending axes, or no join conditions. We also showed that if we relax

any of the restrictions, computing valid query answers becomes intractable. This contrasts

with the complexity of query answers, which is known to be in PTIME [GKP02].

We envision several possible directions for future work. First, one can investigate if valid

answers can be obtained using query rewriting [GT03, GT04]. Techniques based on query
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rewriting have been successfully used to compute consistent query answers in relational

databases [ABC99, FFM05].

Second, the data complexity of valid query answering, i.e. complexity measured only in

terms of the size of the input document, is an important open question. We observe that

the proof of coNP-completeness of valid query answering for XC(=) (Theorem 6.23) uses

a query that is not dependent on the input 3CNF formula. Hence we also proved that the

data-complexity of valid query answering for XC(=) is coNP-complete. When publishing

preliminary results [SC06], we were strongly convinced that using disjunctive implications

of tree facts (whose number is exponential in the size of the query) allows us to compute

valid query answers in time polynomial in the size of the input document. We encountered,

however, technical difficulties proving completeness of our algorithm. Because we have not

found any counterexample, we plan to investigate this problem further.

Finally, it would be interesting to find out to what extent our framework can be adapted

to handle semantic inconsistencies in XML documents, for example, violations of key de-

pendencies.
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Appendix A

Omitted proofs

Propositions 5.8, 5.16, and 5.21 CRep ⊑ GRep ⊑ PRep and CRep, GRep, and PRep

satisfy P1-P4.

Proof GRep ⊑ PRep Trivial from the definitions of global and Pareto optimality.

P1 for GRep Assume GRep(I, F,≻) is empty. This is possible only if all ≫-chains are

infinite (no ≫-maximal element). Because there is only a finite number of repairs, ≫ is

cyclic. This, however, implies that ≻ is cyclic as well; a contradiction.

P1 for PRep by P1 for GRep and GRep ⊑ PRep.

P2 for GRep Take any two acyclic priorities ≻1 and ≻2 such that ≻1 ⊆ ≻2 and any

I ′ ∈ GRep(I, F,≻2). Suppose that I ′ is not globally optimal w.r.t. ≻1, i.e. there exists a

nonempty X ⊆ I ′ and a nonempty Y ⊆ I s.t.

∀x ∈ X.∃y ∈ Y.y ≻1 x.

Because ≻1 ⊆ ≻2 then also

∀x ∈ X.∃y ∈ Y.y ≻2 x,

which contradicts global optimality of I ′ w.r.t. ≻1.

P2 for PRep Proved analogously to P2 for GRep.

CRep ⊑ GRep Trivial by P1 and P2 for GRep.

P1 for CRep 1 In Algorithm PCR, for an acyclic priority ≻ the set ω≻(s) is empty if

1 We note that Theorem 5.20 used here uses P4 for GRep and PRep, and GRep ⊑ PRep. As it can be,
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and only if s is empty. In every iteration an element x is selected and removed from s.

Since s is initialized with a finite set of tuples I, the algorithm terminates and returns a

finite set of elements I ′.

P2 for CRep Trivial from the definition of CRep.

P3 for CRep 1 Because ω∅(I) = I, Algorithm PCR with an empty priority constructs

a maximal independent set of the conflict graph. Moreover, it is also easy to see that every

maximal independent set can be a result of Algorithm PCR.

P3 for GRep Trivially by CRep ⊑ GRep and P3 for CRep.

P3 for PRep Also, trivially by CRep ⊑ PRep and P3 for CRep.

P4 for PRep Take any total and acyclic priority ≻ and assume that there exist two

different Pareto optimal repairs I1 and I2. Naturally, both I1 \ I2 and I2 \ I1 are nonempty.

From Pareto optimality for I1 we have that

∀x ∈ I1 \ I2.∃y ∈ I2 \ I1.x 6≻ y.

Because ≻ is total this is equivalent to

∀x ∈ I1 \ I2.∃y ∈ I2 \ I1.y ≻ x.

Similarly from Pareto optimality fr I2 we have

∀y ∈ I2 \ I1.∃y ∈ I1 \ I2.x ≻ y.

Now, we construct an infinite sequence y0, x1, y1, . . . as follows:

• y0 is any element of I2 \ I1,

• xi is any element of I1 \ I2 such that xi ≻ yi−1,

• yi is any element of I2 \ I1 such that yi ≻ xi.

Note that y0 ≻ x1 ≻ y1 ≻ x2 ≻ y2 . . . and because I1 and I2 are finite, there must be

repetitions in the sequence and consequently a cycle in ≻; a contradiction.

however, easily checked, there is no cyclic dependency in our proofs.
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P4 for GRep Trivially from P4 for PRep, P1 for GRep, and GRep ⊑ PRep.

P4 for CRep Also trivially from P4 for PRep, P1 for CRep, and CRep ⊑ PRep. 2

Lemma 5.26 A globally optimal (common) repair I ′ satisfying ¬Φi exists if and only

if the following conditions are satisfied:

1. {t1, . . . , tk} is conflict-free;

2. {Dt1 , . . . , Dtk} ∩ {Dtk+1
, . . . , Dtm} = ∅;

3. Dtj ∩ ω≻(Ctj ) 6= ∅ for every j ∈ {1, . . . , k}.

4. ω≻(Ctj ) \ (Dtk+1
∪ . . . ∪ Dtn) 6= ∅ for every j ∈ {k + 1, . . . , n}.

Proof ⇒ We take any globally optimal repair I ′ satisfying ¬Φi. 1 and 2 are trivially

satisfied.

Assume that I ′ is the result of Algorithm PCR with the sequence of choices made in

Step 5.20 s1, . . . , sl. Take any j ∈ {1, . . . , k} and let j′ be the smallest index of a tuple

from Ctj in the sequence. Because tj is present in the repair I ′, sj′ ∈ Dtj . Also, prior to

making the choice sj′ the temporary instance J contains Ctj and sj′ ∈ ω≻(J). This implies

sj′ ∈ ω≻(Ctj ) which proves 3.

We show 4 similarly. First, we recall that ω≻ is monotonic and observe that for any

j ∈ {k + 1, . . . , n} the cluster Ctj can have elements in common only with (X, Y )-cluster of

those tuples tk+1, . . . , tn that belong to Ctj . For any j ∈ {k+1, . . . , n} let j′ be the smallest

index of a tuple from the sequence of choices used to construct I ′. Prior to making the

choice sj′ the temporary instance J contains Ctj , sj′ ∈ ω≻(Ctj ), and sj does not belong to

any of Dtk+1
, . . . , Dn.

⇐ We construct I ′ using Algorithm PCR by specifying the sequence s1, . . . , sl of choices

made in Step 5.20. For j ∈ {1, . . . , k} the choice sj is any tuple from Dtj ∩ω≻(Ctj ) (possible

by 1 and 3). For any j ∈ {k + 1, . . . , n} the choice sj is any tuple from ω≻(Ctj ) \ (Dtk+1
∪

. . . ∪ Dtn) (possible by 2 and 4). The remaining choices are selected by Algorithm in an

arbitrary way. Finally, we observe that the first k steps guarantees that the tuples t1, . . . , tk

belong to the repair instance I ′ (possibly placed there in later consecutive steps) and that
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I ′ does not contain any of the tuples tk+1, . . . , tn. 2

Lemma 5.27 A Pareto optimal repair I ′ satisfying ¬Φi exists if and only if the following

conditions are satisfied:

1. {t1, . . . , tk} is conflict-free;

2. {Dt1 , . . . , Dtk} ∩ {Dtk+1
, . . . , Dtm} = ∅;

3. for every j ∈ {1, . . . , k}, for every tuple t ∈ Ctj \ Dtj there exists t′ ∈ Dtj such that

t 6≻ t′.

4. for every j ∈ {k + 1, . . . , n} there exists an (X, Y )-cluster D of Ctj different from

Dtk+1
, . . . , Dtn such that for every t ∈ Dtk+1

∪ . . . ∪ Dtn, there exists t′ ∈ D such that

t 6≻ t′.

Proof ⇐ We construct the repair I ′ by selecting an (X, Y )-cluster from every X-cluster.

Because Pareto optimality is defined in terms of conflicting tuples and for one FD conflicts

can be present only inside an X-cluster, to show that the repair I ′ is Pareto optimal it is

enough to show the for every X-cluster the selected (X, Y )-cluster is Pareto optimal (among

all (X, Y )-clusters in the X-cluster).

For X-clusters Ct1 , . . . , Ctk we select Dt1 , . . . , Dtk resp. We note that by 1 the (X, Y )-

clusters belong to different X-clusters and by 2 we do not include any of the tuples

tk+1, . . . , tm. Pareto optimality is implied by 3.

For X-clusters Ctk+1
, . . . , Ctm we select the (X, Y )-clusters as described in 4. Pareto

optimality of those clusters is also implied by 4.

For an X-cluster other than C1, . . . , Cm we select any (X, Y )-cluster that is a Pareto

optimal repair of the X-cluster.

Since all selected (X, Y )-clusters are Pareto optimal, the instance I ′ is a Pareto optimal

repair such that I ′ |= ¬Φi.

⇒ 1 and 2 are trivially implied by I ′ |= ¬Φi. To show 3 and 4 we observe that a Pareto

optimal repair contains exactly one Pareto optimal (X, Y )-cluster for every X-cluster. For

clusters Ct1 , . . . , Ctk this together with the fact that {t1, . . . , tk} ⊆ I ′ implies 3. For clusters

Ctk+1
, . . . , Ctm this together with the fact that {tk+1, . . . , tn} ∩ I ′ = ∅ implies 4. 2


