
Temporal Model for Debugging and Visualizations

Demian Lessa
CSE Department
SUNY at Buffalo

dlessa@buffalo.edu

Bharat Jayaraman
CSE Department
SUNY at Buffalo

bharat@buffalo.edu

This paper discusses the benefits of a temporal data model
for debugging and run-time visualization of object-oriented
software. Current debugging models generally only provide
access to the current program state and support manual ex-
ploration of the state to uncover the cause of program errors.
However, often the cause of an error lies in distant previous
states, and a more comprehensive view of the execution his-
tory is necessary to uncover such errors. This is achieved
through our proposed temporal data model and query lan-
guage. This paper also shows the benefits of UML-like ob-
ject and sequence diagrams for representing respectively the
current run-time state and execution history. The main con-
tribution of this paper lies in showing that declarative tem-
poral queries and (run-time) object/sequence diagrams work
in a symbiotic manner to achieve a more effective debugging
system: queries help the user to focus on specific regions of
the diagrams, while the diagrams provide a framework for re-
porting the answers to queries. Since run-time visualizations
become unwieldy for large executions, we propose two broad
classes of techniques to achieve compact sequence diagrams:
folding operations, for nested calls and also a sequence of
calls; and filtering operations, to remove unnecessary or ir-
relevant calls relative to a debugging task. We introduce a
refinement of the sequence diagram to account for missing
calls, and regular-expression labels for compacted execution
sequences. Together, these techniques have proven to be
effective and they form part of Jive, a state-of-the-art de-
bugging system for Java.

Keywords
object-oriented programming, temporal data model, query-
based debugging, object and sequence diagrams, folding and
filtering

1. INTRODUCTION
Object-oriented methodology has become widespread in

the software industry due to the practical impact of lan-
guages such as C++ and Java. Comprehending the struc-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ture of object-oriented systems via source code, design time
diagrams, or other static analysis tools is significantly easier
than understanding their dynamic behavior [3]. This gap
is due in large measure to the nature of the object-oriented
methodology, which promotes the definition of smaller meth-
ods and more complex interactions among them. It also
encourages the use of dynamic dispatching and inversion
of control patterns, making flow of control very hard to
follow through an inspection of the source code. Coupled
with more advanced features such as multi-threading– a fea-
ture that has become more pervasive with the advent of
multi-core architectures– diagnosing and debugging errors
in object-oriented software remain a challenging problem.

The state of the art in run-time environments for object-
oriented programs is exemplified by IDEs such as Eclipse,
NetBeans, and Visual Studio. Typical features found in such
systems include setting of breakpoints, spying on variables,
stepping forward in execution, and examining variables on
the call stack. Still, the programmer must proceed step-
by-step and object-by-object to uncover the cause of an er-
ror. While these IDEs also provide graphical interfaces, they
serve mainly as front-ends for traditional text-based debug-
ging. Such debuggers may be categorized as procedural and
textual in nature. In contrast, the main contribution of our
research is in providing a declarative and visual environment
for program comprehension and debugging.

In order to identify the cause of an error, software de-
velopers today only have access to the current state of the
program, i.e., stack and heap objects. However, the cause of
an error often lies in an already completed method call. This
problem could be solved in part if debuggers could record
the execution history of a program, i.e., the entire sequence
of method calls, variable assignments, etc. It would then be
possible to answer questions such as:

1. When (at which instants in execution) did variable v
change value?

2. Was there a concurrent update of any variable in the
program?

3. Was the object o2 ever reachable from object o1?

These questions express temporal properties that are hard,
if not impossible, to answer using traditional debugging tools.
Stepping and jumping through the execution history to an-
swer these questions are impractical: even a simple query
such as query 1 above would require a full scan of the execu-
tion history! In order to answer questions such as the above,
a dynamic analysis tool should support declarative tempo-
ral queries over execution histories. We show in this paper a
temporal data model and query language that is capable of

formulating a rich collection of debugging queries. We also
show how many of these queries can be easily expressed by
the end-user (i.e., software developer) using a simple form.

In visualizing the run-time behavior of object-oriented
programs, we have found two types of diagrams are espe-
cially useful: object diagrams for the current state, and se-
quence diagrams for the execution history [7]. Although ob-
ject and sequence diagrams are traditionally used in UML
to document use cases, our proposed visualization system
(Jive) [2] displays these diagrams at run-time, thereby fa-
cilitating a comparison of design-time with run-time behav-
ior in a uniform notation and helping “close the loop” be-
tween design-time and run-time. (In fact, Jive constructs
extended object and sequence diagrams, we explain in sec-
tion 3.) An important property of our proposed approach is
that every point on the sequence diagram is associated with
the object diagram that would have been in effect at that
point in execution. Thus, the sequence diagram serves as an
effective temporal navigation tool, allowing a user to access
any point in the execution history.

A fundamental problem, however, with visualizations is
that they tend to be become very large for even modestly
sized programs [3]. In order to be useful and effective, a vi-
sualization tool must be able to determine how much infor-
mation to display and how to display it without compromis-
ing the meaning of the program execution. We propose two
broad classes of techniques to achieve compact sequence di-
agrams: folding operations, for nested calls (horizontal fold-
ing) as well as for a sequence of calls (vertical folding); and
filtering operations, to remove unnecessary or irrelevant calls
relative to a debugging task. (Our earlier paper [6] showed
techniques for compact object diagrams.) We introduce a
simple regular-expression-like notation, with sequencing and
definite interaction, in order to compactly label execution
sequences. We also introduce a refinement of the sequence
diagram in order to account for calls from a method that is
not filtered (i.e., ‘in-model’) to one that is filtered (i.e., ‘out-
of-model’), and vice-versa. Together, these techniques have
proven to be effective on a number of examples. They have
been implemented and tested as part of the dynamic anal-
ysis tool, Jive, Java Interactive Visualization Environment,
which is available as a plug-in for Eclipse.

The main contribution of this paper lies in showing that
declarative temporal queries and object/sequence diagrams
work in a symbiotic manner to produce an effective debug-
ging system: queries help the user to focus on specific regions
of the diagrams, and the diagrams provide a framework for
reporting the answers to debugging queries. While previ-
ous research has focused on one or the other of these two
topics exclusively, our work shows the benefit of integrat-
ing these two techniques. In particular, sequence diagrams
provide a visual time-line which is especially useful for re-
porting answers to ‘when’ queries, e.g., “when did variable x
first become negative?”, “when did two threads concurrently
access x?”, etc. Likewise, such queries help define the points
of interest in the sequence diagram.

The rest of this paper is organized as follows: Section 2
surveys closely related work on run-time visualization and
query-based debugging. Section 3 provides an overview of
our previous work on Jive, an interactive visualization en-
vironment for Java. Section 4 describes our temporal data
model and illustrates temporal queries for debugging. Sec-
tion 5 describes techniques for compact visualizations. Sec-

tion 6 presents conclusions and directions for further work.

2. RELATED WORK
One of the distinguishing aspects of Jive is that it inte-

grates in a single tool techniques from query-based debug-
ging and dynamic visualization of execution.

Query-Based Debugging. Query-based debugging was
first proposed by Lencevicius et al [14]. In their approach, a
query is formulated in the programming language itself and
run against the objects in the heap. There is no support
for querying past program state and queries are not guaran-
teed to be side-effect free. Jive’s data is in-memory as well,
but it is constructed from program traces. Querying past
state is supported and queries are side-effect free. TOD [15]
is a scalable omniscient debugger that features query-based
debugging and dynamic visualizations. It uses bytecode in-
strumentation to generate events which are recorded to a
specialized database. This contrasts with Jive’s current ap-
proach of relying on JPDA to trace events and storing events
in-memory. TOD’s query language is based on two low-level
primitives, cursor and count, with higher-level queries be-
ing constructed algorithmically. On the other hand, Jive’s
query-based debugging features are based on a declarative
temporal query language. TOD provides high-level visual-
izations in the form of murals, which are graphs showing the
evolution of event density for a given class of events. These
visualizations do not provide the detailed information about
execution history that Jive’s sequence diagram does.

Whyline [11] is an interrogative debugger supporting ‘why
did’ and ‘why did not’ queries about program executions.
It works on recorded rather than on live executions, there-
fore, online debugging is not supported. Whyline does not
expose a query language. PTQL [9] is a relational query
language with SQL-like syntax designed to query program
traces online via instrumented code. PTQL supports con-
junctive select-project-join queries against a schema consist-
ing of two relations: method invocations and object alloca-
tions. Coca [4] is an automated debugger for C that allows
setting event-based breakpoints prior to program execution
in the form of Prolog-like queries. When an event matching
the query is detected, the program suspends and the devel-
oper is allowed to query current and past program state.

To the best of our knowledge, none of the query-based de-
buggers described herein present query results on a sequence
diagram. Jive displays query results in both tabular form
and on the sequence diagram, providing rich context that
facilitates the user’s interpretation of the results.

Dynamic Visualizations Ovation [3] visualizes execu-
tion traces using an execution pattern view, a form of inter-
action diagram that depicts program behavior. Diagrams
support a number of operations such as collapsing, expand-
ing, filtering, and execution pattern detection (e.g., repeti-
tion). Ovation also supports searches for execution patterns
on different criteria. Jive and Ovation both rely on trace
data to construct their diagrams, provide search capabilities
to explore the program execution via their respective dia-
grams, and support techniques to help users focus on regions
of interest in the diagram. In contrast with Ovation, Jive is
an online debugger, uses a declarative temporal query lan-
guage for querying the underlying data model, and uses an
enhanced sequence diagram to represent program execution.

Amida [21] extracts sequence diagrams from program traces
and applies a dominance algorithm in order to detect and

remove local objects contributing to internal behavior of
dominator objects. Experimental results show an average
removal of 40% of all objects from execution traces. Amida
processes traces offline while Jive displays sequence dia-
grams during program tracing. Jive scales sequence dia-
grams using folding and filtering and providing visual cues
to indicate the existence of additional structure and/or in-
formation in the diagram. Amida excludes objects from the
sequence diagrams but provides no indication that certain
interactions are omitted.

Sharp [17] describes interactive exploration of UML se-
quence diagrams constructed by reverse engineering the source
and rely on static analysis. Their filtering techniques include
temporal, call depth, and interaction fragment filtering. Fil-
tering may be realized by graying out the filtered out parts
of the diagram, or by removing them altogether. Jive’s
sequence diagrams provide a dynamic view of an actual pro-
gram execution. With the exception of their interaction fil-
ters, our horizontal folding techniques can scale the sequence
diagrams in a manner comparable to their filtering. Our
vertical folding is semantically richer in that it reduces the
diagram and provides an intuitive and concise description of
the hidden substructure.

TPTP [5] is primarily concerned with collecting profiling
data, but is able to represent the entire execution of a pro-
gram as a sequence diagram, interactively. It supports fil-
tering and hiding methods and objects, as well as collapsing
entire call trees. However, the latter case is not automatic.
Program Explorer [13] uses merging and filtering to reduce
the size of its object and interaction graphs. Programs are
visualized interactively and their execution traces can be
viewed as interaction charts which are similar to sequence
diagrams. ISVis [10] uses both static and dynamic analy-
ses to construct message flow diagrams similar to sequence
diagrams. These diagrams represent interaction patterns in
the trace. A global view of the execution is displayed in its
execution mural.

Homonyms. Two other research projects have adopted
the name“Jive”for their tools. In [16] tracing is done over in-
tervals and visualizations consist of box displays containing
various statistics relevant to the particular box. This tool
is somewhat related to our Jive tool, but our approaches
to limiting traces and visualizations are quite different. Fur-
ther, [16] does not support queries. The tool described in [8]
focuses on visualization of algorithms and data structures,
so there is no relation with our Jive tool.

3. OVERVIEW OF JIVE
The Java Interactive Visualization Environment [2], Jive,

is a versatile dynamic analysis tool suitable for a number
of applications including visual and query-based debugging,
program comprehension, and teaching programming languages
and software engineering. Jive is currently implemented in
Java as an Eclipse plug-in.

In many aspects, Jive works much like a traditional de-
bugger, allowing one to define breakpoints, inspect variables,
step into and over instructions, etc. Jive also provides fea-
tures that transcend the abilities of traditional debuggers:
dynamic visualizations of the run-time state and execution
history, query-based debugging, and interactive forward and
reverse stepping. Figure 1 shows Jive in action during a de-
bug session. The usual debug windows are displayed on the
left: call stacks (top left), source (middle left), breakpoints

(bottom left). On the top right, an object diagram depicts
the current state of the program’s objects. On the bottom
right, a sequence diagram displays the entire call history of
the program.

3.1 Architecture
Jive’s implementation is based on a model-view-controller

architecture, the main components of which are illustrated
in Figure 2.

JPDA Debugger. The debugger part of Jive is im-
plemented on top of the Java Platform Debugger Architec-
ture (JPDA), an event-based debugging architecture where
debugger and debuggee tiers run in separate Java Virtual
Machines (JVMs). The debugger front-end and back-end
communicate using the Java Debug Wire Protocol (JDWP)
and the debugger front-end communicates with Jive using
the Java Debug Interface (JDI). The types of event requests
supported by JDI are: virtual machine start, death, and dis-
connect; class prepare and unload; thread start and death;
method entry and exit; field access and modification; excep-
tion; step.

Controller. Jive’s controller has three modules: an event
handler, a model manager, and a UI engine. The event han-
dler requests events from JPDA and processes event notifi-
cations received from JPDA. The event handler is capable
of inferring additional event types not directly supported
by JPDA, such as local variable changes. The model man-
ager receives events from the event handler and triggers ap-
propriate model changes. Finally, the UI engine uses data
contained in the models to update the object and sequence
diagrams.

Temporal Data Model. Jive’s temporal data model
consists of two submodels: design-time and run-time. The
design-time submodel is the non-temporal part and stores in-
formation about the program’s types and their relationships.
The run-time submodel stores all the dynamic information
about the behavior of the program, including events (e.g.,
variable changes, method calls), field and variable bindings,
method execution intervals, etc. A more complete discussion
of the temporal data model is provided in section 4.

Debugging an application with Jive proceeds as follows.
Early during the debugging bootstrap process, Jive’s event
handler module requests a number of debug event types from
the debugger front-end. As debugging progresses, the event
handler receives event notifications asynchronously, via the
debugger front-end. Handled events are forwarded to the
model manager which then updates the trace data model.
Updates to the object and sequence models, if necessary, are
also triggered at this time by the model manager. Finally,
the UI engine updates the object and sequence diagrams
displayed to the user, if necessary, using the updated models.

Reference Example. We designed a Binary Search Tree
(BST) example in order to illustrate Jive’s integrated query-
based debugging and scalable visualizations capabilities. The
BST application uses a model-view-controller architecture:
the model (instance of Model) maintains a binary search tree
(instance of BSTNode) of int values; the view displays a BST
widget and a “Load...” button that pops up a dialog from
which the user can select a data file; the controller coordi-
nates the interaction between the view and the model. A
run of the BST application proceeds as follows. First, the
controller is created, then it instantiates one view and one
model, displays the view, and waits for a file to be loaded.

Figure 1: Jive user interface.

After the user selects a file, the controller loads BST data
from the file: for each line, the controller passes the new tree
element to the model by calling Model.insertNode(int)

and then notifies the view View.udpateUI(). The BST ap-
plication was originally designed not to support insertion
of duplicate data, however, we injected a bug in the BSTN-

ode.insert(int element) method in order to allow dupli-
cate insertion.

3.2 Visualization
Jive supports two kinds of visualizations: object and se-

quence diagrams. Jive’s object diagram captures runtime
state by showing object states, structural links, and out-
standing method activations within their respective object
contexts. They provide considerably richer information when
compared to UML’s object diagrams. Such additional in-
formation augments program comprehension and facilitates
debugging. A detailed discussion of Jive’s object diagrams,
including graph drawing algorithms, scalability issues, and
implementation challenges has been the subject of previous
work [6].

Jive constructs a sequence diagram dynamically at run-
time in order to visualize the execution history of a program.
Jive’s motivation differs fundamentally from that of UML
in that the UML sequence diagram documents design-time
considerations while Jive’s diagram captures runtime inter-
actions between objects. Activation boxes in Jive’s sequence
diagrams are colored based on the threads from which the
activation is made. A fragment of a sequence diagram is
shown at the bottom right of figure 1.

An important aspect of the sequence diagram is its dy-
namic nature. As program execution progresses, the dia-
gram grows in both directions. Horizontal growth occurs at

the rightmost end of the diagram as new life lines are ap-
pended to the diagram. Vertically, the diagram grows with
the size of the trace: the more trace events the sequence
diagram must represent, the larger it grows downward. An
important consequence of this continuous growth of the se-
quence diagrams is that they quickly become very large and
users must scroll the viewport in order to focus on a partic-
ular region of the diagram.

The sequence diagram also serves as an effective temporal
navigation tool. Figure 4 shows the result of jumping back
to a previous point in the execution: the horizontal dashed
line indicates the current point in execution and the object
diagram has been updated to reflect the program state at
that past time, including all outstanding method activations
(as indicated by the blue arrows). The navigation bars on
top of both diagrams enable stepping and resuming both
forward and backward in time.

Reverse Stepping. In Jive, developers may inspect any
past state of the debuggee without having to restart the
program by using the reverse stepping feature. As reverse
stepping is underway, Jive updates the object diagram so
it displays the state of the debuggee at the execution point
being visited. The sequence diagram is also updated so it
displays the current execution point being visited as a hori-
zontal dashed line cutting across all life lines. For a complete
discussion of how Jive implements reverse stepping, we di-
rect the reader to [2].

4. TEMPORAL DATA MODEL
We now present our temporal model for debugging. It

consists of an abstract temporal database, a schema repre-
senting design-time and run-time entities, a concrete real-
ization of the abstract database, and applications in debug-

Figure 2: Jive’s architecture.

ging. Our temporal database framework relies on earlier
results from research in temporal databases, a summary of
which we present next.

Background. A temporal database is a structure that
supports some aspect of time (user-defined time excluded).
Its data model defines the temporal and data values that may
be stored and manipulated by the database, as well as their
supported operations. A query language provides a standard
mechanism to retrieve and modify data.

Temporal data models are usually based on time instants
or intervals. An interval-based model provides compact rep-
resentation of temporal data. However, it is subject to a
number of problems: query languages with syntactic de-
pendence on interval encodings; necessity of operations to
consolidate representation; and, expressing representation-
dependent queries [20]. On the other hand, a point-based
data model allows for a clean, declarative syntax and sim-
pler semantics, at the cost of a verbose representation of the
data.

In order to benefit from the well-defined semantics and
clean syntax of point-based models and the efficient encod-
ing of interval-based models, we split the temporal database
into a representation-independent abstract temporal database
and a concrete temporal database for storage-efficient encod-
ing of the temporal data [1]. A compilation technique [19]
provides an elegant path for the evaluation of queries in the
abstract query language and return answers using the con-
crete encoding.

4.1 Abstract Temporal Database
Our abstract temporal database supports time values that

are discrete and linearly ordered (e.g., integers), and the
expected uninterpreted types such as strings. Our temporal
database schema contains entities pertaining to the runtime

(temporal) and design-time (static).
Runtime Schema. At a high-level, the run-time con-

sists of program states (e.g., temporal values of fields and
local variables) and method activations (e.g., intervals be-
tween a method call and return). Program states are rep-
resented by environments, which are containers for bindings
of names (e.g., fields or local variables) to values. Method
activations play a dual role: they represent both an interval
during which a particular method executes and also an en-
vironment for local variables. The execution flow a program
(over time) may be conceived as a tree of method activations
(one per thread), with nested calls represented as child nodes
in the tree. Every method activation executes in a number
of steps, each of which consists of one or more events (e.g.,
variable reads and writes, object construction, method call,
etc). Note that the use of a step entity is a convenience
for mapping events to specific points in the source code. A
subset of the runtime part of our schema is presented below
(in simplified form):

1. Activation(aid, time, threadId, envId, mid)
2. Step(aid, time, lineId)
3. Event(time, eventId)
4. EventParam(time, paramId, value)
5. Environment(envId, time, tid, parentEnvId)
6. FieldBinding(envId, fid, value, time)

We emphasize the point-based nature of the schema above.
In particular, the binding of a field to a particular value may
span several time instants. However, in the abstract schema
we only represent information about bindings at individual
points in time (as opposed to providing fields such as from-
Time and toTime). When given queries referring to field
bindings, the compiler guarantees that a correct query rang-
ing over intervals is executed against the concrete database.

Design-Time Schema. This part of the schema repre-
sents program entities that are realized at runtime. They
provide information that allows exploring relationships that
would be otherwise difficult or even impossible (e.g., does a
type implement a particular interface?). Additionally, be-
cause design-time information does not vary over time, it
can be factored out from the temporal part of the schema.
A subset of the design-time part of our schema is presented
below (in simplified form):

1. Type(tid, descriptor)
2. Field(fid, containerId, name, tid)
3. Method(mid, containerId, name, tid)
4. Local(varId, mid, name, tid)
5. Line(lineId, mid, lineNo)
6. TypeRelationship(baseId, relType, referenceId)

In the above, a type is either a class, interface, or method
signature. Fields and methods are named and typed mem-
bers of some container type (by proper definition of key con-
straints, unique field names within types may be easily de-
fined, and so can overloaded method names). In a similar
way, Locals are variables defined in method bodies. A line
represents an actual source code line of some method. Fi-
nally, type relationships represent the notions of class and
interface inheritance.

4.2 Temporal Query Language
The selection of a query language should be motivated

by the problems that it aims to solve. In that respect, our
query language is applicable to a wide range of debug use
cases which we present next, by example.

Example 1. The use of queries may help identify and re-
solve important concurrency errors and improve the design
of concurrent programs. The query below shows two concur-
rent activations modifying the same instance:

1 SELECT a1.aid, e1.time, a2.aid, e2.time

2 FROM

3 Activation a1 JOIN Event e1 JOIN

4 EventParam epi1,

5 Activation a2 JOIN Event e2 JOIN

6 EventParam epi2,

7 Activation a3

8 WHERE

9 a1.threadId <> a2.threadId AND

10 a3.aid = a1.aid AND a2.time = a3.time AND

11 e1.eventId = "assignment" AND

12 e2.eventId = e1.eventId AND

13 epi1.paramId = "instance" AND

14 epi2.paramId = epi1.paramId AND

15 epi1.value = epi2.value;

The query above is interpreted as follows. Lines 9-10 guar-
antee that the activations represented by a1 and a2 are con-
current (they are in different threads and have at least one
time point in common). Lines 11-14 verify that, during each
activation, an assignment to some instance field was per-
formed. Line 15 guarantees that the updated instances were
the same.

Example 2. Say a developer wishes to verify that method
“int M(int n)” in a type “C” is monotonically increasing (i.e.,
M(x) < M(y) whenever x < y). The following query solves
the problem by computing the complement of this property,
i.e., finding all call pairs that violate monotonicity:

1 SELECT a1.aid, a2.aid

2 FROM

3 Type T, Method m JOIN Local v,

4 Activation a1 JOIN ActivationParam ap1 JOIN

5 ActivationResult ar1,

6 Activation a2 JOIN ActivationParam ap2 JOIN

7 ActivationResult ar2

8 WHERE

9 t.descriptor = "C" AND

10 m.containerId = t.tid AND

11 m.name = "M" AND v.name = "n" AND

12 ap1.paramId = v.varId AND

13 ap2.paramId = v.varId AND

14 a1.aid <> a2.aid AND

15 ap1.value < ap2.value AND

16 ar1.value >= ar2.value;

The query above reads as follows. First, we identify the type,
method, and local variable (lines 9-11). Lines 12-13 asso-
ciates the input parameters with the corresponding local vari-
able. Lines 14-15 identify distinct activations with inputs
satisfying the monotonicity precondition. Line 16 checks for
a violation in monotonicity.

A large class of debug queries are expressible as select-
project-join (SPJ) queries such as the ones above. More ad-
vanced debug queries may require features such as aggrega-
tion (e.g., when did the number of instances of a class exceed
k?). An even more interesting class of debug queries would
require recursion. For instance, design time data structures
may be inherently recursive (e.g., trees, graphs) and many
queries about their realization would be naturally recursive
(e.g., what was the height of the binary tree instance bt at
time t?). The run-time state of a program is also typically
represented as an object graph. Analyzing the global pro-
gram sate would require answering recursive queries such as:
was object o2 ever reachable from object o1?

Our temporal query language supports all of the afore-
mentioned features. Further, the syntax and semantics of
the language is based on explicit quantification over time
instants (e.g., example 1 above) rather than on intervals.
Our system provides the necessary transformation to obtain
answers in encoded in the form of intervals.

Query Formulation. Users must be provided with ad-
equate interfaces so they may formulate and execute debug
queries. Our current approach is to provide a template-
based and a textual interface. The template-base interface
provides a number of SPJ query templates for which users
only need to provide the required parameters, if any. The
textual query interface, on the other hand, enable users to
formulate and evaluate any query.

Figure 3 illustrates the template-based interface. The
“Variable Changed” template query has been parameterized
to request all assignments of a negative value to the data
field of a BSTNode instance.

Presenting Query Answers. Once a user executes a
query, results must be presented in an adequate form. In
typical database applications, results are presented in tabu-
lar form. In a debug application, however, we argue that a
tabular output alone is not as effective. In order to make de-
bugging more agile, query results should be presented with
adequate context, such as the one provided by the sequence
and object diagrams.

Jive presents query answers as follows: each answer is

Figure 3: Template-based interface.

presented as a row in the search window and also marked
on the sequence diagram as a small red box, in the appro-
priate activation box. When the user double-clicks a row
in the search window, Jive performs a number of tasks:
1) the sequence diagram focuses (see next section) on the
activation box containing the result; 2) the activation box
is brought into the current viewport, if not visible; 3) the
temporal context of the debuggee is synchronized with the
time corresponding to the query answer; 4) the state of the
object diagram is reconstructed in order to match the new
temporal context. Figure 4 shows the results of the “Vari-
able Changed” query of figure 3, with the first result also
selected on the sequence diagram.

5. SCALABLE VISUALIZATIONS
Jive supports scalable visualizations of both object and

sequence diagrams. Users may easily suppress the display
of the internal details of objects and their interactions in
the object diagram. This includes suppressing superclass
details, hiding field tables, showing only objects involved in
the call path, hiding aggregated objects, etc. Further details
on scalable object diagrams were considered in our previous
work [6]. In the remainder of the paper, we focus exclusively
on scalability issues of sequence diagrams.

Although queries are effective in reducing the amount of
data users must analyze, interpreting such data is not triv-
ial. In particular, the tabular presentation provides very
little context while the sequence diagram provides context
that is hard to interpret due to the usually large dimen-
sions and complexity of the diagram. In order to help users
effectively interpret query results, Jive supports focusing se-
quence diagrams on regions of interest via diagram folding.
Folding aims at reducing sequence diagram size and clut-
ter by removing uninteresting regions without compromis-
ing the meaning of the diagram as a whole. The portions of
the diagram containing regions of interest and their relevant
contexts are left intact.

Because program traces tend to grow extremely large,
folding alone may not fully realize scalable visualizations.
Hence, Jive allows users to filter out trace events that are
unnecessary or irrelevant to the particular debug task at
hand, thereby keeping the volume of trace information at a
reasonable level. While folding is a dynamic operation in
that it may be applied to a sequence diagram at any time,
filtering affects the underlying execution trace so it must be
defined prior to starting a debug session. With filtering en-

abled, sequence diagrams must handle missing information
gracefully without compromising the meaning of the interac-
tions displayed by the diagram. For example, Jive is capable
of inferring out-of-model (i.e., filtered out) calls and returns
in order to correctly place “lost” and “found” messages in the
diagram.

5.1 Sequence Diagram Folding
We now describe the two main types of folding: horizontal

and vertical. Horizontal folding hides all nested activation
boxes of a given activation box. This allows users to focus on
the high-level meaning of the folded activation rather than
on how its internal behavior is implemented. Vertical folding
replaces a group of adjacent sibling activation boxes with a
new activation box, which is labeled by a regular expression
corresponding to the sequence of folded activation boxes.
This type of folding is most effective when collapsing call
sequences resulting from loops.

Fold operations are defined with respect to one or more
activation boxes and their scope is limited to a single thread.
They are reversible: for each fold operation, an unfold op-
eration that reverts its effect on the sequence diagram is
also defined. Jive supports manual folding through context
menu actions on the sequence diagram and automatic fold-
ing via preference settings.

5.1.1 Horizontal Folding
Given an activation box A in the sequence diagram, hor-

izontal folding hides all child activation boxes of A. The
folded activation box A is adorned with two ‘+’ (plus) sym-
bols, one on the top and one on the bottom. Structurally,
this amounts to flattening the entire subtree rooted at A.
Jive implements this horizontal folding as the Fold opera-
tion. Five additional fold operations are defined: FoldAfter
folds all activation boxes that started and terminated after
A terminated; FoldBefore folds all activation boxes that ter-
minated before A started; FoldChildren folds every child ac-
tivation box of A; Focus composes FoldBefore and FoldAfter;
FocusLifeline applies FoldChildren on all activation boxes of
the specified life line and Focus on the activation boxes of all
other unrelated life lines. Finally, given activation boxes A1

and A2, FoldBetween folds all activation boxes that started
and terminated after A1 terminated, and before A2 started.
FoldBetween may be naturally extended to any number of
activation boxes. To reverse folding, we proceed in an anal-
ogous manner and define one inverse unfold operation for
each fold operation defined above, using the obvious nam-
ing scheme, i.e., Unfold, UnfoldAfter, etc.

Double clicking a query result on the search window causes
Jive to perform a Focus operation on the respective activa-
tion box. Figure 4 shows a fragment of a sequence diagram
after double clicking on the first result row in the search
window. The query result is displayed as a red box within
the activation box labeled <init>:3. All activation boxes
before and after the subtree containing <init>:3 have been
horizontally folded, namely, all insertNode and updateUI

activations.
Finally, when Jive is configured to fold the sequence dia-

gram automatically, it performs a FoldBefore operation af-
ter every method return event notification. This results in a
sequence diagram that is completely folded, except for the
activation boxes corresponding to the outstanding method
calls in every active thread call stack.

Figure 4: Query results in tabular form (top left) and the first result marked as a red box on the sequence diagram (right).

5.1.2 Vertical Folding
The goal of vertical folding is to collapse repeating pat-

terns of calls within a single activation box in the sequence
diagram. It takes an activation box A as input and replaces
all child activation boxes with a new activation box F la-
beled with a regular expression R(A) encoding the sequence
of calls made in A. The regular expression R(A) has the
form (s1)

i1
⋯(sn)

in , where each (sk)
ik consists of a primi-

tive call sequence sk and a repeat count ik ≥ 1. Primitive call
sequences are those that cannot be expressed as a smaller
call sequence and a repeat count, e.g., (update;update) is
not primitive because it can be expressed as (update)2. As
with horizontal folding, the vertically folded activation box
A is adorned with two ‘+’ (plus) symbols, one on the top
and one on the bottom. Jive implements vertical folding as
the RegexFold operation. For every horizontal fold (unfold)
operation, Jive implements an analogous vertical fold (un-
fold) operation, with the expected name, i.e., RegexFocus,
RegexUnfoldAfter, etc.

Figure 5 shows the sequence diagram of the BST ap-
plication after applying RegexFocus to the activation box
<init>:4 on the life line BSTNode:4. Vertically folded ac-
tivation boxes are displayed in red: the top one, labeled
(insertNode;updateUI)3, replaces six activation boxes; the
bottom one is labeled (updateUI;insertNode)6 and replaces
another twelve. All of these activation boxes are contained
in the context of loadModel:1 and represent the loop for in-
serting elements read from file into the tree while updating
the tree widget for every insert. It is clear from the diagram
that exactly 10 nodes were inserted into the tree.

5.2 Filtering
Filtering is motivated by the observation that users may

know beforehand that certain parts of the code are unin-
teresting. For instance, in a debugging scenario, parts of
the code may be trusted to be bug free. In a program
comprehension scenario, the user may be interested in the
public interactions among objects. Regardless of the actual
user motivation, this opens the possibility for reducing the
amount of trace information collected by the tracer. As pre-
viously noted, a consequence of filtering out trace events is
that sequence diagrams must deal with missing information.

Regular Expression Filters. Jive supports filtering of
types based on their names or the package in which they
are defined. A simple regular expression may be given, say,
java.*, to filter out all trace events from types defined in any
package matching the expression (e.g., java.util.List).
Jive provides sensible default package filters for applica-
tions, applets, and unit tests.

Jive also supports regular expression filters on method
names. This allows users to filter out parts of behavior con-
sidered uniniteresting for the task at hand. For instance, the
user may filter out getter and setter methods by defining the
filters: MyClass.get* and MyClass.set*. These filters effec-
tively eliminate from Jive’s trace any getter and setter calls
made by instances of MyClass.

Visibility Filters. In the object oriented paradigm, visi-
bility scopes help users separate design from implementation
concerns. Implementation details are hidden from view by
declaring them either as private (or protected), while visible
behavior is declared as public. Jive enables users to focus
on interactions happening at any visibility scope. For in-
stance, users trying to gain a high-level understanding of a
software may choose to view only public interactions involv-
ing public classes. On the other hand, users trying to debug
the implementation of a particular class may choose to view

Figure 5: Sequence diagram illustrating vertically folded activation boxes in red, with regular expression labels (zoomed in).
Region (A) shows an out-of-model call (top) and a matching out-of-model return (bottom). Region (B) shows an out-of-model
call and return pair.

methods defined with any visibility scope.
Jive supports additional filters based on specific attributes

of types and methods. For instance, in the default configura-
tion, Jive suppresses trace events for all synthetic (compiler
generated) method calls. It is also possible to filter out trace
events from nested types. Typical use cases for nested classes
in Java include the implementation of public interfaces and
the subscription of observers for event notifications. Cases
such as these ones may not be interesting for users who wish
to gain a high-level understanding of the system.

Out-of-Model Calls and Returns. As mentioned ear-
lier, the use of filters causes event traces to be incomplete.
This means that every time Jive receives a method call
or return event notification, it must determine whether the
event originated/terminated in-model (i.e., non-filtered class
or method) or out-of-model (i.e., filtered class or method).
This is accomplished by inspecting the debuggee’s call stack
and comparing it with corresponding stacks maintained by
Jive.

Once Jive determines that a method call (return) orig-
inates in or out of model, it proceeds to draw the correct
call (return) arrow in the sequence diagram. If a method is
called from an out-of-model caller, Jive uses a found mes-

Figure 6: Sequence diagram arrow types.

sage arrow. If a method returns to an out-of-model caller, it
uses a lost message arrow. Lost and found messages are de-
fined as part of UML’s sequence diagrams. Jive provides a
variation on lost and found messages as follows: if a method
m2 is the first one called from an out-of-model caller within
the execution of an in-model method m, then Jive draws
an ‘in/out+/in’ call arrow connecting the activation boxes
corresponding to m and m′. Likewise, if m′ returns to out-
of-model and no other in-model method is called before an
out-of-model caller returns to m, then Jive draws an ‘in-
/out+/in’ return arrow connecting the activation boxes cor-
responding to m′ and m. Figure 6 shows the styles used for

all call and return arrows used by Jive. Figure 5 contains
two out-of-model call/return pairs: actionPerformed, called
by the (filtered) AWT thread, and getController, called by
a synthetic method of the anonymous TreeGUI$1 class (an
ActionListener object which listens to the “Load...” but-
ton click). The former corresponds to a ‘out/in’ call and a
‘in/out’ return; the latter to a ‘in/out+/in’ call/return pair.

6. CONCLUSIONS AND FURTHER WORK
We have described a temporal data model and query lan-

guage for declaratively stating a rich collection of debugging
queries over the execution history of a program. We also
described UML-like object and sequence diagrams for rep-
resenting the run-time state and execution history, and ways
of depicting them in a more compact way to facilitate scal-
ability for large executions. The main idea underlying our
approach is that declarative queries not only facilitate effi-
cient search for run-time information – akin to a web search
engine – they also help the visualization system focus on
what is to be displayed.

The sequence diagram is particularly helpful in providing
a visual time-line for reporting answers to ‘when’ queries.
In order to compactly depict the time-line, the paper also
presented two broad classes of techniques (folding and fil-
tering) for reducing the amount of information displayed.
We introduced a regular-expression notation for concisely
abstracting a sequence of calls in sequence subdiagram, and
also a refinement of the sequence diagram itself for calls be-
tween methods that are filtered out and those that are not.

Most of the techniques described in this paper have been
successfully incorporated in a state-of-the-art debugging sys-
tem, Jive, for the Java programming language. This is an
evolving system which been in operation since 2007 and
tested on a large number of programs and also been used
for teaching Java. It may be obtained from http://www.

cse.buffalo.edu/jive.
To further enhance the performance and usability of the

Jive system, we are exploring three approaches: (i) the use
of byte-code instrumentation for minimizing the extent of
process context-switching; (ii) the use of a visual query lan-
guage for expressing more complex temporal queries; and
(iii) the use of an external database for saving large exe-
cution histories. The database approach also allows us to
explore debugging with multiple runs, a topic that we are
also investigating.

7. REFERENCES
[1] Jan Chomicki. Temporal query languages: A survey.

In ICTL ’94: Proc. of the 1st Intl. Conf. on Temporal
Logic, pages 506–534, London, UK, 1994.
Springer-Verlag.

[2] J. K. Czyz and B. Jayaraman. Declarative and visual
debugging in eclipse. In Proc. Eclipse Technology
eXchange, pp. 31–35, Montreal, 2007.

[3] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman.
Execution patterns in object-oriented visualization. In
Proc. 4th COOTS, pp. 219–234, April 1998.

[4] M. Ducassé. Coca: an automated debugger for c. In
Proc. 21st ICSE, pp. 504–513, Los Angeles, CA, 1999.

[5] Eclipse. Eclipse Test and Performance Tools Platform.
[Online; accessed 28-July-2006].

[6] P. V. Gestwicki and B. Jayaraman. Methodology and
architecture of Jive. In Proc. 2nd SoftVis, pp. 95–104,
St. Louis, MO, 2005.

[7] P. V. Gestwicki and B. Jayaraman. Interactive
Visualization of Java Programs. In Proc 2nd HCC, pp.
226–235, Arlington, VA, 2002.

[8] G. Cattaneo, P. Faruolo, U. F. Petrillo, and G. F.
Italiano. JIVE: Java Interactive Software Visualization
Environment. In Proc 4th VL/HCC, pp. 41–43, Rome,
Italy, 2004.

[9] S. F. Goldsmith, R. O’Callahan, and A. Aiken.
Relational queries over program traces. In Proc. 20th
OOPSLA, pp. 385–402, San Diego, CA, 2005.

[10] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing
interactions in program executions. In Proc. 19th
ICSE, pp. 360–370, Boston, MA, 1997.

[11] A. J. Ko and B. A. Myers. Finding causes of program
output with the java whyline. In Proc. 27th CHI, pp.
1569–1578, Boston, MA, 2009.

[12] B. Korel and J. Laski. Dynamic program slicing. Inf.
Process. Lett., 29(3):155–163, 1988.

[13] D. B. Lange and Y. Nakamura. Object-oriented
program tracing and visualization. Computer,
30(5):63–70, May 1997.

[14] R. Lencevicius, U. Hölzle, and A. K. Singh.
Query-based debugging of object-oriented programs.
In 12th OOPSLA, pp. 304–317, Atlanta, GA, 1997.

[15] G. Pothier, E. Tanter, and J. Piquer. Scalable
omniscient debugging. SIGPLAN Notitces,
42(10):535–552, 2007.

[16] S. P. Reiss. Visualizing Java in action. In Proc. 1st
SoftVis, pp. 57–ff, San Diego, CA, 2003.

[17] R. Sharp and A. Rountev. Interactive exploration of
uml sequence diagrams. In Proc. 3rd VISSOFT,
page 8, Budapest, Hungary, 2005.

[18] J. Stoye and D. Gusfield. Simple and flexible detection
of contiguous repeats using a suffix tree. Theor.
Comput. Sci., 270(1-2):843–850, 2002.

[19] David Toman. Point vs. interval-based query
languages for temporal databases (extended abstract).
In PODS ’96: Proc. of the 15th ACM Symp. on
Principles of Database Systems, pages 58–67, New
York, NY, USA, 1996. ACM.

[20] David Toman. Point-based temporal extension of
temporal sql. In DOOD ’97: Proc. of the 5th Intl.
Conf. on Deductive and Object-Oriented Databases,
pages 103–121, London, UK, 1997. Springer-Verlag.

[21] Y. Watanabe, T. Ishio, Y. Ito, and K. Inoue.
Visualizing an execution trace as a compact sequence
diagram using dominance algorithms. In Proc. 4th
PCODA. Belgium, October 2008.

http://www.cse.buffalo.edu/jive
http://www.cse.buffalo.edu/jive

	Introduction
	Related Work
	Overview of Jive
	Architecture
	Visualization

	Temporal Data Model
	Abstract Temporal Database
	Temporal Query Language

	Scalable Visualizations
	Sequence Diagram Folding
	Horizontal Folding
	Vertical Folding

	Filtering

	Conclusions and Further Work
	References

