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Interactive run-time visualization of object-oriented soft-
ware requires views of the current state as well as the exe-
cution history. However, as software complexity grows, run-
time visualizations become unwieldy and their effectiveness
quickly degrades, necessitating techniques to scale the them
gracefully without compromising their meaning. The main
contribution of this paper is showing that declarative queries
and (run-time) object/sequence diagrams work in a symbi-
otic manner to achieve scalable visualizations: queries help
the user to focus on specific regions of the diagrams, while
the diagrams provide a framework for reporting the answers
to queries. We propose two broad classes of techniques to
achieve compact sequence diagrams: folding operations, for
nested calls and also a sequence of calls; and filtering opera-
tions, to remove unnecessary or irrelevant calls relative to a
debugging task. We introduce a refinement of the sequence
diagram to account for missing calls, and regular-expression
labels for compacted execution sequences. Together, these
techniques have proven to be effective, and they have been
implemented and tested as part of the dynamic analysis tool,
JIVE, Java Interactive Visualization Environment, which is
available as a plug-in for Eclipse.
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1. INTRODUCTION

The object-oriented programming paradigm is pervasive
both in academia and industry. Comprehending the struc-
ture of object-oriented systems via source code, design time
diagrams, or other static analysis tools is significantly easier
than understanding their dynamic behavior [2]. This gap
is due in large measure to the nature of the object-oriented
methodology, which promotes the definition of smaller meth-
ods and more complex interactions among them. It also en-
courages the use of dynamic dispatching and inversion of
control patterns, making flow of control very hard to follow
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through an inspection of the source code.

In visualizing the run-time behavior of object-oriented
programs, two types of diagrams are especially useful: ob-
ject diagrams for the current state, and sequence diagrams
for the execution history [6]. Although object and sequence
diagrams are traditionally used in UML to document use
cases, our proposed visualization system [1] displays these
diagrams at run-time, thereby facilitating a comparison of
design-time with run-time behavior in a uniform notation
and helping close the loop between design-time and run-
time. An important property of our proposed approach is
that every point on the sequence diagram is associated with
the object diagram that would have been in effect at that
point in execution. Thus, the sequence diagram serves as
an effective temporal navigation tool, allowing a user jump
to any point in the execution history and inspect the object
diagram at that particular time.

A fundamental problem, however, with visualizations is
that they tend to be become very large for even modestly
sized programs [2]. The length of a run-time sequence di-
agram, for example, is directly proportional to the number
of instructions executed. In order to be useful and effective,
a visualization tool must be able to determine how much
information to display and how to display it without com-
promising the meaning of the program execution.

The main contribution of this paper lies showing that
declarative queries and object/sequence diagrams work in a
symbiotic manner to achieve scalable visualizations: queries
help the user to focus on specific regions of the diagrams,
and the diagrams provide a framework for reporting the an-
swers to queries. While previous research has focused on
one or the other of these two topics exclusively, our work
shows the benefit of integrating these two techniques. The
focus of this paper is on sequence diagrams, as we have ex-
plored techniques for compact object diagrams in our earlier
paper [5]. In particular, sequence diagrams provide a visual
timeline which is especially useful for reporting answers to
‘when’ queries, e.g., “when did variable x first become neg-
ative?”, “when did two threads concurrently access x?”, etc.
Likewise, such queries help define the points of interest in
the sequence diagram.

We propose two broad classes of techniques to achieve
compact sequence diagrams: folding operations, for nested
calls (horizontal folding) as well as for a sequence of calls
(vertical folding); and filtering operations, to remove unnec-
essary or irrelevant calls relative to a debugging task. We
introduce a simple regular-expression-like notation, with se-
quencing and definite interaction, in order to compactly la-



bel execution sequences. We also introduce a refinement of
the sequence diagram in order to account for calls from a
method that is not filtered (i.e., ‘in-model’) to one that is
filtered (i.e., ‘out-of-model’), and vice-versa. Together, these
techniques have proven to be effective on a number of exam-
ples. They have been implemented and tested as part of the
dynamic analysis tool, JIVE, Java Interactive Visualization
Environment, which is available as a plug-in for Eclipse.

The rest of this paper is organized as follows: Section 2
surveys closely related work on run-time visualization and
query-based debugging. Section 3 provides an overview of
our previous work on JIVE, an interactive visualization en-
vironment for Java. Section 4 describes our techniques for
scalable visualizations and query-based debugging. Section
5 shows how our proposed techniques can be implemented
at a conceptual level within the JIVE architecture. Section
6 presents conclusions and directions for further work.

2. RELATED WORK

One of the distinguishing aspects of JIVE is that it inte-
grates in a single tool techniques from query-based debug-
ging, omniscient debugging, and dynamic visualization of
execution.

Query-Based Debugging. Query-based debugging was
first proposed by Lencevicius et al [13]. In their approach, a
query is formulated in the programming language itself and
run against the objects in the heap. There is no support for
querying past program state and queries are not guaranteed
to be side-effect free. JIVE’s data is in-memory as well, but
it is constructed from program traces. Querying past state
is supported and queries are side-effect free. TOD [14] is a
scalable omniscient debugger that features query-based de-
bugging and dynamic visualizations. It uses bytecode instru-
mentation to generate events which are recorded to a special-
ized database. This contrasts with JIVE’s current approach
of relying on JPDA to for trace events and storing events
in-memory. TOD’s query language is based on two low-level
primitives, cursor and count, with higher-level queries be-
ing constructed algorithmically. On the other hand, JIVE’s
query-based debugging features are based on a declarative
temporal query language. TOD provides high-level visual-
izations in the form of murals, which are graphs showing the
evolution of event density for a given class of events. These
visualizations do not provide the detailed information about
execution history that JIVE’s sequence diagram does.

Whyline [10] is an interrogative debugger supporting ‘why
did’ and ‘why did not’ queries about program executions.
It works on recorded rather than on live executions, there-
fore, online debugging is not supported. Whyline does not
expose a query language. PTQL [8] is a relational query
language with SQL-like syntax designed to query program
traces online via instrumented code. PTQL supports con-
junctive select-project-join queries against a schema consist-
ing of two relations: method invocations and object alloca-
tions. Coca [3] is an automated debugger for C that allows
setting event-based breakpoints prior to program execution
in the form of Prolog-like queries. When an event matching
the query is detected, the program suspends and the devel-
oper is allowed to query current and past program state.

To the best of our knowledge, none of the query-based de-
buggers described herein present query results on a sequence
diagram. JIVE displays query results in both tabular form
and on the sequece diagram, providing rich context that fa-

cilitates the user’s interpretation of the results.

Dynamic Visualizations Ovation [2| visualizes execu-
tion traces using an execution pattern view, a form of inter-
action diagram that depicts program behavior. Diagrams
support a number of operations such as collapsing, expand-
ing, filtering, and execution pattern detection (e.g., repeti-
tion). Ovation also supports searches for execution patterns
on different criteria. JIVE and Ovation both rely on trace
data to construct their diagrams, provide search capabilities
to explore the program execution via their respective dia-
grams, and support techniques to help users focus on regions
of interest in the diagram. In contrast with Ovation, JIVE is
an online debugger, uses a declarative temporal query lan-
guage for querying the underlying data model, and uses an
enhanced sequence diagram to represent program execution.

Amida [18] extracts sequence diagrams from program traces
and applies a dominance algorithm in order to detect and
remove local objects contributing to internal behavior of
dominator objects. Experimental results show an average
removal of 40% of all objects from execution traces. Amida
processes traces offline while JIVE displays sequence dia-
grams during program tracing. JIVE scales sequence dia-
grams using folding and filtering and providing visual cues
to indicate the existence of additional structure and/or in-
formation in the diagram. Amida excludes objects from the
sequence diagrams but provides no indication that certain
interactions are omitted.

Sharp [16] describes interactive exploration of UML se-
quence diagrams constructed by reverse engineering the source
and rely on static analysis. Their filtering techniques include
temporal, call depth, and interaction fragment filtering. Fil-
tering may be realized by graying out the filtered out parts
of the diagram, or by removing them altogether. JIVE’s
sequence diagrams provide a dynamic view of an actual pro-
gram execution. With the exception of their interaction fil-
ters, our horizontal folding techniques can scale the sequence
diagrams in a manner comparable to their filtering. Our
vertical folding is semantically richer in that it reduces the
diagram and provides an intuitive and concise description of
the hidden substructure.

TPTP [4] is primarily concerned with collecting profiling
data, but is able to represent the entire execution of a pro-
gram as a sequence diagram, interactively. It supports fil-
tering and hiding methods and objects, as well as collapsing
entire call trees. However, the latter case is not automatic.
Program Explorer [12] uses merging and filtering to reduce
the size of its object and interaction graphs. Programs are
visualized interactively and their execution traces can be
viewed as interaction charts which are similar to sequence
diagrams. ISVis |9] uses both static and dynamic analyses
to construct message flow diagrams similar to sequence di-
agrams. These diagrams represent interaction patterns in
the trace. A global view of the execution is displayed in its
execution mural.

Homonyms. Two other research projects have adopted
the name “Jive” for their tools. In [15] tracing is done over in-
tervals and visualizations consist of box displays containing
various statistics relevant to the particular box. This tool
is somewhat related to our JIVE tool, but our approaches
to limiting traces and visualizations are quite different. Fur-
ther, [15] does not support queries. The tool described in |7]
focuses on visualization of algorithms and data structures,
so there is no relation with our JIVE tool.
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Figure 1: JIVE user interface overview.

3. OVERVIEW OF JIVE

The Java Interactive Visualization Environment [1], JIVE,
is a versatile dynamic analysis tool suitable for a number
of applications including visual and query-based debugging,
program comprehension, and teaching programming languages
and software engineering at any level. JIVE is currently im-
plemented in Java as an Eclipse plugin. Figure [I]illustrates
JIVE’s user interface during a debug session, with object and
sequence diagrams displayed on the top right and bottom
right of the workspace, respectively.

In many aspects, JIVE works much like a traditional de-
bugger, allowing one to define breakpoints, inspect variables,
step into and over instructions, etc. JIVE also provides fea-
tures that transcend the abilities of traditional debuggers:
dynamic visualizations of the runtime state and execution
history, query-based debugging, and interactive forward and
reverse stepping.
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Figure 2: JIvE’s architecture.

3.1 Architecture

JIVE’s implementation is based on a model-view-controller

architecture, the main components of which are illustrated
in Figure [2}

JPDA Debugger. The debugger part of JIVE is im-
plemented on top of the Java Platform Debugger Architec-
ture (JPDA), an event-based debugging architecture where
debugger and debuggee tiers run in separate Java Virtual
Machines (JVMs). The debugger front-end and back-end
communicate using the Java Debug Wire Protocol (JDWP)
and the debugger front-end communicates with JIVE using
the Java Debug Interface (JDI). The types of event requests
supported by JDI are: virtual machine start, death, and dis-
connect; class prepare and unload; thread start and death;
method entry and exit; field access and modification; excep-
tion; step.

Jive Controller. JIVE’s controller has three modules: an
event handler, a model manager, and a Ul engine. The event
handler requests events from JPDA and processes event no-
tifications received from JPDA. The event handler is capa-
ble of inferring additional event types not directly supported
by JPDA, such as local variable changes. The model man-
ager receives events from the event handler and triggers ap-
propriate model changes. Finally, the Ul engine uses data
contained in the models to update the object and sequence
diagrams.

Jive Data Model. JIVE’s data model consists of three
in-memory submodels: trace, object, and sequence. The
trace submodel stores all raw JIVE events as received by the
controller. The object submodel contains temporal object
state information, as well as type information used to render
object diagrams. Finally, the sequence submodel contains
per-thread call trees. For each call in a call tree, the sequence
model maintains references to all events occurring in the
context of the call.

Debugging an application with JIVE proceeds as follows.
Early during the debugging bootstrap process, JIVE’s event
handler module requests a number of debug event types from



the debugger front-end. As debugging progresses, the event
handler receives event notifications asynchronously, via the
debugger front-end. Handled events are forwarded to the
model manager which then updates the trace data model.
Updates to the object and sequence models, if necessary, are
also triggered at this time by the model manager. Finally,
the Ul engine updates the object and sequence diagrams
displayed to the user, if necessary, using the updated models.

Reference Example. We designed a Binary Search Tree
(BST) example in order to illustrate JIVE’s integrated query-
based debugging and scalable visualizations capabilities. The
BST application uses a model-view-controller architecture:
the model (instance of Model) maintains a binary search tree
(instance of BSTNode) of int values; the view displays a BST
widget and a “Load...” button that pops up a dialog from
which the user can select a data file; the controller coordi-
nates the interaction between the view and the model. A
run of the BST application proceeds as follows. First, the
controller is created, then it instantiates one view and one
model, displays the view, and waits for a file to be loaded.
After the user selects a file, the controller loads BST data
from the file: for each line, the controller passes the new tree
element to the model by calling Model.insertNode (int)
and then notifies the view View.udpateUI(). The BST ap-
plication was originally designed not to support insertion
of duplicate data, however, we injected a bug in the BSTN-
ode.insert(int element) method in order to allow dupli-
cate insertion.

3.2 Visualization

Jive supports two kinds of visualizations: object and se-
quence diagrams. JIVE’s object diagram captures runtime
state by showing object states, structural links, and out-
standing method activations within their respective object
contexts. They provide considerably richer information when
compared to UML’s object diagrams. Such additional in-
formation augments program comprehension and facilitates
debugging. In particular, they help clarify Java’s overriding
and shadowing semantics. A detailed discussion of JIVE’s
object diagrams, including graph drawing algorithms, scal-
ability issues, and implementation challenges has been the
subject of previous work [5].

JIVE constructs a sequence diagram dynamically at run-
time in order to visualize the execution history of a program.
JIVE’s motivation differs fundamentally from that of UML
in that the UML sequence diagram documents design-time
considerations while JIVE’s diagram captures runtime inter-
actions between objects.

In JIVE’s sequence diagram, life lines represent either ob-
ject or class environments. JIVE creates an object life line
when a new object is instantiated by the program and a
class life line when the first static method call on the re-
spective class is made by the program. New life lines are
appended to the rightmost end of the diagram, vertically
aligned to the top, and their header contains a label indicat-
ing the object or class environment the life line represents.
JIVE does not currently represent object destruction in life
lines. Each life line may contain any number of activation
boxes. These boxes are opaque rectangles placed along the
life line to represent actual method activations in the pro-
gram. The length of an activation box provides a measure
of the duration of the respective method activation in terms
of the number of trace event notifications received during its

execution by JIVE. The color of an activation box uniquely
identifies the thread that executed the activation. Method
calls and returns are displayed as horizontal arrows connect-
ing activation boxes. The name of the called method along
with an invocation number is labeled along the call arrow.
The special <init> label is used for constructor calls. A frag-
ment of a sequence diagram is shown at the bottom right of
figure

An important aspect of the sequence diagram is its dy-
namic nature. As program execution progresses, the dia-
gram grows in both directions. Horizontal growth occurs at
the rightmost end of the diagram as new life lines are ap-
pended to the diagram. Vertically, the diagram grows with
the size of the trace: the more trace events the sequence
diagram must represent, the larger it grows downward. An
important consequence of this continuous growth of the se-
quence diagrams is that they quickly become very large and
users must scroll the viewport in order to focus on a partic-
ular region of the diagram.

The sequence diagram also serves as an effective temporal
navigation tool. Figure [3|shows JIVE’s support for temporal
navigation via the sequence diagram. Figure |5 shows the
result of jumping back to a previous point in the execution:
the horizontal dashed line indicates the current point in ex-
ecution and the object diagram has been updated to reflect
the program state at that past time, including all outstand-
ing method activations (as indicated by the blue arrows).
The navigation bars on top of both diagrams enable step-
ping and resuming both forward and backward in time.
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Figure 3: Temporal navigation in the sequence diagram.

Reverse Stepping. In JIVE, developers may inspect any
past state of the debuggee without having to restart the
program by using the reverse stepping feature. As reverse
stepping is underway, JIVE updates the object diagram so
it displays the state of the debuggee at the execution point
being visited. The sequence diagram is also updated so it
displays the current execution point being visited as a hori-
zontal dashed line cutting across all life lines. For a complete
discussion of how JIVE implements reverse stepping, we di-
rect the reader to [1].

3.3 Query-Based Debugging

One of the longstanding strategies for debugging involves
defining a breakpoint in the program source and running the
debuggee until the breakpoint is reached. With the program
interrupted, the user alternates between inspecting variables
and stepping through program execution. This strategy is
both sequential and procedural in nature. Further, if the er-
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ror symptom has already manifested, the current debugging
session has to be terminated and a new one must be started.
The use of program traces to record a program’s execution
history alleviates this problem by enabling reverse stepping
and jumping to arbitrary states in the program execution
history. While reverse stepping is cheap, reverse jumping
requires successive reverse steps, which may be quite ineffi-
cient for jumps far into the past.

The use of a query-based debugger overcomes a number of
problems observed in the scenario just described. Perhaps
the most important advantage of a query-based debugger
lies in its support for declarative queries. This enables users
to debug by formulating queries that state the problem con-
dition, while pushing to the debugger the burden of finding
the matching points in execution satisfying the debug query.
Even if the user does not know exactly what to query, the use
of debug queries enables exploration of the program state in
a very clean and efficient manner.

The construction of a query-based debugger requires the
definition of a number of components: the data model and
query language, the query formulation interface, and the
query results interface.

Data Model and Query Language. Since the program
state is a function of time, the underlying data model should
support debug queries involving temporal operators such as
since, until, before, after, etc. Hence, JIVE supports a tem-
poral data model and a temporal query language. Our data
model consists of a number of event relations all of which
contain an event number field. These fields are the only
ones in the schema defined over the temporal domain. Our
JIVE Query Language, JQL, supports selection, projection,
and joins on temporal and non-temporal types. Selection
on JQL queries are currently limited to conjunctive predi-
cates. The main benefit of this choice for a query language
is that queries have sufficient expressive power for a number
of applications and can be implemented efficiently.

Query Formulation Interface. Users must be provided
with adequate interfaces so they may formulate and execute
debug queries. Our approach is to provide two kinds of
interfaces: a template query interface and a textual query
interface. The template query interface provides the user
with a selection of basic select-project template queries for
which the user only needs to provide the required parame-
ters, if any. The textual query interface is a simple text area
where users can write actual queries. The query syntax is
checked before the user can execute the query.

Figure E| illustrates both template and textual query in-

terfaces. The template Variable Changed query requests all
assignments of a negative value to the data field of a BSTN-
ode instance. The JQL query (right) performs a temporal
join on assignment events. In particular, the query returns
all assignment events el occurring after some other assign-
ment event e2 such that both events correspond to assigning
the same value (rvalue) to the data field (variable) of a
BSTNode instance.

Query Results Interface. Once a user formulates and
executes a query, results must be presented to the user in an
adequate form. In a typical database console application,
results are presented in tabular form. In a debug applica-
tion, however, we claim that a tabular output alone is not
as effective. In order to make debugging more agile, query
results should be presented with adequate context, as pro-
vided by the sequence diagram. JIVE combines query results
presentation as follows: each query result is presented as a
row in the search window and also marked on the sequence
diagram as a small red box in the appropriate activation
box. When the user double-clicks on a row in the search
window, the sequence diagram focuses on the activation box
containing the result, bringing it into the current viewport
if the corresponding portion of the sequence diagram is not
visible. Figure [f] shows the results of the Variable Changed
query presented in figure [4] with the first result visible on
the sequence diagram.

4. SCALABLE VISUALIZATIONS

JIVE supports scalable visualizations of both object and
sequence diagrams. Users may easily suppress the display
of the internal details of objects and their interactions in
the object diagram. This includes suppressing superclass
details, hiding field tables, showing only objects involved in
the call path, hiding aggregated objects, etc. Further details
on scalable object diagrams were considered in our previous
work [5]. In the remainder of the paper, we focus exclusively
on scalability issues of sequence diagrams.

Although queries are effective in reducing the amount of
data users must analyze, interpreting such data is not triv-
ial. In particular, the tabular presentation provides very
little context while the sequence diagram provides context
that is hard to interpret due to the usually large dimen-
sions and complexity of the diagram. In order to help users
effectively interpret query results, JIVE supports focusing se-
quence diagrams on regions of interest via diagram folding.
Folding aims at reducing sequence diagram size and clut-
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Figure 5: Query results in tabular form (top left) and the first result marked as a red box on the sequence diagram (right).

ter by removing uninteresting regions without compromis-
ing the meaning of the diagram as a whole. The portions of
the diagram containing regions of interest and their relevant
contexts are left intact.

Because program traces tend to grow extremely large,
folding alone may not fully realize scalable visualizations.
Hence, JIVE allows users to filter out trace events that are
unnecessary or irrelevant to the particular debug task at
hand, thereby keeping the volume of trace information at a
reasonable level. While folding is a dynamic operation in
that it may be applied to a sequence diagram at any time,
filtering affects the underlying execution trace so it must be
defined prior to starting a debug session. With filtering en-
abled, sequence diagrams must handle missing information
gracefully without compromising the meaning of the interac-
tions displayed by the diagram. For example, JIVE is capable
of inferring out-of-model (i.e., filtered out) calls and returns
in order to correctly place “lost” and “found” messages in the
diagram.

4.1 Sequence Diagram Folding

We now describe the two main types of folding: horizontal
and vertical. Horizontal folding hides all nested activation
boxes of a given activation box. This allows users to focus on
the high-level meaning of the folded activation rather than
on how the its internal behavior is implemented. Vertical
folding replaces a group of adjacent sibling activation boxes
with a new activation box, which is labeled by a regular
expression corresponding to the sequence of folded activation
boxes. This type of folding is most effective when collapsing
call sequences resulting from loops.

Fold operations are defined with respect to one or more
activation boxes and their scope is limited to a single thread.
They are reversible: for each fold operation, an unfold op-
eration that reverts its effect on the sequence diagram is
also defined. JIVE supports manual folding through context

menu actions on the sequence diagram and automatic fold-
ing via preference settings.

4.1.1 Horizontal Folding

Given an activation box A in the sequence diagram, hor-
izontal folding hides all child activation boxes of A. The
folded activation box A is adorned with two ‘+’ (plus) sym-
bols, one on the top and one on the bottom. Structurally,
this amounts to flattening the entire subtree rooted at A.
JIVE implements this horizontal folding as the unary Fold
operation. Five additional unary fold operations are de-
fined: FoldAfter folds all activation boxes that started and
terminated after A terminated; FoldBefore folds all activa-
tion boxes that terminated before A started; FoldChildren
folds every child activation box of A; Focus composes Fold-
Before and FoldAfter; FocusLifeline applies FoldChildren on
all activation boxes of the specified life line and Focus on the
activation boxes of all other unrelated life lines. A single bi-
nary fold operation is also defined: given activation boxes A1
and As, FoldBetween folds all activation boxes that started
and terminated after A; terminated, and before As started.
FoldBetween may be naturally extended to any arity. To re-
verse folding, we proceed in an analogous manner and define
one inverse unfold operation for each fold operation defined
above, using the obvious naming scheme, i.e., Unfold, Un-
foldAfter, etc.

Figure |§| illustrates horizontal folding in a succession of
three snapshots of the sequence diagram: (1) the BST appli-
cation right before the Ul is displayed by the AWT thread; (2)
manually folding the diagram before showView:1 is called;
(3) partially folded diagram in which the Model:1 life line
has been removed— no activation boxes for this life line are
visible after folding.

JIVE supports semi-automatic horizontal folding: when
double clicking a query result on the search window, JIVE
performs a Focus operation on the respective activation box.
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Figure 6: Sequence diagram snapshots illustrating horizontal folding.

Figure [f] shows a fragment of a sequence diagram after dou-
ble clicking on the first result row in the search window. The
query result is displayed as a red box within the activation
box labeled <init>:3. All activation boxes before and af-
ter the subtree containing <init>:3 have been horizontally
folded, namely, all insertNode and updateUI activations.

When JIVE is configured to fold the sequence diagram au-
tomatically, it performs a FoldBefore operation after every
method return event notification. This results in a sequence
diagram that is completely folded, except for the activation
boxes corresponding to the outstanding method calls in ev-
ery active thread call stack.

4.1.2  Vertical Folding

The goal of vertical folding is to collapse repeating pat-
terns of calls within a single activation box in the sequence
diagram. It takes an activation box A as input and replaces
all child activation boxes with a new activation box F' la-
beled with a regular expression R(A) encoding the sequence
of calls made in A. The regular expression R(A) has the
form (s1)%(s,)™, where each (s;)™* consists of a primi-
tive call sequence s and a repeat count i, > 1. Primitive call
sequences are those that cannot be expressed as a smaller
call sequence and a repeat count, e.g., (update;update) is
not primitive because it can be expressed as (update)2. As
with horizontal folding, the vertically folded activation box
A is adorned with two ‘+’ (plus) symbols, one on the top
and one on the bottom. JIVE implements vertical folding
as the unary RegezFold. For every horizontal fold (unfold)
operation, JIVE implements an analogous vertical fold (un-
fold) operation, with the expected name, i.e., RegexFocus,
RegexUnfoldAfter, etc.

Figure m shows the sequence diagram of the BST applica-
tion after applying RegezFocus to the activation box labeled
<init>:4 on the life line BSTNode:4. Vertically folded ac-
tivation boxes are displayed in red: the top one is labeled
(insertNode;updateUI)® and replaces six sibling activation
boxes; the bottom one is labeled (updateUI;insertNode)®
and replaces twelve sibling activation boxes. All of these ac-
tivation boxes are contained in the loadModel:1 activation
box, and represent the loop for inserting elements read from
file into the tree while updating the tree widget after every
insert. It is easy to see from the diagram that exactly 10
nodes were inserted into the tree.

4.2 Filtering

Filtering is motivated by the observation that users may

[@ Treepanet1] [, TreeGuisy:1] [@ TreeGuii1] [ Controller:1] [@ Model:] [ BSTNode:1] & BSTNode:2] [, BSTNode:a

: actionPerformed:1
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gethodel

insert:3
data

insert4
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I updateUl, insertNode)”

updateU:5

(updateUl; insertNode)6|

Figure 7: Sequence diagram illustrating vertically folded ac-
tivation boxes in red, with regular expression labels (zoomed
in). Region (A) shows an out-of-model call (top) and a
matching out-of-model return (bottom). Region (B) shows
an out-of-model call and return pair.

know beforehand that certain parts of the code are unin-
teresting. For instance, in a debugging scenario, parts of
the code may be trusted to be bug free. In a program
comprehension scenario, the user may be interested in the
public interactions among objects. Regardless of the actual
user motivation, this opens the possibility for reducing the
amount of trace information collected by the tracer. As pre-
viously noted, a consequence of filtering out trace events is
that sequence diagrams must deal with missing information.

Regular Expression Filters. JIVE supports filtering of
types based on their names or the package in which they
are defined. A simple regular expression may be given, say,
java.*, to filter out all trace events from types defined in any
package matching the expression (e.g., java.util.List).
JIVE provides sensible default package filters for applica-
tions, applets, and unit tests.

JIVE also supports regular expression filters on method
names. This allows users to filter out parts behavior consid-
ered uniniteresting for the task at hand. For instance, the
user may filter out getter and setter methods by defining



the filters: MyClass.get* and MyClass.set*. These filters
effectively eliminate from JIVE’s trace any getter and setter
calls made by instances of MyClass.

Visibility Filters. In the object oriented paradigm, visi-
bility scopes help users separate design from implementation
concerns. Implementation details are hidden from view by
declaring them either as private (or protected), while visible
behavior is declared as public. JIVE enables users to focus
on interactions happening at any visibility scope. For in-
stance, users trying to gain a high-level understanding of a
software may choose to view only public interactions involv-
ing public classes. On the other hand, users trying to debug
the implementation of a particular class may choose to view
methods defined with any visibility scope.

JIVE supports additional filters based on specific attributes
of types and methods. For instance, in the default configura-
tion, JIVE suppresses trace events for all synthetic (compiler
generated) method calls. It is also possible to filter out trace
events from nested types. Typical use cases for nested classes
in Java include the implementation of public interfaces and
the subscription of observers for event notifications. Cases
such as these ones may not be interesting for users who wish
to gain a high-level understanding of the system.

Out-of-Model Calls and Returns. As mentioned ear-
lier, the use of filters causes event traces to be incomplete.
This means that every time JIVE receives a method call or re-
turn event notification, it must determine whether the event
originated /terminated in-model (i.e., non-filtered class or
method) or out-of-model (i.e., filtered class or method). This
is accomplished by inspecting the debuggee’s call stack and
comparing it with the corresponding call tree maintained by
JIVE (call trees are discussed in section .

Once JIVE determines that a method call (return) orig-
inates in or out of model, it proceeds to draw the correct
call (return) arrow in the sequence diagram. If a method is
called from an out-of-model caller, JIVE uses a found mes-
sage arrow. If a method returns to an out-of-model caller, it
uses a lost message arrow. Lost and found messages are de-
fined as part of UML’s sequence diagrams. JIVE provides a
variation on lost and found messages as follows: if a method
ma is the first one called from an out-of-model caller within
the execution of an in-model method m, then JIVE draws
an ‘in/out+/in’ call arrow connecting the activation boxes
corresponding to m and m’. Likewise, if m’ returns to out-
of-model and no other in-model method is called before an
out-of-model caller returns to m, then JIVE draws an ‘in-
/out+/in’ return arrow connecting the activation boxes cor-
responding to m’ and m. Figure [§|shows the styles used for
all call and return arrows used by JIVE. Figure |7| contains
two out-of-model call /return pairs: actionPerformed, called
by the (filtered) AWT thread, and getController, called by
a synthetic method of the anonymous TreeGUI$1 class (an
ActionListener object which listens to the “Load...” but-
ton click). The former corresponds to a ‘out/in’ call and a
‘in/out’ return; the latter to a ‘in/out+/in’ call/return pair.

S. IMPLEMENTATION

In order to realize the scalable visualizations described in
the previous section, we make use of a call tree data struc-
ture containing complete information about method calls
and returns. We later relax this restriction in order to han-
dle out-of-model calls and returns caused by filtering. We
also define operations on call trees that formalize the hori-

infin infout+/in infout out/in

ol i 0 '
mo b et e

Figure 8: Sequence diagram arrow types.

zontal and vertical fold operations.

5.1 Call Trees

We use a directed tree data structure to capture the se-
quence of calls and returns occurring within a single thread
of execution of a program. Each call tree represents call
information from a single thread, and JIVE maintains one
call tree per each debuggee thread. A call tree is a directed
tree where nodes correspond to method activations and di-
rected edges capture the caller/callee relationship between
method activations. Every node n has an associated tuple
7(n) = (m,e,c,r), where m is the called method, e is the
method’s execution environment (e.g., an object or a class),
c is the method’s call time, and r is the method’s return
time, with the convention that r is undefined if n repre-
sents an outstanding method activation (i.e., one that has
not returned yet). Every edge (n1,n2) encodes a method
call made from the method represented by n; (caller) to the
method represented by ns (callee).

Method call times are used as a unique identifiers, or ids,
for call tree nodes. Within a single thread of execution,
method call times form a strict total order, that is, given
call times ¢; # ca2, either ¢; < ¢z or ¢a < ¢;. This induces
a total order on call tree nodes: given nodes n; and ng
with call times c¢; and c2, respectively, ni1 < n2 < c¢1 < ca.
This means that the root of a call tree is its smallest node.
All other nodes represent method activations occurring as
part of the execution of their respective callers. For sibling
nodes ni < ng2, the method activation represented by ni
returns before the one represented by no starts. If a node n
represents an outstanding method activation, then so does
its parent node.

JIVE updates call trees continuously as new call and re-
turn event notifications arrive from the debugger back-end.
First, it creates a tuple T' = (m, e, ¢,r) using event informa-
tion. If the event is a call, then T.r is undefined, otherwise
T'.cis undefined. JIVE then retrieves the call tree for the cor-
responding debuggee thread and updates it with the event
information. Call trees maintained by JIVE contain all in-
formation necessary to draw the various elements of the se-
quence diagram: life lines, activation boxes, and call/return
arrows. Further, JIVE colors activation boxes based on the
thread in which their corresponding method activations oc-
cur. This is an important visual property of JIVE’s sequence
diagrams, as it provides a natural thread-based grouping of
activation of boxes.

5.2 Operations

Call trees support three basic operations: insertion, re-
moval, and substitution of subtrees. The first two operations
return the modified call trees, while substitution returns the
modified call tree and the substituted subtree. These primi-
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Figure 9: Two call tree labeled with call times. The left tree highlights potentially uninteresting regions based on two nodes
of interest; the one on the right shows the result of folding these regions.

tive operations are the building blocks for the more advanced
operations such as folding and merging discussed later in this
section.

Diagram Folding. Consider the call tree illustrated on
the left of figure [0] and assume the user is only interested in
the method activations identified by nodes 35 and 76 (e.g.,
query results on the sequence diagram). Intuitively, the sub-
trees rooted at nodes 35 and 76 are relevant since they con-
tain information about all method activations nested within
the activations of the methods represented by nodes 35 and
76. The paths from the root to nodes 35 and 76 are also
relevant, as they represent the call stacks at the time these
method activations occurred in the program. On the other
hand, the red (before), green (between), and blue (after)
regions in the call tree are potentially uninteresting. The
before region identifies all method activations that returned
before the method represented by node 35 was called. The
after region identifies all methods that were called after the
method represented by node 76 returned. Finally, the be-
tween region identifies all methods that were called after
the method represented by node 35 returned and returned
before the method represented by node 76 was called.

The fold operation uses substitution to replace a desig-
nated subtree ¢’ of a call tree ¢ with a new leaf node ¢, re-
turning the modified call tree. The unfold operation reverts
the call tree to its state prior to folding by simply replacing
¢ with t' in t. We assume all nodes inserted in a call tree
via folding are marked so they can be distinguished from
ordinary call tree nodes. JIVE implements horizontal fold-
ing and unfolding on sequence diagrams using these call tree
operations.

Recall that in the left of figure[9] we identified three poten-
tial regions for folding based on two nodes of interest. The
right side of the figure shows the call tree obtained after
folding these potentially uninteresting regions.

While the call tree fold operation replaces a single subtree
with a new leaf node, vertical folding requires the definition
of an operation that replaces sibling nodes in the call tree.
The merge operation accomplishes this task. Given a call
tree t and a list of adjacent sibling nodes N, merge uses
substitution to replace all subtrees rooted in the nodes in
N with a new leaf node pu, returning the modified call tree.
The node p is annotated with a regular expression that com-
pactly encodes the sequence of calls represented by the nodes
in N. This regular expression is obtained as follows:

(i) we compute all (primitive) tandem repeats in the string
representing the sequence of calls in N using the algo-
rithm described in [17], in time O(|N|log|N|);

(ii) we construct a directed weighted graph G with |N]|
nodes and O(|N|log|N|) edges using the results of (i);

(iii) finally, we run Dijkstra’s algorithm on G to obtain
the best regular expression representing N in time
O(INllog |N|).

The split operation reverts the call tree to its state prior to
merging by simply inserting all subtrees rooted in the nodes
of N as children of the parent of u, and then removing u
from t. As with folding, we assume nodes inserted via merge
can be identified in the call tree. JIVE implements vertical
folding and unfolding using merge and split.

Note that merge requires that the nodes in N be adjacent
siblings. Intuitively, this avoids merging nodes that do not
represent a contiguous sequence of method calls made from
the same method activation.

Out-of-Model Nodes. Call trees can be extended to
handle out-of-model calls and returns. The main idea is to
introduce an out-of-model node to represent all out-of-model
calls made in the context of a particular method call.

Consider a call tree node n; with no child nodes. Assume
a new method call event is notified and JIVE detects that it
is an out-of-model call. JIVE adds two nodes to the call tree:
one out-of-model node o as a child of n1, and one node n2 as
a child of o to represent the method call event just received.
Assume now that no returns and JIVE detects another out-
of-model call. Since n; has not returned yet, JIVE only adds
one node to the call tree: a node ng as a sibling of ns (i.e., as
a child of 0). This means that JIVE represents an arbitrarily
complex out-of-model interaction occurring in the context
of n1 as a single out-of-model node in the call tree, possibly
with many in-model child nodes.

All operations introduced earlier in this section are easily
extended to handle out-of-model nodes.

5.3 Empirical Results

We now return to the example introduced in section [3|and
use it to show the effectiveness of combining query-based
debugging with scalable visualizations. For this exercise, we
assume that JIVE is configured with the default filters and
that the user loaded BST data from a file containing ten
values, three of which were negative: -10, -12, and -10. After
loading the data but before any activation boxes are folded,
683 activation boxes are visible in the sequence diagram.
Query-Based Debugging. Consider the template Vari-
able Changed query of figure [} This query searches for
negative values assigned to the data field of BSTNode in-
stances. As expected, the query produces exactly three re-
sults. When the user double clicks the second result (-12) on



the search window, JIVE displays a sequence diagram much
like the one in figure[7] except for some missing initialization
and paint activation boxes at the top and at the bottom of
the diagram, respectively. The total number of nodes in the
folded sequence diagram is 25— 96.3% of all initially visible
activation boxes are folded. Double clicking on the other
query results produces similar reductions in the diagram.
Although this is a rather constricted example, it is reason-
able to expect this kind of reduction in the sizes of sequence
diagrams when exploring query results. The reason is that
JIVE focuses on one query result at a time, meaning that only
the subtree containing the query result is unfolded, while all
others remain folded.
Manual Diagram Exploration. Assume that instead of
running a query, the user simply wants to explore the se-
quence diagram after loading the data. By applying a sim-
ple FoldChildren on the loadModel():1 activation box (see
figure , the user reduces the diagram to 55 nodes (92.0%
reduction) and gains a reasonable high-level understanding
of the execution of this method. The user may then decide
to fold all activation boxes before loadModel () : 1, further re-
ducing the diagram to 33 nodes (95.2% reducton). Finally,
if the user applies a RegexFoldChildren to loadModel() :1,
the diagram ends up with a mere 14 nodes (98% reduction).
The results presented in this section suggest a lot of po-
tential for the query-based debugging and visualization tech-
niques implemented by JIVE. These results agree with other
tests performed during tool development and testing. We
plan on running experiments to confirm the benefits of our
approach in more realistic scenarios.

6. CONCLUSIONS AND FURTHER WORK

‘We have described techniques for scalable visualizations of
the run-time state and execution history of object-oriented
programs. The main idea underlying our approach is that
declarative debug queries not only facilitate efficient search
for run-time information— akin to a web search engine— they
also help the visualization system focus on what is to be
displayed. As described in the paper, the sequence diagram
is particularly helpful in providing a visual timeline for re-
porting answers to ‘when’ queries.

The paper also presented two broad classes of techniques
(folding and filtering) for reducing the amount of informa-
tion displayed. We introduced a regular-expression notation
for concisely abstracting a sequence of calls in sequence sub-
diagram, and also a refinement of the sequence diagram itself
for calls between methods that are not filtered out and those
that are. The implementation of these techniques is based
upon call trees, and we show how the folding operations are
realized as operations on this tree structure. Our techniques
have been successfully incorporated in a state-of-the-art de-
bugging system, JIVE, for the Java programming language.
While the focus of this paper was on achieving compacted
sequence diagrams, our earlier paper [5] showed techniques
for compact object diagrams.

In this paper, we presented template-based queries as well
as more expressive textual JQL queries. We are develop-
ing a full-fledged temporal data model and query language
for eliciting debugging information from the states of ex-
ecution history of object-oriented programs. To enhance
scalability of the JIVE methodology for long execution se-
quences, we are exploring three approaches: (i) the use
of byte-code instrumentation for minimizing the extent of

process context-switching; (ii) the use of dynamic slicing
techniques for determining the relevant states and execu-
tion subhistory with respect to variables of interest; and
(iii) the use of an external database for saving very large
execution histories. The JIVE system may be accessed from
http://www.cse.buffalo.edu/jive.
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