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Abstract—Traditional deployments of wireless sensor networks
(WSNs) rely on static basestations to collect data. For applications
with highly spatio-temporal and dynamic data generation, such
as tracking and detection applications, static basestations suffer
from communication bottlenecks and long routes, which cause
reliability and lifetime to plummet.

To address this problem, we propose a holistic solution where
the synergy of the WSN and the mobile basestation improves the
reliability and lifetime of data collection. The WSN component
of our solution is a very lightweight dynamic routing tree
maintenance protocol which tracks the location of the basestation
to provide an always connected network. Our basestation algo-
rithm complements the dynamic tree reconfiguration protocol
by trailing towards the data generation, and hence, reducing the
number of hops data needs to travel to the basestation. While
both protocols are very simple and lightweight, combined they
lead to significant improvements in the reliability and lifetime
of data collection. We provide an analytical discussion of our
solution together with detailed discrete event simulations.

I. I NTRODUCTION

The objective for deploying a wireless sensor network
(WSN) is to collect data from an area for some time interval.
Traditionally, a static basestation (SB) is deployed with the
WSN, and the WSN nodes relay data over multihops towards
the SB, which stores/uploads the data for processing. In order
to improve the efficiency (which determines the lifetime) and
reliability (which determines the quality) of data collection,
most of the research focus on the relay nodes. Numerous
schemes have been proposed for coordinating sleep-wake-up,
aggregation techniques, and routing structures of the relay
nodes. On the other hand, relatively little attention is given to
improve/change the basestation model, and investigate holistic
solutions to the data collection problem.

The traditional SB model has several handicaps. A primary
problem is that the SB constitutes a hot spot for the system.
Since the nodes closer to SB is always employed in relaying
the entire traffic, these nodes deplete their batteries quickly,
putting a cap on the lifetime of the deployment. Another
major problem is due to the spatio-temporal nature of the data
generation. In several WSN deployments, including environ-
mental monitoring [1], habitat monitoring [2], and especially
surveillance systems [3], [4], it has been observed that the
phenomena of interest are local both in time and space. Fixing
the location of the basestation ignores the nature of the data
generation and results in long multihop paths for relaying,
which leads to a lot of collisions and data losses.

In order to address the drawbacks of the SB model, several
work proposed to deploy a mobile basestation (MB) for data
collection. The classical “data mule” work [5] proposed to
exploit random movement of MBs to opportunistically collect
data from a WSN. Here, the nodes buffer their data and
upload only when the MB arrives within direct commu-
nication. Although this approach eliminates multihop data
relaying, the tradeoff is the very high latency, which makes
the approach unsuitable for real-time monitoring applications.
To fix the latency problem, the mobile element scheduling
(MES) work [6] considered the controlled mobility of the
MB and studied the problem of planning a path for the
MB to visit the nodes before their buffers overflow (which
turned out to be an NP-complete problem [6], [7]). MES
work, however, assumes that the data-rates in the WSN are
known and fixed (constant after initialization), which is very
limiting for monitoring applications. Controlled sink mobility
in [8] reduces latencies significantly through maintenanceof
routes to sink location from all nodes. Optimal solution for
this model requires preprocessing similar to MES, but authors
also propose a greedy alternative. Since reactive sink mobility
requires flooding of whole network, this study assumes the
sink stays for relatively long durations on small number of
predefined sink locations. This limits its ability to address
dynamic data generation in an agile manner.

In our previous work, we presented a holistic, networked
controlled MB algorithm, “data salmon” [9]. Data salmon
constructs a backbone spanning tree over the WSN, and
constrains both the data relaying and the MB movements to
occur on this tree. The MB strategy is to greedily relocate to
the subtree where most of the traffic originates.1 In return
when the MB moves along one edge of the tree, it updates
the direction of the edge to point to its new location to ensure
that the root of the backbone tree is switched to be at the new
location of MB. Hence tracking of the MB is achieved with
minimum cost.

While achieving low cost tracking and reducing the average
weighted relay distance of data, the data salmon also has some
shortcomings. The hotspot problem is still unresolved: since
data salmon uses a static backbone tree, the center of the static
backbone tree still relays a significant amount of traffic andis

1We showed that this greedy strategy is optimal, under the constraints of
limiting all the data relaying to occur on the static backbonetree.



a potential hotspot. Moreover, a static backbone tree implies
that a message-loss during the handoff of MB from one node
on the tree to the next leads to a permanent partitioning.2

Our contributions. To address the shortcomings of data
salmon, we introducedata spider. Data spider relaxes the
static backbone tree requirement in the data salmon, and
maintains a dynamic tree for the data collection. This tree is
updated locally and efficiently by the movements of the MB.
The visual imagery is that of a spider (corresponding to the
MB) re-weaving/repairing its web (corresponding to the tree)
as it moves. To complete the feedback loop, the spider relies
on its web to detect interesting phenomena (data generation)
to follow.

Data spider fixes the hotspot problem of data salmon. Our
simulation results show that data spider extends the lifetime of
the deployment by several folds over the data salmon. Due to
its dynamicaly reconfigured tree, data spider is also resilient.
Data spider does not depend on a static backbone tree for
routing, so faults/message-losses are not as catastrophicin data
spider as in data salmon.

The dynamic tree reconfiguration protocol in data spider is
of interest on its own accord. The philosophy here is to update
the tree at where it counts, where the most recent action is. So
instead of trying to maintain a distance-sensitive tree forthe
entire network (which is clearly a non-local task), we maintain
a temporally-sensitive tree by reconfiguring the tree only at
the immediate locality of the MB. As such the maintenance
cost of the tree is very low. Yet this does not lead to long
and inefficient paths for data relaying to MB: since the MB
follows the data generation closely (thanks to the MB’s trail-
flow algorithm), the effective length of paths is only a couple
of hops. We show this in our simulation results.

To investigate the requirements for proper handoffs by the
MB, we formulate thehandoff connectivityproperty. Handoff
connectivity, intuitively, captures the notion of having no holes
in the network. We note that our data spider does not require
the handoff connectivity in practice. We devise a simple yet
very effective algorithm—trail-flow algorithm—for the MB,
that avoids bad handoffs by routing the MB around the holes.
In the trail-flow algorithm, the MB follows the edges where
the most data is flowing to itself, in contrast to a follow-source
approach of going to the source of the data directly. As we
show in our simulation results, follow-source leads to several
incorrect handoffs whereas trail-flow still functions correctly
in the same density/network.

We give simulation results to investigate the scalability and
efficiency of data spider, and compare it with data salmon and
the SB approach. Our simulator uses realistic lossy channel
models and provides a high-fidelity energy calculation by
using BMAC [10] as the model for the MAC layer com-
munications.3 Our simulation results show that data spider

2Requiring acknowledgment messages alleviates the problem, but also
increases the overhead of the protocol significantly.

3Since our simulator is parametrized extensively it is suitable for modeling
and investigating other MB algorithms quickly. Our simulatoris available at
http://www.cse.buffalo.edu/ubicomp/dataSpider/

outperforms data salmon and the SB approaches consistently,
and leads to significant improvements in the reliability and
lifetime of data collection.

We focus on one mobile region of interest (ROI) and on
one MB. When multiple ROIs are present with only a single
MB to follow them the performance of data spider is reduced.
However, we show that data spider extends readily to allow
several MBs to share the same network. There is no need to
change the routing in WSN or heuristics of the MB. We also
provide simulation results using multiple MBs to collect data
from multiple ROIs.

Outline of the rest of the paper. Our data spider
consists of two submodules: a dynamic tree reconfiguration
protocol, and an algorithm for MB relocation. We present
our dynamic tree reconfiguration protocol, DTR (readdetour),
and discuss the handoff connectivity requirements for DTR in
Section II. In Section III, we present our basestation algorithm
for relocation. We give simulation results in Section IV on
the scalability and efficiency of our data spider, comparing
and contrasting it with a static basestation and data salmon
scheme.

II. DYNAMIC TREE RECONFIGURATION

In this section, we first present the DTR algorithm. We give
the correctness proof of DTR in Section II-B and present the
handoff connectivity requirements for DTR in Section II-C.Fi-
nally, we present extensions to the basic DTR in Section II-D.

A. DTR Algorithm

To maintain always-on connectivity to the MB, the network
should continuously track it and update the existing routing
paths to point to its new location. Trying to maintain a
distance-sensitive tracking structure (e.g., maintaining a short-
est path tree rooted at the MB) would be beneficial since it
would reduce the number of hops data need to be relayed
towards the MB. However, this is inherently a non-local and
costly task as it requires frequent multihop broadcasts.

Since energy-efficiency is of utmost importance for im-
proving the lifetime of data collection, in our dynamic tree
configuration protocol, DTR, we take an alternative approach.
To keep the maintenance cost of the tree very low, we confine
DTR to reconfigure the tree only at the immediate locality
(singlehop) of the MB. To ensure that DTR does not beget
long and inefficient paths for data relaying to MB, we rely on
the MB algorithm. In our simulation results in Section IV-B,
we show that since the MB’s trail-flow algorithm follows the
data generation closely, the effective length of data relaying
paths is only a couple of hops.

DTR starts with a spanning tree rooted at the MB. This
could be established by constructing an initial tree using
flooding and keeping the MB static. The root node of this
initial tree is called theanchornode, which is also the closest
node to the MB. As it relocates in the network, MB chooses
the anchor node to be the closest node to itself and makes
periodic broadcasts to declare the anchor node to all nodes in
its singlehop range. Nodes that receive the anchor broadcast
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update their parents (next pointers) to point to the new anchor
node. At any time there is a unique anchor node in the network,
which is maintained to be the closest node to the MB.

We present DTR in Algorithm 1. Only the nodes that receive
the anchor broadcast execute an action and update their next
pointers. The anchor broadcasts are local to the singlehop of
the MB and they are not relayed to multiple hops. Figure 1
depicts an example of DTR execution.

Dynamic convoy tree work [11] adresses a relevant dynamic
tree reconfiguration problem in the context of target tracking.
Dynamic convoy tree maintains a monitoring tree to cover
a mobile ROI. The root of this monitoring tree controls
expansion and contraction of the tree and when needed decides
on the relocation of the root to another node based on the
information it collects from the entire tree. Our advantage
in DTR is the cooperation of the MB for relocating the
root of the tree to an optimal location using local singlehop
updates, whereas the convoy tree needs to deal with the tree
reconfiguration problem by using multihop update messages.

Algorithm 1 DTR Algorithm
1: Wait for the anchor message
2: if anchor == selfthen
3: next← MB
4: else if anchor∈ Neighborsthen
5: next← anchor
6: end if

B. Correctness

For clarity of explanation we use the following definitions:
Definition 1: (Handoff):the operation with which the MB

changes the anchor node from one node to another.
Definition 2: (Routing connected):a network where the

next links of nodes form a spanning routing tree rooted at
MB.

Definition 3: (Proper handoff)A handoff isproper when:

1) Both the old and new anchor nodes receive the MB’s
anchor broadcast

2) Both the old and new anchor nodes can reliably com-
municate with each other

Theorem 1:If all handoffs are proper, an iteration of Al-
gorithm 1 starting from a routing connected network always
results in another routing connected network.

Proof: Consider tree reconfiguration on a graphG =
(V,E) where u, v ∈ V correspond to the nodes ande =
(u, v) ∈ E correspond to the reliable communication links
between the nodes. We user to denote the old anchor andr′

to denote the new anchor. In the base case, when there is no
handoff, r′ = r, and the theorem holds vacuously. We next
consider the case wherer′ 6= r.

The iteration of Algorithm 1 entails an anchor broadcast
received by a set of nodesR ⊂ V . Let S ⊆ R be the set
of nodes that actually change theirnext links as a result of
executing Algorithm 1. Since proper handoffs are assumed,

{r, r′} ⊆ S. Algorithm 1 dictates that all nodes inS points to
r′ (with the exception ofr′ which points to the MB) after the
update. That is, thenext links of nodes inS form a routing
tree rooted atr′.

Let T (r) be a spanning routing tree ofG rooted at noder,
and FS be the forest obtained by removing thenext links of
nodes inS from T (r). Sincer ∈ S, each tree inFS is rooted
at a node ins ∈ S. By definition, none of the edges in any tree
Ts ∈ FS is changed. Sincenextlinks in S forms a routing tree
rooted atr′, next links in FS andS form a spanning routing
tree rooted atr′.

While message losses are common in WSN environments,
most message losses do not effect the correctness of DTR
(Theorem 1), as the definition of proper handoffs only require
reliable message delivery between the MB and the old and
new anchors. For the remaining nodes, message loss is only
a nuisance, rather than constituting a correctness problem.
Message losses at these nodes may result only in degraded
performance, since their path is not updated to point to the
new anchor in the most direct/shortest manner. But, since the
previous routes point to the old anchor, which points to the
new anchor, due to Theorem 1 the network is still routing-
connected.

The routing-connected network property is violated only
when the old or new anchor miss an anchor broadcast. DTR
deals with this problem in two timescales: short and long
terms. In the short term the impact of message losses are
reduced through message redundancy. Increasing the anchor
broadcast frequency at the MB improves the chances that all
neighbors receive the information about the new anchor node.
When this scheme is insufficient, there may be partitions in the
network due to improper handoffs. In the long term, since the
MB is mobile, MB is very likely to move over the partitioned
regions eventually. This will, in turn, fix the problem and
enable the buffered packets to be relayed to the MB.

C. Handoff Connectivity

The correctness of DTR depends on the success of handoffs,
which is in turn imposed by the geometry and topology of the
network. Here, we focus on planar deployments and capture
these required geometric and topological properties.

In data spider, MB invariantly maintains its closest node
as the anchor node. A useful abstraction for capturing this
property is the Voronoi diagram of WSN nodes based on
their geographical locations. When the MB is in one of the
Voronoi cells, its closest node, by definition, is the WSN node
corresponding to that Voronoi cell. Thus, as long as MB stays
in that Voronoi cell, the anchor node is unchanged.

With this anchor node definition, we identify the require-
ments for having proper handoffs as follows. LetP denote a
point in the deployment area andVP be the set of nodes which
are closest toP . So, if P falls inside a Voronoi cell, thenVP

consists of a single node, the WSN node corresponding to
that Voronoi cell. IfP falls on a Voronoi cell boundary, then
VP consists of the neighboring (i.e., adjacent) nodes for this
Voronoi cell boundary.
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Fig. 1. Demonstration of DTR as MB moves from one anchor to another. The touched edges are gray edges in (b) and actual changesare bold edges in (c).

Fig. 2. The interaction of Voronoi cells and communication requirements.
Shaded region shows possible locations of MB at next update when it starts
with anchor node in the center of shaded region. Circle around the shaded
region is the approximated reliable communication range. Green(light) dashed
lines correspond to neighbors where direct handoff is not possible. Red(dark)
dashed lines correspond to neighbors where no handoff is possible.

We call a WSN deploymenthandoff connectedwhen all
pointsP in deployment region satisfy:

1) For all nodesn ∈ VP , n can reliably communicate with
a node placed atP .

2) For all nodesn,m ∈ VP , n and m can reliably
communicate with each other.

In other words, in a handoff connected network (1) the MB
sitting on a Voronoi cell boundary can communicate with the
nodes in the adjacent Voronoi cells, and (2) any pair of Voronoi
neighbors can communicate with each other.

The above handoff connectivity definition is valid when
the updates of the MB are continuous. Since we use dis-
crete/periodic anchor broadcasts, we extend this definition for
our model. Letλ = vBS ∗ Tupdate be the maximum distance
the MB can travel between two location updates. We now
require the anchor node to be able to receive messages from
the MB when it is at mostλ away from the Voronoi cell.
Moreover, for proper handoff, any cell that falls to this region
should be in communication range. Figure 2 demonstrates this
requirement.

To generalize the handoff region we extend the set of nearest
nodesVP . V λ

P to be the set of nodes which are at mostλ+dmin

away from pointP wheredmin is the minimum distance to
any node in network fromP . Thus, usingV λ

P we generalize
handoff connectivityas follows:

A WSN deployment is said to beλ-general handoff
connectedwhen all pointsP satisfy:

1) For all nodesn ∈ V λ
P , n can reliably communicate with

a node place atP .
2) For all nodesn,m ∈ V λ

P , n and m can reliably
communicate with each other.

D. Extensions to DTR

Handoff connectivity addresses only the immediate neigh-
borhood of the anchor node. Broadcasts on the other hand
can be made stronger with better transmitters on the MB.
Moreover, even WSN nodes can receive broadcasts from non-
neighboring Voronoi cells. These receptions can be utilized to
improve the performance of DTR as follows.

For this operation, nodes depend on neighborhood informa-
tion about their neighbors. That is, nodes share neighborhood
information with their neighbors, so that they can create two-
hop routes to the anchor node when singlehop routes are not
possible. If the anchor is not an immediate neighbor of the
node, the node chooses its neighbor which is an immediate
neighbor of the anchor. In case there are multiple neighbors
satisfying this condition, the closest one to the anchor is
chosen as the next node. As long as the chosen intermediate
nodes also received the anchor broadcast this operation ex-
tends the handoff connectivity. We call this operationindirect
handoff. We show neighbor nodes where only indirect handoff
is possible with green(light) edges in Figure 2. Non-anchor
nodes also benefit from our indirect handoff extension, as is
the case for nodesa andb in Figure 1.

III. MB A LGORITHM

The MB algorithm complements synergizes with the DTR
algorithm to achieve efficient data collection. We present the
basic MB algorithm in Algorithm 2. MB ensures two things:

(1) The MB broadcasts an anchor message announcing
the closest node to itself periodically.This enables DTR
to track MB correctly and update the tree accordingly so
DTR can keep delivering data packets to the MB. In order to
detect and announce anchor changes properly, the MB should
determine the closest node to itself. To this end, we require
that MB knows its location as well as the locations of nodes
in the network. This is achievable by equipping the MB with a
GPS and the coordinates of the WSN nodes. Having a GPS on
the MB is relatively cheap, and the MB can also utilize its GPS
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Algorithm 2 MB Algorithm
1: loop
2: listen and update RecentPackets
3: if count(RecentPackets)> 0 then
4: target← getTarget()
5: else
6: target← getRandomTarget()
7: end if
8: navigate to target
9: anchor← closestNodeTo(position)

10: broadcast anchor message
11: end loop

to locate and collect the nodes after deployment. (Alternative
localization techniques based on Kalman filtering and RSSI-
based determination of an approximately-closest node may
also be considered.)

(2) The MB relocates to follow data generation in a best-
effort manner. This relocation enables the effective length
of data relaying paths in DTR to be only a couple of hops,
improving both the reliability and the lifetime of the data
collection. In order to track the data generation in the network,
MB utilizes the recent data packets that DTR routes to itself
to decide where to move to next. MB defaults to a random
walk when there are no packets since this might indicate a
disconnection of the network. In such a case, random walk
may help the MB to repair the partitioning and re-establish a
connected network where DTR can start delivering the data
generated to the MB. Otherwise, MB uses thegetTarget()
function to decide how to relocate based on the recently
received packets. We propose two heuristics for this function:

trailSource. Here, the MB inspects the source field of the
data packets and sets the relocation target to be the source
of the packet generation (median of the source locations).
Although it seems like this is a direct approach and should
not lead to much problems, we show in Section IV that when
the network is not regular (has holes in it) trailSource leads
to many improper handoffs and suffers severe performance
penalties.

trailFlow. Here, the MB tries to go to the center of packet
flow. In contrast to trailSource that calculates the center of data
generation, trailFlow calculates the center of data forwarding
from the singlehop neighbors of the MB. Since packet for-
warding is done over reliable edges, trailFlow directs the MB
to avoid the holes in the network implicitly (as a side benefit),
so even in irregular and sparse networks trailFlow ensures
successful handoffs. Our simulation results in Section IV show
that trailFlow consistently performs the best compared to the
other heuristics.

IV. SIMULATION

A. Setup

Simulator. We built our simulator on top of the JProwler
simulator [12] and implemented support for mobility for
JProwler. Our implementation is heavily optimized towards

Fig. 3. A screenshot of the simulator

large number of static nodes and a small number of mobile
nodes. In our simulator, we also updated the radio model of
JProwler to reflect the mobility of the mobile nodes, while
keeping the static nodes unchanged.

In order to address energy efficiency questions we keep
track of energy use in our simulation. Our simulator uses
CSMA with BMAC low-power-listening [10] for the MAC
layer and the associated energy model to calculate the energy
used in each node. In our simulation we obtain fine grain
information about packet arrivals and noise and replace the
approximate values used in [10] with these values to better
capture the energy use in each sensor node. We ignore the
energy cost of computation, but since our algorithms are rela-
tively simple we argue that the energy cost of the computation
specific to algorithm is negligible.

Our simulator is parametrized extensively, so it is suitable
for modeling and investigating other MB algorithms quickly.
Figure 3 shows a screenshot of our simulator. Our simulator is
available at http://www.cse.buffalo.edu/ubicomp/dataSpider/.

Simulation setup. We ran each set of simulations for 72
simulation hours. Each simulation includes an initial neigh-
borhood discovery and initial flooding phase. Neighborhood
discovery phase reduces the disconnections and message losses
as reliable links are identified and each node discovers its
neighbors. This neighborhood information is later utilized in
performing indirect handoffs.

As in [9], we model the data generation activity in the
environment with a moving disc to denote the ROI. All WSN
nodes covered by this disc generate data with a predetermined
rate. The nodes then try to forward this data to the MB if
they have a validnext link. A node buffers data if the channel
is busy, or if it does not have a validnext link—which may
happen after an improper handoff. We rely on work in [13] to
generate realistic human/animal like mobility patterns for the
ROI. Our implementation of the model is faithful to the model
with minor modifications to scale the deployment region.

We set the simulation area as a 160m by 120m rectangular
region. Unless otherwise stated we work with 300 mica2 nodes
in this region. We constrain the MB to this region and assume
that there are no significant obstacles to obstruct mobility
within the region. Our mobility simulation is intentionally
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kept simple. We do not model problems in relocation such as
mechanics of maneuvering, localization, and obstacle avoid-
ance in order to concentrate on the networking aspects of the
problem.

Protocols we compare with. We are primarily interested
in evaluating the data spider system which consists of DTR
and the MB algorithms, trailSource and trailFlow, described
in Sections II and III. For comparison, we also consider three
other protocols, namely,static, random, andsalmon.

In the static protocol, the basestation is static and is located
in the center of the network. The data is routed to the based
using a convergecast tree rooted at the basestation. As we
discussed in the Introduction this scheme is prone to hotspots
around the basestation, and also results in long multihop paths
for data relaying.

The random protocol is similar to trailSource and trailFlow
in that it also uses the DTR protocol to reconfigure the
data collection tree as the MB relocates. However, as for
the relocation algorithm, instead of trying to follow the data
generation, the random protocol prescribes relocating theMB
to a random location all the time. While this protocol avoids
the hotspot issue (since it uses an MB and DTR), it is prone
to long multihop paths for data relaying as it does not follow
the data generation.

Salmon protocol uses the same MB algorithm we used in
our previous work, data salmon [9]. Salmon does not use DTR
and constrains the relocation of the MB to occur only along
the edges of the existing tree. In other words, the existing tree
is not modified, except for the relocation of the root of the
tree from one node to one of the neighboring nodes (which is
achieved by flipping the direction of the edge between these
two nodes). In this scheme, the MB chooses the neighbor
that forwards the majority of the traffic to relocate to. As
our simulation results exhibit, this scheme has problems with
reliability (since only one edge is modified, this constitutes
a risk of single point of failure) and cannot follow the data
generation successfully (since the MB relocation is restricted
to the existing tree structure, MB needs take long detours when
the ROI leaves the current subtree for another subtree).

Metrics. We concentrate on three metrics to measure
performance of the system. The latency metric measures the
average delay in packet deliveries, from their generation time
to their arrival to MB. The second metric, packet delivery rate,
is the ratio of the delivered packets to MB versus the number of
packets generated. The final metric is the estimated lifetime of
the network. We define the lifetime to be the time passed until
the first node failure due to battery depletion in the network.
By utilizing the fine-grained energy-use information from our
simulation and the total energy stored in standard AA batteries,
we arrive to our estimated lifetime figures.

B. Results

Here we present our simulation results for the metrics
described above under the following parameter categories.

Node density. We first investigate the effect of node density
on the performance. As the number of nodes increase, since

the distance between anchor nodes would be decreasing, we
expect better connectivity of the network and reduced number
of improper handoffs. Increased density also corresponds to
increased data rates and more contention reducing the lifetime
of the network. Figure 4 presents this axis of the investigation.
We observe very high latencies when node density is low. This
is due to frequent disconnections. Packets are buffered when
handoffs can not be completed successfully and they are later
retrieved on an opportunistic basis, but this results in high
average latencies. Data spider heuristicstrailFlow and trail-
Sourceconsistently outperform other protocols with respect to
packet deliveries and network lifetime. An interesting result
of this experiment is to show that even random mobility leads
to better delivery ratios than the static when the density is
critically low. Random mobility leads to worse delivery ratios
when the density increases, yet it still leads to longer lifetimes
than static.

Indirect handoff. Here we try to quantify the performance
improvement due the indirect handoff extension. We test this
through experiments with trailFlow. Indirect handoff provides
better average latencies, and up-to5% improvement in packet
delivery rates. The benefit of indirect handoff is most signifi-
cant in expected lifetime which is improved by20%.

Speed of region of interest (ROI).The ability to track ROI
is a significant advantage for data spider, but the performance
of tracking is affected by the speed of ROI. In our experiments
depicted in Figure 6 we investigate the effect of speed of
ROI to the performance. Since we use a fixed speed for MB,
increasing the speed of ROI makes tracking the data more
difficult. As expected static and random heuristics are not
effected by the ROI speed. We observe significant increase in
average delay intrailSourceheuristic. This increase is related
to increased number of bad handoffs, which leads to partitions
of network. trailFlow avoids this problem as packets follow
the network topology and the MB follows the packets. Even
with increased ROI speed, data spider algorithm improves the
lifetime of network up to 3 times over static basestation.

Number of ROI. We next consider the effects of increasing
number of ROIs on the performance. As these ROIs move
independently from each other, the optimal location of MB
would vary significantly and the static MB starts to become a
better alternative. Our simulation results are shown in Figure 7.
We observe the effect of disconnections intrailSourceheuristic
in this experiment as well. The difference between data
delivery rates decrease as data spider heuristics can not follow
all the ROIs at the same time. Lifetime of the network is also
inversely affected as the MB is constrained to a smaller region
trying to follow all ROIs simultaneously. With 4 ROIS, the
performance of data spider is similar to random MB in terms of
network lifetime, which is still more than100% improvement
over the static basestation.

Locality of data generation. Locality of data generation is
important for the performance of data spider. In the previous
set of experiments we explored this a little by increasing the
number of ROIs. Here we quantify data locality by removing
the dependency of data generation to the ROI. In this setup,
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Fig. 4. Effect of number of nodes on performance
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Fig. 5. Effect of indirect handoff on performance
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Fig. 6. Effect of speed of region of interest on performance
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Fig. 7. Effect of number of region of interests on performance
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each node generates a random number and if this number is
less than the data locality parameter, the packet is generated
in the ROI, otherwise the packet is generated in a random
node chosen uniformly over the network. Thus, a data locality
of 1 corresponds to the regular data generation and a data
locality of 0 corresponds to totally uncorrelated (uniformly
random) data generation. Figure 8 summarizes the results of
this investigation. In general we observe that decreased locality
leads to decreased performance for data spider in all three
metrics. Even when one fifth of the data is generated within
the ROI, data spider tends to follow this correlated portion
of data generation, which results in reduced performance as
the rest of the data is generated uniformly. In a sense, this
kind of data generation tricks MB to suboptimal locations.
One of the most interesting results of this experiment is the
relatively high performance when there is no correlation in
data. This result stems from the reduced congestion in the
network when data is generated uniformly in the network. In
that case, MB stays close to the center of the area as data
generation is uniform, but lifetime and delivery ratios arestill
better than static basestation, as in data spider the MB can
wander around leading to better load balancing.

Frequency of anchor broadcasts.An important trade off
in data spider is the choice of anchor broadcast frequency.
Increasing the number of anchor broadcasts allows for sparser
deployments but also results in contention with other traffic.
We investigate the effect of MB anchor broadcasts in Figure 9.
Average delay consistently improves with increased number
of anchor broadcasts but other metrics show an optimal
value around 0.01 hz which is the value used in all other
experiments.

Multiple MBs. Figure 7 showed that increasing the number
of ROIs reduced the ability of data spider to track them.
Here we show how the increased number of ROIs are better
handled with multiple MBs. We test the performance of data
spider with multiple MBs in Figure 10. As we mentioned in
the Introduction, data spider extends readily to allow multiple
MBs to share the same network without any need to change the
DTR or MB algorithms. In this experiment neither the network
nor the MBs are aware of the multiple MBs. However, we still
observe an emergent cooperation and division of labor leading
to improved performance. MBs partition the network since
each node only has one next node, moreover these partitions
dynamically change over time due to MB broadcasts. Even
if all MBs converge to same anchor, the competition for data
allows MBs to diverge and cover different ROIs. We obtained
these very promising results with data spider despite lack
of explicit coordination. An interesting research question is
how to coordinate MBs in a cooperative manner to improve
performance even further.

V. CONCLUDING REMARKS

We presented an efficient holistic MB-based data collection
system, data spider, which consists of two subsystems. The
WSN component of data spider is a very lightweight dynamic
tree reconfiguration protocol, DTR, which follows the location

of the MB and re-weaves/mends the original tree locally to
maintain an always connected network rooted at the MB. The
MB component of data spider relies on the data delivered to
it by DTR and complements DTR by trailing towards the data
generation. This, in turn, reduces the number of hops data
needs to be relayed to the MB and boosts the reliability and
lifetime of DTR. While both protocols are very simple and
lightweight, combined they lead to significant improvements
in the reliability and lifetime of data collection, especially
for monitoring applications with highly spatiotemporal data
generation.

We provided extensive simulation results where we evalu-
ated the latency, cost, and network lifetime metrics of the data
spider system under a wide number of varying parameters,
and compared and contrasted data spider with other systems.
We also presented analytical results about data spider and
formulated the handoff connectivity requirements needed for
performing a proper handoff of the MB.

Although we focused on the data collection problem, our
data spider framework readily applies also to the pursuer-
evader tracking problem [14] by treating the ROI as the evader
and the MB as the pursuer. Our experiments here showed
that the trail-flow algorithm for the MB managed to implicitly
route the MB around the holes in the network. In future work
we will investigate other algorithms that may result in similar
desirable properties for tracking. Our experiments also showed
that, in the data spider system, multiple MBs coexisted nicely
on the same network to trail multiple ROIs without any explicit
coordination or cooperation. In future work we will investigate
coordination and cooperation mechanisms of multiple MBs for
more efficient evader tracking.
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Fig. 8. Effect of data locality on performance.
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