
Optimistic Concurrency Control
for Multi-hop Wireless Sensor Networks

Onur Soysal
Dept. of Computer Science & Engineering

University at Buffalo, SUNY

osoysal@buffalo.edu

Murat Demirbas
Dept. of Computer Science & Engineering

University at Buffalo, SUNY

demirbas@buffalo.edu

Abstract
With the inclusion of actuation capabilities, emerging

wireless sensor applications are much less tolerant to incon-
sistencies in decisions compared to passive sensing applica-
tions. Multi-hop networks suffer from these problems more
profoundly as they cannot directly utilize atomic broadcast
operations for coordination.

In this study, we provide a lightweight single hop
primitive, Read-All-Write-Self (RAWS), that achieves opti-
mistic concurrency control. RAWS guarantees serializabil-
ity, which simplifies implementation and verification of dis-
tributed algorithms, compared to the low level message pass-
ing model. We also present a self-stabilizing multi-hop ex-
tension of RAWS, called Multi-hop Optimistic Concurrency
Control Algorithm (MOCCA), to address the challenges of
multi-hop networks. MOCCA improves the performance of
RAWS transactions in multi-hop networks while maintain-
ing serializability.

We implement MOCCA in JProwler simulator using
TDMA- and CSMA-based MAC layers and compare it
against a lightweight locking scheme and serial execution
of transactions. Our results indicate that concurrent exe-
cution in MOCCA can outperform serial execution in task
completion time via better utilization of broadcasts and con-
current execution. Finally, we also show that under heavy
loads optimistic concurrency control provides much better
performance compared to locking schemes.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based

Systems]: Real-time and embedded systems; D.1.3
[Programming Techniques]: Concurrent Programming—
Distributed Programming

General Terms
Algorithms, Reliability, Verification

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Keywords
Transactions, optimistic concurrency control, serializabil-

ity, programming abstractions, wireless sensor networks

1 Introduction
Wireless sensor networks (WSNs) and the emerg-

ing wireless sensor/actuator networks (WSANs) em-
ploy in-network/decentralized computation in order to re-
duce communication costs. Message passing is usu-
ally the only paradigm used for implementing these in-
network/decentralized algorithms. Although message pass-
ing is expressive enough, it entails substantial complexity in
analysis and implementation due to the concurrent execution
problems. Unintentional and unwanted nondeterministic ex-
ecutions can haunt the correctness of the decentralized algo-
rithms, and the application programmer should not be unduly
burdened to detect, debug, and prevent such race conditions.
Higher order abstractions should be adopted to simplify the
design and analysis of decentralized algorithms by transpar-
ently solving the concurrency control problem. However,
high order abstractions should themselves be implemented
in an energy-efficient/low-cost manner, in order not to defeat
the purpose of in-network computation.

In this study we utilize atomicity of broadcast messages
to provide a low-cost single hop primitive with optimistic
concurrency control: Read-All-Write-Self (RAWS). RAWS
transactions can be used to model a limited form of shared
memory operations without sacrificing performance. We
limit the extent of transactions to single hop for tighter con-
currency guarantees and high performance. Even with this
limitation, complicated and highly concurrent algorithms
can be implemented using RAWS transactions.

Multi-hop networks introduce additional challenges for
concurrency control. The atomic synchronous broadcasts
available in single hop are not directly supported in multi-
hop networks. Moreover, in multi-hop networks, dependen-
cies among transactions get more complicated. We demon-
strate the concurrency challenges of multi-hop networks in
Section 3 and present quantitative analysis of these prob-
lems in Section 6. Our solution to address these challenges
is an incremental, self-stabilizing algorithm: Multi-hopOp-
timistic Concurrency Control Algorithm (MOCCA).

1.1 Related Work
Programming abstractions for WSNs and ad hoc net-

works. Several useful programming abstractions have been

proposed for WSNs, including Kairos [10], Hood [28], ab-
stract regions [27], and TeenyLime [4]. Kairos allows a pro-
grammer to express global behavior expected of a WSN in
a centralized sequential program and provides compile-time
and runtime systems for deploying and executing the pro-
gram on the network. Hood provides an API that facili-
tates exchanging information among a node and its neigh-
bors by caching the values of the neighbors’ attributes pe-
riodically, while simultaneously sharing the values of the
node’s own attributes. Similar to Hood, abstract regions and
TeenyLime propose mechanisms for discovery and sharing
of data (structured in terms of tuples) among sensor nodes.
In contrast to these abstractions that target WSNs and pro-
vide best-effort semantics (loosely-synchronized, eventually
consistent view of system states), RAWS and MOCCA fo-
cus on providing a dependable framework with well-defined
consistency and conflict-serializability guarantees.

Linda [2, 21] and virtual node infrastructures (VN) [6]
propose high-level programming abstractions for coping
with the challenges of building scalable applications on top
of distributed, and potentially mobile, ad hoc networks.
These abstractions can be converted to shared memory pro-
grams which, in turn, can be realized through RAWS trans-
actions.

Programming abstractions for concurrency control.
Recently, there has been a lot of work on transactions for mo-
bile ad hoc networks [24, 17, 15, 16, 22, 13, 3]. Concurrency
control in RAWS and MOCCA diverges from these work and
the transactions in the database context significantly. These
work all assume a centralized database at the server, and try
to address the consistency of transactions by mobile clients.
In contrast, in RAWS there is no central database repository
or arbiter; the control and sensor variables are maintained
distributedly over several nodes.

Distributed databases use two-phase locking for concur-
rency control and two-phase commit for ensuring correct
completion of distributed transactions [8, 19, 20]. In con-
trast to OCC, which performs a lazy evaluation to resolve
conflicts (if any), two-phase locking takes a speculative ap-
proach and prevents any possibility of conflictsby forbid-
ding any read-write or write-write incompatibilities in the
first place. However, this aggressive strategy takes its toll on
the concurrency of the system.

Software transactional memory (STM) [25, 11, 12, 23] is
a concurrent programming scheme with multiple threads. In
STM conventional critical sections for controlling accessto
shared memory are replaced by transactions. In RAWS, there
is no actual shared memory as the variables are distributed
among nodes.

A closely related work to ours is the Transact work [5]
which presented a transactional programming primitive for
WSNs. In contrast to Transact, which uses a Read-All-
Write-All model, in our work we use a Read-All-Write-
Self model with much less communication cost and much
smaller transaction duration. Transact model depends on
explicit conflict detection and cancel operations for serial-
izability. Although Read-All-Write-All model is quite ex-
pressive, conflict detection and cancel operations effectively
triple transaction duration. The Transact model suffers from

increased traffic, multiple points of failure and complex se-
mantics. The authors also do not address inconsistencies in
multi-hop environment. Our work on the other hand, pro-
vides a single phase primitive with minimal communication
and it is the first optimistic concurrency control algorithmfor
WSNs that can function in multi-hop networks with consis-
tency guarantees.

1.2 Contributions
In this study we provide a light-weight transaction prim-

itive with optimistic concurrency control: Read-All-Write-
Self (RAWS). RAWS transactions utilize atomic broadcast
nature of radios in WSNs to ensure serializability. Each
transaction allows reading variables from single-hop neigh-
bors and modification of local variables. Our RAWS ab-
straction simplifies development through simpler validation
of system properties.

Optimistic concurrency control primitives need special
care when applied to multi-hop domain. We identify pos-
sible scenarios in which single hop primitives fail in a multi-
hop network. We provide a solution to this problem without
sacrificing the benefits of optimistic concurrency control.To
the best of our knowledge, this is the first study in WSNs for
optimistic concurrency control in multi-hop wireless sensor
networks.

Apart from the programming convenience, concurrent ex-
ecution can be beneficial from an energy efficiency per-
spective. Energy efficiency can be improved by reducing
the communication and reducing the time required for task
completion. Through increased concurrency, more data can
be transferred to more recipients with less transmissions in
smaller time. Our results indicate that concurrency and more
specifically optimistic concurrency control is capable of pro-
viding significant benefits in both execution time and energy
use due to the possibility of exploiting broadcast nature of
radio communication. Concurrency also reduces the impact
of processing delays to performance since processing delays
can also be made concurrent and overlapping. We provide
detailed simulations to support these claims in Section 6.

1.3 Applications
A major application of our transactional primitive is in

data aggregation and integration. Due to environmental fac-
tors and sensor characteristics, single node measurements
are prone to errors. Although data integration techniques at
the basestation can be used to filter out noise, this approach
wastes energy as data are relayed to the basestation regard-
less of its quality. Distributed false positive elimination algo-
rithms can address this issue by discarding noisy data. De-
tecting false positives can be considered as a special case of
consensus, where nodes in a locality need to agree whether
to report a detection or not. Although specifics of algorithms
can be different, all require a non-local operation to include
information from other nodes. A consistent, reliable and se-
rializable primitive, such as ours, greatly simplifies imple-
mentation of such algorithms.

A more general form of the data integration/aggregation
problem is the implementation of a distributed decision tree.
Distributed decision tree algorithms are applicable when data
needed for computation is substantially larger than the de-

sired output. High throughput sensors including cameras
and microphones are unsuitable for raw data streaming to the
base station. With these sensors, tasks such as anomaly and
intrusion detection, target tracking and classification require
local computation. Distributed execution of these algorithms
would also benefit from our primitive.

Highly dynamic systems which contain mobile agents and
actuators, introduce additional challenges as the environment
changes quickly and unpredictably. Allocation of robots to
different tasks and tracking multiple mobile targets are ex-
amples of such scenarios. Our primitives can simplify im-
plementation of algorithms under such scenarios by reducing
the complexity of common intra-node synchronization.

2 RAWS: Read All Write Self
The RAWS primitive provides a means for each sensor

node to perform non-local computations in a serializable
manner. The RAWS primitive consists of a transaction initi-
ation message that reads a subset of local neighborhood fol-
lowed by read responses from queried nodes. RAWS writes
only to the initiator node and the set of variables to be modi-
fied is included in the initiation message. RAWS transactions
utilize time-based commits where the transaction is commit-
ted (or canceled) after a fixed duration following the read
query. Since only the initiator state can be modified using
RAWS, only the initiator needs to keep track of the success
of the transaction. Two conditions must be satisfied at the
initiator for a RAWS transaction to be successful: no con-
flicts should be detected and all read responses must be re-
ceived. The nodes in the read set, called contributor nodes,
engage in this process by withholding the transmission of
read responses when they detect conflicts.

Any application using RAWS can enqueue a transaction
at any time, but the actual start time depends on other run-
ning transactions. Additionally, the started transactionmight
fail due to conflicts. When this happens the application is no-
tified so the transaction might be repeated or other recovery
action might be taken. The application starting the trans-
action runs Algorithm 1, and all nodes run Algorithm 2 to
handle requests from initiators.

Algorithm 1 Initiator algorithm for RAWS
1: add new transaction to list of transactions
2: if conflict detectedthen
3: remove transaction from list of transactions
4: return FAIL
5: else
6: send initiation message
7: wait until commit time
8: if all read responses receivedthen
9: update variable

10: return SUCCESS
11: else
12: remove transaction from list of transactions
13: return FAIL
14: end if
15: end if

Algorithm 2 Contributor algorithm for RAWS
1: wait for an initiation message
2: clear completed transactions from list
3: add new transaction to list of transactions
4: if conflict detectedthen
5: remove transaction from list of transactions
6: else
7: if involved in transactionthen
8: send read-response
9: return

10: end if
11: end if

Conflicts in optimistic concurrency control correspond to
a set of non serializable transactions. Conflicting transac-
tions, when run in parallel, produce a state not achievable
with any serial order of executions. We give more details on
our approach for detecting and preventing conflicts next.
2.1 Conflict Detection

Optimistic concurrency control assumes that transactions
will be compatible with each other most of the time. Instead
of preemptively preventing concurrency, conflicting transac-
tions are aborted at the time of detection. As long as all con-
flicts are detected this scheme will be equivalent, in terms of
correctness, to the more restrictive locking-based protocols.

A set of transactions is serializable if and only if their
dependency graph is acyclic [9]. Conflict detection is em-
ployed to maintain this property for all concurrent trans-
actions by labeling any cyclic dependencies as conflicts.
Whenever a new transaction is started, all nodes run the con-
flict detection algorithm shown in Algorithm 3. Note that
a directed graph will have a valid topological order if and
only if it is acyclic. This fact is utilized in this algorithmfor
detecting conflicts.

Algorithm 3 Conflict Detection
1: E←{} // Set of dependencies is initially empty

2: for all Transactionst in transaction listT do
3: for all Transactionsu in transaction listT do
4: if t reads initiator ofu then
5: E← E∪ (t,u) // t depends on u

6: end if
7: end for
8: end for
9: topologically sort transactionsT usingE as order

10: if ordering possiblethen
11: return FALSE // transactions are serializable so no conflicts

12: else
13: return TRUE // transactions are not serializable so report con-

flict

14: end if

When there is no message loss and all nodes are in single
hop, an initiator can run Algorithm 3 to prevent any con-
flicting RAWS transaction from starting. So in this ideal
scenario, all transactions would be serializable. Regrettably,
in real life, neither of these assumptions can be taken for

0

3 1

4

2 5

T0
S5 = {5→ 0}
S3 = {5→ 0}

T1
S3 = {5→ 0,3→ 1}
S4 = {3→ 1}

T2
S4 = {3→ 1,4→ 2}
S5 = {5→ 0,4→ 2}

T3
S0 = {5→ 0,0→ 3,3→ 1}
S1 = {5→ 0,0→ 3,3→ 1}

T4
S1 = {5→ 0,0→ 3,3→ 1,1→ 4,4→ 2}
S2 = {3→ 1,1→ 4,4→ 2}

T5
S2 = {5→ 0,3→ 1,1→ 4,4→ 2,2→ 5}
S0 = {5→ 0,0→ 3,3→ 1,4→ 2,2→ 5}

Figure 1. A pathological multi-hop dependency graph.
Circles correspond to nodes and arrows show depen-
dencies between RAWS transactions running on nodes.
Transactions are all concurrent and started with the nu-
merical order. Ti represents the result of transaction ini-
tiation by node i and Si is the set of transaction depen-
dencies known at nodei after this transaction.

granted. Message losses are common and networks are usu-
ally multi-hop. For mitigating first problem, we employ a
topology discovery phase where we identify reliable commu-
nication links. By using only reliable links we achieve lower
message loss. Having a collision free MAC layer (as in SS-
TDMA[1]) also greatly reduces the impact of this problem.
The second problem on the other hand requires more delib-
eration as we discuss in Section 3. We then describe our
approach to deal with the multi-hop networks in Section 4.

3 Concurrency Control in Multi-Hop Net-
works

Multi-hop networks pose an additional problem for op-
timistic concurrency control as the cycles in dependencies
may not be limited to a single hop neighborhood. Central-
ized solutions do not suffer from this problem as all trans-
actions will be known by a central server. However this re-
quires all transactions to be aggregated at a central location
and central server needs to send coordination messages back
to nodes to limit concurrency. Flooding all transactions to
whole network is another alternative but it has even higher
communication costs as each transaction with such flooding
would costO(n) communication instead ofO(1).

A tempting solution to this problem is piggy-backing ad-
ditional dependency information to all transactions. In this
approach all initiation messages would also include the setof
known running transactions with all required dependency in-
formation. Even if we ignore the limitations of message sizes
in radios, this method still can not capture many dependency
problems.

Figure 1 demonstrates a pathological scenario in which
it would not be possible to solve using such an approach.
In this scenario, each node starts its transaction at time unit
corresponding to its node id and transaction duration is 10
time units. Table in Figure 1 describes a trace of execution
for this scenario whereTi is the transaction of nodei and
Si is the set of transaction dependencies known by nodei
after transmission of corresponding initiation message. We
denote transaction on nodej depends on transaction at node
i with i→ j. Even after all nodes initiate their transactions,
no node is capable of detecting the cycle in the network. An
important observation for this sequence is that the all light
nodes (0,1 and 2) start before the dark nodes (3,4 and 5).
With this order, information from at most 2-hop neighbors
can arrive to any node. Node 0 does not have information of
dependency between nodes 1 and 4, Node 2 does not have
information about dependency between nodes 3 and 1, etc.

Utilizing read responses in this process as well is equiva-
lent to repeating this process twice while keeping the known
dependencies. This extension solves the case in Figure 1, but
fails in a similarly constructed scenario with 10 nodes. More
generally forn round of messaging, there exists a 4n+2 node
scenario that can not be solved with this method. Each round
of messaging after first round increases the length of detected
chains by 2 from each side, hence the 4 factor in the for-
mula. In conclusion, this method requiresO(n) rounds of
extra messaging and increases the size of each message by
O(n) thus quite infeasible for real life deployments.

Our approach in this study is to prevent these patholog-
ical cases, rather than trying to detect them. Although we
sacrifice some concurrency and pay additional cost for the
algorithm, as we show in Section 6 we prevent inconsisten-
cies and still achieve substantial concurrency.

A very simple way to avoid multi-hop dependency loops
is to forbid any dependencies between concurrent transac-
tions. This is similar to having read-only locks on the read
set of RAWS transactions. Although this approach is safe, it
reduces the concurrency of the system. We call this method
“locking” and use it as a baseline for our experiments.

4 MOCCA: Multi-hop Optimistic Concur-
rency Control Algorithm

In order to conceptualize our method of multi-hop con-
currency control, we introduce the concept of acolor for
each node. Thecolor of a node is used in each of its RAWS
transactions to limit concurrency. In addition to satisfying
dependency requirements as explained in Section 2.1, we re-
quire all RAWS transactions with dependencies running at
a node to have same color. Now the question becomes how
to assign the nodes colors so that we both prevent multi-hop
dependency loops and provide high concurrency. More for-
mally we can define two propertiessafetyandconcurrency
as follows:

safety All dependency loops occurring through execution of
RAWS transactions must be detectable.

concurrency The concurrency limitations on the RAWS
transactions should be minimal.

For safetyproperty, we depend on RAWS to detect con-
flicts. If all the initiator nodes in a set of concurrent trans-

actions are in single-hop with reliable communication links,
all dependency loops will be detected. This corresponds to
a clique topology in the graph of reliable links. In such sub-
graphs assigning different colors to reduce concurrency is
not required.

Theconcurrency property on the other hand is related to
the number of distinct neighboring colors for each node. The
chance of cancellations caused by color constraints increase
with the number of colors, which in turn decreases concur-
rency.

Satisfying both of these properties is closely related to
a graph theory problem, subcoloring. Subcoloring corre-
sponds to an assignment of colors to a graph’s vertices where
each color class induces a vertex disjoint union of cliques.
Unfortunately, minimal subcoloring problem is NP-complete
even for triangle-free planar graphs[7]. Instead of searching
for an optimal solution which would require exhaustive and
possibly centralized computations, we opt for an incremen-
tal heuristic approach called MOCCA, Multi-hop Optimistic
Concurrency Control Algorithm.

MOCCA is anincrementalandself-stabilizingalgorithm
for distributed subcoloring problem using RAWS transac-
tions. By termincrementalwe refer to the fact that MOCCA
operations are a set of RAWS transactions which can be in-
terleaved to regular operations of RAWS. Moreover, any in-
termediate state of MOCCA still satisfiessafetyproperty, al-
lowing the application developer fine tune cost and benefit of
optimization. This property also permits MOCCA execution
without a setup phase. Self-stabilization on the other hand
provides robustness for MOCCA, where local errors can be
fixed after finite number of RAWS transactions.

MOCCA uses RAWS transactions to read color of each
of its neighbors. Two kinds of transactions are utilized for
this purpose:updateandmodification. Updatetransactions
are read only transactions to discover whether there exists
a better color for the node.Modificationsare initiated after
updates to actually modify the color. The update transactions
are introduced to address our observation that color of node
actually needs to change relatively few times yet there are
many occasions that might lead to a change in color.

Nodes save the color of their neighbors after each update
to be utilized when answering to other nodes requests. In ad-
dition, whenever a neighbor starts a MOCCA modification,
the commit time of this transaction is noted as last modi-
fication time of this neighbor. Moreover the color of this
node is marked unknown as modification might be changing
the color of node. The read response for update and mod-
ify transactions contain color of the node and the status of
the color. The status of a color can take three values:for-
bidden, suspiciousandsafe. A color c is labeled forbidden
when there is a neighbor of the contributing node with color
c which is not a neighbor of the initiator. A colorc is labeled
suspicious when there is a neighbor of the contributing node
not which is not a neighbor of the initiator whose color is
unknown. Color is deemed safe in all other cases.

Initiator node of MOCCA transaction combines all read
responses from its neighbors to construct a list of safe col-
ors. A color is considered as forbidden if any of the neigh-
bors declares that color forbidden. If a color is not forbid-

Algorithm 4 MOCCA
1: if neighbor modifiedthen
2: needsU pdate← true
3: end if
4: if needsModi f icationthen
5: run modification RAWS
6: color← chooseColor()// update color

7: needsModi f ication← false// no more modification is nec-

essary

8: else ifneedsU pdatethen
9: run update RAWS

10: newColor← chooseColor()
11: if newColor6= color then
12: needsModi f ication← true// a better color is present, a

modification RAWS is required

13: else
14: needsModi f ication← false// no better alternative exists,

so no modification is necessary

15: end if
16: if ∃c|suspicious(c) then
17: needsU pdate← true// since there are undecided 2-hop

neighbors another update is needed

18: else
19: needsU pdate← false
20: end if
21: else
22: return // stabilized so no more color operations necessary

23: end if

den but some neighbors declare that color is suspicious then
the color is considered as suspicious. Otherwise the color is
considered as safe. MOCCA initiator counts the number of
nodes in each safe color. Among the safe colors with high-
est cardinalities a random one is chosen as next color. To
improve stabilization of the algorithm the current color is
chosen if it has the highest cardinality. This functionality
is implemented inchooseColor() command. We summarize
MOCCA in Algorithm 4.

4.1 Safety
In this section we show MOCCA provides safety which

corresponds to consistent execution of transactions in multi-
hop domain. An inconsistency is a result of cyclic depen-
dency among concurrent transactions. We identify two dif-
ferent kind of cyclic dependencies: clique cyclic dependen-
cies and non-clique cyclic dependencies. Clique cyclic de-
pendencies are a set of transactions with cyclic dependency
in which all nodes form a clique in reliable communication
graph. When RAWS operates without message losses, clique
cyclic dependencies can be prevented by RAWS only. The
last node to complete the cycle would detect a conflict with
its transaction since it would know all the other transactions
in the potential cycle.

Non-clique cyclic dependencies on the other hand contain
nodes that are not neighbors. In this case, RAWS might not
be able to detect these cycles. MOCCA’s aim in safety is
to prevent these non-clique cyclic dependencies. Assigning
different colors to a pair of nodes is used to forbid concur-

rent execution of dependent transactions on these nodes. The
set of transactions with cyclic dependencies would be a di-
rected subgraph of the reliable communication graph. So as
long as reliable communication graph does not contain any
non-clique cycles composed of nodes from a single color
(monochromatic), no non-clique dependency cycles can be
generated through execution of RAWS transactions.

Enforcing non-clique monochromatic cycle requirement
is difficult using single hop primitives so we use a slightly
stronger property:

Property 1: If there exists a monochromatic path be-
tween two nodesi and j, i and j must be neighbors.

Following lemma shows the relation ofProperty 1 with
our goal:
Lemma 1.If Property 1 is satisfied on graphG, there are no
monochromatic, non-clique cycles inG.
PROOF. Assume there is a non-clique monochromatic cy-
cle in the graphG = (V,E) that satisfiesProperty 1. Then
exists a pair nodesi, j ∈ V incident to this cycle where
(i, j) /∈ E. Sincei and j are on a monochromatic cycle there
is a monochromatic path betweeni and j. HoweverProperty
1 dictates there can be no such pair of nodes. We arrived to
a conclusion, hence the proof is complete.

Note that the inverse of Lemma 1 is not correct.
Monochromatic trees can be formed to span the network
which would violateProperty 1 but satisfy the requirement
of preventing monochromatic, non-clique cycles.
Lemma 2.Given a graphG = (V,E) satisfyingProperty 1,
any serializable execution of MOCCA never violatesProp-
erty 1.
PROOF. Since we only consider serializable executions of
MOCCA, we can order execution of MOCCA transactions
at each node. LetC(G, t) be the coloring of graphG after t
MOCCA executions, andci(t) be the color of nodei ∈V at
that instant.

Assume MOCCA violatesProperty 1 after executionT.
MOCCA only modifies color through RAWS transactions
and since RAWS transactions can only modify variables of
the initiator node, MOCCA can change only color of the run-
ning nodei ∈V soC(G,T−1) andC(G,T) can only differ
at i. Color c of nodei can not be same sinceProperty 1 is
satisfied after executionT−1 and violated after executionT.
This impliesi with color c must be part of the newly formed
cycle. Moreoveri must have a one of the nodes in the cy-
cle not adjacent to all other nodes, as otherwiseProperty 1
would not be satisfied after executionT − 1. This means,
there is a path over nodes with colorc from nodei to a node
j /∈ Nc(i) through a nodek ∈ Nc(i). However color of node
i can only be updated if all neighbor nodes report colorc to
be safe. So nodek needs to report colorc as safe. A color
c is reported safe if color of all nodesl ∈ Nc(k) is modified
before last update of nodek andNc(k)
Nc(i) = . So we arrive to a conclusion, hence the proof is
complete.

Lemma 2 establishesProperty 1 is not violated by
MOCCA. This means as long as MOCCA is started from a
configuration of colors that satisfyProperty 1, through exe-
cution of MOCCA safety would be maintained. In the simu-
lations we start with each node with a distinct color based on

node ids. This process can be generalized to handle reboots
with addition of a small bootstrap process which would let
each node to discover colors of its neighbors before deciding
on its initial color. The node would in this case start with a
color different from all its neighbors.
4.2 Stabilization

Although safety of MOCCA ensures correct execution
of RAWS transactions in multi-hop environments, unless
MOCCA algorithm terminates the cost of MOCCA algo-
rithm can be prohibitive. In this section we show MOCCA
indeed self-stabilizes. We first define a progress indicator
F(t) for MOCCA:

F(t) = ∑
v∈V

c(v, t)

wherec(v, t) is the number of nodes sharing color with node
v at timet. Using this indicator we can define an invariant
for MOCCA:

Invariant: F(t)≥ F(t−1) for any serializable execution
of MOCCA.
PROOF. Each execution of MOCCA changes color of at
most a single node. Letv denote the node which changes
its color at timet. We can rewriteF(t) as follows:

F(t) = F(t−1)−2c(v, t−1)+2c(v, t)

The factor of 2 comes from the contribution ofv to the
c(v, t) values of other nodes in his cluster. MOCCA only
changes current color if it has higher cardinality then the
current color thenc(v, t) ≥ c(v, t − 1). We can rewrite this
asc(v, t)−c(v, t−1)≥ 0, which implies:

F(t) = F(t−1)+2(c(v, t)−c(v, t−1))

F(t) ≥ F(t−1)

At this point we note thatF(t) is bounded from above
since the number of nodes is finite. This result does not
address update transactions in MOCCA which do not mod-
ify colors. Modifications have higher priority over updates
so modifications execute regardless of number of updates.
When there are no valid modifications left, there are no more
color changes possible. Update transactions are initiated
only when there is a possibility of color change. So when
no more color changes are possible eventually no more up-
date transactions will be initiated. As shown in Algorithm 4,
updates are initiated at a node under two conditions: follow-
ing a neighbor’s modification or detection of a suspicious
color. As the modifications are completed, the first condi-
tion no longer applies and eventually all nodes stop updating.
Similarly suspicious colors are result of incomplete neighbor
color information in nodes. Following the end of modifica-
tions, updates will eventually ensure all the nodes will have
up-to-date neighbor color information and all responses from
neighbors will either be forbidden or safe.

Although these results show MOCCA stabilizes to a solu-
tion we do not claim the global optimality of our solution. A
global solution of this problem even using centralized algo-
rithms is NP-complete. However in next Section 6 we show
that even this suboptimal solution provide significant perfor-
mance improvements.

5 Implementation Details
In order to investigate the feasibility of MOCCA we use

the Prowler [26] simulator. For performance reasons we use
the Java implementation JProwler which offers same radio
models with improved scalability.

High concurrency in transactions is one of the main chal-
lenges for implementation. Increased concurrency leads to
competition for the medium among nodes and transactions.
Multi-hop networks further complicate this issue with hid-
den terminal and synchronization problems. We address this
problem through a cross-layer design where we enable our
protocol to control the MAC layer behavior for improved
performance. RAWS queries the MAC layer for message
schedule information which is then used for determining
transaction durations. Determining an optimal transaction
duration ensures that all read responses will be received be-
fore the commit time, while keeping the length of transaction
minimum.

Another improvement we make over classic MAC design
is the introduction of message queue reordering. In our im-
plementation, read response messages are given priority over
new transaction initiations. This process improves through-
put substantially as more transactions are able to complete.
RAWS protocol can further modify message queue to com-
bine read response messages. This process allows exploiting
the broadcast nature of messages to send read reply messages
to multiple initiators with a single broadcast. Our simulation
results in Section 6 show that even this simple optimization
can have significant performance advantages.

Reducing the amount of messages sent is crucial in both
throughput and energy efficiency objectives. To reduce can-
celed transactions, which waste communication as the results
are discarded, RAWS intervenes with MAC operation via de-
ferred conflict detections in transaction initiations. Trans-
action initiators execute conflict detection just before MAC
layer sends the packet to radio. This deferred check allows
a large portion of the conflicting transactions to be canceled
even before their initiation message is transmitted. With this
optimization, traffic is reduced and concurrency is improved
as conflicting transactions do not interfere with compatible
transactions.

Throughput is usually inversely correlated with fairness,
where optimizing throughput alone produces unfair utiliza-
tion of medium. In RAWS protocol however we need to have
a baseline fairness for optimal MOCCA performance. In ad-
dition, most of the performance benefits of MOCCA/RAWS
come from increased concurrency. Approximating fairness
leads to more concurrent transactions and better throughput.
Our approach for granting fairness is simple and best-effort.
We introduce a random back off between transactions similar
to CSMA back offs approach. Random back off prevents un-
desired situations where a single node runs successive trans-
actions starving the rest of nodes. We trade off some of the
throughput performance as there are potential gaps between
transactions if a single node but we obtain better throughput
via increased concurrency.

Another optimization we implemented for MOCCA is the
interleaving scheme. Since MOCCA algorithm is incremen-
tal, we can control the aggressiveness of optimization for bet-

ter initial response times. We also noted that first few itera-
tions of MOCCA algorithm correspond to the bulk of perfor-
mance improvement and the gains diminish with more and
more iterations. We use a probabilistic approach to limit the
number of MOCCA iterations. MOCCA algorithm decides
to iterate or process next data transaction probabilistically.
This probability is reduced by 20% after each MOCCA it-
eration. With this interleaving scheme, MOCCA can still
stabilize coloring with enough number of data transactions
but when the amount of data transactions is small, the cost
of MOCCA transactions do not dominate the total cost of
operation.

5.1 TDMA issues
Our TDMA implementation is similar to SS-TDMA[14],

where no pair of nodes with two hop distance share the same
TDMA slot. Moreover, we minimize the number of slots
to improve medium utilization. TDMA is quite suitable for
RAWS implementation as it has very low message loss rates.
TDMA also corresponds to a natural order for read responses
of a transaction. Since the TDMA slots of each node can be
known by their neighbors, the optimal transaction durationis
easy to compute. The only drawback of TDMA model is the
requirement of time synchronization. For this purpose we
rely on existence of reliable multi-hop time synchronization
algorithms such as FTSP [18].

5.2 CSMA issues
CSMA on the other hand does not require time synchro-

nization. This advantage is offset by the heavy traffic caused
by RAWS. CSMA suffers from lack of coordination when
medium is flooded with packets. CSMA implementation
also needs to deal with ordering read response messages for
a transaction. We evenly distribute read responses to transac-
tion duration in CSMA to prevent collisions between read re-
sponses to same transaction. However as show in Section 6,
CSMA still has large amount of message losses and canceled
transactions.

5.3 Optimal Serial Execution
When clock synchronization is available, computing

transactions in a serial token passing scheme is a viable alter-
native. In this study we opted to compute the lower bound for
this approach instead of actual implementation. Token pass-
ing with a single token can be quite inefficient in multi-hop
as it fails to utilize potential for concurrent transmissions.
Thus, we opt for multiple tokens passing through network
for optimal serial execution. We devise minimum duration
rounds where nodes with tokens are allowed to run one trans-
action and then they pass their tokens to next set of nodes.
For assignment of rounds and nodes in each round we uti-
lize TDMA slot assignment. TDMA slot assignment makes
sure there are no nodes in two-hop neighborhood sharing the
same slot. In optimal serial execution, we replace TDMA
slots with optimal serial execution rounds. Thus given a
topology and TDMA slot assignment, the behavior of se-
rial execution can be predicted. Transaction completion rates
and simulation durations for serial execution is computed in
this manner taking read response delay in to account where
applicable.

5.4 Transaction Generation Models
The set of transactions required for different applications

can be substantially different. Since addressing all possi-
bilities is infeasible we employ certain methods for gener-
ating transactions. Our initial approach is generating trans-
actions with uniform random read set size and members of
the read set again chosen randomly among neighbors. Max-
imum read set size in this method is determined to be the
number of neighbors of the node. This method generates
both very small and very large transactions corresponding to
a wide range of different tasks.

A similar approach was taken in [5], where the transac-
tion read sets were generated by uniform probabilities. Their
method adds each variable to read set with 0.5 probability,
which leads to more average sized transactions and less very
small or very large transactions.

Keeping the transaction size constant is another option.
This method also leads to a further optimization in optimal
serial execution since the size of transactions are known be-
forehand.

Finally we use a data aggregation task to model trans-
action generation. In this model transaction read sets are
only allowed to contain nodes with lower ids then the ini-
tiator. This process leads to an acyclic dependency graph for
transactions. This transaction model is quite similar to the
transaction sets required for false positive elimination and
distributed decision tree implementations.

5.5 Simulation Setup
Our simulation uses a square shaped region with varying

size and number of nodes. Figure 2 show one sample topol-
ogy with 100 nodes in a 100m× 100m region. We used a
uniform random distribution to generate topologies in this
study. Large circle in Figure 2, corresponds to approximate
reliable communication radius which varies due to simula-
tion.

We used the Gaussian interference model in JProwler.
The interference in this simulation has a static and a dynamic
component. Static component reflects multi-path effects and
reflections in a link and does not change after the topology is
constructed. Dynamic component on the other hand models
the transient effects in channel quality common in low-power
radios. While deciding on success of reception, interference
of transmissions are accumulated to a total noise strength and
compared against received signal strength.

A separate neighborhood detection run is made before the
experiments to identify reliable communication links. The
neighbor detection phase is composed of two sub-phases.
First each node makes 10 transmissions and each node keeps
track of the number of receptions from each transmitter. In
the second sub-phase, nodes declare their list of reception
counts for transmitters. A link between a pair of nodes is
identified as reliable if all transmissions in both directions
are received successfully. This phase is run in a very high
granularity TDMA manner where only a single node is al-
lowed to transmit in whole network. During RAWS exe-
cution multiple concurrent transactions are present, which
leads to increased interference and message losses even in
these reliable links.

0

1

2

34

5

6

7

8
9

10

11

12

13

14
15

16

17

18
19

20

21

2223

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

3940

41

42

43

44

45

46

47
48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

8788

89

90

91

92

93

94

95

96

97

98

99 4(3)

Figure 2. A sample topology used in simulations. Nodes
are colored according to MOCCA algorithm. Circles
show location of nodes and edges show the reliable com-
munication links.

Our implementation keeps a detailed log of transactions
executed for detecting inconsistencies. We also visualize
these data for a better perspective on execution of algorithm.
Figure 3 shows one snapshot from execution of MOCCA
with CSMA model.

Unless otherwise noted we repeated experiments for each
configuration 20 times with different random number gen-
erator seeds. For clarity we report the median value for
metrics. We also include costs associated with MOCCA in
our experiments. MOCCA transactions are executed con-
currently with the data tasks and the total duration and mes-
sage communication figures include extra messaging caused
my MOCCA algorithm as well. We do not consider RAWS
transactions used for MOCCA algorithm as data transactions
since they are intended to improve performance rather than
actual work. So the transactions used for tasks are same
for all methods but MOCCA experiments include additional
work for improving coloring.

We believe visualization is an important tool for discov-
ery, implementation and analysis of algorithms, especially in
complex highly concurrent environments such as WSANs.
In our experience, the effort spent on meaningful visualiza-
tion of execution is well deserved. For instance, we managed
to fix a rare non-determinism in JProwler implementation,
which stemmed from events at exactly same simulation time,
using the visual representations similar to the one shown in
Figure 3.

6 Simulation Results
This section presents our results on safety, scalability, and

performance of RAWS/MOCCA system in multi-hop net-
works. We start with safety as it is the core competency for

3

5

1

5

3

2

1

4

2

4

4

5

5

5

2

4

3

5

4

4

3

4

1

2

5

4

1

2

3

5

1

5

4

2

5

5

Node 0

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Node 13

Node 14

Node 15

Node 16

Node 17

Node 18

Node 19

951.7 951.98 952.24 952.52 952.78 953.06 953.32 953.6 953.86 954.14 954.4

Time(seconds)

Figure 3. A sample execution from simulation using
CSMA. x axis is time andy axis contains a row for each
node. For clarity only 20 nodes are displayed. Filled
boxes are used for RAWS transactions initiated by cor-
responding node with size proportional to the transac-
tion duration. Empty boxes correspond to nodes send-
ing a read response with arrows pointing to the target
transaction. Dark (green) boxes are successful transac-
tions whereas light (pink) boxes are failed transactions.
A cross on the transaction distinguishes failure of a trans-
action due to a conflict.

our system. We then investigate the throughput and scalabil-
ity of our system. Finally, we consider the impact of trans-
action set generation approaches and the processing delay in
the transaction on the performance.
6.1 Safety

We first investigate the safety properties. In this part we
compare same set of tasks executed concurrently, under three
different configurations:

1. No concurrency control

2. RAWS without MOCCA

3. RAWS and MOCCA
Our first metric for safety is the number of inconsistent

transactions. A set of transactions are considered inconsis-
tent when they are executed concurrently but their result does
not correspond to any serial execution, hence breaking se-
rializability. Figure 4 summarizes the results we obtained
from our simulations. RAWS and MOCCA working together
makes the system totally consistent, whereas RAWS without
MOCCA is still reasonably consistent, the percentage of in-
consistencies is less than 1% compared to no concurrency
control which leads to almost 60% inconsistency.

At this point we note that even a single inconsistent trans-
action is sufficient to cause remainder to be eventually in-
consistent as well. Inconsistent transactions would corrupt
state of a node, which in turn can corrupt states of neigh-
boring nodes through other transactions. We thus investi-
gate the ratio of runs that contain no inconsistencies to all
runs. Figure 5 demonstrates this perspective with increasing
number of transactions. Even with 60 transactions per node

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

N
um

be
r

of
 In

co
ns

is
te

nt
 T

ra
ns

ac
tio

ns

Transaction Count

MOCCA/RAWS
RAWS Only

no Concurrency Control

 0
 5

 10
 15
 20
 25

 0 20 40 60 80 100

Figure 4. Number of inconsistent transactions versus the
number of transactions per node.

RAWS alone causes inconsistencies in all runs. Introduction
of MOCCA on the other hand prevents this from happening
as we do not observe any inconsistencies with MOCCA.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 C

on
si

st
en

t R
un

s

Transaction Count

MOCCA/RAWS
RAWS Only

no Concurrency Control

Figure 5. Percentage of consistent runs versus number of
transactions per node.

Through the rest of experiments with a total of 2400 runs,
we only had a single inconsistency while using MOCCA
with CSMA. Total consistency in presence of byzantine mes-
sage losses is impossible but we argue that our scheme re-
duces the probability to much more acceptable ranges espe-
cially with TDMA.
6.2 Throughput

In this subsection we investigate throughput performance
of RAWS/MOCCA. High throughput improves effectiveness
of not only heavy traffic but bursty traffic in the network.
With high throughput more traffic can be handled by the
primitive reducing the need for using more simple primi-
tives. Multi-media networks with cameras and microphones
generate large amounts of data to be transferred resulting
in heavy traffic. Bursty traffic patterns are more common
in WSAN tasks since sustained high throughput is difficult
due to battery limitations. Applications such as intruder de-

tection and false positive elimination, cause in such traffic
patterns. These tasks have high spatio-temporal correlation
among sensor detections which translates to high correlation
in communication. By increasing throughput we also im-
prove the system’s responsiveness to bursty traffic.

Figure 6 summarizes a single run of all protocols in a
reference configuration with 100 nodes in a 100m× 100m
region and 400 transactions per node. This figure depicts
change of completed transactions per minute through the run.
With TDMA, MOCCA initially has a lower rate than Lock-
ing but this difference is quickly compensated. CSMA on
the other hand shows much less difference between Locking
and MOCCA.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60

T
ra

ns
ac

tio
ns

 C
om

pl
et

ed
 P

er
 M

in
ut

e

Time (minutes)

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 6. Transactions completed per minute versus time
from single representative runs using same transaction
set.

The main reason behind the drastic difference between
CSMA and TDMA is the ratio of canceled transactions to
the total number of started transactions. Figure 7 shows the
extent of this problem where CSMA has significantly higher
cancel rates especially for transactions with large read sets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25

C
an

ce
l R

at
io

Transaction Size

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Figure 7. Ratio of canceled transactions to started trans-
actions, grouped by number of nodes in read set. For this
figure a topology with 100 nodes is used with 1000 trans-
actions for each node.

The increased cancel rate also inversely affects the total
duration of a single transaction. Since failed transactions
are repeated until success, successive failures reduce perfor-
mance. We observe the total duration distribution of RAWS
transactions with TDMA (Figure 8) has much lower variance
than RAWS transactions with CSMA (Figure 9).

 0

 0.2

 0.4

 0.6

 0.8

 1

[0
,2

)

[2
,4

)

[4
,6

)

[6
,8

)

[8
,1

0)

[1
0,

12
)

[1
2,

14
)

[1
4,

16
)

[1
6,

18
)

[1
8,

55
)

P
ro

ba
bi

lit
y

Transaction Completion Duration (sec)

Figure 8. Distribution of completion times for individual
RAWS transactions in MOCCA with TDMA.

 0

 0.2

 0.4

 0.6

 0.8

 1
[0

,2
)

[2
,4

)

[4
,6

)

[6
,8

)

[8
,1

0)

[1
0,

12
)

[1
2,

14
)

[1
4,

16
)

[1
6,

18
)

[1
8,

65
0)

P
ro

ba
bi

lit
y

Transaction Completion Duration (sec)

Figure 9. Distribution of completion times for individual
RAWS transactions in MOCCA with CSMA.

These results point out to the limitation of CSMA for col-
lision free communication in multi-hop environment. Heavy
traffic from RAWS transactions also amplify this problem.

6.3 Scalability
An important question about the performance of MOCCA

is the scalability of the method for larger networks. Number
of nodes in the network is a natural parameter to consider for
scalability. Figure 10 shows our results for this parameter.
This result is expected since increased number of nodes also
increase number of single hop neighborhoods, which in turn
increases the possible concurrency in the network.

Density of the nodes on the other hand has more profound
consequences. Figure 11 summarizes the effect of density

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 50 100 150 200 250 300

T
ot

al
 T

im
e

R
eq

ui
re

d
(h

ou
rs

)

Number of Nodes

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 10. Total Simulation time versus the number of
nodes under constant node density of0.01nodes/m2.

with varying number of transactions. Increased density cor-
responds to increased transaction sizes and increased chance
of conflicts and cancels. This effects MOCCA and Locking
similarly increasing the required time and messages required
for completing all tasks. We observe the problems in CSMA
more clearly in this perspective as serial execution is much
better especially when the density of the nodes are large.

Even with the additional cost of MOCCA transactions,
MOCCA achieves performance of Locking even with 200
transactions per node. With increased number of nodes
the difference becomes more significant. Figure 12 shows
this result comparing total simulation durations of individual
runs corresponding to same transaction set in a scatter plot.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

Lo
ck

in
g

MOCCA

200 transactions
400 transactions
800 transactions

Figure 12. Comparison of corresponding MOCCA and
Locking with respect to simulation time.

A similar comparison in Figure 13 between MOCCA
and optimal serial execution shows even larger gap between
two methods. Variance in these figures stem from both the
randomness of the topology and the different densities em-
ployed.

For a better understanding of throughput we ran methods
with unlimited number of transactions for a fixed duration.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

S
er

ia
l

MOCCA

200 transactions
400 transactions
800 transactions

Figure 13. Comparison of corresponding MOCCA and
Serial executions with respect to simulation time.

Figure 14 shows results of this experiment. This figure ex-
poses a rather curious phenomenon where the average trans-
actions completed with CSMA is much higher than TDMA
when the density is low. CSMA allows transactions to be
started at a faster rate as nodes can start transactions any
time instead of waiting for their TDMA slot. However as
we have shown in Figure 9 there is a large variance in trans-
action durations in CSMA. Even when CSMA can execute
more transactions per minute, for the total completion time
metric, the last transaction to be completed is the determin-
ing factor.

 0

 500

 1000

 1500

 2000

 2500

 0.0075 0.01 0.0125 0.015 0.0175 0.02

A
ve

ra
ge

 T
ra

ns
ac

tio
ns

 P
er

 M
in

ut
e

Density (nodes/m2)

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 14. Average number of transactions completed
per minute for different methods. Each node is allowed
to run as many transactions as possible and after 2 hours
of operation the average is calculated.

6.4 Transaction Set Generation
Different computation types can lead to different set of

transactions. In this section we investigate such scenarios.
Uniform Random transaction sets in Figure 15 is our ref-
erence model. Coin flipping model used by authors in [5]
provides very similar results to our model as shown in Fig-
ure 16.

 0

 2

 4

 6

 8

 10

 0.0075 0.01 0.0125 0.015 0.0175 0.02T
ot

al
 S

im
ul

at
io

n
D

ur
at

io
n

(h
ou

rs
)

Density (nodes/m2)

200 Transactions Per Node

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

 0

 2

 4

 6

 8

 10

 0.0075 0.01 0.0125 0.015 0.0175 0.02T
ot

al
 S

im
ul

at
io

n
D

ur
at

io
n

(h
ou

rs
)

Density (nodes/m2)

400 Transactions Per Node

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

 0

 2

 4

 6

 8

 10

 0.0075 0.01 0.0125 0.015 0.0175 0.02T
ot

al
 S

im
ul

at
io

n
D

ur
at

io
n

(h
ou

rs
)

Density (nodes/m2)

800 Transactions Per Node

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

 0

 500

 1000

 1500

 2000

 0.0075 0.01 0.0125 0.015 0.0175 0.02

T
ho

us
an

d
M

es
sa

ge
s

Density (nodes/m2)

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

 0

 500

 1000

 1500

 2000

 0.0075 0.01 0.0125 0.015 0.0175 0.02

T
ho

us
an

d
M

es
sa

ge
s

Density (nodes/m2)

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

 0

 500

 1000

 1500

 2000

 0.0075 0.01 0.0125 0.015 0.0175 0.02

T
ho

us
an

d
M

es
sa

ge
s

Density (nodes/m2)

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 11. Effect of number of transactions and density of nodes on task completion time and number of messages sent.

 0

 1

 2

 3

 4

 5

 6

 0.0075 0.01 0.0125 0.015 0.0175 0.02

Density (nodes/m2)

UniformRandom Generation Model

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 15. Performance of Uniform Random tasks with
respect to simulation time with 400 transactions per
node.

Data aggregation problem has a slanted distribution of
transaction set sizes with many transactions with small read
sets. This benefits MOCCA and Locking similarly as both
methods can utilize variable sized transactions. This model
also has many compatible transactions because aggregation
creates a directed acyclic graph structure for transactionde-
pendencies. Hence Figure 17 shows significant difference
between concurrent methods and serial execution even with
the disadvantages of CSMA.

A constant size for transactions reduces the benefits of
concurrency as more and more transactions become conflict-
ing. In addition, the serial protocol can be further optimized
by reducing superframe size. Figure 18 uses such optimized

 0

 1

 2

 3

 4

 5

 6

 0.0075 0.01 0.0125 0.015 0.0175 0.02

Density (nodes/m2)

TRANSACT Generation Model

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 16. Performance of TRANSACT tasks with re-
spect to simulation time with 400 transactions per node.

serial algorithm and shows a scenario where serial execution
might be faster.

6.5 Impact of Processing Delay
Up to this point we assumed that the read operations on

the contributing nodes can be performed instantaneously.
However, when the data is stored in external devices or when
it needs to be obtained on demand (such as in a sensing sce-
nario), a delay is induced. This delay can be well tolerated
by concurrent paradigms as the delay in multiple transactions
can be overlapped. Additionally, while a transaction is wait-
ing for a read response another transaction might utilize the
medium. Our experiments, shown in Figure 19, support this
argument, indicating up to 10 times performance difference
between the serial execution and concurrent methods.

 0

 1

 2

 3

 4

 5

 6

 0.0075 0.01 0.0125 0.015 0.0175 0.02T
ot

al
 S

im
ul

at
io

n
D

ur
at

io
n

(h
ou

rs
)

Density (nodes/m2)

Information Fusion Model

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 17. Performance of aggregation tasks with respect
to simulation time with 400 transactions per node.

 0

 1

 2

 3

 4

 5

 6

 0.0075 0.01 0.0125 0.015 0.0175 0.02

Density (nodes/m2)

Constant Generation Model

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 18. Performance of constant sized random tasks
with respect to simulation time with 400 transactions per
node.

7 Concluding Remarks
In this study we proposed a single hop primitive Read-

All-Write-Self to simplify programming of WSNs and
WSANs. Our RAWS framework utilizes an optimistic con-
currency control scheme and guarantees serializability for
single-hop networks. We also identified challenges in imple-
menting our RAWS primitive in a multi-hop environment,
and showed that a set of transactions spanning multi-hop
neighborhoods may violate serializability. To address this
problem, we proposed a constraint based solution, which
prevents such multi-hop inconsistency chains. In order to
improve the multi-hop performance of RAWS, we reduced
the concurrency constraint problem to a graph subcoloring
problem. We provided an incremental, self-stabilizing al-
gorithm for graph subcoloring named Multi-hop Optimistic
Concurrency Control Algorithm (MOCCA).

We implemented MOCCA in JProwler simulator with
TDMA and CSMA. We compared the performance of
MOCCA using these two MAC layers with an optimal se-
rial execution and a locking based protocol. Our results indi-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 50 200 400 800 1600

T
ot

al
 T

im
e

R
eq

ui
re

d
(h

ou
rs

)

Read Response Delay (ms)

MOCCA TDMA
MOCCA CSMA
Locking TDMA
Locking CSMA

Serial

Figure 19. The effect of read response delay on total
simulation duration under constant node density of0.01
nodes/m2 with 400 transactions per node.

cate that, when time synchronization is available, MOCCA
with TDMA can outperform optimal serial execution in both
execution time and number of message transmissions. Even
though we do not provide energy use comparisons, this result
points out to potential energy efficiency benefits of concur-
rency, especially with time synchronization.

In absence of time synchronization, MOCCA can still
function with CSMA albeit with performance penalties. It
should be noted that, without global time synchronization,
serial execution of transactions in multi-hop networks would
be extremely challenging, if at all possible. We would also
like to note that our simulation results considered a setup
with only single variable per node. Increased number of vari-
ables per node improves concurrency further and boosts the
performance benefits of MOCCA.

The implementation of RAWS/MOCCA framework on
the mote platforms is our next step. There are other im-
plementations of optimistic concurrency control in wireless
sensor networks[5], which further supports the feasibility of
this approach. In addition to a TDMA-based implemen-
tation, we also plan to investigate more elaborate CSMA
implementation that avoids message losses through smarter
scheduling of messages. Knowledge about running transac-
tions and potential read response messages can be leveraged
to improve the transaction success rates when using a CSMA
MAC layer.

Finally transactional abstraction can be extended to sens-
ing and actuation mechanisms in the node operations as well.
This extension would provide a uniform interface for pro-
gramming WSAN applications where many race conditions
can be eliminated. A uniform interface would also simplify
validation as all computing would be reduced to set of trans-
actions.

8 References
[1] M. Arumugam and S. S. Kulkarni. Self-stabilizing

deterministic TDMA for sensor networks. In
G. Chakraborty, editor,ICDCIT, volume 3816 of

Lecture Notes in Computer Science, pages 69–81.
Springer, 2005.

[2] N. Carriero and D. Gelernter. Linda in context.Com-
mun. ACM, 32(4):444–458, 1989.

[3] I. Chung, B. K. Bhargava, M. Mahoui, and L. Lilien.
Autonomous transaction processing using data depen-
dency in mobile environments.FTDCS, pages 138–
144, 2003.

[4] P. Costa, L. Mottola, A. Murphy, and G. Picco.
Teenylime: transiently shared tuple space middleware
for wireless sensor networks. InMidSens, pages 43–48,
2006.

[5] M. Demirbas, O. Soysal, and M. Hussain. Transact:
A transactional framework for programming wireless
sensor/actor networks.Information Processing in Sen-
sor Networks, 2008. IPSN ’08. International Confer-
ence on, pages 295–306, April 2008.

[6] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte.
Timed virtual stationary automata for mobile networks.
9th International Conference on Principles of Dis-
tributed Systems (OPODIS), 2005.

[7] J. Gimbel and C. Hartman. Subcolorings and the sub-
chromatic number of a graph.Discrete Mathematics,
272(2-3):139 – 154, 2003.

[8] J. Gray. Notes on data base operating systems. Techni-
cal report, IBM, 1978.

[9] J. Gray and A. Reuter.Transaction Processing : Con-
cepts and Techniques. Morgan Kaufmann Publishers,
1993.

[10] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming wireless sensor networks usingkairos. In
DCOSS, pages 126–140, 2005.

[11] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer.
Software transactional memory for dynamic-sized data
structures. pages 92–101, Jul 2003.

[12] M. Herlihy and E. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. InPro-
ceedings of the 20th Annual International Symposium
on Computer Architecture, pages 289–300. May 1993.

[13] A. Kozlova, D. Kochnev, and B. Novikov. The middle-
ware support for consistency in distributed mobile ap-
plications.Proc. of the Baltic DB&IS, pages 145–160,
2004.

[14] S. S. Kulkarni and M. Arumugam. SS-TDMA: A self-
stabilizing mac for sensor networks. InIEEE Press. To
appear, 2005.

[15] K.-Y. Lam, M.-W. Au, and E. Chan. Broadcast of
consistent data to read-only transactions from mobile
clients. In2nd IEEE Workshop on Mobile Computer
Systems and Applications, 1999.

[16] V. C. S. Lee and K.-W. Lam. Optimistic concurrency
control in broadcast environments: Looking forward at
the server and backward at the clients.MDA, pages

97–106, 1999.

[17] V. C. S. Lee, K.-W. Lam, S. H. Son, and E. Y. M. Chan.
On transaction processing with partial validation and
timestamp ordering in mobile broadcast environments.
IEEE Trans. Computers, 51(10):1196–1211, 2002.

[18] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The
flooding time synchronization protocol.SenSys, 2004.

[19] M. T. Ozsu and P. Valduriez.Principles of distributed
database systems. Prentice-Hall, Inc., 1991.

[20] M. T. Ozsu and P. Valduriez. Distributed and parallel
database systems.ACM Comput. Surv., 28(1):125–128,
1996.

[21] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime:
Linda meets mobility. InICSE, pages 368–377, 1999.

[22] E. Pitoura. Supporting read-only transactions in wire-
less broadcasting. In9th Int. Workshop on Database
and Expert Systems Applications, page 428, 1998.

[23] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing trans-
actional memory. InProceedings of the 32nd Annual
International Symposium on Computer Architecture,
pages 494–505. IEEE Computer Society, Jun 2005.

[24] J. Shanmugasundaram, A. Nithrakashyap,
R. Sivasankaran, and K. Ramamritham. Efficient
concurrency control for broadcast environments. In
SIGMOD ’99, pages 85–96, 1999.

[25] N. Shavit and D. Touitou. Software transactional mem-
ory. In Proceedings of the 14th ACM Symposium on
Principles of Distributed Computing, pages 204–213.
Aug 1995.

[26] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi.
Simulation-based optimization of communication pro-
tocols for large-scale wireless sensor networks.IEEE
Aerospace Conference, pages 255–267, March 2003.

[27] M. Welsh and G. Mainland. Programming sensor net-
works using abstract regions. InNSDI, pages 29–42,
2004.

[28] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor networks.
In MobiSys, pages 99–110, 2004.

	Introduction
	Related Work
	Contributions
	Applications

	RAWS: Read All Write Self
	Conflict Detection

	Concurrency Control in Multi-Hop Networks
	MOCCA: Multi-hop Optimistic Concurrency Control Algorithm
	Safety
	Stabilization

	Implementation Details
	TDMA issues
	CSMA issues
	Optimal Serial Execution
	Transaction Generation Models
	Simulation Setup

	Simulation Results
	Safety
	Throughput
	Scalability
	Transaction Set Generation
	Impact of Processing Delay

	Concluding Remarks
	References

