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Abstract
Probabilistic topic models have recently become the cornerstone of unsupervised exploratory analysis
of text documents using Bayesian statistics. The strength of the models lie in their modularity—random
variables can be introduced or modified to suit the requirements of the different applications. Many of
these models however consider modeling only one particular view of the observations such as treating
documents as a flat collection of words ignoring the nuances of the different classes of annotations which
may be present in an implicit and/or explicit form.

We extend a few existing unsupervised topic models such as Latent Dirichlet Allocation (LDA)
to model documents which are annotated from two different perspectives. The perspectives consist of
both a word level (e.g. part-of-speech, affect, positional etc.) tag annotation and a document level (e.g.
crowd-sourced document labels, captions of embedded multimedia) highlighting. The new models are
dubbed as the Tag2LDA class of models whose primary goal is to combine the best aspects of supervised
and unsupervised modeling learning under one framework. Additionally, the correspondence class of
Tag2LDA models explored in this context are state-of-the-art among the family of parametric tag-topic
models in terms of predictive log likelihoods. These models are presented in Chapter 4.

The field of automatic summary generation is increasingly gaining traction and there is a steady
rise in demand of the summarization algorithms that is applicable to a wide variety of genres of text
and other kinds of data as well (e.g. video). Producing short summaries in a human readable form is
very attractive particularly for very large datasets. However, the problem is NP-Hard even for smaller
domains such as summarizing small sets of newswire documents. We use the Tag2LDA class of models
in conjunction with local models (e.g. extracting syntactic and semantic roles of words, Rhetorical
Structure trees, etc.) to do multi-document summarization of text documents based on information
needs that are guided by a common information model. The guided summarization task, as laid out in
recent text summarization competitions, aims to cover information needs by asking questions like “who
did what when and where?” We also have successfully applied multi-modal topic models to summarize
domain specific videos into natural language text directly from low level features extracted from the
videos. The experiments performed for this task are described in detail in Chapter 5.

Finally, in Chapter 6, we show that using topic models it is possible to outperform keyword sum-
maries generated by annotating videos through state-of-the-art object recognition techniques from com-
puter vision. Summarizing a video in terms of natural language generated from such keywords in context
removes the laborious frame-by-frame drawing of bounding boxes surrounding objects of interest—a
scheme which is required for annotating videos to training a large number of object detectors. The topic
models that we develop for this purpose instead use easily available short lingual descriptions of entire
videos to predict text for a given domain specific test video. The models are also novel in handling both
text and video features particularly with regards to multimedia topic discovery from captioned videos
whose features can belong to both discrete and real valued domains.
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Chapter 1

Introduction

“There is no great mystery in this matter,” he said, taking the cup of tea which I

had poured out for him; “the facts appear to admit of only one explanation.”

“What! you have solved it already?”

“Well, that would be too much to say. I have discovered a suggestive fact, that is

all. It is, however, very suggestive.” – Sherlock Holmes: The Sign of Four

1.1 Background
The problem of compressing text documents into short summaries has been studied from an early time
with one of the seminal works authored by Luhn [Luhn, 1958] in the 1950s where he noticed that
“the significance factor of a sentence is derived from an analysis of its words.” It has been generally
observed that the saliency induced by high frequency of occurrences of the words and their positions in an
article can be used to rank sentences to generate an abstract or summary. These two important concepts
of salience and position have played a significant role in the development of the Natural Language
Processing (NLP) field in recent years particularly in the development of sophisticated probabilistic
models. Furthermore identifying salience of words has been immensely important in complementary
research areas such as Information Retrieval (IR) [Buttcher et al., 2010], Machine Learning [Bishop,
2006] with positions of words and their semantic information playing very important roles in structured
predictions for various NLP tasks [Jurafsky and Martin, 2000].

On the other hand, in the realm of probabilistic graphical models [Jordan, 2004], there has been an
abundance of models which capture the underlying structure of the data through some assumed represen-
tation of data generation with observed and latent (or indicator) variables and parameters tied through
causal arcs. The assumptions of the structural representation arise out of the specific problem being
solved and rarely there is any value to address a single unified model which addresses multiple loss
functions.

The value of these probabilistic models is to compute posterior distributions over the latent variables
that have the power to summarize the data in a way which can be interpretable by an end user. The modes
of these distributions, when applied to mixed corpora which includes text, reveal an inherent semantic
clustering of words closely resembling a distinct topical structure. Such exploratory models, although
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rigorous and sophisticated, have an inherent problem of capturing higher order dependencies within
observations such as complete parses of sentences. Capturing such complex dependencies incurs very
high computational complexity and thus are not suitable for producing descriptions which are complete
natural language summaries.

Although solving the problem of multi-document summarization exactly in polynomial time is hard
particularly with unsupervised techniques and for arbitrary domains, the advantages of having a multi-
document summary cannot be overlooked particularly in this age of both new and repetitive information
overload. Obvious applications include: summarizing books and novels for essays, scientific papers
etc.; summarizing answers in an online question answering service like Yahoo! Answers; summarizing
news in an online news service like Google News; summarizing discussion threads in an e-learning
framework that may improve teaching effectiveness of the instructors. To give a feel for the impact
of the multi-document summarization problem, a few real world application scenarios are highlighted
where a readable summary is often better than a ranked list of objects.

(i) Online search service: Consider a scenario where a user is using an internet search engine, search-
ing for certain topics of interest. The information retrieval system returns a ranked list of documents
by maximizing their relevance to the query. Without having to check these links one by one, it is
often useful to generate a unified summary of the information contained in these documents and
present it to the reader. Short multi-document summaries are also advantageous in the mobile
search setting, where a multi-document summary w.r.t. a query can greatly reduce the power con-
sumed by clicking each individual link and checking whether the document truly reflected the
information need. A sample static user interface prototype reflecting this idea can be found in the
author’s website.

(ii) Online news evolution modeling: In an online news service setting such as Google News or
Yahoo! News, news stories are clustered i.e. labeled as “politics,” “sports,” “science,” etc. from
different news agencies and are presented to the reader. The different news stories in one cluster,
presumably on the same topic, have major redundancy in their contents due to way the news stories
are aggregated from different news sources and so it is hard to find what is new and relevant
information in this setting automatically. Multi-document summarization is very applicable in
this setting providing users with the right information at their fingertips. However, biased human
evaluation of what constitues a perfect summary is a major bottleneck to generate the best summary
automatically. A very recent supervised approach based on re-ranking of sentences using diversity
modeling of M -best solutions has been proposed by Lin and Bilmes [Lin and Bilmes, 2012] and
applied in this context. However, the results are not definitive at this point as to whether there exist
simpler and more scalable solutions which perform just as well.

Another interesting problem is to model the summarization of news articles following the temporal
dimensions i.e., given that an user had read a summary in one timeline, how would he be presented
with a “newer” summary in the next timeline? This modeling of evolution of summaries over
time allows us to predict how an event is going to unfold over time. Topic models with temporal
dynamics have been in focus recently [Blei and Lafferty, 2006, Wang et al., 2008] where linear
dynamical system principles are applied to couple the latent topics in one timeline to another.
However, it remains to be seen if these models can be extended to rigorously formulate a model
of summary evolution and also address scalability issues. Tackling this problem is a part of our
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research which is to be pursued in the recent future.

(iii) Online market place and social networks: In another scenario of an online marketplace like
Amazon.com, customers write many reviews for many products. It is thus worthwhile not only
to summarize the reviews based on their ratable aspects [Titov and McDonald, 2008] but also to
summarize the products themselves. This problem differs from the generic multi-document sum-
marization problem in that each review is typically very short and opinionated. Local coherence
is generally not observed in such small amount of product review text. Some recent work on very
concise summarization of reviews can be found in the recent papers by Ganeshan et al. [Ganesan
et al., 2012, Ganesan et al., 2010].

Summarization in a social network setting like FacebookTM, TwitterTMor a professional network
setting like LinkedInTMis also important and is receiving some focus only very recently [Ra-
mage et al., 2010]. However, the fundamental problem in this setting is that of entity-pair
summarization—given two entities present a chain of evidence as a bulleted list summary that
precisely answers the question of whether there is a connection which is “strong enough.”

(iv) Video summarization: Natural language summarization of real-life videos is a vastly understudied
problem where the goal is to summarize a video into free flowing natural language text. Although a
lot of advances have been made in supervised and weakly supervised learning of object and action
detectors in images [Li et al., 2010a, Felzenszwalb et al., 2010] these problems are still considered
open in the computer vision research community [Makadia et al., 2008]. Further, the consideration
of what objects and actions need to be trained and how they may contribute to generating a final
summary is still more harder and subjective. An initial investigation into this latter problem is
presented in Chapter 6. The problem of efficient semantic understanding of videos has immense
significance in robotic applications. Solving this problem also opens up the possibility of improving
searchability and automated semantic understanding of scenes (useful in driver-less car or in-home
robot scenarios) with little or no textual metadata.

One of the major contributions of this thesis is the extension of a previously state-of-the-art topic
model—Latent Dirichlet Allocation (LDA) [Blei et al., 2003] to model documents which are tagged
from two different perspectives. The perspectives consist of both a word level (e.g. parts-of-speech,
named entity classes, affect categories, positional etc.) annotation and a document level highlighting
(e.g. crowd-sourced document labels, captions of embedded multimedia) [Das et al., 2011]. In all future
references, we dub these models as Tag2LDA. At a higher level, such models combine the best aspects
of supervised and unsupervised modeling under one unified exploratory framework.

Secondly, we apply these new topic models (i.e. global models looking at a tag-annotated corpus
as a whole) in conjunction with local models (e.g. extracting syntactic and semantic roles of words,
Rhetorical Structure trees [Mann and Thompson, 1988], etc.) to perform multi-document summarization
of text documents that is guided by a set of relevant questions which are some predefined attributes
of some event category [Das and Srihari, 2011]. Such “guidance” provide important clues to help in
improving information coverage in the resulting summaries.

In the final part of our research we successfully use topic models to summarize videos of a specific
domain into natural language text directly from quantization of low level filters . These new topic models
involving multimedia are unique w.r.t joint modeling of both text and low visual features, the latter being
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represented in both real valued and discrete domains—they help both in semantic clustering of video
frames [Das et al., 2013a] as well as predicting unstructured text for an unknown domain specific video
[Das et al., 2013b].

1.1.1 Summarization: Distilling Information
Document summarization is a fairly old problem dating back to the 1960s and 1970s [Luhn, 1958, Ed-
mundson, 1968]. Since then major improvements in both storage and speed of computational hardware
had led to tremendous growth of algorithms mimicking human intelligence and reasoning in the areas of
natural language processing, computer vision, document processing and retrieval and more. However, in
the field of multi-document summarization, the performances of the systems to date have not been able
to catch up with the quality of human summaries when evaluated manually. Advances, though, have
been made where system summaries score at par with human summaries when automatic evaluation
with ROUGE [Lin and Hovy, 2003], a recall oriented metric to measure information need, is used.

More recently it has been shown in [McDonald, 2007] that summarization consists of satisfying
three separate objectives—i) relevance of the summary sentences to the query; ii) non-redundancy be-
tween the sentences in the summary and iii) the summary obeys a length constraint—and that optimizing
all three of them simultaneously is an NP-Hard problem.

In general it is expected that all summarization systems respect an unified information model1 which
has recently been popularized by the Text Analysis Conference (TAC). The information model asks the
system summaries to output summarized information along some more fine grained vertical aspects and
across more coarser event categories. For example, there are several categories in which news documents
can be categorized—i) Accidents and Natural Disasters; ii) Attacks (Criminal/Terrorist); iii) Health and
Safety; iv) Endangered Resources; v) Investigations and Trials (Criminal/Legal/Other); vi) Science and
Technology; vii) Entertainment and many more. These are the more coarser vertical categories. For each
category, there are much more finer information nuggets or aspects which when properly identified and
included in a summary vastly improves its relevance to the unified information model. Examples of such
aspects for the Health and Safety category are: What is the issue; Who is affected by the health/safety
issue; How they are affected; Why the health/safety issue occurs; Countermeasures, prevention efforts.

Clearly questions like “What is the issue?” are very subjective in nature and when expressed con-
cretely through various choices of words, the same central issue can be paraphrased in many different
ways. Although not all documents belong to such well defined categories, nor do they contain the well
defined finer aspects as mentioned here, however, the question of what information makes the document
relevant to a query is answered by the quality of content reflected in the gist of the document. This notion
of a summary is extremely popular now-a-days in the setting of search engine result displays where users
are more likely to click an url depending on the usefulness of the corresponding snippet generated as a
function of the query – although this is more of a single document summarization problem where the
goal is to predict which portions of the document are relevant ahead of query processing time since the
full document is usually not stored in a search engine index.

The problem of paraphrasing is more evident from Figure 1.1 which shows a rock climbing video
(only four manually chosen key frames are shown). Five human annotators have been asked to sum-
marize the contents of this video in natural language text in about ten words. The ten word limit has

1http://www.nist.gov/tac/2011/Summarization/
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Summaries point toward information needs! 

1. There is a guy climbing on a rock-climbing wall. 

Hand holding 
climbing 
surface 

How many 
rocks? 

The sketch in 
the board 

Wrist-watch 

What’s there 
in the back? 

Color of the 
floor/board 

Dress of the 
climber 

Not so 
important! 

2. A man is bouldering at an indoor rock climbing gym. 

Empty slots 

3. Someone doing indoor rock climbing. 

4. A person is practicing indoor rock climbing. 

5. A man is doing artificial rock climbing. 

Multiple Human Summaries: (Maximum of 10 words imposing a length constraint) 

(a) Short summaries from human annotators on an indoor rock climbing video
From patterns to topics to sentences 

A young man climbs an artificial rock wall indoors 

Adjective modifier 
(What kind of wall?) 

Direct Object 

Direct 
Subject 

Adverb modifier 
(climbing where?) 

Major Topic: Rock climbing 
Sub-topics: artificial rock wall, indoor rock climbing gym 

(b) Another ground truth short summary on the same video with complex semantic dependencies be-
tween the words in the sentence. The major and minor topics are also reflected here.

Figure 1.1: Do we speak all that we see? Human summaries of a short video on rock climbing

been used following some statistics of human annotations in the training dataset (Chapter 6) from which
this video has been selected. However, we can hypothesize that the length constraint simulates a time
constraint where subjects are asked to speak about the video in a short amount of time. Although the ex-
periment do not specifically consist of a query on which to base the descriptions, the human summaries
clearly reveal a highly probable set of words—“rock climbing”—which can easily be understood to be
the query for which the video is most relevant.

Interestingly, none of the human subjects have put any importance on the concepts mentioned in
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the right margin of Figure 1.1a within the orange bubbles such as the “color of the wall/board,” “the
color of the vest which the climber is wearing,” “how many rocks are there in the artificial wall?” and so
on. However, these objects appear in almost every frame of the video and yet recognizing them through
computer vision techniques and subsequent use of frequency based text summarization techniques as in
[Nenkova et al., 2006a] clearly leads to incorporation of extra information that is typical of the query
drift phenomenon [Buttcher et al., 2010].

Intuitively, a lingual summary of a video is primarily focusing on the prominent actions and objects
(or nominal concepts) associated with such actions. These concepts can be thought of as active concepts.
Most other objects play the role of passive concepts. Our intuition is verified quantitatively in Chapter
6 where low level action features from videos improve video event classification significantly and in
Chapter 5 where a few verbs and nouns selected based on sf-isf (sf : sentence frequency; isf : inverse
sentence frequency) weights from a set of newswire documents on a particular event actually have the
potential to recover the exact query for that event.

Even though the sentence shown in Figure 1.1b from a sixth annotator is simplistic in construction
from the perspective of inferring the semantic dependency of the words in it, the human process by which
low level visual signals get translated to high level language that respects the precise relative arrangement
of objects is not well understood. It is implied that color, scenes, actions and objects all are mapped to
some vocabulary that the subject has acquired over years and the clues about the arrangement of objects
in the visual world and the grammar of the language together aid in the generation of a final fluent and
coherent lingual description or summary. The coherence is more prominent when multiple sentences
make up a single summary where the center of attention within sentences is maintained in a manner so
as to aid in easier inference of the meaning of the whole passage while reading or listening to.

The summaries in Figure 1.1 highlight two important questions for multimedia (video) to text
summarization—i) What are the prominent objects and actions

Topic Models: Finding Themes 
• Themes for a sample unseen patent document on insulating a 

rocket motor using basalt fibers, nanoclay compositions etc. 

 

 

 

 

 

 

Theme 1 Theme 2 Theme 3 Theme 4 Theme 5 

insulation fuel launch rocket system 

composition matter mission assembly fuel 

fiber A-B space nozzle engine 

system engineer system surface combustion 

sensor tower vehicle portion propulsion 

fire magnetic earth ring pump 

water electron orbit motor oxidize 

“What is claimed is: 
1. An insulation composition comprising: a polymer comprising at least one 

of a nitrile butadiene rubber and polybenzimidazole fibers; basalt fibers 
having a diameter that is at least 5 .mu.m  

2. (lots more) …” 

Figure 1.2: Some topics from patent and legal documents about rockets
and propulsion

that are principle to describ-
ing the main event in the
video and ii) Does an ex-
tended set of prominent con-
cepts (akin to query expan-
sion) truly increase the rel-
evancy of the summaries in
terms of information need
coverage? Additionally an-
swering the second question
leads to better understand-
ing of what queries can be
generated for a correspond-
ing test video.

We look at this general
problem and answer these

questions in Chapter 6. We develop probabilistic topic models of unstructured corpora with some in-
herent domain knowledge and then use those models to emphasize parts of the learnt vocabularies which
help in constructing relevant summaries.
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Probabilistic browsing models are usually expressed through depiction of some assumed causal
relationships between random variables (or groups of random variables). A directed graphical model
visualizes these causalities and provides a succinct description of the factorization of a joint distribution:
nodes denote random variables—shaded for observed variables and unshaded for hidden variables; edges
denote possible dependencies between random variables; and plates denote replication of a substructure,
with appropriate indexing of the relevant variables. The random variables which are drawn either outside
of any plate which is not embedded in any other enclosing plates or in plates with a fixed multiplicity
(which can be infinite for non-parametric models) are the parameters of a model.

An example of the exploratory power of such a model (named Latent Dirichlet Allocation by Blei
et al. [Blei et al., 2003]) is shown in Figure 1.2 where a large set of patent documents on rockets
and propulsion has been automatically annotated by ascribing individual words through possible latent
themes which seems to group semantically related words quite effectively. Latent themes are repre-
sented as distributions over some observations—be they words from a text vocabulary or some other
vocabulary such as codebooks of quantized features for images, videos or audio.

Topics for an unseen patent document fitted to a learnt LDA model are shown in Figure 1.2. The
document is mostly about the “insulation” topic (topic 1) and less about the “rocket parts” topic (topic 4).

(𝟎, 𝟎) (𝟐𝟓, 𝟐𝟓) 

y 

x 

Insulation, 
composition, fiber 

system, sensor, 
fire, water 

Fuel, matter, A-B 
Engineer, tower 

magnetic, electron 

Fuel, matter, A-B 
Engineer, tower 

magnetic, electron 

Rocket, assembly,  
Nozzle, surface,  

Portion, ring, 
motor 

Launch, mission,  
Space, system,  
Vehicle, earth 

orbit 

Journal papers 
Patent documents 

Figure 1.3: Cartoon illustration of exploratory topic
analysis

Note that each word in the document implicitly
has a distribution over topics and although a sin-
gle mode of those distributions has been chosen
for color coding and annotation, it is needless to
say that each document is represented not by a
single topic (as would typically happen in the case
of a singular value decomposition of the word
document count matrix) but by a mixed member-
ship over the set of topics where only a few topics
have very high probability. Figure 1.3 shows the
essence of exploratory analysis of text documents
w.r.t topic discovery.

In this cartoon illustration, we imagine that
initially there is a two dimensional grid or graph
where the nodes are labeled with words from some vocabulary and the edges encode the semantic close-
ness of the neighboring nodes. Our goal is then to traverse this grid and swap the nodes using the
observed document partitioning as clues to reweight the edges. The confidence of this edge reweighting
allows peaks to be formed which appears to put semantically related words closer together. Of course, we
do not “see” the landscape in three dimensions from the top but we explore the space in two dimensions
and “shade” regions of it similar in spirit to finding the map of a maze from within the maze itself.

Note that we have made up the labels “insulation” and “rocket parts” in the preceding paragraph
and it is a non-trivial problem to find the best description of a latent topic that goes beyond the set
of a few most probable terms. Although some work along this direction has been pursued in [Mei
et al., 2007b, Blei and Lafferty, 2009], in this thesis, we go one step beyond by labeling topics through
multimedia in terms of captioned images as well as video frames. To achieve such labeling of the latent
structure of a corpora, we needed to retain as much relevant embedded and meta information (such as
the multimedia and their captions, text annotations, document tags etc.) as possible into the model itself.
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This leads to the incorporating domain knowledge which far surpass the ambiguous expressive power of
words alone.

Categories: Weather hazards to aircraft | Accidents involving fog | Snow or ice weather 
phenomena | Fog | Psychrometrics Labeled by human editors 

B
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En
d

 

A Wikipedia Article on “fog” 

Figure 1.4: Snapshot of an article on “Fog” from Wikipedia

We now take a specific example of domain knowledge as incorporated into the models mentioned
in this thesis (see Chapter 4) using a Wikipedia article on “fog” shown in Figure 1.4. Each of these
Wikipedia documents have an inherent structure to them; for example, the document shown in Figure
1.4 shows words constituting sections, embedded images and captions highlighting the corresponding
sections as well as category labels manually assigned by human editors that reflect the different ways
in which the document can be classified. The main content can even further be annotated based on
whether the words are part of an URL signifying a possible Wikipedia article title. The field of structured
prediction in the area of Natural Language Processing (NLP) is devoted to such automatic annotations
based on their contexts. Such annotations clearly suggest a “word level” perspective.

Alternately, the category labels and even the captions of the multimedia reflect a “document level”
perspective. Often these labels at the document level carry an implicit topical structure which is com-
plementary to the topical structure of the main contents. Thus, although individual documents can have
semantic structure, the corpora as a whole may lack a data driven coherent organization which exploits
the relevancy of document annotation from different perspectives. In Chapter 4, we address this problem
by incorporating these perspectives into a family of single probabilistic browsing models.

This thesis answers the following central questions: i) How can the embedded multimedia in a
document be translated to captions which represent a summary of the multimedia? ii) How well does the
caption text (or document metadata in general) relate to the main document content? and iii) How do we
build models which organize the many instances of i) and ii). Figures 1.5a and 1.5b show the depiction
of the first two questions as a cartoon illustration using a Wikipedia article on “Rome.” We now briefly
mention such models which also appear in subsequent chapters along the course of this thesis.
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Afterwards 

Words 
forming 

other Wiki 
articles 

Article specific content words 

Caption corresponding to  
embedded multimedia 

(a) Predicting caption as a summary from embedded multimedia in a Wikipedia article using a translation
model (See Figure 1.7i and Chapter 6)Previously 

Words 
forming 

other Wiki 
articles 

Article specific content words 

Caption corresponding to 
embedded multimedia 

(b) Modeling a Wikipedia article document using word level annotations and document level multimedia
captions (See Figure 1.7f and Chapter 4)

Figure 1.5: Cartoon illustration of the central modeling questions answered in this thesis

1.1.2 Probabilistic Browsing Models

Modeling Joint Distribution of Corpus through Topic Models: Topic models have become the
corner-stone of unstructured document analysis [Blei, 2004, Griffiths and Steyvers, 2004]. A princi-
ple theme of such models is to find latent topics of interest where the latent topics are just some discrete
distributions (often Multinomials) over some observations (usually textual words).

Often these latent topics are referred to as latent spaces and these latent spaces have very similar
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properties of semantic re-organization of words which frequently co-occur together [Blei, 2004, Girolami
and Kabán, 2003]. M odels like LDA are often compared to Latent Semantic Analysis (LSA) [Landauer
et al., 1998] with the latter as the former’s non-probabilistic version. Although LSA has recently been
shown to be not so effective in information retrieval tasks [Atreya and Elkan, 2011] in terms of precision
and recall, it is mostly due to the nature of the objective functions which each model optimizes. For
information retrieval tasks, the tf-idf weighting scheme is an approximation to the probabilistic modeling
of query relevance (See Chapter 10 in [Buttcher et al., 2010]).

One of the main advantages of topic models such as LDA are their modularity—basic models can be
extended by introducing random variables which encode some more extended aspect of the observations.
These aspects arise out of a need to introduce more structure to explain a certain phenomenon in the
data. We also want to find latent thematic structures through the use of some statistical moments thereby
eliminating the need for introducing a data dependent distance metrics. This is a major motivation to
use distributions where the mean parameters of the models identify information which is “central” to the
observations and also how well do new sample points deviate from this central tendency.

It is much harder to incorporate extensions into a fixed algebraic model such as LSA. LSA uses
Singular Value Decomposition (SVD) and inherently such a decomposition assumes that a single topic
is being allocated to a document. This assumption is the basis of poor generalization performance [Blei
et al., 2003]. Additionally, using SVD, one usually obtains a span and not a basis over topic vectors
which further diminishes generalization power. On the other hand, domain knowledge often demands
extensions to the basic topic models – for an example see Figure 1.7f. A sample output from this extended
model is shown in Figure 1.6. In the figure, we observe how the two distributions over words (topics
on “artillery” and “tofu”) are conditional on the positions of the sections in which the words occur
in the Wikipedia documents. The Figure also shows the same latent distributions over image caption
vocabularies in the column named “Tag Suggestions.” The “Correspondence” column shows possible
statistical associations of caption words to the words in the main document body. The rows showing
βlearned(.) are the learnt topics (with ids (.)) which have been marginalized out of the influence of the tag
distributions over the same set of words. Finally, images corresponding to the captions can be used to
label the latent topics in a clear and visually pleasing way following the proverbial adage—“a picture is
worth a thousand words.”

The exploratory view of data analysis involves the analysis of patterns based on some assumptions
on how the patterns are generated. The patterns can be a pattern of annotated words in documents which
gives rise to a semantic structure, energy patterns corresponding to a summarized representation of an
image that is not conditioned upon the specific arrangements of objects, link structure of documents in
the Web, degrees of separation graphs of users in a social network and so on. No matter what the dataset
be or what the problem scenario be, three basic assumptions of machine learning are always satisfied—
i) There is a pattern ii) The target function is not known and iii) There is data to learn from. In the
supervised scenario the target function is only known for the training samples (which we usually refer
to as labels) and in the unsupervised scenario it is completely unknown as is the case for the scenarios
handled in this thesis.

Figure 1.7 shows the models that has been used in this thesis in the context of different problems.
The square plates enclose the observed (shaded) and hidden variables as well as some of the parameters
and denote repetitions of the random variables within. The parameters such as β,π,µ,Λ and ρ have a
fixed multiplicity as they do not grow with the data.
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Topic Marginals 

Topics conditioned on different section identifiers 
(“Word Level” tag categories) 

Topics 
over 

image 
captions 

Correspondence of 
“Document Level” 

caption words 
with content 

words 

Topic Labeling 

Figure 1.6: Faceted topics from Wikipedia (see Chapter 4)

The central problem of learning in this case is to find the statistical estimators for the mean param-
eters of the model that are consistent with both the current and future observations. By attacking that
problem, we address the issue of document generalization which is the goal of probabilistic models like
LDA [Blei et al., 2003]. It helps us answer the following questions: Given a new document, how similar
it is to the previously seen documents? Where does it fit within them? What can one predict about it?
Efficiently answering such questions is the main focus of any statistical analysis of large data collections.

We next write down the marginal probability of a corpusD consisting of words w1:M per document
d ∈ D in the form of p(D|Θ) for some of these mixed membership topic models. These models in-
volve hidden state indicator variables corresponding to (usually) every observed variable wm ∈ {w1:M}
with Θ denoting the parameter set of the model and M denoting the number of words in document
d. For judging predictive performance, we are interested in evaluating p(w|D) =

∫
p(w,Θ|D)dΘ =∫

p(w|Θ) × p(Θ|D)dΘ where w is a unknown document never seen in the training set. The splitting
over the new (test) and old (training) observations happen since the observations are conditionally inde-
pendent of each other given the parameters of their common causal distributions [Shachter, 1998]—again
a central assumption for the distribution over the observations for all of these models. We highlight at
this point that in evaluating the expression p(w|D) =

∫
p(w,Θ|D)dΘ, computing the posterior over

Theta i.e. Θ|D)dΘ plays a central role in all of predictive analysis involving unsupervised learning.

Latent Dirichlet Allocation (LDA): Figure 1.7a shows the basic model upon which we base our exten-
sions which are explored along the course of this thesis. The initial development of this model happened
around early 2000 and was published in 2003 [Blei et al., 2003]. The parameters of the model are α
and β1:K : the former represents a pseudo-count of how many observations do we expect to see in each
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(i) Corr-MMGLDA (Chap 6)

Figure 1.7: Some examples of topic models used in the various chapters of this thesis.

topic for each of the documents d ∈ D, D being the total number of all documents in a corpus D. These
pseudo-counts are in the absence of any observations. The K topics which are statistically interpreted
as K independent multinomial distributions over words form the parameters, β1:K , and are commonly
referred to as the topics when visualized through samples from their modes. A corpus is a multiset of
D ×Md words {wd,m} partitioned by d ∈ D. The document level hidden variable θ representing topic
proportions i.e. expected topic counts per document per topic is a matrix of positive reals of dimension
D × K where each row is θTd . The indicator variable yd,m answers “what is the topic for the current
observation i.e. the word wd,m?” The marginal probability of a corpus D over the hidden variables is
given by:

p(D|α,β1:K) =

D∏
d=1

∫
p(θd|α)

 Md∏
m=1

K∑
yd,m=1

p(yd,m|θ)p(wd,m|yd,m,β1:K)

 dθd (1.1)
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Regarding input, all that this model requires is simply the counts of the words in the corpus partitioned
by each document i.e. wd,m and after processing this data of counts through some topic inference
machinery (see Chapter 2), we can visualize the corpus through a set of topics as shown in Figure 1.2.
Further computing probabilistic document similarity is also easily achieved through this machinery.

TagLDA: The TagLDA model [Zhu et al., 2006] shown in Figure 1.7b is an extension over the LDA
model and was published as a technical report in 2006. The novelty of this model is the incorporation of
word level annotations (dubbed tags in [Zhu et al., 2006]) so that the latent topics can be conditioned on
such tags. Such a conditional distribution arises since the fundamental assumption is that the event space
is not just document partitioned word ensembles but rather document partitioned (word, annotation/tag)
ensembles. This means that there are two different sets of coupled distributions over the same set of
words—one set representing latent topic distributions and the other set representing the tag distributions
which can arise independent of any topical significance of the words. Each of these distributions are
weighed inversely by its complementary distribution which intuitively means that the generative proba-
bility of a word depends on how much of it is explained by a topic and how much of it is explained by
its associated observed annotation. The marginal probability of a corpus D is given by:

p(D|α,β1:K ,π1:T ) =

D∏
d=1

∫
p(θd|α)

 Md∏
m=1

K∑
yd,m=1

p(yd,m|θ)p(wd,m|yd,m, twd,m ,β1:K ,π1:T )

 dθd

(1.2)

In this model, twd,m is the observed annotation (or tag t ∈ {1, ..., T}) associated with the word wd,m
in the dth document. Note that β1:K and π1:T are individually not multinomials.

It is interesting to note that if we partition a document with both word level annotations and docu-
ment level metadata, then upto this point, LDA can model the document level metadata separately from
TagLDA which can model the main document content with word level annotations. Due to the modular
nature of the topic models, we can combine these two models into a more holistic model of documents
containing both document level metadata and the main content annotated at the word level. This leads to
an extension which we discuss briefly next.

In the context of nomenclature of the family of LDA models discussed in this thesis, the letter
’M’ stands for discrete Multinomial distribution, the letter ’E’ stands for distributions represented in
an exponential form and the letter ’G’ (forthcoming) represents Gaussian distributions over real-valued
domains.

METag2LDA: Our new model (dubbed) METag2LDA (see Figure 1.7e) is a combination of both the
LDA model and the TagLDA model and is described more thoroughly in Chapter 4. A similar model
dubbed MMLDA in [Ramage et al., 2009b] (see Figure 1.7c) is also constructed using the same princi-
ples but cannot handle word level annotations. Its effectiveness for the multi-document summarization
problem is investigated in Chapter 5. The marginal probability of a corpus D under the METag2LDA
model is given by:

p(D|α,β1:K ,π1:T ,ρ1:K) =

D∏
d=1

∫
p(θd|α)

 Md∏
m=1

K∑
yd,m=1

p(yd,m|θd)p(wd,m|yd,m, twd,m ,β1:K ,π1:T )


 Nd∏
n=1

K∑
zd,n=1

p(zd,n|θd)p(wd,n|zd,n,ρ1:K)

 dθd (1.3)
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Here ρ1:K is another set of multinomial distributions which are the topics over the vocabulary of the
document metadata. The observations for the metadata in document d are the variables named wd,n and
the topic indicator for each such observation is zd,n. Each of yd,m and zd,n has a 1-of-K representation
denoting the number of possible number of topics as its range.

Corr-MMGLDA: The Correspondence-MMGLDA model combines the MMLDA model [Ramage
et al., 2009b] (which is just a special case of the GM-LDA model in [Blei and Jordan, 2003]) and
the Correspondence-LDA model [Blei and Jordan, 2003] to handle domain knowledge in the form of
multimedia—in our case, videos with low level features in both the discrete (e.g. the variables wd,h) and
real (e.g. the variables wd,o) valued domains. Figure 1.7i shows our proposed model which is explained
more thoroughly in Chapter 6. It has been often observed that using an asymmetric prior α for the topic
proportion variables improves on the topic quality by shifting the mass of more common observations
to be aggregated on a few topics while leaving the other ones for discriminatory topic analysis [Wallach
et al., 2009]. Although this is a welcome feature of the models, however, this also can easily lead to
singularities in the precision matrices Λk governing the covariance of the real valued observations for
some topics k. The marginal probability of a corpus D for this model is given by:

p(D|α,β1:K ,µ1:K ,Λ1:K ,ρ1:K) =


D∏
d=1

∫
p(θd|α)

 Md∏
m=1

Od∑
yd,m=1

K∑
zyd,m=1

p(yd,m|Od)p(wd,m|zyd,m ,β1:K)


Hd∏
h=1

K∑
zd,h=1

p(zd,h|θd)p(wd,h|zd,h,ρ1:K)

 (1.4)

Od∏
o=1

K∑
zd,h=1

p(zd,o|θd)p(wd,o|zd,o,µ1:K ,Λ1:K)

 dθd

 p(µ,Λ)d(µ,Λ)

where

p(µ,Λ) =

K∏
k=1

p(µk,Λk) =

K∏
k=1

p(µk|Λk)p(Λk) =

K∏
k=1

N (µk|m0, (κ0Λk)−1)W(Λk|W0, ν0) (1.5)

is the prior over µ,λ.
The Corr-MMGLDA model (and a similar model dubbed MMGLDA) are explored more thoroughly

in Chapter 6.

Back to conventional wisdom: Translation 
S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu and J. Gallant, “Reconstructing Visual Experiences from Brain 
Activity Evoked by Natural Movies,” Current biology Vol. 21(19), 2011 

F. Pereira, G. Detre and M. Botvinick, "Generating text from functional brain images," In Frontiers in Human 
Neuroscience, Vol. 5(72), 2011 

Topic 
Model 
(LDA) Regression 

Training Testing 

 There is some model that captures the correspondence of the blood flow patterns in the brain to the 
world being observed 

 Given a slightly different pattern we are able to translate them to concepts present in our vocabulary 
to a lingual description 

 Three basic assumptions of Machine Learning are satisfied: 
1) There is pattern 2) We do not know the target function 3) There is data to learn from 

Figure 1.8: Mapping topics on Wikipedia articles on common visual objects to fMRI patterns. Unseen
fMRI patterns are then used to predict words that appear to be semantically related through latent topics.

Recently, in the field of neurosciences, LDA has been used in conjunction with regression modeling
to map fMRI patterns of the human brain scans to actual textual concepts. Figure 1.8 shows an example
of such an experiment [Pereira et al., 2011]. A predetermined set of sixty simple concepts are chosen for
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which there are both a Wikipedia entry as well as fMRI images available. The collection of Wikipedia
articles are partitioned into sixty topics by running LDA. Regression has then been used to map the latent
space of topics to the mean fMRI images. This way an unseen fMRI image can be efficiently mapped
to a topic using the set of learnt regression weights. Although intuitive, the two models—LDA and
regression act independently of each other and there is no direct correspondence between the pattern of
fMRI data for the concepts to those in the text. The models shown in Figures 1.7i and 1.7h address the
missing link and opens up further extensions for a supervised scenario as in [Blei and Mcauliffe, 2007].

Back to conventional wisdom: Translation 
S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu and J. Gallant, “Reconstructing Visual Experiences from Brain 
Activity Evoked by Natural Movies,” Current biology Vol. 21(19), 2011 

F. Pereira, G. Detre and M. Botvinick, "Generating text from functional brain images," In Frontiers in Human 
Neuroscience, Vol. 5(72), 2011 

Topic 
Model 
(LDA) Regression 

Training Testing 

 There is some model that captures the correspondence of the blood flow patterns in the brain to the 
world being observed 

 Given a slightly different pattern we are able to translate them to concepts present in our vocabulary 
to a lingual description 

 Three basic assumptions of Machine Learning are satisfied: 
1) There is pattern 2) We do not know the target function 3) There is data to learn from 

Figure 1.9: Changes in the BOLD (Blood Oxygen Level Dependent) patterns in a small area at the back
of the visual cortex of the human brain (the region inside the green ellipses shown in the flattened brain
scans) when the same subject is shown different movies. Reproduced here with permission from the
authors in [Nishimoto et al., 2011]

A similar regression experiment was carried out in [Nishimoto et al., 2011] to map the responses
of the Blood Oxygen Level Dependent (BOLD) signals in the early visual cortex area of the human
brain to a set of movies. Figure 1.9 shows the changing patterns of the BOLD signals in response to
changing scenes and nature of subjects and objects. These two examples clearly point out that there
is some translation mechanism which translates visual patterns to text through some unknown target
function which is usually captured as patterns in the BOLD or fMRI signals. Although a subject of
conjecture, we believe that it can be safe to hypothesize that this mechanism of translation is different
for different subjects and it is this difference which gives rise to different lingual descriptions of the same
phenomenon.

Figure 1.10 shows some examples of practical applicability of the multi-modal topic models with
regards to summarizing test videos into keyword summaries. Here we have shown the output of the
MMLDA model (see Figure 1.7c) using only codebooks created through quantization of low-level ac-
tion features constructed out of 3D gradients. Figure 1.10a shows two videos on the “Cleaning an
appliance” event and the keywords predicted using words from some learned vocabulary constructed out
of the textual summaries that corresponded with the videos in the training set. The keywords are tagged
with semantic annotation using NLP tools as a post processing step. Figure 1.10b shows similar outputs
on two videos on the “Working on a metal crafts project” event. Both of these examples represent hard
examples for topic model based prediction as the scenes are cluttered with various objects which have
high topical correlations. It is amazing at how well the human annotators capture the main event of the
videos and express them in very short sentences (see “Human summary” lines in Figure 1.10). Such
summaries can be looked upon as the generation of the most compact forms of information need for
which the videos are most relevant. Generating such information needs can have wide spread applica-
tions in the searchability of videos for which there are little to no text available and also in a commercial
setting to provide for relevant content for adword bidding.

In summary, we have thus far demonstrated the practical applicability of topic models which in-
corporate more domain knowledge—from probabilistic browsing of unstructured corpora of annotated
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Cleaning an appliance 

 
 
 
 
 
 
 

ClipID 448502 –  machine/SUBJ-HUMAN man/SUBJ-HUMAN cleans/VERB clean/VERB cleaning/VERB water/OBJ 
microwave/OBJ espresso/NOUN refrigerator/OBJ shows/VERB person/SUBJ-HUMAN scrubbing/VERB wiping/VERB 
coffee/OBJ oven/OBJ  
(Human Summary - a man cleans oven.) 

 
 
 
 
 
 
 

ClipID 243982 – cleaning/VERB cleans/VERB man/SUBJ-HUMAN items/NOUN food/OBJ refrigerator/OBJ 
woman/SUBJ-HUMAN guy/OBJ stove/OBJ brush/OBJ blender/OBJ microwave/OBJ evaporator/NOUN 
bucket/NOUN removing/VERB  
(Human Summary - a guy dancing while cleaning kitchen appliances grill/stove top) 

14 
(a) Keyword predictions for two videos from the event: Cleaning an appliance

For Official Use Only 15 

Working on a metal crafts project 

 
 
 
 
 
 
 

ClipID 243220 – metal/OBJ man/SUBJ-HUMAN wire/NOUN shows/VERB make/VERB pliers/OTHER chain/OBJ 
earring/OBJ attaching/VERB meal/OTHER girl/SUBJ-HUMAN earrings/OBJ cutters/OBJ hooks/OBJ crimping/VERB  
(Human Summary - a girl shows how to make earrings) 

 
 
 
 
 
 
 

ClipID  641127 – metal/OBJ man/SUBJ-HUMAN rods/OBJ hammer/VERB copper/NOUN piece/OBJ making/VERB 
hot/ADJ hammering/VERB carving/VERB person/SUBJ-HUMAN silver/OBJ heater/OBJ soldering/VERB 
bending/VERB   
(Human Summary – one guy making metal bracelet outdoors) 

(b) Keyword predictions for two videos from the event: Working on a metal crafts project

Figure 1.10: Some examples of keyword predictions for test videos using MMLDA (Figure 1.7c) with
action features

documents to generating captions in the form of lingual summaries of a video. In Chapter 2 we only
survey the preliminaries and touch upon some important background materials used in this thesis.
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1.2 Contributions of this thesis
Up to this point we have given an overview of what problems we are trying to address We next discuss
briefly the contributions of the following chapters in this thesis and the story they seam together from
one end of the spectrum to the other.

1.2.1 Chapters 1 and 2
In this thesis, we have primarily focused on three objectives all of which summarizes contents of a data
collection in different modalities in an unsupervised way. The first chapter starts by looking at the sig-
nificance of the summarization problem in the context of the problems pursued in the later chapters. We
then review, in the second chapter, some preliminaries that lay at the heart of the theory and practice on
which our models stand. Towards the end of the second chapter we briefly discuss a previously state-of-
the-art topic model—Latent Dirichlet Allocation (LDA) [Blei et al., 2003] and its implementation based
on two different paradigms—one deterministic and which is followed throughout this thesis and another
non-deterministic. We highlight some similarities within these two perspectives from the theoretical
point of view and some dissimilarities from a parallelized implementation point of view. The original
LDA model has been tremendously successful over previous models like pLSA [Hofmann, 1999] both
for its effectiveness in finding topics and for its better generalization power. We extend LDA to over-
come its basic limitation of its inability to incorporate multi-faceted domain knowledge present within a
document itself and address these issues in the subsequent chapters.

1.2.2 Chapter 3
In Chapter 3, we describe a generative probabilistic topic model for text summarization that aims at
extracting a small subset of sentences from the corpus with respect to some given query. Our initial
hypothesis assumes that in addition to a bag of words, a document can also be viewed in a different
manner. Words in a sentence always carry syntactic and semantic information and often such information
(such as, the grammatical and semantic role (GSR) of a word like subject, object, noun and verb concepts
etc.) is carried across adjacent sentences to enhance coherence in different parts of a document. However,
alongside the principle statistical view of the main document as an exchangeable set of words, we also
treat the corpora as a fixed set of exchangeable random variables each representing a sentence sampled
from a discrete distribution over the GSR transitions. We then define a topic model which models
documents by factoring in the GSR transitions for coherence and for a particular query, we rank sentences
by a product of thematical salience and coherence through GSR transitions [Das and Srihari, 2009].
Although the model can directly select candidate summary sentences through the topic inference process,
the principle shortcoming of this model is its fixed index of sentences which leads to generalization
problems (same as in pLSA [Hofmann, 1999]) and the consideration of very coarse coherence triplets
which disregard the surface form of the words across the sentences.

1.2.3 Chapter 4
The problem of lack of generalization in the models developed in Chapter 3 has been addressed in Chap-
ters 4 and 5. There has been ongoing work in topic modeling of documents with lexical tags dubbed
tag-topic models (see TagLDA [Zhu et al., 2006]) where words and part-of-speech tags typically reflect
a single perspective, namely document content. To include this additional word level annotation per-
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spective, we proposed new models [Das et al., 2011] which are primarily novel in: (i) the consideration
of two different tag perspectives—a document level tag perspective that is relevant to the document as
a whole and a word level annotation perspective pertaining to each word in the document; and (ii) the
conditioning of latent topics with word level tag classes and labeling latent topics with images or videos
in case of multimedia documents. These new models significantly improve on TagLDA depending on
the variance of the signals in the document level perspective. We show the relevance of the models on
multiple datasets including answering the question as to why the multimedia captions in a Wikipedia
page may not only be relevant to the content in general but also the manually labeled categories.

1.2.4 Chapter 5
The field of automatic summary generation is increasingly gaining traction and there is a steady rise in
demand of the summarization algorithms that is applicable to a wide variety of genres of text and other
kinds of data as well (e.g. video). Producing summaries in a human readable form is very attractive
particularly for very large datasets. However, for systems to achieve a level of human ingenuity on the
task of summarization is very hard even for small sets of newswire documents. Experiments on human
extractive summarization [Genest et al., 2009] show that even the best content-selection mechanism
(e.g., a human summarizer) that is limited to pasting together sentences cannot achieve the same quality
as fully manual summaries.

Recent extensions of LDA-based models that use more structure in the representation of docu-
ments have been proposed for generating more coherent and less redundant summaries, such as those
in [Haghighi and Vanderwende, 2009]. These models use the collection and document-specific distribu-
tions of documents to be summarized in order to distinguish between the general and specific topics in
documents. This amounts to identifying topic signature terms at multiple granularities in a corpus driven
manner. Since many of these signature terms happen to be Named Entities (NE), it is often useful to use
structured prediction methods, such as Conditional Random Fields, to identify them and influence the
topic modeling process instead.

Our tag topic models developed in Chapter 4 has been found to be very useful in this respect. The
finer aspects of the categories concerning {who, when, date, location} in the guided summarization
task2 naturally asks for highlighting the text with NE classes at the word level as well as using rhetorical
parsing of texts [Marcu, 1999]. Our experiments in Chapter 5 show that important spans from Rhetorical
Structure trees (RS-trees) together with sentence likelihood scores from models which are fit to the
corpus as well as those from other local models of parts-of-speech importance, show state-of-the-art
newswire multi-document summarization performance. We also obtain bulleted list summaries by using
RS-tree construction [Das and Srihari, 2011, Das and Srihari, 2013].

1.2.5 Chapter 6
Finally in Chapter 6, by using topic models to summarize videos through text, we show that it is pos-
sible to outperform summaries generated through the labeling of videos using state-of-the-art object
recognition [Das et al., 2013a, Das et al., 2013b] techniques from computer vision. For summarizing a
video in terms of keywords and natural language generated henceforth, this approach removes expensive
and manually laborious frame-by-frame bounding box annotation of videos required for training a large

2http://www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
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array of object detectors. The problem of summarizing videos through text is very important because
summaries express information need which is paramount to any video search problem particularly when
there is no accompanying text. The topic models that we use for this purpose are novel in handling both
text and video features particularly when the video features present themselves in both discrete and real
valued domain.

Predicted keyword summaries for videos with cluttered scenes is an extremely challenging task. For
a scene like a kitchen or a metal crafts workshop, the abundance of topically relevant concepts causes
the predicted keyword summary to lose relevancy to ground truth human summaries as measured by
recall on unigram overlap even when more and more keywords are included. To combat this degradation
of relevancy we select shorter sentences from the training set that are also topically relevant. Together
with generated sentences using manual templates created out of the classes of concepts used for object
detection, the final summaries significantly improve upon recall than just pulling in more keywords
according to their prediction importance.
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Chapter 2

Introductory Concepts

“Before turning to those moral and mental aspects of the matter which present

the greatest difficulties, let the inquirer begin by mastering more elementary

problems”

. . .

“I have already explained to you that what is out of the common is usually a

guide rather than a hindrance. In solving a problem of this sort, the grand thing

is to be able to reason backward. That is a very useful accomplishment, and a

very easy one, but people do not practise it much. In the everyday affairs of life

it is more useful to reason forward, and so the other comes to be neglected.

There are fifty who can reason synthetically for one who can reason analytically.

Let me see if I can make it clearer. Most people, if you describe a train of events

to them, will tell you what the result would be. They can put those events

together in their minds, and argue from them that something will come to pass.

There are few people, however, who, if you told them a result, would be able to

evolve from their own inner consciousness what the steps were which led up to

that result. This power is what I mean when I talk of reasoning backward, or

analytically.” – Sherlock Holmes: A Study in Scarlet, Chapters 2 and 7

In this Chapter, we begin with a preliminary introduction on exponential family distributions and
gradually move towards general algorithms to obtain parameter estimates for models with distributions
from the exponential family. We will also touch upon deterministic ways of finding approximate lower
bounds to intractable integrals by exploiting pair-wise conjugate classes of exponential distributions.
These integrals arise while calculating the likelihood functions. Further, in the light of some very recent
work, a theoretical bound on the amount of data needed to learn the parameters of a topic model is
mentioned in Section 2.7.2.

2.1 Exponential Family Distributions
The use of probability distributions which belong to the exponential family for random variables in
graphical models has its foundation in the principles of maximum entropy [Berger et al., 1996]. Denote
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X = {x1,x2, ...,xN} to be N independently and identically distributed i.e. i.i.d observations (for defi-
nition of i.i.d see Section 2.2.1) over which we compute empirical expectations of some set of functions
µ̂α as follows:

µ̂α =
1

N

N∑
n=1

Υα(xn), ∀α ∈ I (2.1)

where each α in some set I indexes a function Υα of the sample X only, with Υ : X → R̃. The
dimensionality of R̃ depends on the dimensionality of X and some rth order moments corresponding to
Υα. For example, in the case of scalar x, if we set Υ1(x) = x and Υ2(x) = x2, then these correspond
to empirical versions of the first and second order moments of the random variable X and thus R̃ = R2.
For the same example, if X was B dimensional, then R̃ = RB × RB×B .

Our goal is to infer a full probability distribution over the random variable X, based on the |I|-
dimensional vector of empirical expectations µ̂ = (µ̂α, α ∈ I) given some samples from the distribution
over X. This probability distribution as a density p can be continuous or discrete. In general, a probabil-
ity distribution is symbolized with an uppercase alphabet and is defined as P (x) =

∫ x
−∞ p(x)dx in the

continuous case and similarly in the discrete case where p is taken to be the probability density function
(pdf) (or probability mass function (pmf)). We will use this distinction loosely in language and will often
make of the lowercase symbols like p to refer to its distribution as well.

A given distribution P is consistent with the data if EPθ
[Υα(X)] = µ̂α, ∀α ∈ I, i.e. the ex-

pectations EPθ
[Υα(X)] under the distribution P are matched to the expectations under the empirical

distribution. Here, the expression EPθ
means expectation w.r.t. the probability distribution over X i.e.

Ep(X|θ). Shannon’s entropy [Cover and Thomas, 2006], expressed as H(P ) = −
∫
p(X) log p(X)dX,

is used to choose a P from among a family of P’s which are consistent with the observations. The
principle of maximum entropy is used to choose, from among the distributions consistent with the data,
the distribution P ? whose Shannon entropy is maximal. Formally, letting P be the set of all probability
distributions over the random variable X, the maximum entropy solution P ? is given by the solution to
the constrained optimization problem:

P ? = arg max
P∈P

H(P ), subject to EP (X|θ)[Υα(X)] = µ̂α, ∀α ∈ I (2.2)

This simply means that we are choosing the distribution with maximal uncertainty, as measured by
its entropy, while remaining faithful to certain statistics of the observed samples. Assuming that problem
2.2 is feasible, it can be shown using calculus of variations that the optimal probability density solution
p? takes the form

p?(X|θ) ∝ exp

{∑
α∈I

θαΥα(X)

}
(2.3)

where θ represents a parameterization of the distribution in an exponential family form. The constant of
proportionality is dictated by the values of the Lagrange multipliers for the constraints which turns out
to be the marginal distribution over θ i.e. integration of p(X,θ) = exp

{∑
α∈I θαΥα(X)

}
over X. The

functional form of the joint distribution over (X,θ) in Equ. 2.3 belongs to the class of exponential family
of probability distributions parameterized by θ and defined to be a set of distributions of the form:

p(X|θ) = h(X)g(θ) exp
{
θTΥ(X)

}
(2.4)
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where X may be a scalar or a vector and can be discrete or continuous. The random variables θ are
called the natural parameters of the distribution over the random variable X. The realization of X as
a sample is x and Υ(X) is some function of X independent of θ. The function g(θ) ensures that the
distribution is normalized and therefore satisfies

g(θ)−1 =

∫
h(X) exp

{
θTΥ(X)

}
dX (2.5)

where the integration can be replaced by a summation if X is a discrete variable. Of course, g(θ) > 0

and must be bounded from above. Equations 2.4 and 2.5 are often written in the following alternate
form:

p(x1,x2, ...,xN |θ) = exp
{
θTΥ(X)−A(θ)

}
,

where A(θ) = ln

∫
exp

{
θTΥ(X)

}
dX (2.6)

Here Υ = {Υα, α ∈ I} is a collection of functions {Υα}, known either as potential functions or
sufficient statistics (see Section 2.2.2). The index set is denoted by I with d = |I| components to be
specified, so that Υ can be viewed as a vector-valued mapping from some sample space X to some real
valued set R̃. For a given vector of sufficient statistics Υ, we denote θ = {θα, α ∈ I} to be an associated
vector of canonical or exponential parameters.

The parameters typically dealt with in practical problems are just points in (usually) a very high
dimensional space which is at least as large as the dimensionality of the observations. Finding this point
given the set of samples at hand thus reduces to searching a set of size 2ℵ0 = ℵ1 where the set is that of
the non-denumerable real numbers. This search though is intuitively only restricted to the neighborhoods
of the subsets of the total yet unseen input sample space X .

The quantity A(θ) in Equ. 2.6 or − log g(θ) in Equ. 2.4 is called the log partition function or the
cumulant function which makes sure that p(x|θ) in Equ. 2.6 is properly normalized in accordance with
probability measure theory [Feller, 1968]. With the set of potentials Υ fixed, each parameter vector θ
indexes a particular member Pθ of the family P . The canonical parameters θ of interest belong to the set
Ω = {θ ∈ R̃ |A(θ) < +∞}. It is shown in [Wainwright and Jordan, 2008] that for exponential family
models, A is a convex function of θ, which in turn implies that Ω must be a convex set. For examples
on a wide of range of popular models with parameters in the exponential family see [Wainwright and
Jordan, 2008].

For an example concerning discrete distributions, let us consider a discrete distribution for a single
observation x which takes the form

p(x|µ) =

K∏
k=1

µ
xk
k = exp

{
K∑
k=1

xk lnµk

}
(2.7)

where x = (x1, ..., xK)T is the K dimensional binary observation vector with only one of the xks
being one and the rest zeros. We can write this as p(x|θ) = exp(θTx) where θk = lnµk. Comparing
with Equ. 2.4 we have:

Υ(x) = Υ1(x) = x; h(x) = 1; g(θ) = 1 (2.8)

The parameters θk are not independent because the parameters µk are subject to the constraint∑K
k=1 µk = 1 and also 0 ≤ µk ≤ 1. We now write an alternate version of p(x|µ) as p(x|θ) where
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we remove the simplex constraint of µ by expressing θ in terms of only the K − 1 independent parame-
ters of µ.

exp

{
K∑
k=1

xk lnµk

}
= exp

{
K−1∑
k=1

xk lnµk +

(
1−

K−1∑
k=1

xk

)
ln

(
1−

K−1∑
k=1

µk

)}

= exp

{
K−1∑
k=1

xk ln

(
µk

1−
∑K−1
j=1 µj

)
+ ln

(
1−

K−1∑
k=1

µk

)}
(2.9)

Let us denote ln

(
µk

1−
∑K−1
j=1 µj

)
= θk where

∑K−1
j=1 exp θj = 1. To express µk in terms of θk we do

the following:

µK +

K−1∑
j=1

µj − µK =

(
K−1∑
j=1

exp θj

)
µK

=⇒ 1− µK =

(
K−1∑
j=1

exp θj

)
µK

=⇒ µK =
1

1 +
(∑K−1

j=1 exp θj
) =⇒ µk =

exp θk

1 +
(∑K−1

j=1 exp θj
) (2.10)

This is called the softmax function which is very commonly used in many supervised learning scenarios
where the goal is to transform a real valued output into a probability space. The discrete distribution takes
the form:

p(x|θ) =

(
1 +

K−1∑
j=1

exp θj

)−1

exp(θTx) (2.11)

with

Υ1(x) = x, h(x) = 1 and g(θ) =

(
1 +

K−1∑
j=1

exp θj

)−1

(2.12)

The expression in Equ. 2.4 also holds for any application of a smooth function w over θ and can
thus be expressed in a more generic form as:

p(x|θ) = h(x)g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)
. (2.13)

Here h(x) > 0 and Υi(x) are real-valued functions of the observation x, g(θ) ≥ 0 and
w1(θ), w2(θ), ..., wK(θ) are real valued functions of the parameter vector θ (they cannot depend on
x). The set {θ} ∈ Θ is the natural parameter space for the family of exponential distributions and
{wi(θ)} is a subset of that space. Many common probability distributions belong to the exponential
family—continuous distributions such as normal, gamma, beta as well as discrete distributions such as
Poisson, binomial, negative binomial, multinomial etc. Further, for distributions belonging to the expo-
nential families, we have the following theorem from [Casella and Berger, 2001] which implies that the
log partition function g(θ) is smooth and convex in terms of θ.
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Theorem 2.1.1. If X is a random variable with pdf or pmf of the form p(x|θ) =

h(x)g(θ) exp
(∑K

i=1 wi(θ)Υi(x)
)

which is a more generic version of Equ. 2.4, then

E

(
K∑
i=1

∂wi(θ)

∂θj
Υi(X)

)
= − ∂

∂θj
log g(θ) (2.14)

V ar

(
K∑
i=1

∂wi(θ)

∂θj
Υi(X)

)
= − ∂2

∂θ2
j

log g(θ)− E

(
K∑
i=1

∂2wi(θ)

∂θ2
j

Υi(X)

)
(2.15)

Proof.

0 =
∂

∂θ

∫
h(x)g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)
dx

=

∫
h(x)g′(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)
dx +

∫
h(x)g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)(
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)
dx

=

∫
h(x)

[
∂ log g(θ)

∂θj

]
g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)
dx

+

∫
h(x)g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)(
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)
dx

=
∂ log g(θ)

∂θj
+ E

[(
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)]
(2.16)

Hence Equ. 2.14 holds

0 =
∂2

∂θ2

∫
h(x)g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)
dx

=

∫
h(x)g′′(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)
dx +

∫
h(x)g′(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)(
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)
dx

+

∫
h(x)g′(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)(
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)
dx

+

∫
h(x)g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)(
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)2

dx

+

∫
h(x)g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)(
K∑
i=1

∂2wi(θ)

∂θ2
j

Υi(x)

)
dx

=

∫
h(x)

[
∂2

∂θ2
j

log g(θ)

]
exp

(
K∑
i=1

wi(θ)Υi(x)

)
dx +

∫
h(x)

[
g′(θ)

g(θ)

]2

g(θ) exp

(
K∑
i=1

wi(θ)Υi(x)

)
dx

+ 2

(
∂

∂θj
log g(θ)

)
E

[
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

]
+ E

( K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)2
+ E

[(
K∑
i=1

∂2wi(θ)

∂θ2
j

Υi(x)

)]

=
∂2

∂θj
2 log θ +

[
∂

∂θj
log θ

]2

− 2E

[
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

]
E

[
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

]
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+ E

( K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)2
+ E

[(
K∑
i=1

∂2wi(θ)

∂θ2
j

Υi(x)

)]

=
∂2

∂θj
2 log θ + V ar

(
K∑
i=1

∂wi(θ)

∂θj
Υi(x)

)
+ E

[(
K∑
i=1

∂2wi(θ)

∂θ2
j

Υi(x)

)]
(2.17)

Hence Equ. 2.15 holds.

Note: If we consider a sample to consist of N i.i.d samples xn, then Υi(x) in the above theorem is
replaced by

∑N
n=1 Υi(xn) due to the multiplication of independent exponential terms.

In general, for an exponential family, the set {x} of values for which p(x|θ) > 0 cannot depend on
θ. This is easily noted by observing the limits of the integration over the pdf to compute the normalization
constant. This constraint is included into the definition of the exponential family distribution by an
indicator function. The indicator function of a set A, most often denoted by IA(x) or δ(x,A) is the
function:

IA(x) =

1 ifx ∈ A

0 ifx /∈ A
(2.18)

This indicator function can be incorporated into the definition of h(x) in Equ. 2.13 or Equ. 2.4.
Since exponential is always positive, it can be observed that for any θ ∈ Θ and g(θ) > 0, we have
{x : p(x|θ) > 0} = {x : h(x) > 0} and this set does not depend on θ. So a pdf like p(x|θ) =

θ−1 exp(1 − (x/θ)), 0 < θ < x < ∞ is not in the exponential family since the indicator function here
is expressed as I[θ,∞](x).

The METag2LDA (see Fig. 1.7e) model can be represented using a 6-tuple representation for the
hidden and observed variables, (θ,y, z,wM , tT ,wN ), as follows:

p(θ|α) p(y|θ) p(z|θ) p(wM |yM , tT ,β,π) p(wN |zN ,ρ) ∝ exp

(
K∑
k=1

αk log θk +

K∑
k=1

log θk
[
I{k}(y) + I{k}(z)

]
+

K∑
k=1

T∑
t=1

V∑
j=1

log βk,j log πt,jI{k}(y)I{(j,t)}(wM ) +

K∑
k=1

corrV∑
j=1

log ρk,jI{k}(z)I{(j)}(wN )

)
(2.19)

The model thus belongs to the exponential family with parameter vector Θ = (α,β,π,ρ), with an
associated density of the form shown in Equ. 2.19.

The way the parameters are inferred from the data depends upon the choice of inference algorithms
(see Sections 2.6 for a brief overview of gradient based approximation algorithms and Section 2.7.6
for a brief overview of sampling based algorithms). It is common knowledge that the performance of
gradient based iterative algorithms may depend crucially on how the problem is formulated. Proper
attention needs to be put on the scaling of the variables being optimized. In unconstrained optimization,
a function f(θ) is said to be poorly scaled if changes to the variable θ in a certain direction produce
much larger variations in the value of f than do changes to θ in another direction. This causes a problem
for gradient descent (or ascent) type of algorithms which are very sensitive to scaling in the absence of
a Newton step involving the Hessian [Nocedal and Wright, 2006] or even fixed point iterations where
the slope of f(θ) is too large in absolute value near the fixed point of f(θ) [Conte and Boor, 1980].
The problem is alleviated by the use of fixed regularizers or (conjugate) priors over the variables being
optimized.
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2.2 Maximum Likelihood, Sufficient Statistics and Conjugate Pri-
ors

In this section we discuss the problem of estimating parameters of a model. The most common form of
estimation is point estimation where a parameter θ ∈ Θ is treated as a point in some high dimensional
space and we need to find this point based on the observations at hand so that θ becomes a representative
of the sample space with high probability i.e. we want our model to find the true encoding of the
knowledge about a population given some samples from it. We estimate the value of this encoding using
some estimator and this is captured in the parameters of a model which we are using to explain the
occurrence of the samples. For example, the sample mean is an unbiased estimator of the population
mean and the value of the estimate improves as the size of the sample grows larger. When sampling is
from a population described by a pdf (probability density function) or pmf (probability mass function)
p(x|θ), knowledge of θ yields knowledge of the entire population.
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Figure 2.1: Graphs of the objective function of a two component Gaussian-mixture model over a set of
mean parameters and over a set of sample points. The surface normals are shown as tiny blue arrows

Let us illustrate what we just said using a concrete example of a two component Gaussian mixture
model. Figure 2.1 shows two graphs of a function of real-valued data and real-valued parameters, called
the likelihood function, which is defined in Equ. 2.20.

L(X,µ1,µ2, σ1, σ2) = log

(
0.8× 1

σ1

√
2π
e
− 1

2σ21

||x−µ1||
2
2

+ 0.2× 1

σ2

√
2π
e
− 1

2σ22

||x−µ2||
2
2

)
(2.20)

In this visualization, we hold four parameters fixed—the mixing proportions with values of 0.8 and 0.2

and the variances or the scaling parameters σ1 and σ2. Figure 2.1a shows the graph of the likelihood
function as two sample points (2, 2) and (28, 28) are held fixed and we explore the space of location
parameters µ1 and µ2 plotting the value of L(X,µ1,µ2, σ1, σ2) at each possible pair. Clearly the like-
lihood values are very high around the two sample points but taper off as we move away. Intuitively,
the location parameters which we are searching for are really sample points but we do not know which
ones. This means that the likelihood function merely serves to explain how close is a sample point to the
sample point which is representative of all other sample points surrounding it. The latter point, in case
of real valued observations, is a mean parameter of the distribution of all such samples. There can be
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more than one mean parameters in the case of a multi-modal or mixture distribution.
Alternatively, fixing the parameters of the mixture model to be known, we plot the graph of the

likelihood function from Equ. 2.20 but varying only the sample points. Figure 2.1b shows the graph
of the two component mixture density and contours on top show the regions of high (red) to low (blue)
probabilities. From this perspective, we are trying to optimize the likelihood function in Equ. 2.20 as
a function the sample points alone but w.r.t the parameters. The parameters can be loosely thought of
true representative sample points in case of real-valued data, but not so for discrete samples. Mean
parameters for discrete samples have a more geometric interpretation in terms of polytopes where each
corner of the polytope is a possible configuration of a sample point.

Given these two perspectives, the importance of a training dataset becomes very evident. Section
2.3 briefly discusses the impact of the in-sample error for a classifier on its generalization performance
when subject to classification of out-of-sample points. We now introduce some basic definitions which
are used throughout this chapter.

A point estimator is any function Υ(x1,x2, ...,xN ) of a sample {x1,x2, ...,xN}. In statistics
literature, a statistic is also any function of the data which is not a function of the parameter. For-
mally, if {x1, ...,xN} be a random sample of size N from a population and T (x1, ...,xN ) be a function
whose domain is the sample space X of (X1, ...,XN ), then the random variable Υ = T (X1, ...,XN )

is called a statistic. The probability distribution of a statistic Υ is called the sampling distribution of Υ.
Any statistic is thus a point estimator. This broad definition does not mention the range of the statis-
tic Υ(x1,x2, ...,xn) coinciding with that of the parameter θ. Usually this is the case but not always
[Berger, 1985]. Thus an estimator is a function of the sample, while an estimate is the realized value
of the estimator.

There are several methods of finding estimators: i) Method of moments ii) Maximum Likelihood
iii) Bayes Estimators and iv) Expectation Maximization Algorithm. We touch upon the last three briefly
as they are used in the course of this thesis for some model or the other. The method of moments is less
frequently used and is found by equating the first k sample moments to the corresponding k population
moments and solving the resulting system of simultaneous equations.

2.2.1 Maximum Likelihood
The method of Maximum Likelihood is one of the most popular methods for deriving estimators. If
x1,x2, ...,xN are i.i.d sample from a population with pdf or pmf p(x|θ), the likelihood function is
defined by:

L(X|θ) = L(x1,x2, ...,xN |θ1, θ2, ..., θK) =

N∏
n=1

p(xn|θ1, θ2, ..., θK) (2.21)

The likelihood function may not necessarily be a probability density function (pdf) or probability mass
function (pmf) although p is a valid pdf or pmf.

Definition 2.2.1. Two random variables X1 and X2 are identically distributed iff for every set Q ∈ B,
where B is the Sigma algebra corresponding to the sample space S, p(X1 ∈ Q) = p(X2 ∈ Q).

Definition 2.2.2. The random variables {X1, ...,XN} are called a random sample of length N from a
population p(X) if {X1, ...,XN} are mutually independent and the marginal pdf or pmf of each Xi is
the same p(X). This set of random variables is then referred to as a set of independent and identically
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distributed random variables. Mutual independence of random variables mean that the outcome of one
random variable has no relationship with or not dependent on the outcome of another random variable.

Consider a sample corresponding to the random variable X and denote θ∗(X) to be a parameter
value at which L(X|θ) attains its maximum as a function of θ with X held fixed. This θ∗(X) is a
Maximum Likelihood Estimator (MLE) of the parameter θ based on a sample X. The ML estimate is
the parameter point θ∗ for which the observed sample X is most likely. The likelihood function is an
important statistic that is used to summarize the data in a statistical sense [Hastie et al., 2009].

If the likelihood function is differentiable (in θi), the possible candidates for the MLE are the values
of θ1,θ2, ...,θK that solve

∂

∂θi
L(X|θ) = 0, i = 1, ..., k (2.22)

The solutions to Equ. 2.22 are only possible candidates for the MLE since the first derivative being
0 is only a necessary condition for a maximum not a sufficient one. Furthermore, the zeros of the
first derivative locate only extreme points in the interior of the domain of the function. If the extrema
occur on the boundary of the parameter space, the first derivative may not be zero and the condition of
∂2L(X|θ)
∂2θ < 0 will not hold. This means that no estimate of such a parameter can be found through MLE.

Maximum Likelihood and Maximum Entropy are convex duals i.e. the set P of distributions which
has maximum entropy but are consistent with the data and the setQ of distributions from the exponential
family (often referred to as Gibbs distributions) contains only a single point which solves both problems.
This means that the following are equivalent:
• p? = arg maxp∈P H(p) which solves Maximum Entropy and
• p? = arg maxp∈Q

∑
n log p(xn) which solves Maximum Likelihood have a single point in common

i.e.
• p? ∈ P ∩Q and anyone of these properties uniquely defines p?.

The outline of the proof is as follows:

Proof. The objective function of Maximum Entropy, if we consider discrete distributions and first order
constraints, is

L = arg max
p∈P
−
∑
X

p(X) log p(X) (2.23)

subject to
∑

X∈X p(X) = 1 and Ê[fj(X)] =
∑
X fj(X)p(X) where Ê[fj(X)] is the empiri-

cal expectation given only the samples {x1, ...,xN} = X. To find the optimal p?, we minimize∑
X p(X) log p(X) subject to the same constraints. This yields the following steps for the necessary

conditions to be satisfied:

L = arg min
p∈P

∑
X∈X

p(X) log p(X) +
∑
j

λj

[
Ê[fj(X)]−

∑
X∈X

fj(X)p(X)

]
+ γ

(∑
X∈X

p(X)− 1

)
(2.24)

where the λjs and γ are Lagrange multipliers.

∂L
∂p(X)

= log p(X) + 1 +
∑
j

λj [−fj(X)] + γ
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=⇒ p?(X) =
exp

{∑
j λjfj(X)

}
Z (2.25)

where Z = exp(1 + γ) =
∑

X∈X exp
{∑

j λjfj(X)
}

. Plugging the value of p?(X) into L in Equ.
2.24, we have:

L =
∑
X∈X

p?(X)

[∑
j

λjfj(X)− logZ

]
+
∑
j

λj

[
Ê[fj(X)]−

∑
X∈X

fj(X)p?(X)

]
+ γ

(∑
X∈X

p?(X)− 1

)

=
∑
j

λj
[
Ê[fj(X)]

]
− logZ + (γ × 0)

=
1

N

N∑
n=1


[∑

j

λjfj(xn)]

]
− logZ︸ ︷︷ ︸

log p?(xn)


︸ ︷︷ ︸

log
∏N
n=1 p

?(xn)

(2.26)

Thus the Maximum Entropy solution p?(X) solves the Maximum Likelihood problem as well. Inci-
dentally p? belongs to Gaussian distribution if we include second order constraints into the objective of
Maximum Entropy.

2.2.2 Sufficient Statistics
Any statistic Υ(X), which is just a function of the data, represents a way to summarize the data i.e.
defines a form of data reduction. This form of data reduction through sufficient statistics can be thought
of a partition of the sample space X . If the set U = {u : Υ(X) = u for some X ∈ X} be the
image of X under Υ(X), then Υ(X) partitions the sample space into sets {Su}, u ∈ U defined by
Su = {X : Υ(X) = u}. For example, if Υ(X) = u represents the sum of a sample {x1, ...,xN}, then
Su is the set of all data points {x1, ...,xN} that amounts to the same sum u. A statistic is said to be
sufficient for a parameter θ if it obeys the “Sufficiency principle” [Casella and Berger, 2001].

Sufficiency principle: If Υ(X) is a sufficient statistics for a parameter θ, then any inference about θ
should depend on the sample X through the value Υ(X). Thus if x and y are two sample values such
that Υ(x) = Υ(y) then inference about θ should be the same upon the observation of either x or y.

Formally, a statistic Υ(X) is said to be a sufficient statistic for θ if the conditional distribution
of the sample X given the value of Υ(X) does not depend on θ. The implication of this is that if
p(X|θ) is the joint pdf or pmf of X and q(U|θ) is the pdf or pmf of Υ(X), then Υ(X) is a sufficient
statistic for θ if, for every X ∈ X , the ratio p(X|θ)/q(U|θ) is a constant i.e. does not depend on
θ. For example if X = {x1, ...,xN} are N i.i.d. Bernoulli random variables with parameter θ, then
Υ(X) =

∑N
n=1 xn = u, which just counts the number of 1s, is a sufficient statistic for θ because

p(x|θ)/q(u|θ) = 1/
(
N∑
xn

)
.

Factorization theorem: To find a sufficient statistic by simple inspection of the pdf or pmf of
the sample X, the factorization theorem provides for a very important tool. The theorem states that if
p(X|θ) is the pdf or pmf of a sample X, then a statistic Υ(X) is sufficient for θ iff there exists functions
f(Υ(X)|θ) and h(x) such that ∀X and ∀θ, p(X|θ) = h(X)f(Υ(X) = u|θ)
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Theorem 2.2.1. Sufficient statistics for exponential families: If X = {x1, ...,xN} are N i.i.d. obser-
vations from a pdf or pmf p(x|θ) that belongs to an exponential family of distributions with functional
forms: p(x|θ) = h(x)g(θ) exp

(∑K
k=1 wi(θ)Υk(x)

)
, then Υ(X) =

(∑N
n=1 [Υ1(xn), ...,ΥK(xn)]

)
is a sufficient statistic for the K-dimensional parameter θ.

Proof. We can write the joint pdf or pmf of p(X|θ) as

p(X|θ) =

N∏
n=1

{
h(xn)g(θ) exp

(
K∑
k=1

wk(θ)Υk(xn)

)}
= g(θ)N exp

(
K∑
k=1

wk(θ)

[
N∑
n=1

Υk(xn)

])
︸ ︷︷ ︸

f(Υ(x)|θ)

N∏
n=1

h(xn)︸ ︷︷ ︸
h(x)

(2.27)

Hence, By the Factorization theorem,
(∑N

n=1 {Υ1(xn), ...,ΥK(xn)}
)

is a sufficient statistic for θ.

Let us now consider the problem of estimating the parameter vector θ in the general exponential
family distribution given in Equ. 2.5. Taking the gradient of both sides of Equ. 2.5 w.r.t. θ, we have:

∇g(θ)

∫
h(X) exp

{
θTΥ(X)

}
dX + g(θ)

∫
h(X) exp

{
θTΥ(X)

}
Υ(X)dX

=⇒ − 1

g(θ)
∇g(θ) = g(θ)

∫
h(X) exp

{
θTΥ(X)

}
Υ(X)dX

=⇒ −∇ ln g(θ) = Ep(X|θ)[Υ(X)] (2.28)

This can also be derived by setting wi(θ) = θi in Equ. 2.13 and then using Equ. 2.14.
Example: Let us consider a set of independent and identically distributed data denoted by X =

{x1, ...,xn}, for which the likelihood function is given by

p(X|θ) =

(
N∏
n=1

h(xn)

)
g(θ)N exp

{
N∑
n=1

θTΥ(xn)

}
(2.29)

Taking the derivative of ln p(X|θ) w.r.t. θ and setting it to 0, we obtain the following Maximum
Likelihood (ML) estimate of θ:

−∇ ln g(θML) =
1

N

N∑
n=1

Υ(xn) (2.30)

The solution of the MLE depends on the data only through
∑
n Υ(xn) i.e the sufficient statistic of

the distribution corresponding to the pdf p(X|θ) = h(X)g(θ) exp
{
θTΥ(X)

}
as given in Equ. 2.4.

The importance of the likelihood function as a tool for data reduction is highlighted by the likelihood
principle.

Definition 2.2.3. The likelihood principle states that if x and y are two sample points such that
L(x|θ) = C(x,y)L(y|θ) ∀ θ and some constant C(x,y) then the conclusions drawn from x and y

should be identical [Casella and Berger, 2001].

The constant C(x,y) may be different for different pairs of (x,y) but is independent of θ. The
implication of this principle is that if two sample points have only proportional likelihoods, they contain
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equivalent information about θ.

The function Υ(X) is a sufficient statistic under the sufficiency principle and the value of Υ(X) is
the set of all likelihood functions proportional to L(X|θ) under the likelihood principle.

2.2.3 Conjugate Priors
Prior distributions over parameters provide us with a mathematically robust formulation to incorporate
uncertainty over point estimates of parameters. For a specific dataset X, we can only have one specific
optimal configuration of the parameters but such a configuration is not flexible enough to handle the
variances in another set of observations X′ sampled from p(X). In other words, priors usually help
improve the generalization power of a model.

In general, for a given probability distribution p(X|θ), we seek a prior p(θ) which is conjugate to
the likelihood function so that the posterior distribution has the same functional form as the prior. Using
conjugate priors simplifies approximate inference for exponential family models and at the same time
provides simple intuitive explanations for updates of the posterior distributions over hidden variables. For
any member of the exponential family p(X|θ) = h(X)g(θ) exp

{
θTΥ(X)

}
, there exists a conjugate

prior of the form:

p(θ|ν,χ) = h(χ, ν)g(θ)ν exp{θTχ} (2.31)

where h(χ, ν) is a normalization coefficient, and g(θ) is the same log partition or cu-
mulant function that appears in Equ. 2.4. If we multiply Equ. 2.29 i.e. p(X|θ) =(∏N

n=1 h(xn)
)
g(θ)N exp

{∑N
n=1 θ

T (Υ(xn))
}

with Equ. 2.31, we obtain:

p(θ|x,χ, ν) = Z(χ, ν)g(θ)ν+N exp

{
N∑
n=1

θT (Υ(xn) + χ)

}
(2.32)

where, Z(χ, ν)−1 =

∫
g(θ)ν+N exp

{
N∑
n=1

θT (Υ(xn) + χ)

}
dθ

The posterior distribution over θ thus is again in exponential form as shown in Equ. 2.32. The param-
eter ν can be interpreted as the effective count of pseudo-observations in the prior and the parameter
(vector) χ represents the values of the pseudo-observations with each component being mapped to the
corresponding component of the sufficient statistic (vector) Υ(X). Examples of multinomial-Dirichlet
conjugacy in the basic topic model (LDA) are shown in [Griffiths and Steyvers, 2004] in the context of
Gibbs sampling and in [Blei et al., 2003] in the context of a full Bayesian treatment of the topic multino-
mials. A full Bayesian treatment of some parameters simply mean that we do not want a specific point
estimate of the parameter given the data but rather allow for some variance in its estimation (i.e. posit
a posterior probability distribution) given some prior distributions with “hyparameters” over the param-
eters of the model. The uncertainty arises out of the deviation of the moments of the test samples w.r.t
those obtained from the training dataset. Additionally, section 2.4 explains why finding the posterior is
so important from a risk minimization point of view. However, it is worthwhile to mention that we pay a
price by introducing a prior of our choice in that the posterior means of the parameter estimators, i.e. the
Bayesian point estimators of θ, are not unbiased estimators unless all of the data collapses on the true
mean parameter [Casella and Berger, 2001].
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2.2.4 Asymptotics and MLE
The branch of asymptotics in statistics deal with various properties of estimators in the limit of infinite
data. An estimator should have the property that it converges to the correct value as sample size becomes
infinite. An estimator possessing this property is said to be consistent, although, technically speaking,
consistency is a property of a sequence of estimators rather than a single one.

A sequence of estimators Υn = Υn(x1, ...,xn) is a consistent sequence of estimators of the pa-
rameter θ, if for every ε > 0 and every θ ∈ Θ,

lim
n→∞

pθ(|Υn − θ| < ε) = 1 or equivalently lim
n→∞

pθ(|Υn − θ| ≥ ε) = 0 (2.33)

This means that a consistent sequence of estimators converges in probability to the parameter θ it is
estimating. The sequence of sample means Υ(X) = X̄ = 1

n

∑n
i=1 xi is a consistent sequence of

estimators. The following theorem from [Casella and Berger, 2001] on Maximum Likelihood Estimators
also shows that they are consistent.

Theorem 2.2.2. Consistency of Maximum Likelihood Estimators (MLEs): Let x1, ..,xn be i.i.d
p(x|θ) and let L(θ) ≡ L(X|θ) =

∏n
i=1 p(x|θ) be the likelihood function. Let θ̂ denote the MLE

of θ. Also let τ(θ) be a continuous function of θ. Under certain regularity conditions on p(X|θ) and
hence L(θ), for every ε > 0 and every θ ∈ Θ, limn→∞ pθ(|τ(θ̂) − τ(θ)| ≥ ε) = 0 i.e. τ(θ̂) is a
consistent estimator of τ(θ) since τ(θ̂) converges to τ(θ) in probability.

Proof. See [Stuart et al., 1999]. For regularity conditions on p(x|θ), see below.

Regularity conditions:

[i ] The samples x1, ..,xn be i.i.d p(x|θ)

[ii ] The parameter θ is identifiable i.e. if θ 6= θ′ then p(x|θ) 6= p(x|θ′)

[iii ] The densities p(X|θ) have common support and are differentiable in θ

[iv ] The parameter space Ω contains an open set ω of which the true parameter value θtrue is an interior
point

Another very important concept for sequence of estimators with regards to asymptotics is that of
Efficiency. While the property of consistency is concerned with the asymptotic accuracy of an estimator,
efficiency is more concerned with the asymptotic variance of an estimator.

We now state an important theorem from [Casella and Berger, 2001] about the asymptotic ef-
ficiency of MLEs. Before stating the theorem, we first formally define what it means for a se-
quence of estimators to be asymptotically efficient. A sequence of estimators Υn for a parameter
τ(θ) is asymptotically efficient if

√
n[Υn − τ(θ)] → N (0, ν(θ)) in distribution where ν(θ) =

[τ ′(θ)]2/Ep(x|θ)

(
( ∂
∂θ log p(x|θ))2

)
. This means that the asymptotic variance of Υn achieves Cramér-

Rao lower bound which is a lower bound on the variance of the best unbiased estimator of θ and is
defined as follows:

Definition 2.2.4. Cramér Rao-Inequality: Let {x1, ...,xN} be a sample with pdf p(x|θ) and let Υ(X) =

Υ(x1, ...,xN) be any estimator satisfying

∂

∂θ
Ep(X|θ) (Υ(X)) =

∫
X

Υ(X)p(X|θ)dX and V arp(X|θ) (Υ(X)) <∞, (2.34)
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then,

V arp(X|θ) (Υ(X)) ≥
(
Ep(X|θ)[Υ(X)]

)2
Ep(X|θ)

[(
∂
∂θ log p(X|θ)

)2] (2.35)

The quantity Ep(X|θ)(
∂
∂θ log p(X|θ))2 is called the information number or the Fisher information

of the sample. This number gives a bound on the variance of the best unbiased estimator of θ. As the
number gets larger, we have more information about θ and the bound on the variance of the best unbiased
estimator becomes smaller. Given an estimator Υn based on a sample size n, the finite-sample variance
V ar(Υn) is first calculated and then the limit limk→∞ knV ar(Υn) is evaluated with kn being some
normalizing constant.

Theorem 2.2.3. Asymptotic Efficiency of Maximum Likelihood Estimators (MLEs): Let x1, ..,xn be
i.i.d p(X|θ) and let L(θ) ≡ L(X|θ) =

∏n
i=1 p(xn|θ) be the likelihood function. Let θ̂ denote the MLE

of θ. Also let τ(θ) be a continuous function of θ. Under certain regularity conditions on p(x|θ) and
hence L(θ),

√
n[τ(θ̂)− τ(θ)]→ N (0, ν(θ)) where ν(θ) is the Cramér-Rao lower bound i.e. τ(θ̂) is a

consistent and efficient estimator of τ(θ).

Proof. See [Casella and Berger, 2001]

The implication of theorem 2.2.3 is that a larger training set (hypothetically in the limit of infinite
data) almost always make any statistical learning algorithm better estimate the model parameters if the
assumptions of the modeling process very closely resemble the true generation process.

2.3 How much training data is necessary?
In the supervised learning scenario, the problem setup seeks to find the function f : X → T which maps
an input space X to some output space T . The range of the function f can be discrete (often binary) as
in the case of classification or continuous as in the case of regression. However, we are never told what
the function f is, instead, we just observe some sample {x1, ...,xN} ∈ X from X and the realization
ti ∈ T of the function f for each individual datum xi. A learning algorithm is a function that operates
on X to produce an mapping X→ T. The goal of the learning algorithm is to choose a function g from
a set of candidate functions referred to as the hypotheses set H such that g approximates f as best as
possible. Note that the cardinality of H can be infinite, for e.g. all possible straight lines in R2. The
main concern of the learning algorithm is to find g so that it performs optimally on samples not in X but
assumed to be generated from X under some unknown probability distribution on X i.e. the learning
algorithm must be able to bound the out-of-sample error Eout(g) based on the in-sample error Ein(g).
We can express this formally as:

p (|Ein(g)− Eout(g)| > ε) ≤ 2Me−2ε2N (2.36)

for any ε > 0. What Equ. 2.36 says is that the probability of a “bad event” |Ein(g) − Eout(g)| > ε

happening must get lower as we observe more realizations of X through the function f : X → T .
Inequality 2.36 is known as Hoeffding’s inequality [Abu-Mostafa et al., 2012] and is a function of the
number of candidate hypotheses M and the sample (i.e. dataset) size N . Hoeffding’s inequality can be
expressed in terms of a generalization bound such that the probability of the “good event” |Ein(g) −
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Eout(g)| ≤ ε happening is at least 1− δ where δ is should be as small as possible. Identifying this with
Equ. 2.36, we observe that δ = 2Me−2ε2N from which we obtain:

Eout(g) ≤ Ein(g) +

√
1

2N
ln

2M

δ
(2.37)

where δ is a tolerance level that replaces ε from Equ. 2.36. Thus the generalization bound for a learning
algorithm based only on the in-sample error Ein and a second term which depends on M which is the
size of the set of candidate hypothesesH.

To make the generalization bound meaningful due to the problem that the cardinality of H being
infinite, a notion of a growth function is introduced forH on the sample points {x1, ...,xN} asmH(N) =

max
{x1,...,xN}∈X

|H(x1, ...,xN )| = max
{x1,...,xN}∈X

|{h(x1), ..., h(xN )|h ∈ H where |.| is the cardinality of

the corresponding set.
To compute mH(N), we consider all possible choices of N points {x1, ...,xN} from X and select

the one which results in the most number of dichotomies. It is easy to see that mH(N) ≤ 2N . The
notion of a break point is then used to polynomially bound the growth function [Abu-Mostafa et al.,
2012]. A break point for a hypothesis set H is the minimum dataset size that cannot be shattered by H.
Shattering means thatH is capable of producing all possible dichotomies (binary labels) on the dataset.

The Vapnik Chervonenkis (VC) dimension is the order of the polynomial bound on mH(N) [Abu-
Mostafa et al., 2012] expressed as:

mH(N) ≤
dV C∑
i=0

(
N

i

)
≤ NdV C + 1 (2.38)

If we replace M in Equ. 2.37 by mH(N), we obtain a bound of the form:

Eout(g) ≤ Ein(g) +

√
1

2N
ln

2mH(N)

δ
(2.39)

For any finite dV C , the error bar for the generalization error will converge to zero at a speed determined
by dV C—smaller the dV C faster the convergence. Further, if dV C ≥ N then there exists a dataset D of
size N such that H shatters D [Abu-Mostafa et al., 2012] and the following theorem constitutes one of
the most important results in statistical learning theory.

Theorem 2.3.1. VC generalization bound.
For any tolerance δ > 0,

Eout(g) ≤ Ein(g) +

√
8

N
ln

4mH(2N)

δ
(2.40)

with probability 1− δ

Sample complexity: The sample complexity of a learning model denotes the number of training exam-
ples N needed to achieve a certain generalization performance and can be obtained using the VC bound.

The generalization error is bounded by
√

8
N ln 4mH(2N)

δ and making
√

8
N ln 4mH(2N)

δ ≤ ε, we obtain:

N ≥ 8

ε2
ln

4mH(2N)

δ

=
8

ε2
ln

4
(
(2N)dV C + 1

)
δ

(2.41)
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The error tolerance ε determines the allowed generalization error and the confidence parameter δ deter-
mines how often is the error tolerance violated. However, the caveat in using the VC bound in its original
form is that it often gives gross over-estimate for the value of N in the order of thousands; for e.g. with
dV C = 5, we need N = 50, 000. In practical scenarios, the constant of proportionality should be set
closer to 10 [Abu-Mostafa et al., 2012].

The polynomial in dV C in Equ. 2.40 also suggests that it is imperative to choose a model with a
lower VC dimension than a higher one. However, in general a rigorous evaluation of the VC dimension
for complex models is skipped in favor of the effective number of parameters of the model [Abu-Mostafa
et al., 2012]—the more complex model will need more training samples to provide for better generaliza-
tion performance.

Problems arise when we cannot measure the dichotomization due to the absence of any labeling
of the training dataset in the unsupervised scenario and we cannot readily apply VC analysis in this
case. If we denote p(X, t) to be the distribution which governs the true relationship between the input
X and the target class t, then, neither do we know p nor we know t. We are only presented with a
set of unlabeled examples x1, ...,xn drawn i.i.d. from the true p and we need to approximate it with
some p̂(X) with some parameters that explain the observations as best as possible. A standard approach
is to use EM algorithm to optimize the empirical likelihood of the incomplete data—Ê log p(X|Z,θ)

where Êf(X) = 1
N

∑N
i=1 f(xi) denotes averaging over some function f of the training data. The

posterior over the discrete random variable Z accounts for the explanation of the true class label tn for
the observation xn as best as possible.

The discrepancy between p∗ and p
θ̂EM

depends on the distribution over t whereas learning depends
only on the distribution over X. For most unsupervised probabilistic models, we optimize a non-convex
objective owing to tractability requirements and hence the locally optimal θ̂EM is different from the
globally optimal θ̂ which can be obtained using unlimited computational resources to process the dataset
X. Further θ̂ can be different from the true parameters of p∗ due to noise in the data.

It has been reported in [Liang and Klein, 2008] that local optima issues which typically plague EM
can be somewhat alleviated by increasing the number of training examples which results in less noise
in the aggregate sufficient statistics. This is intuitive from the point of view of asymptotic efficiency
of MLEs however rigorous analyses of generalization errors in unsupervised models is an extremely
difficult problem. Some earlier efforts on such analyses on simpler models like Principle Component
Analysis and K-Means have been reported in [Hansen and Larsen, 1996].

As an alternative, the “Meta model” in [Liang and Klein, 2008] is used for analyzing EM. They look
at predictions made by the model and study how these predictions change over time instead of treating
parameters as the primary object of study. A similar study in the context of topic models has been
performed in [Chang et al., 2009]. On the other hand, if we are just interested in clustering accuracy, then,
for a topic model like LDA [Blei et al., 2003], we can set the number of topic multinomials to be some
parameter K (e.g. fifty topics for the Twenty Newsgroup [Lang, 1995] dataset with 20 classes) and use a
clustering quality metric like purity or normalized mutual information [Manning et al., 2008] as a meta
model to analyze EM. We also use a similar criteria for evaluating topic models from a summarization
perspective using the widely used automatic ROUGE [Lin and Hovy, 2003] evaluation for problems on
multi-document text summarization as well as summarizing videos to text (see Chapters 5 and 6).

A very recent but mostly theoretical research on the amount of data needed to learn the parameters
of a topic model is mentioned in Section 2.7.2.
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2.4 Bayes Estimator and its Relation to Posterior
The main idea behind building several models to describe the causal phenomenon of the same observed
dataset X is to explore several different families of the parameters θ which explain the statistical mo-
ments (mainly the first and second order) of the observations as best as possible. A decision is then taken
to choose one these models from based on some value of a loss function.

The parameter θ is thought to be an unknown, but fixed, quantity. A random sample {x1,x2, ...,xn}
is drawn from a population indexed by θ and based on the sample, knowledge about the value of θ is
obtained. In the Bayesian approach θ is considered to be a random quantity whose variation can be
described by a prior probability distribution imposed over it. A sample is then taken from a population
indexed by θ and the prior distribution is updated with information obtained from the statistics of this
sample. If we denote the prior distribution by p(θ) and the sampling distribution by p(X|θ), then the
posterior distribution i.e. the conditional distribution of θ given the sample, X, is

p(θ|X) =
p(X|θ)p(θ)

A(X)
(2.42)

where, A(X) is the marginal distribution of X i.e. the normalizer used to make p a valid probability
distribution and is defined as:

A(X) =

∫
p(X|θ)p(θ)dθ (2.43)

Notice that the posterior distribution is a conditional distribution, conditional upon observing the
sample. The posterior distribution can now be used to make statements about θ which is still a random
quantity. For example the mean of the posterior distribution can be used as a point estimate for θ.

Loss Function Optimality: Generally point estimators are based on their mean squared error perfor-
mance which is defined as follows:

Definition 2.4.1. The mean squared error (MSE) of an estimator Υ ≡ Υ(X) of a parameter θ is defined
by the function Ep(X|θ)

[
(Υ− θ)2

]
The mean squared error is analytically tractable and can be decomposed into terms that represent

the bias which measures the accuracy and variance which measures the precision of the estimator as
shown in Equ. 2.44.

Ep(X|θ)

[
(Υ− θ)2] = V arp(X|θ)(Υ) + (Ep(X|θ)[Υ]− θ)2 = V arp(X|θ)(Υ) + (Biasp(X|θ)(Υ))2

(2.44)

The bias of a point estimator Υ of a parameter θ is the difference between the expected value of Υ

and θ. Needless to mention that a good estimator should have both a low bias as well as a low variance.
However, mean squared error is only a special case of an error function or loss function. After a set of
samples X = x has been observed, where X ∼ p(X|θ), θ ∈ Θ, a decision, ∆, is made regarding θ.
The set of allowable decisions form the action space A.

The quality of an estimator is measured by its risk function in a loss function formulation—for an
estimator Υ(X) of θ, the risk function can be written as:

R(θ,Υ) = Ep(X|θ)[L(θ,Υ(X))] (2.45)
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where the expectation is over X. Thus the risk function is the average loss that is incurred if the
estimator Υ(X) is used given a particular θ. Since the true value of θ is unknown, our goal is to use an
estimator that has a small value of R(θ,Υ) for all values of θ. Different estimators are just compared
based on the values of some predefined risk functions. For example, if we build a topic model with K1

topics and another with K2 topics, then we can make a decision on which model to choose based on
how high the relative log likelihoods of the observations in an held-out test set are under the respective
models. For squared error loss, the risk function is the Mean Squared Error (MSE). The MSE of an
estimator is just Ep(X|θ)[L(θ,Υ(X))] = R(θ,Υ) if L(Υ(X) = u,θ) = ||u− θ||2.

The problem of loss function optimality can also be defined through a Bayesian approach where
there typically is a prior distribution p(θ). In a Bayesian approach this prior distribution is used to
compute an average risk, LBayes, known as the Bayes risk defined as:

LBayes =

∫
θ∈Θ

R(θ,Υ)p(θ)dθ (2.46)

Averaging the risk function gives us a number for assessing the the performance of an estimator
w.r.t a given loss function. An estimator that yields the smallest value of Bayes risk is called the Bayes
rule w.r.t. a prior p(θ) and is often denoted as ∆p(θ) [Casella and Berger, 2001].

For X ∼ p(X|θ) and θ ∼ p(θ), the Bayes risk of choosing a decision rule ∆ can be written as∫
θ∈Θ

R(θ,∆)p(θ)dθ =

∫
θ∈Θ

(∫
X
L(θ,∆(X))p(X|θ)dX

)
p(θ)dθ (2.47)

Now if we write p(X|θ)p(θ) = p(θ|X)p(X), where p(θ|X) is the posterior distribution of θ and
p(X) is the marginal distribution of X, we can write the Bayes risk as∫

θ∈Θ

R(θ,∆)p(θ)dθ =

∫
X

(∫
θ∈Θ

L(θ,∆(X))p(θ|X)dθ

)
p(X)dX (2.48)

The quantity
∫
theta∈Θ

L(θ,∆(X))p(θ|X)dθ in Equ. 2.48 is the expected value of the loss function
with respect to the posterior distribution over θ and is called the posterior expected loss. It is a function
of X only and not a function of θ. Thus for each random sample X, if we choose the action ∆(X) to
minimize the posterior expected loss, we will minimize Bayes risk. Hence for a given observation x, the
Bayes rule minimizes posterior expected loss.

The loss function optimality also is very closely related to the classical hypothesis testing problem
which focuses on two allowable actions—given a null hypothesis H0, we have to make a choice between
“accepting H0” or “rejecting H0.” If the first choice corresponds to taking an action a0 and the latter
corresponds to taking an action a1, then the action space in hypothesis testing is the is the two point
set A = {a0, a1}. The decision rule δ(X) in this case is the hypothesis test which is a function of the
sample space X and takes only two values, a0 and a1. The set of sample values {x : δ(X) = a0} is
the acceptance region w.r.t the hypothesis test while the set of sample values {x : δ(X) = a1} is the
rejection region w.r.t the hypothesis test.

The loss function in this case can be written as:

L(θ, a0) =

0, if θ ∈ Θ0

c2, if θ ∈ Θ̂0

L(θ, a1) =

c1, if θ ∈ Θ0

0, if θ ∈ Θ̂0

(2.49)
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where Θ0 is the parameter space of the null hypothesis and Θ̂0 is the parameter space of the alternative
hypothesis. In this definition of the loss function, c1 is the cost of a Type 1 error i.e. the error of falsely
rejecting H0 and c2 is the cost of a Type 2 error i.e. the error of falsely accepting H0. The ratio c2/c1 is
more a relevant quantity to evaluate rather than individual errors. The risk function associated with the
loss function expressions in Equ. 2.49 can similarly be written as:

R(θ, δ) =

0× p(X|θ)(δ(X) = a0) + c1 × p(X|θ)(δ(X) = a1), if θ ∈ θ0

c2 × p(X|θ)(δ(X) = a0) + 0× p(X|θ)(δ(X) = a1), if θ ∈ θ̂0

(2.50)

2.5 Bayesian vs. Frequentist
Building upon the discussion on loss function optimality in the previous section, we highlight a few key
differences between two classical schools of machine learning—the Bayesian perspective vis-a-vis the
frequentist perspective. The differences can be summarized as follows:

Bayesian perspective:

1. It is a conditional perspective: The inferences are made conditional on the current data

2. Usefulness: It is natural to use Bayesian modeling for a project which involves one or more
domain experts

3. It has an optimistic viewpoint: Given the current dataset, make the best possible use of
sophisticated inference tools to provide for a best fit of the validation data to the model.

Frequentist perspective:

1. It has an unconditional perspective: The inferential methods are supposed to produce good
answers in repeated use

2. Usefulness: It is natural to use the frequentist perspective in the setting of writing software
that will be used by many people with many data sets

3. It has a pessimistic viewpoint: protect ourselves against bad decisions by averaging out
the randomness about the sample space given that the inference procedure is based on a
simplification of reality

Decision theoretic perspective:

1. Define a family of probability models for the input sample x, indexed by a “parameter” θ

2. Define a “procedure” ∆(X) that operates on the data to produce a decision H(X); H(X)

is often called a hypothesis belonging to a (infinite in case of real valued parameters) hy-
pothesis spaceH

3. Define a loss function: L(∆(X),θ)

Using the notations in Section 2.4, the procedure ∆(X) amounts to computing a statistic Υ(X) through
H(x) which best estimates the parameters θ of a model. The goal, then, is to use the loss function to
compare procedures and hence computing the sufficient statics, but both of its arguments are unknown.
The input space X from which X is drawn is definitely unknown and θ is also unknown since we do

38



not also know about the exact distribution that generated the data. The question then arises: “how can
we optimize over the loss function to choose the right hypothesis H(x) to compute Υ?” These two
unknowns give rise to two perspectives—either we start with computing Υ(X) or we start with θ.

From the frequentist perspective, we fix θ and take expectation over X in terms of Υ(X) w.r.t. a
particular θ. The randomness about X thus goes away. In other words we have the following:

R(θ,Υ) = Ep(X|θ)[L(Υ(X),θ)|θ] (2.51)

Note here that R(θ) is still not a single number since it is dependent on a particular distribution from
among a family of distributions indexed by θ.

From the Bayesian perspective, it is fine to put a distribution over θ and integrate out the randomness
over θ given X. This gives rise to a single number R′(X) which is called Bayesian Risk which is
conditioned on X. Thus we can optimize over Υ(X) having defined R′(X) as:

R′(X) = Ep(θ|X)[L(Υ(X),θ|X)] (2.52)

It is interesting to note that we can plug-in R(θ,Υ) from Equ. 2.51 to further refine R′(X) and vice
versa for Υ(X) and keep iterating. Doing this yields exactly the same conclusion provided the integrals
exist in their respective domains [Fubini, 1958] .

2.6 Expectation Maximization (EM) and variational Bayesian EM
(VBEM)

The Expectation Maximization (EM) [Dempster et al., 1977] machinery is an algorithm rather than a
direct point estimator that is based on the idea of reducing the difficulty of a likelihood maximization,
usually those involving hidden state variables, with a sequence of easier maximizations whose limit
yields the answer to the first problem.

Let us consider a scenario where Z = (z1, ..., zn) are the hidden variables and X = (x1, ...,xm)

are the observed data, making (Z,X) the complete data. The densities p(.|θ) of X and p(.|θ) of (Z,X)

have the relationship

p(X|θ) =

∫
p(Z,X|θ)dZ (2.53)

with sums replacing integrals in the discrete case. As for the likelihoods, L(X|θ) =
∏

X∈X p(X|θ)

is the incomplete-data likelihood and L(Z,X|θ) =
∏

(Z,X)∈{(Z,X)} p(z,x|θ) is the complete data like-
lihood. In almost all practical problems of interest, the likelihood L(X|θ) =

∫
Z
L(Z,X|θ)dZ =∫

Z
L(X|Z,θ)p(Z|θ)dZ is difficult to work with in the presence of hidden indicator variables due to

exponential configurations of the state space over which the true posteriors over the indicators need to
be searched given the input samples. The EM algorithm allows us to maximize the incomplete data
log-likelihood L(X|θ) by working only with the complete data log-likelihood L(X,Z|θ).

Let us now give an example of the EM algorithm through a discussion on a hypothetical scenario.

Example 2.6.1. Suppose we observe the number of queries submitted to a search engine pertaining to
flu that is represented by the random variables X = {x1, x2, ...xN}. The xis are mutually independent.
Suppose xi ∼ Poisson(βτi) where the underlying rate of query submission is a function of an overall
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effect β and an additional factor τi which can be the number of over the counter cold medications
distributed in area i. We do not observe τi but obtain information on it through the random variables
Z = {z1, z2, ..., zN} with zi ∼ Poisson(τi). The zis are also mutually independent.

Discussion: The joint probability mass function (pmf) can be written as:

f ((z1, x1), (z2, x2), ...(zN , xN )|β, τz1 , τz2 , ..., τzN ) =

N∏
n=1

e−βτn(βτn)xn

xn!

e−τn(τn)zn

zn!
(2.54)

The likelihood can be obtained by differentiation yielding:

β̂ =

∑N
n=1 xn∑N
n=1 zn

and τ̂n =
zn + xn

1 + β̂
(2.55)

where we use the maximum likelihood estimates:

β̂ =

∑N
n=1 xn∑N
n=1 τn

and τ̂n =
zn + xn
1 + β

with
N∑
n=1

τn =

∑N
n=1 xn +

∑N
n=1 zn

1 + β
(2.56)

Now suppose that the value of z1 is missing. The question is then how well can the model parame-
ters β and τ be estimated? Of course we can ignore xi and proceed with the usual maximum likelihood
solution on n−1 data points but that will only make our estimate poorer. Additionally this latter approach
cannot be used when all zis have missing values.

In this scenario, we will want to maximize the incomplete-data likelihood which can be written as

∞∑
z1=0

f((z1, x1), (z2, x2), ...(zN , xN )|β, τ1, τ2, ..., τN ) (2.57)

where the incomplete-data is (x1, (z2, x2), ...(zN , xN )). Let us now write down the incomplete-data
likelihood:

L =

[
N∏
n=1

e−βτi(βτi)
xn

xn!

][
N∏
n=2

e−τn(τn)zn

zn!

]
(2.58)

As before, taking derivatives leads to the maximum likelihood estimates:

β̂ =

∑N
n=1 xn∑N
n=1 τ̂n

, x1 = τ̂1β̂,

zj + xj = τ̂j(β̂ + 1), j = 2, 3, ..., N (2.59)

which now can be solved using the EM algorithm.

The EM algorithm in its general form: The EM algorithm allows us to maximize L(X|θ) by working
only with L(Z,X|θ) and the conditional distribution of Z given X and θ. This conditional turns out to
be the posterior distribution of Z given X and θ in case of exact EM which is denoted by q(Z|θ,X) =
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L(Z,X|θ)
L(X|θ) and we have:

logL(X|θ) = logL(Z,X|θ)− log q(Z|θ,X) (2.60)

As Z is missing data, we replace the right hand side of Equ. 2.60 with its expectation under q(Z|θ,X)

creating the new identity

logL(X|θ) = Eq[logL(Z,X|θ)]− Eq[log q(Z|θ,X)] (2.61)

where the expression −Eq[log q(Z|θ,X) is simply the entropy of the q distribution over the posterior
for Z. For the algorithm to proceed, we select an initial value θ(0), we create a sequence θ(t) according
to

θ(t+1) = arg max
θ

Eq(Z|θ(t),X)[logL(Z,X|θ)] (2.62)

The E-step of the algorithm computes the expected log likelihood and the M-step finds its maximum

w.r.t the parameters. This sequence of maximums {θ̂
(t)
} satisfy:

L(X|θ̂
(t+1)

) ≥ L(X|θ̂
(t)

) (2.63)

with the equality holding iff Eq(Z|θ(t),X)[logL(Z,X|θ(t+1))] = Eq(Z|θ(t),X)[logL(Z,X|θ(t))]. To
validate this we proceed as follows. At time step t, we have:

logL(X|θ) = E
q(Z|θ̂(t),X)

[logL(Z,X|θ)]− Eq(Z|θ(t),X)[log q(Z|θ,X)] (2.64)

The next iterate θ̂
(t+1)

is obtained by maximizing the new complete-data log likelihood. Thus for any

θ, E
q(Z|θ̂(t)

,X)
[logL(Z,X|θ̂

(t+1)
)] ≥ E

q(Z|θ̂(t)
,X)

[logL(Z,X|θ)].

Now, if p and q are densities, since logarithm is a concave function, from Jensen’s inequality we
have ∫

log

(
p(x)

q(x)

)
q(x)dx ≤ log

∫ (
p(x)

q(x)

)
q(x)dx = log

∫
p(x)dx = 0

=⇒
∫

log[p(x)]q(x)dx ≤
∫

log[q(x)]q(x)dx (2.65)

We thus have:

E
q(Z|θ̂(t),X)

[logL(Z|θ,X)] =

∫
log[q(Z|θ,X)]q(Z|θ̂

(t)
,X) ≤

∫
log[q(Z|θ̂

(t)
,X)]q(Z|θ̂

(t)
,X)

(2.66)

∴
∫

log[q(Z|θ̂
(t+1)

,X)]q(Z|θ̂
(t)
,X) ≤

∫
log[q(Z|θ̂

(t)
,X)]q(Z|θ̂

(t)
,X)

This implies that the second term in the right hand side of Equ. 2.64 is always decreasing. The

sequence of iterates {θ̂
(t)
} thus monotonically improves the log likelihood under the application of the

EM algorithm.

Returning to the problem scenario at hand, let us denote (z,x) = ((z1, x1), (z2, x2), ...(zN , xN ))
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to be the complete data and (z(−1),x) = (x1, (z2, x2), ...(zN , xN )) to be the incomplete data.

Eq(z1|x,θ)[logL(z,x|z(−1),x,Θ)] =

∞∑
z1=0

log

(
N∏
n=1

e−βτi(βτi)
xn

xn!

e−τn(τn)zn

zn!

)
e−τ

(t)
1 (τ

(t)
1 )z1

z1!

=

N∑
n=1

[−βτn + xn(log β + log τn)− log xn!] +

N∑
n=2

[−τn + zn log τn − log zn!]

+

∞∑
z1=0

[−τ1 + z1 log τ1 − log z1!]
e−τ

(t)
1 (τ

(t)
1 )z1

z1!

=

(
N∑
n=1

[−βτn + xn(log β + log τn)] +

N∑
n=2

[τnzn log τn]

+

∞∑
z1=0

[−τ1 + z1 log τ1]
e−τ

(t)
1 (τ

(t)
1 )z1

z1!

)
(2.67)

−

(
N∑
n=1

log xn! +

N∑
n=2

log zn! +

∞∑
z1=0

[log z1!]
e−τ

(t)
1 (τ

(t)
1 )z1

z1!

)

where in the last equality we have grouped together terms involving β and τn and terms that do
not involve these parameters. To maximize w.r.t β and τn, we have to consider only the terms in the

first parenthesis. Next we note that −τ1 + log τ1
∑∞
x1=0 x1

e−τ
(t)
1 (τ

(t)
1 )z1

x1! = −τ1 + τ
(t)
1 log τ1 since∑∞

z1=0 z1
e−τ

(t)
1 (τ

(t)
1 )z1

z1! is the mean for the Poisson distribution for Z1. When we substitute this into
Equ. 2.67 we see that the expected complete-data likelihood is the same as the original complete-data
likelihood with z1 replaced by τ (t)

1 . Thus, following Equs. 2.55, in the tth step, the ML estimates are
given by:

β̂(t+1) =

∑N
n=1 xn

τ
(t)
1 +

∑N
n=2 zn

, τ̂
(t+1)
1 =

τ̂
(t)
1 + x1

1 + β̂(t+1)

τ̂
(t+1)
j =

zj + xj

1 + β̂(t+1)
∀j = 2, 3, ..., N (2.68)

The properties of the EM algorithm assures us that the sequence (β̂(t), τ̂
(t)
1 , τ̂

(t)
2 , ..., τ̂

(t)
N ) converges to

the incomplete-data MLE as t→∞.
We next state an important theorem that emphasizes why an algorithm like EM is useful in the

course of topical analysis of unstructured data.

De Finneti’s theorem: Let X be observed variables and further assume that the variables are exchange-
able. By DeFinneti’s theorem, there should be an underlying parameter θ that gives rise to the observa-
tions. This means that the joint distribution of an infinitely exchangeable sequence of random variables
is as if a random parameter were drawn from some distribution and then the random variables in question
are independent and identically distributed, conditioned on that parameter. For a proof of the theorem
see [Feller, 1968]. The elegance of this theorem is that it justifies the principle for hierarchical Bayesian
modeling as well as the use of the EM machinery to find a local optimum for the hidden state space
variables.

De Finneti’s theorem actually explains how a basic topic model like LDA [Blei et al., 2003] has a
representation that intuitively gives rise to the latent space or topic within the document collection. In
LDA, we assume that words are generated by topics (fixed conditional distributions) and that those topics
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are infinitely exchangeable within a document. By De Finnetti’s theorem, the probability of a sequence
of words and topics must therefore have the form:

p(zd,wd) =

∫
p(θd)

Nd∏
n=1

p(zd,n, wd,n|θd)dθd (2.69)

where θd is the random parameter of a multinomial over topics defined for each document d; wd,n is
the observed word in position n in document d and the latent (hidden) variable zd,n is the topic indicator
for wd,n.

Note: If an identically distributed sequence is independent, then the sequence is exchangeable; however,
the converse is false—there exist exchangeable random variables that are statistically dependent, for
example the Polya urn model which is just the opposite of sampling without replacement exhibits “the
rich getting richer” phenomenon.

We next mention the basics of the techniques underlying parameter estimations of all models used
in this thesis. The crux of these techniques revolve around the central theme that the original problem
of finding the marginal likelihood of the data given the parameters by integrating out the uncertainties
over the hidden variables (and parameters in case of priors) is intractable and thus a new functional is
formulated which acts as a lower bound on the original problem. This introduces expectations of the
complete data log likelihood which are to be taken under the distributions over the hidden variables
and/or parameters (in the case of priors) and the estimates of the lower bound are iteratively refined
using the EM algorithm and its variational variants [Beal, 2003, Wainwright and Jordan, 2008].

2.6.1 Finding a lower bound to the log likelihood
The log likelihood function which is just a statistic of the data can be written as:

L(X|θ) = ln p(X|θ) =

N∑
n=1

ln

∫
p(xn, zn|θ)dzn (2.70)

where zn are the hidden variables corresponding to the xns. Previously, in absence of hidden variables,
we have sought a maximum likelihood setting of θ such that

θML ≡ arg max
θ

L(θ) (2.71)

In the case of incomplete data, the hidden variables often encode the latent state of the observations
and give us an idea as to what factor may be responsible for generating the datum by inspecting other
observations generated from the same factor. The problem with the hidden variables is that if there are
many such variables, the integral (or sum) over those variables may be intractable—a classic example
of which can be found in the seminal work of Blei and Jordan on probabilistic topic models [Blei et al.,
2003]. This implies that computing the log partition function A(θ) is intractable.

To avoid the problem of intractability, we often optimize a lower bound on the likelihood function
instead. The hallmark of variational methods in performing this kind of optimization is the consideration
of a simpler dual representation such as treating hidden variables as marginally independent. These
variables in the dual formulation are each endowed with their own distributions with “free” parameters
(c.f. the distribution q in Equ. 2.72 with variational parameters φ) and the approximation to the actual
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posterior probability of these variables are obtained through computing expectations over these “free”
variational distributions subject to probability measure constraints. Any valid mean parameter specifies
a lower bound on the log partition function.

Note that variational methods do not automatically induce any approximation, however, for a large
class of practical models, exact computation of the marginal (i.e. the integral in Equ. 2.70) is not feasible
in polynomial time. Finding the lower bound often exploits Jensen’s inequality for convex (and hence
log concave) functions and is obtained in the following way:

L(X|θ) =

N∑
n=1

ln

∫
p(xn, zn|θ)dzn

=

N∑
n=1

ln

∫
q(zn|φn)

p(xn, zn|θ)

q(zn|φn)
dzn

≥
N∑
n=1

∫
q(zn|φn) ln

p(xn, zn|θ)

q(zn|φn)
dzn

=

N∑
n=1

{∫
q(zn|φn) ln p(xn, zn|θ)−

∫
q(zn|φn) ln q(zn|φn)

}
= L(qz,θ) (2.72)

In all of our subsequent developments of newer topic models in this thesis, we will seek mathemat-
ical expressions for the lower bound of the form L(qz,θ) or L(qz, qθ,θ) and optimize it. The additional
qθ in L is used when priors over parameters are imposed in a more general hierarchical setting.

A class of methods called Mean Field optimization (see Section 2.6.6) is used which “break” the
original model structure and uses tractable free distributions over both the hidden variables and model
parameters with priors. Breaking the original graphical model structure means simply to remove the
edges between random variables that cause coupling under the D-separation criterion [Bishop, 2006,
Shachter, 1998] due to head-to-head arrows on a set of observed variables (see Fig. 2.3).

The second term together with the negative sign in Equ. 2.72, is the entropy of the q distribution
over the hidden variables z. What the lower bound L(qz,θ) then means is that the variational distribution
q tries to balance the two competing goals: assign values to the hidden variables z that have high proba-
bility under p(z,x) (the first term) and at the same time entertain a large number of distinct assignments
(the entropy term). The implications of this for the case of LDA is mentioned in Section 2.7.1.

2.6.2 EM for Exact Unconstrained Optimization
The Expectation-Maximization (EM) algorithm [Dempster et al., 1977] alternates between an E step,
which infers posterior distributions over hidden variables given a current parameter setting, and an M
step, which maximizes the data log likelihood with respect to θ given the statistics gathered from the E
step. Such a set of updates can be derived using the lower bound: at each iteration, the E step maximizes
F (qz,θ) with respect to each of the qzn ≡ q(zn|θ) distributions, and the M step does so with respect
to θ. Using a superscript (t) to denote iteration number, starting from some initial parameters θ(0), the
update equations are:

E-Step : q(t+1)
zn ← arg max

qzn

F (qz,θ
(t)) ∀n ∈ {1, ..., N} (2.73)
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M-Step : q
(t+1)
θ ← arg max

qzn

F (q(t+1)
z ,θ) (2.74)

For the EM algorithm in the exact case, the maximum over qzn can be obtained by setting

q(t+1)
zn = p(zn|xn,θ(t)), ∀n ∈ {1, ..., N} (2.75)

at which point the bound becomes an inequality. Thus the exact case means that the distribution qzn(zn)

over the hidden variables zn is the exact posterior distribution over zn given the model parameters θ and
the observations X.

Proof. We have
∫
qzndzn = 1, ∀i. The constraints on qzn can be imposed through N Lagrange multi-

pliers {λn}Nn=1 forming the new functional:

L̂(qz,θ) = L(qz,θ) +
∑
n

λn

(∫
qzndzn − 1

)
(2.76)

Differentiating Equ. 2.76 w.r.t. qzn , we have:

∂

∂qzn
L̂(qz,θ

(t)) = ln p(zn,xn|θ(t))− ln qzn − 1 + λn

=⇒ q(t+1)
zn = exp(−1 + λn)p(zn,xn|θ(t))

= p(zn|xn,θ(t)), ∀n (2.77)

where each λn is related to the normalization constant: λn = 1− ln
∫
p(zn,xn|θ(t))dzn, ∀n

The optimal parameters are obtained in the M-Step by setting the derivatives of Equ. 2.78 w.r.t θ to
zero.

M Step: θ(t+1) ← arg max
θ

∑
n

∫
p(zn|xn,θ(t)) ln p(zn,xn|θ)dzn (2.78)

Note that the optimization is over the second θ in the integrand while holding p(zn|xn,θ(t)) fixed.
It is interesting to note that the Langrange multipliers which are ascribed to the nodes zn (see Equ.
2.76) are nothing but messages passed to the them in order to evaluate the corresponding local marginal
distributions in a Belief Propagation framework [Zeng et al., 2011, Wainwright and Jordan, 2008].

Essentially L(qz,θ) acts as a functional which lower bounds L(θ) for any q(z|θ), attaining equality
after each E step. Here we have expressed the E step as obtaining the full distribution over the hidden
variables for each data point. However, in general, the M step may require only a few statistics of the
hidden variables and so only these need be computed in the E step. This is the case for topic models as
well.

2.6.3 EM for Approximate Constrained Optimization
In many real life modeling scenarios and datasets, interaction between multiple hidden variables need to
be explained which can result in intractable posterior distributions. Such situations easily arise in cases
where the graph is partitioned into cliques. In the variational approach we can constrain the posterior dis-
tributions to be of a particular tractable form, for example factorized over the variables zn = {zn,j}|zn|j=1

where |zn| is the number of variables in a partition of the graph to which zn belongs. Here we have
assumed N such partitions. This notation is a more general case to handle structured partitioning.
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The size of the set depends on the size of the partition and in most cases, it is a singleton with
{zn,j} = zn. Using calculus of variations we can still optimize the functional L(qz,θ) as a functional
of constrained distributions qzn which are n independent distributions over each of the zns. The M step,
which optimizes θ, is conceptually identical to that described in the previous section, except that it is
based on sufficient statistics calculated with respect to the constrained posterior qzn ≡ q(zn|φn) for
some variational parameter φn for each n instead of the exact posterior q(zn|θ). We can write the lower
bound for the exact posterior L(qz,θ) over θ as

L(qz|θ) =
∑
n

∫
q(zn|θ) ln

p(zn,xn|θ)

q(zn|θ)
dzn (2.79)

=
∑
n

∫
q(zn|θ) ln p(xn|θ)dzn +

∑
n

∫
q(zn|θ) ln

p(zn|xn,θ)

q(zn|θ)
dzn (2.80)

=
∑
n

ln p(xn|θ)−
∑
n

∫
q(zn|θ) ln

q(zn|θ)

p(zn|xn,θ)
dzn (2.81)

Thus in the E step, maximizing L(qz|θ) w.r.t. qzn(zn) is equivalent to minimizing

∫
qzn(zn) ln

qzn(zn)

p(zn|xn,θ)
dzn ≡ KL[qzn ||p(zn|xn,θ)] ≥ 0 (2.82)

which is the Kullback-Leibler divergence between the variational distribution qzn(zn) and the exact
posterior p(zn|xn,θ) over the hidden variables. The E step does not generally result in the bound
becoming an equality, unless of course the exact posterior lies in the family of constrained posteriors
q(z|φ) [Beal, 2003].

KL is an asymmetric measure of the difference between two probability distributions P and Q.
Specifically, the Kullback-Leibler divergence of Q from P is a measure of the information lost when
Q is used to approximate P : KL measures the expected number of extra bits required to code samples
from P when using a code based on Q, rather than using a code based on P . Typically P represents the
“true” distribution of data, observations, or a precisely calculated theoretical distribution. The measure
Q typically represents a theory, model, description, or approximation of P .

The KL divergence in the variational Bayesian setting is minimized globally over all terms in
the approximation. The consequence of this fact is very clearly elucidated in [Bishop, 2006] where
the factorized variational approximation tends to approximate the posterior by distributions which are
too compact. Suppose we have a bi-modal mixture of Gaussians with p(Z) following a bi-modal dis-
tribution. We try to fit a single Gaussian distribution q(Z) that best approximates p(Z). Using the
variational approximation framework to minimize KL(Q||P ) the mode of the unimodal Q distribu-
tion is identified with one of the modes of the P distribution. Naive minimization of KL(P ||Q)

on the other hand will tend to average across all the modes leading to very poor predictive distribu-
tions. These two forms of divergences belong to the so called α family of divergences defined by
Dα(P ||Q) = 4

1−α2

(
1−

∫
p(z)(1+α)/2q(z)(1−α)/2dz

)
where −∞ < α < ∞ and α ∈ R. The di-

vergence KL(Q||P ) corresponds to the limit α→ −1. For α ≤ −1, Dα(P ||Q) is “zero forcing” which
means that q(z) will seek modes of p(z) which have the largest mass. In practical applications, true pos-
terior distributions are multi-modal with most of the posterior probability mass (or density) concentrated
in some number of small regions in parameter space.

The M step in this approximate case is based on the current variational posterior over hidden vari-
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ables:

M Step: θ(t+1) ← arg max
θ

∑
n

∫
q(t+1)
zn (zn) ln p(zn,xn|θ)dzn (2.83)

As before, one can choose qzn(zn) to be in a particular parametrized family:

qzn = q(zn|λn) (2.84)

where λn = {λn1
, ..., λnK} are K variational parameters for each observation. If we constrain each

qzn(zn|λn) to have easily computable moments (e.g. a Multinomial or a Gaussian), and especially if
ln p(zn|xn,θ) is polynomial in zn, then we can compute the KL divergence up to a constant and can
take its derivatives with respect to the set of variational parameters λn of each qzn distribution to perform
the constrained E step.

The E step of the variational EM algorithm therefore consists of an inner-loop in which each
of the q(zn|λn) is optimized by taking derivatives with respect to each λn,k, for k = 1, ...,K.

2.6.4 EM for Maximum-A-Posteriori Learning and its Connection with VBEM
In Maximum-A-Posteriori (MAP) learning the parameter optimization includes prior information about
the parameters of p(θ) and the M step seeks to find

θMAP ≡ arg max
θ
p(θ)p(x|θ) (2.85)

given this prior. In the case of an exact E step, the M step is simply augmented to:

M Step: θ(t+1) ← arg max
θ

[ln p(θ) +
∑
n

∫
p(zn|yn,θ(t)) ln p(zn,xn|θ)dzn] (2.86)

In the case of a constrained approximate E step, the M step is given by

M Step: θ(t+1) ← arg max
θ

[ln p(θ) +
∑
n

∫
q(zn)(t+1) ln p(zn,xn|θ)dzn] (2.87)

Examples of this form of learning is presented in Chapter 4 in the context of parameter regularization
within the Tag2LDA class of models and later in Chapter 6 in the context of regularizing Gaussian
parameters with conjugate priors.

The same variational treatment can also be used to approximate the integrals required for Bayesian
learning involving priors over parameters. The basic idea is to approximate the distribution over both
hidden variables and parameters with simpler distributions, usually one which assumes that the hidden
states and parameters are independent given the data.

There are two main goals in approximate Bayesian learning. The first is approximating the marginal
likelihood of the data p(D|m) =

∏N
n=1 p(xn|θm) in order to perform model comparison over a family

of models m ∈ M where a model m is nothing but a set of parameters θm usually represented as
probability distributions. The second is approximating the posterior distribution over the parameters of a
model p(θ|X,m), which can then be used for prediction. This Bayesian prediction is a weighted average
of the individual predictions, with weights proportional to the posterior probability of each model.
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2.6.5 EM for Bayesian Learning using Variational distributions

In the Bayesian learning of models with hidden variables with variational distributions, we approximate
the true posterior over the hidden variables by distributions from some tractable family such that the
computation of the lower bound to the marginal log likelihood of the data remains feasible. Consider a
mixture model with parameters θ with some prior over them as p(θ) giving rise to observations x with
the latent components of the mixture being identified by the hidden (indicator) variables z. A lower
bound on the model log marginal likelihood can be written as:

ln p(x|θ) ≥ L(q(z), q(θ)) ≡
∫
q(z)q(θ) ln

p(z,x|θ)p(θ)

q(z)q(θ)
dθ (2.88)

The objective in Equ. 2.88 can be optimized using iterative techniques such as the fixed point
iteration scheme where we find the optimal settings over the approximate posteriors in the VBE step
and then using those posteriors as constant optimize the parameters in the VBM step during the (t)th

iteration. We thus have the following updates for the VBE and VBM steps:

VBE Step:

q(t+1)(z) =
1

Z(z)
exp

[∫
q(t)(θ) ln p(z,x|θ)dθ

]
(2.89)

where Z(z) is the normalizer to make q(t+1)(z) a probability distribution and is defined over hidden
variables z only. Further q(t+1)(z) =

∏N
n=1 q

(t+1)(zn). The proof is as follows:

∂

∂q(z)
L(q(z), q(θ)) =

∫
q(θ)

[
∂

∂q(z)

∫
q(z) ln

p(z,x|θ)

q(z)q(θ)
dz

]
dθ

=

∫
q(θ) [p(z,x|θ)− ln q(z)− 1] dθ (2.90)

= 0

This implies that:

ln q(t+1)(z) =

∫
q(t)(θ)p(z,x|θ)dθ − lnZ(t+1)(z) (2.91)

whereZ(t+1)(z) is the normalizer to enforce that q(t+1)(z) is a probability distribution using constraints
on the free q distributions with Lagrange Multipliers. The update in Equ. 2.91 is true for every nth

data point whence ln q(t+1)(z) =
∑N
n=1 ln q(t+1)(zn) and Z(t+1)(z) =

∏N
n=1Z(t+1)(zn) holds true

assuming i.i.d. property of the random variables.

Thus there is a unique stationary point for each q(zn) for a given qθ(θ). We now turn to the
expression for parameter updates in the VBM step.

VBM Step:

q(t+1)(θ) =
1

Z(θ)
exp

[∫
q(t+1)(z) ln p(z,x|θ)dz

]
p(θ) (2.92)
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The proof is as follows:

∂

∂q(θ)
L(q(z), q(θ)) =

∂

∂q(θ)

∫
q(θ)

[∫
q(z) ln p(z,x|θ)dz + ln p(θ)− ln q(θ)

]
dθ

=

∫
q(z) ln p(z,x|θ)dz + ln p(θ)− q(θ) + c (2.93)

= 0

where c is a constant independent of θ. Setting the derivative of Equ. 2.93 to zero, we have:

ln q(t+1)(θ) = ln p(θ) +

∫
q(t+1)(z) ln p(z,x|θ)dz− lnZ(t+1)(θ) (2.94)

where Z(t+1)(θ) is the normalisation constant attributed to the Lagrange multipliers which have been
omitted in the derivations above. Thus for a given q(z), there is a unique stationary point for q(θ).

2.6.6 Mean Parameters
In Section 2.1, we have seen that any exponential family member pθ ≡ p(X|θ) can be represented
by its vector of canonical parameters θ ∈ Θ. Additionally, any exponential family has an alternative
parameterization in terms of a vector of mean parameters. Moreover, statistical computations such
as marginalization and maximum likelihood estimation, can be understood as transforming from one
parameterization to the other [Wainwright and Jordan, 2008].

The mean parameter µα associated with a sufficient statistic Υα corresponding to a given density
pθ and an index set I, is defined by the expectation:

µα = Ep[Υα(X)] =

∫
Υα(X)p(X|θ)dX, ∀α ∈ I. (2.95)

We thus define a vector of mean parameters (µ1, ...,µd), one for each of the |I| = d sufficient statistics
Υα, with respect to an arbitrary density p(X|θ). Formally, the set defined as:

M = {µ ∈ R̃ | ∃ p s.t. Ep[Υα(X)] = µα, ∀α ∈ I} (2.96)

corresponds to all realizable mean parameters and the dimensionality of R̃ depends on the dimensional-
ity of the observations X and the moments computed w.r.t. it. This definition does not restrict the density
p to be associated with the exponential family corresponding to the sufficient statistics Υ. Equation 2.95
says that there is a single µα corresponding to a given p and Equ. 2.96 says that as p is varied, we obtain
a set of µαs.

Example 2.6.2. Using the canonical parameterization, for a Gaussian Markov Random field over ob-
servations with dimensionality B, i.e. X ∈ RB , the mean parameters are the second-order moment
matrix Σ = E[XXT ] ∈ RB×B , and the mean vector µ = E[X] ∈ RB . The mean parameter set in this
case is M = {(µ,Σ) ∈ RB × SB+ |Σ − µµT � 0} where SB+ denotes the set of B × B symmetric
positive semidefinite matrices.

Example 2.6.3. In the case of discrete random variables, the set M is convex. Particularly, for any
random vector (x1,x2, ...xN ) such that the associated state space X is finite, we have the following
representation for the mean parameter setM given that the underlying probability distribution belongs
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to the exponential family:

M =

{
µ ∈ R̃ |µ =

∑
X∈X

Υ(X)p(X|θ) for some p(X|θ) > 0 and
∑
X∈X

p(X|θ) = 1

}
= conv {Υ(X), X ∈ X} (2.97)

where conv(S) is the convex hull of a set S which is the smallest set that contains all its convex
combinations and by definition conv(S) is a convex set. When the state space XN is finite then M
is called the convex polytope [Wainwright and Jordan, 2008, Sontag and Jaakkola, 2007]. and the
geometric representation of a convex polytope is that of a convex polyhedron. Additionally an element of
a convex set is an extreme point if it cannot be expressed as a convex combination of two distinct elements
of the set. If we consider a graph with just three variables x1, x2 and x3, each independently drawn from
Bernoulli(0.5), i.e. p(x1, x2, x3) =

∏3
n=1 θ

xn(1 − θ)1−xn with θ = 0.5, then Υ(x) = {x1, x2, x3}
and M = conv{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} i.e. the cube
[0, 1]3. In this case, µ(θ) = (1/2, 1/2, 1/2) is obtained by a forward mapping (see Section 2.6.8) from
the canonical parameters, θ, of the distribution over X and Υ(x) consists of all the extreme points where
the joint probability distribution puts its most mass on. The mean parameter of the joint probability
distribution, µ(θ) in this case, can also be visualized as the point of intersection of the normals to the
faces of the unit cube pointing inwards from the mid point of each of the six faces. A simple but more
detailed illustration is provided at the end of Section 2.6.9.

Intuition behind Equ. 2.97: Our goal is to understand the phenomenon behind the observations. How-
ever, neither we know what the actual form of θ is nor we know the exact extremum for such a function—
we only observe samples X drawn from the distribution of X albeit with inherent noise. We assume a
generative process for this X which gives rise to a particular graphical model structure with underlying
assumptions and parameters. If we had known the true causal distribution with parameter, say θ?, then
using Equ. 2.97 we compute a convex hull of Υ(X) by taking each possible configuration of the discrete
random variable X. The extreme points µe gives rise to the intersection of the boundaries of this convex
hull and the problem thus becomes a optimization problem over the space bounded by this convex hull
such that θ? = µ̂ where µ̂ ∈ conv{Υ(X)}.

We thus have the following at our disposal:
• It is easy to obtain sufficient statistics Υ(X) if p(X|θ) is in exponential family by using Factorization
theorem (Theorem 2.2.1).
• If the posterior distributions over the hidden variables (and parameters) also belong to exponential
family then expectations of these sufficient statistics w.r.t the posterior can be computed (Theorem 2.1.1).
• The use of exponential family distributions is validated by Maximum Entropy principle (Section 2.1).

These operations lead us to obtain an understanding of population parameter θ? through optimizing
over the set ofM in a way which is computationally tractable.

2.6.7 Significance of Mean Parameters on Inference Problems
A fundamental class of inference problems in exponential family models is the computation of the for-
ward mapping: the mapping from the canonical parameters θ ∈ Θ to the mean parameters µ ∈M. The
backward mapping from mean parameters to canonical parameters also is very significant. In particular,
suppose that we are given a set of samples X = {x1, ...,xN}, drawn independently from an exponential
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family member p(X|θ), where the parameter θ is unknown. The principle of maximum likelihood dic-
tates that to obtain the estimate θ̂ of θ, one needs to maximize the likelihood function of the data given
by L(X|θ) =

∏N
n=1 p(xn|θ) in its logarithmic and rescaled version as:

L(X|θ) =
1

N

N∑
n=1

log p(xn|θ) = µ̂Tθ −A(θ) (2.98)

where µ̂ = 1
N

∑N
n=1E[Υ(xn)] is the vector of empirical mean parameters defined by the data X. The

maximum likelihood estimate θ̂ is chosen to achieve the maximum of this objective function. Computing
θ̂ is a challenging problem since the objective function involves the log partition function A which is
the normalizer used to obtain valid probability distributions and computed through marginalization over
observations.

Among several techniques, the EM algorithm is a practical tool to find maximum likelihood estimates
of estimators involving incomplete data i.e. observations with hidden state space variables. Under
suitable conditions, the maximum likelihood estimate is unique, and specified by the stationarity con-
dition Ep(X|θ̂)[Υ(X)] = µ̂. Finding the unique solution to this equation is equivalent to computing
the backward mapping µ ∈M→ θ ∈ Θ: from mean parameters to canonical parameters.

In general, computing this inverse mapping is also computationally intensive particularly while inferring
states on datasets with missing values.

Properties of A(θ): The most important property of A is its convexity for exponential family distri-
butions. Under suitable conditions, the derivatives of the function A and its conjugate dual A? define a
one-to-one and surjective mapping between the canonical and mean parameters [Wainwright and Jordan,
2008]. The conjugate dual function A? of the function A is defined as:

A?(µ) = sup
θ∈Θ

{
µTθ −A(θ)

}
(2.99)

Here µ is a fixed vector of dual variables of the same dimension as θ that are computable from the
dataset at hand. The conjugate function of any function f(x) is the function f(y) defined as f(y) =

sup
x∈X
{yTx− f(x)} where, the supremum can be obtained by maximizing yTx− f(x) over X.

2.6.8 What does Forward Mapping of Canonical to Mean Parameters mean?
Forward mapping of the canonical parameters θ ∈ Θ, which define a distribution p(θ), to the mean
parameters µ essentially tries to determine that for which mean parameter vectors µ ∈M do there exist
a vector θ = θ(µ) ∈ Θ such that Ep(X|θ)[Υ(X)] = µ.

The mapping is defined in terms of the log partition function A(θ) where − ln g(θ) = A(θ) in
which g(θ) is defined in Equ. 2.4 and that ∇A(θ) = Ep(X|θ)[Υ(X)]. To answer this theoretical
question, it asks the following two important questions:

a) when does∇A define a one-to-one mapping?
b) when does the image of Θ under the mapping∇A i.e. the set ∇A(Θ), fully cover the setM?

where M is defined as before in Equ. 2.96 in the following way: M = {µ ∈
R̃ | ∃ p s. t. Ep(X|θ)[Υα(X)] = µα, ∀α ∈ I}.

The answer to the first question depends on whether or not the exponential family is minimal [Wain-
wright and Jordan, 2008].
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Minimal Exponential Family: A minimal exponential family is an exponential family of distributions
where there is an unique parameter vector θ associated with each corresponding distribution i.e. the
components of sufficient statistics ensemble, Υα, form a basis.

The answer to the second question which concerns itself with the image of ∇A(Θ) is simply the
interiorMi of the constraint set of realizable mean parametersM [Wainwright and Jordan, 2008]. This
fact is quite significant in that it means that (disregarding boundary points) all mean parameters M
that are realizable by some distribution can be realized by a member of the exponential family. So we
need only bother ourselves with distributions from the exponential family to be ascribed to the random
variables in the graphical model or by artificially representing interactions between random variables
through some exponential function and normalizing the interactions to induce a valid probability mea-
sure. Proposition 2.6.1 and Theorem 2.6.1 both of which are stated and proved in [Wainwright and
Jordan, 2008] also reinforces the answer to the second question.

Proposition 2.6.1. The gradient mapping ∇A : Θ → M is one-to-one if and only if the exponential
representation is minimal.

Theorem 2.6.1. In a minimal exponential family, the gradient map ∇A is onto the interior of M,
denoted by Mi. Consequently, for each µ ∈ Mi, there exists some θ = θ(µ) ∈ Θ such that
Ep(X|θ)[Υ(x)] = µ.

Theorem 2.6.1 is important since it guarantees that for minimal exponential families, each mean
parameter µ ∈Mi is uniquely realized by some density p(X|θ(µ)) in the exponential family. However,
a typical exponential family {p(X|θ)|θ ∈ Θ} describes only a strict subset of all possible densities. In
this case, there must exist at least some other density p which is not a member of an exponential family
that also realizes µ. However, what differentiates an exponential distribution p(X|θ(µ)) is that, among
the set of all distributions that realize µ, it has the maximum entropy.

2.6.9 Conjugate Duality
The notion of conjugate dual functions plays a very important role in the field of convex analysis [Boyd
and Vandenberghe, 2004, Nocedal and Wright, 2006]. As mentioned in Equ. 2.99, the conjugate dual
function A?(µ) for the log partition function A(θ) expressed as a function of an extremum of θ ∈ Θ is
defined as follows:

A?(µ) = sup
θ∈Θ

{
µTθ −A(θ)

}
(2.100)

The dual variables µ has the same dimensionality as θ and has a natural interpretation in terms of mean
parameters. For example, finding the parameters of a model by maximizing the log likelihood statistic
is sensible only when the vector µ belongs to the set M such as the vector of empirical moments
µ̂ = 1

N

∑N
n=1 Υ(xn) induced by a dataset X consisting of N sample points. Also the conjugate dual

function is very closely related to Shannon’s entropy as elucidated by Theorem 2.6.2 (see [Wainwright
and Jordan, 2008] for proof).

Theorem 2.6.2.

a) For any µ ∈ Mi, the interior ofM, denote by θ(µ) the unique canonical parameter satisfying the
dual matching condition Ep(X|θ(µ)))[Υ(X)] = ∇A(θ(µ)) = µ. The conjugate dual function A?
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takes the form:

A?(µ) =

−H(p(X|θ(µ))) if µ ∈Mi {Mi = interior(M)}

+∞ if µ /∈MC {MC = closure(M)}
(2.101)

For any boundary point µ ∈ MC\Mi, we have A?(µ) = limn→+∞A
?(µ(n)) taken over any

sequence {µ(n)} ∈ Mi converging to µ.

b) In terms of this dual, the log partition function A(θ) has the variational representation in terms of an
extremum of µ ∈M as:

A(θ) = sup
µ∈M

{
θTµ−A?(µ)

}
(2.102)

c) For all θ ∈ Θ, the supremum in Equ. 2.102 is attained uniquely at the vector µ ∈ Mi specified by
the moment matching conditions

µ =

∫
X∈X

Υ(X)p(X|θ)dX = Ep(X|θ)[Υ(X)] (2.103)

The main result of Theorem 2.6.2 is that when µ ∈ Mi, the interior of M, the value of the
dual function A?(µ) is precisely the negative entropy of the exponential family distribution p(X|θ(µ)),
where θ(µ) is the unique vector of canonical parameters satisfying the relation Ep(X|θ(µ))[Υ(X)] =

∇A(θ(µ)) = µ.
The value of −A?(µ) corresponds to the optimum of the maximum entropy problem, where µ

parameterizes the constraint set. The event A?(µ) = +∞ corresponds to infeasibility of the maximum
entropy problem. Thus, the take home message is that it is sufficient to maximize over the set M, as
expressed in the variational representation Equ. 2.102. This fact implies that the structure of the setM
plays a critical role in determining the complexity of computing the log partition function.

The gradient mapping∇A maps Θ in a one-to-one manner ontoMi, whereas the inverse mapping
from Mi to Θ is given by the gradient ∇A? of the dual function. This flow of mappings in between
sets can be visualized as: µ → (∇A)−1(µ) → θ(µ) → −H(p(X|θ(µ))) → A?(µ). In many models
of interest, A(θ) is not feasible to compute because of the complexity ofM or the lack of any explicit
form for A∗(µ). However, we can bound A(θ) using:

A(θ) ≥
{
θTµ−A?(µ)

}
(2.104)

for any mean parameter µ ∈ M. The tightness of this bound is measured by a Kullback-Leibler
divergence expressed in terms of the dual representation of the parameters as:

KL(p(X|θ(µ))||p(X|θ)) = Ep(X|θ(µ))[log p(X|θ(µ))− log p(X|θ)]

= θ(µ)Tµ−A(θ(µ))− θTµ+A(θ)

= A(θ)− θTµ+A∗(µ) (2.105)

Computing the dual value A?(µ̌) at some point µ̌ ∈ Mi requires computing the inverse map-
ping (∇A)−1(µ̌). This is in itself a nontrivial problem, and then evaluating the entropy requires high-
dimensional integration for general graphical models. These difficulties motivate the use of approx-
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imations to M and A?. The Naive Mean Field procedure (see Section 2.6.11) induces the simplest
form of approximations to restrict the structure of the constraint setM so as to enforce tractability in
computing moments. Figure 2.2 illustrates these ideas for a discrete three dimensional random variable
Z = {z1, z2, z3}.
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Figure 2.2: Simple illustration on forward mapping from canonical parameters to mean parameters and
vice versa. We consider a distribution over the discrete random variable Z = {z1, z2, z3} as a product
of three independent Bernoulli distributions. The realizations of the binary random variables zi form
the corners of the marginal polytope (shown here without any constraint cutting planes which would
typically arise out of the constraints on each of the µis ∈ [0, 1]. Given a biased coin with probability
of heads being 0.8, we are more likely to observe realizations of Z which have more ones. The red
shadow bubbles beneath each of the red nodes in the [0, 1] cube on the left are indicative of this. The
forward mapping is shown at the bottom right half of the illustration where the darker rows are indicative
of more probable configurations of Z. The value of the mean parameter µ will tend to the true mean
with a value of (0.8, 0.8, 0.8) of the generating distribution as we observe an infinite number of samples
with more and more configurations of two or more ones. This problem of forward mapping to find
the mean parameters from the observations generated from the distribution with canonical parameters
is equivalent to the problem of finding θζ(µ) through the backward mapping which in this illustrative
case has a closed form solution. The Bernoulli nature of the q(zi)s is also verified by the form of the log
partition function of µ which in this case is the negative of the entropy of the Bernoulli distribution with
mean parameter µ. Note that if we observe all configurations of Z only once then the forward mapping
of µ yields (0.768, 0.768, 0.768) for which the backward mapping causes θζ(µ) to be greater than one.
To avoid this possibility, Lagrange multipliers are used to constrain µ thereby making θ valid.

2.6.10 Mean Field and Tractable Families
Mean Field theory [Kadanoff, 2009, Parisi, 1988] in the context of physics and probability theory studies
the behavior of large and complex stochastic models through a simpler model. Such models consider
a large number of interacting variables. The effect of all the other variables on any given variable is
approximated by a single averaged effect, thus reducing a many-body problem to a one-body problem.
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The “mean” in “Mean Field” usually denotes some kind of averaging such as taking expectations
under some probability distributions and the “field” refers to some interaction phenomenon between a
group of entities (usually following Markov properties) from the perspective of physics. In general, a
“field,” however, points to a somewhat more abstract concept in mathematics [Herstein, 1964].

Mean field theory allows us to impose a specific type of approximation to the exact variational
principle as laid out in Equ. 2.102. As discussed in Section 3.7, there are two fundamental difficulties
associated with the variational principle given by Equ. 2.99: the nature of the constraint setM, and the
lack of an explicit form for the dual function A?. The mean field approach at its core lets us limit the
optimization problem for finding θ to a subset of distributions for which bothM and A? are relatively
easy to characterize. Throughout this thesis, we refer to any such charactarizations as “tractable.” The
simplest choice is the family of product distributions, which gives rise to the naive mean field method.

Tractable families: Given a graphical model based on a graph G, mean field methods are based on the
notion of a tractable subgraph, MF (G), by which we mean a subgraph F of the graph G over which
it is feasible to perform exact calculations. The simplest example of a tractable subgraph is the fully
disconnected subgraph which contains all the vertices of G but none of the edges. When performing
approximate inference for incomplete data problems involving hidden and observed variables, this sub-
graph reflects the causal dependencies of the “free” conjugate parametric distributions on the hidden
variables with the notion of “free” referring to the fact that the only assumption being made is that of
constructing a tractable subgraph (such as a product distribution of possible cliques or singleton nodes)
while the exact parameterization of those distributions is not theoretically constrained in any way.

The exponential family defined by the sufficient statistic Υ and graph G is associated with the set
M(G,Υ) of all mean parameters realizable by any distribution, as previously defined in Equ. 2.96.
For a given tractable subgraph F , mean field methods are based on optimizing over the subset of mean
parameters which can be obtained by the subset of exponential family densities {p(X|θ),θ ∈ Θ(F )}
denoted byMF (G,Υ) = {µ ∈ R̃|µ = Ep(X|θ)[Υ(X)] for some θ ∈ Θ(F )}. The subgraphMF is
thus an inner approximation to the setM of realizable mean parameters [Wainwright and Jordan, 2008].

Figure 2.3 shows the factorization of the hidden variables in the original graph in Fig. 2.3a that is
needed for approximate inference. Looking simply from the point of view of the factorization, one might
need to approximate the posterior further than simply the hidden variable / parameter factorizations. One
reason for this is that the parameter posterior may still be intractable despite the hidden variable/param-
eter factorization. We therefore need to assume some simpler space of parameter posteriors particularly
those distributions with just a few sufficient statistics, such as the Multinomial, Gaussian or Dirichlet
distributions.

A good variational approximation is the one that removes as few arcs as possible from the original
graphical model representation (or the moralization of it) such that inference becomes tractable. Some
edges may capture crucial dependencies between nodes and must be preserved, whereas other edges
might induce a weak local correlation at the expense of a long-range correlation which can be ignored to
first order. In general, the more edges we remove, the more we achieve tractability.

The advantage of the variational Bayesian procedure is that any factorization of the posterior yields
a lower bound on the marginal likelihood. It is expected that the more complex the factorizations the
more the compute time, however, more complex factorizations can also yield progressively tighter lower
bounds.
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(c) Fally factorized graph

Figure 2.3: Graphical depiction of the hidden-variable / parameter factorization. Fig. 2.3a: The orig-
inal generative model for N hidden and observed variables. Fig. 2.3b: The exact posterior graph for
p(Z,θ|X). The zi and zj pairs are not directly coupled, but interact through θ [Shachter, 1998]. By De
Finetti’s theorem, the hidden variables are conditionally independent of one another, but only given the
parameters. Fig. 2.3c: the posterior graph after the variational approximation between parameters and
hidden variables where the arcs between parameters and hidden variables are removed. Due to this type
of factorization the hidden variables become independent because of i.i.d assumption. A similar kind of
“product” factorization is shown in Fig. 2.5

Finally, at this point it is worth repeating the comparison of EM for MAP estimation and variational
Bayesian EM (see Section 2.6) from [Beal, 2003].

EM for MAP estimation of parameters VBEM for models defined over parameters
with priors

Goal: Maximize p(θ|X) w.r.t. θ

E step: q(t+1)(Z) = p(z|X,θ(t)). Amounts to
finding the exact posterior over the hidden vari-
ables given the data and the parameters of the
model.

M step:
θ(t+1) = arg maxθ(

∫
q(t+1)(Z) ln p(Z,X|θ)dZ

+ ln p(θ)).
This amounts to finding point estimates for the
parameters.

Goal: Bound from below p(X|θ)

E step: q(t+1)(Z) = p(z|X,∫
w(θ(t))q(t)(θ)dθ). This amounts to find-

ing the constrained posterior (often with easily
computable moments such as those in some
tractable family) over the hidden variables given
the data and the expected natural parameters with
w(θ) being any well-behaved function of θ (see
Theorem 2.1.1). Note that the expectation over
w(θ) is performed only when the parameter θ is
treated as a random variable with an appropriate
prior.

M step:
q(t+1)(θ)∝ exp{

∫
q(t+1)(Z) ln p(Z,X|θ)dZ

+ ln p(θ)}.
This amounts to finding a distribution over
parameters.

Table 2.1: Key differences between EM and VBEM. The variable θ is the parameter of the model which
we wish to find. The observations are denoted by X and the hidden state variables are denoted by Z.
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The introduction of conjugate priors over parameters of an exponential family model (see Section
2.2.3) leads to a fuller Bayesian treatment of the underlying inference machinery. In the VBM step
the functional form of the variational posterior q(θ) does not change during iterations of VBEM. The
priors in a conjugate-exponential model allow us to treat the ensemble of parameters of q(θ) as random
quantities each with its own uncertainty over the precision of its mean. This means that the VBM step
in the conjugate-exponential setting replaces the many (possibly infinite) inference steps which compute
the individual ML/MAP point estimates of each of the model parameters within the ensemble with a
single step computing a weighted average.

2.6.11 Mean Field Procedure
The main problem of maximization over the set of realizable mean parameters is the structure of the set
M. The goal of Mean Field procedure is to induce a simpler structure onM based on removal of certain
edges in the original graphical model such that the number of configurations of the state space which
needs to be explored while computing the log partition (i.e. cumulant) function becomes manageable (for
e.g. from exponential to polynomial). Without such a procedure, we cannot impose a probability measure
on the marginal log likelihood of the observations. Intuitively this means that in order to find the mean
parameters of a model as best as possible, we are averaging the effect of the probabilistic interactions
or correlations of all variables over an exponential state space w.r.t. the true probability distributions of
the parameters with distributions that are Markov i.e. those distributions whose parameters are governed
only by a very limited set of interactions between variables.

Generally, we are interested in approximating some target distribution p(X|θ), where θ ∈ Θ.
Mean field methods generate lower bounds on the value A(θ) of the cumulant function, as well as
approximations to the mean parameters µ = Ep(X|θ)[Υ(X)] of this target distribution pθ. The key
property of any mean field method is the fact that any valid mean parameter specifies a lower bound on
the log partition function.

Proposition 2.6.2. (Mean Field Lower Bound). Any mean parameter µ ∈Mi yields a lower bound on
the cumulant function A(θ). Formally,

A(θ) ≥ θTµ−A∗(µ) (2.106)

The equality holds if and only if θ and µ are dually coupled i.e., µ = Ep(X|θ)[Υ(X)].

Proof. See [Wainwright and Jordan, 2008]

Proposition 2.6.2 essentially means that the lower bound A(θ) ≥ θTµ + H(q) (with the entropy
term H(q) = −Eq(X|θ)[q(X|θ)]) holds for any distribution q(X|θ) satisfying the moment matching
condition Eq[Υ(X)] = µ, the optimal q by Theorem 2.6.2 turns out to satisfy q = p(X|θ(µ)) for which
H(q?) = −A?(µ).

Due to the lack of an explicit form of the dual function A?, it is intractable in general to compute
the lower bound. The mean field approach overcomes this difficulty by restricting the choice of µ to the
tractable subsetMF (G), for which the dual function has an explicit form.

If A?F = A?|MF (G) is the dual function restricted to the setMF (G), then, provided that µ belongs
toMF (G), the mean field method finds the best approximation, as measured in terms of the tightness
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of the lower bound 2.106. More precisely, the best lower bound from withinMF (G) is given by

max
µ∈MF (G)

µTθ −A?F (µ) (2.107)

The value of µ is defined to be the mean field approximation of the true mean parameters. It is important
to note that whether we consider the setM(G,Υ(X)) orMF (G,Υ(X)) the extreme point µe(X) is
realized by the distribution that places all its mass on X.

Naive Mean Field Algorithm: The naive mean field approach is the easiest to implement and charac-
terized. It is based on choosing a factorized distribution

p(z1, z2, ..., zN |θ) =
∏
s∈VG

p(zs|θ) (2.108)

as the tractable approximation where VG is the vertex set of the graph G. The naive mean field updates
are a particular set of recursions for finding a stationary point inMF (G) of the resulting lower bound
optimization problem. For a vast majority of problems that assume exchangeability of random variables,
this approach involves applying fixed point iteration techniques in the E step and possibly some non-
linear gradient ascent algorithms for parameter optimization in the M step. The fixed point iterations
in the E step arise out of solving for the root of the maximum likelihood expressions involving coupled
dependencies between variables.

Let us now consider the case where we have X = {x1, ...,xN} as the observations and Z =

{z1, ..., zN} being the hidden variables. Under this scenario, we consider distributions of the form
q(zn|φ) =

∏N
n=1 q(zn|φn), where φ = {φ1,φ2, ...,φN} are variational parameters. Using this family

of distributions, we simplify the likelihood bound using the chain rule:

log p(X|θ) ≥ log p(X|θ) +

N∑
n=1

Eq[log p(zn|Z¬n,X,θ)]−
N∑
n=1

Eq[log q(zn|φn)] (2.109)

To optimize with respect to φn, we select the factors from Equ. 2.109 that depend on φn to obtain:

fn = Eq[log p(zn|Z¬n,X,θ)]− Eq[log q(zn|φn)] (2.110)

Under the assumption that the variational distribution q(zn|φn) is in the exponential family, we
have:

q(zn|φn) = h(zn) exp{φTnzn −A(φn)} (2.111)

Equ. 2.110 thus simplifies as follows:

fn = Eq[log p(zn|Z¬n,X,θ)− log h(zn)− φTnzn +A(φn)]

= Eq[log p(zn|Z¬n,X,θ)− log h(zn)]− φTnA
′(φn) +A(φn) (2.112)

since Eq[zn] = A′(φn) (see Theorem 2.1.1). The derivative with respect to φn is:

∂fn
∂φn

=
∂

∂φn
(Eq[log p(zn|Z¬n,X,θ)− log h(zn)])− φTnA

′′(φn) (2.113)
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From this, we find that the optimal φn satisfies:

φ∗n = [A′′(φn)]−1 ∂

∂φn
(Eq[log p(zn|Z¬n,X,θ)− log h(zn)]) (2.114)

When the conditional p(zn|Z¬n,θ,X) belongs to an exponential family distribution, then we have:

p(zn|Z¬n,θ,X) = h(zn) exp
{
wn(Z¬n,θ,X)T zn −A(wn(Z¬n,θ,X))

}
(2.115)

wherewn(Z¬n,θ,X) denotes the canonical parameter for zn when conditioning on the remaining latent
variables and the observations. This yields simplified expressions for the expected log probability of zn
and its first derivative:

Eq[log p(zn|Z¬n,X,θ)] = Eq[log h(zn)] + Eq [wn(Z¬n,θ,X)]T A′(φn)− Eq [A(wn(Z¬n,θ,X))]

∂

∂φn
Eq[log p(zn|Z¬n,X,θ)] =

∂

∂φn
Eq[log h(zn)] + Eq [wn(Z¬n,θ,X)]T A′′(φn) (2.116)

Using the first derivative in Equ. 2.114, the maximum is attained at:

φ∗n = [A′′(φn)]−1
(
Eq [wn(Z¬n,θ,X)]T

)
A′′(φn)

= Eq [wn(Z¬n,θ,X)] (2.117)

Non Convexity of Mean Field: An important fact about the mean field approach is that the variational
problem 2.107 may be nonconvex, so that there may be many local minima, and the mean field updates
can have multiple solutions. The source of this nonconvexity can be understood in different ways [Wain-
wright and Jordan, 2008, Jaakkola, 2000a], depending on the formulation of the problem. Perhaps the
most intuitive way to understand it is by observing the structure of mean parameter sets. The geometric
perspective of the set M(G) and its inner approximation MF (G) reveals that more generally, mean
field optimization is always non-convex for any exponential family in which the state space X is finite
[Wainwright and Jordan, 2008].

Figure 2.4 shows some cartoon illustrations of the mean field principle of imposing of tractable
distributions to solve for ML parameter estimates. Figure 2.4a shows that, for discrete random vari-
ables, although the realizable mean parameter set M(G) is convex, when limited to mean parameters
of tractable distributionsMF (G), the set becomes non-convex. The non-convexity arises due to the δ
functions connectingMF (G) to the extreme points µe inM(G).

An illustration of the inequality Υ(Z)T logµ ≥ −c (c > 0 and = 1 here) for the random variable
Z|x ∼ Mult(µ) with the multinomial being degenerated to a binomial in two dimensions is shown in
the top right corners of Figs. 2.4a, 2.4b and 2.4c where the set of mean parameters is the set of expected
sufficient statistics of the hidden variables Z given a particular set of samples x. For a K-dimensional
multinomial, we have the constraint

∑K
k=1 µk = 1 and 0 ≤ µk ≤ 1. If the random variables Z are the

indicators for components in a mixture or mixed membership model, then efficiently solving this type
of inequality subject to the number of constraints (which quickly becomes exponential), is the essence
of mean field optimization for probabilistic models. The objective in this case is to find an extremum
for µ? ∈ MFZ|x(G) through the sufficient statistics Υ(Z,x) but restricted only to the feasible positive
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Figure 2.4: Cartoon illustrations highlighting the key features of mean field optimization

region of the coordinate system where Z is defined.

Figure 2.4b shows the relation of such an optimization technique to the well known linear program-
ming problem where a pivot is initially chosen as a basis which contains only slack variables. Linear
programming optimization traces out a path shown in black arrows in Fig. 2.4b where the pivot is cycled
through possible extreme points µe = Υ(Z,x) of the of the sufficient statistics for each possible con-
figuration of the discrete random variable Z holding the set of samples x fixed. By doing so, it replaces
each slack variable within a basis with the original variables µk as much as possible while maximizing a
linear function of logµ and Υ(Z,x).

Unfortunately, although this is a viable choice for small graphs, Fig. 2.4c shows that due to the
induction of tractable distributions, the effective realization mean parameter space becomes heavily con-
strained (constricted as shown in the illustration) and the cycle of pivots through the boundaries of the
convex hull ofMZ|x(G) is no longer possible due to the possible chance of violating such constraints
i.e. finding a solution to the maximum likelihood objective function for some µk which lands up in the
regions marked by the red× in Fig. 2.4c.

Finally, in Fig. 2.4d, we observe the close relationship of Equ. 2.107 to Equ. 2.102 visualized
through our proposed METag2LDA (see Fig. 1.7e) model. The mean parameter space µ consists of
the expected sufficient statistics of θ1:D,YD×{1:Md},d∈D and ZD×{1:Nd},d∈D computed under the pa-
rameters of the variational distributions γd,λd,m,φd,n that map to the model parameters α, {β, τ} and
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ρ respectively. The term −q(.) log q(.) is the entropy of the variational q distribution and is equal to
−A?(µ). The expanded expressions θTµ can be found by inspecting the respective parameters in Equ.
4.26. The dimensionality of the variational parameters should not be confused with the set of three axes
shown in the lower left corner in Fig. 2.4d that just conveys the idea that µ consists of three distinct sets
of mean parameters.

In the next section, we touch upon the basic topic model Latent Dirichlet Allocation (LDA) [Blei
et al., 2003] which has been subsequently extended in this thesis to satisfy several criteria along the
lines of incorporating domain knowledge at the word and document levels. The domain knowledge can
arise from linguistic (such as part-of-speech) annotations, crowd-sourcing (such as Wikipedia article
categories) or even multimedia (such as embedded videos).

2.7 Latent Dirichlet Allocation and Variational Bayesian EM
Topic models initially started out as an use case of generative Bayesian modeling for textual corpora
where a corpus is a collection of documents. The basic assumption was that the documents are repre-
sented as a random mixture over latent topics, where each topic is characterized by a distribution on
words. One such model, Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is shown in Fig. 2.5a as a
directed graphical model.

Graphical models allow us to graphically represent interactions between unobserved and observed
random variables and parameters in a clear and concise way using directed arcs for causality relationships
and square plate notation for identifying variable repetition (identified by the alphabet in one of the
corners of the plate). Shaded nodes represent observed variables, while unshaded nodes represent latent
variables. In Fig. 2.5a, unshaded nodes outside of the rectangular plates represent model parameters as
they do not grow with the data.

In Figure 2.5a it is observed that the only observed random variables are the words with M being
the number of word positions in document d ∈ {1, ..., D}. The model parameters are α and β1:K where
θ represents the topic or theme proportions for a document represented as a K-dimensional vector with
each dimension corresponding to a multinomial distribution over the vocabulary. Clearly, the use of
proportions suggest that the only input to the model are documents represented in terms of their word
counts. The likelihood of a document w.r.t. the model parameters is obtained by integrating out the
beliefs encoded in the hidden variables as

∫
p(θd|α)

 Md∏
m=1

∑
zd,m

p(zd,m|θd)p(wd,m|zd,m,β)

 dθd (2.118)

This likelihood is intractable to compute and approximate algorithms like variational Bayes [Beal, 2003]
are used to overcome the intractability. To explain the phenomenon captured by the graphical model
representation in Figure 2.5a, the document generation process is written in the following “statistical
pseudocode” form. Let α be a K-dimensional parameter, and let topics β1:K be K multinomials over
a fixed vocabulary of words. The number K is the same as the number of latent topics and equals the
dimensionality of the topic indicator variable zdn . LDA assumes that an M-word document d arises from
the following generative process:

For each document d ∈ [1, ..., D],
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Figure 2.5: The graphical model for the Latent Dirichlet Allocation

Draw θd|α ∼ Dir(α)

For each position m ∈ {1, ...,Md} in document d:
Draw a topic assignment zd,m|θd ∼Mult(θd)

Draw a word wd,m|{zd,m,β1:K} ∼Mult(βzd,m)

In the learning phase, the model parameters α and β1:K are estimated from training data and through
inference on test data, the topic indices zd,m’s are obtained using the estimated model parameters. In
the test set, thus, the vocabulary remains the same and only the word counts (may) change for each
document. The topics capture the discrete distributions whose models modes highlight words that appear
to have a semantic connection. The primary reason is the way how semantically related words appear
in the documents and imposing a hierarchical document schema which exhibits a mixed membership to
the latent topics in varying proportions allows for better separation of the modes than if no document
schema was assumed or no more than one topic is allowed to account for the words in a document.

In fact, the motivation behind developing the LDA model was to overcome the limitations of mixture
modeling through the simple mixture of unigrams model and the probabilistic Latent Semantic Indexing
(pLSI) model [Hofmann, 1999]. For the simple mixture of unigram models, all words in a document are
assumed to be sampled from a single topic while in the pLSI model, the assumption is that the proportion
of topics for a new document match those in one or more of the training documents. This latter constraint
is alleviated to some extent by “folding-in” in the new document by re-fitting the topic parameters for the
new document anew. LDA overcomes both of these problems by allowing the topic proportions θd of a
document d to be controlled by a random variable that can easily allow for the probability that the new
document be endowed with a different set of topics than was seen in one or more training documents.

2.7.1 The Success Behind Latent Dirichlet Allocation
After analyzing a natural language text corpora, for the topics to appear intuitive, LDA must simultane-
ously satisfy two objectives:
1. For each document, its words must be allocated to as few topics as possible.
2. For each topic, only a few words must only be assigned high probabilities.

Unfortunately, these goals compete with each other: If a document is assigned only a single topic,
as is the case with naive mixture of unigrams model, then that makes satisfying condition 2 hard—
all of its words must have high probability under that topic. On the other hand, allocating only a few
words in each topic makes satisfying condition 1 hard—to cover a document’s words, it must assign
many topics to it for e.g. a general Wikipedia article with its varied section contents consists of several
different sub topics. Trading off these goals appears to find groups of tightly co-occurring words which
appear semantically related. However, this semantic relatedness of words is a direct consequence of how
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language has evolved to express ideas in a coherent fashion [Chang et al., 2009].

2.7.2 LDA: How much data is necessary to learn the model parameters?
In general it is an open problem to bound the amount of data required to learn the parameters of a topic
model with probabilistic guarantees. Recently an algorithm which provably learns the parameters of
a topic model given samples from the model has been proposed in [Arora et al., 2012]. For a topic
model, there is an unknown topic-word matrix βT with nonnegative entries of dimension V × K, and
a probabilistic unknown matrix θT1:D that is dimension K ×D. Each column of βTθT1:D is viewed as a
probability distribution on rows i.e. the vocabulary elements, and each column comprises of Md � V

i.i.d. samples from the associated distribution. The inference machinery for a topic model attempts
to reconstruct β and the parameters of the generating distribution for θ1:D—α. The proof provides a
bound on the data provided that the topic-word distributions β1:K satisfy a condition called separability
as reproduced below from [Arora et al., 2013].

The topic-word matrix β1:K is p-separable for p > 0 if for each topic k, there is some word with
index j such that βk,j ≥ p and βk′,j = 0 for k′ 6= k. This intuitively means that β1:K has a diagonally
dominant structure i.e. has a diagonal matrix (upto row permutations). Such a word with index j is
called an anchor word because when it occurs in a document, it is a perfect indicator that the document is
at least partially about the corresponding topic, since there is no other topic that could have generated the
word. Additionally suppose that each document is of length L ≥ 2, and let R = Ep(θ1:D|α)[θ

T
1:Dθ1:D]

be the [K ×D] × [D ×K] = K ×K topic-topic covariance matrix. Also, as before denote θd,k to be
the expected proportion of topic k in a document d generated according to α.

A recent theorem has been proved in [Arora et al., 2012] on the amount of training documents
needed to learn the parameters of a topic model like LDA. The theorem states that there is a polynomial
time algorithm that learns the parameters of a topic model if the number of documents is at least

D = max

{
O
(
a4K6 log V

ε2p6γ2L

)
,O
(
a2K4 logK

γ2

)
,O
(
K2 logK

ε2

)}
(2.119)

where p is the separability of β, γ is the condition number of R, and a = maxk,k′ θk/θk′ is the topic
imbalance of the model. The algorithm learns the word-topic matrix β1:K and the K × K topic-topic
covariance matrix R up to additive error ε.

Further denote Q to be the V × V word-word covariance matrix βTR(Π)β where Π is the distri-
bution which generates the columns of θT1:D [Arora et al., 2012]. When number of documents is large
enough, it has been shown that Q is close to βTθTθβ; infact, when m > 50 lnV

LεQ
, with high probability

all entries of |Q− 1
mβ

TθTθβ| → εQ.

Hardness of computing Maximum Likelihood estimates for topic model parameters: It is NP-hard
even with two topics to find the Maximum Likelihood estimates of the word-topic distributions in LDA
[Arora et al., 2013] and the essence of the work in [Arora et al., 2012] has been to show that even in
the case of a separable topic-word matrix in the general case, it is NP-hard to compute the Maximum
Likelihood estimates. Sontag and Roy recently proved in [Sontag and Roy, 2011] that given the matrix
β1:K and a document d, computing the Maximum A Posteriori (MAP) estimate for the distribution on
topics that generated document d is NP-hard as well.

We next briefly touch upon the exponential family representation of LDA and its variational dual and
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how independence assumptions lead to the development of an efficient approximate inference machinery
to find optimal, albeit locally, estimates of β and α.

2.7.3 Exponential Family Representation, Mean Field and Variational Bayes
The basic topic model LDA as shown in Fig. 2.5a is a hierarchical mixed membership model which
belongs to the exponential family of models. The following algebraic manipulations help us ascertain
the exponential family inclusion of the model.

LDA in exponential family representation: Words w are drawn from a multinomial distribution,
p(w = j|z = k,β) = exp(log βk,j), for j ∈ {1, ..., V } and z ∈ {1, ...,K}, where βk,j is a param-
eter encoding the probability of the jth word given the kth topic. This conditional distribution can be
expressed as an exponential family in terms of indicator functions as follows:

pβ(w|z) ∝ exp

(
K∑
k=1

V∑
j=1

log βk,jδ(z, k)δ(w, j)

)
(2.120)

where δ(z, k) is an {0, 1}-valued indicator for the event {Z = k}, and similarly for δ(w, j). The topic
variable Z also follows a multinomial distribution whose parameters are determined by the Dirichlet
variable as follows:

p(z|θ) ∝ exp

(
K∑
k=1

log θkδ(z, k)

)
(2.121)

Finally, at the top level of the hierarchy, the Dirichlet variable θ has a pdf of the form

pα(θ) ∝ exp

(
K∑
k=1

αk log θk

)
(2.122)

Overall then, for a single triplet (θ,Z,w), the LDA model is an exponential family with parameter
vector Θ = (α,β), and an associated density of the form:

pα(θ)p(z|θ)pβ(w|z) ∝ exp

(
K∑
k=1

log θkδ(z, k) +

K∑
k=1

αk log θk

)
× exp

(
K∑
k=1

V∑
j=1

log βk,jδ(z, k)δ(w, j)

)
(2.123)

The sufficient statistics Υ consist of the collections of functions {log θk}, {δ(z, k) log θk}, and
{δ(z, k)δ(j, w)}. The full LDA model entails replicating these types of local structures many times.
For each fixed Z, the setMF of mean parameters is of the form µ = Eq(Z|θ(µ))[Υ(Z,X)].

We now briefly discuss about how the mean field factorization principle (see Sect. 2.6) gets applied
in this case and thus how the factorization shown in Fig. 2.5b refers to the tractable subgraph for LDA.
In a general model, let the set of all observed random variables be denoted by X = {x1, ...,xM}
(for LDA, X is denoted by W). The model also have a set of latent variables which are denoted by
Z = {z1, ..., zN}. Note that N and M can be different in general. For LDA, N and M are same for
a document d and the set of latent variables for a document d is Zd = {zd,θd} while the parameters
are Θ = {α,β1:K} The probabilistic model specifies the joint distribution p(X,Z), and our goal is
to find an approximation for the posterior distribution p(Z|X) assuming conditional dependence on the
parameter set Θ to be implicit. Since p(Z|X) = p(X,Z)

p(X) , in order to infer p(Z|X) the normalizing
constant p(X) needs to be computed, which is the marginal probability of the observations. Using
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Jensen’s inequality, the following hold true with dependence on the parameters being implicit:

log p(X) = log

∫
p(X,Z)dZ = log

∫
q(Z)

p(X,Z)

q(Z)
dZ

≥
∫
q(Z) log

p(X,Z)

q(Z)
dZ

=

∫
q(Z) log p(X,Z)dZ−

∫
q(Z) log q(Z)dZ (2.124)

= Eq[log p(X,Z)]− Eq[log q(Z)] = L(q,X)

where the bound L is tight when q(Z) = p(Z|X). Although q can be any distribution over the hidden
variables, in practice q is usually chosen from a family of functions such that q factorizes over the set of
latent variables and have easily computable moments. Then variational methods try to compute log p(X)

by finding q that maximizes L(q,X),

log p(X) = argmax
q∈Mtract

Eq[log p(X,Z)]− Eq[q(Z)] (2.125)

whereM is a family of distributions including p(Z|X) which assert no more conditional independence
than those in p(Z|X). For instance,M can be the set of all joint probability distributions on Z that con-
tains no conditional but only marginal independence. In general, this optimization cannot be performed
overM due to an exponential state space. So, in order to compute L(q,Z),M is restricted to a simpler
familyMtract, which is tractable, so that

log p(X) ≥ argmax
q∈Mtract

L(q,Z) (2.126)

Since the tractable subfamiles of distributionsMtract are fully factorized, the distributions inMtract

have the form

q(Z) = q(z1|φ1)q(z2|φ2) . . . q(zN |φN ) (2.127)

where, under the assumptions of the naive mean field approach, each zn can be any distribution gov-
erned by a variational parameter φn and there are N different distributions corresponding to the i.i.d
z1, z2, ..., zN s. The approximating distribution q is such a distribution that maximizes the objective
function L(q,Z) overMtract ⊂M.

In more complicated scenarios, dependencies between zn’s can be considered by keeping some
edges between the corresponding random variables in the graphical model as is. This is usually referred
to as the structured mean field approach an example of which can be found in [Ghahramani and Jordan,
1997].

In LDA, the observation of the word wd,m makes the hidden variable as well as the parameters
coupled under the D-separation criteria [Shachter, 1998] and this leads to the removal of the
edges that lead to the coupling giving rise to the dual graph shown in Fig. 2.5b.

The removal of edges in the original graph for LDA (Fig. 2.5a) makes the hidden variables θd’s
and zd,m’s to be marginally independent and each governed by the same type of distributions as in the
original graph but with free parameters (Dirichlet: γd for θd and Multinomial: φd,m for βzd,m ) which
are allowed to vary according to the statistical moments of the data.
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Generally speaking, the naive mean field approximation is the case where each qzn(zn) is fully
factorized over the hidden variables:

q(zn) =

|zn|∏
j=1

qzn,j (zn,j) (2.128)

where |zn| is the number of hidden variables interacting with zn (for example if zn belongs to a clique
and there are N such cliques). In this case the expression for L(qZ(Z),θ) given in Equ. 2.79 becomes:

L(qZ(Z),θ) =
∑
n

∫ |zn|∏
j=1

qzn,j (zn,j) ln p(zn,xn|θ)−
|zn|∏
j=1

qzn,j (zn,j) ln

|zn|∏
j=1

qzn,j (zn,j)

 dzn
=
∑
n

∫ |zn|∏
j=1

qzn,j (zn,j) ln p(zn,xn|θ)−
|zn|∑
j=1

qzn,j (zn,j) ln qzn,j (zn,j)

 dzn
=
∑
n

∫
qzn,j (zn,j)

|zn|∏
j=1

[
qZn 6=j (Zn 6=j) ln p(zn,xn|θ)dZn 6=j

]
dzn,j

−
∑
n

|zn|∑
j=1

∫ |zn|∏
j=1

[
qzn,j (zn,j) ln qzn,j (zn,j)

]
dzn

∴ L(qzn,j (zn,j),θ) =

∫ 
|zn|∏
j=1

[
qZn6=j (Zn6=j) ln p(zn,xn|θ)dZn 6=j

] qzn,j (zn,j)dzn,j

−
∫ [

qzn,j (zn,j) ln qzn,j (zn,j)
]
dzn,j + const (2.129)

Using a Lagrange multiplier to enforce normalization of the each of the approximate posteriors for
zn, we take the functional derivatives of L(qzn,j (zn,j),θ) with respect to each of the qzn,j (zn,j)s and
equate to zero, obtaining:

qzn,j (zn,j) =
1

Zn,j
exp

∫ |zn|∏
j′ 6=j

qzn,j′ (zn,j′) ln p(zn,xn|θ)dZn 6=j

 (2.130)

for each n ∈ {1, ..., N} and each j ∈ {1, ..., |zn|}. We have used the notation dZn6=j to denote the ele-
ment of integration for all items in zn except zn,j , and the notation

∏
j′ 6=j to denote a product of all terms

excluding j. For the nth datum, the update equation 2.130 is applied to each hidden variable j in turn
and represents a set of coupled equations for the approximate posterior over each hidden variable. These
fixed point equations are called mean-field equations and examples of these variational approximations
can be found in [Jaakkola, 2000b] and the references therein. A very similar set of update equations also
hold for structured mean field where we do not assume the factorization of the form

∏|zn|
j=1 qzn,j (zn,j)

for the variables in the nth partition (see Chapter 10 in [Bishop, 2006]) but the inference is albeit com-
plicated and computationally very expensive. In all of the models which we consider in the following
chapters, |zn| is of cardinality 1.

In a truly Bayesian setting, we put a prior η (usually a symmetric Dirichlet but can be an asymmetric
one in the form of a Dirichlet tree as well [Andrzejewski et al., 2009]) over the topic Multinomials β1:K

(see Fig 2.6). In this setting, all references to βk is replaced with Eqη [logβk|η] where there is yet
another factorization of the form qη(η) =

∏K
k=1(β ∼ Dir(η)). We will study a model with this kind of
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“global” parameter level factorization in the context of Gaussian parameters in Chapter 6.

2.7.4 Kullback-Leibler divergence in LDA
An alternative interpretation to explain mean-field variational methods is to minimize the difference be-
tween the approximating distribution and the target distribution using KL divergence (Kullback-Leibler
divergence) [Cover and Thomas, 2006]. KL divergence is an information theoretic measure of the “dis-
tance” between two distributions, defined as for p(X) and q(X),

KL(p(X)||q(X)) = Ep(X)

[
log

p(X)

q(X)

]
(2.131)

Maximizing the objective function L(q,X) with respect to q is equivalent to finding the q? ∈
Mtract which minimizes KL(q(Z)||p(Z|X)). In other words,

q∗ = argmax
q∈Mtract

L(q,Z)

= argmax
q∈Mtract

(Eq[log p(X,Z)]− Eq[log q(Z)])

= argmin
q∈Mtract

(Eq[log q(Z)]− Eq[p(Z|X)])

= argmin
q∈Mtract

KL (q(Z), p(Z|X)) (2.132)

Note that KL(q(Z), p(Z|X)) is the difference in the lowerbound L(q,Z) and log p(X|Θ) where
p(X) is the true likelihood of the data and Θ are the parameters of the model.

2.7.5 The E Step Inner Loop in the Mean Field Optimization of LDA
Let us revisit the inner-loop that is applied to find the optimum of the posterior distributions over the
free variational parameters for the document level random variables given the current setting of optimal
parameters (see Fig. 2.5b).

Algorithm 1 doc e step

1: γd,k = αk + corpus.documet[d].num words
K

2: φd,m,k = 1.0
K

3: elbo current← 0; v iter ← 0
4: while not converged do
5: for m = 1→Md do
6: for k = 1→ K do
7: update φd,m,k as log φd,m,k = log βk,wd,m + ψ(γ

(t)
d,k)

8: end for
9: Normalize φ(t+1)

d,m s to sum to 1
10: end for
11: update γ(t+1)

d,k as γ(t+1)
d,k = αk +

∑Md

m=1 φ
(t+1)
d,m,k

12: elbo current← compute likelihood() {To compute likelihoods, see [Blei et al., 2003]}
13: v iter ← v iter + 1
14: end while
15: return elbo current;
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In Algo. 1, line 11 where it is stated “update γ(t+1)
d,k as γ(t+1)

d,k = αk +
∑Md

m=1 φ
(t+1)
d,m,k,” as in [Blei

et al., 2003] is actually modified in the implementation in [Blei et al., 2003] to conform to the iterative
structure of the fixed point iteration algorithm [Conte and Boor, 1980]. Usually a fixed point iteration
algorithm is used to find the roots of an equation f(z) = 0 by the following construction: An equation
of the form

z = g(z) (2.133)

is derived from f(z) = 0 so that any solution of Equ. 2.133, i.e. any fixed point of g(z) is a solution of
f(z) = 0. Given a function f(z) of a variable z at a particular iteration (t), the value of the next fixed
point iterate, z, can be obtained using iterative improvements as:

zn+1 = f(zn) (2.134)

Three assumptions need to hold to obtain a solution using the fixed point iteration method.

i) There is an interval I = [a, b] such that ∀z ∈ I , g(z) is defined and g(z) ∈ I

ii) The iteration function g(z) is continuous on I = [a, b]

iii) The iteration function g(z) is differentiable on I = [a, b]. Further there exists a nonnegative constant
C < 1 such that ∀z ∈ I , |g′(z)| ≤ C

If the first and third assumptions hold then g(z) has exactly one fixed point ζ ∈ I and starting with any
point z0 ∈ I , the sequence {z1, z2, ...} obtained using fixed point iteration converges to ζ. The third
constraint is particularly useful to assess convergence properties of the iterates. In particular if y = f(x)

is a function whose fixed point is ζ, then ζ lies on both y = f(x) and y = x. This means that if the
slope of f(x) is higher than 1 i.e. tan(π/4) in absolute value [Conte and Boor, 1980], then convergence
is problematic in this framework and we need to use some early stopping criterion.

In our context of solving lower bounds for models such as LDA, the expressions for finding the
optimum of the posterior distributions over the hidden variables (and parameters is priors are used) give
rise to a coupled set of equations. This facilitates the use of fixed point iteration technique to obtain
a possible solution depending on the initial conditions. The argument is simple: Let f and g be two
continuous functions such that y = f(z) and z = g(y). Then

y = f(z); z = g(y)

=⇒ y = f(g(y)) = (f ◦ g)(y) = h(y) (2.135)

where h = (f ◦ g) is the composition function. This scheme allows us to find γ(t+1) from γ(t) as
follows:

γ
(t+1)
k = αk +

N∑
n=1

φ
(t+1)
d,m,k

=⇒ αk = γ
(t)
k −

N∑
n=1

φ
(t)
d,m,k

=⇒ γ
(t+1)
k = γ

(t)
k +

N∑
n=1

(
φ

(t+1)
d,m,k − φ

(t)
d,m,k

)
= h(γ

(t)
k ) (2.136)
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2.7.6 Gibbs Sampling versus Variational Bayes in Topic Models
In this section, we briefly go over some preliminary concepts on Gibbs sampling algorithm and also draw
a connection between it and the EM algorithm [Bishop, 2006]. Sampling methods such as Gibbs sam-
pling has been very popular in a variety of models that extend LDA [Griffiths and Steyvers, 2004, Rosen-
Zvi et al., 2004, Li and McCallum, 2006, Andrzejewski et al., 2009, Mimno et al., 2009, Spiliopoulou
and Storkey, 2012] and they have become so due to the avoidance of local minima properties of the EM
algorithm as well as the ease of implementation when there is conjugacy of the distributions (mostly
assumed exponential) of interacting random variables. A thorough treatise on sampling methods can be
found in [Robert and Casella, 2005].

We now give an overview of the Gibbs sampling algorithm in the context of missing data. Given
a probability density f , a density g that satisfies

∫
Z
g(X,Z)dZ = f(X) is called a completion of f .

The density g is chosen so that the full conditionals of g are easy to simulate from. Denote P to be
the dimensionality of Y. For P > 1, if we write y = (X,Z) and denote the conditional densities of
g(Y) = g(y1, ..., yP ) by

Y1|y2, y3, ..., yP ∼ g(y1|y2, y3, ..., yP ),

Y2|y1, y3, ..., yP ∼ g(y2|y1, y3, ..., yP ),

. . .

YP |y1, y2, ..., yP−1 ∼ g(yP |y1, y2, ..., yP−1)

Then obtaining a sample Y (t+1) at time step (t + 1) from a sample Y (t) at time step t is defined using
the Gibbs sampling algorithm 2.

Algorithm 2 Gibbs Sampling

1: Given (y
(t)
1 , ..., y

(t)
P ), simulate

2: 1. Y (t+1)
1 ∼ g1(y1|y(t)

2 , y
(t)
3 , ..., y

(t)
P ),

3: 2. Y (t+1)
2 ∼ g2(y2|y(t+1)

1 , y
(t)
3 , ..., y

(t)
P ),

4: 2. Y (t+1)
3 ∼ g3(y2|y(t+1)

1 , y
(t+1)
2 , y

(t)
4 , ..., y

(t)
P ),

5:
...

6: P. Y (t+1)
P ∼ gP (yP |y(t+1)

1 , ..., y
(t+1)
P−1 )

This Gibbs sampling method is equivalent to the composition of P Metropolis-Hastings algorithms
with acceptance probabilities uniformly equal to 1 [Robert and Casella, 2005]. This means that every
simulated value is accepted and that Gibbs sampling is inherently multi-dimensional. However, the
Gibbs sampler does not apply to problems where the number of parameters vary because this destroys
the irreducibility property of the resulting chain. This is the reason why Gibbs sampling technique is
difficult to use in models like pLSA (probabilistic Latent Semantic Analysis) [Hofmann, 1999].

The practical applicability of Gibbs sampling depends on the ease with which samples can be ob-
tained from the full conditional distributions gk(yk|y∗,¬k). In the case of graphical models, the condi-
tional distributions for the individual nodes depend only on the variables in the corresponding Markov
blanket (for undirected graphs) or their parents and co-parents (directed graphs). If the parent-child re-
lationships preserve conjugacy of the corresponding distributions which are assumed to belong to the
exponential family, then the full conditional distributions arising in Gibbs sampling will have the same
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functional form as the original conditional distributions (conditioned on the parents) defining each node.
In the case of LDA [Griffiths and Steyvers, 2004] implemented using Gibbs sampling, this very property,
independence of observations and conjugacy of Dirichlet and Multinomial distributions lead to extremely
simple expressions for the updates of the posterior distribution over the parameters and hidden variables
(see Algo. 3).

We now briefly comment upon the connection between the EM algorithm and Gibbs sampling. Let
us consider a model with hidden variables Z, observed variables X and parameters Θ. The functional
that is optimized w.r.t. Θ in the M-step is the expected complete data log likelihood given by:

Q(Θ,Θt) =

∫
p(Z|X,Θt) ln p(Z,X|Θ)dZ (2.137)

If we draw samples {Z(l)} from the current estimate of the posterior distribution p(Z|X,Θt), with t
being the current time step, then we have the following:

Q(Θ,Θt) ≈ 1

L

L∑
l=1

ln p(Zl,X|Θ) (2.138)

The Q functional can then be optimized in the usual way in the M-step. This is the so-called Monte
Carlo EM Algorithm. In general we have the following algorithm for Gibbs sampling:
IP (Imputation Posterior) algorithm:

I Step. We wish to sample from the posterior distribution of Z given X. However we cannot do
this directly since the parameters are coupled with the hidden variables through the observations. We
have:

p(Z|X) =

∫
p(Z|Θ,X)p(Θ|X)dΘ (2.139)

So, for l = 1, ..., N we first draw a sample Θl from the current estimate for p(Θ|X), and then using
this to draw a sample Zl from p(Z|Θl,X)

P Step. Given the relation:

p(Θ|X) =

∫
p(Θ|Z,X)p(Z|X)dZ (2.140)

we use the samples obtained {Zl} in the I step to compute a revised estimate of the posterior
distribution over θ as:

p(Θ|X) ≈ 1

L

L∑
l=1

p(Θ|Zl,X) (2.141)

The I step is called the Imputation step since some latent factor is being ascribed to an observation
through posterior inference i.e. filling in the missing values. This is similar to the E step in the EM
algorithm. The naming of the Posterior step is obvious due to the estimation of the posterior distribution
over Θ.
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Figure 2.6: LDA with hyperparameters over topic multinomials

Let us revisit the generative process of LDA (see Figure 2.6) as mentioned before in Section 2.7 but
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this time with priors η over the topic multinomials as well. As before let α be a K-dimensional prior
parameter, and let topics β1:K be K multinomials over a fixed vocabulary of words. We now assume a
prior for βk denoted by η which can be a scalar when the Dirichlet is symmetric or can be V -dimensional
if we assume an asymmetric Dirichlet. The number K is the same as the number of latent topics and
equals the dimensionality of the topic indicator variable zdn . LDA assumes that a document d with Nd
words arises from the following generative process:

For each topic k ∈ {1, ...,K},
Draw βk ∼ Dir(η)

For each document d ∈ [1, .., D],
Draw θd|α ∼ Dir(α)

For each position m ∈ {1, ...,Md} in document d:
Draw topic assignment zd,m|θd ∼Mult(θd)

Draw word wd,m|{zd,m,β1:K} ∼Mult(βzd,m)

In the learning phase, the principal parameters of the model that are learnt are the K topic multinomials
β1:K , each with V − 1 independent parameters with V being the size of the vocabulary. Learning these
parameters also lead to learning document specific distribution over topics which in turn are obtained
from the individual word distributions of each document over the topics. The priors α and η are usually
optimized using a non-linear optimization strategy using directional derivatives such as choosing a New-
ton’s direction with inexact line search for step size optimization. In the test set, thus, the vocabulary
remains the same only the word counts (may) change for each document. It is important to note that
the marginal of the data distribution given the parameters is intractable to compute due to KV possible
configurations one of which fits the data best. Although VB-EM settles on finding a lower bound to the
exact log likelihood function of the data, sampling algorithms tend to find samples from the exact pos-
terior distribution of the hidden variables and parameters thereby finding samples that lead to globally
optimal parameter estimation.

To this end, Gibbs sampling has been popularized for the LDA model by Griffiths et al. [Griffiths
and Steyvers, 2004]. Gibbs sampling is a special case of Markov-chain Monte Carlo (MCMC) sim-
ulation. MCMC methods avoid random walk behavior and can emulate high-dimensional probability
distributions p(X) by setting up Markov chains to sample from those desired distributions which respect
the invariance and ergodic properties. This means that one sample is generated for each transition in
the chain after a stationary state of the chain has been reached, which happens after a so-called “burn-in
period” which eliminates the auto-correlation of the initial samples thereby removing the influence of
initialization parameters.

Gibbs sampling is a special case of MCMC where the dimensions xi of the distribution are sampled
alternately one at a time, conditioned on the values of all other dimensions, which we denote x¬i. The
algorithm is shown in Algo. 3 where the counts n∗∗,¬i indicate that the datum i is excluded from the
corresponding document or topic.

Referring to the Imputation Posterior scheme of sampling (see Algo. 2.7.6), the I step involves
ascribing a state for variables zd,n and hence the per document proportions required to compute θd,k
and the P step then fills in the values for the β1:K parameters. It is standard practice [Neal, 2000] to
integrate out the hidden variable for topic proportions θ and the parameters β using the priors α and η
respectively (see Fig. 2.6) and exploiting the Dirichlet-Multinomial conjugacy. This is so because they
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can be interpreted as statistics of the associations between the observed wd,n and the corresponding zd,n
which are the state variables of the Markov chain. The inference task here is to sample from the posterior
under z given the observed ws i.e. to find p(Z|w).

In Gibbs sampling for LDA, we can derive the full conditional distribution for a word token with
index i = (d, n), using the chain rule of probability and conditional independence of random variables in
a directed graphical model [Shachter, 1998]. We note that w = {wi = v,w¬i} and Z = {zi = k,Z¬i}.
This yields:

p(zi = k|Z¬i,w) =
p(w,Z)

p(w,Z¬i)
=

p(w|Z)

p(w¬i|Z¬i).p(wi)
.
p(Z)

p(Z¬i)
(2.142)

where the expression p(w|Z)
p(w¬i|Z¬i).p(wi) arises due to the fact that wi ⊥⊥ w¬i|Z¬i and p(wi) = 1. Note

the striking similarity between Equs. 2.142 and 2.117.

Algorithm 3 Gibbs Sampling for LDA

1: B Initialisation
2: zero all count variables, nkd; nd; nwk ; nk
3: for documents d ∈ [1, ..., D] do
4: for words n ∈ [1, ..., Nd] in document d do
5: sample topic index zd,n = k ∼Mult(1/K)
6: increment document-topic count: nkd + 1
7: increment document-topic sum: nd + 1
8: increment topic-term count: nwk + 1
9: increment topic-term sum: nk + 1

10: end for
11: end for
12: B Gibbs sampling over burn-in period and sampling period
13: while not finished do
14: for all documents d ∈ [1, ..., D] do
15: for all words n ∈ [1, ..., Nd] in document d do
16: I for the current assignment of a topic k to a term w for word wd,n:
17: decrement counts and sums: nkd − 1; nd − 1; nwk − 1; nk − 1

18: I multinomial sampling according to
nwk,¬i+ηw∑V
w=1 n

w
k,¬i+ηw

.
nwd,¬i+αk

[
∑K
k=1 n

k
d+αk]−1

(decrements from

previous step; see [Griffiths and Steyvers, 2004] for details):
19: sample topic index k̂ ∼ p(zi|Z¬i,w)
20: I use the new assignment of zd,n to the term w for word wd,n to:
21: increment counts and sums: nk̂d + 1; nd + 1; nw

k̂
+ 1; nk̂ + 1

22: end for
23: end for
24: B Check convergence (often using some heuristics) and output parameters
25: if converged and L sampling iterations have been exhausted since last output then
26: I the different settings of the parameters are either averaged or the one yielding the best model

log likelihood is chosen
27: output parameter β according to βk,w =

nwk +ηw∑V
w=1 n

w
k +ηw

28: output hidden variables θ according to θd,k =
nkd+αk∑K
k=1 n

k
d+αk

29: end if
30: end while

Variational methods are advantageous over sampling when latent variable pairs are not conjugate.
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Usually this involves obtaining another expression for the Expected Lower BOund (ELBO) to the log
likelihood functional using inequalities with Taylor expansions of functions and introduction of aux-
iliary variables (for e.g. see [Zhu et al., 2006]) and then optimizing the new lower bound instead.
Gibbs sampling requires conjugacy, and other forms of sampling that can handle non-conjugacy, such as
Metropolis-Hastings, are much slower than variational methods.

Additionally, Gibbs sampling for a topic modeling framework has a few disadvantages when it
comes to parallelization [Zhai et al., 2012]. A major bottleneck for Gibbs sampling in parallel environ-
ment is distributed memory which makes synchronization of non-local data items such as the number
of times a word type appears in a topic across all documents very difficult. Gibbs sampling for paral-
lelization of LDA thus meets a trade-off between easier formulation of updates and complex engineering
solutions needed to synchronize global counts to rectify for inconsistencies even if the problem is inher-
ently document parallelizable.

A potential incentive for using Gibbs sampling formulation for creating new models that make
use of LDAs modularity is the use of very short and simple iterations. For each word, there is a simple
multiplication to build a sampling distribution of lengthK, sampling from that distribution, and updating
an integer vector.

Sampling from a K-dimensional multinomial distribution with parameters θ1, θ2, ..., θK is easy
[Bishop, 2006]. We first choose a random number r ∈ [0, 1] and then choose an indicator k such that
k = j : arg maxj

∑j
i=1 θi ≤ r.

A K-dimensional Dirichlet distribution is a distribution belonging to the exponential fam-
ily and is conjugate to the multinomial distribution. Its functional form is given by p(θ|α) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

∏K
k=1 θ

αk−1
k where

∑K
k=1 θk = 1 To sample a random vector {θ1, ..., θK} from a Dirichlet

distribution with parameters {α1, ..., αK} requires a bit more effort and is done in the following way
[Gelman et al., 2003]:
[i ] Draw K independent random samples {y1, ..., yK} from Gamma distributions each with density

γ(αk, 1) =
y
αk−1
k exp(−yk)

Γ(αk)
(2.143)

[ii ] Set θk = yk/
∑K
k=1 yk

The Gamma distribution Γ(α, β) is defined by the following probability density:

γ(y, α, β) =
yα−1 exp(−y/β)

βαΓ(α)
(2.144)

The parameter α > 0 is responsible for the shape of the distribution graph and called the shape param-
eter and β > 0 is called the scale parameter. There is an alternative commonly-used parametrization
of the Gamma distribution denoted by Γ(a, b)) with pdf f(y, a, b) = yα−1 exp(−by)ba

Γ(a) . In this context,
b = 1/β is called the rate parameter. One important property of the Gamma distribution is that the sum
of i.i.d Γ(αk, β) random variates is a Γ(

∑K
k αkβ) random variate. Sampling from a Gamma distribution

is a bit more convoluted starting with samples from uniform distribution (due to the non-integral values
of the shape and scale parameters). Concrete implementations of classical algorithms for doing that can
be found in [Press et al., 2007].

In contrast, each iteration of variational inference requires the evaluation of complicated functions
that are not directly implemented in hardware. However, variational methods typically takes much less
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number of iterations (in the order of tens compared to hundreds or thousands for Gibbs sampling) to
converge and convergence is also easier to assess. It also enjoys the full benefits of local document
specific calculations within the E step which can be easily be done in the Map phase of a Map-Reduce
framework. On the other hand, a larger number of iterations for Gibbs sampling means that much
more communication overhead for synchronization to maintain consistent global counts. The complete
marginal independence assumptions in the dual graph for LDA using the variational Bayes approach
makes the inference machinery easily amenable to document level parallelization with less synchro-
nization overheads and thus may be preferred over the Gibbs sampling version in a distributed setting
where maintaining consistency of counts across machines in the latter case causes runtime performance
degradation due to many more synchronization steps. The only difference is that the Gibbs sampling
scheme will sample from the exact posterior while VBEM will only find ML or MAP estimates of the
approximate zero forcing modes of the true posterior modes.
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Chapter 3

Learning to Summarize using Sparse
Coherence Flows

“Words, like nature, half reveal and half conceal the soul within.” - Alfred Lord

Tennyson

3.1 Introduction
The single document summarization problem has been studied as early as the 1960s [Luhn, 1958, Ed-
mundson, 1968] and recent papers on multi-document summarization using the basic results obtained
in [Nenkova et al., 2006b] have shown that high frequency salient words (not including function words
such as stopwords) in the input documents are covered to a large extent in the human summaries. Most
summarization systems are extractive i.e. full sentences from the input documents are selected that max-
imize the coverage of salient words without sacrificing readability. Recently it has been also shown that
solving the problem of multi-document summarization exactly in polynomial time is NP-hard i.e., simul-
taneously satisfying the constraints of relevancy to query, non-redundancy within the summary and total
summary length is NP-hard [McDonald, 2007]. Adding local coherence flow to this list of constraints
not only calls for even more complex optimization but also needs to quantify coherence in some fashion.

Topic models like LDA [Blei et al., 2003] have become the cornerstone for understanding the the-
matic organization of large text corpora in a completely unsupervised but robust fashion. The focus of
this chapter is to extend LDA for extractive query focused multi-document summarization. We hypoth-
esize that in addition to a bag of words, a document can also be viewed in a different manner—words
in a sentence always carry syntactic and semantic information and often such information (for e.g., the
Grammatical and Semantic Role (henceforth GSR) of a word such as subject, object, noun and verb
concepts etc.) is carried across adjacent sentences to enhance coherence in different parts of a document.

In the realm of computational linguistics, there has been work in Centering theory including those
by Grosz et al. [Grosz et al., 1995]. Their work mainly specifies how discourse interpretation depends on
interactions among speaker intentions, attentional state and linguistic form. The discourse participants’
focus of attention at any given point in time is modeled by their “attentional state” which comprises of
a focus in the current utterance being understood. This focus within the attentional state helps identify
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“centers” of utterances which relate different parts of local discourse segments meaningfully and accord-
ing to [Grosz et al., 1995], the “centers” are semantic objects, not just words, phrases, or syntactic forms.
Centering theory helps formalize the constraints on the centers to maximize local coherence properties
of a discourse. In the context of this chapter, the grammatical and semantic roles are approximated
by the explicit realization of the roles induced by the sentential words such as a parts-of-speech, named
entity classes etc. We augment this representation to include a lemmatized surface form of the word as
well in chapter 5. In most datasets where there are no ground truth annotations of the words, the explicit
realization of the GSRs are induced through some inference mechanism employed under the umbrella
of structured prediction techniques. To better understand attentional state and centering, consider the
following simple example:

• Discourse 1

1. Martha finally went to visit Martha’s Vineyard.
2. She had been hoping to spend her vacation at Martha’s Vineyard for many years.
3. Martha packed her things and prepared to leave.
4. She was excited to see the shores of Martha’s Vineyard as she was boarding the ferry.

• Discourse 2

1. Martha finally went to visit Martha’s Vineyard.
2. Martha’s Vineyard had been her top choice for spending a vacation for many years.
3. Martha packed her things and prepared to leave.
4. The shores of Martha’s Vineyard made Martha excited as she was boarding the ferry.

Discourse 1 is an example where the focus of attention is clearly on Martha. Discourse 2 highlights a
shift of attention from Martha to Martha’s Vineyard and vice versa. For e.g. in the first utterance if a
reader perceives the focus of attention to be Martha’s Vineyard, there is a retention of the focus in the
second utterance. If, however, in the first utterance the focus of attention be Martha, then there is a focus
shift in the next utterance. In any case, the focus is on Martha in the third utterance. Discourse 2 is thus
less coherent than discourse 1 in terms of the effort to understand the discourse i.e. discourse 1 has less
inference load.

In the words of Grosz et al. [Grosz et al., 1995], “It is well known from the study of complexity
theory that the manner in which a class of problems is represented can significantly affect the time or
space resources required by any procedure that solves the problem. Here too we conjecture that the
manner, i.e., linguistic form, in which a discourse represents a particular propositional content can affect
the resources required by any procedure that processes that discourse. We use the phrase inference load
placed upon the hearer to refer to the resources required to extract information from a discourse because
of particular choices of linguistic expression used in the discourse.”

In the example above, in discourse 1, the pair (Subject, “Martha”) approximates a center that is
retained through the focus of attention in the utterances. Thus the propagation of these centers of ut-
terances within discourse segments helps maintain the local coherence, which in turn is responsible for
“easy understanding” of the discourse i.e. reducing the inference load on part of the reader.

Each word in a sentence of a document has an associated role (syntactic or semantic) with it for
e.g., a noun helps identify a concept (abstract or concrete) and thus serves as a part or whole of a center
of utterance. If two consecutive sentences contain the same word, then there is a GSR transition
(henceforth GSRt) within the context of sentences. The change in attentional state in local discourse
segments are approximated through these transitions. If the word is not present in the preceding (or
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succeeding) sentence then there is still a transition from (to) a null, identified by “–” GSR to (from) the
current GSR. A GSRt can thus looked upon as a multinomial distribution over sentences in a document.
Although only the use of entities are advocated by centering theory, verbs have also been used as GSRs
in this chapter to understand the intents in attention i.e. actions.

Following the original versions of the Centering theory as is, the most coherent parts of a dis-
course are those where there are frequently occurring GSRts involving entities i.e. Subjects, Objects
and Named-Entity GSRs. Selecting sentences which have a high frequency of such GSRts is helpful,
however, it is not guaranteed that such a property is dominant in a general document collection.

Interestingly the implications of centering bear remarkable similarity to summarizing videos.
Amongst the many objects present in each frame of the video, the observer is focused on the princi-
ple actions and the associated entities and objects which help generate a textual query for that video.
This phenomenon is briefly implied in Figure 1.1 in Chapter 1 where the central question becomes “Do
we speak all that we see?”

Section 3.3 and the sub-sections within it review how Centering theory [Grosz et al., 1995] has
been adapted to develop our new Utterance Topic Model (UTM) [Das and Srihari, 2009] to include the
notion of coherence as an auxiliary meta-perspective of a document which is assumed to influence its
latent topical structure. In section 3.5 it is shown how UTM can be extended as a full summarization
model. For a particular query, we rank sentences by a product of topical salience and as well as the
topical influence over observed GSR transitions. The techniques of our proposed method are described
in section 3.4 and results and analysis of the output of our model in terms of summarization are presented
in Section 3.6.2.

3.2 Related Work
Topic models have been widely applied to text despite a willful ignorance of the underlying deep lin-
guistic structures that exist in natural language due to computational time constraints. There have been
a lot of work on either applying topic models directly to a certain problem as in [Blei and McAuliffe,
2008, Yano et al., 2009, Chen et al., 2009] or adapting basic LDA style topic modeling as in [Nallapati
and Cohen, 2008, Mei et al., 2007a]. In a topic model, the words of each document are assumed to be
exchangeable i.e., their probability is invariant to permutation of the positions of the words in a docu-
ment. A workaround to this inadequacy was posed and addressed in [Graber and Blei, 2009]. It is also
important to note that although a topic model may suggest documents relevant to a query (by treating the
query as a short document), it can be very noisy due to the length of the query and further, finding partic-
ularly relevant phrases for question answering is still a challenging task. Our main focus in this chapter
has been to build a new topic model based on the LDA framework which can use linguistic features and
semantic roles of words in a discourse segment.

In the active research area of extractive multi-document summarization, most earlier methods had
focused on clustering of sentences or building graphs of sentences from the relevant documents and
then using graph mining algorithms such as Pagerank to select most authoritative sentences (as in [Wei
et al., 2010]). Other approaches include algorithmic formulation of summary extraction using greedy,
dynamic and integer linear programming methodologies. The work in [McDonald, 2007] compares these
approaches and also proves that in general the inferring an extractive summary is NP-hard. More earlier
works in summarization had focused on core natural language processing techniques and propositional
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logic [Marcu, 2000b] however, all such methods lack exploratory topic analysis of the corpus.

Although many articles on summarization exist in the proceedings of different conferences and
journals, one of the best places to find interesting ideas on this problem is in the procedings for the
Document Understanding Conference (DUC) and the Text Analysis Conference (TAC) [DUC, 2007,
DUC, 2008]. The approaches of a few of the TAC 2008 teams who participated in the summarization
track and obtained good results are discussed very briefly below.

The Thomson Reuters team1 used a classifier based approach to identify good first sentences that
are deemed ideal for summary construction. Note that this assumption may be valid if the data belongs
to the newswire domain. Since the TAC datasets mainly consist of news articles, this assumption is
valid. The ICSI Summarization system [Gillik and Favre, 2009] formulates the summarization problem
as an integer linear programming problem where they maximize the coverage of n-grams (bi-grams in
their paper) in summary sentences. In this setting, the goal is to assign binary integers (0 or 1) αij to
a sentence sj consisting of a concept (n-gram) ci to indicate whether sentence sj should really be a
candidate summary sentence. This is achieved by formulating a set of constraints involving weights of
concepts, the latter being calculated using its importance to the document collection as well as to the
query. In both ILP formulations mentioned in [Gillik and Favre, 2009, McDonald, 2007], the inclusion
of the concept of coherence is completely missing.

The system presented by Tsinghua University [Long et al., 2009] presents a new summarization
technique using Kolmogorov complexity and information distance. However to approximately compute
the information distances between n the summary units (sentences) they use simple weights of words like
tf-idf etc. and functions involving these weights. They also used another method which used ranking of
sentences through eigenvalue calculation of the sentence similarity matrix that also performs comparably
to their former method. The system submitted by Zhang et al.2 again focuses on identifying salient n-
grams to be included in a summary and rank sentences based on such weights.

The work by Ye et. al.[Ye et al., 2005] calculates the semantic similarity among the sentences
in the cluster, and between a sentence and the given cluster of documents. The semantic similarity be-
tween sentences is determined by the number of sentential concept overlaps calculated from the WordNet
synset hierarchy including glosses, hypernyms and meronyms. Another interesting approach taken by
[Li et al., 2005] where the sentences are scored by a weighted combination of several features including
pattern based features which provide clue as to how to interpret an information need. It has been shown
in [J et al., 2005], that using contextual language models and latent semantic indexing, the resulting sum-
maries has been promising based on the results of the ROUGE evaluation tool. Their contextual language
model essentially computed a language model within a window of words instead of an explicit n-gram.
In yet another unique approach to summarization [Hovy et al., 2005], the syntactic structure of the parse
trees was utilized to generate valid triples of basic elements (BEs) or (head—modifier—relation) triples
and then summary sentences were extracted using a score directly related to computing important BEs
in them. The focus in [Srihari et al., 2007] was more about finding hidden connections among query
concepts using textual evidences through semantic cues rather than summarization. However, a final
summarization was performed on the evidence trails and was therefore chosen as a system for compari-
son.

Some of the recent and notable Bayesian topic model approaches to summarization have been pre-

1http://www.nist.gov/tac/publications/2008/participant.papers/TOC.proceedings.pdf
2http://www.nist.gov/tac/publications/2008/participant.papers/ICTCAS.proceedings.pdf
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sented in [Chen et al., 2009] and [Daumé III and Marcu, 2006] that involve exploratory topic analysis.

3.3 Centering Theory and Sparse Coherence Flows
This section presents our preliminary attempts to model summarization as an unsupervised learning
problem without resorting to complex question answering techniques using inference with parse trees.
Although part-of-speech (POS) as well as syntactic information has been used, the proposed model
ignores any syntactic tree structure of sentences at present unlike that in [Graber and Blei, 2009] which
ignores inter-sentential clues of entity propagation from Centering theory. This has been done to model
documents and sentences using the syntactic and semantic features of words across adjacent sentences
and not within sentences.

3.3.1 Discourse Analysis: Centering Theory
Centering theory in discourse analysis comprises of a family of models which attempt to analyze the
notion of “centering” [Grosz et al., 1995] with regards to coherence. Discourse structure mainly deals
with modeling of the inherent linguistic structure, intentional structure and the local attentional state.
Each of these modules manifest themselves in various forms depending on the inherent assumptions of
the modeling choices. For example, one can derive both a dependency parse or a rhetorical parse from
a syntactic parse where the inherent assumptions of each parsing model is very different (see Chapter 5
for an introduction on Rhetorical Structure Trees).

The syntactic parse is involved in finding the hierarchy of non-terminals in the grammar of a speci-
fied language that leads to the generation of an utterance or a sentence. The dependency parse often uses
the syntactic parse to decompose an utterance or a sentence into a set of binary relation tuples where a
pair of words are connected through a labeled relation identifying a governing constituent as well as a
dependent constituent. Rhetorical structure [Mann and Thompson, 1988] on the other hand is involved
in segmenting text into Elementary Discourse Units (EDUs) and finding labeled binary relations that
joins two EDUs in a meaningful way. The meaning in this case originates from a set of pre-specified
(albeit incomplete) rhetorical relations. Although, the incompleteness of such relations [Sibun, 1993]
can be a cause of concern for deep analysis of discourse, however, in this chapter we are not concerned
with such analysis and instead take a coarser view of the underlying discourse structures. This allows
us to build statistical models which decouple deep linguistic assumptions from necessary exchangeabil-
ity conditions on the observations thus providing an option for fast inference. Rhetorical Structure also
models the inherent intentional structure as manifested through the rhetorical relations between adjoin-
ing constituents—we will visit Rhetorical Structure Trees in Chapter 5 in the context of “bulleted list”
summary generation. We first provide a background on “centering” in the context of anaphora (or co-
reference) resolution that will help us understand its importance with regards to the creation of controlled
vocabularies or meta-information from documents.

Centering Theory [Grosz et al., 1995] concerns itself with modeling the attentional state in discourse
analysis. There are two levels of attentional state—a global level, which is dependent on the intentional
structure, is concerned with the relations between discourse segments and the ways in which attention
shifts between them; The local level, on the other hand, is concerned with changes of “focus of attention”
within discourse segments. Centering, an element of the local level, pertains to the interaction between
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Cb(Un+1) = Cb(Un)
or Cb(Un) is undefined

Cb(Un+1) 6= Cb(Un)

Cb(Un+1) = Cp(Un+1) Continue Smooth-Shift
Cb(Un+1) 6= Cp(Un+1) Retain Rough-Shift

Table 3.1: Transition relations holding between pair of adjacent sentences due to the centers

the form of linguistic expression and local discourse coherence. In particular, it relates local coherence
to the choice of referring expressions such as pronouns contrasted with definite descriptions or proper
names, and argues that differences in coherence correspond in part to the different demands for inference
made by different types of referring expressions, given a particular attentional state. We will explore an
example from anaphora resolution i.e. co-reference resolution using a Centering algorithm to highlight
this point.

In centering theory, utterances make up the fundamental constituents. In general, utterances can
be full short sentences but can easily be smaller meaningful constituents of a larger sentence. Also,
the attentional state in Centering Theory is reflected through the participation of entities within the
loci of attentional focus across utterances. If we denote Un and Un+1 to be adjacent utterances, the
backward-looking center of Un, denoted as Cb(Un), represents the entity currently being focused on
in the discourse after Un is interpreted. The forward-looking centers of Un, denoted as Cf (Un), form
an ordered list containing the entities mentioned in Un, all of which can serve as Cb(Un+1). In general,
however, Cb(Un+1) is the most highly ranked element ofCf (Un) mentioned in Un+1. TheCb of the first
utterance in a discourse is undefined. Brennan et al. [Brennan et al., 1987] uses the following ordering:
Subject > Existential predicate nominal > Object > Indirect object or oblique > Demarcated adverbial
PP. An example of each of the semantic roles of the noun concept “Ford Focus” is as follows:
(a) A Ford Focus is parked in the lot. [subject]

(b) There is a Ford Focus parked in the lot [existential predicate nominal: The existential phrase is
marked with a “There”]

(c) John parked a Ford Focus in the lot [object]

(d) John gave his Ford Focus a facelift. [indirect object: A noun or pronoun that indicates to whom or
for whom the action of a verb in a sentence is performed]

(e) Inside his Ford Focus, John showed Susan his new CD player. [demarcated adverbial PP]

We now describe a centering based algorithm for pronoun resolution from [Brennan et al., 1987].
In their algorithm, referents of pronoun are computed from relations that hold between the forward- and
backward-looking centers in adjacent sentences. The algorithm defines four inter-sentential relations
between a pair of utterances Un and Un+1 that depend on the relationship between Cb(Un+1), Cb(Un)

and Cp(Un+1) where Cp(Un) is the highest ranked forward-looking center in Un.
The following rules are used by the algorithm:

Rule 1: If any element of Cf (Un) is realized by a pronoun in utterance Un+1, then Cb(Un+1) must
be realized as a pronoun also.
Rule 2: Transition states are ordered. Continue is preferred to Retain is preferred to Smooth-Shift is
preferred to Rough-Shift.

With these rules and concepts the algorithm is as follows:
1. Generate possible Cb − Cf combination for each possible set of reference assignments
2. Filter by constraints, e.g., syntactic coreference constraints, selectional restrictions, centering rules
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and constraints
3. Rank by transition orderings.

The result is that the pronominal referents that get assigned are those that yield the most preferred
relation in Rule 2 without violating Rule 1 or coreference constraints (gender, number, syntactic, selec-
tional restrictions).

We now give an example of this approach where an error in pronoun resolution leads to a consider-
able higher inference load on part of the reader.
U1: Bob opened a new dealership last week.
U2: John took a look at the Fords in his lot.
U3: He ended up buying one.
The question here is to which entity should “he” in the utterance U3 refer to so that the inference load
i.e. the effort to understand the paragraph is minimum.

We have the following for the first sentence U1:
1. Cf (U1): {Bob, dealership}
2. Cp(U1): {Bob}
3. Cb(U1): undefined

Similarly, for the second sentence U2 we have:
1. Cf (U2): {John, Fords}
2. Cp(U2): {John}
3. Cb(U2): {Bob} [because of “his lot” and Cp(U1) is “Bob”]

SinceCb(U2) 6= Cp(U2) andCb(U1) is undefined, we have a “Retain” relation between U1 and U2. Now
we wish to determine the referent for the subject pronoun “he” in U3.
If he refers to John, then we have:
Case1

1. Cf (U3): {John}
2. Cp(U3): {John}
3. Cb(U3): {John} (whichever entity “he” is referring to)

If he refers to Bob, then we have:
Case2

1. Cf (U3): {Bob}
2. Cp(U3): {Bob}
3. Cb(U3): {Bob} (whichever entity “he” is referring to)

In case 1, we have a “Smooth-shift” relation between U2 and U3 since Cb(U3) is “John” and the
most highly ranked element of Cf (U2) i.e. Cp(U2) is “Bob.” Thus Cp(U3) = Cb(U3) 6= Cb(U2). How-
ever for case 2, we have a “Continue” relation which is preferred over “Smooth-shift” and thus “he” inU3

is wrongly associated with “Bob.” This phenomenon not only makes the sequence of utterances difficult
to understand but also makes Bob a more prominent entity in the discourse segment than John through
frequency measurements. From the perspective of incorporating such features into a frequency based
statistical model, such wrong substitutions can result in assigning higher importance to unimportant en-
tities. We thus, initially, take a different approach to incorporate such local attentional state information
relating to local coherence as observed variables in topic models which we discuss next.

The term centers of an utterance refer to those entities serving to link that utterance to other ut-
terances in the discourse segment that contains it. Each utterance, which can be coarsely approximated
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by a sentence, S in a discourse segment (DS) is assigned a set of forward-looking centers, Cf (S,DS)

and each utterance other than the segment initial utterance is assigned a single backward-looking center,
Cb(S,DS). The backward-looking center of utterance Sn+1 connects with one of the forward-looking
centers of utterance Sn. An illustration from [Grosz et al., 1995] below elucidates coherence through
such center linkages. Such center linkages constitute what we name as “Sparse Coherence Flow.”
(a) John has been having a lot of trouble arranging his vacation
(b) He cannot find anyone to take over his responsibilities. (he = John) Cb = John; Cf = {John}
(c) He called up Mike yesterday to work out a plan. (he = John) Cb = John; Cf = {John,Mike}

3.3.2 Sparse Coherence Flows
For building a statistical topic model that incorportes GSR transitions (henceforth GSRts) across utter-
ances, words in a sentence were attributed with GSRs like subjects, objects, concepts from WordNet
[Fellbaum, 1998] synset role assignments (wn), adjectives, VerbNet [Kipper, 2005] thematic role assign-
ment (vn), adverbs and “other” (if the feature of the word does not fall into the previous GSR categories).
Further if a word in a sentence is identified with two or more GSRs, only one GSR is chosen based on the
left to right descending priority of the categories mentioned. In our experiments, we enforce the follow-
ing ordering priority: 〈 subj > nn > wn > obj > adj > vb > vn > adv 〉. These roles (GSRs) have been
extracted separately using the text analytics engine SemantexTMfrom Content Savvy Inc. (previously
Janya Inc.).

In a window of sentences, there are potentially (G + 1)2 GSRts for a total of G GSRs with the
additional one representing a null role (denoted by “–”) if the word is not found in the contextual sen-
tence. It is easy to see that with the introduction of the notion of the null GSR, the number of GSRts
involving non-null GSRs is much much fewer than with one of the GSRs being null and arises due to
supression of a coreference resolution module. Referring back to the Anaphora resolution example in
the previous section, the term “sparse” is used to signify a deliberate ignoring of co-reference resolution
of the pronouns during document processing thus making the statistical topic model much less prone to
errors arising out of wrong anaphora resolution.

If there are TG GSRts in the corpus, then a sentence is represented as a vector over the GSRt counts
only along with a count vector over the word vocabulary. In the extended model for summarization, one
more role called “ne” (encompassing all Named Entity classes) has also been added with the highest
priority.

Note that although Centering theory focuses more on the nominal entities and pronouns to highlight
the transition of attentional state across the forward and backward looking center(s), we also consider
words which play key roles in identifying the relationship between a subject and object like verbs and
also words that promote/demote the quality of a noun or verb like adjectives and adverbs. This is because
words other than nominal entities also play a major role in identifying the intention in the discourse
segments.

Also since topic models like LDA work best by eliminating stopwords when a symmetric Dirichlet
prior is assumed for the latent topic proportions of documents, some of these stopwords like pronouns etc.
are important for signifying coherence and so we used anaphora resolution as offered by SemantexTMto
substitute pronouns with the referent nouns as a preprocessing step. However, this turned out to be
very noisy and we do not use anaphora resolution when we revisit this type of document perspective in
Chapter 5.
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For further insight on how GSRts have been used, a matrix has been constructed consisting of
sentences as rows and words as columns; the entries in the matrix are filled up with a specific GSR
for the word in the corresponding sentence following GSR priorities. Table 3.2 shows a slice of such a
matrix taken from the DUC 2005 dataset which contains documents related to events concerning rules
imposed on food labeling. Table 3.2 suggests, as in [Barzilay and Lapata, 2005a], that dense columns
of the GSRs indicate potentially salient and coherent sentences (1 and 2 here) that present less inference
load with respect to a query like “Food Labeling.”

↓SentenceIDs words... →
ID food consumers health confusion label(ing) FDA regulations
1 nn – nn nn nn ne –
2 nn – nn – – ne –
3 – subj – – – – –
4 subj nn subj – – – nn

Table 3.2: Snapshot of a sentence-word GSR grid view of a document on “Health and Safety” category

where “nn” is a noun and “ne” is a Named Entity category. Sentences 1 through 4 in the document read
as:

1. The Food and Drug Administration (FDA) has proposed a stringent set of rules governing the use
of health claims on food labels and advertising, ending nearly six years of confusion over how
companies may promote the health value of their products.

2. By narrowing standards for what is permissible and strengthening the FDA’s legal authority to act
against misleading claims , the rules could curtail a trend in food marketing that has resulted in
almost 40% of new products and a third of the $ 3.6 billion in food advertising over the last year
featuring health-related messages.

3. Most such messages are intended to make the consumer think that eating the product will reduce the
risk of heart disease or cancer.

4. The regulations, which will be published next week in the Federal Register , were criticized by food
industry officials , who said they would require health claims to meet an unrealistic standard of
scientific proof and would hinder the ability of manufacturers to give consumers new information
about nutrition.

Note that the counts for the GSRts “nn→–” and “nn→nn” for sentenceID 1 are both two in this snapshot.
Thus this discourse is dominant in GSRts involving a noun GSR.

For another example on a different event, Table 3.3 shows a slice of the GSR grid obtained from
the TAC2008 dataset which contains documents related to events concerning Christian minorities in Iraq
and their current status. Table 3.3 again suggests that dense columns of the GSRs indicate potentially
salient and coherent sentences (7 and 8 here) that present less inference load with respect to a query like
“Baghdad attacks”. Note that in this chapter, the GSRt representation does not include the surface form
of the words and thus the words “food” and “health” in Table 3.2 are indistinguishable for the perspective
of GSRt proportions in the document. In this case the words are assumed to be generated from latent
topics which are influenced by the local but coarse coherence properties of the documents. This type of
GSRt can be looked upon as coarse coherence encoding of the discourse. Such an encoding does not
turn out to be very effective w.r.t. held-out log likelihood calculations and we remedy this in Chapter 5.
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↓SentenceIDs words... →
ID protect attacks churches Baghdad Mosul
6 – – – – –
7 – subj obj wn –
8 – vn wn wn wn
9 – subj – – –

10 – – subj wn –
Table 3.3: Snapshot of a sentence-word GSR grid view of a document on “Attacks” category

where “wn” is a WordNet synset role assignment and “vn” is a VerbNet thematical role assignment. The
sentences 6 through 10 in the document read as:

6. The major Christian groups include Chaldean - Assyrians, who make up Kana’s group, and Armeni-
ans.

7. On Oct. 16 , bomb attacks targeted five churches in Baghdad which damaged buildings but caused
no casualties.

8. Officials estimate that as many as 15,000 of Iraq’s nearly one million Christians have left the country
since August, when four churches in Baghdad and one in Mosul were attacked in a coordinated
series of car bombings.

9. The attacks killed 12 people and injured 61 others.

10. Another church was bombed in Baghdad in September.

3.4 Learning to Summarize using Utterance Topic Models
This section describes our first attempt to model topics not only using word counts but also using GSRts.
An extension that transforms the utterance topic model to a “Learning To Summarize” (henceforth
LeToS) model is also presented.

3.4.1 Utterance Topic Model
The proposed probabilistic graphical Utterance Topic Model (henceforth UTM) is presented now. To
describe the document generation process, it is assumed that there are K latent topics, TG total number
of possible GSRts and T GSRts associated with each document. Also denote θ and π to be the topic
and topic-coupled GSRt proportions in each document. We treat the GSRt proportions per document in
this model to be topic-coupled since the expected number of terms per GSRt also depend on their latent
topic assignment. Had we treated the GSRts to be word level annotations, then a model like TagLDA
[Zhu et al., 2006] would have been applicable. In that case we still have to make a decision which prefers
only one GSRt in a list of GSRts for a particular word depending upon its contextual sentences and there
is no principled approach to make this choice. In this chapter, we do not associate the surface form of
the word in the GSRt representation in this preliminary investigation—a limitation which is refined in
Chapter 5.

Denote rd,t to be the observed GSRt t for a particular window of three sentences in a document d;
wd,m is the observed word in the nth position of the dth document. Further denote, zd,t to be an indicator
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variable for topic proportions, yd,m is the indicator variable for topic-coupled GSRt proportions. At the
parameter level, each topic is a multinomial over the vocabulary V of words in the corpus and each topic
is also a multinomial over the GSRts following the implicit relation of GSRts to words within sentence
windows. Also these GSRts are the output of a separate natural language parsing system.

At a higher level, each document in the corpus has mixing proportions over both the latent topics
and also over the topic-coupled GSRts. In our proposed model, a GSRt along with the topic is jointly
responsible for selecting a word from the vocabulary. This intuition becomes clear by observing the
GSRs of the words “attack,” “churches” and “Baghdad” in Table 3.3. Without the corresponding GSRts,
the topic of “attacks on churches in Baghdad” would not have formed in that particular discourse and
the choice of this particular topic led to the realization of GSRts such as subj→wn, wn→subj, wn→obj,
wn→wn etc. The document generation process is shown in Fig. 3.1a and is explained as a model below:

For each document d ∈ 1, ..., D

Choose a topic proportion θ|α ∼ Dir(α)

Choose topic indicator zt|θ ∼Mult(θ)

Choose a GSRt rt|zt = k,ρ ∼Mult(ρzt)

Choose a GSRt proportion π|η ∼ Dir(η)

For each position m in document d
Choose ym|π ∼Mult(π)

Choose a word wm|ym = t, z,β ∼Mult(βzym )

where m ∈ {1, ...,Md} is the number of words in document d ∈ {1, ..., D}, t is and index into one of
the T GSRts and k is an index into one of theK topics; β is aKxV matrix and ρ is aKxTG matrix. The
model can be viewed as a generative process that first generates the GSRts and subsequently generates
the words which describes the GSRts. For each document d, we first generate T topic-coupled GSRts
using a simple LDA model and then for each of the Md word positions, a GSRt is sampled and a word
wd,m is drawn conditioned on the same factor which generated the chosen the GSRt. The factor here is
indicative of the latent topic. Instead of influencing the choice of a topic-coupled GSRt to be selected
from an assumed distribution (e.g. uniform or Poisson) over the number of GSRts, the document specific
proportions are used i.e. χd,t − ηt is the expected number of words assigned to a GSRt t influenced by
the generating topics for document d.

Direct posterior inference over the latent variables is intractable because of coupling of the param-
eters to the latent factors conditioned on the observed variables and we resort to approximate inference
through variational Bayes. Variational Bayes breaks the edges between coupled random variables and pa-
rameters, removes the observed variables that lead to coupling and introduces free variational parameters
which act as surrogates to the causal distribution of the original latent variables. The resulting simpler
tractable distribution is shown in Fig. 3.1b. In the variational setting, the constraints for each document
are
∑K
k=1 φd,t,k = 1 and

∑T
t=1 λd,m,t = 1. Note that θ is K-dimensional and π is TG-dimensional.

3.4.2 Parameter Estimation and Inference
This section outlines the various updates of the latent variables and the parameters. In our model mean
field variational inference is used to find as tight as possible an approximation to the log likelihood
of the data (the joint distribution of the observed variables given the parameters) by minimizing the KL
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(a) Graphical model representation of UTM
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(b) The variational dual of UTM

Figure 3.1: Utterance Topic Model: Extending LDA to include coarse coherence properties of discourse
segments

divergence of the posterior distribution of the latent variables over the variational parameters to likelihood
of the data. The details can be found in [Blei et al., 2003, Beal, 2003]. As discussed in Chapter 1, for
tractability purposes, a fully factorized variational distribution over each document d is assumed as:

q(θ,π, z,y|γ,χ,φ,λ) = q(θ|γ)q(π|χ)

T∏
t=1

q(zt|φt)
Md∏
m=1

q(ym|λm) (3.1)

The variational functional to optimize can be shown to be:

L = Eq[ln p(r,w,θ,π, z,y|α,η,ρ,β)]− Eq[ln q(θ,π, z,y|γ,χ,φ,λ)] (3.2)

where Eq[f(.)] is the expectation of f(.) under the q distribution.

3.4.3 Latent variable inference
The key inferential problem that is being solved here is to infer the posterior distribution over the la-
tent variables conditional upon the observations and parameter values. As discussed in Chap. 1, the
intractable integration problem of computing the log partition function is transformed into a tractable
lower bound optimization problem. Figure 3.1b shows the variational parameters of the original model:
γ,χ,φ,λ; These parameters are defined for every individual instance of the latent variables over which
the integral of the log partition function is defined. The maximum likelihood estimators of these latent
variables have the following forms:

γd,k = αk +

T∑
t=1

φd,t,k (3.3)

χd,t = ηt +

Md∑
m=1

λd,m,t (3.4)

λd,m,t ∝ exp{(Ψ(χd,t)−Ψ(

T∑
f=1

χd,f )) + (

K∑
i=1

φd,t,k lnβz(ym=t)=k,m)} (3.5)

φd,t,k ∝ exp{ln ρk,t + (Ψ(γd,k)−Ψ(

K∑
k=1

γd,k)) + (

Md∑
m=1

λd,m,t lnβz(ym=t)=k,m)} (3.6)
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3.4.4 Maximum Likelihood Parameter estimation
The expressions for the maximum likelihood estimators of the parameters of the original graphical model
can be obtained using derivatives w.r.t the parameters of the functional L. The following maximum
likelihood expressions are obtained:

ρk,g ∝
D∑
d=1

T∑
t=1

TG∑
g=1

φd,t,kr
g
d,t (3.7)

βk,j ∝
D∑
d=1

V∑
j=1

Md∑
m=1

(
T∑
t=1

λd,m,tφd,t,k

)
wjd,m (3.8)

(3.9)

where g and t are dummy index variables for all possible and document specific topic-coupled GSRts
respectively. Further, rgd,t is 1 iff t = g and 0 otherwise i.e. a delta function. The updates of α and η
following symmetric Dirichlet distributions are exactly the same as mentioned in [Blei et al., 2003].

3.5 The Learning To Summarize model—LeToS
This section investigates how a topic model like UTM which incorporates the proportions of the gram-
matical and semantic role transitions of words as a complementary view of a document indicating co-
herence can be extended to a model for multi-document summarization. The motivation to model the
summarization process as generative model arises from an intuitive psycholinguistic scenario: Suppose
in an exam, a student is asked to write an essay type answer based out of a large amount of preparatory
reading materials. Now, under usual circumstances, she is less inclined to memorize the entire set of
materials. Instead, for possible question scenarios, the student remembers only selected sentences (be
directly extracted from text or paraphrased through natural language generation techniques) which are
much like those found in the summary slide (section) of a lecture (chapter) about a particular topic. Then
a coherent answer is constructed by expanding on the summary sentences and rearranging them.

Table 3.2 shows how dense columns (non “–” entries) of the document level sentence-term GSR
grid identify potential coherent informative sentences w.r.t particular query words. Thus to extend UTM
into a summarization model, each GSRt is treated as distribution over sentences. This makes the model
to operate on only a fixed index of sentences which makes it amenable to extractive multi-document
summarization but at the same time destroys the generalizability of UTM. This shortcoming is removed
in Chapter 5 by addressing the problem of summarization from multiple perspectives including the top-
ical significance of a sentence w.r.t the whole collection. To define a probabilistic topic summarization
model, the document generation process is described as follows:

For each document d ∈ 1, ..., D

Choose a topic proportion θ|α ∼ Dir(α)

Choose topic indicator zt|θ ∼Mult(θ)

Choose a GSRt rt|zt = k,ρ ∼Mult(ρzt)

Choose a GSRt proportion π|η ∼ Dir(η)
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For each position m in document d:
For each instance of utterance sp for which wm occurs in sp in document d:

Choose vp|π ∼Mult(π)

Choose ym ∼ vpδ(wm ∈ sp)
Choose a sentence sp ∼Mult(Ωvp)

Choose a word wm|ym = t, z,β ∼Mult(βzym )

where, as before, Md is the number of words in document d ∈ 1, ..., D, P is the number of sentences
in the same document and t is and index into one of the T GSRts. The delta function δ(wm ∈ sp)

is 1 iff the mth word belong to the pth sentence and 0 otherwise. Under this extension, χd,t − ηt to
be the expected number of words and sentences per topic-coupled GSRt in each document with χd,t
being the variational surrogate for πd,t in the dual model. Each topic-coupled GSRt is also treated as a
multinomial Ωt over the total number U of sentences in the corpus. Thus a GSRt is selected using π and
a wordwd,m is chosen to describe it and along with it a sentence sd,p containingwd,m is also sampled. In
disjunction, π along with vd,p, sd,p and Ω focus mainly on topically induced coherence properties among
the “coarser” units i.e. the sentences. However, the influence of a particular GSRt like “subj→subj” on
coherence may be discounted if that is not the dominant trend in the transition topic. This fact is enforced
through the coupling of empirical GSRt proportions to topics of the sentential words. Figure 3.2a give
the depiction of the above process as a graphical model. The variational Bayesian counterpart of the
model is exactly the same as in figure 3.1b but with an additional independent P plate inside of the D
plate for sentence-GSRt multinomials i.e a plate with a directed arc from variational ζp to indicator vd,p.
For obtaining summaries, sentences are ordered w.r.t query words by accumulating the sentence-query

 

UTM 

T 

D 

T 

d zt rt 

β 
K 

α 

 

M 

wm ym 

d 

 
K 

D M 

zt t d 

 

d 

 

ym m 
d 

 

d 

 

D 

d 

 

d 

 
d 

 

d 

 

T 

M 

zt t 

ym m 

P 
vp p 

D 

T 

d zt rt 

β 
K 

α 

 

M 

wm ym 

d 

 
K 

sp 

vp 

P 
 

T 

(a) Graphical model representation of LeToS by extending UTM
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(b) The variational dual of LeToS using UTM

Figure 3.2: Extending the UTM model to the Learning To Summarize model (LeToS) by assuming that
sentences are distributions over coarse coherence properties of discourses which in our case are GSRts

word pair probability scores by computing:

p(sd,u|q) =

Q∑
l=1

(

T∑
t=1

K∑
k=1

ζd,u,tφd,t,k(λd,l,tφd,t,k)γd,kχd,t)δ(wd,l ∈ sd,u) (3.10)

where Q is the number of the query words in query vector q and su is the uth sentence in the corpus
that belongs to all such document d’s which are relevant to the query, wl is the lth query word, and k
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and t and topic and GSRt indices respectively. Normally, under this model it can be enforced that each
sentence in the summary be actually extracted form a unique document only, however, if larger more
coherent summaries are needed, the sentences in the window of each most probable sentence can be
included. Further, whenever possible, the sentences are scored over only “complete” GSRts which lack
any “–” GSRs.

3.5.1 Parameter Estimation and Inference in the Extended Model
The set of equations in section 3.4.3 is augmented by the updates of the variational sentence multinomial
and the posterior Dirichlet update for the topic coupled GSRt proportions as:

χd,t = ηt +

Md∑
m=1

λd,m,t +

Pd∑
p=1

ζd,p,t (3.11)

ζd,p,t ∝ Ωt,p exp{Ψ(χd,t)−Ψ(

T∑
j=1

χd,j)} (3.12)

Note that these are again per-document updates. The only addition to the set of equations given in
section 3.4.4 is:

Ωt,u ∝
D∑
d=1

Pd∑
p=1

ζd,p,ts
u
d,p (3.13)

where u is an index into one of the S sentences in the corpus and sud,p = 1 if the pth sentence in
document d is one among S.

3.6 Experimental Setup and Results

3.6.1 Description of the Datasets
The datasets that are used for finding topics as well as subsequent summarization are the DUC 2005,
TAC 2008, TAC 2009 as well as a more practical real-life data from Yahoo! Answers. The DUC 2005
dataset had 50 folders with at least 25 documents in each folder. Each such folder corresponded to a
particular “topic focus” or “cluster” or “docset” representing varying human information needs.

The TAC 2008 dataset is organized into 48 folders as in DUC 2005, however, it also has docu-
ments in each folder grouped into two timelines which we merge for the sake of theme detection and
summarization without modeling any temporal aspect. The organization for the TAC 2009 dataset is
also similar with 44 folders. The manually collected Yahoo! Answers dataset consists of 10 such topic
focuses with each topic focus pertaining to a particular real-life question. For each such topic focus, 10
relevant answers were collected and each answer was archived as a separate document.

Fig. 3.3 shows the empirical proportions of such GSRts, calculated across contexts of three sen-
tences. The red dotted boxes show the histogram heights for some GSRts involving subjects, noun and
WordNet concepts for two datasets: TAC 2008 newswire and the in-house collection of Yahoo! An-
swers. The histogram trends are more or less similar for both datasets and shows that the proportions of
complete GSRts (i.e. GSRts with no null GSRs) are significantly less than those for incomplete GSRts.
We next study the qualitative aspect of the topics of our UTM model and the summarization performance
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Ad-hoc Analysis of the Datasets 

Document Structure Topic Models Discourse Organization Coherence 

Figure 4: Empirical per-document GSRt proportions in Yahoo! Answers & Newswire 

GSRt Analysis 

Figure 3.3: Empirical proportions of GSRts based on a maximum of three-sentence window for the
Yahoo! Answers and TAC08 Newswire datasets

of its extension—the LeToS model.

3.6.2 Qualitative Topic Analysis and Summarization Performance

topic19 topic0 topic2 topic7 topic39 topic33 topic32 topic34
mines company Armstrong ice London pope Felt drugs
coal Fannie

Mae
samples glaciers bomb Vatican Throat planned

safety executive tested years police John
Paul II

Deep Medicare

accidents financial Tour sea people funeral WoodWard coverage
China officer L’Equipe warming attacks words Watergate benefit
coal
mine

chief EPO scientists trains Poland FBI part

years account doping Antarctica subway Rome post retirees
produced Raines times Alaska bus GMT Mark health
officials billion years global station catholic source senior
killed top French levels killed world secret cost

Table 3.4: Some topics from LDA for TAC 2008

Tables 3.4 and 3.5 present a few sample topics as distributions over the vocabulary by manually
matching the topics from LDA and UTM—the latter incorporating the notion of coherence in a coarser
way by depending only on the grammatical and syntactic role transitions without incorporating the sur-
face forms of the words. Majority of the words in these topics come from documents that contained
information regarding the following events:

[i ] “Describe the coal mine accidents in China and actions taken”

[ii ] “Give an account of the criminal investigation of Franklin Raines”
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topic35 topic5 topic58 topic47 topic22 topic6 topic8 topic9
mine Fannie

Mae
Armstrong planet London pope Felt drugs

coal company steroids Pluto bomb Vatican Obama plan
China account tested ice police funeral Throat Medicare
safety Raines samples scientists attacks word Deep coverage
year Fannie years glaciers trains John

Paul II
president retirees

accident financial drugs objects subway GMT Watergate employment
officials executive Tour Earth bus Rome Woodward benefit
panda Howard doping warming station move state prescription
state chief L’Equipe sea killed Catholic FBI health
coal
mine

years EPO melting city world post subsidies

Table 3.5: Some topics from UTM for TAC 2008 matching those in Table 3.4

[iii ] “Describe accusations that seven-time Tour de France winner Lance Armstrong used the
performance-enhancing drug EPO”

[iv ] “Describe the developments and impact of the continuing Arctic and Antarctic ice melts”

[v ] “Describe the July 7, 2005 bombings in London, England and the events, casualties and investigation
resulting from the attack”

[vi ] “Follow the events connected with the death of Pope John Paul II”

[vii ] “Describe the revelation of the identity of Deep Throat and ensuing reactions”

[viii ] “Describe the developments in the Medicare Part D implementation”

There is one important observation that becomes very conspicuous just by eyeballing table 3.5.
There are few intrusive words such as “panda,” “Pluto” and “Obama” in topics 35, 47 and 8 respectively.
In our Utterance Topic Model, the topics are not directly generated from word counts. Instead, the words
are chosen to best describe a GSRt that a topic generates. Thus, word co-occurrence is not the only
factor in determining the thematical structure of the documents for UTM. For example, the word Pluto
has been observed in topic 47 because “Pluto” was found to describe the same GSRts as the other words
in that topic. This phenomenon happened because there were a smaller set of documents which dealt
with scientists discovering another planet outside of Pluto’s orbit. Similarly there are a few documents
reporting shortage of bamboos as food for pandas in China. Thus in the UTM model, the influence of our
coarse representation of contextual transitions i.e. center shifting or retention of GSRs such as “subj”,
“obj” and “wn”s etc. shifts any chance of p-separability [Arora et al., 2013] of the topic-GSRt matrix ρ
which in turn displaces the ideal p-separability properties of the topic-word matrix β more than that of a
much simpler LDA model.

This is indeed a disadvantage of UTM. Similar minor such inclusions has been observed for other
datasets as well. From a summarization point of view, however, there are no downsides to the effects of
such inclusion of a few intrusive words. In terms of an information need like “effects of global warm-
ing,” there likely be no relevant documents containing Pluto and so these words don’t affect sentence
probability calculation w.r.t. the query words.

Recall that LeToS is a fixed index (i.e no train-test split because of unique sentenceIDs) summariza-
tion system where the data is not allowed to change but the queries are i.e., once the model parameters
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are calculated on the fixed data, variational inference is used to determine the topics of the free form
queries, perform query expansion using related topical words and finally select the top sentences which
are weighted by products of other variational parameters. To determine the number of topics fit to the
data, one way is to run UTM on the dataset, and decide the best number of topics from an ELBO plot.

The “intrusive” nature of the topics is indeed a shortcoming of the coarse coherence encoding and
we make use of a finer coherence structure by simply using a normalized surface form of the word in the
GSRt in Chapter 5. Nevertheless, the indirect generation of words through document level metadata (here
the GSRt proportion perspective) causes problems when there are more than a few topics significantly
responsible for generating the document’s metadata. This fact also leads to lowering of the likelihood of
the model to the data in terms of held-out log likelihood compared to LDA [Blei et al., 2003] and CTM
[Blei and Lafferty, 2005].
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Document Structure Utterance Topic Model LeToS 

Query 8: Has gun culture arrived in India? If yes, how to stop it? 
Query 1: Are Sugar substitutes bad for you? 
Query 2: What do you do to protect your computer from being infected by a virus, worm or spyware attack? 

Figure 7: Latent topic multinomials over the GSRt vocabulary for Yahoo! Answers 

Figure 3.4: Strengths of the multinomial parameters of the topic distributions over GSRts for the in-
house Yahoo! Answers dataset. Three sample queries are shown just beneath the plot that highlight the
words which are highly probable for the topics over GSRts: ρ1, ρ2 and ρ3

Fig. 3.4 shows the plot of the parameters ρ1:K for K = 14 for the in-house Yahoo! Answers
dataset. All topics have assigned much more probability masses over incomplete GSRts which is also
a dominant trend in the documents themselves. Topic 1 which focuses on “gun culture” have relatively
more mass over the “–→[GSR]” and the “vb→–” transitions than topics 2 and 3 which focus on “sugar
substitutes” and “computer security.”

Similar to the plot in Fig. 3.4, Fig. 3.5 shows the plot of the parameter ρ1:K for the TAC 2008
dataset. The graphs are a little different from that in Fig. 3.4 for the complete GSRts. For the TAC
2008 dataset, the local coherence for words are highlighted more when conditioned on the topics. This
is intuitive due to the better writing style and length of the documents in the newswire dataset. For the
incomplete GSRts, we still have approximately the same trend for the in-house Yahoo! Answers dataset
but a bit more pronounced in the latter dataset. In both cases, however, the empirical GSRt proportions
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Topics over GSRts - Newswire 

Document Structure Utterance Topic Model LeToS 

Query 14: Report the start, stop, suspension or resumption of peace talks for the Darfur Crisis; include 
participants, dates and locations for scheduled and proposed talks 

Figure 8: Latent topic multinomials over the GSRt vocabulary for Newswire 
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Figure 3.5: Strengths of the multinomial parameters of the topic distributions over GSRts for the TAC
2008 newswire dataset

across the corpora (as shown in Fig. 3.3) do not shed much light on the nuances of the role transitions.
Table 3.6 shows the performance of our summarization system as compared to some of the top

systems in DUC2005. Each summary has been input to ROUGE as one single line following the SEE
format in the ROUGE scoring tool provided with [Lin and Hovy, 2003]. The top four rows in the table
report the ROUGE scores of 4 gold-standard human summaries. The description of the systems named
NUS, HKPoly, IIITH, BQFS, BE-ISI and UIR can be found in [Ye et al., 2005, Li et al., 2005, J et al.,
2005, Daumé III and Marcu, 2006, Hovy et al., 2005, Srihari et al., 2007]. Different runs of our system
have been named LeToS-[kk]-[NE]-qE-[U/NU] where kk denotes the number of topics; a presence of
NE indicates use of a separate Named Entity role as a GSR that is ranked higher than the “Subject” role
and groups all Named Entity categories together; U/NU means that each sentence of the summary is
from a unique document or sentences could belong to the same document; qE denoted that the query
words were expanded using topic inference prior to summarization. Table 3.6 shows the ROUGE-2 and
ROUGE-SU4 scores and it is observed that for 80 topics, the scores were highest and thus 80 is the
best value of the number of topics which also agrees with that obtained from UTM. Since in LeToS,
χt,d−ηt is the expected number of words plus sentences per topic-coupled GSRt t in each document d,
the relative document specific GSRt proportions conditional on the topics remain the same.

From the ROUGE scores, it is observed that using a separate NE category as a GSR did not im-
prove the ROUGE scores significantly and hence this category of GSR has not included while evaluating
summaries generated from our model using the PYRAMID method. Also, it has been observed that if
a document is rejected once a sentence is selected, the ROUGE scores are much higher reflecting non-
redundancy. However, table 3.6 clearly highlights the gap between automatic summaries and the human
counterparts.

TAC 2008 was used as a development set to measure performance on the TAC 2009 test dataset. In
the A timeline of the TAC 2008 dataset, the average Pyramid scores for very short 100 word summaries
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Systems Rouge-2
Recall

95% Conf. Interval Rouge-SU4
Recall

95% Conf. Interval

ModelA 0.34367 0.30939 - 0.37816 0.39876 0.36682 - 0.43142
ModelB 0.36794 0.33509 - 0.40440 0.43518 0.40642 - 0.46766
ModelC 0.30019 0.26992 - 0.33272 0.37335 0.34434 - 0.40416
ModelD 0.31269 0.28657 - 0.34182 0.38028 0.35551 - 0.40693
NUS 0.14632 0.12305 - 0.17200 0.23557 0.21646 - 0.25593
HK Poly 0.13984 0.11951 - 0.16282 0.23066 0.21194 - 0.25070
IIITH 0.14127 0.11740 - 0.16612 0.22849 0.20762 - 0.25163
LeToS-60-qE-U 0.13213 0.11064 - 0.15452 0.21425 0.19610 - 0.23395
LeToS-70-qE-U 0.12799 0.10648 - 0.14990 0.21448 0.19711 - 0.23455
LeToS-80-qE-U 0.13888 0.11332 - 0.16617 0.22302 0.20023 - 0.24589
LeToS-90-qE-U 0.12318 0.10329 - 0.14607 0.21242 0.19394 - 0.23263
LeToS-60-NE-qE-U 0.12556 0.10551 - 0.14537 0.21409 0.20009 - 0.22944
LeToS-70-NE-qE-U 0.12904 0.10692 - 0.15211 0.21747 0.20005 - 0.23662
LeToS-80-NE-qE-U 0.12481 0.10604 - 0.14501 0.21166 0.19586 - 0.22867
LeToS-90-NE-qE-U 0.12512 0.10679 - 0.14575 0.21385 0.19699 - 0.23102
LeToS-60-qE-NU 0.11320 0.09531 - 0.13337 0.19659 0.17934 - 0.21604
LeToS-70-qE-NU 0.11198 0.09233 - 0.13352 0.19710 0.18001 - 0.21641
LeToS-80-qE-NU 0.11767 0.09757 - 0.13863 0.20317 0.18336 - 0.22364
LeToS-90-qE-NU 0.11586 0.09764 - 0.13678 0.20264 0.18524 - 0.22224
LeToS-60-NE-qE-NU 0.10837 0.08754 - 0.13308 0.19365 0.17555 - 0.21414
LeToS-70-NE-qE-NU 0.08939 0.07229 - 0.10976 0.18461 0.16862 - 0.20149
LeToS-80-NE-qE-NU 0.09289 0.07617 - 0.11173 0.18546 0.17052 - 0.20204
LeToS-90-NE-qE-NU 0.09252 0.07710 - 0.10863 0.18788 0.17356 - 0.20317
BQFS 0.12976 0.10834 - 0.15281 0.21703 0.19938 - 0.23647
BE-ISI 0.11973 0.09801 - 0.14425 0.21084 0.19337 - 0.22957
UIR 0.09622 0.07994 - 0.11504 0.17894 0.16544 - 0.19240

Table 3.6: Comparison of DUC 2005 ROUGE Results

over 48 queries were obtained as 0.3089 with a rank of 14 out of 58 submissions. For TAC 2009 also,
using the manual Pyramid [Nenkova and Passonneau, 2004] scoring for summaries, the average Pyramid
scores for the 100 word summaries over 44 queries were obtained as 0.3024 for the A timeline and 0.2601
for the B timeline for LeToS and ranked 13th and 9th of 52 submissions. Note that the score is lower
overall due to the extractive nature of summarization and a short 100 word limit. The phenomenon of
summarization systems scoring less on shorter length summaries has been well explored in [Nenkova
and Louis, 2008]. The scores for the system in [Srihari et al., 2007] that uses coherence to some extent
and a baseline returning all the leading sentences (up to 100 words) in the most recent document are
(0.1756 and 0.1601) and (0.175 and 0.160) respectively for the A and B timelines. The score for the B
timeline is lower due to redundancy which was not addressed in our model. These scores indicate that
performance of our model was consistent with the development (TAC 2008) dataset and test (TAC 2009)
datasets. Although the update task in TAC 2009 is also to find the temporal novelty in the summaries of
two timelines, we do not address that problem.

Role transition proportion analysis on the summaries raised a few interesting questions on using
such graphs as a possible way to measure fluency in the final system generated summaries w.r.t. the
model summaries. Although the trends of the proportions of the incomplete GSRts closely in Fig. 3.6
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GSRts Proportions for Different Summaries 

Figure 8: Empirical GSRt proportions over different summaries 
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Figure 3.6: Empirical proportions of GSRts in the summaries obtained by various models on the Yahoo!
Answers and TAC08/09 newswire datasets. Summaries from LeToS have each sentence coming from a
different document.

match those of the model summaries for the DUC 2005, TAC 2008 and TAC 2009 datasets, the propor-
tions for the complete GSRts involving nominal concepts remain the key discriminators. It is possible,
then, to define a separate objective function just to reorder the candidate summary sentences by formu-
lating an optimization framework that takes into account not only some measure of dissimilarity between
adjacent sentences but also includes some constraint on the type of role transitions to maximize coher-
ence within the spans of the adjacent sentences.

Southern California mudslides mud rain man vehicle deaths killed
nn wn subj – wn – – wn –
– – subj – – subj – – vb
– – – wn – subj subj – vb

Table 3.7: A snapshot of sentences that focuses on mudslides killing men

Table 3.7 shows some sample sentences from the D0906B folder of the TAC2009 dataset which
concerns itself with documents related to the information need: “Describe the effects and responses
to the heavy rainfall and mudslides in Southern California.” Note that “vb” denotes a verb and “wn”
denotes a WordNet synset role assignment. This snapshot of sentences once more verifies the claim of
Centering theory that center propagation across sentences e.g. (mudslides, subj), (man, subj) and (killed,
vb) seem to select those sentences that best represents a scenario which is easy to remember. In other
words, these sentences will make an impact on a reader the most as she reads through the discourse. The
corresponding sentences below also seem to qualitatively support the high relevancy of these sentences
w.r.t. the query.

1. “A fourth day of thrashing thunderstorms began to take a heavier toll on southern California on
Sunday with at least three deaths blamed on the rain, as flooding and mudslides forced road
closures and emergency crews carried out harrowing rescue operations.”
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2. “In Elysian Park, just north of downtown, a 42-year-old homeless man was killed and another injured
when a mudslide swept away their makeshift encampment.”

3. “Another man was killed on Pacific Coast Highway in Malibu when his sport utility vehicle skidded
into a mud patch and plunged into the Pacific Ocean.”

Short≈120 words summarized answer for “Are Sugar substitutes bad for you?” [with query expansion
and each sentence belongs to a different document]

“The show stated Aspartame turns into METHANOL in your body and is like drinking FORMALDE-
HYDE! Splenda is another popular one, but because the body doesn’t recognize, the body won’t digest
it, and can actually make you GAIN weight. The FDA has approved it for 5 mg/Kg body weight, which
is the least of all the sweeteners and comes out to 6 cans of diet cola per day. Aspartame is at the root of
diseases such as: aspartame fibromaylagia, aspartame restless leg syndrome, aspartame and migraines,
aspartame and tumors, aspartame allergy, aspartame multiple sclerosis, bladder cancer aspartame, aspar-
tame and central nervous system, aspartame and infertility, aspartame and weight gain,....”

Short≈120 words summarized answer for “Are Sugar substitutes bad for you?” [without query expan-
sion and each sentence belongs to a different document]

“OK, so why are sugar subs so bad? Sugar has a bad reputation because most people consume too
much of it and don’t realize Sugar. It’s made by substituting three atoms of chlorine for three hydroxyl
groups on the sugar molecule. This sugar substitute, sold commercially as Equal and NutraSweet, was
hailed as the savior for dieters who for decades had put up with saccharine’s unpleasant after taste. i am
severely addicted to sugar substitutes, initially worrying about my weight. My advice, speak to a medical
professional and seek their advice on sugar substitutes as far as their recommendations and opinion on
different brands, etc.. because it’s natural, it’s better for you than equal or sweet n low, but because the
liver can’t process it as quickly as pure sugar, it converts into triglycerides, increasing your risk of heart
disease.”

Short ≈120 words baseline summary for “Are Sugar substitutes bad for you?”

“Fructose is another extract of sugar. Hope that shed a little light on your questions. It’s made by
substituting three atoms of chlorine for three hydroxyl groups on the sugar molecule. Honey enters the
bloodstream slowly, 2 calories per minute, while sugar enters quickly at 10 calories per minute, causing
blood sugars to fluctuate rapidly and wildly. This sugar substitute, sold commercially as Equal and
NutraSweet, was hailed as the savior for dieters who for decades had put up with saccharine’s unpleasant
after taste. Too much phenylalanine causes seizures, elevated blood plasma, is dangerous for pregnancy
causing retardation, PMS caused by phenylalanine’s blockage of serotonin, insomnia, and severe mood
swings. Sugar substitues, turn into formaldehyde in the body..”

Table 3.8: Different short ≈120 words summarized answers for “Are Sugar substitutes bad for you?”
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A sample summarized ≈120 words answers for a small Yahoo! Answers dataset3 is also presented
here which had been obtained using our proposed extension of UTM to LeToS. A particularly popular
question was selected as an example for answer summarization - “Are Sugar substitutes bad for you?”
The questions were fed into the model with standard stopword removal and stemming and was thus
transformed into “sugar substitut bad”

Table 3.8 shows the summary to the question on sugar substitutes w.r.t. the query being input as
is or with topic expansion. A set of best fit topics from this small experimental real-world dataset can
be found at the author’s website4. A baseline summary is also included for qualitative comparison. The
baseline summaries are generated such that two sentences are extracted with at least one query word
overlap from the beginning and end of each document till the length constraint is satisfied. For this
baseline, the documents have been considered in the lexicographic order of their filenames.

We observe in Table 3.8, that in the summary w.r.t. the expanded query, the word “aspartame”
received prominence due to topic based query expansion. This expansion is an unsupervised step where
the query is expanded from its original bag-of-words form to an expanded bag-of-words form where
the extra words are appended which are very likely to appear in the topic of the original query words
in the relevant documents. Additionally the summaries consist of one single unique sentence from
each document to reflect an ideal multi-document summarization task scenario. Although experiments
on the DUC 2005 dataset show that the ROUGE scores increase by following this approach, however,
the overall quality of coherence decreases. One can introduce coherence by using the context around
the selected sentence as was chosen to select the GSRts, but then the topical relevance of the context
remains in question. Also, a length of 100 words or even 250 words is too restrictive to introduce
contextual paragraphs in summaries.

3.7 Summary
The summarization model discussed in this chapter chooses sentences which contain words which best
describe the coarser GSRts. The lack of any structure in the query e.g. viewing the query as a bag of
words like “sugar substitute bad” gives rise to serious drawbacks. There is no way by which the topic
model can understand the real intention of the query: “How or why are sugar substitutes bad for you?”
This is a severe limitation of all topic models but is also intuitive since nowhere in the objective function
are there expressions which suggest any “intentional” view of document generation. Summarization
through topic models thus only answers part of the objective—one that relates to ascribing significance
to words through document topic analysis. We address this issue in Chapter 3 not through modeling
the query but by exploiting rhetorical relations which relate different spans of a sentence and reflect
intentions to some degree as well.

From the success of higher order n-grams in information retrieval [Buttcher et al., 2010], one can
potentially envision the benefit of using at least bi-grams within the purview of the topic modeling
framework. Indeed, there has been some work [Wallach, 2008] on topic models with word bi-grams,
however, even not all word bigrams of “How or why are sugar substitutes bad for you?” can solve the
problem of understanding the query. Also in a bigram topic model, there areK×V ×(V −1) parameters
to represent topics, where K is the number of topics and V is the size of the unigram vocabulary. For an

3http://www.acsu.buffalo.edu/˜pdas3/research/datasets.html
4http://www.acsu.buffalo.edu/˜pdas3/research/LeToS.html
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n-gram word topic model, there will thus be K ×
∏n−1
i=0 (V − i) topic n-gram parameters which can lead

to severe overfitting when relevant data is not abundant.

In the next chapter we develop topic models that are general enough to handle an ubiquitous docu-
ment structure—documents containing a high level metadata at the document level (such as the GSRts
used in this chapter, any controlled vocabulary, any user assigned document tags, embedded multimedia
captions, etc.) as well as fine-grained word level annotations. We use these models in a novel way along
with several simpler to complex local models to address the problem of multi-document summarization
in Chapter 5.

3.8 Appendix
This section gives partially complete derivations to find out the optimal settings of the hidden variables
and the parameters of the utterance topic model following the framework laid out in Chapter 1. Note
that the inference part i.e. inferring variational distributions for hidden variables (E-step) is document
specific, while the model parameter estimation (M-step) is corpus wide. We start out with some initial
values of the parameters and we then find the posterior distribution over the latent variables parameter-
ized by the free variational parameters in the VBE step and holding this distribution fixed, optimize the
parameters of the model in the VBM step. In each of these steps, we select out only those terms from L
that depend on the variable being optimized.

3.8.1 Derivations for the UTM model

(γ∗,χ∗,φ∗,λ∗) = arg min
(γ,χ,φ,λ)

KL (q(θ,π, z,y|γ,χ,φ,λ)||p(θ,π, z,y|r,w,α,η,ρ,β)) (3.14)

By Jensen’s inequality, we have

ln p(r,w|α,η,ρ,β) ≥ {Eq[p(r,w,θ,π, z,y|α,η,ρ,β)]− Eq[q(θ,π, z,y|γ,χ,φ,λ)]} = L (3.15)

We thus have:

L(γ,χ,φ,λ) = Eq[ln p(θ|α)] + Eq[ln p(π|η)] + Eq[ln p(z|θ)] + Eq[ln p(r|z,ρ)] + Eq[ln p(y|π)]

+ Eq[ln p(w|y, z,β)]− Eq[ln q(θ|γ)]− Eq[ln q(π|χ)]− Eq[ln q(z|φ)]− Eq[ln q(y|λ)]

(3.16)

Each of the terms in the equation (3.16) expands out to:

ln Γ(
K∑
j=1

αj)−
K∑
k=1

ln Γ(αk) +

K∑
k=1

(αk − 1)

(
Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)

)
(3.17)

+ ln Γ(

T∑
f=1

ηf )−
T∑
t=1

ln Γ(ηt) +

T∑
t=1

(ηt − 1)

Ψ(χd,t)−Ψ(

T∑
f=1

χd,f )

 (3.18)

+

T∑
t=1

K∑
k=1

(
Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)

)
φd,t,k (3.19)
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+

T∑
t=1

K∑
k=1

TG∑
g=1

φd,t,k ln ρk,tr
g
d,t (3.20)

+

M∑
m=1

T∑
t=1

(
Ψ(χd,t)−Ψ(

T∑
j=1

χd,j)

)
λd,m,t (3.21)

+

M∑
m=1

K∑
k=1

V∑
j=1

(
T∑
t=1

λd,m,tφd,t,k

)
lnβz(yd,m=t)=k,jw

j
d,m (3.22)

− ln Γ(

K∑
j=1

γd,j) +

K∑
k=1

ln Γ(γd,k)−
K∑
k=1

(γd,k − 1)

(
Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)

)
(3.23)

− ln Γ(

T∑
j=1

χj) +

T∑
t=1

ln Γ(χd,t)−
T∑
t=1

(χd,t − 1)

(
Ψ(χd,t)−Ψ(

T∑
j=1

χd,j)

)
(3.24)

−
T∑
t=1

K∑
k=1

φd,t,k lnφd,t,k (3.25)

−
M∑
m=1

T∑
t=1

λd,m,t lnλd,m,t (3.26)

Where, each term in a document is represented as a binary vectorwjn , j ∈ {1,. . . ,V}, V being the number
of terms in the vocabulary. The total number of GSR transitions is fixed at TG and Ψ is the digamma
function. It is to be understood that the t index for variational parameter updates is specific to the GSRt
IDs in a document d and that for the global parameters like ρ, g is a global index into one of the possible
TG GSRts. M is the number of terms in a document.

3.8.1.1 INFERENCE ON VARIATIONAL PARAMETERS

Here we estimate the free variational parameters for the variational model depicted in Fig. 3.1b following
the constraints on φ and λ.
For γ:

L[γ] = − ln Γ(

K∑
j=1

γd,j) +

K∑
k=1

ln Γ(γd,k) +

K∑
k=1

(αk +

T∑
t=1

φd,t,k − γd,k)(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)) (3.27)

∂L[γ]

∂γd,k
=(αk +

T∑
t=1

φd,t,k − γd,k)

(
Ψ′(γd,k)−Ψ′(

K∑
j=1

γd,j)

)

− (Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)) + (Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))

Setting the above derivative to 0, we get,

γd,k = αk +

T∑
t=1

φd,t,k since

(
Ψ′(γd,k)−Ψ′(

K∑
j=1

γd,j)

)
6= 0 (3.28)

For χ:
We follow the procedure above exactly and by taking derivative of L[χ] w.r.t. χd,t, we have:
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χd,t = ηt +

M∑
m=1

λd,m,t (3.29)

For λ:

L[λ] =

M∑
m=1

T∑
t=1

(Ψ(χd,t)−Ψ(

T∑
j=1

χd,j))λd,m,t +

M∑
m=1

K∑
k=1

V∑
j=1

(

T∑
t=1

λd,m,tφd,t,k) lnβzyd,mw
j
d,m

−
M∑
m=1

T∑
t=1

λd,m,t lnλd,m,t +

M∑
m=1

µm(

T∑
t=1

λd,m,t − 1)

(3.30)

where µ are the m Lagrange multipliers in (3.30) for document d.

∂L
∂λd,m,t

= 0 =⇒ (Ψ(χd,t)−Ψ(

T∑
j=1

χd,j) + (

T∑
t=1

φd,t,k lnβzyd,m ,j)− 1− lnλd,m,t + µm = 0

=⇒ λd,m,t = exp

Ψ(χd,t)−Ψ(

T∑
f=1

χd,f ) + (

K∑
k=1

φd,t,k lnβzym ,j)− 1 + µm


=⇒ exp{µm − 1} =

1∑T
t=1 exp

{
(Ψ(χd,t)−Ψ(

∑T
f=1 χd,f ) + (

∑K
k=1 φd,t,k lnβzym ,j)

}
Setting the derivative ∂L

∂λd,m,t
to 0 gives us:

λd,m,t ∝ exp

(Ψ(χd,t)−Ψ(

T∑
f=1

χd,f )) + (

K∑
k=1

φd,t,k lnβzyd,m ,j)

 (3.31)

For φ :

L[φ] =

T∑
t=1

K∑
k=1

(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))φd,t,k +

T∑
t=1

K∑
k=1

φd,t,k ln ρd,k,t (3.32)

+

M∑
m=1

K∑
k=1

V∑
j=1

(

T∑
t=1

λd,m,tφd,t,k) lnβz(yd,m),jw
j
d,m −

T∑
t=1

K∑
k=1

φd,t,k lnφd,t,k + µt(

K∑
k=1

φd,t,k − 1)

where µ are the t Lagrange multipliers in L[φ].
As before, we have:

∂L
∂φd,t,k

= 0 =⇒ φd,t,k ∝ exp{ln ρd,t,k + (Ψ(γd,k)−Ψ(

K∑
k=1

γd,k)) + (

M∑
m=1

λd,m,t lnβz(yd,m),j)} (3.33)

3.8.1.2 MODEL PARAMETER ESTIMATION

Here we calculate the maximum likelihood settings of the parameters that do not grow with the data. So
we need to need to take into account the contribution of these for all the documents and not just a single
document.
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For ρ:

L[ρ] =

D∑
d=1

Td∑
t=1

K∑
k=1

TG∑
g=1

φd,t,k ln ρk,tr
g
d,t +

K∑
k=1

µk(

TG∑
g=1

ρk,g − 1) (3.34)

where the µk’s are the K Lagrange multipliers in (3.34).

∂L
∂ρk,g

=

D∑
d=1

Td∑
t=1

φd,t,kr
g
d,t

1

ρk,g
+ µk

∂L
∂ρk,g

= 0 =⇒ ρk,g = −
∑D
d=1

∑Td
t=1 φd,t,kr

g
d,t

µk
=⇒ µk = −

TG∑
g=1

D∑
d=1

T∑
t=1

φd,t,kr
g
d,t

∴
∂L
∂ρk,g

= 0 =⇒ ρk,g ∝
D∑
d=1

Td∑
t=1

φd,t,kr
g
d,t

(3.35)

For β:

L[β] =

M∑
m=1

K∑
k=1

V∑
j=1

(

T∑
t=1

λd,m,tφd,t,k) lnβzyd,m,jw
j
d,m +

K∑
k=1

µk(

V∑
j=1

βk,j − 1) (3.36)

where µks are the K Lagrange Multipliers in (3.36)

∂L
∂βk,j

= 0 =⇒ βk,j ∝
D∑
d=1

Md∑
m=1

(
T∑
t=1

λd,m,tφd,t,k

)
wjd,m (3.37)

For α:

L[α] =

D∑
d=1

(
ln Γ(

K∑
k=1

αk)−
K∑
k=1

ln Γ(αk) +

K∑
k=1

(αk − 1)(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))

)

=⇒ ∂L
∂αk

= D

(
−Ψ(αk) + Ψ(

K∑
j=1

αj)) +

D∑
d=1

(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))

)

and
∂L

∂αkαj
= ∂(k, j)D

(
Ψ′(αk)−Ψ′(

K∑
j=1

αj

)
(3.38)

The derivative w.r.t. αk depends on αj and thus we can resort to Newton’s iterative method to find out
the maximal α using the gradient and Hessian vector and matrix respectively as in [Blei et al., 2003]. Ψ′

is the trigamma function.

For η :

The update is similar to α update
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3.8.2 Derivations for the LeToS Model for Summarization

This section gives partially complete derivations to find out the optimal settings of the hidden variables
and the parameters of the Learning To Summarize (LeToS) model for summarization extended from
Utterance Topic Model. As before, the inference part i.e. inferring variational distributions for hidden
variables (E-step) is document specific, while the model parameter estimation (M-step) is corpus wide.
In this model we set out to define each topic coupled GSRt proportion to be distribution over the sentence
vocabulary in addition to all model parameters in UTM. In this case, thus, the Evidence Lower BOund
(ELBO) L from Equ. 3.15 includes terms that represent the dependency of the topic coupled GSRts
to sentences in the training set. This dependence on a fixed index of sentences in the training set is the
principle cause for making LeToS a fixed index model without the ability to generalize to new documents.

(γ∗,χ∗,φ∗,λ∗, ζ∗) = arg min
(γ,χ,φ,λ,ζ)

KL (q(θ,π, z,y,v|γ,χ,φ,λ, ζ)||p(r,w, s|α,η,ρ,β,Ω)) (3.39)

By Jensen’s inequality, we have

ln p(r,w, s|α,η,ρ,β,Ω) ≥ {Eq[p(r,w, s,θ,π, z,y,v|α,η,ρ,β,Ω)]− Eq[q(θ,π, z,y,v|γ,χ,φ,λ, ζ)]}

(3.40)

We thus have:

L(γ,χ,φ,λ, ζ;α,η,ρ,β,Ω) = Eq[ln p(θ|α)] + Eq[ln p(π|η)] + Eq[ln p(z|θ)] + Eq[ln p(r|z,ρ)]

+ Eq[ln p(y|v)] + Eq[ln p(w|y, z,β)] + Eq[ln p(v|π)] + Eq[ln p(s|v,Ω)] (3.41)

− Eq[ln q(θ|γ)]− Eq[ln q(π|χ)]− Eq[ln q(z|φ)]− Eq[ln q(y|λ)]− Eq[ln q(v|ζ)]

Each of the terms in the equation (3.41) expands out to:

ln Γ(

K∑
j=1

αj)−
K∑
k=1

ln Γ(αk) +

K∑
k=1

(αk − 1)

(
Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)

)
(3.42)

+ ln Γ(

T∑
f=1

ηf )−
T∑
t=1

ln Γ(ηt) +

T∑
t=1

(ηt − 1)

Ψ(χd,t)−Ψ(

T∑
f=1

χd,f )

 (3.43)

+
T∑
t=1

K∑
k=1

(
Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)

)
φd,t,k (3.44)

+

T∑
t=1

K∑
k=1

TG∑
g=1

φd,t,kr
g
d,t ln ρk,t (3.45)

+

M∑
m=1

T∑
t=1

(
Ψ(χd,t)−Ψ(

T∑
j=1

χd,t)

)
λd,m,t (3.46)

+

M∑
m=1

K∑
k=1

V∑
j=1

(
T∑
t=1

λd,m,tφd,t,k) lnβz(yd,m=t)=k,jw
j
d,m (3.47)
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+

P∑
p=1

T∑
t=1

(
Ψ(χd,t)−Ψ(

T∑
j=1

χd,t)

)
ζd,p,t (3.48)

+

P∑
p=1

T∑
t=1

U∑
u=1

ζd,p,ts
u
d,p ln Ωt,p (3.49)

− ln Γ(

K∑
j=1

γd,j) +

K∑
k=1

ln Γ(γd,k)−
K∑
k=1

(γd,k − 1)

(
Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)

)
(3.50)

− ln Γ(

T∑
j=1

χd,j) +

T∑
t=1

ln Γ(χd,t)−
T∑
t=1

(
χd,t − 1)(Ψ(χd,t)−Ψ(

T∑
j=1

χd,j)

)
(3.51)

−
T∑
t=1

K∑
k=1

φd,t,k lnφd,t,k (3.52)

−
M∑
m=1

T∑
t=1

λd,m,t lnλd,m,t (3.53)

−
P∑
p=1

T∑
t=1

ζd,p,t ln ζd,p,t (3.54)

Where, each term in a document is represented as a binary vector wjd,m , j ∈ {1, . . . , V }, V being the
number of terms in the vocabulary. The number of GSR transitions is fixed at T and Ψ is the digamma
function. It is to be understood that the t index for variational parameter updates is specific to the GSRt
IDs in a document d and that for the global parameters like ρ, g is a global index into one of the possible
TG GSRts. M is the document length w.r.t. terms and P is the document length in terms of sentences.

3.8.2.1 INFERENCE ON VARIATIONAL PARAMETERS

Here we estimate the free variational parameters for the variational model depicted in Fig. 3.2b following
the constraints on φ and λ.

For γ: The derivations for γ in the case of the LeToS model is the same as in Equs. 3.27 and 3.28.

For χ: Following the procedure above and taking derivative of L[χ] w.r.t. χt, we have

χd,t = ηt +

M∑
m=1

λd,m,t +

P∑
p=1

ζd,p,t (3.55)

For λ:

L[λ] =

M∑
m=1

T∑
t=1

(Ψ(χd,t)−Ψ(

T∑
j=1

χd,j))λd,m,t +

M∑
m=1

K∑
k=1

V∑
j=1

(

T∑
t=1

λd,m,tφd,t,k) lnβzyd,mw
j
d,m

−
M∑
m=1

T∑
t=1

λd,m,t lnλd,m,t +

M∑
m=1

µm(

T∑
t=1

λd,m,t − 1)

(3.56)
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where µ is the Lagrange multiplier in (3.56)

∂L
∂λd,m,t

= 0 =⇒ Ψ(χd,t)−Ψ(

T∑
j=1

χd,j) + (

T∑
t=1

φd,t,k lnβzyd,m ,j)− 1− lnλd,m,t + µm = 0

=⇒ λd,m,t = exp{(Ψ(χd,t)−Ψ(

T∑
f=1

χd,f ) + (

K∑
k=1

φd,t,k lnβzyd,m ,j)− 1 + µm}

=⇒
T∑
t=1

λd,m,t = 1 =⇒ 1 =

T∑
t=1

exp{(Ψ(χd,t)−Ψ(

T∑
j=1

χd,j) + (

K∑
k=1

φd,t,k lnβz(yd,m=t)=k)− 1 + µm}

(3.57)

=⇒ exp{µm − 1} =
1∑T

t=1 exp{(Ψ(χd,t)−Ψ(
∑T
f=1 χd,f ) + (

∑K
k=1 φd,t,i lnβzyd,m ,j)}

Setting the derivative ∂L
∂λd,m,t

to 0 gives us,

λd,m,t ∝ exp{(Ψ(χd,t)−Ψ(

T∑
f=1

χd,f )) + (

K∑
k=1

φd,t,k lnβzyd,m ,j)} (3.58)

For φ :

F[φ] =

T∑
t=1

K∑
k=1

(Ψ(γk)−Ψ(

K∑
j=1

γj))φd,t,k +

T∑
t=1

K∑
k=1

φd,t,k ln ρk,t

+

M∑
m=1

K∑
k=1

V∑
j=1

(

T∑
t=1

λd,m,tφd,t,k)wjd,m lnβzyd,m ,j −
T∑
t=1

K∑
k=1

φd,t,k lnφd,t,k +

T∑
t=1

µt(

K∑
k=1

φd,t,k − 1)

(3.59)

where µ are the T Lagrange multipliers in L[φ]. As before,

∂L
∂φd,t,k

= 0 =⇒ φd,t,k ∝ exp{ln ρk,t + (Ψ(γd,k)−Ψ(
K∑
j=1

γd,j)) + (
M∑
m=1

λd,m,t lnβzyd,m ,j)}

(3.60)

Clearly upto this point there has not been any change in the LeToS model from the UTM model.
This has both advantages as well as disadvantages. The obvious advantage is that we do not incur much
computational complexity which we would have had we introduced a sentence hierarchy over words as a
hierarchy of “is-a” relationships. A a multi-level topic hierarchy [Li and McCallum, 2006, Celikyilmaz
and Hakkani-Tür, 2011] in this case is possible but still does not reflect a way to incorporate notions
of coherence and attention within the original text. The disadvantage is that introducing sentences as
observations introduces a pLSA type of constraint and the model lacks a proper inference scheme outside
of documents input for summarization. We remove this constraint in chapter 5 where we address the
problem of summarization through both unsupervised topic modeling as well as introduction of more
sophisticated linguistic features.
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For ζ :

L[ζ] =

P∑
p=1

T∑
t=1

(Ψ(χd,t)−Ψ(

T∑
j=1

χd,j))ζd,p,t +

P∑
p=1

T∑
t=1

U∑
u=1

ζd,p,ts
u
d,p ln Ωt,p

−
P∑
p=1

T∑
t=1

ζd,p,t ln ζd,p,t +

P∑
p=1

µp(

T∑
t=1

ζd,p,t − 1)

(3.61)

where µp are the P Lagrange multipliers in (3.61), one for each sentence in the document d.

∂L
∂ζd,p,t

= 0 =⇒ ζd,p,t ∝ Ωt,p exp{Ψ(χd,t)−Ψ(

T∑
j=1

χd,j)} (3.62)

3.8.2.2 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Here we calculate the maximum likelihood settings of the parameters that do not grow with the data. So
we need to need to take into account the contribution of these for all the documents and not just a single
document.

For ρ :

F[ρ] =

D∑
d=1

Td∑
t=1

K∑
k=1

TG∑
g=1

φd,t,k(ln ρk,t)r
g
dt +

K∑
k=1

µk

(
TG∑
g=1

ρk,g − 1

)
(3.63)

where the µt’s are the K Lagrange multipliers in (3.63)

∂L
∂ρk,g

=

D∑
d=1

T∑
t=1

φd,t,kr
g
d,t

1

ρk,g
+ µk

∂L
∂ρk,g

= 0 =⇒ ρk,g = −
∑D
d=1

∑T
t=1 φd,t,kr

g
d,t

µk

=⇒ µk = −
TG∑
g=1

D∑
d=1

T∑
t=1

φd,t,kr
g
d,t

∴
∂L
∂ρk,g

= 0 =⇒ ρk,g ∝
D∑
d=1

T∑
t=1

φd,t,kr
g
d,t

(3.64)

For β :

L[β] =

M∑
m=1

K∑
k=1

V∑
j=1

(

T∑
t=1

λd,m,tφd,t,k) lnβzyd,m,jw
j
d,m +

K∑
k=1

µk(

V∑
j=1

βk,j − 1) (3.65)

where µks are the K Lagrange Multipliers in (3.65)

∂L
∂βk,j

= 0 =⇒ βk,j ∝
D∑
d=1

M∑
m=1

(
T∑
t=1

λd,m,tφd,t,k

)
wjd,m (3.66)
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For Ω :

L[Ω] =

D∑
d=1

Pd∑
p=1

TG∑
t=1

U∑
u=1

ζd,p,ts
u
d,p ln Ωt,u +

TG∑
t=1

µt

(
U∑
u=1

Ωt,u − 1

)
(3.67)

where µts are the TG Lagrange Multipliers in (3.67)

∂F

∂Ωt,u
= 0⇒ Ωt,u ∝

D∑
d=1

Pd∑
p=1

ζd,p,ts
u
d,p (3.68)

For α:
For η:
The updates are exactly the same as in the UTM model.

This is the general form of derivations which we will be using in deriving the fixed point update
equations for the rest of our new topic models in Chapters 4 and 6.
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Chapter 4

Bi-Perspective Topic Models

“If you have an apple and I have an apple and we exchange these apples then

you and I will still each have one apple. But if you have an idea and I have an

idea and we exchange these ideas, then each of us will have two ideas.” -

George Bernard Shaw

4.1 Introduction
In this chapter we lay down a robust topic modeling framework to solve the problem of discovering
latent topics from documents tagged from two different perspectives. Documents usually consist of at
least two perspectives—a document level perspective and a word level perspective—these perspectives
being implicit in general. The document level perspective summarizes the contents as a small bag-
of-words, while the other perspective annotates the content in different ways. Tables 4.1, 4.2 and 4.3
show different examples of such perspectives. In this paper, it is assumed that tags are non-hierarchical
concepts. These concepts can be represented by words or by some other higher order representation that
eventually denotes a concept. Many times, for example, in plain text documents, these two perspectives
are not explicitly shown. However, documents hosted by today’s interactive websites are a rich source
of document tagging from at least two perspectives.

Word level annotations Image captions Category labels
Syringa/0 (Lilac)/0 is/0 a/0 genus/0 of/0
about/0 ... Lilac/1 bushes/1 can/1 be/1 prone/1
to/1 powdery/1 mildew/1 disease/1 ... RHS/2
Dictionary/2 of/2 Gardening./2 Macmillan/2
ISBN/2 0-333-47494-5/2

Syringa josikaea, Sy-
ringa vulgaris shrub in
flower, etc.

Syringa, Garden plants,
Flowers, Shrubs

Table 4.1: Document with word level “Position” tags and document level image caption word tags.
The ellipses (...) indicate substatial skip of paragraphs [source: http://en.wikipedia.org/wiki/
Syringa]

Table 4.1 shows an article on lilac flower in Wikipedia. Words in the document body annotated
with a slash ’/’ denotes a word level perspective which in this case is the position of the section in which
the word appears. The section offsets are binned into three positions relative to the beginning of the
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document - begin(0), middle(1) and end(2). Positions signify the importance of the choice of words that
constitute sections in a document and they are also useful in tasks like multi-document summarization
[Yih et al., 2007]. The document level perspective is assumed to be captured by the images which are
described by the corresponding captions. In table 4.1, the third column represents the “ground truth”
category labels which are a set of manually edited tags that summarize the Wikipedia article. With this
structure of multimedia documents, several questions come to the forefront: “Can there be some way of
using image captions to automatically suggest specific category labels for new articles? If so how good
will those suggestions be? Further, can we discover latent topics or themes and label each theme with a
multimedia object?”

The generative process of word generation in these kinds of documents hinges on the following
intuitions: Documents are distributions over latent topics which are further conditional on the word level
annotation classes. Latent topics, in turn, are distributions over observed document level tags and the
main content words such that the most probable observed variable ensembles for a topic are related
through the assumptions of the generative process. For one particular assumption, a word conditioned
on the word level annotation observed at the word’s position is sampled independently of the document
level tags from a topic. The topic proportions for that document only depends on the expected number
of document level tags and the annotated words being assigned to each topic. In another assumption,
topics generate the document level tags first. Then a document level tag position is chosen and a word
conditioned on the word level tag observed at the word’s position is sampled from the corresponding
topic in the position of the document level tag. For this second assumption, there is a more stricter
enforcement of words to document level tags and is thus more intuitive from the document generation
point of view. For example, a writer often “thinks” of a mental image/concept and then writes words that
elaborate that image/concept. Although modeling multimedia Wikipedia articles serves as the primary
motivation for developing the proposed models, the models are extremely generic and has been applied
to a variety of other datasets for different tasks. For brevity, the document level tags are dubbed DL tags
and the word level annotations i.e annotation classes are dubbed WL tags.

Table 4.2 shows an example where DL tags are abstracted at a level higher than words and we have
come across this perspective in Chap. 3. In this example, the sample sentence in the table is an excerpt
from a newswire article in the dataset used in the DUC2005 Summarization track [Dang, 2006a].

Word level (WL) tags Document level (DL) tags
Some 167/NE-NUM people were arrested in the
US/NE-LOC, including a senior executive of
Columbia/NE-LOC’s national bank.

–→ne, ne→–, –→subj, subj→subj, nn→vb,
vb→vb, –→adj, adj→–, etc.

Table 4.2: Document with word level “Named Entity” annotations and document level “Named Entity
as well as semantic and syntactic role transition” tags

The WL tags denote a particular named entity class like PERSON, LOCATION, ORGANIZATION,
NUMBER, etc. being ascribed to each particular word or not. The DL tags, however, are indicative of
discourse coherence markers. These markers are constructed following the techniques used in [Barzilay
and Lapata, 2005a, Das and Srihari, 2009]. Each word in the document is associated with a grammatical
or semantic role (GSR in short) like named entities (ne), nouns (nn), adjectives (adj), verbs (vb), subjects
(subj), objects (obj), etc. As in Chapter 3, a GSR transition (GSRt in short) is a relation between the
same normal form of a word that is either present in two contextual sentences or in a single sentence,
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e.g. a GSRt for the word “car” can be (subj,obj) leading to (subj→obj) or (subj→–) if the word “car” is
not seen in the succeeding sentence. It is reported in [Barzilay and Lapata, 2005a] that a set of sentences
with the same entities in roles like “subj,” “obj,” etc. are indicative of coherent passages. Although in
[Barzilay and Lapata, 2005a], only entities are involved in GSRts, however, in this paper, words that are
not entities are also considered since in quite a few cases, the foci of attentions are based not just on
entities. Thus, the document level perspective for DUC 2005 newswire data mentioned in Section 4.4 is
that of syntactic coherence. These kinds of user choice specific document level perspective emphasizes
the fact that the proposed models are extremely flexible to incorporate any word annotation classes and
document level tags.

4.1.1 Descriptions of Annotations in Datasets
In this section we touch upon the word level annotations for the three datasets which we have used
for our experiments. All such annotations have a bag-of-words representation with no inter annotation
dependencies modeled. For Wikipedia, we collected only those documents which had embedded images.
The category labels of the Wikipedia articles are not used as DL tags, rather the image caption words
are used. Generally, if captions are not available, an initial preprocessing can be done using the work in
[Feng and Lapata, 2010a]. Words in the article title is also added to the list of DL tags. Each word in
the main body of the article is annotated with the positional information of the sections they appeared in
and has been labeled as {Begin, Begin Middle, Middle, Middle End, End}.

Unprocessed Amazon product reviews from the dataset used in [Blitzer et al., 2007] (henceforth the
AR dataset) has been used in the experiments. The words in each review were tagged with affect labels
using a simple lexicon lookup from the dataset created in [Bradley and Lang, 1999]. The lexicon consists
of 2476 words that elicit human emotions in some form. The emotions were labeled with {Unhappy,
Unsatisfactory, Melancholic, Despair, Hopeful, Contended, Satisfied, Pleased, Happy, Untagged} tags
based on the maximum valence values of the affect words. Non-affect words were tagged as “Untagged”.
The AR dataset did not have product tags and hence the product name and the review title were used
as “captions” for reviews which served as DL tags. Finally note that for WL tagging, a word can be
conditioned on only a singleton tag annotation. Table 4.3 shows an example for the AR dataset used.

Word level tags DL tags
What I like/CONTENDED is the exceptional zooming
without loss/MELANCHOLIC in clarity.

compact camera, Ikon 550, 18X zoom
{Rating: 4.0}

Table 4.3: Document with word level emotion tags and document level product feature tags

The DUC (Document Understanding Conference) 2005 dataset consists of newswire articles orga-
nized in 50 folders or document sets (docsets) with each folder consisting of at least 25 sizable news
reports. The documents are processed to extract named entities and roles of the words using the Stan-
ford CoreNLP toolkit1. The GSRs are obtained using the dependency parse information. However,
co-reference resolution is not performed due to unsatisfactory results. An example of this kind of tag-
ging has been shown previously in Table 4.2. Lemmatized forms of the words are used e.g., “arrested”
(verb) and “arrests” (noun) have the lemmatized form “arrest.” A total of 9 GSRs are chosen (Named
Entities or ne, Subjects or subj, Objects or obj, Nouns or nn, Verb or vb, Adjective or adj, Adverb or

1http://nlp.stanford.edu/software/corenlp.shtml
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adv, Other as ow and Null as “–”) resulting in a total of 81 GSRts. Note that if a word has several GSRs
associated with it, only one is chosen using the priority rule: ne > subj > obj > nn > adj > vb > adv >
ow. The task in the DUC 2005 Summarization task has been the creation of 250 word multi-document
summaries for each of the docsets in response to the corresponding information needs. However, in this
paper the docsets from DUC 2005 dataset are used to validate entity-pair relationship discovery and not
for summarization.

4.1.2 Improving Existing Tag Topic Models
Tag-topic models have been explored recently [Ramage et al., 2009b, Si and Sun, 2009, Bao et al.,
2009, Zhu et al., 2006] as ways of improving word-based topic models with additional information
in the form of tags, usually arising out of a single perspective. Existing mixed membership tag topic
models [Ramage et al., 2009b, Si and Sun, 2009] (c.f. fig. 4.1b) can fit a number of latent topics to the
documents without words and DL tags having direct correspondence with each other. However, there
can be additional word level annotation information which are implicitly attributed to the words.
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Figure 4.1: Graphical model representations of one supervised topic model, two existing tag topic mod-
els, one extended tag topic model and two new tag squared topic models

Thus existing tag topic models of documents focus either on document level tags [Ramage et al.,
2009b, Si and Sun, 2009] or on word level annotations [Zhu et al., 2006] (c.f. fig. 4.1c). For models
like those in [Ramage et al., 2009b, Si and Sun, 2009] (which are referred to as MMLDA - short for
Multi(nomial) Multinomial LDA) each content word and DL tag is generated independently by choosing
a topic and then choosing a content or DL tag. The expected number of words in the document’s topic
thus depends on the counts of both the content and the DL words ascribed to that topic. The intuition
behind the MMLDA model is as follows: We imagine a scale where the MMLDA model puts probability
masses of the most probable topics over content words on one pan and the masses of the most probable
topics over document level tags in another pan in such as way so as to keep the pans as balanced and the
arms as horizontal as possible.

On the other hand, in the TagLDA model in [Zhu et al., 2006] the content words are generated
by choosing a topic and drawing a word from the topic’s distribution but conditioned on the WL tag
associated with that content word. This conditional aspect allows one to explore related words sharing
the same semantic relatedness but conditioned along a particular facet - for e.g. all “PERSON” named
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Model Highlights sLDA MMLDA TagLDA Corr -
MMLDA

ME
Tag2LDA

Corr-ME
Tag2LDA

Generate words and DL tags
from same topic? ×

√
×

√ √ √

Suggest related DL tags? ×
√

×
√ √ √

Associate words to DL tags
probabilistically? × × ×

√
×

√

Decompose topics conditioned
on WL annotations? × ×

√
×

√ √

Find topical-WL annotation
orientation of new documents? × ×

√
×

√ √

Document “label” prediction?
√

× × × × ×
Table 4.4: Model features and their comparison

entities in a dataset that are semantically related through some hidden topic. Figures 4.1b and 4.1c show
the existing tag topic models - MMLDA [Ramage et al., 2009b] and TagLDA [Zhu et al., 2006]. The
model in figure 4.1d is implemented in this study as an improvement over MMLDA following [Blei
and Jordan, 2003] for the text domain and is referred to as Corr-MMLDA. However, none of MMLDA,
TagLDA or Corr-MMLDA addresses a tag space that is split across two different perspectives. The
proposed TagSquaredLDA (abbreviated as Tag2LDA) models: METag2LDA model (ME is abbreviated
form of Multinomial Exponential) (Fig. 4.1e) and Corr-METag2LDA model (Fig. 4.1f) allows topic
modeling of documents with both DL and WL tags. Table 4.4 shows the relative merits and de-merits
of each model discussed in this paper. Fig. 4.1a shows a supervised LDA topic model (sLDA) [Blei
and Mcauliffe, 2007] that is only used for predictive power comparison on the AR dataset. Experiments
reveal the improvements of the Tag2LDA models over current tag topic models through better log like-
lihoods, or more predictive power for topical inference. Also an HMM type of model is not suitable for
positional WL tagging, since, then during inference, there is nothing to infer on position “states”—they
are implicit in any document.

Table 4.5 shows two topics from our small in-house Wikipedia collection. The topics are condi-
tioned on facets that represent the position of the sections (binned into five major categories) to which
the words belong. The topic marginals show only the topic distributions over words which is the pa-
rameter βk in Fig. 4.1f. Words from the image captions which are possible candidates for tagging the
document (as document metadata) are shown the rows beginning with “Tag suggestion from image cap-
tions.” The rows beginning with “Document content and image caption correspondences” show some
possible correspondences of words that relate words in the main document body to those in the image
captions within the same document.

4.1.3 Applications and Quantitative Measures
Measuring model perplexity [Blei et al., 2003] or equivalently log likelihood on held out test data is an
established way of showing how good a model explains the observations. For reasonable sized datasets,
the lower bounds on the true log likelihoods of held out test data (ELBO in the case of approximate
inference) are also used and this is one of the measures we use to evaluate our models. However, while
applying the models for a specific task, the goal is not only to measure held-out test data likelihood for a
model. For example, for the Wikipedia data, it is important to have a quantitative measure of confidence
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Beginning→ Beginning To
Middle→

Middle→ Middle To End
→

End

To
pi

c1
75

galaxy, largely,
result, Star,
early, groups,
region, pro-
duction, active,
observed

galaxy, Star,
largely, groups,
production,
active, region,
Universe, gas,
structure

galaxy, Star,
Universe, ac-
tive, production,
small, high,
structure, study,
Formation

Universe,
largely, History,
billion, small,
production,
mass, study,
hydrogen,
dwarf

University,
press, Forma-
tion, study, ac-
tive, remained,
Andromeda,
space, deep,
History

Topic marginal: galaxy Star spiraled milky matter cluster Hubble gas Universe structure Forma-
tion elliptical active galactic nebula dwarf
Tag suggestion from image captions: Galaxy, spiral, stars, Hubble, classification, Andromeda,
rings, core, Great, compared
Document content and image caption correspondences: (Planet, Hubble) (Planet, object) (Planet,
galaxy) (Herschel, Hubble) (ring, galaxy) (Heat, galaxy) (discoveries, Hubble)

To
pi

c1
96

air, waters,
Ice, light, fog,
Areas, tem-
perature, Day,
creates, surface,
layer, power,
nations, cool,
salt

air, fog, waters,
common, Ice,
light, temper-
ature, point,
Areas, formed,
million, pres-
sure, cloud,
ground

air, waters,
Ice, light, fog,
million, Day,
nations, tem-
perature, small,
cloud South,
ground, region,
Ocean

Ice, fog, air,
light, waters,
Day, Sea,
nations, sur-
face, pressure,
temperature,
Gallery, layer,
winter, high,
California

air, Gallery,
pressure,
forced, rises,
shuttle, low,
milllion, space,
Ca., Florida,
Shadow, cases,
fog, Ice, Press,
ISBN

Topic marginal: fog air Shadow Ice condensation light vapor Humidity layer temperature freeze
particle cool waters moisture evaporation salt
Tag suggestion from image captions: fog, Francisco, San, visible, high, temperature, streets,
photo, Bai, lake, California, bridge, air
Document content and image caption correspondences: (dimensions, high) (beam, visible) (par-
allel, bridge) (droplets, fog) (combustion, temparature) (invisible, visible) (absorbed, air)

Table 4.5: Topics and correspondences from the Corr-METag2LDA for the Wikipedia data for K = 200

between probable document tags from image caption words and ground truth category labels. To enable
this kind of a comparison, a measure of semantic relatedness using path separation between concept
pairs [Pedersen et al., 2004] in WordNet ontology was chosen as an evaluation tool. As an example,
the connection between “fire engines” and “fire extinguisher” can be described by a shortest path link-
ing these two concepts in WordNet as “fire extinguisher↔ device ↔ instrumentality ↔ container ↔
wheeled vehicle↔ self-propelled vehicle↔ motor vehicle↔ truck↔ fire engine” with a path length
of nine and a simple “inverse of path length” similarity score of 0.11. Under this measure, a value of 1

indicates exact match or parent/child relationship. Using this kind of evaluation, users can be explained
a “chain of reasoning” that relates a probable DL tag to a ground truth category label for a new docu-
ment. For N suggested DL tags and C category word labels, scores for all possible N ×C pairs P were
obtained. The highest score served as a measure of DL tag suggestions. If a model captures caption
words that happens to have shorter path distances to ground truth labels, then the model is scored higher.
Note that WordNet is chosen since it is widely accepted—any other customized ontology can easily be
pugged in depending upon the application.

Also note that Newman et al. [Newman et al., 2010] attempted to measure cohesiveness of topic
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“labels” consisting of top 10 high probability words, where the “results over WordNet are patchy at best.”
The WordNet evaluation presented here is not to measure topic cohesiveness but to measure and explain
the goodness of a probable DL tag. Although measuring topic coherence is equivalent to measuring
topic intrusion [Chang et al., 2009], the notion of a topic is only a mathematical convenience for a
low-dimensional subspace that tries to capture the assumptions of the statistical generative model. So
qualitatively, a topic is best interpreted by the task on which the model is adapted and its corresponding
assumptions.

For the DUC 2005 dataset where the WL tags come from named entity classes, all pairs of PER-
SON named entities from documents in each of the 50 docsets are collected. For a particular proposed
Tag2LDA model, hidden topics are inferred for these documents and pairs from top N entities from
the “PERSON” facet of the topic were collected. Entity pairs that co-occur in a sentence are chosen as
ground truth pairs that are strongly related—this is the baseline. The average of ratio of the counts of the
PERSON entity pairs from topics to those from the baseline serve as a quantitative measure of improve-
ment over the latter in the entity relationship discovery application. Some qualitative results are shown
in Table 4.10. Note that the same named entity can occur across multiple docsets. This is particularly
true of NUMBER and LOCATION classes and entities related to governments.

4.2 Related Work
Joint topic and tag analysis has been used in a some recent works including [Ramage et al., 2009b,
Si and Sun, 2009, Zhu et al., 2006] which has culminated in the creation of variants of topic models
like LDA[Blei et al., 2003]. The principle shortcoming of these papers are the use of a single tagging
perspective - either document level tags or word level tags. While the models in [Ramage et al., 2009b]
and [Si and Sun, 2009] are essentially the same, the purposes of the models are a little different. Both use
generative models of words and document tags to discover latent topics. In [Ramage et al., 2009b] the
topic-tag and the topic-word features were used to better cluster tagged documents. In [Si and Sun, 2009]
new documents are “folded-in” in the latent topic space and tags are predicted based on the inferred topic
tag distribution. The work in [Zhu et al., 2006] is useful in the sense that the topics are discovered w.r.t
to words being conditional on WL tags.

A recent work on topic-perspective modeling has been done in [Lu et al., 2010] where the authors
have tried to use perspectives as hidden states that represent a discreet distribution over tags. It is impor-
tant to note that the “corrLDA” model referred to in [Lu et al., 2010] is not a true correspondence model
as there happens to be no direct correspondence between words and tags. Further, although there is a
connection between the user-perspective and perspective-tag distributions, the connections between the
perspective-tag distribution and the topic-word/topic-tag distributions weakly depend on a binary switch-
ing variable. The sLDA [Blei and Mcauliffe, 2007] model discovers topics based on the ensembles of
document contents and the response variables.

The values of the response variables are explained by the frequency counts of the words in the
corresponding documents only. The labeledLDA [Ramage et al., 2009a] model establishes a one-to-
one correspondence to the latent topics and the actual document tags. This is done in a manner similar
to imposing a non-uniform prior on the latent topic proportions per document [Wallach et al., 2009].
Further the words in text are corresponded to topic labels which precludes any possibility of using WL
conditional tags. The proposed Tag2LDA models use both joint (words and DL tags) and conditional

113



(words and WL tags) modeling, thereby allowing a richer document structure to be captured.

4.3 The Proposed Tag Squared LDA Models
This section introduces the model description and the model parameters for the Tag2LDA models. In all
model figures in Fig. 4.1, the symbol notations and their meanings given in table 4.6 are adhered to.

Symbol Meaning (r.v. = random variable)
D total number of documents
N total number of unique document level tags per document d ∈ D
M total number of unique words per document d ∈ D
α r.v. for Dirichlet prior for the document level topic proportions
θd r.v. for document level latent topic proportions
ρ r.v. for corpus level topic-DL tag multinomial
β r.v. for corpus level (marginal in figs. 4.1c, 4.1e and 4.1f) topic-

word distribution
π r.v. for corpus level marginal tag-word distribution
zn indicator variable for DL topic proportion
ym in figs. 4.1b, 4.1c and 4.1e indicator variable for DL topic proportion
ym in figs. 4.1d and 4.1f indicator variable for DL tag correspondence
wn r.v. for DL tag at position n; vocabulary size corrV
wm r.v. for word at position m; vocabulary size V
tm in figs. 4.1c, 4.1e and 4.1f r.v. denoting tag at position m, on which word wm is condi-

tioned; vocabulary size T
td in fig. 4.1a r.v. denoting observed response for document d
µ, σ in fig. 4.1a r.v.s denoting mean and standard deviation for the observed re-

sponse for document d [Blei and Mcauliffe, 2007]
Table 4.6: Symbols used in this chapter and their meaning

Note that in the Tag2LDA models, p(wd,m|C = i,β,π, twd,m), where C = yd,m or C = zyd,m , is
not a simple topic multinomial anymore, but is distributed as

p(wd,m|C = i,β,π, twd,m) =
exp(lnβi,wd,m + lnπtwd,m ,wd,m)∑V
v=1 exp(lnβi,wd,m + lnπtwd,m ,wd,m)

(4.1)

Note that each πt is also a distribution over V . In essence the π parameter imparts domain knowledge
to the observations in the form of word level annotation classes being ascribed to each and every word.
Simplified Gibbs sampling exploiting Multinomial-Dirichlet conjugacy (as in [Griffiths and Steyvers,
2004]) cannot be applied in this setting. For notational convenience, in the correspondence models
where yd,m ∼ Unif(Nd), “Unif” is short for Uniform distribution, as in [Blei and Jordan, 2003]. We
now illustrate the generative processes for the proposed Tag2LDA models:

For each document d ∈ 1, ..., D

Choose a topic proportion θ|α ∼ Dir(α)

For each “document level” position n in document d
Choose topic indicator zn|θ ∼Mult(θ)

Choose a “document level” tag wn|zn = k,ρ ∼Mult(ρzn)

For each “word level” position m in document d
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Choose ym ∼ Unif(1, ...,N) (for Corr-METag2LDA - fig. 4.1f)
or Choose ym|θ ∼Mult(θ) (for METag2LDA - fig. 4.1e)
Choose a word wm|ym, z, t,β,π ∼ p(wm|zym ,β,π, tm) (fig. 4.1f)
or Choose a word wm|ym, t,β,π ∼ p(wm|ym,β,π, tm) (fig. 4.1e)

In the correspondence models, the DL perspective plays a significant role in the quality of topic
coherence. For example, when the GSRt perspective (c.f. table 4.2) is chosen as a DL perspective, the
topics will capture words that are both co-occurring and generated from similar roles. To reiterate the
example from Chapter 3, there can be a docset on “Global warming” which will tie together words like
planet and ice based on co-occurrence alone. Consider another docset concerning discovery of ice on
Pluto’s surface. Thus, if the GSR of “ice” is taken to be a subject, then a “Global warming” topic can
include Pluto as a probable word because of the GSRts for the word “ice” that involve “subj”. This type
of tagging is beneficial where the task is not to replicate the docset structure based on co-occurrence but
to provide deeper insights into data for tasks such as summarization, relationship extraction, etc. This
effect is hardly observed when the DL tags tersely summarize the main contents of the documents and
the DL tag-topic matrix is close to p-separable [Arora et al., 2013].

In general, if the features of the DL perspective have low variance, then the assumption that topics
generate the observations in the DL perspective first and then a word in the main document body is
generated by the topic of a randomly selected DL observation. In that respect if there are too many
competing topics for the DL perspective then the topical correspondence of the DL perspective to the WL
perspective degrades in quality in the sense that the average entropy of the variational word distributions
over topics increases.

4.3.1 Latent variable inference
The variational Bayesian Expectation Maximization algorithm (see Chapter 1, Section 2.6) has been
used to maximize the lower bound to the true intractable likelihood of the data w.r.t. the model parame-
ters. This section outlines the various updates of the latent variables and the parameters and subsection
4.3.3 outlines a general plan of implementation. To find as tight as possible an approximation to the log
likelihood of the data (the joint and conditional distribution of the observed variables given the param-
eters), the KL divergence of an approximate factorized mean field distribution is minimized to the true
posterior distribution of the latent variables given the data. A fully factorized q distribution with “free”
variational parameters γ, φ and λ is imposed as

q(θ,z,y|γ,φ,λ) =

D∏
d=1

q(θd|γd)

[
Nd∏
n=1

q(zd,n|φd,n)

Md∏
m=1

q(yd,m|λd,m)

]
(4.2)

and then optimal values of free variables and parameters are found by optimizing the lower bound on
ln p(wm,wn|α,β,ρ,π, t). The variational functional to optimize can be shown to be (as in [Beal,
2003])

F = Eq[ln p(wM ,wN ,θ, z,y|α, β,ρ,π, t)]− Eq[ln q(θ, z,y, |γ,φ,λ)] (4.3)

where Eq[f(.)] is the expectation of f(.) over the q distribution and F is the Evidence Lower BOund
(ELBO) to true likelihood. This ELBO is directly related to measuring perplexity [Blei et al., 2003].
In the following subsections, it is assumed that K is the number of topics, φ to be free parameters of
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the variational DL tag-topic distribution and λ to be the free parameters of the variational word-topic or
word-DL tag distributions. These free parameters are defined for every document d ∈ D.
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(d) The variational dual of the METag2LDA model

Figure 4.2: Mean field representation of the METag2LDA model

Figure 4.2 shows the juxtaposition of the METag2LDA model with its variational dual. The graph-
ical model representation of METag2LDA is shown in Fig. 4.2a for two documents and two words per
document. The number of topics in the illustration is set to two and the number of words in the docu-
ment level perspective is also set to two in each of the documents. The dependence of the parameters
of the model are highlighted by the head-to-head causal arcs to the observed variables which allows the
Bayes Ball [Shachter, 1998] to pass through. This coupling within the parameters leads to an exponential
state-space exploration to compute the log partition function over the different configurations of the pa-
rameters as realized by the indicator variables y, z. To eliminate the coupling, the arcs leading upto the
observed nodes that allow the Bayes ball to pass through need to be removed (see Fig. 4.2c). The hidden
variables which are removed as a side effect of deleting the arcs in the original model are represented
as independent random variables drawn from distributions which belong to the same family as in the
original model but with their parameters allowed to freely vary to best fit the observations. This is shown
in Fig. 4.2d where θd follows Dirichlet γd (a surrogate for Dirichlet(α)); y follows Multinomial(λ)

and z follows Multinomial(φ). If there is a prior for ρ, then the variational distribution for ρ in the dual
model is Dirichlet(η).

The key inferential problem that is solved here is the learning of the posterior distribution of the
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latent variables given the observations and parameters of the models on data that are new on count
proportions. Following the inequality, ln(x) ≤ ζ−1x + ln(ζ) − 1,∀ζ > 0, the ELBO F is changed to
further lower bounds L for the two models. The inequality is obtained using Taylor series expansion of
the logarithm function as follows:

f(x) = f(ζ)+f ′(ζ)(x− ζ) +
f ′′(ζ)

2!
(x− ζ)2 + . . .+ ε [by Taylor series expansion with error term ε]

=⇒ ln(x) = ln(ζ) +
1

ζ
(x− ζ) +O(ζ2)

=⇒ ln(x) ≤ ln(ζ) + ζ−1x− 1, ∀ζ > 0 (4.4)

Thus, for the METag2LDA model, the lower bound to the log likelihood can be written as:

LME = Eq[ln p(θ|α)] + Eq[ln p(Z|θ)] + Eq[ln p(W|Z, ρ)]

+ Eq[ln p(Y|θ)] + Eq[ln p(W|Y, β,π, t)]− Eq[ln q(θ,Z,Y, |γ,φ,λ)] (4.5)

The expression for Eq[ln p(W|Y, β,π, t)] can be written for a document d as:

Eq[lnp(wd,m|yd,m, β,π, t)] ≥
Md∑
m=1

K∑
i=1

λd,m,i(lnβi,wd,m + lnπtd,m,wd,m)

−
Md∑
m=1

{ζ−1
d,m(

K∑
i=1

V∑
v=1

λd,m,i exp(lnβi,wd,m + lnπtd,m,wd,m)) + ln ζd,m − 1} (4.6)

Using the new lower bound, the maximum likelihood estimates of the hidden variables in document d
are as follows:

ζd,m =

V∑
v=1

K∑
i=1

λd,m,i exp
{

lnβi,v + lnπtd,m,v
}

(4.7)

φd,n,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + ln ρi,wd,n

}
(4.8)

λd,m,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + (lnβi,wd,m + lnπtd,m,wd,m)

−ζ−1
m

V∑
v=1

exp(lnβi,wd,m + lnπtd,m,wd,m)

}
(4.9)

γd,i = αi +

Nd∑
n=1

φd,n,i +

Md∑
m=1

λd,m,i (4.10)

For the Corr-METag2LDA model:

LcorrME = Eq[ln p(θ|α)] + Eq[ln p(zn|θ)] + Eq[ln p(wn|zn, ρ)] + Eq[ln p(ym|N)]

+ Eq[ln p(wm|ym, β,π, t)]− Eq[ln q(θ, z,y, |γ,φ,λ)] (4.11)

The expression for Eq[ln p(wm|ym, β,π, t)] can be written as:

Eq[lnp(wm|ym, β,π, t)] ≥
Md∑
m=1

K∑
i=1

(

Nd∑
n=1

λd,m,nφd,n,i)(lnβi,wd,m + lnπtd,m,wd,m)
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−
Md∑
m=1

{ζ−1
d,m(

K∑
i=1

V∑
v=1

(

Nd∑
n=1

λd,m,nφd,n,i) exp(lnβi,wd,m + lnπtd,m,wd,m)) + ln ζd,m − 1} (4.12)

Using these lower bounds and the maximum likelihood estimations of the hidden variables in document
d are as follows:

ζd,m =

V∑
v=1

K∑
i=1

(

Nd∑
n=1

λd,m,nφd,n,i) exp
{

lnβi,v + lnπtd,m,v
}

(4.13)

φd,n,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + ln ρi,wd,n +

Md∑
m=1

λd,m,n(lnβi,wd,m + lnπtd,m,wd,m)

−
Md∑
m=1

ζ−1
d,mλd,m,n

[
V∑
v=1

exp(lnβi,wd,m + lnπtd,m,wd,m)

]}
(4.14)

λd,m,n ∝ exp

{
K∑
i=1

φd,n,i(lnβi,wd,m + lnπtd,m,wd,m)

−ζ−1
m

(
V∑
v=1

K∑
i=1

φd,n,i exp
(
lnβi,wd,m + lnπtd,m,wd,m

))}
(4.15)

γi = αi +

Nd∑
n=1

φd,n,i (4.16)

where ζd,m ≥ 0 is an additional free variable used in the Taylor expansion of ln(x) to obtain a tractable
second lower bound on the probability of word generation given the topic and tag parameters of the
model. Note that ζd,m is defined for each document d ∈ D and does not need to be initialized in the
routines described in Section 4.3.3.

4.3.2 Maximum Likelihood Parameter estimation
The expressions for the maximum likelihood of the parameters of the original graphical model using
derivatives w.r.t the parameters of the functional L(.) are obtained as follows:
For the METag2LDA model:

ρi,j ∝
D∑
d=1

Nd∑
n=1

corrV∑
j=1

φd,n,iδ(wdn , j) (4.17)

lnβi,v = ln

(
D∑
d=1

Md∑
m=1

λd,m,iδ(wdm , v)

)
− ln

(
D∑
d=1

Md∑
m=1

ζ−1
d,mλd,m,i exp(lnπtd,m,v)δ(wdm , v)

)
= ln(termβ

1 )− ln(termβ
2 ) (4.18)

lnπt,v = ln

(
D∑
d=1

Md∑
m=1

K∑
i=1

λd,m,iδ(wdm , v)δ(td,m, t
′)

)

− ln

(
D∑
d=1

Md∑
m=1

ζ−1
d,m

K∑
i=1

λd,m,i exp(lnβi,v)δ(wdm , v)δ(td,m, t
′)

)
= ln(termπ

1 )− ln(termπ
2 ) (4.19)
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For the Corr-METag2LDA model:

ρi,j ∝
D∑
d=1

Nd∑
n=1

corrV∑
j=1

φd,n,iδ(w
j
d,n) (4.20)

lnβi,v = ln

(
D∑
d=1

Md∑
m=1

(

Nd∑
n=1

λd,m,nφd,n,i)δ(wdm , v)

)

− ln

(
D∑
d=1

Md∑
m=1

ζ−1
d,m(

Nd∑
n=1

λd,m,nφd,n,i) exp(lnπtd,m,v)δ(wdm , v)

)
= ln(termβ

1 )− ln(termβ
2 ) (4.21)

lnπt,v = ln

(
D∑
d=1

Md∑
m=1

K∑
i=1

(

Nd∑
n=1

λd,m,nφd,n,i)δ(wdm , v)δ(td,m, t
′)

)

− ln

(
D∑
d=1

Md∑
m=1

ζ−1
d,m

K∑
i=1

(

Nd∑
n=1

λm,nφd,n,i) exp(lnβi,v)δ(wvdm)δ(td,m, t
′)

)
= ln(termπ

1 )− ln(termπ
2 ) (4.22)

where δ(xz, y) = 1 iffxz == y and 0 otherwise and t′ ∈ {1, .., T}. Since the updates for β and π
are unconstrained, a Gaussian regularizer with 0 mean and constant standard deviation (set to 2 in this
paper) is used for every βi,v and πt,v . If β and π are in log space as β` and π`, then Li,t is transformed
to

L̂i,t = Li,t −
1

2σ2
(

V∑
v=1

(
exp(β`i,v)

)2

)− 1

2σ2
(

V∑
v=1

(
exp(π`t,v)

)2

) (4.23)

So, in the derivative of L̂ w.r.t lnβ or lnπ results in a quadratic in eβ
`
i,v or eπ

`
t,v as term(.)

1 −
term

(.)
2 exp((.)) − 1

2σ2 (2 × [exp((.))]2) = 0 as a necessary condition for extrema, where (.) is β`i,v
or π`t,v . For exp((.)) to be ≥ 0, the positive root is taken as the only solution. So the solution becomes
(letting A = exp((.))),

2A = −σ2term
(.)
2 + σ

√
σ2(term

(.)
2 )2 + 4term

(.)
1 (4.24)

which is ≥ 0. In the derivative of L̂ w.r.t the ln of β or π, if the regularizer is not used then convergence
is not achieved2 arising possibly out of the boundaries of the fixed point surface. This derivation is
different from that used in [Zhu et al., 2006]. Further, while initializing marginal statistics for β and
π, random initialization works best. A complete derivation of the extrema expressions for the hidden
variables and model parameters is shown in Section 4.6. Note that number of Lagrange multipliers used
in the optimization for φd,n,i is Nd, that for λd,m,i or λd,m,n is Md and that for ρ is K. These free(φ,λ)
and model(ρ) parameters follow multinomial distributions and hence sum to one.

4.3.3 Algorithms for Implementation
Algorithms 4, 5, 6 and 7 outline some computational procedures for implementing the model and corre-
sponding time complexities (given as [O(.)]). If a procedure is not defined, comments in {.} explain the
functionality of the procedures.

2Authors thank Jordan Boyd-Graber for the hint on using regularizers
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Algorithm 4 VB EM

1: if algorithm mode == “training′′ then
2: initialize statistics(); {use seeded initialization for ρ and random initialization for β and π}
3: vb m step();
4: end if
5: elbo prev ← 0
6: elbo current← 0; iters← 0
7: while converged ≥ EM CONV ERGED do
8: elbo current← vb e step() {update hidden variables}
9: vb m step() {update model parameters}

10: converged← (elbo prev − elbo current)/(elbo prev)
11: elbo prev ← elbo current; iters←iters+1
12: end while [O(iters×(vb e step+vb m step))]

Algorithm 5 vb e step

1: zero initialize statistics();[O(K.corrV+K.V+T.V)]
2: precompute beta and pi row sums() {precompute

∑V
v=1 exp{lnβi,v + lnπt,v} ∀i ∈

{1, ...,K} and ∀t ∈ {1, ...T} in an KxT matrix } [O(K.T.V)] ← This is a necesary compu-
tational bottleneck in the TagLDA and Tag2LDA family of models during each VBE Step

3: elbo current← 0
4: for d = 0 to D do
5: doc← corpus→ document vec→ at(d)

6: elbo current += doc e step(d, doc) {also accumulate termβ
1 , termβ

2 , termπ
1 and termπ

1 of the
marginal statistics for β and π ∀ d,wd,m and td,m c.f. eqs. 4.18, 4.21, 4.19 and 4.22}

7: end for [O(D(doc e step))]
8: return elbo current;

Algorithm 6 doc e step

1: γd,i = α+ (documents[d].total num words+documents[d].total num corr words)
K

2: φd,n,i = 1.0
K

3: λd,m,i = 1.0
K {If model is METag2LDA} {OR} λd,m,n = 1.0

documents[d].unique num corr words {If
model is Corr-METag2LDA}

4: elbo current← 0; v iter ← 0
5: while not converged do
6: update ζd,m
7: update φd,n,i
8: update λd,m,i {If model is METag2LDA} {OR} update λd,m,n {If model is Corr-METag2LDA}
9: update γd,i

10: elbo current ← compute likelihood() {To compute likelihoods c.f. equations 4.5 for
METag2LDA and 4.11 for Corr-METag2LDA}

11: v iter ← v iter + 1
12: end while
13: return elbo current; [O(K+KN+KM+v iter(MK+NK+ MK+KN))] for METag2LDA or

[O(K+NK+MN+ v iter(MKN+NKM+MKN+KN))] for Corr-METag2LDA
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Algorithm 7 vb m step

1: for all i ∈ 1, ..,K, v ∈ 1, .., V and corr v ∈ 1, ..., corrV do
2: update ρi,corr v from sufficient statistics
3: update βi,v from marginal statistics
4: update πt,v from marginal statistics
5: update α {Follow the Newton-Raphson method in [Blei et al., 2003]}
6: end for [O(K.corrV+K.V+T.V)]

4.4 Results and Discussions
This section shows the relative performances of the proposed models on DUC 2005, Wikipedia and the
Amazon Review (AR) [Blitzer et al., 2007] datasets (see subsection 4.1.1). The AR dataset was further
processed to extract not more than 400 reviews per category. The reviews belong to 25 category labels
including {apparel, software, magazine, food, etc.}. The Wikipedia documents were crawled using the
special export url3 mostly along the categories of {food, animal, countries, sport, war, transportation,
natural, weapon, universe and ethnic groups}. The relative positions of the sections were binned into 5
categories which served as WL tags. Standard English stopwords were removed for the Wikipedia data
and after processing, it contained 33, 261 unique words and 6, 902 unique DL tags (bag-of-words from
image captions and Wikipedia article names). The AR dataset contained 6017 unique words and 4271

unique DL tags from product names and review titles after processing. Tags from the affect lexicon were
used as WL tags.

For both datasets, words occurring once or more than a thousand times across the entire corpus
were also removed. Also note that the main document word vocabulary V and the document level tag
vocabulary corrV were processed independently using the same token processing rules but without any
correspondence. To compare the proposed models with sLDA [Blei and Mcauliffe, 2007] on the AR
data, all DL and WL tags were discarded for sLDA. Instead, the ratings served as values of the response
random variables. For both the datasets the number of topics K were set to {20, 50, 100, 200}.

For the DUC 2005 dataset, the DL tags were the GSRts found in respective documents and their
counts (see subsection 4.1.1 for GSRts). Two types of WL tags were considered: word position bins
like WL tags for Wikipedia dataset and named entity classes - PERSON, ORGANIZATION, LOCA-
TION, NUMBER and MISC. Together, DL+WL tagging for DUC 2005 data is named as GSRTPos and
GSRTNe respectively (see fig. 4.3). Altogether, there were 36725 unique words for the DUC 2005
dataset and 81 corresponding terms which were just the GSRts. K was set to {40, 60, 80, 100} for the
DUC2005 data based on human intuitions.

4.4.1 Model Loglikelihoods on Held-out Test Data
To measure predictive power of METag2LDA and Corr-METag2LDA, a 10-fold cross validation was
performed on the DUC 2005 dataset. Figures 4.3a and 4.3c show the ELBO’s (higher is better) on
validation sets averaged over all folds. Figures 4.3b and 4.3d show the minimum of the differences in the
ELBO’s per topic across all folds for the Corr-METag2LDA model vs. Corr-MMLDA and METag2LDA
models. Clearly the differences prove that the improved performance of correspondence Tag2 model is
statistically significant. This is also intuitive since words in a document are always generated from a

3http://en.wikipedia.org/wiki/Special:Export/<Wiki_article_name>
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Figure 4.3: Cross-Validation results on DUC 2005 newswire data (higher is better in 4.3a and 4.3c):
(4.3a) ELBO-Validation DUC 2005 GSRTNe; (4.3b) Minimum of differences in ELBO across topics of
Corr-METag2LDA to corrLDA and METag2LDA for GSRTNe tagging; (4.3c) ELBO-Validation DUC
2005 GSRTPos; (4.3d) Minimum of differences in ELBO across topics of Corr-METag2LDA to corrLDA
and METag2LDA for GSRTPos tagging

corresponding process, like visualizing an image or action role for a concept. There is a very slightly
improved performance when the WL tags are chosen to be named entity classes.

The TagLDA model [Zhu et al., 2006] was not compared for this dataset since the concept of
multiple GSRts at the word level breaks down for TagLDA. However, empirically it is seen that the
nature of DL tags influences the predictive power of the proposed Tag2LDA models vs. TagLDA. For
the DUC 2005 dataset, the DL tags were represented by coherence markers like “subj→subj” etc. as
in [Barzilay and Lapata, 2005a]. Typically this type of coherence marker smooths out variations like
“landslide:subj→subj,” “car:subj→subj” etc. under a common “subj→subj” abstraction. On the other
hand, words like landslide and car signify concepts that allow for identifying specific centers in coherent
sentences. In this respect, the WL perspective is more important (primary) over the more abstract DL
perspective, the latter capturing a coarser notion of document level coherence. The counts of document
level GSRts in the form of “GSR→GSR” do not allow for much variance to be exhibited by the doc-
uments at the DL perspective. This fits TagLDA better to the dataset (see Section 4.4.4) at the cost of
either ignoring abstract coherence markers altogether or discarding WL perspective and choosing only
one coherence marker per word at WL annotation. However, if the document level GSRts are in the
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form “word:GSR→GSR”, then the proposed models fit the data much better than TagLDA owing to the
variance in the DL observations that are captured nicely in the topics along with the WL variations (see
Chapter 5). The GSRts in the latter case cannot be considered as secondary to the WL perspective for
document representation.
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Figure 4.4: Training and test negative ELBO plots of tag topic models on the Wiki data (Lower is better).
In eachK-group, the models from left to right are MMLDA, TagLDA, Corr-MMLDA, METag2LDA and
Corr-METag2LDA

Figures 4.4a, 4.4b, 4.5a and 4.5b also show that in the presence of decent variations in DL tags,
the Corr-METag2LDA model performs the best in terms of both training ELBO and test ELBO. The
meaning of correspondence in terms of the bag-of-words model is to find important associations where
the first word comes from a document and the second from DL tags in the same document. Table 4.7
shows some word correspondences that were obtained on test documents from Wikipedia (see rows with
λ

(.)
m,ns).

For the Wikipedia dataset, the mixed-membership Multi-Multinomial (Exponential) class of mod-
els: MMLDA [Ramage et al., 2009b, Si and Sun, 2009] and METag2LDA (fig. 4.1e) perform worst.
TagLDA [Zhu et al., 2006] performs a little better. This trend is seen on both the training and test
sets. Note however that METag2LDA does a simultaneous joint and conditional modeling of DL and
WL tags w.r.t. the document’s words. Thus it, along with Corr-METag2LDA, captures what MMLDA,
Corr-MMLDA and TagLDA individually misses out. The ELBO trends of the correspondence class of
LDAs are quite similar, with Corr-METag2LDA beating Corr-MMLDA. Again, this trend is seen on
both the training and test sets. For the AR dataset, the Corr-METag2LDA model beats all other models
convincingly in both the training and test set ELBOs. ELBO of MMLDA is the highest during training,
followed by (supervised) sLDA [Blei and Mcauliffe, 2007] and the predictive power of sLDA decreases
even further on the test set. In the AR dataset, TagLDA performs much better due to less variability in
DL tags. The proposed Corr-METag2LDA combines the best of TagLDA and Corr-MMLDA to achieve
the best predictive power on the AR dataset consisting mostly of very short review documents.

Table 4.7 shows some topics from Wikipedia dataset corresponding to the best performing Corr-
METag2LDA model. Note that “positional facets” of topics 175 and 196 have been collapsed for space
limitations. The test documents for these collapsed topics were the Wikipedia articles on “galaxy” and
“fog”. The learned β parameters contributing marginally to word generation are listed for the collapsed
topics. Top suggested tags from image captions for the test documents also appear as the re-weighted
ρ topic multinomial over all DL tags after document inference. Top correspondence tuples are listed as
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Figure 4.5: Training and test negative ELBO plots of tag topic models on the Amazon Review (AR)
data (Lower is better). In each K-group, the models from left to right are MMLDA, TagLDA, sLDA,
Corr-MMLDA, METag2LDA and Corr-METag2LDA

λm,n. For topics 54 and 76, notice how there is a “drift” from the beginning sections of the Wikipedia
articles to the end sections. Words like “University Press, ISBN” have high mass on the “Middle to end”
and the “End” facets of the topic 76. The image labels for topics are obtained from an inverted index of
DL tags to thumbnailed image files. From figures 4.4 and 4.5, 200 topics are good fits to both the Tag2

topic models for both Wikipedia and AR datasets.

Similarly, in table 4.9 only three topics out of 200 are shown due to space constraints. Note here
that for topic 35, although the review was titled “too many ads, too little substance,” the word “ads”
has obtained a higher probability mass conditional on “CONTENDED.” This has happened because of
the bag-of-words assumption in emotion tagging. In many reviews showing low-ratings, the number of
negative affect words are outweighed by the number of positive affect words. However, taken in context,
for e.g. a phrase, the positive affect is actually a part of a negative connotation like “do not like,” etc.
This is a shortcoming of the simple lookup based WL tagging procedure and is outside the scope of the
topic models. The next subsections mention two important uses of the proposed models for tasks that
provide deeper insights into the data including their measures of validation.

The nature of WL affect tags, though, needs some mention. The assignment of affect tags to review
words based on maximum valence score do indeed make them orthogonal and one might choose not to
use them at all in the modeling process. This orthogonality is also the principle reason behind using
the regularization term for the parameters. However, including such orthogonality do have some good
uses. The conditioning of topics on the WL tags allows us to discover terms that might be related to
tagged words through shared topics. For example, words like “advertisements,” “ads,” “listing,” etc. that
do not appear in [Bradley and Lang, 1999] could receive higher probability mass for some topic (e.g.
magazines) conditioned on “MELANCHOLIC” affect while it could receive higher probability mass for
another topic (e.g. software) conditioned on “CONTENDED” affect thereby introducing a relaxation
over orthogonal WL tagging constraints. This phenomenon is better reflected in the METag2LDA model
which does not enforce the correspondence constraint between the WL and DL perspectives in a strong
manner.
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βlearned175 : galaxy Star spiraled milky matter cluster Hubble gas Universe structure Formation elliptical
active galactic nebula dwarf
ρinf175 : Galaxy, spiral, stars, Hubble, classification, Andromeda, rings, core, Great, compared
λ

(galaxy)
m,n : (Planet, Hubble) (Planet, object) (Planet, galaxy) (Herschel, Hubble) (ring, galaxy) (Heat,

galaxy) (discoveries, Hubble)
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βlearned196 : fog air Shadow Ice condensation light vapor Humidity layer temperature freeze particle cool
waters moisture evaporation salt
ρinf196 : fog, Francisco, San, visible, high, temperature, streets, photo, Bai, lake, California, bridge, air
λ

(fog)
m,n : (dimensions, high) (beam, visible) (parallel, bridge) (droplets, fog) (combustion, temparature)

(invisible, visible) (absorbed, air)

Table 4.7: Topics and correspondences from the Corr-METag2LDA for the Wikipedia data for K = 200
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4.4.2 Automatically Evaluating Suggested Tags From Image Captions
For each of the Wikipedia test documents, top five predicted tags (coming from image captions and
article names) were chosen. Following [Pedersen et al., 2004], the method described in section 4.1.3
was chosen as a quantitative measure of tag suggestion success. Figure 4.6a shows the relative values of
the proposed Tag2LDA models for macro averages of maximum of best path distance scores for all test
documents.

Some concept pair evidence chains from domain ontology

soy ↔ legume ↔ herb ↔ vascular plant ↔ plant ↔ organism ↔ person ↔ inhabitant ↔ Asian ↔
Vietnamese
spiral↔ curve↔ line↔ shape↔ attribute↔ abstraction↔ group↔ collection↔ galaxy
weapon↔ persuasion↔ communication↔ act↔ activity↔ occupation
french↔ sculptor↔ artist↔ creator↔ person↔ modern
bottle-nosed whale↔ beaked whale↔ toothed whale↔ whale↔ cetacean

Table 4.8: Sample evidence Chains for DL Tag suggestions from image captions to ground truth category
labels from the Tag2 topic models

Figure 4.6a suggests that people ignore the specific contents of the documents while assigning
a category label. The METag2LDA model, in spite of higher perplexity, performs a little better here
because of the lack of specificity of suggested DL tags to the document contents. This shows that humans
assign DL tags that belong to higher levels of abstraction. Nevertheless, the best DL tags suggested by
both METag2LDA and Corr-METag2LDA are only within 1 to 2 hops away from the ground truth tags
based on a chosen WordNet ontology. Thus image captions in Wikipedia articles provide powerful clues
for suggesting document tags. Table 4.8 shows “explanations” of the suggested DL tags to the ground
truth category labels which is a desirable output of this type of evaluation. One could also use cross-
document evidence trails [Srihari et al., 2007] to measure semantic relatedness. It is to be noted here that
the ontology chosen must be specific to the nature of the task. For example, in medical domain, WordNet
is a poor choice for providing explanations to DL tag suggestions.
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Figure 4.6: (4.6a) The best ontological inverse path length measure between suggested DL tags from
image captions and ground truth Wikipedia categories for the test set in Fig. 4.4b and (4.6b) PERSON
Named Entity-pair coverage ratio to baseline from DUC 2005 Newswire data
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Table 4.9: Three sample topics from the Corr-METag2LDA for the Amazon Product Review (AR) data
for K = 200. Topic 49 highlights the problem with correspondence when there are more than a few
competing topics for explaining the DL metadata
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4.4.3 Automatically Evaluating Named Entity Relationship Discovery
For the DUC 2005 data, the second column in the first, third and fifth rows of table 4.10 show selected
PERSON entity pairs which have been discovered to be related through some latent topics. The WL and
DL tags for this purpose are named entity classes and abstract GSRts.

Nobel Prize Winners in Science & Economics (John Harsanyi, John Nash) (Von Neumann, John Harsanyi)
(Von Neumann, John Nash)

Last week the Nobel Prize for Economics was awarded to three ’game theorists’: John Harsanyi, John Nash
and Rheinhard Selten. What is game theory? Game theory is still a relatively young field. Von Neumann and
Oskar Morganstern introduced many of the central ideas in a book published in 1944.

Women in Parliaments (Mrs Margaret Beckett, Ms Ann Taylor)
(Mrs Margaret Beckett, Ms Clare Short)
(Mrs Margaret Beckett, Ms Harriet Harman)
(Mrs Margaret Beckett, Ms Hilary Armstrong)
(Mrs Margaret Beckett, Ms Jo Richardson)

There are at present just four women occupants - Mrs Margaret Beckett, Ms Ann Clwyd, Ms Ann Taylor and
Ms Jo Richardson - of the 18 shadow cabinet seats elected each year. The plan now being discussed by the group
is to create a ’recommended’ list of women candidates. Women would be asked to ensure that they included
more than three votes for group members. Beneficiaries might include Ms Harriet Harman, Ms Clare Short, Ms
Marjorie Mowlam and Ms Hilary Armstrong.

VW/GM Industrial Espionage (Bill Clinton, Mr Lopez) (Dorothea Holland, Bill Clinton)
(Bill Clinton, Ms Holland)

It is believed US investigators have asked for, but have been so far refused access to, evidence accumulated
by German prosecutors probing allegations that former GM director, Mr Lopez, stole industrial secrets from
the US group and took them with him when he joined VW last year. This investigation was launched by US
President Bill Clinton and is in principle a far more simple or at least more single-minded pursuit than that of
Ms Holland. Dorothea Holland, until four months ago was the only prosecuting lawyer on the German case.
Topic34 — ORG: GM Opel EC General Motors Harvard volkswagen Justice Department World Bank Volk-
swagen the Times FBI
Topic34 — LOC: Germany Los Angeles California UK german Washington Europe Brazil London Slovakia
european U.S. New York
Topic34: GM Mr Lopez group yesterday company german week official Mr Piech work production charge car
investigation prosecutor

Table 4.10: DUC 2005 dataset: Related PERSON named entity pairs and evidence from documents

The first column in the first, third and fifth rows shows queries that serve as gists of the three
docsets. To validate the discoveries the following experiment has been devised: For each docset in the
DUC 2005 data, all entity pairs that are co-occurring in a sentence are counted and was treated to be a
baseline measure of coverage for entity pairs which are related. Then a set of best topics are inferred
for the documents in docsets by the Tag2LDA class of models. For each topic set, 2450 (=50x50-50)
PERSON entity pairs are created out of the highly probable entities appearing in the PERSON facet of
the conditional topics. Note that for all entities A and B, two entity pairs (A,B) and (B,A) are created and
that entities such as John Nash, Nash and Dr. Nash are treated as three separate entities. Each docset
has on average 2449 PERSON entity pairs and hence the number 2450. The graph in fig. 4.6b shows
that the correspondence model is three times better than the robust baseline at the right number of fitted
topics and using the abstract GSRt DL perspective. The second, fourth and sixth rows of table 4.10 show
how topical context ties two entities together even though they do not occur in the same sentence. The
last three rows show ORGANIZATION facet, LOCATION facet and marginal topic corresponding to
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the best topic for docset “VW/GM Industrial Espionage”.

4.4.4 TagLDA Revisited
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Figure 4.7: Cross-Validation results on DUC 2005 (DUC05) newswire data (higher is better in all
figures); Fig. 4.7a: ELBO-Validation on DUC05 with GSRTNe tagging - not showing TagLDA; Fig.
4.7b: Better ELBO for TagLDA on DUC05 with Ne and GSRt tagging; Fig. 4.7c: ELBO-Validation on
DUC05 with GSRTPos tagging - not showing TagLDA; Fig. 4.7d Better ELBO for TagLDA on DUC05
with Position tagging. X-axis represents the values of K

To measure predictive powers of the tag topic models, a 10-fold cross validation was performed on
the DUC 2005 dataset. Fig. 4.7 shows the ELBOs (higher is better) on validation sets averaged over
all folds. Fig. 4.7b shows the ELBO for TagLDA trained with only WL Named Entity (Ne) annotation
classes and also the ELBO for TagLDAGSRt trained with WL prioritized GSRt tags. To annotate a word
with a single prioritized GSRt the following is done: for a set of GSRts {x → y} associated with a
word wd,m, prioritized GSRs xp ∈ {x} and yp ∈ {y} are chosen based on GSR prioritization rule given
in section 4.1.1. If xp and yp are not the same, then these two GSRs are further prioritized. Finally
the GSRt corresponding to the chosen GSR is taken to be the WL tag for the word. Fig. 4.7d shows
the ELBO for TagLDA trained with only WL position (Pos) tags. It is clearly observed that when the
documents are not sparsely represented over the set of all DL tags, TagLDA fits much better to the data
for all choices of number of topics. However, excepting TagLDA, Corr-METag2LDA fits the data better
than all other models and does so consistently across all folds in cross-validation. ELBOs for models
with GSRTNe and GSRTPos tagging are comparable.
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Figure 4.8: Fig. 4.8a: Optimum value of the prior parameter α for Wikipedia dataset; Fig. 4.8b:
Optimum value of the prior parameter α for DUC 2005 dataset with GSRTNe/prioritized GSRt tagging
(TagLDAGSRt). X-axis represents the values of K

The optimal values of α are higher in correspondence models than models where words and DL
words/tags are independently generated as shown in Figs. 4.8a and 4.8b. Higher α values in correspon-
dence models for the Wikipedia dataset is intuitive. The structure of Wikipedia documents is such that
a well edited Wikipedia article often shows an orthogonal sub-topical structure among its sections. For
the symmetric Dirichlet distribution, a high value of the prior α means that each document is likely to
contain a mixture of a much higher number of topics, and not any single topic specifically. A low value
of α puts fewer such constraints on documents and means that it is more likely that a document contain
mixture of just a few of the topics. Since we are not treating each section of the Wikipedia articles
as a separate document, the correspondence of the captions of the embedded multimedia to the exact
subtopic is difficult particularly if the number of global topics is small. Thus in this case, the higher
values of α is indicative of the fact that each Wikipedia article indeed exhibits mixed membership over
many “sub-topics.” We can possibly introduce another level of hierarchy in the topical structure of the
document representation (much like the Pachinko Allocation Model (PAM) [Li and McCallum, 2006])
and then correspond to the top level topics only.

4.4.5 Evaluating Tag-Topic Models through Extractive Multidocument Summa-
rization

To quantitatively evaluate textual summarization power of the models vis-a-vis perplexities for the sec-
ond task, the DUC 2005 dataset has been used. This dataset consists of 1593 newswire articles spanning
several events which are binned into 50 predefined document sets (docsets) corresponding to 50 queries.
Each document set also had 4 or 9 gold standard summaries written by humans. For a particular docset,
a document is chosen and then a sentence along with at most two preceding and two succeeding sen-
tences are chosen to form a short contextual document centered on a sentence. After a particular topic
model is trained on the entire DUC 2005 corpus prior to context creation, the likelihoods for each such
context across all documents in a particular docset are computed during the summarization procedure.
These likelihoods serve as the ELBOs for the models on held out test data (sentence contexts) with no
unseen out-of-vocabulary words. Finally, sentences with a minimum of n words and at least one named
entity are chosen from all documents within a docset and ranked in descending order of likelihoods till
a specified summary length L is reached with L being the number of whitespace separated tokens in the
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summary for the docset. Further the summary sentences are chosen to contain at least 20 words including
punctuations and stopwords. These summaries are then automatically scored against the model human
summaries using ROUGE evaluation tool. The higher the score for a model generated summary, the
better is its multidocument summarization power

The summarization power of the models are revealed from the graphs in fig. 4.9. The figures show
that scores for 250 word summaries generated by TagLDA using WL tags alone is much worse compared
to the summaries from the other models.
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Figure 4.9: ROUGE SU4 scores (higher is better) of 250 word summaries for the models in fig. 4.1
- the scores are averaged over all docsets in the DUC 2005 dataset (GSRTNe/Ne/prioritized GSRt tag-
ging); Fig. 4.9a: ROUGE SU-4 scores when each sentence in the summary is atleast 20 words (GSRT-
Ne/Ne/prioritized GSRt tagging); Fig. 4.9b: ROUGE SU-4 scores when each sentence in the summary
is atleast 30 words (GSRTNe/Ne/prioritized GSRt tagging); Fig. 4.9c: ROUGE SU-4 scores when each
sentence in the summary is atleast 20 words (GSRTPos/Position tagging); Fig. 4.9d: ROUGE SU-4
scores when each sentence in the summary is atleast 30 words (GSRTPos/Position tagging). X-axis
represents the values of K

ROUGE [Lin and Hovy, 2003] has been run with the official DUC 2005 command line arguments as
“-e data -n 4 -w 1.2 -m -2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0 -a -d”. The reason for choosing ROUGE is that
it is a fully automatic scoring function using lexical matches as compared to PYRAMID [Nenkova and
Passonneau, 2004] which is manual. Also ROUGE shows good correlation to scores obtained through
PYRAMID evaluation. The widely adopted Skip Unigram of skip length 4 (SU-4) matching criterion of
ROUGE is used to measure the quality of a summary.

It is observed that the summaries consisting of sets of most likely sentences centered around a
context which are fit to the learned TagLDA model with different WL tagging (Ne, Pos and prioritized
GSRt) worst reflect the information need conveyed in the document sets. This happens even if TagLDA
beats all the proposed models by a wide margin in perplexity. The reason for this is intuitively clear.
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When additional non-sparse features as document level GSRts are skipped, TagLDA models topics only
on co-occurrence conditioned on WL tags. The more there are conditional events the higher the ELBO
due to higher degrees of freedom—a fact supported by Fig. 4.7b for TagLDAGSRt for which the sum-
marization power also increases as shown in Fig. 4.9. However, the addition of the DL assumption
from a linguistic perspective that words are generated not only through co-occurrence but also from the
need to continue or disrupt the propagation of attentional foci within contextual utterances [Grosz et al.,
1995] improves the summarization power of the correspondence topic models. There has also been seen
a general lack of coherence in the docset summaries generated using TagLDA. The lack of coherence is
more pronounced when the summary consists of sentences of at least 30 words. This is understandable
since very long sentences are usually self contained with more null GSRs in the GSRts. The frequency
counts of the GSRts across the corpus also shows more {x → y} GSRts where either of x or y is null
(–) because co-reference resolution has not been performed. The summarization power of the models
slightly increases when summaries contain sentences of at least 30 words mostly because of slightly
more lexical matches to the words in the human summaries.

Docset Docset Query Topic
d695c What sentences are being imposed

for financial crimes such as fraud
and embezzlement?

(TopicID: 81) Sentencing crimes Landreth paying
prison murder charge Harper killing tax government
convicted criminal police judges attorney

Query-independent Summary: A specialist firm on the New York Stock Exchange was
fined $480,350 for securities fraud by a judge who said he imposed the sentence as a deterrent.
LaRouche, who has run for President four times, is known for his extreme views, including sup-
port for a quarantine of AIDS victims and allegations that Britain’s Queen Elizabeth is involved
in drug trafficking. Federal prosecutors dropped conspiracy and fraud charges against Lyndon
LaRouche Jr., moments before a Virginia judge sentenced the political extremist to 15 years in
prison for related offenses. Former Norwalk City Administrator William Kraus was sentenced in
federal court in San Diego to 5 years probation and fined $1000 for his part in a land-fraud scheme
that bilked investers out of more than $3 million.

Table 4.11: DUC 2005 docset, latent topic and generated summary. Sentences are at least 20 words long

Table 4.11 shows a sample DUC 2005 docset with its information need, the best topic that is re-
flected in its documents for the Corr-METag2LDA model at K = 100 with GSRTNe DL+WL tagging
and the central contextual sentences from the documents arranged in descending order of likelihoods to
form a human readable summary. Summaries with sentences less than 20 words scored very short sen-
tences higher due to smaller sum of log probabilities. The official maximum and baseline ROUGE SU-4
scores for the DUC 2005 dataset from NIST were 0.1316 and 0.0871 respectively for query-dependent
summarization.

4.5 Summary
This chapter explores correspondence and mixture topic modeling of documents tagged from two dif-
ferent perspectives. There has been ongoing work in topic modeling of documents with tags (tag-topic
models) where words and tags typically reflect a single perspective, namely document content. However,
words in documents can also be tagged from different perspectives, for example, syntactic perspective
as in part-of-speech tagging or an opinion perspective as in sentiment tagging. The models proposed in

132



this chapter are novel in: (i) the consideration of two different tag perspectives - a document level tag
perspective that is relevant to the document as a whole and a word level tag perspective pertaining to each
word in the document; (ii) the attribution of latent topics with word level tags and labeling latent top-
ics with images in case of multimedia documents; and (iii) discovering the possible correspondence of
the words to document level tags. The proposed correspondence tag-topic model shows better predictive
power i.e. higher likelihood on held-out test data than all existing tag topic models and even a supervised
topic model. To evaluate the models in practical scenarios, quantitative measures between the outputs
of the proposed models and the ground truth domain knowledge have been explored. Manually assigned
(gold standard) document category labels in Wikipedia pages are used to validate model-generated tag
suggestions using a measure of pairwise concept similarity within an ontological hierarchy like Word-
Net [Fellbaum, 1998]. Using a news corpus, automatic relationship discovery between person names
was performed and compared to a robust baseline.

The proposed Multinomial-Exponential Tag2LDA models capture semantics of documents with
domain knowledge coming from two different and often orthogonal perspectives. The correspondence
models also show impressive predictive power for inferring topics. Further, usefulness of the models
have been explored with applications that provide deep insights into the data. Overall, it is possible
to add domain knowledge from different perspectives, into topic models without sacrificing predictive
power.

In the next chapter we explore the applicability of these models in the context of “guided” multi-
document summarization.

4.6 Appendix
As is generally the case for hierarchical models belonging to the LDA family, the coupling between
the hidden variables and parameters require an exponential number of state space configurations to be
searched to find the best posterior distributions over the hidden variables. Since this problem is in-
tractable, we find posterior distributions over the hidden variables by imposing tractable distributions
with free variational parameters and then optimizing the expectation over the complete data log likeli-
hood w.r.t these imposed variational distributions.

For a concrete discussion on one such scenario, we derive the expressions involving the optimization
for the Corr-METag2LDA model. We begin with:

(γ∗,φ∗,λ∗) = arg min
(γ,φ,λ)

KL (q(θ,Z,Y|γ,φ,λ) || p(θ,Z,Y|WM ,WN ,TM ,α,ρ,β,π)) (4.25)

The Expected Lower BOund on the log likelihood of the data for a document d is given by:

L(γ,φ,λ) = Eq[ln p(θ|α)] + Eq[ln p(Z|θ)] + Eq[ln p(W|Z,ρ)] + Eq[ln p(Y|N)] + Eq[ln p(W|Y,T,β,π)]

− Eq[ln q(θ|γ)]− Eq[ln q(Z|φ)]− Eq[ln q(Y|λ)] (4.26)

Each of the terms in the equation (4.26) expands out to:

ln Γ(

K∑
j=1

αj)−
K∑
k=1

ln Γ(αk) +

K∑
k=1

(αk − 1)(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)) (4.27)
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+

Nd∑
n=1

K∑
k=1

(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))φd,n,k (4.28)

+

corrV∑
j=1

Nd∑
n=1

K∑
k=1

φd,n,k ln ρk,wnδ(wn, j) (4.29)

+

Md∑
m=1

Nd∑
n=1

λd,m,n
1

Nd
(4.30)

+Eq[ln p(wM|y, t,β,π)] (4.31)

− ln Γ(

K∑
j=1

γd,j) +

K∑
k=1

ln Γ(γd,k)−
K∑
k=1

(γd,k − 1)(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)) (4.32)

−
Nd∑
n=1

K∑
k=1

φd,n,k lnφd,n,k (4.33)

−
Md∑
m=1

Nd∑
n=1

λd,m,n lnλd,m,n (4.34)

where the last three terms form the entropy of the tractable q distribution.
To find a further lower bound on Eq[ln p(wM|y, t,β,π)], we use the inequality 4.4 given as

ln(x) ≤ ln(ζ) + ζ−1x− 1, ∀ζ > 0 to obtain the following lower bound:

Eq[ln p(wM|y, t,β,π)] = Eq

 Md∑
m=1

ln
exp

(
βlzyd,m ,wd,m + πltd,m,wd,m

)
∑V
v=1 exp

(
βlzyd,m ,v + πltd,m,v

)
 where β`/π` = lnβ/ lnπ

=

Md∑
m=1

Eq
[(
β`zyd,m ,wd,m + π`td,m,wd,m

)]
−

Md∑
m=1

Eq

[
V∑
v=1

exp
(
β`zyd,m ,v + π`td,m,v

)]

≥
Md∑
m=1

K∑
k=1

(
Nd∑
n=1

λm,nφn,k

)(
β`zyd,m ,wd,m + π`td,m,wd,m

)

−
Md∑
m=1

[
ζ−1
d,m

V∑
v=1

K∑
k=1

(
Nd∑
n=1

λm,nφn,k

)
exp

(
β`zyd,m ,v + π`td,m,v

)
+ ln ζd,m − 1

]
(4.35)

Using Equ. 4.35, we obtain a second lower bound to the original ELBO (see Equ. 4.11) involving
another free variable ζd,m.

4.6.1 Inference on Variational Parameters
Here we estimate the free variational parameters for the variational model following the constraints on
φ and λ.
For γ:

L[γ] = − ln Γ(

K∑
j=1

γd,j) +

K∑
k=1

ln Γ(γd,k) +

K∑
k=1

(αk +

T∑
t=1

φd,t,k − γd,k)(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)) (4.36)

134



∂L[γ]

∂γd,k
= (αk +

T∑
t=1

φd,t,k − γd,k)(Ψ′(γd,k)−Ψ′(

K∑
j=1

γd,j))− (Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)) + (Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))

(4.37)

Setting the above derivative to 0, we get,

γd,k = αk +

K∑
k=1

φd,n,k (4.38)

where L[γ] denotes the expression with only those terms that depend on γ in the expression for L(.)

For λ:

L[λm,n] = −λd,m,n lnλd,m,n + λd,m,n
1

Nd
+

K∑
k=1

(λd,m,nφd,n,k)
(
β`zyd,m ,wd,m + π`td,m,wd,m

)

− ζ−1
d,m

V∑
v=1

K∑
k=1

(λd,m,nφd,n,k) exp
(
β`zyd,m ,wd,m + π`td,m,wd,m

)
+ µm(

Nd∑
n=1

λd,m,n − 1)

∴
∂L[λm,n]

∂λd,m,n
= 0 =⇒ − lnλd,m,n − 1 + 1/Nd +

K∑
k=1

φd,n,k
(
β`zyd,m ,wd,m + π`td,m,wd,m

)
− ζ−1

d,m

(
V∑
v=1

K∑
k=1

φd,n,k exp
(
β`zyd,m ,v + π`td,m,v

))
+ µm = 0

∴ λd,m,n ∝ exp

{
K∑
k=1

φd,n,k
(
β`zyd,m ,wd,m + π`td,m,wd,m

)
−ζ−1

d,m

(
V∑
v=1

K∑
k=1

φd,n,k exp
(
β`zyd,m ,v + π`td,m,v

))}
(4.39)

where µm are the m Lagrange multipliers one for each of the free Nd-dimensional multinomial param-
eters λd,m. The constant of proportionality is the summation of the expression in the right hand side of
Equ. 4.39 over all n ∈ {1, ..., Nd} since

∑Nd
n=1 λd,m,n = 1.

For φ :

L[φn,k] = (Ψ(γd,k)−Ψ(
K∑
j=1

γd,j))φd,n,k + φd,n,k ln ρd,k,wd,n +

Md∑
m=1

{
(λd,m,nφd,n,k)

(
β`zyd,m ,wd,m + π`td,m,wd,m

)

−ζ−1
d,m

(
V∑
v=1

λd,m,nφd,n,k exp
(
β`zyd,m ,v + π`td,m,v

))}
− φd,n,k lnφd,n,k + µnφd,n,k

where the last term is due to the fact that the n Lagrange multipliers are represented by
µn(
∑K
k=1 φd,n,k − 1).

∴
∂L[φn,k]

∂φd,n,k
= 0 =⇒ − lnφd,n,k − 1 + (Ψ(γd,k)−Ψ(

K∑
j=1

γd,j)) + ln ρd,k,wd,n

+

Md∑
m=1

{
(λd,m,n)

(
β`zyd,m ,wd,m + π`td,m,wd,m

)
−ζ−1

d,m

(
V∑
v=1

λd,m,n exp
(
β`zyd,m ,v + π`td,m,v

))}
+ µn = 0
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Using
∑K
k=1 φd,n,k = 1, we have

φd,n,k ∝ exp

{
Ψ(γd,k)−Ψ(

K∑
j=1

γd,j) + ln ρd,k,wd,n +

Md∑
m=1

{
(λd,m,n)

(
β`zyd,m ,wd,m + π`td,m,wd,m

)

−ζ−1
d,m

(
V∑
v=1

λd,m,n exp
(
β`zyd,m ,v + π`td,m,v

))}}
(4.40)

For ζ :

L[ζm] = ζ−1
d,m

V∑
v=1

K∑
k=1

[(
Nd∑
n=1

λd,m,nφd,n,k exp
(
β`zyd,m ,v + π`td,m,v

))]
+ ln ζd,m

∴
∂L[ζm]

∂ζd,m
= 0 =⇒ − 1

ζ2
d,m

V∑
v=1

K∑
k=1

[(
Nd∑
n=1

λd,m,nφd,n,k exp
(
β`zyd,m ,v + π`td,m,v

))]
+

1

ζd,m
= 0

=⇒ ζd,m =

V∑
v=1

K∑
k=1

[(
Nd∑
n=1

λd,m,nφd,n,k exp
(
β`zyd,m ,v + π`td,m,v

))]
(4.41)

4.6.2 Model Parameter Estimation

In this section, we calculate the maximum likelihood settings of the parameters.

For ρ:

L[ρ] =

D∑
d=1

Nd∑
n=1

K∑
k=1

corrV∑
v=1

φd,n,k ln ρk,wd,nδ(wdn , v) +

K∑
k=1

µk(

corrV∑
v=1

ρk,v − 1) (4.42)

where the µk’s are the K Lagrange multipliers in (4.42).

∴
∂L
∂ρk,v

=

D∑
d=1

corrV∑
v=1

Nd∑
n=1

φd,n,k
1

ρk,v
δ(wdn , v) + µk

∂L
∂ρk,v

= 0 =⇒ ρk,v = −
∑D
d=1

∑Nd
n=1 φd,n,kδ(wdn , v)

µk
=⇒ µk = −

D∑
d=1

corrV∑
v=1

Nd∑
n=1

φd,n,kδ(wdn , v)

∴
∂L
∂ρk,g

= 0 =⇒ ρk,v ∝
D∑
d=1

corrV∑
v=1

Nd∑
n=1

φd,n,kδ(wdn , v) (4.43)

For β:

L[β] =

D∑
d=1

Md∑
m=1

K∑
k=1

V∑
v=1

T∑
t=1

(
Nd∑
n=1

λd,m,nφd,n,k

)(
β`zyd,m ,v + π`td,m,v

)
δ(wd,m, v)δ(tdm , t)

−
D∑
d=1

Md∑
m=1

K∑
k=1

V∑
v=1

T∑
t=1

(
ζ−1
d,m

(
Nd∑
n=1

λd,m,nφd,n,k

)
exp

(
π`td,m,v

))
exp

(
β`zyd,m ,v

)
δ(wd,m, v)δ(tdm , t)

∴
∂L[β]

∂β`k,v
= 0 =⇒ β`k,v = ln(termβ1 )− ln(termβ2 ) (4.44)
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where,

termβ1 =

D∑
d=1

Md∑
m=1

T∑
t=1

(
Nd∑
n=1

λd,m,nφd,n,k

)
δ(wd,m, v)δ(tdm , t) (4.45)

termβ2 =

D∑
d=1

Md∑
m=1

T∑
t=1

(
ζ−1
d,m

(
Nd∑
n=1

λd,m,nφd,n,k

)
exp

(
π`td,m,v

))
δ(wd,m, v)δ(tdm , t) (4.46)

For π:

L[π] =

D∑
d=1

Md∑
m=1

K∑
k=1

V∑
v=1

T∑
t=1

(
Nd∑
n=1

λd,m,nφd,n,k

)(
β`zyd,m ,v + π`td,m,v

)
δ(wd,m, v)δ(tdm , t)

−
D∑
d=1

Md∑
m=1

K∑
k=1

V∑
v=1

T∑
t=1

(
ζ−1
d,m

(
Nd∑
n=1

λd,m,nφd,n,k

)
exp

(
β`zyd,m ,v

))
exp

(
π`td,m,v

)
δ(wd,m, v)δ(tdm , t)

∴
∂L[π]

∂π`t,v
= 0 =⇒ π`t,v = ln(termπ1 )− ln(termπ2 ) (4.47)

where,

termπ1 =

D∑
d=1

Md∑
m=1

K∑
k=1

(
Nd∑
n=1

λd,m,nφd,n,k

)
δ(wd,m, v)δ(tdm , t) (4.48)

termπ2 =

D∑
d=1

Md∑
m=1

K∑
k=1

(
ζ−1
d,m

(
Nd∑
n=1

λd,m,nφd,n,k

)
exp

(
β`wd,m,v

))
δ(wd,m, v)δ(tdm , t) (4.49)

Note that the maximum likelihood expressions for β and π involve unconstrained optimization. If
these parameters are not regularized then any improper scaling of the weights often leads to violation of
the convergence criteria for fixed point iterations in the E step (see Section 2.7.5). We therefore use a 0

mean and a fixed σ standard deviation Gaussian regularizer for each component of the parameters.

In particular, we use a “fixed prior” for p(wd,m|yd,m, twd,m ,β,π) as:

exp

{
− 1

2σ2
β

(
V∑
v=1

(exp(β`k,v)2)

)}
× exp

{
− 1

2σ2
π

(
V∑
v=1

(exp(π`t,v)2)

)}
(4.50)

So, the derivative w.r.t β` for the previous expression for the ELBO for Corr-METag2LDA (see
Equ. 4.11) becomes:

∂L(R)

[βk,v ]

∂β`k,v
= termβ1 − term

β
2 × exp

{
β`k,v

}
− 1

2σ2
β

× 2
(

exp
{
β`k,v

})2

(4.51)

Setting the above derivative to 0, we obtain:

exp
{
β`k,v

}2

+ σ2
βterm

β
2 × exp

{
β`k,v

}
− σ2

βterm
β
1 = 0 (4.52)
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The expression in Equ. 4.52 is a quadratic in exp
{
β`k,v

}
which can be solved as:

exp
{
β`k,v

}
=
−σ2

βterm
β
2 ±

√
σ4
β

(
termβ2

)2

+ 4σ2
βterm

β
1

2
(4.53)

Since exponential of a real number is always positive, we select the root with the positive second term
since then we have:

exp
{
β`k,v

}
≥ 0 =⇒

σ2
β

4

(
σ2
β

(
termβ2

)2

+ 4termβ1

)
≥
σ4
β

4

(
termβ2

)2

=⇒ σ2
βterm

β
1 ≥ 0

=⇒ σ2
β

D∑
d=1

Md∑
m=1

T∑
t=1

(
Nd∑
n=1

λd,m,nφd,n,k

)
δ(wd,m, v)δ(tdm , t) ≥ 0 (4.54)

The last expression in Equ. 4.54 is always true. Thus we have:

β`k,v = ln

−σ
2
βterm

β
2 +

√
σ4
β

(
termβ2

)2

+ 4σ2
βterm

β
1

2

 (4.55)

and

π`t,v = ln

−σ2
πterm

π
2 +

√
σ4
π (termπ2 )2 + 4σ2

πterm
π
1

2

 (4.56)

For α:

L[α] =

D∑
d=1

(
ln Γ(

K∑
k=1

αk)−
K∑
k=1

ln Γ(αk) +

K∑
k=1

(αk − 1)(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))

)

=⇒
∂L[α]

∂αk
= D

(
−Ψ(αk) + Ψ(

K∑
j=1

αj)) +

D∑
d=1

(Ψ(γd,k)−Ψ(

K∑
j=1

γd,j))

)
(4.57)

∂L[α]

∂αkαj
= ∂(k, j)D

(
Ψ′(αk)−Ψ′(

K∑
j=1

αj

)
(4.58)

The derivative w.r.t. αk depends on αj and thus we can resort to Newton’s iterative method to find out
the maximal α using the gradient and Hessian vector and matrix respectively as in [Blei et al., 2003]. Ψ′

is the trigamma function.
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Chapter 5

Using Bi-Perspective Topic Models and
Rhetorical Structure Trees to generate Bullet
Lists

“... like a swan, who can take the milk from a mixture of milk and water, leaving

aside the water; like an ant, who can take the sugar from a mixture of sugar and

sand, leaving aside the sand” - Ramakrishna

5.1 Introduction
Recent efforts within the Text Analysis Conference (TAC) community has led to the creation of the
“Guided Summarization” task to encourage research and fair comparisons of peer systems. This is the
task of generating a summary of a collection of documents as an answer to the information need of
a user, which is commonly expressed as a very short query. In general, solutions for automatic text
summarization are approached as a combination of several factors: the importance of sentences (which
can be estimated from how often they are repeated across the collection, possibly as paraphrases), the
redundancy between sentences (so as not to generate redundant summaries), and the readability of the
produced summary. Because of its simplicity, most summarization systems currently used are extractive,
i.e. they compose the output summary by combining sentences extracted from the original documents,
which are sometimes modified through sentence rewriting or compression.

Experiments on human extractive summarization [Genest et al., 2009] show that even the best
content-selection mechanism (e.g., a human summarizer) which is limited to pasting together sentences
cannot achieve the same quality as fully manual summaries. The clusters of documents to summarize
(which we will refer to as document sets or docsets in this paper) fall into predefined categories with
highly predictable important elements. These elements aid summary evaluation by explicitly guiding
the creation of human reference summaries to contain all or most of them. The categories are usually
referred to as event categories and an example of such a category is “Accidents and natural disasters”
with the guiding aspects i.e. categorical elements to be {what happened, date, location, reasons for
accident/disaster}. In order to provide information for all the elements in these templates it is usually
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DocsetID / Query [event cat-
egory]

Important Nouns Important Verbs

D1105A / Plane Crash In-
donesia [Accidents and Natu-
ral Disasters]

Adam, Air, Boeing, Hartono, Sulawesi, acci-
dent, board, crash, emergency, official, pain,
passenger, plane, rescue, search, survivor

carry, disappear, find,
kill, miss, send

D1101A / Amish Shooting
[Attacks (Criminal/ Terror-
ist)]

Miller, Roberts, attack, child, door, dream, fam-
ily, girl, man, neighbor, number, police, school,
schoolhouse, victim, wife

enter, kill, leave,
molest, shoot, speak,
storm, tie, turn,
weave

D1102A / Internet Security
[Health and Safety]

Internet, VeriSign, address, attack, business,
company, computer, datum, domain, investment,
security, server, system, technology, traffic, user,
virus

convert, grow, man-
age, may, operate

D1106A / Tuna Fishing [En-
dangered Resources]

Japan, Kobe, Ocean, catch, conference, conser-
vation, country, fishery, fishing, management,
meeting, overfishing, plan, stock, tuna

adopt, expect, in-
clude, poach, track

D1103A / Madrid Trainbomb-
ings Trial [Investigations and
Trials (Criminal/ Legal/
Other)]

Ahmed, God, Italy, Madrid, Moroccan, Spain,
attack, bombing, charge, evidence, face, jail,
murder, police, sentence, train, trial

accuse, allege, blow,
expect, injure, kill

Table 5.1: Sample Docset IDs, their corresponding information needs and categories, important nouns
and important verbs from the TAC 2011 Guided Summarization dataset. The nouns and verbs are ob-
tained using an automatic part-of-speech tagger.

desirable to find the relevant content on a sub-sentential level through the use of information extraction
and other meaning-oriented techniques.

Current state-of-the-art extractive query-focused summarization systems like those mentioned in
[Conroy et al., 2010, Conroy et al., 2011, Varma et al., 2010, Varma et al., 2011] are all predominantly
local methods which means that their systems extract key information that is only relevant to the docset
being summarized. Although some of the features that these systems use are also computed “globally”
using term statistics from other docsets or even other data sources. Regarding sentence scoring, a very
important aspect of all query-focused summarization systems is to model the importance of words in the
sentences conditioned on the user’s information need i.e. the query.

Many systems, including CLASSY [Conroy et al., 2010, Conroy et al., 2011], derive a lexicon that
best represents the category of the docset and its aspects through the use of external sources like the
Internet. However, it has been recently noted in [Conroy et al., 2010] that such lexicons, if not chosen
properly may lower summarization performance due to topic drift. We show in this article, how simple
models that are local to the docsets can be used to derive such lexicons automatically from the data at
hand. Such automatically derived lexicon is very appropriate for categorizing the document sets into
the corresponding event categories and also for summarizing the documents according to the Guided
Summarization task definition. A few examples of such automatically derived lexicons from our system
for some of the docsets in the TAC 2011 Guided Summarization dataset are shown in Table 5.1.

Some systems like the ones in [Schilder and Kondadadi, 2008, Varma et al., 2010, Varma et al.,
2011] leverage summarization performance by training supervised classifiers based on features extracted
for each sentence and its bigram overlap to available human summaries for some related datasets. Al-
though this supervised learning approach is effective for boosting summarization performance by learn-
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ing the weighting of the different correlates in a principled way, it needs large amounts of available
training data with human summaries - something which may not be available when one wants to port the
algorithm to other genres like scientific literature, forum messages, story books and novels etc.

Alternatively, unsupervised topic models like LDA [Blei et al., 2003] are very powerful data ex-
ploration techniques which can summarize data in the form of bag-of-word summaries where each bag
holds semantically related items. Recent extensions of LDA-based models that use more structure in the
representation of documents have also been proposed for generating more coherent and less redundant
summaries, such as those in [Daumé and Marcu, 2006, Haghighi and Vanderwende, 2009, Celikyil-
maz and Hakkani-Tür, 2011, Delort and Alfonseca, 2012]. These models use the collection and target
document-specific distributions in order to distinguish between the general and specific topics in doc-
uments. For example, a general topic may look like a bag of closed-class words like those listed in a
standard English stopword list and a document specific topic for a particular docset may look like a bag
of words comprising of the nouns and verbs as shown in Table 5.1. In the context of summarization, this
distinction is very similar to identifying signature terms [Lin and Hovy, 2000] at multiple granularities in
a corpus driven manner and weighting sentences accordingly for inclusion into summaries. Since many
of these signature terms happen to be Named Entities, it is often useful to use supervised methods to
identify them and influence the topic modeling process instead. In this chapter, one of the main rea-
sons to choose multi-modal tag-topic models like the TagLDA model in [Zhu et al., 2006] and the ones
in [Das et al., 2011] is their ability to handle the word level annotation. The aspects of the categories
concerning {who, when, date, location} naturally ask for highlighting the text with Named Entities and
that the discovery of latent topics should also be conditioned upon these entities in proper context. Also,
in general, TagLDA [Zhu et al., 2006] shows much lower perplexity than LDA by using the word level
annotations and thus we have opted for TagLDA over LDA in our experiments.

Although most of the topic model based approaches in the multi-document summarization com-
munity focus on building topic models on the documents in the individual docsets, there has been no
comparison so far on how good those models are for document summarization if there is no assump-
tion of a docset structure in the corpus for training the models. For example in the TAC 2011 Guided
Summarization corpus, there are 44 docsets covering the 5 event categories mentioned before. Thus if
latent topics are built per docset [Celikyilmaz and Hakkani-Tür, 2011] or indexed by docsets [Haghighi
and Vanderwende, 2009] then the true power of the models w.r.t. the diversity of latent spaces are never
evaluated.

The multi-document summarization power of a topic model can be understood if there is a scheme
to fit sentences in a docset to the model which has been learnt across all documents in all docsets.
The top ranked summary sentences respecting some fixed word limit should still be as good as a local
docset specific centroid based algorithm like the popular MEAD system [Radev et al., 2004]. To this
end, we perform a quantitative evaluation of the tag-topic models [Das et al., 2011] trained on the full
corpus without any docset partitioning, thus opening up the possibility of evaluating topic models using
a measure other than the standard measure of perplexity (or log-likelihood) on held-out test data (Sect.
5.3.7).

In general we observe that the better a topic model is able to classify a document into its corre-
sponding event, the better its chances to compete with a local centroid based algorithm (see Section
5.4.2). One subtle aspect of the Guided Summarization problem that cannot be incorporated into the
topic modeling process through word level annotations is the issue with categorical aspects dealing with
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questions like “what happened?”, “reasons for accident/disaster?” etc. The analysis of the rhetorical
structure of texts through the use of Rhetorical Structure Theory [Mann and Thompson, 1988] (hence-
forth RST) has shown promise in this regard for text summarization [Marcu, 1999]. We believe that this
direction should be further explored for potentially compacting extractive full sentence summaries into
bullet lists whilst conforming to the unified information model enforced in the Guided Summarization
principles.
The main contributions of this chapter are three-folds:

i. We improve upon the models in Chapter 4 using asymmetric Dirichlet priors (Sect. 5.4.2). We
show that without any knowledge of docset paritioning of a newswire corpus for use by the tag-topic
models during training, the summaries formed by fitting sentences within each docset easily parallel
those from a very robust centroid based summarization system trained only on docset features. This
allows us to evaluate the tag-topic models using ROUGE as well as topically analyze a corpora.

ii. We use sentence likelihood scores from globally trained tag-topic models together with those from
very granular docset specific local models to vastly improve summarization performance.

iii. Finally, we use contiguous spans of constituents automatically obtained from rhetorical parses to
create bullet lists.

We next discuss the standard datasets on which our experiments in this chapter are evaluated.

5.1.1 Datasets
The datasets we choose for our experiments in this article are two recently released newswire corpora.
These corpora are released as part of the Text Analysis Conference Guided Summarization task for year
2011. We have focused primarily only on the “base” Guided Summarization task, where systems are
required to generate a 100-word summary of a set of 10 documents about a single topic. This set of 10
documents is what is called a document set or docset and each docset is unique in that each one addresses
a particular information need. Also all summaries are asked to address specific aspects relevant to the
summary topic without actually annotating those aspects within the summaries. For TAC 2011, there are
44 such topics or docsets. TAC 2011 dataset also included a development set from 2010 which had a
similar docset organization with 46 folders. A few topic titles from the event categories of the TAC 2011
dataset are as follows: 1) Category: Accidents and Natural Disasters [Topic Title: Bangladesh flood]; 2)
Category: Attacks [Topic Title: Glasgow airport attack]; 3) Category: Health and Safety [Topic Title:
Pet Food Recall]; 4) Category: Endangered Resources [Topic Title: Endangered turtles]; 5) Category:
Trials and Investigations [Topic Title: Bernard Madoff]

A complete list of the aspects of the categories that cover subordinate information needs can be
found in the TAC 2010 website1. The reason for the TAC datasets containing a smaller number of
docsets is to make sure that the automatic evaluation measures correlated well to the manual ones [Dang,
2006b] and yet the evaluation efforts were as less as possible. In the TAC datasets, the docsets are also
called “topics” but these are different from the latent topics obtained from statistical topic models.

Additionally we also experiment with running our system on the update task of the TAC 2011
Summarization task. The “Update” component of the Guided Summarization task is to write a 100-
word updated summary of 10 subsequent newswire articles for the topic, under the assumption that a

1http://www.nist.gov/tac/2010/Summarization/
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user has already read the earlier articles. We show that without actually modeling an update process
of summarization explicitly, we are able to achieve state-of-the-art Update Summarization performance
by utilizing the same local models, RS-trees and topic modeling over both the base and update set of
documents (see Section 5.5.4).

In the TAC 2010 and 2011 datasets, the topic titles of the docsets for both the base and update
collections are the same. The docset IDs for the base collection, intended for Guided Summarization
only, uses a “A” suffix to differentiate itself from the docset IDs in the update collection which are
appended with a “B” suffix. In this article, TAC 2011A thus refers to the “Base” collection and TAC
2011B refers to the “Update” collection for the TAC Summarization dataset for the year 2011. Similar
notation holds for the dataset for the year 2010. Each docset in the Update collections also has 10
documents.

5.1.2 Global Topic Models and Local Sentential Models
Our hypothesis is that there are a number of coarser to finer latent features in documents that can be very
useful for the task of summarization. These include automatically discovered latent topic clusters, de-
pendencies within sentential words, coherence structure in documents, rhetorical structure of sentences,
etc. and we want a model that captures several of these things and combines them to better meet the
needs of the Guided Summarization principles.

Figure 5.1 shows two sentences from a sample document concerning “sleep deprivation.” The text
appeared in docset D1127E-A in the TAC 2011 base document collection. The light blue rectangular
bubble on the right contains words stylized in varying font sizes depending on their frequencies in the
text. As in [Das et al., 2011], this bag-of-concepts can be looked upon as a document level perspective
that provides a gist of the document in terms of salient words appearing most frequently. The frequency
of words usually have considerable impact on final summaries [Nenkova et al., 2006a, Vanderwende
et al., 2007].

[Many factors] [that impair sleep in adults such as obesity 
are at work in kids,] [says study senior author Milap 
Nahata, an Ohio State University professor of medicine.] 

[The National Sleep Foundation reported in 2006] [that 
only 20 percent of adolescents get the recommended 
nine hours of sleep;] [distractions such as computers or 
video games in kids' bedrooms may lessen sleep quality.] 

adolescents 
distractions 

factors kids 

national percent 

sleep 

impair study 

PERSON 

ORGANIZATION 

DATE 

PERCENT 

NUMBER 

Figure 5.1: An article for the query “sleep deprivation” showing a document level and a word level
perspective with some shallow and deep linguistic structures

The word “sleep” (connected by a dashed arrow) in bold font and colored red appears as a noun in
the first and second sentences. The word “sleep” represented as the triplet (sleep, noun, noun) acts as
an important center of attention that signifies an event rather than an entity. This triplet thus also helps
strengthening the document level perspective focusing on “what this document is about?” In the triplet
the first element is the word that appears in consecutive sentences, the second one is the role of the word
in the first sentence and the third one — its role in the succeeding sentence. Using this representation,
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this triplet also appears in the first sentence and is similar to the Grammatical and Semantic Roles (GSRs)
mentioned in our earlier work on tag-topic models [Das et al., 2011].

In our experiments these roles belong to part-of-speech or syntactic or dependency relation classes
of the words and only one role is allowed per word that we decide using some grouping and prioritization
rules (see Section 5.3.1). The words and the triplets in the light blue rectangular bubble are thus indicative
of a latent topic of the document over some controlled vocabulary that reinforces the topical content of
the terms in the document itself. Note that we apply our tag-topic models in a global way since we use
the entire corpus of documents irrespective of the docset partitioning.

We observe that the central ideas in a document are often conveyed in written English through
syllogisms. Syllogisms are logical inference constructs that often lead to the propagation of certain
important concepts similar in spirit to “centers of utterances” as in [Grosz et al., 1995]. The propagation
of these centers, be they entities or otherwise, are a major contributor to the high frequency of certain
open-class words in the documents. The triplets like (sleep, noun, noun) consisting of terms and their
roles in adjacent sentences are thus a natural choice in the document level perspective for the tag-topic
models.

The main content of the document itself can be structured in many ways. In this example, each
word either belongs to a particular Named Entity class or not. In figure 5.1, we show 5 such classes
with the corresponding phrases in the text appropriately color coded and underlined. The words not
colored do not belong to any Named Entity class. The black arcs show extremely fine-grained semantic
dependencies that exist between selected words. In our case study, an important observation is that
salient high frequency verbs (i.e. verbs that do not fall into the category of standard English stopwords)
across a document identify the main events to a considerable degree. In this example, we become aware
that something is being discussed around the concept of “sleep deprivation”. If verbs like “impair” or
“deprive” occur frequently in the documents across the docset, then we actually recover the query! The
influence of models that are local to a docset and global theme generation models whose topics are
influenced through word and document level annotations is thus quite apparent.

Topic models are usually trained on a part of data that is different in count proportions to the held-
out test data. From the perspective of summarizing a fixed set of documents, we treat the documents
with their annotations as training data. However, in our setup, the posterior inference for the latent topics
is done for sentences, that act as held-out test set. The inference is influenced by not only the terms
and the corresponding annotations in the sentence but also the document level perspective obtained from
an adjacent contexts. This has the advantage of including other sentences from any new but related
documents as potential summary sentences.

5.1.3 Rhetorical Structure Trees as a Local Model

Earlier we had mentioned that to satisfy the categorical aspects of unified information model as laid
down by the Guided Summarization paradigm and not covered by the Named Entity classes, we need to
understand how sub-sentential spans interact with each other that exhibit some meaningful relationships.
By sub-sentential span we mean that if a sentence is looked upon as a sequence of words, a sub-sentential
span is just a sub-sequence. By meaningful relationships we mean whether a span is related to another
span through relations such as attributions, background information, cause for the event in the other span,
elaboration on the event in the other span etc. Finding such relations in free text helps us identify the

144



potential subtle categorical aspects of the Guided Summarization principle. For example we are able to
uncover facts regarding the category “Trials and Investigations” and aspects like “what is the issue? how
are parties affected? why it happened?” and so on.

RST literature [Mann and Thompson, 1988, Marcu, 2000a] lays special emphasis on cue words
or phrases which are sentence level connectives like “because”, “nevertheless”, “that”, “but”, “in spite
of”, parenthesis etc. and certain punctuations that serve primarily to indicate document structure or
flow. Elementary Discourse Units (henceforth EDUs), which are non-overlapping contiguous spans of
text, can be extracted based on these cue phrases along with syntactic parse tree information, lexical
rules and probabilities tuned against a training set of such annotated sentential structures [Soricut and
Marcu, 2003] (or even a strongly constrained first-order logic model [Marcu, 2000a]). In figure 5.1, the
square-bracketed textual extents represent such sub-sentential spans as recognized by cue words. RST
emphasizes the fact that certain shallow processing of text in terms of cue phrase analysis in combi-
nation with well-constrained mathematical models can be used to create valid rhetorical structure trees
(henceforth RS-trees) of unconstrained natural language text.

Rhetorical parsing allows a piece of text to be partitioned into non-overlapping spans which lend
themselves into a binary tree where the leaves from left to right indicate EDUs that are related in strict
rhetorical sense. Any internal node signifies a relationship between its children i.e. the text extents only
spanned by the children. The root node connects all the spans in the text (possibly) through internal nodes
– it is possible for a sentence to be just a root node. The spans of the text are of two types - text spans
that consume subsidiary information are called satellites and all others are called nuclei. All satellites
are related to their corresponding nuclei through some valid rhetorical relations. It is also possible for
a text not to have any satellites as determined by the rhetorical relations and rules of RST. Figure 5.2
shows the RS-tree of the second sentence in Fig. 5.1.

distractions such as 
computers or video 
games in kids ' 
bedrooms may 
lessen sleep quality. 

that only 20 
percent of 
adolescents get the 
recommended nine 
hours of sleep ; 

The National 
Sleep 
Foundation 
reported in 2006 

Satellite (Leaf: 
Span 1) 

Nucleus (Leaf: Span 2) Nucleus (Leaf: Span 3) 

Nucleus 
[2] 

Root [2, 3] 

Joint 
Attribution 

Figure 5.2: Rhetorical Structure tree of the second sentence in Fig. 5.1

We observe that the second sentence has been partitioned into three non-overlapping spans by iden-
tifying the cue phrase markers. The leftmost span (span 1) is the only satellite leaf node that is related
to the middle nucleus leaf (span 2) through the “Attribution” relation. In other words the leftmost leaf is
presenting information that is subordinate and can be attributed to the main information presented by the
middle leaf node. The right most leaf (span 3) does not present any subsidiary information and hence is
a nucleus. Spans 1 and 2 thus get connected through an internal node and span 3 can only be connected
with the parent of 1 and 2 through the root node. In Fig. 5.2, lighter arcs indicate RST relations and
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darker arcs indicate the directed edges of the RS-tree. The parent for spans 1 and 2 becomes a nucleus
signifying that span 2 is more important. The root indicates that both spans 2 and 3 are jointly important
and that they are related through the rhetorical relation of “Joint”.

In this chapter, the RS-trees of the sentences has been generated using the techniques used in Soricut
and Marcu’s SPADE system [Soricut and Marcu, 2003]. We have slightly modified their accompanying
software2, to incorporate minor modifications and bug fixes. Better RS-tree generation is indeed helpful
and is a separate direction of research [Hernault et al., 2010] which we do not pursue here. The rhetorical
relations that hold between different spans of text are the same as those used in [Soricut and Marcu,
2003]. We consider only the following relations for the satellite spans to be useful for our purposes:
{Background, Cause-Result, Cause, Comparison, Consequence, Contrast, Explanation and Temporal}
to locally emphasize the aspects of the topic-categories that are more subtle and cannot be handled by
Named Entity annotation. In fig. 5.2, we can think of spans 2 and 3 as good summary spans from the
second sentence because of a global or background topic focus, presence of topically salient numeric
entities, relevance to the query and the importance of the spans.

However, the problem of selecting “good summary spans” is also not trivial if we consider
selecting a relevancy threshold using only unsupervised means. We look at a possible solution
that works quite well for the datasets at hand using the technique of unsupervised density es-
timates [Kvam and Vidakovic, 2007] on the values of the cosines of the spans to the bag of
selected keyterms from the docsets (see Sections 5.4.1 and 5.4.4). We are thus motivated to
use both background tag-topic models that look at the corpus as a whole and local models that
work at a docset level or a sentential level (see Section 5.4) for the Guided Summarization task.

Document sets 
or “Docsets” 

Global Tag-Topic Model 

Local 
Models 

Documents 
and sentences 

Local 
Models 

Local 
Models 

Local 
Models 

Training using documents 

Fitting sentences from 
Docsets to the learnt model 

Candidate summary 
sentence for a Docset 

Weighting a summary 
sentence from local  
and global models 

Candidate summary 
sentence for a Docset 

Figure 5.3: Our proposed summarization system architecture using
global tag-topic models and local linguistic models.

Figure 5.3 emphasizes the fact that
the local models collaborate with
more holistic corpus based the-
matic models to weigh the candi-
dacy of each sentence in a sum-
mary. The sentences (with their
contexts) are fit to topic mod-
els trained over documents across
docsets and their likelihoods are
used to decide their inclusion into
a summary. The intuition be-
hind this is that if a sentence re-
flects a document’s topic propor-
tions well, it satisfies the topical
perspective to a greater extent.

This article is organized as follows: Section 5.2 discusses some existing multi-document summa-
rization approaches that involve topic and non-topic models and highlights the key benefits and short-
comings of those models. Section 5.3 briefly discusses the tag-topic models as described in [Das et al.,
2011]. Section 5.4 elaborates on the different local models that we use. Several summarization algo-
rithms and sentence scoring criteria are discussed in Section 5.5. Section 5.6 concludes this article with
a note on future directions.

2http://www.isi.edu/licensed-sw/spade/
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5.2 Related Work

5.2.1 Existing Topic Model Based Summarization Approaches
Our approach to summarization has been motivated by some key studies in the area of application of
topic models to multi-document summarization [Daumé and Marcu, 2006, Haghighi and Vanderwende,
2009, Tang et al., 2009, Celikyilmaz and Hakkani-Tür, 2011]. In general topic model based summariza-
tion techniques build separate models, either explicitly or implicitly, for each individual docset. Although
there is no docset label bias for such models but the models are still applied to individual docsets for the
purpose of identifying most probable n-grams (usually unigrams) within a docset is a rigorous proba-
bilistic framework. This local modeling has a good implication in that there is no chance of drawing a
word that is outside of the docset’s vocabulary. Some models also “look at” other docsets or related doc-
ument collections and treat them as background distributions of n-grams [Haghighi and Vanderwende,
2009, Delort and Alfonseca, 2012].

The summarization technique in [Daumé and Marcu, 2006] cleverly implements these two strategies
in a single model by using relevancy indicators of documents to queries. A reason for such a strategy is
that latent spaces built out of the documents across all docsets can potentially account for more choices
of words to be assigned to the same topic where the words may not be describing the event of the
docset – this is particularly true of the frequently used open-class words co-occurring with more docset
specific keyterms. Similar approaches are taken in [Tang et al., 2009, Chen et al., 2009] where docset
specific topic models are augmented to include topic distributions over possible query terms. However it
is often seen that the local topic models do not improve summarization scores by themselves and often
docset specific algebraic models like weighting sentences through query term importance or constructing
sentence affinity graphs [Chen et al., 2009] are needed as well.

An important thing to note in [Haghighi and Vanderwende, 2009] and [Delort and Alfonseca, 2012]
is that although their “background” corpus essentially consists of all the documents across all docsets
(or any other related document collection), there is a single latent topic that describes such a collection.
Under such a constraint it is always the case that the most frequently occurring closed-class words which
turn out to be stopwords for standard English collections dominate such a background topic. They
similarly have a few other latent topics collapsing on the set of documents in a particular docset and on
individual documents in that docset. This view is unlike the latent topic modeling view (as in [Blei et al.,
2003, Celikyilmaz and Hakkani-Tür, 2011]) where the latent topics are allowed to fit to the data in a way
that is governed by the data itself and the number of latent topics becomes a model parameter.

Also in models like those in [Haghighi and Vanderwende, 2009], related datasets are used for tuning
the parameters and hyperparameters through training and testing on development sets and measuring
summarization performance w.r.t ROUGE scores. By doing this their techniques necessitate the need
for available human summaries. This makes it very hard to port the techniques to other summarization
domains like biomedical and scientific literature, forums, books and novels etc. where multiple human
summaries may not be available. Further, in the topic models presented in [Daumé and Marcu, 2006,
Haghighi and Vanderwende, 2009, Celikyilmaz and Hakkani-Tür, 2011] is that it is unclear as to how
supervised structured predictions on the text, for example Named Entities, can be used to influence the
calculation of the topic distributions. Our topic models presented in [Das et al., 2011] are specifically
designed to overcome this limitation.
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5.2.2 Existing Linguistic and Vector Space Model Based Summarization Ap-
proaches

As a criticism to applying a topic model only on the documents of a docset is that it is equivalent to
identifying the n-grams in a non-parametric way such as identifying topic signature terms as in [Lin and
Hovy, 2000] which is fairly robust. Algebraic methods like finding the centroid of a document cluster
[Radev et al., 2004] or using term-sentence incidence matrices can also be used in place of parametric
statistical topic models and can very successful specially in light of some supervised training [Schilder
and Kondadadi, 2008]. A prominent work in that direction is the CLASSY system [Conroy et al.,
2010, Conroy et al., 2011] which is continually tuned to maintain its position among the top automatic
multi-document summarization systems in the TAC competitions.

In most topic model based summarization systems, the topic models are themselves part of the local
models or use a single topic to capture the predominant background unigram or bigram distributions.
This is very similar to the binomial log likelihood ratio model that computes topic signature terms [Lin
and Hovy, 2000] using term distributions both of the current docset and that of the other docsets merged
together. The success of the CLASSY system [Conroy et al., 2010] is also primarily dependent on this
approach. CLASSY uses a host of hand crafted and automatically tuned linguistic and non-linguistic
features to deliver a consistently good performance in multi-document summarization tasks of the TAC
competitions.

Working with frequency statistics of bigrams can sometimes be very useful for multi-document
summarization instead of just using unigrams [Banko and Vanderwende, 2004]. However representing
all possible bigrams in a topic model is computationally expensive [Wallach, 2006] and we settle for a
compromise by preprocessing the data and treating the Named Entities as a single concatenated unigram.
We do this because the most frequent bigrams are usually seen to be part of Named Entity classes in
our dataset. It is mentioned in [Darling, 2010] that using bigrams in local models can actually reduce
ROUGE scores due to the sparsity. Although it has been seen that bigrams do actually improve the
ROUGE scores for the Update Sumamrization task when used in a local topic modeling approach [Delort
and Alfonseca, 2012].

The work in [Darling, 2010] raises a set of very basic but extremely useful questions starting from
sentence weighting to sentence compression for summarizing a predefined set of documents. In their
system, sentence weighting through query terms improved ROUGE scores significantly and so did com-
pression of sentences – which has also been verified earlier in [Yih et al., 2007]. For example, consider
a sentence like “At the heart of the rebuilding is the creation of a lasting memorial which will honor the
memories of those we lost and help tell their story to the world, said New York Governor George Pataki.”
Removal of the clause “said New York Governor George Pataki.” compresses the sentence by 6 words
whilst not loosing the central fact that the speaker mentioned. From the perspective of RST, this clause
can be seen as a “satellite” that “elaborates” on a fact conveyed in the “nucleus.”

A different kind of summarization technique can be found in [Genest and Lapalme, 2011] where
the docset specific (subject-verb-object) triplets are used in sentence generation. The selection of verbs
followed some criteria that lead to better sentence generation. Sentence level syntactic parses are used to
extract parts of the syntactic trees that can be provided as input to the SimpleNLG tool [Gatt and Reiter,
2009] for complex sentence generation through writing out noun phrases, prepositional phrases, verb
complement and verb phrases. Interestingly, the generated sentences often resemble the EDUs obtained
from a RS-tree. The rhetorical analysis of textual units for summarization has been attempted before
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[Marcu, 1999] but it missed a rigorous data-driven analysis from which relevant spans can be selected.
We feel that this direction need to be explored more.

In general, simultaneously satisfying the objectives of multi-document summarization i.e. relevancy
to information need, non-redundancy between textual units in the summary and constraint on summary
length has recently been proved to be NP-Hard [McDonald, 2007]. However, since the objective of latent
structure discovery through topic models is very very different from the objective function of multi-
document summarization as in [McDonald, 2007], we want to see if such latent structure discovery can
indeed aid the targeted local models to generate better summaries.

To the best of our knowledge, this is the first work that uses tag-topic models as background global
models as well as docset specific local models and Rhetorical Structure trees to simultaneously perform
latent topic discovery and summarize multiple target documents in the form of bullet list summaries.

5.3 The Tag-Topic Models
In this section we briefly describe the multimodal tag-topic models from our previous work in [Das et al.,
2011] and described fully in Chapter 4. The TagLDA model from [Zhu et al., 2006] and the the multi-
modal METag2LDA model and the correspondence Corr-METag2LDA models from [Das et al., 2011]
are shown in Fig. 5.4. The two main parameters of interest in the models are the ones that lead to the
observation of a word w in a document d i.e. wd,m. The word generation probabilities are obtained by
the product of two distributions - β – the marginal topic distributions over the word vocabulary and π
– the marginal WL tag class distributions over the same vocabulary. The “M” stands for Multinomial
and the “E” stands for Exponential of log-sums of parameter components respectively. For a full symbol
manifest and generative story of these models see Chapter 4. In the multi-modal tag-topic models,
the parameter ρ represents the K topic multinomials over the document level (DL) tags where K is a
parameter for all tag-topic models which denotes the number of topics.
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(c) Corr-METag2LDA model

Figure 5.4: Graphical model representations of the tag-topic models used in modeling the corpus

In this chapter (unlike in Chapter 4), we augment the tag-topic models with an asymmetric Dirichlet
prior over the distributions for the per document topic proportion random variates. We use the procedure
described in [Blei et al., 2003]. In other words we optimize the K dimensional α in figure 5.4 such that
each dimension influences the remaining ones. The use of this prior was also motivated by the work in
[Wallach et al., 2009].
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In our context, the models in Fig. 5.4 are global models in the sense that all documents form a
TAC collection is used as input. So in Fig. 5.4, d ∈ {1, .., D} can be any document from any docset
in a TAC collection. Referring to the example document in figure 5.1, wd,m is a word in a document
d such as “impair”, wd,n is a DL tag like the triplet “(sleep, noun, noun)” and td,m is the WL tag
class associated with word wd,m (e.g. “Normal Word” for “impair” and “DATE” for “2006”, “ORG” for
“Ohio State University” etc.). Note that a DL tag can also be a normal word like “sleep” or “distractions”
if that word is deemed important by document frequency measurements. zd,n and yd,m are indicator
variables for selecting 1-of-K topics. yd,m in the Corr-METag2LDA, however, is an indicator variable
for selecting one of the corresponding DL tags. ρ are the K latent topic distributions over the corrV
DL tags in the training vocabulary; β1:K are the K latent topic distributions over the V words and π1:T

are the T WL tag class distributions over the V words in the vocabulary as well. M is the number of
positions in a document d where a (word,WL-tag-class) pair is observed and N is similarly the number
of positions in the same document d for the DL tags.

We now digress a little to describe in brief on how the plain text documents are converted into
appropriate inputs for the tag-topic models.

5.3.1 Data Preparation for the Tag-Topic Models
Our data pre-processing for the tag-topic models begin with the removal of all standard English stop-
words and all words or Named Entity phrases appearing only once across the corpus are removed also.
The remaining words are used in their lemmatized form. Following the example of the word “sleep” in
fig. 5.1, the same lemmatized words in consecutive sentences are extended with the the part-of-speech
tags or the syntactic dependency labels (i.e. a triplet like (sleep, noun, noun)). These are the primary
source of the tags in the DL perspective. This is similar in spirit as [Barzilay and Lapata, 2005b] but
not restricted to Named Entities only. In this paper we refer to such a triplet as coherence triplet. When
a word’s surface form is repeated in a sentence we use a prioritization ordering of {subject > object >
noun > adjective > verb > adverb > other} to select only one tag to form the coherence triplet.

Since we do not rely on co-reference resolution, in order to lessen the sparsity of such DL tags for
sentence selection, we also added the top 5 most frequent non-stopwords and top 10 tf-idf terms per
document into the DL tag vocabulary. Although this can potentially result in additional 100 words per
docset, the actual number is much less owing to numerous repetitions. The minimum number of these
features are decided based less than five percent error on document event classification performances
(see Section 5.4.2).

It has been quite surprising to find that the set intersection size between the 5 most frequent words
and the set of all the first elements of such coherence triplets is 3.5 on average per document even without
co-reference resolution. This bolsters the fact that coherence properties across sentences can indeed aid
in forming a robust document level perspective.

We use the Named Entity annotation classes as WL tag classes and a “Normal Word” tag class for
all other words. All entities are automatically recognized as {Location, Misc, Number, Organization,
Person} using the Stanford NLP suite3. The Date and other numeric categories were included within the
Number category. These tags are not always completely orthogonal to each other and sometimes, though
not often, the same surface string appears in different NE classes – particularly in the Misc class.

3http://nlp.stanford.edu/software/corenlp.shtml
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While training, each document as a whole, with automatically annotated DL and WL perspectives,
is considered without regard to any docset specific information. While performing inference on the
documents within a docset, we treat each sentence in context. The context is used for DL perspective
generation only. A sentence context consists of a central sentence consisting at least one Named Entity
and either its immediate preceding sentence or its immediate succeeding sentence or both depending on
the location of the central sentence in the document. For each such central sentence and its context we
associate the DL and WL perspectives using the word level tag class vocabulary and the document level
tag vocabulary obtained during training. These contexts can be created immediately after a document has
been processed for input to train the models (as in our experiments) or at a later time specially for new
target documents. Summary sentences for a docset topic are chosen from among the central sentences
collected this way. This way of creating a “test-set” for summarization is intuitive — any sentence that
reflects the document structure more under the assumptions of the generative model, should be a better
candidate for the final summary.

A thorough description of the tag-topic models, optimized using the Variational Bayesian frame-
work can be found in [Das et al., 2011] and is not repeated here in full for brevity. Rather, we briefly
familiarize ourselves with the key variables and expressions of interest from the multi-modal tag-topic
models in the next subsection.

5.3.2 Descriptions of the Bi-Perspective Tag-Topic Models
In this subsection, we highlight the free and model parameter updates of the multi-modal tag-topic mod-
els as those shed light on the differences between the models. To find as tight as possible an approx-
imation to the log likelihood of the data (the conditional distribution of the observed variables given
the parameters), the KL divergence of an approximate factorized mean field distribution is minimized
with respect to the true posterior distribution of the latent variables given the data. A fully factorized
distribution, denoted by q, with “free” variational parameters γ, φ and λ is imposed as

q(θ,z,y|γ,φ,λ) =

D∏
d=1

q(θd|γd)

[
Nd∏
n=1

q(zd,n|φd,n)

Md∏
m=1

q(yd,m|λd,m)

]
(5.1)

where φ are the free parameters of the variational DL tag distributions over topics and λ to be the free
parameters of the variational word distributions over topics (in METag2LDA model) or word distribu-
tions over DL tags, wd,n, (in the Corr-METag2LDA model). These free parameters are defined for every
document d. The variational parameter γd,i which is a surrogate for θd,k reflects the posterior expecta-
tion of the number of ((word,word-tag-class), DLtag) ensembles assigned to topic k in document d.

Following [Das et al., 2011], we re-write the ELBO (Evidence Lower BOund), L for the Corr-
METag2LDA model as

LCorrME = Eq[log p(θ|α)] + Eq[log p(Z|θ)] + Eq[log p(W|Z,ρ)] + Eq[log p(Y|N)]

+ Eq[log p(W|Y,β,π, t)]− Eq[log q(θ,Z,Y, |γ,φ,λ)] (5.2)

where Eq[f(.)] is the expectation of f(.) over the fully factorized q distribution and F is the ELBO to
true likelihood. This ELBO is also directly related to measuring perplexity [Blei et al., 2003] and is

151



basically the log likelihood. Similarly for the METag2LDA model we have:

LME = Eq[log p(θ|α)] + Eq[log p(Z|θ)] + Eq[log p(W|Z, ρ)] + Eq[log p(Y|θ)]

+ Eq[log p(W|Y, β,π, t)]− Eq[log q(θ,Z,Y, |γ,φ,λ)] (5.3)

5.3.3 Mean Field Inference
The basic idea of the mean field technique is simple: we limit the optimization of the maximum likeli-
hood expressions of data given parameters for a probabilistic generative modelM such as LDA [Blei
et al., 2003], TagLDA [Zhu et al., 2006], etc., to a subset of “tractable” distributions. The simplest choice
is the family of product distributions such as the one in Equ. 5.1, which gives rise to the naive mean field
method.

Mean field methods operate on the notion of a tractable subgraph, i.e. a subgraph F of the original
graph G (see the original LDA model in [Blei et al., 2003]) over which it is feasible to perform exact
or approximate calculations. Variational methods for optimizing parameters of a model under the mean
field framework excel in cases where it is infeasible to compute expected sufficient statistics for the
parameters conditioned on the given dataset. All models that are extended from LDA fall under this
class. In such cases, this variational E-step thus involves replacing the exact mean parameter, under the
current model M, with the approximate set of mean parameters computed by a mean field algorithm.
If we restrict the mean parameters of the factorized distributions to those of the distributions from the
exponential family, this expectation becomes much easier to compute. The interested reader is referred
to [Wainwright and Jordan, 2008] for more details on mean field theory methods. We now briefly touch
upon the key expressions in the tag-topic models that will help us extract candidate summary sentences.

As in Chapter 4, following the inequality, log(x) ≤ ζ−1(x) + log(ζ) − 1,∀ζ > 0, the ELBO,
LM must also be optimized for the ζ variable for every document d and every word wd,m in it. The
expression for Eq[log p(wm|ym, β,π, t)] can be written for the Corr-METag2LDA model as:

Eq [log p(wm|ym, β,π, t)] ≥
Md∑
m=1

K∑
i=1

(

Nd∑
n=1

λd,m,nφd,n,i)
(
log(βi,wd,m × πtd,m,wd,m)

)
−

Md∑
m=1

{
ζ−1
d,m(

K∑
i=1

V∑
v=1

(

Nd∑
n=1

λd,m,nφd,n,i)e
(log(βi,wd,m×πtd,m,wd,m )) + log ζ−1

d,m − 1

}
(5.4)

Using these lower bounds and the maximum likelihood estimates of the hidden variables in document d
are as follows:

γd,i = αi +

Nd∑
n=1

φd,n,i (5.5)

ζd,m =

V∑
v=1

K∑
i=1

(

Nd∑
n=1

λd,m,nφd,n,i)e
(log(βi,v×πtd,m,v)) (5.6)
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φd,n,i ∝ exp

ψ(γi)− ψ(

K∑
j=1

γj) + log ρi,wd,n +

Md∑
m=1

λd,m,n(log βi,wd,m + log πtd,m,wd,m)

−
Md∑
m=1

ζ−1
d,mλd,m,n

[
V∑
v=1

e(log(βi,wd,m×πtd,m,wd,m ))

]}
(5.7)

λd,m,n ∝ exp

{
K∑
i=1

φd,n,i
(
log(βi,wd,m × πtd,m,wd,m)

)
− ζ−1

d,m

[
V∑
v=1

K∑
i=1

φd,n,ie
(log(βi,wd,m×πtd,m,wd,m ))

]}
(5.8)

5.3.4 Parameter Estimation
The expressions for the maximum likelihood (ML) of the parameters of the Corr-METag2LDA model
using derivatives w.r.t the parameters of the functional LCorrME are obtained as follows:

ρi,j ∝
D∑
d=1

Nd∑
n=1

corrV∑
j=1

φd,n,iδ(w
j
d,n) (5.9)

log βi,j = log

 D∑
d=1

Md∑
m=1

V∑
j=1

(

Nd∑
n=1

λd,m,nφd,n,i)δ(w
j
d,m)


− log

 D∑
d=1

Md∑
m=1

V∑
j=1

ζ−1
d,m(

Nd∑
n=1

λd,m,nφd,n,i)e
log πtd,m,jδ(wjd,m)

 (5.10)

= log(termβ
1 )− log(termβ

2 )

log πt,j = log

 D∑
d=1

Md∑
m=1

V∑
j=1

T∑
t′=1

K∑
i=1

(

Nd∑
n=1

λd,m,nφd,n,i)δ(w
j
d,m)δ(tt

′

d,m)


− log

 D∑
d=1

Md∑
m=1

V∑
j=1

T∑
t′=1

K∑
i=1

ζ−1
d,m(

Nd∑
n=1

λd,m,nφd,n,i)e
log βi,jδ(wjd,m)δ(tt

′

d,m)

 (5.11)

= log(termπ
1 )− log(termπ

2 )

where δ(abc) is the delta function which means δ(abc) == 1 iff b == ac

Note that the updates for β and π are coupled. Also, since the updates for β and π are uncon-
strained, a Gaussian regularizer with 0 mean and a constant standard deviation, σ, is used for every βi,j
and πt,j . The expression for Li,t is transformed to

L̂M[i,t]
= LM[i,t]

− 1

2σ2
(

V∑
v=1

(exp(log βi,v))
2
)− 1

2σ2
(

V∑
v=1

(exp(log πt,v))
2
)
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So, taking the derivative of L̂ w.r.t log βi,v or log πt,v and solving for exp(T ) where T is logβ or logπ

we obtain, (letting A = exp(T )),

2A = −σ2term
(.)
2 + σ

√
σ2(term

(.)
2 )2 + 4term

(.)
1 (5.12)

as pointwise MAP (maximum a posteriori) estimates for logβ or logπ. Without this regularization
convergence is not achieved in the TagLDA class of models [Boyd-Graber, 2010]. We next highlight the
differences between METag2LDA and Corr-METag2LDA models.

Corr-METag2LDA is a strongly constrained model which becomes apparent once we observe equa-
tions (5.10) and (5.11). A topic’s influence over a textual word is obtained by marginalizing out the
influences of the corresponding data on it in the document. The more the corresponding data (DL tags)
in a document is about a topic the more likely it is that the textual data in the document is also about
that topic. This assumption is relaxed in the METag2LDA model. In METag2LDA, the relation between
the DL tags (i.e. wd,ns) and the textual data (i.e. wd,ms) are somewhat loose - overall it is possible that
two different topics in a document can independently be responsible for the pattern of co-occurrence of
the ((word,word-tag-class),DLtag) ensembles. This is apparent by observing the β and π parameter up-
dates for METag2LDA in [Das et al., 2011] where

(∑Nd
n=1 λd,m,nφd,n,i

)
is just replaced by λd,m,i—the

variational multinomial parameter for the ith topic governing word wm in document d in the factorized
subgraph corresponding to the original graph of the model.

To optimize the α parameters, we first select out the expressions from L(.) that depend on α (as
in [Blei et al., 2003]) and optimize using Newton’s iterative gradient based method as in [Minka, 2009].
Optimizing αi is dependent on the value of αj through:

L(.)[α]
=

D∑
d=1

(log Γ(

K∑
i=1

αi)−
K∑
i=1

log Γ(αi) +

K∑
i=1

(αi − 1)(Ψ(γd,i)−Ψ(

K∑
k=1

γd,i)))

∂L(.)

∂αi
= D(−Ψ(αi) + Ψ(

K∑
j=1

αj)) +

D∑
d=1

(Ψ(γd,i)−Ψ(

K∑
j=1

γd,j)))

∂L(.)

∂αiαj
= ∂(i, j)D

(
Ψ′(

K∑
j=1

αj)−Ψ′(αi)

)
(5.13)

where γd is the K-dimensional parameter of the variational Dirichlet distribution corresponding to
θd as in [Blei et al., 2003]. The gradient ascent algorithm involves finding a Newton step which is the
Hessian−1×(negative gradient) of L(.)[α]

. We multiply this quantity with some suitable scalar found by
backtracking line search and add this to the current estimate of αd,i and keep iterating until convergence.

5.3.5 The Need for Informative Priors for Topic Proportion Distributions
While it is quite easy to measure the relative performances of topic models for particular values of
parameters, however, measuring the outputs of the topic models qualitatively by using humans in the loop
is often time consuming and difficult. The most notable example in this direction is the evaluation done
in [Chang et al., 2009]. It has been observed that humans prefer sparsity in topics by not preferring topics
to influence each other. Wallach et. al. [Wallach et al., 2009] also experimented on topic sparsity by
using priors at different hierarchies of the topic models and concluded that it is best to use an asymmetric
Dirichlet prior over the distribution of the topic proportions θd. The asymmetric Dirichlet prior i.e. α in
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Figs. 5.4a, 5.4b and 5.4c consists of a base measure m and a concentration parameter cwith αi = c×mi

[Wallach et al., 2009]. It has a great advantage over its symmetrical counterpart. It can vary the sparsity
in individual topics such that the θds can be drawn from at least two different topic modalities. One or
more topics get assigned common words that frequently co-occur with other words in every document—
if we do not remove the stopwords then one of the topics will solely be focusing on these. This is similar
to the background topic in [Delort and Alfonseca, 2012]. The other topics will focus on the actual topical
words of the documents and thus lead to sparsity.

k Normal
Word

Person Organiz-
ation

Location Misc Number

30

food company
recall product
dog pet safety
die sell death
cat owner test
kidney failure

Henderson
Sundlof
[Sarah Tuite]
Iams Tuite
Nelson [Paul
Henderson]
Burnton

[Menu Foods]
FDA Iams
[Food and
Drug Ad-
ministration]
WalMart
Kroger
PetSmart

China [United
States] Mex-
ico U.S.
Canada Chi-
nese Arizona
Ontario
Beijing

[Menu Foods]
cat Chinese
pet Tootsie
Canadian
[North Amer-
ican] Bernese
room

Monday Fri-
day Saturday
Wednesday
Tuesday Sun-
day Thursday
[March 6]
[two week]

β30 :
food company pet recall dog cat product kidney [Menu Foods] sell safety brand failure test eat
death die supplier wheat poisoning

7 β7 :
flood country Bangladesh river district northern water kill situation relief level government
monsoon inundate rain northeastern

10 β10 :
airport police attack car security incident level terminal building London close raise Glasgow
British alert arrest [Glasgow Airport]

75 β75 :
turtle endanger poach sea fisherman water egg species police jail group beach marine dead
Sabah catch fishing fine protect Malaysia

0 β0 :
Madoff investor money firm fund pay foundation invest son SEC charge jewish [New York]
hedge business lose part electronic

32 β32 :
[The Associated Press] [Timberly Ross] Colo. [Coast Guard] [European Union] kill Calif. WFP
Monday Tuesday government accord country

Table 5.2: Latent topics from the TAC 2011A dataset for K = 80 using asymmetric Dirichlet prior α
over θd in TagLDA. Terms within square brackets [] are Named Entity phrases that are treated as single
concatenated tokens.

This intuitively makes sense if we observe the topics from TagLDA from table 5.2. Table 5.2 shows
some sample latent topics (the marginal β from Fig. 5.4a) learnt from the TAC 2011A data. The first
row shows topic 30 conditional on Named Entities and Normal words that receive prominent focus in
the topic. The next four rows just show the marginal topics, β, randomly sampled. The last row showing
topic 32 highlights the use of the asymmetric prior.

Topic 32 (and some other similar topics) have clustered Named Entities and words, like
“the Associated Press,” “kill”, etc. that occur frequently in many documents and are not removed
by stopword and low frequency word removal. Words like these do have the tendency to dominate all
latent topics if an asymmetric α prior is not used for θd. The reduction of this domination may be
lowered in the case of the Tag2LDA class of models depending upon the nature of the corresponding DL
tags.

Topics imputed to vocabulary words in sentences from news documents annotated both at the word
and meta-data level are shown in Fig. 5.5. We reiterate though that the topics are learnt using a document
level partition of the corpus while during summarization, we fit a contextual sentence partitioned corpus
to the learnt models. Three sentences are shown in Fig. 5.5a with the middle grayed one being a common
context of the first and third sentences and not containing any Named Entities. We chose this example
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A Western drought that began in 1999 has continued 
after the respite of a couple of wet years that now feel 
like a cruel tease. 

But this time people in the driest states are not just 

scanning the skies and hoping for meteorological 
rescue. 

Some $2.5 billion in water projects are planned or 
under way in four states, the biggest expansion in the 
West's quest for water in decades. 

Among them is a proposed 280-mile pipeline that 
would direct water to Las Vegas from northern Nevada. 

(a) Some sample sentences

A Western drought that began in 1999 has continued 
after the respite of a couple of wet years that now feel 
like a cruel tease. 

Some $2.5 billion in water projects are planned or 
under way in four states, the biggest expansion in the 
West's quest for water in decades. 

cyclone Bangladesh storm coastal 
wind shelter evacuate India hit 
severe government thousand 
district coast disaster  

coral trade grow reef species 
world scientist water fish 
Nedimyer wildlife marine 
threaten effort jewelry 

(b) Keywords tagged with TagLDA

A Western drought that began in 1999 has continued 
after the respite of a couple of wet years that now feel 
like a cruel tease. [Western drought] 

Some $2.5 billion in water projects are planned or 
under way in four states, the biggest expansion in the 
West's quest for water in decades. [plan state 
(state,noun,noun) water (water,noun,object)] 

 
city superintendent bomb hospital 
historic tourist explosion crowd 

turtle endanger poach sea 
fisherman water egg species 

city superintendent bomb hospital 
historic tourist explosion crowd 

turtle endanger poach sea fisherman 
water egg species 

(c) Keywords tagged with METag2LDA

A Western drought that began in 1999 has continued 
after the respite of a couple of wet years that now feel 
like a cruel tease. [Western drought] 

Some $2.5 billion in water projects are planned or 
under way in four states, the biggest expansion in the 
West's quest for water in decades. [plan state 
(state,noun,noun) water (water,noun,object)] 

 
hospital 
organ 
donation 
care wound 

water level 
meter 
drought 
reach 

bombing 
blast India 
attack 
tourist city 

drug plan 
safety food 
country 
quality 

bridge Army 
story 
collapse 
government 

water state river Colorado Mexico shortage delta flow drought California 
agreement reservoir Arizona Lake_Mead change U.S. Colorado_River plan Nevada 

(d) Keywords tagged with Corr-METag2LDA

Figure 5.5: Some negative examples of topic anotation on sentences from news documents. The topic
annotations are shown as color coded text. The text within the first row of bubbles indicate the top-
ics which annotate the sentences. These are obtained by finding k? = arg maxk∈{1,...,K} λd,m,1:K

for the TagLDA and METag2LDA models and arg maxk∈{1,...,K}
∑Nd
n=1 λd,m,nφd,n,1:K for the Corr-

METag2LDA model. The text in the second row of bubbles for the Tag2LDA family of models denote
the topic of the sentence optained directly from arg maxk∈{1,...,K}

(
γd,1:K −α1:K

)
to show how the type of document level perspective can influence the quality of topical structures purely
based on the assumptions of data generation.

Figures 5.5b, 5.5c and 5.5d shows a highlighting of a set vocabulary words in the first and third
sentences through TagLDA, METag2LDA and Corr-METag2LDA respectively. Of the three models,
TagLDA without any influence of the syntactic coherence meta-view of the sentences, ascribes words
in the sentences to topics which indeed look plausible from a corpus point of view, however, does not
explain the theme of the sentences very well. This example highlights both the usefulness and the
difficulty of this approach to topic inference on shorter sentences for summarization. Although the anno-
tations reflect topics which belong to a similar coarser event categories of the news corpora, TagLDA and
METag2LDA show much lower variance in topic annotation both from the free variational distributions
over the observations as well as from the sentence level topic proportions leading to consistent, and in
this case, wrong, topic annotations. The Corr-METag2LDA shows much higher variance in topic annota-
tions based on free variational distributions over the observations but annotates the topic of the sentence
correctly based on the topic proportions. These observations led us to believe that likelihood fits of entire
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sentences are better indicators of topic fit than using topic weights of individual observations separately.
Only those sentences which reflect the topic of the document very well can be good candidates for the
final summary. Incidentally, none of the sentences shown in this example have been included into the
final summary.

The examples in Figs. 5.5c and 5.5d are even more interesting. The “document level” perspective
of the sentences considered are shown in bold black font after each sentence. Words like “Western,”
“drought,” “plan,” “state,” and “water” do not carry any notion of syntactic coherence but only that of
document relevancy as described in Section 5.3.1. The triplets like “(water, noun, object)” do indeed
carry some notion of coherence. The olive colored bubbles in the bottom rows in in Figs. 5.5c and 5.5d
show the description of the topics for the sentences based on the topic proportion random variable θ.

The METag2LDA model is loosely coupled to the document level perspective and hence the topic
attribution for the second sentence mimics that of TagLDA. The topic for the first sentence has com-
pletely drifted being dominated by the topics pertaining to many cruel attacks by terrorists who blame
the West. The TagLDA model however correctly indicates the correct type environmental disaster albeit
in an opposite sense. However METag2LDA still partitions these two sentences into a set of two different
topics.

On the other hand, Fig. 5.5d shows that the Corr-METag2LDA model has been unsuccessful in
ascribing the right topics to the individual words in the sentences except for the topic shown in the green
bubble. Note that the topics are ascribed to the words in an indirect manner for the Corr-METag2LDA
model: each word has a distribution over the document level perspective and each datum in the document
level perspective has a distribution over topics. Thus, if the document level perspective is not naturally
generated, the correspondence might give rise to poor topic attributions. The model, however, has been
able to correctly assign the same and correct topic to both the sentences just based on topic proportions
of the sentences.

5.3.6 Model Log Likelihoods
In this section, we investigate the power of the posterior inferences of the models based on our summa-
rization setup. To re-iterate, during training the input is at a document level and during summarization,
the input is at a sentence level. Figs. 5.6a and 5.6c show that the correspondence class of models show
the best log likelihoods i.e. ELBOs in both Guided Summarization datasets. Note that the “Asym” suffix
in the graph legends mean that the corresponding models employ the asymmetric Dirichlet prior α.

An interesting phenomenon to note in Fig. 5.6a is that TagLDA-Asym shows slightly poorer ELBOs
as number of topics increase from 60. This means that TagLDA-Asym is favoring K to be close to the
actual number of clusters i.e the 46 docsets in the TAC 2010A data. This could have been due to the more
orthogonal nature of the Named Entities in the TAC 2010A data and the use of a fixed regularizer for all
K settings in all our tag-topic models. This does not, however, affect the performance for the end-task of
summarization or even event category detection since the objectives that the tag-topic models maximize
is quite different from those for either of the tasks.

Figs. 5.6b and 5.6d show that the trend of training ELBOs does not hold true when we try to fit
individual sentences and their contexts to the trained models as described in Section 5.3.1. In such a
case, TagLDA shows better predictive ELBO and this reflects the choice of the DL perspective on the
assumptions of the model. The figures also show signs of overfitting for 100 and 120 topics. This is
possible because of very short sentences which are presented for posterior inference that can lead to
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(a) ELBOs – TAC10A: Training
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(b) ELBOs – TAC10A: Summarization
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(c) ELBOs – TAC11A: Training
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(d) ELBOs – TAC11A: Summarization

Figure 5.6: Evidence Lower BOunds (ELBO)s of the tag-topic models on the TAC 2010A and 2011A
datasets – Lower is better.

poorer fits. Due to these kinds of test data points, we hold the α hyperparameters fixed while fitting
sentences during summarization.

In our experiments, we created the DL perspective out of frequent words and coherence triplets
to reflect the approximate attentional state that persists immediately after reading a document. While
training, this indeed improves the likelihood of the Corr-METag2LDA due to the soft correspondence
constraint through latent topics. However, at the sentence level, due to much lesser document level con-
text to correspond to, TagLDA performs better by eliminating all needs for correspondence whatsoever.
The models with asymmetric α also show higher ELBOs than their symmetric counterparts particularly
for the correspondence class of models. Further the use of asymmetric α markedly improves event
classification power (see Section 5.4.2).

Although the METag2LDA performs the worst in terms of likelihoods on sentence context fitting,
we will see that the trend does not hold true for summarization performance. Evaluating the tag-topic
models through summarization performance can open up another way of evaluating topic models where
log likelihood measures may not shed much light on an application end task. This seems to tally with
the human observations on latent topic summarization through bags of most probable words [Chang
et al., 2009] where a model with higher likelihoods can actually do worse in a manual evaluation of topic
interpretability.

5.3.7 Tag-Topic Model Evaluation through Multi-document Summarization
Although several different types of topic models have been used recently for the purpose of summa-
rization that show promising results, however no studies have been conducted on how the topic models
fare on the multi-document summarization task when compared to a purely local and docset specific
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centroid based summarizer like the MEAD system [Radev et al., 2004], given, that the topic models are
not allowed to use the partitioning of the corpus into document clusters. To this end, we first evaluate
our extended tag-topic models through summarization performance measured against the MEAD4 with
its default settings. We use the automatic ROUGE [Lin and Hovy, 2003] evaluation toolkit. In its default
setting, MEAD do not consider any sentence lower than nine words. Also, among the models considered
here, the TagLDA model does not consider any DL perspective at all and is the least complex of all the
tag-topic models.

ROUGE is a recall oriented metric measuring the recall of n-grams of a system summary to that of
the reference (human) summaries. To incorporate the aspect of fluency into the automatic summarization
evaluation, bigrams and skip-4 bigrams are used to measure system performances in the TAC competi-
tions and that is what we also use here to compare systems. It has been observed that for a minimum
number of human summaries and docsets, the ROUGE-2 and ROUGE-SU4 scores have good correlation
to the scores obtained from manual evaluation using PYRAMID [Nenkova and Passonneau, 2004].

ROUGE averages the system summary scores for all the docsets and also provides a 95% confi-
dence intervals based on bootstrap sampling. For example, let us denote the mean ROUGE score of
a system A to be mA, the upper bound to be uA and the lower bound to be lA corresponding to mA;
Although typically systems with higher mean ROUGE scores are preferred, for a system, say B, to per-
form significantly better than system A, mB must be greater than uA. It has been observed in multiple
experiments that the ROUGE-2 bigram scores have very strong correlation to the ROUGE-SU4 scores
and hence results using the former are not shown in this section to save space. Further ROUGE-SU4 is
more robust to paraphrasing.

The MEAD system, which is a purely local docset specific summarizer, was run with the same
settings as in the official TAC 2010 and 2011 Guided Summarization experiments. Full sentences are
extracted without any pre or post processing. It is often seen the full summary length of 100 words
is almost never satisfied when using full sentences. Since in most cases, longer sentences have higher
chances of selection, some of the final summaries contained even 70 words. This is indeed a problem
with fully extractive summarization systems which respect summary length as well as human readability.
The sentences from our model are sorted in descending order of the sentence likelihoods from the models
and the top ones are extracted as summaries as long as the total number of tokens in the summary
remained within the 100 word limit. We just used an additional constraint in our summaries that no
sentence in a summary can have a 50% word overlap with any other sentence in the summary. The
sentence likelihoods for the Tag2LDA class of models are just the values of the expressions in Equs.
5.2 and 5.3 for a particular central sentence. Using sentence likelihoods makes our system a query-
independent summarizer just like MEAD.

Local
Model

TAC
2010A

Conf.-
Int.

TAC
2010B

Conf.-
Int.

TAC
2011A

Conf.-
Int.

TAC
2011B

Conf.-
Int.

MEAD 0.09117 0.08676-
0.09586

0.09645 0.09181-
0.10104

0.11741 0.11141-
0.12350

0.09147 0.08764-
0.09528

Table 5.3: ROUGE-SU4 scores and confidence intervals of the summaries from the MEAD system for
all base and update collections from TAC Summarization tasks.

4v 3.12, publicly available at http://www.summarization.com/mead/
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We note here that since our primary focus is on the base Guided Summarization task and not on the
Update Summarization task, we do not use any new techniques for understanding the update process.
Instead we just assume that the features arising out of the DL perspective can provide us with enough
clues for any novelty. For the Update part, we use the entire set of base and update collections as input
to the tag-topic models. Also the number of topics parameter is set to 60, 80, 100 and 120 topics based
on roughly twice or thrice the number of actual docsets and also some values in between.

In the official TAC evaluations, the distinction between the better and poorer systems is made based
on their mean ROUGE scores w.r.t the best and the worst scoring human summaries. Table 5.3 shows the
means of the ROUGE-SU4 scores for the summaries obtained from MEAD and their upper and lower
bounds of the 95% confidence intervals for each of the Guided Summarization collections – both base
and update. Tables 5.4 and 5.5 list the corresponding ROUGE SU-4 socres from the tag-topic models.

TAC 2010A
Global
Models

K=60 Conf.-
Int.

K=80 Conf.-
Int.

K=100 Conf.-
Int.

K=120 Conf.-
Int.

TagLDA 0.08885 0.08469-
0.09330

0.09353 0.08906-
0.09797

0.09261 0.08833-
0.09723

0.09231 0.08832-
0.09646

METag2

LDA
0.10793 0.10317-

0.11267
0.10627 0.10130-

0.11128
0.10494 0.10017-

0.10980
0.1071 0.10227-

0.11198
CorrME
Tag2LDA

0.09633 0.09171-
0.10074

0.09673 0.09275-
0.10096

0.09681 0.09268-
0.10084

0.0965 0.09243-
0.10033

TAC 2010B
Models K=60 Conf.-

Int.
K=80 Conf.-

Int.
K=100 Conf.-

Int.
K=120 Conf.-

Int.
TagLDA 0.08664 0.08308-

0.09044
0.08117 0.07775-

0.08477
0.0836 0.08023-

0.08717
0.08351 0.08008-

0.08727
METag2

LDA
0.09367 0.08959-

0.09801
0.09255 0.08869-

0.09654
0.09338 0.08933-

0.09781
0.0945 0.09046-

0.09878
CorrME
Tag2LDA

0.08909 0.08514-
0.09312

0.08837 0.08465-
0.09192

0.08962 0.08513-
0.09423

0.08963 0.08598-
0.09361

Table 5.4: ROUGE-SU4 scores for TAC 2010A/2010B datasets obtained from sentence ELBO based
summarization using tag-topic models. K is the number of topics.

From Table 5.4 we observe that for both TAC 2010A and TAC 2010B, sentence likelihoods from
METag2LDA perform the best i.e. at par with the local docset specific MEAD summarizer for the Update
collection. METag2LDA beats the MEAD system with statistical significance on the Base collection for
the Guided Summarization task on TAC 2010A. This is intuitive since METag2LDA deems a sentence to
be a candidate for a summary not only because of the latent topical relevancy of sentential content words
but also on the latent topical relevancy of the sentential DL features including possibly the coherence
triplets. For the TagLDA model, the latter enforcement is not present. The Corr-METag2LDA model
puts a strong constraint on the topic relevancy of a content word through the simultaneous satisfaction of
the relevancy across the corresponding DL tags. According to our observations, this constraint usually
increases likelihood on held-out test sets but is not favorable for selecting summary sentences as it can
put higher weights on words that are topically relevant but ultimately redundant for a summary.

However, from Table 5.5, we see that the performance for even the METag2LDA models drops quite
a bit for the TAC 2011A dataset. We believe that firstly the relevant content words in TAC 2011A dataset
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TAC 2011A
Global
Models

K=60 Conf.-
Int.

K=80 Conf.-
Int.

K=100 Conf.-
Int.

K=120 Conf.-
Int.

TagLDA 0.08956 0.08494-
0.09496

0.09031 0.08497-
0.09603

0.08914 0.08365-
0.09502

0.08685 0.08130-
0.09286

METag2

LDA
0.10003 0.09382-

0.10691
0.10094 0.09490-

0.10724
0.10123 0.09556-

0.10768
0.10131 0.09501-

0.10806
CorrME
Tag2LDA

0.09139 0.08548-
0.09783

0.09635 0.09084-
0.10248

0.09688 0.09119-
0.10313

0.09267 0.08702-
0.09880

TAC 2011B
Models K=60 Conf.-

Int.
K=80 Conf.-

Int.
K=100 Conf.-

Int.
K=120 Conf.-

Int.
TagLDA 0.07979 0.07489-

0.08454
0.08251 0.07814-

0.08739
0.07874 0.07430-

0.08335
0.08114 0.07650-

0.08578
METag2

LDA
0.09124 0.08545-

0.09708
0.09411 0.08864-

0.09972
0.08942 0.08370-

0.09501
0.09452 0.08867-

0.10068
CorrME
Tag2LDA

0.08506 0.07988-
0.09062

0.08306 0.07888-
0.08717

0.08389 0.07938-
0.08817

0.08433 0.08025-
0.08820

Table 5.5: ROUGE-SU4 scores for TAC 2011A/2011B datasets obtained from sentence ELBO based
summarization using tag-topic models. K is the number of topics.

can be infrequent i.e. multiple concepts may be equally important and it is difficult to thematically
prefer one over the other. Secondly, full sentence lengths have played a major role in lowering the
ROUGE scores. It is observed that the topic models have favored sentences that are long and provided
better posterior fits but failed to include the final long sentences as it was violating the 100-word limit.
This has resulted in very short summaries but to be fair to MEAD (run with official TAC settings) as
a full sentence extraction system, this needs to be done. It also highlights the need for better sentence
compression as well as the importance of local models.

We notice that the ROUGE-SU4 scores across the different values of topics are not enough for
selecting the best configuration of a system. The number of topics also do not play a significant role in
altering the summaries – in most cases, they just permuted the order of sentences. Thus in all forthcoming
summarization experiments with the tag-topic models, we sum the sentence likelihood scores of the
central sentences for a particular value of K, say 100, with those obtained from models run with all the
lower settings of K (i.e. 60 and 80). This simulates non-parametricity in topic model based scoring to
some extent.

5.4 The Local Models
We now briefly describe the intuitively simple and extremely effective summarization models local to
the documents in each docset. We recall from Fig. 5.3 that these local models extract features from the
documents in each docset and use these features for weighting sentences. Depending on the linguistic
assumptions, the most time-consuming part for computing the local models is the syntactic parsing of
sentences. However, all of these computations are done offline as the documents are pre-processed. Five
main local models are considered for each docset to understand the discriminatory power of the feature
sets measured by 5-fold cross-validation accuracies of event category classification of the newswire
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documents. Note that none of the feature sets contain standard English stopwords.

5.4.1 Document Set Models—Bags of Key Terms
We first derive two of the feature sets that are used in the DL perspective in the tag-topic models in a
docset independent way (see Section 5.3.1). Intuitively if these frequency based features are used in a
local way i.e. collected over docsets and show sufficient event discrimination power, then their inclusion
as DL tags into the tag-topic models is also justified. Intuitively if these frequency based features are
used in a local way i.e. collected over docsets and show sufficient event discrimination power, then their
inclusion as DL tags into the tag-topic models is also justified. These feature sets are as follows:
A) Collection of the top 20 words (doc-corpus-tfidf) using the tf × idf weights, where idf (inverse
document frequency) has been calculated across the corpus. The set of top 10 words per document in
terms of cumulative tf × idf weights are used to collect this set.
B) Top 5 most frequent words (doc-frequency) per document. These two feature sets become local
models (as baselines) when terms are restricted only to a docset.

The other local models that we consider for summarization which are based on linguistic assump-
tions are the part of speech models to extract nouns and verbs; syntactic dependency tree generation
and the RS-tree parsing models. All of these models are sentence based models and are used based on
the illustration and intuitions mentioned in Section 5.1.2. Our intuitions are further validated through
superior event classification performance using the features from the part of speech models. The next set
of features are:
1) Collection of the top 20 nouns (docset-tfisf-noun) including proper nouns using cumulative tf × isf
weights. The isf (inverse sentence frequency) is calculated only for sentences in the documents within
the respective docset.
2) Collection of the 5 most frequent verbs (docset-tfisf-verb) collected across all documents in a docset
using cumulative tf × isf weights.
3) Collection of the top 20 nouns including proper nouns and top 5 verbs (docset-tfisf-noun+verb) using
(1) and (2) above.

The numbers 5 and 20 are set based on a decision to search for a minimum number whilst achieving
a joint event classification accuracy of at least 90% for nouns and 80% for verbs. Next we also considered
sentential dependency graphs and RS-trees but these models are not used to verify any event classification
performance.

Although a sentential dependency graph are independent of any docset label bias, however it be-
comes a local model in our scenario due to its dependence on docset specific nouns and verbs while
scoring sentences. We also use an unsupervised thresholding technique to select the better sub-sentential
spans from the RS-trees based on cosine similarity of the spans to the query title of the docset and the
doc-corpus-tfidf set.

We next discuss event classification performance of several feature sets first and then discuss the
use of the syntactic dependency and the RS-tree parses of the sentences in Section

5.4.2 Event Classification Performance
Figure 5.7 shows the predictive power of the local features for document event categorization during
a 5-fold cross-validation. As expected the top 5 most frequent verbs from the documents leading upto
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a collection of verbs in the docset do not have very high discriminatory power but are not bad either.
On the other hand, docset-tfisf-noun+verb performed consistently high for both datasets. doc-corpus-
tfidf also performed remarkably well - which is mostly due to the fact that in many cases, it included
words from docset-tfisf-noun+verb as well. Many of the words in doc-corpus-tfidf even are the promi-
nent Named Entities that occurred most frequently in the docset. The performance of doc-frequency
is encouraging as well given that it is the cheapest feature to compute. Note that both doc-corpus-tfidf
and doc-frequency are restricted to a docset as a feature set for event classification. The minimum
number of these features that we used for extraction from each document thus proved to be very good
for event classification and their inclusion into the DL perspective of our Tag2LDA models to com-
pensate for the sparsity in the coherence triplets that were discussed earlier in Section 5.3.1, seems to
be well grounded. The cross-validation graphs in Fig. 5.7 are obtained using the LibSVM Support
Vector Machine library [Chang and Lin, 2011] with default settings for multiclass classification. 5.4.3
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DOC-CORPUS-TFIDF

Figure 5.7: Five-fold Cross-validation accuracies of
the local models (bags-of-key terms) on event category
classification of TAC 2010A/2011A documents. The
legend is read from left to right and from top to bottom
corresponding to the bar groups for each of the TAC
base collections.

On the other hand, using features from our
extended tag-topic models with the asymmet-
ric Dirichlet prior performs better than the
corresponding symmetric case for each class
of tag-topic models that do not use the cor-
respondence constraint. The different types
of tag-topic models that we considered are
TagLDA-Asym, METag2LDA-Asym and Corr-
METag2LDA-Asym where “Asym (Asymmet-
ric)” means that the components of α in the
models in figure 5.4 can give rise to different
levels of sparsity in the latent topics.

The topic model features that we use are
the γd,i − αi for each document d and each
topic i. Figures 5.8a and 5.8b show that con-
trary to better ELBOs on training set, the fea-
tures from the correspondence class of tag-topic models show very poor predictive power during 5-fold
cross-validation for document event classification. We believe that the strong constraints on correspon-
dence constricts the pattern of discriminatory modes and this leads to the poor classification performance
whether asymmetric topic proportion priors are used or not.

However, it is interesting to observe that the same features from TagLDA and METag2LDA em-
ploying the symmetric priors also show similar poor accuracies. METag2LDA is loosely constrained
on the DL perspective and the TagLDA does not consider that perspective at all. The best performance
comes for the latter two class of models but employing an asymmetric Dirichlet prior over the topic
proportions with TagLDA-As performing slightly better than MPTag2LDA-Asym for the TAC 2011A
dataset. Due to these results, we always use the tag-topic models with the asymmetric priors henceforth
and drop the “Asym” suffix in further illustrations.

5.4.3 Sentence Dependency Graphs and RS-trees
A dependency graph of a sentence is usually an acyclic graph whose nodes are the words in the sentence
and the edges denote syntactic relations. Often the relations convey a semantic meaning – for e.g. in
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Figure 5.8: Event classification cross-validation accuracies on TAC 2010A and TAC 2011A dataset using
per-document latent topic proportions from the tag-topic model as features, i.e. γd − α, for different
number of topics - Higher is better. Note that for symmetric prior over θds, the vector α becomes the
scaler α.

the second sentence shown in Fig. 5.1, “distractions” is the “Nominal Subject” of the word “lessen”; the
word “sleep” is the “Open Clausal Complement” of “lessen” and the word “quality” is a “Direct Object”
of sleep. In our experiments, these relations are automatically extracted through the Stanford CoreNLP
Suite. While scoring sentences with this graph, we first convert this directed graph into an undirected one
and find the three shortest paths between the words in the docset-tfisf-noun feature set and the words
in the sentences than contain at least a verb from the docset-tfisf-verb feature set. For each such path,
the path score is simply the number of times a verb from the docset-tfisf-verb feature set is found as a
node. The sentence score is cumulative over the path scores. This becomes our fourth local model, the
docset-dep-graph-noun+verb model.

Finally we use our fifth local model to be the RS-trees automatically obtained through Rhetorical
Structure parsing as mentioned in [Soricut and Marcu, 2003] to select relevant spans as a measure of
sentence compression. This model becomes a local model due to the use of the query titles and the doc-
corpus-tfidf features. We first follow the work in [Marcu, 1999] to score each node of the RS-trees using
the propagation of the salient text spans upward to the root of the tree. The spans i.e. the leaves which
are promoted up the RS-tree through internal nodes receive a score proportional to maximal heights of
such nodes in the tree that contain the promoted spans. In Fig. 5.2, span 1 only gets a score of 1 while
spans 2 and 3 get scores of 3. As in [Marcu, 1999], the scores are computed using the recursive scoring
formulation using node heights in the RS-tree. These height scores form the “base scores” for the RS-tree
spans.

5.4.4 Sentence Compression using RS-tree Spans
Using just the base scores of the RS-tree spans and using those to compress sentences for summarization
resulted in very poor summaries. We have found out that many of the salient sentences do not give rise
to deep trees and the better spans are thus scored lower. The selection order in this case is based on
the descending order of span weights in the sentences. Thus to determine relevance, we next focus on
obtaining the cosine similarities of the satellite and the nucleus spans from the RS-trees to the vector
space of the docset specific query title and the doc-corpus-tfidf feature set.

However, this also raises the question of how do we best select a threshold for such cosine similarity
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Full sentence: A previous study on sleep deprivation published in 1999 in the Lancet found that less sleep
resulted in impaired glucose metabolism, which affects how the body stores and processes glucose for
energy.
[Spans]index Base

Score
Type of
Span

Cosine
Value

[A previous study on sleep deprivation]1 5 Nucleus 0.381000381
[published in 1999 in the Lancet found]2 1 Satellite 0.0
[that less sleep resulted in impaired glucose metabolism,]3 5 Nucleus 0.207390338
[which affects]4 1 Satellite 0.0
[how the body stores and processes glucose for energy.]5 2 Nucleus 0.0
Query Title: Sleep Deprivation; doc-corpus-tfidf: Cheri Mah, Sleep, adolescent, age, brain, cardiovas-
cular, deprivation, disorder, heart, hour, hypertension, impair, increase, nap, night, researcher, risk, sleep,
stress, study

Table 5.6: RS-tree spans and their importance.

values. Table 5.6 shows a sample sentence and its spans obtained through RS-tree parsing, the base
score of the spans (nodes), the status of the spans and the cosine similarity of the spans to the feature set.
Clearly spans 2 and 4 are not very important; span 5, although having a competitive base score, is not
relevant to the feature set. However in some other example sentence, if spans like this has a relevance
score of, say, 0.17 then the question arises whether we choose it or not?

To this end, we use the unsupervised density estimation technique using Gaussian kernels [Kvam
and Vidakovic, 2007]. Using Gaussian kernels is usually a method of choice since piecewise convolu-
tions of Gaussians can represent functions of arbitrary complexity. The thresholds for the satellites and
the nuclei are handled separately. For all density estimation techniques, we first create an array of values
that contain strictly positive cosine scores.

ALGORITHM 1: select satellite threshold
1: input: the data arrayD (double), percentage of maximum density densityPerc (double) and isBaseCollection

(boolean)
2: output: threshold
3: {The array representation and function calls follow MATLAB’s conventions here}
4: npoints← 100; % This is also the default setting in MATLAB
5: [f, xi] ← ksdensity(D, ′npoints′, npoints); {f is an array of the same size as xi; f holds the densities

evaluated at the points in the array xi}
6: [maxf,maxI]← max(f); % maxI is the index in the array where maxf occurs
7: index← (f < maxf × densityPerc); {index becomes an array of booleans}
8: newI ← maxI;

9: oldXi← xi(maxI);

10: length← size(index, 2);

11: for i1 = 1→ length do
12: if (index(i1) == 1) && (i1 > maxI) then
13: newI ← i1; break;

14: end if
15: end for
16: newXi← xi(newI);

17: newD ← D(D > newXi);
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18: [f, xi]← ksdensity(newD, ′npoints′, npoints);

19: [newmaxf, newmaxI] = max(f);

20: if isBaseCollection then
21: threshold← (xi(newmaxI − 3) + xi(newmaxI − 2) + xi(newmaxI − 1))/3;

22: else
23: threshold← (xi(newmaxI) + xi(newmaxI + 1) + xi(newmaxI + 2) + xi(newmaxI + 3))/4;

24: end if
25: threshold← round(c× threshold)/c; {We set c to be 103 in our experiments}

The density for a scalar value x is obtained as fh(x) = (1/(Nh))
∑N
i=1K

′((x − xi)/h), where
K ′ is the kernel function and xi is a value in the data array D of length N and indexed by i. h is often
called the bandwidth and is determined automatically from the data using its standard deviation – if set
manually, lower values of h results in spiky graphs and smoother for higher values. In our experiments x
ranges from the lowest to the highest xis in 100 equally spaced intervals – we used Matlab’s ksdensity()
function for repeatability purposes.

The blue graphs in Figs. 5.9a and 5.9b show the initial unsupervised density graphs. The blue
graphs show that the modes are around 0.08, but choosing this as a threshold for satellite spans will again
introduce noise in relevancy calculations as these spans typically reflect some common information. We
thus need to look at the behavior of the densities for which the values of the cosine similarities are more
than the mode. This amounts to executing Algorithm 1 with the densityPerc argument set to some
value. We set this value to 0.8 for satellite spans. The value is intuitively set in spirit following the 80%
in the 80-20 Pareto rule [Newman, 2005] – we look for contributing satellite spans that account for 80%
of the density. We also validate this heuristic by manually inspecting a few spans with higher overlaps to
feature sets in a previous newswire collection – TAC2009. However, it can also be set by using ROUGE
scores of the summaries formed out of the resulting spans on a development set. If previous/validation
datasets are not available, one can manually inspect the spans of some random sample of sentences within
the input collection and ascertain an initial threshold. This can be very useful if RS-trees are being used
for a previously unknown genre of documents. Intuitively, densityPerc identifies the location of the
right tail where spans show more similarity to the feature sets.

The red graphs in Figs. 5.9a and 5.9b show a revised density estimate obtained using Algorithm
1. The dotted vertical lines denotes the thresholds obtained from the data arrays D for each dataset
scenario. Using the mode information in the blue graph, we truncate the data from the left until we
reach the appropriate xi in the right. We then again perform a density estimate using the truncated data
array and identify the new mode. However by doing this we might have over-estimated the relevance
and thus we take the average of the rightmost three equidistant points immediately to the left of the new
mode. This is intuitive for the “A” timeline or “Base” documents. Since the “B” timeline or “Update”
documents deal with both old and new information, we choose the average of the new mode along with
the three equidistant points immediately to the right of it as a bias towards novelty. The three points are
heuristically chosen based on the significance of the estimated densities to the left and right of the new
modes. This restriction can be avoided if we consider much more than 100 samples (say 10,000) to begin
with but computational costs begin to increase.

Following our procedure, the thresholds for the cosine similarity values of the satellite spans to the
query title and the doc-corpus-tfidf feature set for the different datasets are obtained as: TAC 2010A –

166



Red Graph 

Blue Graph 

(a) TAC10A - density for cosines to
satellites

Red Graph 

Blue Graph 

(b) TAC11A - density for cosines to
satellites

Red Graph 

Blue Graph 

(c) TAC10A - density for cosines to
nuclei

Red Graph 

Blue Graph 

(d) TAC11A - density for cosines to
nuclei

Figure 5.9: Choosing thresholds for selecting RS-tree spans using Parzen density estimates of the cosine
similarity values of the words in the spans to those in the feature set.

0.11; TAC 2011A – 0.135; TAC 2010B – 0.12; TAC 2011B – 0.125. In a supervised setting, it is possible
to select such thresholds using training data that contains human summaries but we do not attempt an
easier supervised framework where the principles of “Guided Summarization” are difficult to incorporate
without even more annotation.

To select the thresholds for the nuclei spans, we first create a data vector with values from cosine
similarities with the nuclei spans as well as the Root spans – the Root spans can be justified as one long
“nucleus” span with no subordinates. Using Algorithm 1 causes a problem due to very large and thick
tails and much lower overall densities as compared to the ones for the satellites. The mode, and initially
there is only one, turns out to be just 0.05 which leads to much noise in the selection of the nucleus spans
as before. This arises due to larger lengths of the Root spans and hence their lower cosine scores. Using
the knowledge of the satellite thresholds, it is safe to assume that the cosine scores for the nuclei spans
must be greater than those for the satellites. We thus multiply the initial mode of 0.05 by consecutive
integers until we cross the threshold for the satellites. This turns out to be 0.15 for all the datasets. Doing
this also penalizes selection of longer root spans containing minimally relevant information.

We next perform a primary mode finding for all of the data points having value greater than 0.15

and further truncate the data based on the new secondary modes. The blue graphs in Figs. 5.9c and 5.9d
show the density graphs of the data arrays after the secondary truncation. Observing the bi-modal density
graphs (blue) of the truncated data, we postulate that a value to the left of the mode should be chosen so
as to guard against possible over-estimation. Thus, using the doubly truncated data, we just change line
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17 of Algorithm 1 with D1 ← D(D < newXi). Using this change, we can call Algorithm 1 using a
densityPerc value set to 1 since the data has already been doubly truncated. Using these modifications,
the thresholds for the cosine values of the nuclei spans to the query title and the doc-corpus-tfidf feature
set for the different datasets are obtained as follows: TAC 2010A – 0.18; TAC 2011A – 0.18; TAC 2010B
– 0.19; TAC 2011B – 0.1925.

In order to compress sentences through spans, we started out with an empty sentence string and
apply the following steps by iterating over the spans of a RS-tree from left to right:
– If no nucleus has been found so far but a satellite exists whose relation can even be outside of the
set of chosen relations, we add that span given that its cosine score is above the threshold for satellites
for the dataset being summarized. Most of these spans occurred in sentences which started off with
“Background” spans and then had a nucleus in between.
– If the number of nuclei found so far is ≤ 2 and the current span is a satellite whose cosine score is
above the threshold and is related to a nucleus through the relations mentioned in Section 5.1.3, then
it is added to the sentence. We have observed that a sentence with more than two nuclei and satellites
succeeding them is often a very long sentence.
– If the span is a nucleus and its cosine score is above the threshold for nuclei for the dataset being
summarized, it is added. Often this is the first span being added in the sentence.
– If a span is neither a nucleus or a satellite but just a single root node acting as a surrogate for a nucleus
span, then it is added irrespective of its cosine score. Generally it has been seen that shorter root spans
are summary worthy.

Cue words at the beginning of the spans can be removed but doing so in a principled way and
combining different spans within a sentence or across sentences lead to the field of paraphrase generation
and we intend to explore that direction as part of future research. In our case, it is mostly the appositives
which are eliminated from the best summary sentences — a beneficial side-effect of using RS-tree based
sentence compaction.

5.5 Summarization Experiments
In this section, we briefly describe the methods we use to obtain the summaries for each docset based on
the sentence weights obtained from both the tag-topic models and/or the local models. We also lay down
several baselines and compare results.

5.5.1 Basic Summarization Algorithms
Here we highlight the sentence scoring strategies based on the global and local models. We first discuss
the strategies for the global tag-topic models:
G1) We use the likelihood values corresponding to each central sentence that is fit to the trained models.
These values are obtained following the equations for LME and LCorrME in section 5.3.2. The equiva-
lent LTagLDA can be found in [Zhu et al., 2006] and is not repeated here.
G2) The sentence weights are obtained by using the expression

∑
wQ,m

Eq[log p(wQ,m|zQ,m,θs)]
where wQ,m is a word in the query title (average 2-3 words) that is also in the vocabulary V which
is input to the models; s is the current sentence whose DL perspective depends on adjacent sentences.
G3) Same as (G2) above, except that the summation is over all words in the sentence s that are also in
V .
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The first type of weighting has a purely probabilistic interpretation, but the second and third follows
from [Nenkova et al., 2006a] and is less intuitive probabilistically.

Next we highlight sentence scoring strategies based on the local models: (Note that when the RS-
tree spans are used to generate compressed sentences, we use the RS-tree span selection criteria (see
Section 5.4.4) only to concatenate the relevant spans into items of a bullet list summary.)
L1) The score of a sentence is determined by the base score and the cosine scores of the spans (leaf
nodes) of the RS-tree to the feature set but respecting the cut-offs. We name this method docset-tfidf-
RSTree
L2) The lemmatized words in a sentence with their counts are treated as a list and its cosine is measured
against the docset-tfisf-noun feature set, again treated as a list. This method is named as docset-noun-
RSTree
L4) The lemmatized words in a sentence with their counts are treated as a list and its cosine is measured
against the docset-tfisf-verb feature set, again treated as a list. This method is named as docset-verb-
RSTree
L4) The lemmatized words in a sentence with their counts are treated as a list and its cosine is measured
against the docset-tfisf-noun+verb feature set, again treated as a list. This method is named as docset-
noun+verb-RSTree

We also used the version of these baseline methods but without considering any RS-tree based
compression and use full sentences instead. For those cases, we replace the “RSTree” suffix with the
suffix “FS” denoting “full sentence”. For docset-tfidf-FS, we score the sentences based on the weights
of the spans as in docset-tfidf-RSTree, but we use the full sentences while generating a summary.

Redundancy is handled by adding new sentences or RS-tree span sequences that do not share some
percentage of the unigrams or/and bigrams in the set of summary sentences previously added. The per-
centage was set to 50% for the base collection and 40% for the update collection based on the means
and variances of the sentence token overlap percentages in the model summaries of previous years’
datasets. This is the only instance where we obtain statistics from the human summaries. We have
tried the MMR strategy [Carbonell and Goldstein, 1998] of ordering sentences with score sscore =
similarity(q, si) − redundancy(si, sj) ∀{si, sj} ∈ {s in docset}, where q is the query and s is a
central sentence, but it proved worse since the similarity and redundancy scores are not calculated in
a homogeneous way. In all of our experiments we eliminated all sentences from the summary having
≤ 10 tokens and ≥ 25 tokens. These limits are also set using the first and second order statistics of the
human summaries from previous years’ datasets. Subjective sentences that start with pronouns enclosed
in quotes are not considered. Sentences with more than 4 numbers - suggestive of a table row or a list of
results are eliminated too. These heuristics apply to the sentences created from spans as well.

Finally we consider our proposed method of using sentence weights from both the global tag-topic
models and some selected local models which is aided by the use of sentence compression using RS-
trees. We discuss them in Sections 5.5.3 and 5.5.4.

In all our experiments we order the full sentences (or a sequence of RS-tree spans) in the descending
order of the weights assigned to them. All scores from individual models are normalized between [0,1].
When used in combination, the normalized scores from each model are combined and the final scores
are normalized again.
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5.5.2 Evaluation Settings
Due to the lack of resources for manual evaluation, we only use ROUGE as the standard automatic sum-
mary evaluation toolkit. ROUGE uses a Wilcoxon test to establish confidence intervals from the mean
scores obtained through bootstrap sampling. The tools that we use are the RS-tree parser implementation
that is used in [Soricut and Marcu, 2003], the Stanford CoreNLP toolkit and our own implementations
of the tag-topic models in [Das et al., 2011].

Apart from the local models acting as baselines, two other standard baselines are chosen. The
Baseline-Naive simply returns all the leading sentences (up to 100 words) in the most recent newswire
documents – this is a very strong baseline particularly for the update collections. The Centroid [Radev
et al., 2004] baseline is output of MEAD automatic summarizer. Official summarization scores from
a very competitive peer system named CLASSY [Conroy et al., 2010, Conroy et al., 2011] are also
chosen for comparison. Over the years at the TAC summarization competitions, CLASSY has had been
continuously updated and fine tuned based on training data from previous year’s. For e.g., for the TAC
2011 dataset, it uses a very finely crafted vocabulary reflecting the categorical aspects of the Guided
Summarization task. The TopicMarks baseline is obtained from a recent commercial summarization
service5. Topicmarks summarizes multiple documents by treating all documents as one large document.
It does not depend on any query and tries to generate key concepts which are fairly close to the topic
titles.

5.5.3 Results
In this section we compare and analyze the summarization performances of the different models.

5.5.3.1 PERFORMANCE OF BASELINE MODELS ON TAC 2010A AND 2011A
DATASETS

Table 5.7 shows the ROUGE skip-4-bigram (ROUGE-SU4) and the ROUGE-bigram (ROUGE-2)
scores of the summaries from the local baseline models which do not employ any topic model. The scores
are reported for both TAC 2010A (left columns of Table 5.7) and the TAC 2011A (right columns of Ta-
ble 5.7) datasets. Clearly we see a significant increase in ROUGE scores when sentence compression is
achieved through salient spans from RS-trees. For the “full sentence” settings for our baseline models,
we allow summaries to be longer than 100 words but truncate the summary at the 100 word limit without
regards to sentence completion. This does not affect ROUGE evaluation but incomplete final sentences
may easily affect readability – human evaluations w.r.t. responsiveness are not considered in this ar-
ticle. Owing to the success in using RS-trees for sentence compression, we always perform sentence
compression in the summaries obtained using the tag-topic models in the forthcoming comparisons.

We observe from Table 5.7 that the summaries obtained from the official CLASSY system for TAC
2010A [Conroy et al., 2010] are at par with those obtained from the local models Docset-Tfidf-RSTree
and Docset-Noun+Verb-RSTree. Hence we can safely assume that our baseline local models are quite
competitive given that the relevance determination of the RS-tree spans is unsupervised. However, as
mentioned in [Conroy et al., 2011], the CLASSY system has been updated with many more adjustments,
both automatic and manual, and thus performed better than our baseline models with compression for

5topicmarks has been acquired by http://www.tagged.com
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TAC 2010A TAC 2011A
Baseline
Models

ROUGE-
SU4

Conf.-
Int.

ROUGE-
2

Conf.-
Int.

ROUGE-
SU4

Conf.-
Int.

ROUGE-
2

Conf.-
Int.

Docset-
Tfidf-
RSTree

0.12556 0.12234-
0.13258

0.08804 0.08620-
0.09233

0.14146 0.13620-
0.14635

0.1034 0.09743-
0.10925

Docset-
Noun-
RSTree

0.12304 0.11861-
0.12728

0.08361 0.07848-
0.08901

0.14342 0.13713-
0.14954

0.10499 0.09846-
0.11143

Docset-
Verb-
RSTree

0.12457 0.11897-
0.13013

0.08792 0.08149-
0.09444

0.13905 0.13417-
0.14375

0.09973 0.09441-
0.10537

Docset-
Noun+Verb-
RSTree

0.12645 0.12170-
0.13086

0.08799 0.08343-
0.09102

0.14584 0.14020-
0.15169

0.1090 0.10064-
0.11406

Docset-
Tfidf-FS

0.11201 0.10698-
0.11669

0.07549 0.07003-
0.08064

0.1343 0.12889-
0.13950

0.09303 0.08685-
0.09908

Docset-
Noun-FS

0.11478 0.11012-
0.11956

0.07456 0.06951-
0.07993

0.1427 0.13702-
0.14874

0.10095 0.09442-
0.10828

Docset-
Verb-FS

0.10393 0.09945-
0.10854

0.06254 0.05727-
0.06766

0.12203 0.11719-
0.12710

0.08095 0.07538-
0.08724

Docset-
Noun+Verb-
FS

0.11752 0.11287-
0.12239

0.07783 0.07227-
0.08336

0.14616 0.14059-
0.15217

0.10518 0.09882-
0.11210

Centroid 0.09117 0.08676-
0.09586

0.05929 0.05453-
0.06417

0.11741 0.11141-
0.12350

0.08672 0.08013-
0.09347

Baseline-
Naive

0.08565 0.08071-
0.09033

0.05386 0.04846-
0.05920

0.09927 0.09368-
0.10517

0.06399 0.05780-
0.07080

Topic-
marks

0.11524 0.11050-
0.11994

0.07831 0.07260-
0.08380

0.11976 0.10818-
0.13166

0.08351 0.07079-
0.09696

CLASSY 0.12258 0.11783-
0.12749

0.08554 0.07956-
0.09160

0.15812 0.15089-
0.16513

0.1278 0.11947-
0.13637

Human-
Highest

0.16294 0.14759-
0.17574

0.12862 0.11087-
0.14681

0.16412 0.14974-
0.17767

0.1282 0.12686-
0.14216

Human-
Mid1

0.15289 0.13691-
0.16798

0.11695 0.09822-
0.13447

0.15731 0.14284-
0.17129

0.11502 0.09672-
0.13220

Human-
Mid2

0.14637 0.13212-
0.16064

0.11313 0.09197-
0.13365

0.1492 0.13697-
0.16171

0.11146 0.09902-
0.12486

Human-
Lowest

0.13805 0.12685-
0.14972

0.09623 0.08074-
0.11167

0.1462 0.13294-
0.16057

0.10944 0.09014-
0.12833

Table 5.7: ROUGE-SU4 and ROUGE-2 scores for summaries from baselines and human summarizers
for TAC 2010A and TAC 2011A base collections.
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the TAC 2011A dataset. CLASSY also employes a supervised approach by incorporating human sum-
maries from developments sets to fine tune the system. On the other hand, we are truly surprised as to
how an extremely simple local model, Docset-Verb-RSTree can perform so well with RS-tree based
compression on the TAC 2010A dataset.

The TAC 2010 and the TAC 2011 datasets also have eight 100-word human summaries for each
docset for the systems to compare with. The human summaries are measured against each other by
using subsets of other human summaries and averaging over them. We thus also report the scores of the
highest scoring and the lowest scoring human summaries along with the two medians. As is the case with
previous years’ datasets, the human summaries have always performed better. This is true for the 2010
dataset as well. However, in the 2011 dataset, this trend does not hold good. While the human annotators
are free to choose any word to construct their summaries and that the words did not have to belong to
the input documents, it seems that many of the TAC 2011A docsets have many relevant concepts and it
is difficult for even some of the human annotators to generate sentences that cover all the right concepts
within the 100 word limit.

Table 5.8 shows the ROUGE-SU4 and the ROUGE-2 scores of the summaries obtained from just the
tag-topic models but using RS-tree span relevancy based sentence compression. The confidence intervals
are suppressed here to save space. Clearly for the TAC 2010A dataset, the weighting of sentences using
sentence likelihoods (G1) and using the cumulative probability mass of the query words (G2) show best
results and even parallel some of the best baselines. Using (G3), however, leads to topic drift. In general
the mean ROUGE scores of the summaries from the TagLDA and Tag2LDA class of models that do not
use the correspondence constraint are higher. For TAC 2011A, METag2LDA shows slightly superior
performance as far as sentence likelihood weights are concerned. With individual word weighting, the
TagLDA model shows slightly better performance due to better sparsity in topic inference owing to
the complete lack of correspondence. However, even TagLDA with (G2) under-performs the Docset-
Tfidf-RSTree local model for the TAC 2011A dataset – though this is understandable since the tag-topic
models are not docset specific and event correlations through latent topics weighs down the specificity of
keyterms for a single docset. Nevertheless, with RS-tree based sentence compression, global tag-topic
models can produce summaries that are competitive with local models using the same compression.

5.5.3.2 PROPOSED MODEL PERFORMANCE ON TAC 2010A DATASET

In this section and the next, we discuss summarization results from our proposed models. We use the
simplest possible aggregation technique to score a central sentence which has been assigned different
weights by different models – both local and global. The final score of a sentence is just the sum of the
scores of that sentence assigned by the different models we choose. This scheme is simple and intuitive
and reflects a weighted voting mechanism similar in spirit to the algorithm in [Lee, 1997], which is quite
effective in practice. Rank fusion is a separate research area by itself and can indeed be a direction for
future research within the summarization community.

Our proposed model consists of aggregating the scores of a sentence obtained from 1) sentence
likelihoods from the global tag-topic models, 2) the cosine similarity of the sentence to the docset-tfisf-
noun+verb feature set, 3) the cosine similarity of the sentence to the doc-corpus-tfidf feature set and 4)
the docset-dep-graph-noun+verb model (Section 5.4.3). RS-tree based sentence compression is used
by default.
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Topic-Models
(Sentence
Scoring)

TAC 2010A
ROUGE-SU4 ROUGE-2

K=60 K=80 K=100 K=120 K=60 K=80 K=100 K=120
TagLDA(G1) 0.12482 0.12401 0.12359 0.1234 0.08866 0.0873 0.08698 0.08764
METag2

LDA(G1)
0.12331 0.12303 0.12149 0.1247 0.08661 0.08653 0.08642 0.08843

CorrME
Tag2LDA(G1)

0.12368 0.12161 0.1223 0.12359 0.08845 0.08535 0.08793 0.0858

TagLDA(G2) 0.12697 0.12848 0.12812 0.12751 0.09335 0.09444 0.094 0.09351
METag2

LDA(G2)
0.12717 0.12461 0.12687 0.1278 0.09197 0.08814 0.09174 0.09355

CorrME
Tag2LDA(G2)

0.12552 0.1214 0.12391 0.11966 0.08881 0.08375 0.08685 0.0832

TagLDA(G3) 0.12524 0.12591 0.12581 0.12541 0.09022 0.09044 0.09136 0.09024
METag2

LDA(G3)
0.12553 0.12623 0.12426 0.12655 0.08891 0.09034 0.08844 0.09057

CorrME
Tag2LDA(G3)

0.11942 0.11915 0.12038 0.11916 0.08307 0.08407 0.0844 0.08343

Topic-Models
(Sentence
Scoring)

TAC 2011A
ROUGE-SU4 ROUGE-2

K=60 K=80 K=100 K=120 K=60 K=80 K=100 K=120
TagLDA(G1) 0.10976 0.11082 0.11143 0.11374 0.06978 0.07043 0.07191 0.07289
METag2

LDA(G1)
0.11985 0.12004 0.12425 0.12303 0.07674 0.07845 0.08242 0.08051

CorrME
Tag2LDA(G1)

0.11358 0.11507 0.11493 0.11829 0.07044 0.07164 0.07271 0.07551

TagLDA(G2) 0.14109 0.14108 0.14053 0.14111 0.1002 0.09989 0.09956 0.10044
METag2

LDA(G2)
0.1392 0.13437 0.12926 0.13161 0.09748 0.09335 0.08662 0.09047

CorrME
Tag2LDA(G2)

0.126 0.12888 0.1245 0.12491 0.08213 0.08675 0.08241 0.08258

TagLDA(G3) 0.12469 0.12309 0.12272 0.12211 0.08476 0.08288 0.08174 0.08275
METag2

LDA(G3)
0.11544 0.11572 0.11247 0.11709 0.07286 0.07471 0.06904 0.07576

CorrME
Tag2LDA(G3)

0.11399 0.11002 0.10828 0.10983 0.06854 0.06859 0.06513 0.06504

Table 5.8: ROUGE-SU4 and ROUGE-2 scores for summaries from topic model baselines for TAC
2010A and TAC 2011A base collections.
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TAC 2010A – ROUGE-SU4 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.16294 0.14759-
0.17574

0.15289 0.13691-
0.16798

0.14637 0.13212-
0.16064

0.13805 0.12685-
0.14972

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60,
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.13182 0.12625-
0.13739

0.13176 0.12621-
0.13737

0.1318 0.12634-
0.13729

0.13167 0.12622-
0.13711

METag2LDA+
local models

0.13118 0.12578-
0.13664

0.13114 0.12571-
0.13668

0.13122 0.12581-
0.13672

0.13122 0.12581-
0.13672

CorrME
Tag2LDA+
local models

0.1312 0.12573-
0.13685

0.13092 0.12543-
0.13647

0.13093 0.12545-
0.13648

0.13122 0.12574-
0.13686

TAC 2010A – ROUGE-2 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.12862 0.11087-
0.14681

0.11695 0.09822-
0.13447

0.11313 0.09197-
0.13365

0.09623 0.08074-
0.11167

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.0952 0.08856-
0.10201

0.09509 0.08841-
0.10193

0.09514 0.08848-
0.10199

0.09525 0.08848-
0.10212

METag2LDA+
local models

0.09451 0.08790-
0.10106

0.09457 0.08802-
0.10112

0.09463 0.08806-
0.10115

0.09463 0.08806-
0.10115

CorrME
Tag2LDA+
local models

0.09468 0.08817-
0.10128

0.09463 0.08811-
0.10123

0.09463 0.08811-
0.10123

0.09468 0.08817-
0.10128

Table 5.9: ROUGE-SU4 and ROUGE-2 scores from our proposed models for TAC 2010A.

The choices of most of the local models are intuitive. The docset-noun+verb model is being
reinforced by more linguistic assumptions through the docset-dep-graph-noun+verb model. The doc-
corpus-tfidf model is similarly reinforced by the span selection RS-tree based sentence compression
model. The only thing that makes our proposed summarization query dependent is the inclusion of the
query titles in the feature set for determining the threshold for RS-tree span relevancy. If we remove
this constraint, our summarizer becomes query independent but the thresholds need to be determined
accordingly based on the techniques mentioned in Section 5.4.4.

In Tables 5.9, 5.10, 5.13 and 5.14 the headings for the topic models that read as K =

{60, 80, 100, 120} mean that the current model has been run for K = 120 topics but sentence weights
from the tag-topic models run for K = 60, 80 and 100 has also been summed up.

Table 5.9 shows that our proposed method of combining the summary-worthiness of the sentences
from both global tag-topic models and local docset-specific feature selection models significantly outper-
form the baselines and is within the lower bound ROUGE scores of the lowest scoring human summarizer
and very close to the lower bound of the lower median as well.

174



5.5.3.3 PROPOSED MODEL PERFORMANCE ON TAC 2011A DATASET

Table 5.10 also shows that our proposed method of combining sentence evidences works best. Further,
the ROUGE-SU4 scores from our proposed method are very close to the upper median scores of the
human summaries and is statistically not different than the improved CLASSY system for TAC 2011
[Conroy et al., 2011]. Unlike TAC 2010A, the METag2LDA model does slightly better for the TAC
2011A dataset. For TAC 2011, the CLASSY system is modified to use bigrams, more categorical aspect
specific vocabulary and the feature weights tuned against human summaries from previous collections.
Our system do not use any hand crafted vocabulary for aspect matching and is based on the intuitions of
a reader’s behavior.

TAC 2011A – ROUGE-SU4 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.16412 0.14974-
0.17767

0.15731 0.14284-
0.17129

0.1492 0.13697-
0.16171

0.1462 0.13294-
0.16057

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60,
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.15319 0.14706-
0.15947

0.1529 0.14692-
0.15916

0.15289 0.14690-
0.15918

0.15288 0.14689-
0.15916

METag2LDA+
local models

0.153 0.14695-
0.15913

0.15382 0.14758-
0.15991

0.1537 0.14744-
0.15977

0.15367 0.14742-
0.15976

CorrME
Tag2LDA+
local models

0.15342 0.14738-
0.15962

0.15328 0.14723-
0.15947

0.15317 0.14718-
0.15937

0.15312 0.14714-
0.15934

TAC 2011A – ROUGE-2 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.1282 0.12686-
0.14216

0.11502 0.09672-
0.13220

0.11146 0.09902-
0.12486

0.10944 0.09014-
0.12833

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60,
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.11646 0.10952-
0.12352

0.11642 0.10951-
0.12347

0.11642 0.10951-
0.12347

0.11642 0.10951-
0.12347

METag2LDA+
local models

0.11647 0.10959-
0.12355

0.11764 0.11063-
0.12488

0.11753 0.11042-
0.12482

0.11753 0.11042-
0.12482

CorrME
Tag2LDA+
local models

0.11669 0.10979-
0.12360

0.11664 0.10973-
0.12353

0.11652 0.10954-
0.12345

0.11658 0.10960-
0.12347

Table 5.10: ROUGE-SU4 and ROUGE-2 scores from our proposed models for TAC 2011A.

Careful observation of the CLASSY system scores from Table 5.7 show the larger variance of the
ROUGE-SU4 scores for the TAC 2011A dataset. This means that for some docsets, the system did
exceedingly well and for some others it did sufficiently worse. We believe, too much tuning increases
unpredictability of summarization performance for unknown test sets. Also another interesting observa-
tion is that the ROUGE scores for both the Centroid and the CLASSY systems increase by at least 2% for
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the TAC 2011A datasets over TAC 2010A. This has been observed for all systems that competed in both
TAC 2010 and 2011 Guided Summarization tasks. We believe that the term distributions, particularly
those that give rise to subordinate information in sentences are deemed important by some of the human
summarizers. This is also validated by the thicker tails of the cosine similarity scores of the satellite
spans to the feature sets as mentioned in Section 5.4.4. Indeed, the cut-offs obtained from Algorithm 1
using the red graphs as shown in Figs. 5.9a and 5.9b can possibly shed some light on the 2% increase in
the ROUGE scores of the system summaries.

In our experiments we have observed that the sentence weighting schemes (G2) and (G3) from the
tag-topic models do not help in the fusion of sentence scores from the local models – it is possible that
such fusions are competitive rather than collaborative. A language independent version of our system
can be built using doc-corpus-tfidf feature set and using positional information at word level (or other
markup tags) and (optionally) a DL perspective as well. The differences in the likelihood contributions
of the tag-topic models (c.f Table 5.8) are compensated by relative ordering.

However, given a choice on multi-document summarization, it is better to use TagLDA or
METag2LDA using asymmetric Dirichlet priors on topic proportions based on our construction of DL
perspective. The event classification power of the tag-topic models is a major indicator for the choice
of global topic models to use in extractive multi-document summarization. The correspondence class
of models show superior topic inference, however, if the same inference draw a topically relevant but
less summary worthy term, then more such terms are selected due to the soft probabilistic constraints
between the content words and DL perspective. This results in the selection of more topically relevant
but redundant sentences from the correspondence models.

The decision to aggregate the summary worthiness of the sentences from topic models with lower
settings of the number of topics also does not hinder summarization performance. In general, it is difficult
to identify a correct value of K based on perplexity or likelihood measurements that can guarantee the
best multi-document summarization performance also.

The use of RS-tree spans using a thresholding criteria allows us to use the spans as bullet lists and
pack more information in less words. An example summary from our proposed system is shown in
table 5.11 for the “Sleep Deprivation” topic in TAC 2011A. The system summaries in 5.11 actually have
shown low ROUGE scores since it is much harder to assess which fact could really be given more weight
in the summary. This has been seen to be true in general for all system summaries in the TAC 2011A
dataset for the “Health and Safety” event category.

If we observe the human summary in Table 5.11, we can easily make out the level of artistry
involved in intelligently “cut-pasting” the information in the input documents to create a seamless 100
word summary packed with the right information need. Although RS-tree spans compress sentences into
items of a bullet list, however, it cannot merge two or more items into one without loss of readability.
We want to pursue this direction as a future research by using tools like SimpleNLG [Gatt and Reiter,
2009] as used in [Genest and Lapalme, 2011]. In this article we do post-process the spans to correct
the parse structure of the sub-sequences when an intermediate spans fails to get included - for e.g., the
second bullet in the middle column of Table 5.11 show a compression with poor grammatical quality –
“who slept less than or equal to 5 hours a night were twice as likely to suffer from hypertension than
women.” The actual sentence is “The researchers found that those women in the study group who slept
less than or equal to 5 hours a night were twice as likely to suffer from hypertension than women who
slept for the recommended seven hours or more a night.” Clearly the initial phrase “who slept” and the
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Best full sentence human sum-
mary for docset D1127E-A
w.r.t. ROUGE-SU4 scores

bullet list summary
from METag2LDA for
{60, 80, 100}topics with
sentence ELBO aggregation +
local models

Full sentence summary
from METag2LDA for
{60, 80, 100}topics with
sentence ELBO aggregation +
local models

[Research has found that sleep
deprivation is associated with se-
rious health problems such as
depression, obesity, cardiovascu-
lar disease and diabetes.] [Lack
of sleep adversely affects mem-
ory function and athletic per-
formance.] [Sleep disorders
are common in people 60 and
over.] [Women’s health is at
much greater risk than men’s.]
[Sleep-deprived adolescents are
more likely to use alcohol and to-
bacco.] [Sleep-deprived children
can exhibit ADHD-like behav-
ioral problems.] [Sleep medica-
tions are increasingly prescribed
for children, but their safety and
effectiveness are unknown.] [For
adults, napping has rejuvenating
effects and boosts alertness, per-
formance & productivity.] [Other
treatment options include medi-
tation, exercise or evening activ-
ity.]

• A previous study on sleep de-
privation that less sleep resulted
in impaired glucose metabolism.
•who slept less than or equal to 5
hours a night were twice as likely
to suffer from hypertension than
women. (*)
• children ages 3 to 5 years get
11-13 hours of sleep per night.
• Chronic sleep deprivation can
do more it can also stress your
heart.
• sleeping less than eight hours
at night, frequent nightmares and
difficulty initiating sleep were
significantly associated with
drinking.
• A single night of sleep depriva-
tion can limit the consolidation
of memory the next day.
• women’s health is much more
at risk. (*)

[Naps that are too long or taken
too late in the day, however,
affect the quality of nighttime
sleep, so proper planning is im-
portant. (*)]
[The study found that a sleep
deficit built up over just five
nights can significantly impair
heart function.]
[Generally, a 20-to-30-minute
nap is enough time to reap the
benefits of increased alertness
and performance and improved
mood. (*)]
[A study at NASA on sleep-
deprived military pilots and as-
tronauts showed that taking a
40-minute nap improved perfor-
mance by 34 percent and alert-
ness 100 percent]
[The researchers found no differ-
ence between men sleeping less
than 5 hours and those sleeping 7
hours.]

Summary from the CLASSY system: [Chronic sleep deprivation can do more than leave you short-
tempered: it can stress your heart and raise your risk of cardiovascular disease and death.(*)] [A separate
study released in June by researchers at the University of Pennsylvania found that chronic sleep depri-
vation adds stress to the heart, putting a person at greater risk of cardiovascular disease and death. (*)]
[Women’s health is much more at risk from sleep deprivation than men’s.] [Sleep loss or disturbed
sleep can heighten the risk for adolescents to take up smoking and drinking.] [Neither their safety nor
effectiveness has been studied in young people.]

Table 5.11: 100-word summaries for the harder information need on “Sleep Deprivation” in TAC 2011A
dataset. Individual sentences are square bracketed. A (*) indicates that the bullets or sentences belong to
the same document. Notice how the CLASSY summary is drawn towards a “cardiovascular” bias while
our full sentence summary is drawn towards a “napping” bias. Incidentally, “nap” has a strong focus in
D1127E-A.

final phrase “than women” could have been cleverly combined into “women sleeping.” By doing several
of these in a principled way it might be possible to achieve the ultimate level of human compression as
can be seen in the first column of Table 5.11. However, this does not pose much concern in readability
issues when summaries are presented in an interactive application since important parts of a sentence
can be highlighted and the full sentence expanded based on user input.
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TAC 2010B TAC 2011B
Baseline
Models

ROUGE-
SU4

Conf.-
Int.

ROUGE-
2

Conf.-
Int.

ROUGE-
SU4

Conf.-
Int.

ROUGE-
2

Conf.-
Int.

Docset-
Tfidf-
RSTree

0.1127 0.10845-
0.11730

0.07254 0.06772-
0.07776

0.12222 0.11857-
0.12612

0.08053 0.07573-
0.08513

Docset-
Noun-
RSTree

0.11008 0.10631-
0.11403

0.06996 0.06521-
0.07439

0.12127 0.11701-
0.12562

0.0789 0.07401-
0.08348

Docset-
Verb-
RSTree

0.10412 0.09956-
0.10862

0.06146 0.05705-
0.06615

0.11874 0.11352-
0.12423

0.07628 0.07051-
0.08279

Docset-
Noun+Verb-
RSTree

0.11006 0.10605-
0.11431

0.06976 0.06502-
0.07461

0.12738 0.12281-
0.132

0.08672 0.08077-
0.09265

Centroid 0.09645 0.09181-
0.10104

0.06238 0.05761-
0.06732

0.09147 0.08764-
0.09528

0.05925 0.05482-
0.06380

Baseline-
Naive

0.08817 0.08383-
0.09243

0.05313 0.04852-
0.05757

0.09479 0.09027-
0.09986

0.05718 0.05204-
0.06291

Peer-1st 0.11979 0.11540-
0.12440

0.07993 0.07473-
0.08512

0.13086 0.12505-
0.13663

0.09589 0.08942-
0.10290

Peer-2nd 0.11869 0.11420-
0.12340

0.07902 0.07403-
0.08419

0.12817 0.12236-
0.13407

0.09244 0.08570-
0.09926

Peer-3rd 0.11189 0.10752-
0.11621

0.07292 0.06822-
0.07793

0.12803 0.12285-
0.13299

0.08891 0.08176-
0.09590

DualSumm – – – – 0.1285 – 0.0924 –
CLASSY same as peer-2nd 0.1274 0.12165-

0.13342
0.09244 0.08570-

0.09926

Table 5.12: ROUGE-SU4 and ROUGE-2 scores of summaries from local model baselines and top per-
forming peer systems for TAC 2010B and 2011B update collections.

5.5.4 Performance on Update Summarization
Table 5.12 shows the performance of the our local baseline models on the TAC 2010B and TAC 2011B
datasets i.e. the update collections. We re-iterate here that we do not tackle the actual process of the
update in a strict sense and rely on the power of local docset specific features and some heuristics in the
relevancy determination of RS-tree spans in sentence compression of update summaries. We also show
the ROUGE scores from the top 3 Peer systems and the DualSumm system [Delort and Alfonseca, 2012]
for TAC 2011B Update Summarization task.

For TAC 2010B, the Docset-Tfidf-RSTree baseline model scores best and is marginally ahead of
Peer-3 but is statistically worse than CLASSY. For TAC 2011B, Docset-Noun+Verb-RSTree performs
best paralleling the CLASSY system for TAC 2011B. The ROUGE-2 scores become lower possibly due
to abrupt removal of intermediate spans. We will address this issue in a future work in an effort to achieve
near human paraphrasing.

The official scores of the DualSumm system has been improved by a wide margin using a bi-gram
vocabulary which makes it the second best system in terms of ROUGE-SU4 as reported in [Delort and
Alfonseca, 2012]. It is possible that this modification will also help the local models in our case and we
leave that as a direction of future research. Note that DualSumm has not been run for the TAC 2010B
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dataset since its parameters are optimized using TAC 2010B and other related datasets.

TAC 2010B – ROUGE-SU4 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.16193 0.14371-
0.18182

13502 0.11667-
0.15337

0.13365 0.12095-
0.14524

0.11591 0.10286-
0.12953

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60,
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.11614 0.11128-
0.12133

0.11645 0.11173-
0.12162

0.11642 0.11169-
0.12160

0.11642 0.11169-
0.12160

METag2LDA+
local models

0.11606 0.11120-
0.12131

0.11608 0.11120-
0.12131

0.11621 0.11133-
0.12141

0.11605 0.11120-
0.12130

CorrME
Tag2LDA+
local models

0.11532 0.11064-
0.12032

0.11533 0.11064-
0.12032

0.11531 0.11061-
0.12030

0.11533 0.11064-
0.12032

TAC 2010B – ROUGE-2 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.13021 0.10972-
0.15240

0.09595 0.07451-
0.11730

0.09538 0.07366-
0.11592

0.07663 0.06199-
0.09138

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.07438 0.06928-
0.07962

0.07443 0.06941-
0.07969

0.07443 0.06941-
0.07969

0.07443 0.06941-
0.07969

METag2LDA+
local models

0.07411 0.06902-
0.07928

0.07439 0.06930-
0.07965

0.07444 0.06932-
0.07971

0.07411 0.06902-
0.07928

CorrME
Tag2LDA+
local models

0.07339 0.06863-
0.07821

0.07339 0.06863-
0.07821

0.07339 0.06863-
0.07821

0.07339 0.06863-
0.07821

Table 5.13: ROUGE-SU4 and ROUGE-2 scores from our proposed models for TAC 2010B.

Table 5.13 shows the ROUGE-SU4 and ROUGE-2 scores of the summaries from our proposed
models for Guided Summarization as applied to the update collections in the TAC 2010 summarization
task dataset. We observe from the table that adding the global tag-topic models into the summarization
process improves the mean ROUGE scores here as well and makes our summaries from (ME)Tag(2)LDA
models statistically no different than CLASSY’s for TAC 2010B.

Table 5.14 similarly shows the ROUGE scores from our proposed models for TAC 2011B. While
the summaries from the combination of TagLDA and the METag2LDA models with the local models
remain parallel to the CLASSY system, they do not outperform the simple Docset-Noun+Verb-RSTree
local model. However the lower bounds of the ROUGE-SU4 scores of the top peers (including the upper
median of the human summarizers) encompass the mean ROUGE-SU4 score from our model and are
thus statistically no different.

The reason behind the success of our local models become apparent as we observe the docset-tfisf-
noun+verb feature set as shown in Table 5.15 for the update collections for some docsets in the TAC
2011 collection. We see that the most of the important nouns and verbs remain the same in the update
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TAC 2011B – ROUGE-SU4 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.14941 0.12998-
0.16971

0.13461 0.11777-
0.15447

0.12961 0.11891-
0.14328

0.12105 0.10973-
0.13229

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.12748 0.12307-
0.13179

0.1274 0.12196-
0.13162

0.12724 0.12173-
0.13140

0.12724 0.12173-
0.13140

METag2LDA+
local models

0.12721 0.12268-
0.13158

0.12765 0.12209-
0.13191

0.12768 0.12212-
0.13194

0.12766 0.12210-
0.13195

CorrME
Tag2LDA+
local models

0.12706 0.12258-
0.13137

0.12692 0.12139-
0.13101

0.12697 0.12142-
0.13102

0.12699 0.12142-
0.13105

TAC 2011B – ROUGE-2 scores
Human Sum-
maries

Human-
Highest

Conf.-
Int.

Human-
Mid1

Conf.-
Int.

Human-
Mid2

Conf.-
Int.

Human-
Lowest

Conf.-
Int.

0.11474 0.09242-
0.13859

0.10069 0.08521-
0.11725

0.09079 0.07634-
0.10847

0.07937 0.07242-
0.09742

Proposed Mod-
els

K={60} Conf.-
Int.

K={60,
80}

Conf.-
Int.

K={60
80,100}

Conf.-
Int.

K={60,
80,100,
120}

Conf.-
Int.

TagLDA+ local
models

0.08638 0.08116-
0.09159

0.08511 0.07998-
0.09009

0.08511 0.07983-
0.09028

0.08511 0.07983-
0.09028

METag2LDA+
local models

0.08667 0.08131-
0.09191

0.08603 0.08065-
0.09124

0.08603 0.08065-
0.09124

0.08609 0.08068-
0.09125

CorrME
Tag2LDA+
local models

0.08621 0.08090-
0.09136

0.08493 0.07960-
0.08995

0.08493 0.07960-
0.08995

0.08493 0.07960-
0.08995

Table 5.14: ROUGE-SU4 and ROUGE-2 scores from our proposed models for TAC 2011B.

collection but some new key terms get introduced that immediately give us an idea as to what is new.
For example, for docset D1102A, one easily gets the idea that some protection is being provided to the
affected parties and many organizations are being established to follow up on the Internet security threat.
Similar instances can be found in the other docsets as well.

5.6 Summary
In summary, we have shown that it is possible to use unsupervised models that do latent structure discov-
ery of (word, annotation) ensembles in text for effective extractive multi-document summarization. The
benefits of exploratory data analysis with multimodal topic models is very well stated in the text min-
ing literature and providing a multi-document summary view of the latent topics can also be extremely
beneficial for searching the topic space through information needs.

From the summarization perspective, the likelihoods of the sentences with local contexts that are fit
to the models together with simple docset specific models which capture relevancy in target documents
show state-of-the-art multi-document summarization power in terms of automatic evaluation. The use of
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Docset ID / Query
[category]

Time
line

Important Nouns Important Verbs

D1105A / Plane Crash
Indonesia [Accidents
and Natural Disasters]

Base
(D1105A-
A)

Adam, Air, Boeing, Hartono, Sulawesi, ac-
cident, board, crash, emergency, official,
pain, passenger, plane, rescue, search, sur-
vivor

carry, disappear, find,
kill, miss, send

Update
(D1105A-
B)

Adam, Air, Indonesia, Sulawesi, airline,
board, crash, island, plane, rescue, search,
survivor, wreckage

comb, disappear,
find, fly, miss, pass,
send

D1101A / Amish
Shooting [Attacks
(Criminal/ Terrorist)]

Base
(D1101A-
A)

Miller, Roberts, attack, child, door, dream,
family, girl, man, neighbor, number, police,
school, schoolhouse, victim, wife

enter, kill, leave,
molest, shoot, speak,
storm, tie, turn,
weave

Update
(D1101A-
B)

Roberts, burning, dispatcher, girl, lot, prob-
lem, schoolhouse, seconds, yesterday

attend, bury, expect,
kill, line, molest,
shoot

D1102A / Internet
Security [Health and
Safety]

Base
(D1102A-
A)

Internet, VeriSign, address, attack, busi-
ness, company, computer, datum, domain,
investment, security, server, system, tech-
nology, traffic, user, virus

convert, grow, man-
age, may, operate

Update
(D1102A-
B)

China, Internet, Nelson, attack, computer,
government, incident, information, official,
security, space, system, user, video, vulner-
ability, website

establish, find, fol-
low, protect, provide

D1106A / Tuna Fish-
ing [Endangered Re-
sources]

Base
(D1106A-
A)

Japan, Kobe, Ocean, catch, conference,
conservation, country, fishery, fishing, man-
agement, meeting, overfishing, plan, stock,
tuna

adopt, expect, in-
clude, poach, track

Update
(D1106A-
B)

Japan, bluefin, boat, capacity, catch, confer-
ence, country, fishing, fleet, meeting, par-
ticipant, plan, quota, regulator, scorecard,
stock, trouble, tuna

adopt, agree, eat,
poach, send

Table 5.15: Few sample docset IDs, queries and categories from the TAC 2011 dataset. The docset-tfisf-
noun+verb feature set is shown for base and update collections.

RS-trees for sentence compression leading to bullet list summaries also show extremely promising result
within our genre-agnostic summarization framework.

As a future work we want to experiment with dependency triplets as vocabulary units to see if
those can improve not only ROUGE-SU4 scores but ROUGE-2 scores as well. An alternate completely
local and more efficient summarization system can be built by focusing the tag-topic models to local
docsets only as in [Celikyilmaz and Hakkani-Tür, 2011]. To address the issue of readability involving
coherence, we can easily apply the traveling salesman approach [Conroy et al., 2010] to order sentences
using both surface similarity as well as our coherence triplets. Finally, we will want to follow up on the
hard problem of summarization through natural language generation [Genest and Lapalme, 2011] but
using our techniques to achieve a level of paraphrasing that is close to those by humans.

The next chapter shows a beautiful connection of the problem of summarization presented in this
chapter to the problem of text summarization of videos. Video to text summarization really addresses
what humans think are salient objects and actions which can be included into a concise lingual descrip-
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tion of the video. We build new topic models which learn a rough translation of some domain specific
high level concise lingual descriptions to the low level pattern of features extracted from the videos and
then tries to conceptually describe a test video from the same domain given only its low level features.

5.7 Acknowledgements
We thank Lucy Vanderwende of Microsoft Research and Enrique Alfonseca of Google Research for
several useful discussions on the applicability of bullet list summaries during a meeting of the Text
Analysis Conference, 2011 including the latter author’s permission to re-use their new scores and useful
comments on the first draft.
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Chapter 6

Summarizing Videos into Natural Language
Text

“The translator has to do consciously what the author did instinctively. And yet

it must seem instinctive.” - Richard Pevear

6.1 Introduction
In recent years there has been an abundance of multimedia data in the form of video contents from televi-
sion networks, video uploads to websites and so on. However, organizing such data by integrating the se-
mantic content of the videos is a very difficult problem. On the other hand, summarizing videos directly
into text summaries can lead to significant improvements in many end-user applications—multimedia
search experience, content based advertisements [Welch et al., 2010], helping the visually impaired and
so on. In this paper we concern ourselves with two language agnostic tasks: i) Building a topic modeling
framework to model multimedia documents consisting of videos and textual metadata and ii) using the
topic modeling framework to predict bag-of-word summaries for a new video belonging to a previously
known category. The first task helps us discover semantically related concepts in the text through latent
topics and translating them to topically related videos or frames. The second task takes a test video and
generates intermediate text keywords ideal for natural language generation.

     

 

   Human summary –  Footage of people skateboarding and doing tricks - skateboarder falls and hits head 

     

 

   Human summary – One guy is making a wooden table indoors 

 Figure 6.1: An example of the task of video summarization

As a further addition we also experiment with efficient natural language sentence generation from
the predicted bag of words (henceforth BoW) using language models and confidence of syntactic parse

183



Summaries point toward information needs! 

1. There is a guy climbing on a rock-climbing wall. 

Hand holding 
climbing 
surface 

How many 
rocks? 

The sketch in 
the board 

Wrist-watch 

What’s there 
in the back? 

Color of the 
floor/board 

Dress of the 
climber 

Not so 
important! 

2. A man is bouldering at an indoor rock climbing gym. 

Empty slots 

3. Someone doing indoor rock climbing. 

4. A person is practicing indoor rock climbing. 

5. A man is doing artificial rock climbing. 

Multiple Human Summaries: (Maximum of 10 words imposing a length constraint) 

(a) Short summaries from human annotators on an indoor rock climbing video

Figure 6.2: Do we speak all that we see? Human summaries of a short video on rock climbing

tree generation following a simple template. The first two tasks, though, are the focus of this paper.
Fig. 6.1 shows some keyframes of two sample videos from our training dataset and the short summaries
written by human annotators. This dataset is discussed in Section 6.1.1. In our paper, translation from
video to text is synonymous to summarizing a video with a set of textual keywords.

Following on with the example in Chapter 1, Fig. 6.2 shows how four human annotators have
summarized a rock climbing video in one sentence. Interestingly, all sentences focuses on the “central”
action and the objects associated with it and consider most of the background objects to be irrelevant.

It seems intuitive that a topic model which incorporates low level vision features representing ob-
jects, actions, color and scenes and correspond those to the text summaries should have a better chance
of describing the multimedia data. We thus seek representations of visual data that mimic the subject-
verb-object-scene quadruplet structure of English sentences in terms of subject, object and scene nouns
as well as verbs. Additionally illumination gives rise to color which differentiates one object from an-
other and is often expressed as adjectives. Objects, actions and color can be visualized using specific
word concepts and can be counted over time thus lending themselves to quantization but scene represents
global energy distributions which pervade the arrangement of objects and is thus better represented as
real values.

In the context of this paper, our training data consists of videos and associated summaries. The
training data is also available with event category labels for e.g. “boarding event” and topic modeling
video documents in each event can allow us to discover “sub-topics” e.g. “skateboarding,” “snowboard-
ing” and “surfing”. Of course, our topic models do not include any event label bias and can be applied
on the overall dataset as well. However we will see shortly that doing so can be very unappealing to end
users when summaries need to be generated.

Apart from the topical analysis of video documents, the problem of generating summaries directly
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from videos also has significant end user appeal. We emphasize that the video summarization/translation
task in this paper is to describe an entire video firstly as a bag of salient keywords i.e. BoW, and then, as
a further addition, use simple Natural Language Generation (henceforth NLG) techniques to summarize
the bag of words into a human readable paragraph of text wherever possible. Translating and generating
summaries from a video can always be looked upon as finding the right information need which is
paramount to any search problem.

Video summarization in our context is different from image annotation mentioned in early literature
[Srihari, 1991] and in more modern ones [Makadia et al., 2008]. If we perfectly annotate all objects and
actions in each frame correctly, we can probably use a standard topic modeling technique [Blei et al.,
2003] to figure out the themes in the multimedia documents. However, detecting objects [Li et al.,
2010b] and scenes [Oliva and Torralba, 2001] in images and actions [Kläser et al., 2008] and keyframes
[Li et al., 2011] in videos in a reliable manner are open problems in the computer vision community
[Makadia et al., 2008]. Most of these detection techniques fall in the domain of supervised learning and
require large amounts of annotated data. Video annotation task is a particularly laborious process even
though tools like VATIC [Vondrick et al., 2010a] have been written to ease the effort (for an interactive
demo of the tool, see VATIC’s website1). Also firing thousands of detectors to accurately label even a
single keyframe of an unknown video leads to many false positives. This is particularly true of the videos
in-the-wild i.e. videos downloaded from the Internet where there are plenty of resolution problems,
severe motion blurs, camera shakes etc. These are the videos that we experiment with in this paper.

We view the video to text translation/summarization problem in the light of multidocument summa-
rization of plain text documents which has been popularized by the Text Analysis Conference2 (TAC).
In the multidocument summarization track of TAC, participants are given document sets (docsets) of
newswire articles typically belonging to 5 major event types like “Health and Safety,” “Accidents and
Natural Disasters” etc. and are asked to generate a fixed length fluent summary of the documents in each
docset. A docset in the TAC setting is unique in that it contains a set of documents that are relevant for
a particular information need like “Cyclone Katrina.” The system summaries are scored in several ways
including the most reliable manual way using PYRAMID [Nenkova and Passonneau, 2004] evaluation
but systems usually are tuned w.r.t. the automatic ROUGE [Lin and Hovy, 2003] scoring. By analogy,
we assume that each docset here corresponds to a video and contains a sequence of frames and a set of
keyframes. At test time we are given unknown event specific videos without any text summary. For mea-
suring system performance, we generate summaries of videos and evaluate them using the recall oriented
ROUGE-1 score to measure the percent overlap of the words in the short ground truth summaries.

     
Human Summary: Montage of clips from an outdoor wedding 
Predicted bag of words summary: birthday wed indoor outdoors mob dance flash cake parade ceremony fish 
 

 

 

Figure 6.3: An example of vocabulary intrusion in the task of video summarization. Best viewed with
magnification

A key concern in generating a BoW summary of a video is the vocabulary intrusion problem.
Fig. 6.3 shows an example of vocabulary intrusion in the task of video summarization that arises out
of topic modeling on the entire vocabulary of the corpus. If we consider a vocabulary of V words—the

1http://mit.edu/vondrick/vatic/
2http://www.nist.gov/tac/2011/Summarization/
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probability of getting the topLwords correctly in the summary is (1/V )(1/(V −1))...(1/(V −L+1)). If
V is large (such as 2000) then the probability is very low. Further, if the entire vocabulary is used, then
intrusive words describing other but related event categories like “birthday, flash mob, dance, parade,
fish” can appear with high probability (see a possible predicted BoW summary in Fig. 6.3 from a topic
model(Fig. 6.4b) trained over all events with number of topics set to 200). This problem is mitigated
by first classifying the test video into its corresponding event category (Section 6.4.4) and then using a
topic model to predict the BoW summary. In the absence of the event labels, this direction improves
readability and is much faster.

The novelty in our new approach to topic modeling video documents with textual metadata is the
use of the right features for the videos and augmenting basic topic models for joint modeling with
those features along with text. We represent each video in terms of objects, actions, color (represented
with discrete distributions) and scenes (represented with Normal distributions with unknown means and
variances) and try to find a translation space that translates the pattern of these features to a permutation
in language vocabulary. Such a representation of a video is both intuitive and logical. We observe that
the interplay of the full spectrum of representations (Section 6.4) indeed yield the highest likelihoods to
held out test data than those using partial representations (Section 6.4.1).

6.1.1 Dataset Description
The dataset that we use for the video summarization task is released as part of NIST’s 2011 TRECVID
Multimedia Event Detection (MED) evaluation set3. The dataset consists of a collection of Internet
multimedia content posted to the various Internet video hosting sites. The training set is organized into
15 event categories, some of which are:
1) Attempting a board trick 2)Feeding an animal 3)Landing a fish 4)Wedding ceremony 5) Working on a
woodworking project 6) Birthday party 7) Changing a vehicle tire 8) Flash mob gathering 9) Getting a
vehicle unstuck 10) Grooming an animal 11) Making a sandwich 12) Parade 13) Parkour 14) Repairing
an appliance and 15) Working on a sewing project.

We use the videos and their textual metadata in all the 15 events as training data. There are 2062
clips with summaries in the training set with almost equal distribution amongst the events. The test set
which we use is called the Transparent Development (Dev-T) collection. The Dev-T collection includes
positive instances of the first 5 training events and near positive instances for the last 10 events—a total
of 630 videos labeled with event category information (and associated human synopses which are to
be compared against for summarization performance). Each summary is a short and very high level
description of the entire video and ranges from 2 to 40 words but on average 10 words (with stopwords).
We remove standard English stopwords and retain only the word morphologies (not required) from the
synopses as our training vocabularies. The proportion of videos belonging to events 6 through 15 in the
Dev-T set is much low compared to the proportion for the other events since those clips are considered
to be “related” instances which cover only part of the event category specifications. The performances of
our topic models are evaluated on those kinds of clips as well. The numbers of videos in events 6 through
15 in the Dev-T set are {4,9,5,7,8,3,3,3,10,8} while there are around 120 videos per event for the first
5 events. All other videos in the Dev-T set neither have any event category label nor are identified as
positive, negative or related videos and we do not consider these videos in our experiments.

3http://www.nist.gov/itl/iad/mig/med11.cfm
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6.1.2 Evaluation Measures
We measure the predictive performance of the topic models using the Evidence Lower BOunds (ELBO)
on held-out test set—the Dev-T collection with summaries, as well as the predictive ELBO for BoW
summary generation on the held-out Dev-T collection without summaries (Section 6.4.1). ELBO is just
log likelihood and is directly related to measuring average perplexity of the model per observed textual
word [Blei et al., 2003, Blei and Jordan, 2003]. We also evaluate our BoW summaries using the ROUGE
scorer. ROUGE measures the n-gram overlap for system generated summaries to the ones written by
annotators and the scores are interpreted in terms of recall. Usually 4 gold standard summaries are
needed for evaluation but here we use the base case of using only one short summary as a reference
summary per video on this dataset. While summarizing, since our primary task is to evaluate only the
BoW summaries generated from a video, we use the ROUGE-1 unigram measure. We evaluate 5 and
10 keywords long BoW summaries respecting the average length of the short human summaries. Since
we are considering videos in the Dev-T set with event category information, we can use the ROUGE
evaluation setup of multidocument summarization as used in TAC. If the categories are not known, we
can multiply the ROUGE scores with the event classification accuracies to obtain lower bounds (see
Section 6.4.4 for lower bounds on classification accuracies). Evaluations with higher order n-grams are
not needed for unigram translations. We do not use manual evaluations since the data cannot be released
for public verifications.

The task of discovering topically related words is mostly evaluated w.r.t ELBO. We use the topic
models from [Blei and Jordan, 2003] as baselines. We modify the GM-LDA model in [Blei and Jordan,
2003] following [Ramage et al., 2009b] to use discrete visual data and name the model MMLDA—
“MM” stands for the multinomials for text as well as the multinomials for the visual words. We imple-
ment a deterministic optimization framework for MMLDA instead of the non-deterministic sampling as
in [Ramage et al., 2009b]. The Corr-LDA model in [Blei and Jordan, 2003] is also extended by using
Normal-Wishart priors and named Corr-MGLDA (M for Multinomials and G for Gaussians). For evalu-
ating video to text summarization based on ROUGE-1 scores, we use a non-topic model based automatic
image annotation tool as the baseline for video labeling by using labels aggregated from keyframes. Our
topic model based video summarization methods outperform the state-of-the-art image to text transla-
tion model [Li et al., 2010b] applied on video keyframes in terms of ROUGE-1 scores of the predicted
keyword summaries.

6.2 Related Work
Makadia et al. [Makadia et al., 2008] uses nearest neighbor and label transfer techniques to annotate
images suitable for the image retrieval task. However, we can not directly apply their methods as the
individual frames/keyframes of the videos in our dataset are not annotated. Based on the size and genre
of our dataset, such annotations prove very expensive and we do not follow that direction. Further, we
are interested in the task of direct natural language summarization of the entire video and not specific
annotation of a vast majority of possible objects, actions and scenes in every frame/keyframe of the
video. The closest work to our task is by Yang et al. [Yang et al., 2011] where low level object and
scene classifiers are used to obtain object and scene labels in an image. These are then combined using
background language models and Hidden Markov Models to predict a natural language sentence that
automatically includes the best possible verb i.e. action. We will observe in Section 6.4.4 that actions,

187



which are intrinsic to videos, are important event discriminators. Further, none of above mentioned
methods can discover related concepts as latent topics and translate them into related frames.

In the domain of topic modeling of images with captions, the Corr-LDA model has recently been
extended to handle a multinomial feature space in [Putthividhya et al., 2010] with different number
of topics for visual word type and textual word type. The model learns an association from the topic
proportions over image domain to those over text domain through a regression formulation. However,
during prediction, this dependency needs to be marginalized out anyways. Also, if we quantize every
type of real valued vision feature using some clustering algorithm such as K-means into C clusters,
then each C represents a parameter of the final model and performance analysis become that much
more difficult. Ahmed et al. [Ahmed et al., 2009] uses Gaussian feature vectors and mention Normal-
Wishart priors but do not use them—they use uniform priors in a non-deterministic sampling framework
instead. The correlated topic model in [Blei and Lafferty, 2005] is extended to capture multimodal
discrete distributions in [Xu et al., 2013] for image annotation purposes. Although codebook feature
extraction is standard practice in the computer vision community, the main drawback of these models is
that there is no natural way to translate a set of topically related words to topically related frames from a
video using only visual codebook features.

On the other hand the Continuous Relevance Model (CRM) [Lavrenko et al., 2004] and Multiple
Bernoulli Relevance Model (MBRM) [Feng et al., 2004] assume different, nonparametric density repre-
sentations of the joint word-image space. CRM gets rid of the latent factor representation and achieves
non-parameterization. The dataset used in [Feng et al., 2004] for MBRM has hierarchical word annota-
tions which are handled using multiple Bernoulli models rather than multinomial distributions. In our
dataset, multinomial distributions are sufficient since the summaries read like very short documents with
repeated word morphologies.

Detecting objects can often be seen as an important step towards identifying the main topic of a
video and generating a BoW summary. To that end, Torresani et al. [Torresani et al., 2010] transform
an image feature vector into a another lower dimensional feature vector whose values are the outputs of
several category classifiers (which are named “classemes” in their paper). We take a similar approach
to convert Object Bank [Li et al., 2010b] (OB) feature vectors to high level sparse histogram of object
detectors to be used in our discrete video data representation and as baseline for video to text translation.
To extract OB features, keyframes are identified to reduce computational time. Keyframe detection is
a research topic in its own right, where some recent ones include more involved techniques [Li et al.,
2011] using Transfer Learning from accompanying text transcripts. However, the keyframes extracted
using the change in color histogram [Zhang et al., 1995] satisfy our purposes.

In the domain of topic modeling of videos, the Hidden Topic Markov Model in [Wanke et al., 2010]
does not incorporate both text and visual words in a single framework and also does not use a fuller
representation of videos as we do. A Markovian assumption is also imposed in [Hospedales et al., 2009]
for modeling actions and identifying behaviors (with no automatic labeling), however, we can safely
ignore frame dependence because our action features are derived using temporal windows and activity
tracking is not an objective in this paper. The reformulations of LDA and CTM using class labels and
without any temporal dynamics in [W. and M., 2009] also target activity classification. To the best of our
knowledge this is the first work to use mixed membership topic models for video to text summarization
which can eliminate frame-wise object annotations.

The proposed models are discussed in the following section in as much depth as possible. The use
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Symbol Meaning (r.v. = random variable)
D total number of multimedia “documents”
M total number of discrete text features per multimedia document d ∈ {1, ..., D}
H total number of discrete visual features in a multimedia document d ∈ {1, ..., D}
O total number of real valued visual features per multimedia document d ∈ {1, ..., D}
α = {α1, ..., αK} r.v. for asymmetric Dirichlet prior for the document level topic proportions
θd r.v. for document level latent topic proportions
ρ corpus level topic multinomials over discrete video features
β corpus level topic multinomials for textual words
µ means of topic Gaussians for the real valued features from videos
Λ = (Σ−1) precision (inverse covariance) matrices of topic Gaussians for the real valued features from

videos
ym in Figs. 6.4b,
and 6.4d

indicator variable for a sample from θd for discrete text features

ym in Figs. 6.4c
and 6.4e

indicator variable for document level real valued datum correspondences

zh indicator variable for a sample from θd for discrete visual features
zo indicator variable for a sample from θd for real valued visual features
wm r.v. for textual word at position m in document d; vocabulary size of V
wh r.v. for vision oriented discrete feature at position h in document d; vocabulary size

corrVH

wo r.v. for the oth Gaussian feature vector with a dimensionality of P in document d

Table 6.1: Meanings of the variables used in the models

of asymmetric Dirichlet priors over the topic proportions helps us achieve better sparsity in topics. How-
ever, this also leads to singularities in precision matrices conditioned on topics when Normal-Wishart
priors for real valued data are not used.

6.3 The Proposed Models
In this section we describe our proposed topic models for multimedia documents. We call the model in
Fig. 6.4d MMGLDA, short for Multinomial-Multinomial-Gaussian LDA, and the model in Fig. 6.4e to
Corr-MMGLDA, short for correspondence MMGLDA. In our context, the correspondence LDA model
[Blei and Jordan, 2003] places a probabilistic constraint on the correspondence of summary words to
Gaussian observations—a word is likely to be generated by the topic which is agreed upon by most
of the Gaussian instances in the video document. Since the real valued GIST features (see Section
6.4) “summarize” a scene in an image, we want a stronger influence of the topic of the scene on the
summary text. This assumption is relaxed in MMGLDA. Of course the correspondence could have been
established between the discrete observations only or both discrete and real valued ones but conditioned
on the current dataset, we want more flexibility in topics for sampling discrete observations. We avoid
overly complicated topic models and instead go for better data representations and supporting models
with just the right amount of complexity.

In MMGLDA, for a multimedia document d, it is possible to have different topics competing for
each occurrence of wm. In Corr-MMGLDA, the number of such modes is constrained to be much fewer.
The asymmetric α can yield few additional modes which group co-occurring data dominant in densities
or masses in separate latent topics. This phenomenon is observed for a larger number of latent topics.

Table 6.1 explains the symbols used in the two proposed topic models. Everywhere in this paper, we
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(a) Object Bank object detection
model [Li et al., 2010b]
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(c) Corr-MGLDA
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2003] (extended)
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(d) MMGLDA (proposed)
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(e) Corr-MMGLDA (pro-
posed)

Figure 6.4: Graphical model representations of existing topic models and proposed extensions— Figs.
3d and 3e. In this paper, we extend the model in Fig. 3c i.e. the Corr-LDA model in [Blei and Jordan,
2003] with Normal-Wishart priors over parameters for real valued observations as well.

assume that K is the number of topics. The generative processes for the proposed models are illustrated
below:

For each video document d ∈ 1, ..., D

Choose a topic proportion θ|α ∼ Dir(α)

For each position h in d
Choose topic indicator zh|θ ∼Mult(θ)

Choose a discrete video “word” wh|zh = k,ρ ∼Mult(ρzh)

For each real valued observation o in d
Choose topic indicator zo|θ ∼ N (µ,Λ−1)

Choose a real valued wo|zo = k,µ,Λ−1 ∼ N (µzo ,Λ
−1
zo )

For each position m in video d
Choose ym ∼ Uniform(1, ..., O) (for Fig. 6.4e)
or Choose ym|θ ∼Mult(θ) (for Fig. 6.4d)
Choose a word wm ∼ p(wm|zym ,β) (for Fig. 6.4e)
or Choose a word wm ∼ p(wm|ym,β) (for Fig. 6.4d)

In all further notations, wM is the ensemble of observed random variables that represent summary
words in the dth multimedia document. Similar notations hold for wO, wH and the indicators y and z.
In this paper, the text vocabularies are event specific and of size 312 words on average.

Fig. 6.4a shows the Object Bank [Li et al., 2010b] (OB) baseline that we initially used to translate
videos to text. The boxes labeled OB1, ..., OBN are the individual object detectors in Object Bank. The
positive responses of the detectors lead towards identifying the label of the objects in the keyframes and
hence translating the entire video. We choose this baseline to verify the difficult nature of our dataset—
there is a 10% overlap between OB’s vocabulary and the test set vocabulary, (see Section 6.8), and we
should expect to see at least 2-5% recall in ROUGE-1 recall scores for most events based on a 40-50%
ROUGE-1 recall achieved by the best 100-word multidocument text summarization systems in TAC
competitions.
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6.3.1 Inference on Latent Variables
We use the variational Bayesian Expectation Maximization [Beal, 2003, Wainwright and Jordan, 2008]
algorithmic framework as the optimization framework. An advantage of VBEM is that it is deterministic.

The derivations for the MMG class of topic models become sufficiently complicated due to the need
for using priors over the parameters governing the real valued observations. Since the nature of the modes
for topic proportions is not known in advance, singularities arising out ill-conditioned topic covariance
matrices must be handled. This problem is mitigated in a principled way by introducing independent
Normal-Wishart priors governing the mean vectors and precision matrices of the Gaussians conditioned
on the topics. Since bothµ and Λ are unknown we cannot factorize p(µ,Λ) directly because the variance
of the distribution over µ is a function of Λ. Instead we use combinations of Normal-Wishart priors on
each Gaussian component as:

p(µ,Λ) =

K∏
k=1

N (µk|m0, (κ0Λk)−1)W(Λk|W0, ν0) (6.1)

where Σ−1
k = Λk is the precision matrix for the kth factor or topic. This is similar to the mixture

model used in [Nasios and Bors, 2006]. To preserve the dependence between the means and covariances,
a partially factorized tractable q distribution with “free” variational parameters γ, φ, φ(O),φ(H) (for
every multimedia document d ∈ D) is imposed by

q(θ,y, zO, zH |γ,φ,φ(O)φ(H)) =

[
D∏
d=1

q(θd|γd)

[
Md∏
m=1

q(yd,m|φd,m)

Od∏
o=1

q(zd,o|φ(O)
d,o )

Hd∏
h=1

q(zd,h|φ(H)
d,h )

]]
(6.2)

×
K∏
k=1

q(µk,Λk)

with θd ∼ Dirichlet(γd), zd,o ∼ Mult(φ
(O)
d,o ) and zd,h ∼ Mult(φ

(H)
d,h ). The maxi-

mum likelihood (ML) estimates of free parameters are found by optimizing the lower bound on
ln p(wM ,wH ,wO|α,β,ρ,µ,Λ).

The hyperparameters for α in the asymmetric Dirichlet case (the concentration parameter and
the base measure) and κ0, ν0, m0 and W0 are not shown in Figs. 6.4c, 6.4d and 6.4e and in equ.
6.2 above. Also φ are the free parameters of the variational summary word multinomials over Gaus-
sian observations in the correspondence multimodal models or summary word multinomials over topics
in the plain multimodal models; φ(O) are the free parameters of the variational Gaussian observation
multinomials over topics and similarly for φ(H) for discrete visual features. mk, κk, and Wk, νk are the
free parameters for the Gaussians defined for every topic. These free parameters are defined for every
video document d ∈ D.

The variational posterior distribution q(µk,Λk) does not factorize into the product of the marginals,
but we can always write it as q(µk,Λk) = q(µk|Λk)q(Λk). Then we use the result from mean field
theory [Parisi, 1988, Wainwright and Jordan, 2008] that says that the ln of the optimal solution for factor
qj is obtained by considering the ln of the joint distribution over all hidden and observed variables and
then taking the expectation with respect to all of the other factors {qi} for i 6= j i.e. for visible and hidden
variable ensembles V and H , ln q∗j (Hj) = Ei 6=j [ln p(V,H)] + const. For the Gaussian parameters, the
optimal solution for q∗(µk,Λk) depends on moments evaluated with respect to the distributions of other
variables, and so again the variational update equations are coupled and must be solved iteratively. This
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results in a Normal-Wishart distribution and is given by:

q(µk,Λk) = N (µk|mk, (κkΛk)−1)W(Λk|Wk, νk) (6.3)

where Σ−1
k = Λk is the precision matrix for the kth factor or topic. The expression in Equ. 6.3 is

obtained by first writing out the expression for ln q∗(.) and selecting those terms that involve µk and Λk.
This yields:

ln q∗(µ,Λ) =

K∑
i=1

ln p(µi,Λi) +

D∑
d=1

Od∑
o=1

K∑
i=1

φ
(O)
d,o,i lnN (wd,o|µi,Λ

−1
i ) + const (6.4)

Note that the variance of the distribution over µk is a function of Λk. The random variables mk and
Wk can be thought of as surrogates to m0 and W0 and that κk and νk surrogates to κ0 and ν0 but
conditioned on latent topic k. The expressions for these variables, which are also used in the M-Step
updates, can be found in Equs. 6.29, 6.30, 6.28 and 6.31. These expressions are obtained by matching
the moments of µk and Λk to the Normal and Wishart distribution expressions. The optimal solution for
q∗(µk,Λk) depends on the moments evaluated with respect to the distributions of other variables, and
so the variational update equations are coupled and must be solved iteratively. Following [Blei et al.,
2003, Blei and Jordan, 2003], let us now write down the objective functional, L(.), to be maximized
which acts as the lower bound to the true data log likelihood.

For the MMGLDA model:

LMMG = Eq[ln p(θ|α)] + Eq[ln p(yM |θ)] + Eq[ln p(wM |yM , β)] + Eq[ln p(zO|θ)]

+ Eq[ln p(wO|zO,µ,Λ)] + Eq[ln p(µ,Λ|m0,W0, κ0, ν0)] + Eq[ln p(zH |θ)] + Eq[ln p(wH |zH ,ρ)]

− Eq[ln q(θ,yM , zO, zH ,µ,Λ|γ,φ,φ(O),φ(H),m,W,κ,ν)] (6.5)

Thus for each video document d, the RHS in equation (6.5), with indices d suppressed where
appropriate, expands out to be:

ln Γ(

K∑
j=1

αj)−
K∑
i=1

ln Γ(αi) +

K∑
i=1

(αi − 1)

(
ψ(γi)− ψ(

K∑
j=1

γj)

)
(6.6)

+

K∑
i=1

(
M∑
m=1

φm,i

(
ψ(γi)− ψ(

K∑
j=1

γj)

)
+

M∑
m=1

φm,i lnβi,wm

)
(6.7)

+
K∑
i=1

(
O∑
o=1

φ
(O)
o,i

(
ψ(γi)− ψ(

K∑
j=1

γj)

)
+

O∑
o=1

φ
(O)
o,i Eq[µi,Λi]

[
ln |Λi|

2
− (wo − µi)

′
Λi(wo − µi)
2

]

+Eq[µi,Λi] [ln p(µi,Λi)]
)

(6.8)

+

K∑
i=1

(
H∑
h=1

φ
(H)
h,i

(
ψ(γi)− ψ(

K∑
j=1

γj)

)
+

H∑
h=1

φ
(H)
h,i ln ρi,wh

)
(6.9)

− ln Γ(

K∑
j=1

γj) +

K∑
i=1

ln Γ(γi)−
K∑
i=1

(γi − 1)

(
ψ(γi)− ψ(

K∑
j=1

γj)

)
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−
K∑
i=1

(
M∑
m=1

φm,i lnφm,i +

O∑
o=1

φ
(O)
o,i lnφ

(O)
o,i +

H∑
h=1

φ
(H)
h,i lnφ

(H)
h,i

)
−

K∑
i=1

Eq[µi,Λi] [ln q(µi,Λi)] (6.10)

We only highlight the derivations for the expressions:

Eq(µi,Λi)

[
ln|Λi|

2 − (wo−µi)
′
Λi(wo−µi)
2

]
, Eq(µi,Λi) [ln p(µi,Λi)] and Eq[µi,Λi] [ln q(µi,Λi)]. In the

variational Bayesian setting, the expression:

Eq(µi,Λi)

[
(ln |Λi|)/2− ((wo − µi)

>Λi(wo − µi))/2
]

needs to be evaluated in the log likelihood calculation for every video document d to update the free
distributions given the current parameter values. The term

[
ln|Λi|

2

]
is the normalization factor of the

Gaussians and its expectations can cause the log likelihood to be positive. We therefore only evaluate
Eq(µi,Λi)

[
−((wo − µi)>Λi(wo − µi))/2

]
for the per document updates and subtract the log of the

exponentials of the aggregations as an approximation. We independently derive and mention only the
final expressions for the following variables are shown here:

Eq[µi,Λi] [ln |Λi|] =

P∑
p=1

ψ

(
νi + 1− p

2

)
+ P ln 2 + ln |Wi| (6.11)

Eq[µi,Λi]

[
(wo − µi)

′
Λi(wo − µi)

]
= Pκ−1

i + νi
(

(wo −mi)
′
Wi(wo −mi)

)
(6.12)

Eq[µ,Λ]
[ln q(µ,Λ)] =

K∑
i=1

{
1

2
ln Λ̂i +

P

2
ln
κi
2π
− P

2
−H[q(Λi)]

}
(6.13)

H[q(Λi)] = − lnZ(Wi, νi)−
(νi − P − 1)

2
ln Λ̂i +

νiP

2
, where (6.14)

� Z(Wi, νi) = |Wi|−νi/2
(

2νiP/2πP (P−1)/4
P∏
p=1

Γ

(
νi + 1− p

2

))−1

� ln Λ̂i = Eq[ln |Λi|] =

P∑
p=1

ψ

(
νi + 1− p

2

)
+ P ln 2 + ln |Wi|

Note that Ψ is the digamma function. For the expression∑K
i=1Eq[µi,Λi] [ln p(µi,Λi)], we have:

K∑
i=1

Eq[µi,Λi] [ln p(µi,Λi)] =
1

2

K∑
i=1

{
P ln(

κ0

2π
) + ln Λ̂i −

κ0P

κi
− κ0νi(mi −m0)

′
Wi(mi −m0)

}
(6.15)

+K lnZ(W0, ν0) +
ν0 − P − 1

2

K∑
i=1

ln Λ̂i −
1

2

K∑
i=1

νiTr(W
−1
0 Wi)

Using the lower bound LMMG, the ML estimations of the hidden variables in video document d
can be obtained using Lagrange Multipliers on φ(H), φ(O) and φ as follows:

φ
(H)
d,h,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + ln ρi,wd,h

}
(6.16)
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φ
(O)
d,o,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + Eq[µi,Λi]

[
(ln |Λi|)/2− ((wo − µi)

′
Λi(wo − µi))/2

]}
(6.17)

φd,m,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + lnβi,wd,m

}
(6.18)

γd,i = αi +

Md∑
m=1

φd,m,i +

Od∑
o=1

φ
(O)
d,o,i +

Hd∑
h=1

φ
(H)
d,h,i (6.19)

Similarly, for the Corr-MMGLDA model:

LCorr−MMG = Eq[ln p(θ|α)] + Eq[ln p(yM |O)] + Eq[ln p(wM |zyM , β)]

+ Eq[ln p(zO|θ)] + Eq[ln p(wO|zO,µ,Λ)] + Eq[ln p(µ,Λ|m0,W0, κ0, ν0)]

+ Eq[ln p(zH |θ)] + Eq[ln p(wH |zH ,ρ)]− Eq[ln q(θ,yM , zO, zH ,µ,Λ)] (6.20)

For the Corr-MMGLDA model, Eq(Z,Y)[ln p(wM |zyM , β)] expands out to be:

M∑
m=1

K∑
i=1

(
O∑
o=1

φm,oφ
(O)
o,i

)
lnβi,wm (6.21)

Also,

Eq(Y)[ln q(yM |φyM )] =

M∑
m=1

O∑
o=1

φm,o lnφm,o (6.22)

and Eq[ln p(yM |O)] is constant for all m in d. Equation (6.21) is a computational bottleneck because
finding the confidence of the word wm on topic i necessitates the elimination of uncertainties of wm’s
dependence on wo and wo’s dependence on topic i. This is also a strong point since the marginalization
suggests a stronger influence of a topic on a summary word if that influence is justified by most wos.

Using a similar lower bound LCorr−MMG for Corr-MMGLDA, the ML estimations of the hidden
variables in video d can be obtained as follows (using Lagrange Multipliers on φ(H), φ(O) and φ):

φ
(H)
d,h,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + ln ρi,wd,h

}
(6.23)

φ
(O)
d,o,i ∝ exp

{
ψ(γd,i)− ψ(

K∑
j=1

γd,j) + Eq[µi,Λi]

[
ln |Λi|

2
− (wo − µi)

′
Λi(wo − µi)
2

]

+

Md∑
m=1

φd,m,o lnβzym ,wd,m

}
(6.24)

φd,m,o ∝ exp

{
K∑
i=1

φ
(O)
d,o,i lnβi,wd,m

}
(6.25)

γd,i = αi +

Od∑
o=1

φ
(O)
d,o,i +

Hd∑
h=1

φ
(H)
d,h,i (6.26)
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The algorithms for updating the latent variables and the parameters (Section 6.3.2) are given in
Section 6.8.4.

6.3.2 Model Parameter Estimation
Before deriving the expressions for the maximum a posteriori and maximum likelihood estimates of
the parameters of the proposed models using moment matching (Section 6.3.1) and derivatives w.r.t the
parameters of the functional L(.) let us define the following quantities for each topic i:

Ni =

D∑
d=1

Od∑
o=1

φ
(O)
d,o,i; x̄i =

1

Ni

D∑
d=1

Od∑
o=1

φ
(O)
d,o,iwd,o (6.27)

Si =

∑D
d=1

∑Od
o=1 φ

(O)
d,o,i(wd,o − x̄i)(wd,o − x̄i)

′

Ni

Through a fuller Bayesian treatment and using moment matching techniques on Equ. 6.3, we obtain
the following parameter updates of the prior distributions over the 2K Gaussian parameters of the model
for each topic i:

κi = κ0 +Ni (6.28)

mi =
1

κi
(κ0m0 +Nix̄i) (6.29)

W−1
i = W−1

0 +NiSi +
κ0Ni
κ0 +Ni

(x̄i −m0)(x̄i −m0)
′

(6.30)

νi = ν0 +Ni (6.31)

Further, using some algebraic manipulations and utilizing Lagrange Multipliers for β and ρ for
each topic i, we obtain:
For the MMGLDA model:

ρi,j ∝
D∑
d=1

Hd∑
h=1

corrVH∑
j=1

φ
(H)
d,h,iδ(wd,h, j) (6.32)

βi,j ∝
D∑
d=1

Md∑
m=1

V∑
j=1

φd,m,iδ(wd,m, j) (6.33)

For the Corr-MMGLDA model:

ρi,j ∝
D∑
d=1

Hd∑
h=1

corrVH∑
j=1

φ
(H)
d,h,iδ(wd,h, j) [same as MMGLDA] (6.34)

βi,j ∝
D∑
d=1

Md∑
m=1

V∑
j=1

(
O∑
o=1

φd,m,oφ
(O)
d,o,i

)
δ(wd,m, j) (6.35)
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To optimize the α parameters, we follow the corresponding expressions in [Blei et al., 2003] and
optimize using Newton’s iterative gradient based method. Optimizing αi is dependent on the value of
αj through: .

∂L(.)

∂αi
= D(−Ψ(αi) + Ψ(

K∑
j=1

αj)) +

D∑
d=1

(Ψ(γd,i)−Ψ(

K∑
j=1

γd,j)))

∂L(.)

∂αiαj
= ∂(i, j)D

(
Ψ′(

K∑
j=1

αj)−Ψ′(αi)

)
(6.36)

When α is symmetric i.e., all of the K components of α are same then there is just a single value to be
optimized that has been accumulated over all topics

Keyword prediction: For predicting a bag of words summary from an ensemble of low level features of
video document d and the learnt p(wv|zv = k,β), we permute the vocabulary V for the new test video
as:

p(wv|wO,wH) ≈
O∑
o=1

K∑
i=1

φ
(O)
d,o,ip(wv|βi) +

H∑
h=1

K∑
i=1

φ
(H)
d,h,ip(wv|βi) (6.37)

6.4 Experimental Setup and Results
Here we briefly mention the descriptors that we use to represent the videos. To represent actions, we use
features known as Histogram of Oriented Gradients in 3D (HOG3D) [Kläser et al., 2008]. The gradient
directions are binned by mapping them to 10 polar meridian and 6 polar parallel planes and then treating
half spaces to be equivalent. We resized the video frames such that the largest dimension (height or
width) was 160 pixels, and extracted HOG3D features from a dense sampling of frames. Our HOG3D
parameters resulted in a 300-dimensional feature vector using support volumes of dimension 2×2×5 and
5× 3 polar co-ordinate bins. We then use K-means clustering to create a 1000-word codebook following
[Bilinski and Bremond, 2011] from a random sampling of the training data.

Color histogram features are also used as part of the discrete visual data. We use 512 RGB color
bins and histograms are computed on densely sampled frames. Due to large deviations in the extremities
of the color spectrum, we use the histogram between the 15th and 85th percentiles averaged across a
video and counts normalized to lie in [1,100].

Finally we use Object Banks [Li et al., 2010b] for a histogram pattern of positive object detections.
OB transforms an image into a 44604 dimensional concatenated feature vector for each of the 177 off-
the-shelf object detectors that are currently used. Each entry within a 252 dimensional detection feature
vector represents the distance from the decision hyperplane midway within the margins for different
scale-space transformations of the image. The object labels in OB cover only about 10% of the summary
words (246 out of 2687 for the training set and 166 out of 1219 for the Dev-T set). Keyframes used
for these features are extracted using the change in color histogram method [Zhang et al., 1995] and the
positive OB responses are quantized following classemes in [Torresani et al., 2010]. Thus wH in Figs.
6.4b, 6.4d and 6.4e consists of codebook histograms from HOG3D, color and OB. Needless to say, the
contributions of these off-the-shelf object detectors are not significant at all.

The real valued features we use in our video representation are those representing scenes as men-
tioned in [Oliva and Torralba, 2001]. The scene property by itself induces image summarization in a
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way that is consistent with human perception of vision [Oliva and Torralba, 2006]. A set of perceptual
dimensions is proposed along the boundary viewpoint (e.g. depth, openness, expansion, perspective) and
along the content viewpoint (e.g. naturalness, roughness, ruggedness, etc.) which represent the dominant
spatial structure of a scene. These features are named GIST features as is common parlance in computer
vision literature. To compute these features, we have used the setup in [Douze et al., 2009] leading to a
960-dimensional descriptor for each frame. We calculate GIST features for every 10th frame.

To save computational time, the GIST features are projected into lower dimensions using Prin-
ciple Component Analysis (PCA). PCA is done on the training data across all event categories to re-
move the dependence of the visual descriptors on specific events. We first visualize the lower (15,
30 and 60) dimensional GIST features in two dimensions using t-statistic based stochastic neigh-
bor embedding (t-SNE) [Maaten and Hinton, 2008], however, the separations look more or less the
same and do not yield conclusive evidence of choosing the right number of dimensions (Fig. 6.5).

Figure 6.5: GIST features projected on to 15 (left), 30 (middle) and 60 (right) dimensions
& visualized in two dimensions using t-SNE [Maaten and Hinton, 2008]

By inspect-
ing the plots
from t-SNE,
we choose
15 dimen-
sions and
validate the
choice by
both manu-
ally inspect-
ing the eigenvalues and experimentally cross-validating with the baseline Corr-MGLDA topic model
(Fig. 6.4c). 30 or 60 dimensional features decreased the ELBO of the model. We do not select further
lower dimensions based on significance of the eigenvalues. Each wo in Figs. 6.4c, 6.4d and 6.4e
represents a frame in 15 dimensions corresponding to a GIST feature vector.

6.4.1 Held-out Log Likelihoods and Topics
In this section, we evaluate the topic models in terms of ELBO on the held-out Dev-T set acting as
a test set (with the human summaries) for posterior inference and as a prediction set (without human
summaries) for BoW summary generation. Multinomial parameters are seeded and Gaussian parameters
are randomly initialized.
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-400000

-300000

-200000

-100000

0

E001 E002 E003 E004 E005

MMLDA Corr-MGLDA-PDS MMGLDA Corr-MMGLDA

Figure 6.6: Test ELBOs on events E001-E005 in the
Dev-T set. Lower is better.

The base measures of α are initialized to 0.1
and normalized while its concentration parame-
ter is set to 10. An issue with the real valued
features is the influence of data normalization on
the ELBOs from the topic models. We have ob-
served that when the data is not normalized to lie
within [0,1]P , the sequence of ELBOs from Corr-
MGLDA during EM often indicate suboptimality
even during training. The “PDS” suffix (in the ta-
ble and all other figures) means “Positive Data Scaling” i.e. each real valued vector is sum-normalized
to [0,1]P independently.
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Model Topic 1 Topic 2 Topic 3
Corr-
MMGLDA

wed couple ceremony
church ring footage
exchange bride groom
helicopter

wed ceremony bride
groom church flower vow
exchange ring walk kiss
outdoors

wed Hawai US beach
guest place footage scene
ring minister lei Kailua

W
ed

di
ng

ce
re

m
on

y

Corr-MGLDA-
PDS

wed ceremony couple
bride groom church
flower exchange vow

wed ceremony bride
groom couple flower
church man outdoors vow

wed ceremony bride
groom couple flower
church man outdoors vow

Corr-MMG
LDA

skateboard trick jump guy
outdoors park skate per-
form rail attempt ramp ol-
lie

snowboard people per-
form hill jump group
footage trick camera
helmetmount

surf surfboard jump fall
water outdoors man boat
wave ride tow waterboard

B
oa

rd
in

g
ev

en
t

Corr- MG
LDA- PDS

skateboard trick jump guy
outdoors park skate per-
form attempt boy rail

skateboard trick jump guy
outdoors park skate per-
form attempt boy rail

skateboard trick jump out-
doors guy park skate per-
form boy attempt rail

Table 6.2: Three latent topics for two events from proposed five-topic Corr-MMGLDA and Corr-
MGLDA-PDS models. The topics from Corr-MGLDA-PDS are similar as a result of high values of
αk obtained after running Corr-MGLDA-PDS on scaled i.e. normalized data. The topics from Corr-
MMGLDA are qualitatively far superior and indicates sub-events of the “Wedding ceremony” and the
“Boarding” events
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Figure 6.7: Test ELBOs on events E006-E015 from
Dev-T set. Lower is better

The PDS normalization fixes this problem
and raises ELBOs for Corr-MGLDA significantly
but convergence is slower. However in the latter
setting, the values of αk become very large which
destroys sparsity in topics. This is possibly due to
strong overlap of modes within the [0, 1]P hyper-
cube where one dimension is severely correlated
with the others. Examples of such topics on the
“Wedding Ceremony” and the “Boarding” events
are given in Table 6.2 where all topics are almost
alike and lose subjective interpretability.
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Figure 6.8: Prediction ELBOs on first 5 event for
Dev-T set. Lower is better.

The new topic models with both Multino-
mial and Gaussian distributions on the video fea-
tures do not suffer from the data scaling prob-
lem. It is possible that the mean parameter space
for the tractable distributions over both discrete
and real valued observations prevents co-ordinate
ascent steps to dwell in suboptimal regions that
could arise out of extreme values in the real val-
ued data alone. Although the Normal-Wishart pri-
ors act as regularizers, automatically tuning W0

using another level of priors or from the data itself
is not used here. In general optimization with tractable distributions and parameter constraints (e.g. non-
negativity, boundedness and positive definiteness) can be non-convex [Wainwright and Jordan, 2008].

Figures 6.6 and 6.7 show the test ELBOs of MMGLDA and Corr-MMGLDA versus the MMLDA
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model and the Corr-MGLDA model with PDS. The ELBOs for MMLDA are off the charts (at least three
to four times the cut-off shown in the graphs). For the first 5 events, the videos contain positive instances
of the events in Dev-T set. For this subset of events, the MMGLDA family of models outperform the
best version of Corr-MGLDA in terms of ELBOs (i.e. with PDS). Figures 6.6 and 6.7 are obtained using
K=20 topics—K being set through 5-fold cross -validation. For the last 10 events (Fig. 6.7), the videos
contain only related instances of the events in Dev-T set—dissimilar to the training configuration i.e. the
annotators are unsure about the relevance of the videos to the event category. In this case, Corr-MGLDA-
PDS do not perform worse in general since the GIST features are global features [Oliva and Torralba,
2001].

The prediction performance on the first 5 events is shown in terms of ELBO in Fig. 6.8 for
the same value of K. Fig. 6.8 shows that MMLDA does not perform well in terms of word pre-
diction ELBO measure. We can also see the effects of sub-optimality when PDS is suppressed for
Corr-MGLDA (Corr-MGLDA in Fig. 6.8). MMGLDA and Corr-MMGLDA again perform compa-
rably and outperforms Corr-MGLDA-PDS on the first 5 events except E002—“feeding an animal”
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Figure 6.9: Prediction ELBOs on events E006-E015
on Dev-T set—lower is better. Best viewed with
magnification

—a very complex event for computer vision.
For events 6 through 15, the prediction

ELBO graphs also look very similar to that in Fig.
6.7 as shown in Fig. 6.9. PDS on our proposed
MMGLDA family shows even better ELBOs, but
topic sparsity problems mitigate only a little and
we do not report those here. All these experiments
are run using m0 set to 0, W0 set to a broader
prior I, the identity matrix, ν0 set to P and κ0 set
to 1. Normalizing the data to lie in [0,1]P with
I as priors for Λks leads to sharing of topic re-
sponsibilities of the real valued data by only a few
Gaussians thereby contributing much less to the overall log-likelihood. It is also observed that the means
of the ELBOs of our proposed models are significantly less negative (i.e. better) at 95% confidence
level (using paired t-test) than the existing topic models during cross-validation on the training set. For
most events, ELBOs for proposed models with K=10 are not statistically worse either and show slightly
higher ROUGE-1 scores for some events.

Figure 6.10 shows the macro average of test ELBOs across all the 15 events in the Dev-T set. We
omit the line graph for MMLDA as it is out of axis limits. The graphs confirm the superior fit of our
proposed models to a natural representation of multimedia (test) data.

6.4.2 Translating Related Words to Videos
Figs. 6.11, 6.12 and 6.13 show how latent topics can first be used to discover most probable related
words from unstructured text which can then be translated to most probable frames from one or more
videos (and hence the videos themselves). The frames correspond to wos in Fig. 6.4 and Table 6.1. We
observe from Figs. 6.12 and 6.13 how topics 6 and 10 decompose the “Flash mob gathering” event into
its constituent sub-themes. While topic 6 describes flash mob dances in outdoors and near plazas, topic
10 focuses on a flash mob in Hollywood posing in Star Wars costumes and light sabers along with the
famous miniature robot R2D2.
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Figure 6.10: Average test ELBOs on all
events in the Dev-T set for different top-
ics. Lower is better

Topic 10: place fight fake public event
gather flash mob music star outdoors war

For Official Use Only 3 
Figure 6.11: Topic 10 for the “Flash mob”
event from a ten-topic MMGLDA

Topic 6: mob flash dance people mall
outdoors large gather woman public

plaza

For Official Use Only 2 

Figure 6.12: Topic 6 for the “Flash mob”
event from a ten-topic Corr-MMGLDA

Topic 10: Hollywood dog star wars
robot light saber R2D2 eye lens blvd

fight street

For Official Use Only 2 Figure 6.13: Topic 10 for the “Flash mob”
event from a ten-topic Corr-MMGLDA

Model k=6 k=10 avgk 6={6,10}

Corr-
MMGLDA

104.628 8.164 40.2398

MMGLDA 104.623 8.102 40.0702

Table 6.3: ln αk
|Λk| values for topics in event 8

Fig. 6.11 shows the inter-translation of modalities
for topic 10 from MMGLDA corresponding to that in
Fig. 6.13 from Corr-MMGLDA. Note how the topic
loses specificity (e.g. misses “R2D2”, “light,” “saber”
within the top few words) and focuses on generality
(e.g. flash mob). Topic 6 for MMGLDA is exactly the
same as that for Corr-MMGLDA. Table 6.3 shows log of the ratio: αk

|Λk| for the two proposed models
and gives us a hint on how “broad” a topic k may be vs. how much variance in the visual summary is
it able to capture. A relatively higher value of the ratio means that a topic captures more variance and
hence the volume captured by the determinant of the inverse covariance matrix Λk, i.e. |Λk|, through its
spanning eigenvectors is proportionally less. For MMGLDA, this ratio is always relatively lower in our
setting and this means that the model captures more generic patterns first giving rise to a lower |Λk|−1.

The last column in Table 6.3 is the average of the ratios for the other topics from the two models
for event eight. The ratios can be large for a more general topic (e.g. topic 6 in Fig. 6.12) owing to a
higher αk too. Although, all values are close due to the use of the broader prior, I, it is observed that
Corr-MMGLDA discovers related words which are qualitatively superior. However, the corresponding
most probable frames are almost similar for both models in most cases. Translating related words to
frames is best judged manually, but, the ratio we use here can be a viable alternative.
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6.4.3 Translating/Summarizing Videos To Text
Table 6.4 reports the ROUGE-1 (henceforth R-1) scores of the predicted 5 to 10 keyword summaries
from the different models when compared with the corresponding short human synopses. Sometimes
full sentences cannot be generated from the predicted words due to a deficient language model. This and
the short nature of human synopses are the primary reasons why we perform only R-1 evaluation. Some
examples of the sentences/phrases are shown in Fig. 6.15.

Model n=5 n=10 OB

E
00

1

MMLDA 0.182 0.248

0.0*
Corr-MGLDA-PDS 0.187 0.257

MMGLDA 0.179 0.245

Corr-MMGLDA 0.139* 0.192*

E
00

2

MMLDA 0.186 0.249

0.0*
Corr-MGLDA-PDS 0.182 0.242

MMGLDA 0.186 0.237

Corr-MMGLDA 0.143* 0.176*

E
00

3
MMLDA 0.221 0.265

0.012*
Corr-MGLDA-PDS 0.233 0.263

MMGLDA 0.228 0.267 =1%

Corr-MMGLDA 0.171* 0.230

E
00

4

MMLDA 0.265 0.302

0.0*
Corr-MGLDA-PDS 0.263 0.292

MMGLDA 0.264 0.321

Corr-MMGLDA 0.221 0.247*

E
00

5

MMLDA 0.167 0.213

0.005*
Corr-MGLDA-PDS 0.180 0.208

MMGLDA 0.165 0.205 =0.5%

Corr-MMGLDA 0.129* 0.142*

6-
15

A
vg

. MMLDA 0.216 0.252

0.001*
Corr-MGLDA-PDS 0.211 0.258

MMGLDA 0.210 0.243 =0.1%

Corr-MMGLDA 0.179* 0.221

Table 6.4: Individual and average ROUGE-1 scores
on the events—best results from 10/20 latent topics
are shown. The value of n represents the top-n most
probable keywords. A (*) means significantly worse
performance at 95% confidence to {MM,MMG}LDAs.
These results are only reported for the same hyperpa-
rameter settings.

In Table 6.4, OB is the Object Bank base-
line (see just ahead of Section 6.3.1)—it con-
firms the difficulty of detecting objects on this
dataset. The quantized OB responses perform
poorly since a-priori it is hard to know which
object detectors will be needed and existing but
irrelevant object detectors can produce an un-
predictable pattern of false positives. Creating
object models for every genre of data requires
expensive annotation efforts. Even if there is a
100% overlap between our training vocabulary
and object models, the R-1 scores for OB may
only increase by 10-folds which is still low.

Purely multinomial topic models show-
ing lower ELBOs can perform quite well in
BoW summarization. MMLDA assigns like-
lihoods based on success and failure of inde-
pendent events and failures contribute highly
negative terms to the log likelihoods but this
does not indicate the model’s summarization
performance where low probability terms are
pruned out. Gaussian components can partially
remove the independence through covariance
modeling and fit the data better at the cost of
higher time and space complexity. The R-1
scores from MM(G)LDAs are comparable for
5 and 10 keywords with no statistical differ-
ence, however, a possible reason for lower R-1
scores for Corr-MMGLDA model is that due
to better correspondence to the topic of the
GIST energy in the scene, when a topically
relevant but non-summary word is chosen up-
front, more related but non-summary words are
also drawn in. As future research, we also like to do a principled initialization of Gaussian parameter
priors as in [Nasios and Bors, 2006]. This translates to better initializations within the multimedia topic
modeling platform. We plan to pursue this as part of future research.

However, the high scores with Corr-MGLDA-PDS is entirely co-incidental—the topics are more
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or less uniform and each one covers parts of the sub-events equally. Further, each wo’s density over
those topics is uniform enough to not achieve a reasonable permutation. The same thing happens when
PDS is used for our MMGLDA family of models and the summaries completely lose subjective appeal
although R-1 scores improve considerably. This is similar to the qualitatively degenerate approach—
taking the top n frequent words from the event vocabulary and using those as summaries for every test
video. The scores for MMLDA and MMGLDA are also comparable to this setting. Quantification of
the permutation quality has not been done and is left as one of the key aspects to be explored in future
research.

Scores in Table 6.4 need to be multiplied by the event classification accuracies to obtain lower
bounds for clips having no event labels. The scores become competitive for larger n and much larger K
if we topic model on the entire corpus.

6.4.4 Event Classification
Fig. 6.14 shows 5-fold cross-validation on the 15-event training set and also the test accuracies on Dev-
T set for event classification. A c-SVM classifier from the libSVM [Chang and Lin, 2011] package is
used with default settings for multiclass classification. Although around 50% classification accuracy
can be easily achieved using the discrete visual features that we use, higher accuracies can be obtained
using better kernels, fusion of classifiers and optimizing Detection-Error-Tradeoff curves while cross
validating [Natarajan et al., 2011]. However, these discussions are outside the scope of this thesis (see
for example [Perera et al., 2012]).
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Figure 6.14: Event detection accuracies for cross-validation (light gray bars) and test (dark gray bars)
with different features

6.4.4.1 NATURAL LANGUAGE GENERATION

To translate a video into multiple sentences from predicted keywords, we use an ordered-sequence tem-
plate as <subject, verb, object, preposition, scene-noun>. Language models from the data at hand is
used to prune impossible sequences. The subjects, objects, verbs and nouns extracted from the training
synopses using dependency grammars and POS models appear in each generated sentence only once.

We use the parser in [Klein and Manning, 2003] to score the sequence of words following the
template. The sentences are ordered according to bigram and parse tree scores. When complete sentences
cannot be generated due to a deficient language model, we output possible bigrams and trigrams (see
E004 in Fig. 6.15). Similar corpus based sentence generation techniques can be found in [Yang et al.,
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Predictions from Multimedia Topic Model - MMGLDA 

    
 Bag of words: skateboard trick skater indoor jump perform young skate olly man staircase snowboard  

skateboarder clip ollie 
 Sentences: Men perform tricks while skateboarding. Men performing tricks on skateboards. Skaters perform 

jumps on skateboards. Men perform ollies on   skateboards. 
 [Event E001 - board trick] Actual Summary: indoor ollies 

    
 Bag of words: feed bird food outdoors woman eat hand leaf daytime boy giraffe zoo cup girl goat 
 Sentences: Boys feed birds by hand. Girl feed birds by hand. Girl eats food in zoo. Woman feed birds by   

hand. Woman feeds goat in zoo. 
 [Event E002 - Feeding animal] Actual Summary: little boy feeds goat 

    
 Bag of words: fish noodle man sea boat bare land big stretch person catch hand stream catfish 
 Sentences: Men catch fish on boat. Men catch fish by hand. Men catch fish in stream. Men catch fish in boat. 
 [Event E003 - Landing a fish] Actual Summary: catching big fish off dock 

    
 Bag of words: church wed ceremony inside bride groom aisle dress doughnut couple clap hug kiss sign 
 Sentences: Could not generate sentence – current template and language model is insufficient, but phrases 

are found like “wedding ceremony”,  “couple kissing”, “bride and groom” 
 [Event E004 - Wedding] Actual Summary: wedding ceremony in church 

    
 Bag of words: wood man cut make mill tree piece chainsaw outdoors large wooden guitar automatic lathe 
 Sentences: Men make cuts to wood. 
 [Event E005 - Woodworking] Actual Summary: people building wooden chairs 

      
  

 

      
  

 

 

      
  

 

Figure 6.15: Bag of keywords and sentence translations from our proposed MMGLDA (K=20) for some
clips from the first five events from the Dev-T set
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2011, Gupta et al., 2012] but NLG is a research topic in its own right4.

6.5 A Thousand Frames in just a Few Sentences – Enhancing Sum-
mary Relevancy

In this section, we focus on improving the unigram recall score of the final summaries generated from
the keywords predicted using low level video features. Since combining keywords into sentences using
a pre-specified grammar template does not increase recall in terms of unigram coverage, we form the
hypothesis that there must be some sentences in the training set which also summarize the test videos
better than just the predicted keywords.

From a psychoanalytic point of view, our motivation stems from the following: We can imagine a
comedian trying to impress an audience. Often times some narrative is quoted as is and then mocked at
(sometimes using another contradictory narrative) This implies that the comedian is using a sample from
the training set to maximize relevance (measured as the intensity of applause from the audience) for a
new scenario.

The problem of generating natural language descriptions of images and videos has been steadily
gaining prominence in the computer vision community. The problem is important for three reasons: i)
transducing visual data into textual data would permit well understood text-based indexing and retrieval
mechanisms essentially for free; ii) fine grained object models and region labeling introduce a new level
of semantic richness to multimedia retrieval techniques; and iii) grounding representations of visual data
in natural language has great potential to overcome the inherent semantic ambiguity prominent in the
data-driven high-level vision community (see [Torralba and Efros, 2011] for a discussion of data-set bias
and discussion on the different meanings common labels can have within and across data sets).

Output from our system: 1. A person in on artificial rock wall 2. A person climbing
a wall is on artificial rock wall 3. Person climbs rock wall indoors 4. Young man
tries to climb artificial rock wall 5. A man demonstrates how to climb a rock wall 
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Figure 6.16: A framework of our hybrid system showing a test video being processed and lingually
described through top-down concept detection and bottom-up keyword summarization

4http://aclweb.org/aclwiki/index.php?title=Downloadable_NLG_systems
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The video to text processing pipeline of our system is shown in Fig. 6.16. A test video with
its event category information (here it is “rock climbing”) is processed in three ways—1) in a bottom
up fashion where a multimodal latent topic model, using only low level features, efficiently predicts
some fixed number of keywords acting as a proxy to the caption of the test video; 2) in a top down
fashion where a multitude of frame level concept detections are pruned across the entire length of the
video to obtain a smaller relevant set and 3) a high level semantic verification of the predicted caption
keywords through the detected concepts that focuses on increasing the information need captured in well
formed English sentences which are the final output of our system. To date, the most common approach
to such lingual description of images has been to model the joint distribution over low-level image
features and language, typically nouns. Early work on multimodal topic models by Blei et al. [Blei and
Jordan, 2003] and subsequent extensions [Putthividhya et al., 2010, Feng and Lapata, 2010b, Wang et al.,
2009, Cao and Fei-Fei, 2007] jointly model image features (predominantly SIFT and HOG derivatives)
and language words as mixed memberships over latent topics with considerable success. Other non-
parametric nearest-neighbor and label transfer methods, such as Makadia et al. [Makadia et al., 2008]
and TagProp [Guillaumin et al., 2009], rely on large annotated sets to generate descriptions from similar
samples. These methods have demonstrated a capability of lingual description on images at varying
levels, but they have two main limitations. Being based on low-level features and/or similarity measures,
first, it is not clear they can scale up as the richness of the semantic space increases. Second, the generated
text has largely been in the form of word-lists without any semantic verification (see Section 6.5.1.3).

Alternatively, a second class of approaches to lingual description of images directly seeks a set of
high-level concepts, typically objects but possibly others such as scene categories. Prominent among
object detectors are Object Bank (OB) [Li et al., 2010b] and the related deformable parts model (DPM)
[Felzenszwalb et al., 2010] which have been successful in the task of “annotating” natural images. De-
spite being able to guarantee the semantic veracity of the generated lingual description, these methods
have found limited use due to the overall complexity of object detection in-the-wild and its constituent
limitations (i.e., noisy detection), and the challenge of enumerating all relevant world concepts and learn-
ing a detector for them (although recent work in propagation on Image Net [Kuettel et al., 2012] shows
potential to overcome this hurdle).

Our method does not suffer from the lack of semantic verification that the classical low-level models
do, nor does it suffer from the tractability challenges of the high-level concept methods—it can rely on
fewer well-trained concept detectors for verification allowing the correlation between different concepts
to replace the need for a vast set of concept detectors.

We use multimodal latent topic models to find a proposal distribution over some training vocabulary
of textual words (see Fig. 6.16 for an overview of the system), then select the most probable words as
potential subjects, objects and verbs through a natural language dependency grammar and part-of-speech
tagging on a training set of sentences. We train and run state-of-the-art DPM concept detectors such as
“artificial rock wall,” “person climbing wall” etc. We convert detected key-concepts from the middle
layer into lingual descriptions through a tripartite template graph, which encodes the relations between
concepts. Finally, we enhance the lingual descriptions by selecting similar training sentences through
concept verification of the predicted keywords. Currently our semantic verification step is independent of
any computer vision framework and works by measuring the number of inversions between two ranked
lists of predicted keywords and detected concepts both being conditional on their respective learned topic
multinomials.
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Images vs. Videos: Recent work in [Berg et al., 2012, Kulkarni et al., 2011, Farhadi et al., 2010,
Yang et al., 2011] is mainly focused on generating more verbose and fluent descriptions of a single
image—images and not videos. Videos introduce an additional set of challenges, such as temporal
variation/articulation and dependencies. Most related work in vision has focused only on the activity
classification side: example methods using topic models for activities are the hidden topic markov model
[Wanke et al., 2010], semi-latent topic models [W. and M., 2009] and frame-by-frame Markovian topic
models [Hospedales et al., 2009], but these methods do not model language and visual topics jointly.
A recent activity classification paper of relevance is the Action Bank method [Sadanand and Corso,
2012], which ties high-level actions to constituent low-level action detections, but it does not include
any language generation framework.

The two most relevant works to ours are the Khan et al. [Khan et al., 2011] and Barbu et al. [Barbu
et al., 2012] systems. Both of these methods extract high-level concepts, such as faces, humans, tables,
etc., perform tracking through time and generate language description by template filling. This method
relies directly on all high-level concepts being enumerated (the second class of methods introduced
above) and hence may be led astray by noisy detection and has a limited vocabulary, unlike our approach
which not only uses the high-level concepts but augments them with a large corpus of textual synopses
from the bottom-up. Furthermore, their datasets have simpler videos not in-the-wild.

We, on the other hand, focus on obtaining the lingual descriptions of general videos (e.g., from
YouTube) directly through bottom-up visual feature translations to text and top-down concept detections.
We leverage both detailed object annotations and loose human lingual synopses. Our proposed hybrid
method shows much better relevant content generation over simple keyword annotation of videos alone
as observed using quantitative evaluation on two datasets—the TRECVID dataset from NIST and a new
in-house dataset consisting of cooking videos collected from YouTube with human lingual descriptions
generated through Amazon’s Mechanical Turk (Section 6.5.2).

6.5.1 An Information Extraction and Summarization System Framework

6.5.1.1 LOW LEVEL: TOPIC MODEL

We adapt the GM-LDA model in [Blei and Jordan, 2003] (dubbed MMLDA – short for MultiModalLDA
in this paper) to handle a discrete visual feature space. The original model in [Blei and Jordan, 2003]
is defined in the continuous space, which presents challenges for the discrete visual features we use
(e.g., HOG derivatives [Kläser et al., 2008]), that can become unstable during deterministic approximate
optimization due to extreme values in high-dimensions and its inherent non-convexity [Wainwright and
Jordan, 2008].

We briefly revisit the MMLDA model (see Chapters 1 and 4) and demonstrate how it is instantiated
and differs from the original version in [Blei and Jordan, 2003]. First, we use an asymmetric Dirichlet
prior, α for the document level topic proportions θd following [Wallach et al., 2009] unlike the sym-
metric one in [Blei and Jordan, 2003]. In Fig. 6.4, D is the number of documents, each consisting of
video and textual synopsis (the text is only available during training). The number of discrete visual
words and discrete textual words per video document d are N and M . The parameters for corpus level
topic multinomials over visual words are ρ1:K . The parameters for corpus level topic multinomials over
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textual words are β1:K—only the training instance of this parameter is used while keyword prediction.
The indicator variables for choosing a topic are {zd,n} and {yd,m}; wd,m is the for text word at position
m in video “document” d with vocabulary size V . Each wd,n is a visual feature from a bag-of-discrete-
visual-words at position nwith vocabulary size corrV and eachwd,n represents a HOG3D [Kläser et al.,
2008], OB, color histogram, transformed color histogram [van de Sande et al., 2010] etc.

We use the mean field method of optimizing a lowerbound to the true likelihood of the data.
A fully factorized q distribution with “free” variational parameters γ, φ and λ is imposed by:
q(θ, z,y|γ,φ,λ) =

D∏
d=1

q(θd|γd)

[
Nd∏
n=1

q(zd,n|φd,n)

Md∏
m=1

q(yd,m|λd,m)

]
(6.38)

The optimal values of free variables and parameters are found by optimizing the lower bound on
ln p(wM,wN|α,β,ρ). The free multinomial parameters of the variational topic distributions ascribed
to the corresponding data are φds. The free parameters of the variational word-topic distribution are λds.
The surrogate for the K-dimensional α is γd which represents the expected number of observations per
document in each topic k. The optimal value expressions of the hidden variables in video document d
for the MMLDA model are as follows:

φd,n,k ∝ exp
{
ψ(γd,k) + ln ρk,wd,n

}
(6.39)

λd,m,k ∝ exp
{
ψ(γd,k) + lnβk,wd,m

}
(6.40)

γd,k = αk +

Nd∑
n=1

φd,n,k +

Md∑
m=1

λd,m,k (6.41)

where Ψ is the digamma function. The expressions for the maximum likelihood of the topic parameters
are:

ρk,j ∝
D∑
d=1

Nd∑
n=1

corrV∑
j=1

φd,n,iδ(wd,n, j) (6.42)

βk,j =

D∑
d=1

Md∑
m=1

V∑
j=1

λd,m,iδ(wd,m, j) (6.43)

The asymmetric α is optimized using the formulations given in [Blei et al., 2003] using gradient ascent
using Newton steps as search directions.

A strongly constrained model, Corr-LDA, is also introduced in [Blei and Jordan, 2003] that uses
real valued visual features and shows promising image annotation performance. We experiment with the
model to use our discrete visual feature space (and name it Corr-MMLDA) but finally opted to not use it
in our final experiments due to the following reasons.

The correspondence between wd,m and zd,n necessitates checking for correspondence strengths
over all possible dependencies between wd,m and wd,n multiplied by that between wd,n and
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person with microphone

person climbing wall
Figure 6.18: Examples of DPM based concept detector.

zd,n. This assumption is relaxed in the MMLDA model and removes the bottleneck in run-
time efficiency for high dimensional video features without showing significant performance drain.
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Figure 6.17: Prediction ELBOs from the two topic
models for the videos in TRECVID dataset. Lower
is better

Fig. 6.17 shows the held out log likelihoods or
the Evidence Lower BOunds (ELBOs) on a de-
velopment set of the TRECVID dataset (Section
6.5.2.1). The figures are obtained by topic mod-
eling on the entire corpus of multimedia docu-
ments (video with corresponding textual synop-
sis). Using HOG3D features and histogram of
positive object detections from OB, we predict
top n words as the recounting of the test videos.

Table 6.5 shows the average 1-gram recall of
predicted words (as in [Khan et al., 2011]) for the
development set. We observe that both models

have approximately the same fit and word prediction power. We choose the MMLDA model since it is
computationally less expensive.

K=200 n=1 n=5 n=10 n=15
MMLDA 0.03518 0.11204 0.18700 0.24117
Corr-MMLDA 0.03641 0.11063 0.18406 0.24840

Table 6.5: Average word prediction 1-gram recall for different topic models with 200 topics when the
full corpus is used. The numbers are slightly lower for lower number of topics but not statistically
insignificant.

6.5.1.2 MIDDLE LEVEL: VISUAL CONCEPT EXTRACTION TO LANGUAGE

The middle level is a top-down approach that detects concepts sparsely throughout the video, matches
them over time, which we call stitching, and relates them to a tripartite template graph for generating
language output.

Concept Detectors:
Instead of using publicly available object detectors from datasets like the PASCAL VOC [Evering-

ham et al., 2010], or training independent object detectors for objects such as microphone, we build the
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concept object detectors like microphone with upper body, group of people etc., where objects together
form a single concept. A concept detector captures more richness semantic information (from object, ac-
tion and scene level) than the object detectors alone, and usually reduces the visual complexity compared
to individual objects, which requires less training examples for an accurate detector. Concept detectors
can be looked upon as a generalization of visual phrases in [Sadeghi and Farhadi, 2011], to handle more
general cases in a video.

We use state-of-the-art Deformable Parts based Model (DPM) [Felzenszwalb et al., 2010] for train-
ing concept detectors, some examples of which are visualized in Fig. 6.18. The specific concepts we
choose are based on the most frequently occurring objects in the human synopses from the training
videos. We use the VATIC tool [Vondrick et al., 2010b] to annotate the trajectories of concept detectors
in training videos, which are used in Section 6.5.1.2 for extracting concept relations.

Sparse Object Stitching (SOS):
Concept detectors act as a proxy to the trajectories being tracked in a video. However, tracking over

detection is a challenging and open problem for videos in-the-wild. First, camera motion and the frame
rate are unpredictable, rendering the existed tracking methods useless. Second, the scale of our dataset is
huge (thousands of video hours), we hence need a fast alternative. Our approach is called sparse object
stitching; we sparsely obtain the concept detections in a video and then sequentially group frames based
on commonly detected concepts.

For a given videoM, we run the set of concept detectors L on N sparse distributed frames (e.g. 1
frame/sec) and denote the set of positive detections on each frame as Di. The algorithm tries to segment
the video M into a set of concept shots S = {S1, S2, . . . , SM}, where S = ∪Di, and M � N , so
that each Sj can be independently described by some sparse detections similar in spirit to [Khan et al.,
2011]. We start by uniformly spliting S into K proposal shots {S′1, S′2, . . . , S′K}, each captures certain
detections in a video. Then we traverse the proposed shots one by one considering two neighboring shots
S′k and S′k+1 at a time. If the Jaccard distance J(S′k, S

′
k+1) = 1− |S

′
k∩S

′
k+1|

|S′k∪S
′
k+1|

is lower than a threshold σ
(set as 0.5 using cross-validation), then we merge these two proposed shots into one shot and compare it
with the next shot, otherwise shot S′k is an independent shot. For each such concept shot, we match it to
a tripartite template graph, as we describe next.

Tripartite Template Graph:
We use a tripartite graph G = (V s, V t, V o, E)—V s for human subjects, V t for tools, and V o for

objects—that takes the concept detections from Sj to generate template based language description. The
vertex set V = V s ∪ V t ∪ V o is identical to the set of concept detectors L in the domain at hand. Each
concept detector is assigned to one of the three vertex sets. The set of paths P = {(Ei,j , Ej,k)|i ∈
V s, j ∈ V t, k ∈ V o}is defined as all valid paths from V s to V o through V t, and each forms a possible
language output.

We use the annotated object trajectories in training videos to build the edge set E. Our observation
is that if there is an edge between two nodes from different vertex sets, then the trajectories of the
corresponding concept detector annotations have certain overlaps. Based on this observation, we build
the graph by counting the temporal coherence among the concept detector annotations.

Language output: Given the top confident concept detections Lc ⊂ L in one concept shot Sj , we
activate the set of paths Pc ⊂ P . A natural language sentence is output for paths containing a common
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Figure 6.19: Lingual descriptions from tripartite template graphs consisting of concepts as vertices

subject using the template 〈V s, V t, V o〉. For situations where Lc ∩ V t = ∅, the consistency of the
tripartite graph is maintained through a default “BYPASS” node in V t (see Figs. 6.16 and 6.19). This
node acts as a “backspace” production rule in the final lingual output thereby connecting the subject to an
object effectively through a single edge. There is, similarly, a BYPASS node in V o as well. We generally
do not consider the situation that Lc ∩ V s = ∅, in which no human subject is present. Histogram counts
are used for ranking the concept nodes for the lingual output.

Fig. 6.19 depicts a visual example of this process. The edges represent the action phrases or function
words that stitch the concepts together cohesively. For example, consider the following structure: “([a
person with microphone]) is speaking to ([a large group of standing people] and [a small group of sitting
people]) with ([a camera man] and [board in the back]).” Here the parentheses encapsulate a simple
conjunctive production rule and the phrases inside the square brackets denote human subjects, tools or
objects. The edge labels in this case are “is speaking to” and “with” which are part of the template
〈V s, V t, V o〉. In the figure, Lc is colored blue and edges in Pc with the common vertex “microphone-
with-upper-body” are colored red. We delete repeated sentences as well in the final summary.

6.5.1.3 HIGH LEVEL: FINAL LINGUAL DESCRIPTIONS

The final level of our system joins the two earlier lingual descriptions to enhance the set of sentences
given from the middle level and at the same time to filter the sentences from the low level. Our method
takes the predicted words from the low level and tags their part of speech with standard NLP tools; these
are then used to retrieve weighted nearest neighbors from the training synopses, which are then ranked
according to predictive importance, similar in spirit to how Farhadi et al. [Farhadi et al., 2010] select
sentences, but we rank over semantically verified low level sentences, giving higher weight to shorter
sentences while always ranking the template generated sentences from the middle level, as the best ones.

We use the dependency grammar and part-of-speech (POS) models in the Stanford NLP Suite5 to
create annotated dictionaries based on word morphologies; the human synopses provide the input. The
predicted keywords from the low level topic models are labeled through these dictionaries. For more
than two POSs for the same morphology, we prefer verbs, but other variants can be retained as well
without loss of generality. For the video in Fig. 6.19, we obtain the following labeled top 15 key-

5nlp.stanford.edu/software/corenlp.shtml
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words: “hall/OBJ town/NOUN meeting/VERB man/SUBJ-HUMAN speaks/VERB microphone/OBJ talking/VERB

representative/SUBJ-HUMAN health/NOUN care/NOUN politician/SUBJ-HUMAN chairs/NOUN flags/OBJ peo-

ple/OBJ crowd/OBJ.” The word annotation classes used are Subjects, Verbs, Objects, Nouns and “Other.”
Subjects which can be humans (SUBJ-HUMAN) are determined using WordNet synsets. Note that this
form of keyword generation “summarizes” the video as a bag-of-words which falls short of making the
video humanly understandable w.r.t concept importance [Berg et al., 2012].

To obtain the final lingual description of a test video, the output from tripartite template graphs are
used first. If there happen to be no detections, we just output the sentences selected using keywords.
For semantic verification, we train MMLDA on a vocabulary of training synopses and training concept
annotations available using VATIC. Then we compute the number of topic rank inversions for two ranked
lists of the top P predictions and top C detections from a test video as:

Lkeywords =

〈{
k :

V∑
j=1

P∑
m=1

p(wm|βk)δ(wjm)

}↑〉

Lconcepts =

〈{
k :

corrV∑
j=1

C∑
n=1

p(wn|ρk)δ(wjn)

}↑〉
(6.44)

If the number of inversions is less than a threshold (≤
√
P + C) then the keywords are semantically

verified by the detected concept list. Finally, we retrieve nearest neighbor sentences from the training
synopses by a ranking function. Each sentence s is ranked as: rs = bh(w1xs1 + w2xs2) where b is a
boolean variable indicating that a sentence must have at least two of the labeled predictions which are
verified by the class of words to which the concept models belong. The boolean variable h indicates
the presence of at least one human subject in the sentence. The variable indicating the total number of
matches divided by the number of words in the sentence is xs1—this penalizes longer and irrelevant
sentences. The sum of the weights of the predicted words from the topic model in the sentence is
xs2—the latent topical strength is reflected here. Each of xs1 and xs2 is normalized over all matching
sentences. The weights for sentence length penalty and topic strength respectively are w1 and w2 (we set
these to be equal in our implementation). The transfer of training sentences in toto to describe a test video
may be suboptimal in differentiating one video from another in the same event, however, as a summary
(sentence ordering aside), it covers more relevant information than just pulling in more keywords upto a
certain summary length (see Table 6.7).

6.5.2 Further experiments and Results

6.5.2.1 DATASETS AND FEATURES

TRECVID MED12 dataset: The first dataset that we use for generating lingual descriptions of real
life videos is released as part of NIST’s 2012 TRECVID Multimedia Event Detection (MED12). The
training set is organized into 25 event categories each containing about 200 videos of positive and related
instances of the event descriptions. For choosing one topic model over another (Section ??) we use the
positive videos and synopses in the 25 training events and predict the words for the positive videos for
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the first five events in the Dev-T collection6. The synopses in the training set consist of short and very
high level descriptions of the corresponding videos and ranges from 2 to 42 words but on average 10
words with stopwords.

A separate dataset released as part of the Multimedia Event Recounting (MER) task contains six
test videos per event where the five events are selected from among the 25 events for MED12. These five
events are: 1) Cleaning an appliance; 2) Renovating a home; 3) Rock Climbing; 4) Town hall meeting; 5)
Working on a metal crafts project. Since this MER12 test set cannot be released to public for obtaining
synopses, we use in-house annotators to write one short sentence for each of the videos.

In-house “YouCook” dataset on cooking videos: The cooking dataset consists of 88 videos down-
loaded from YouTube. The training set consists of 49 videos with concept annotations. We use these
annotations to train concept DPM models. The test set consists of 39 videos which consists of extensive
camera motion and zooming in and out so as to make it a hard test set for annotation. The concept object
models for this set roughly fall in the categories of utensils (31%), bowls (38%), dairy (4%), vegetables
and fruits (4%), meats (8%), condiments (4%) and miscellaneous ingredients (11%).

We use Amazon’s Mechanical Turk to obtain synopses corresponding to the collected videos. The
users are shown an example video with a sample description focusing on the actions and objects therein.
Participants in MTurk are instructed to watch a cooking video as many times as required to lingually
describe the video in at least three sentences totaling a minimum of 15 words. We set our minimum
due to the complex nature of the micro-actions in this dataset. After analyzing the synopses, the average
number of words per summary is 67, the average number of words per sentence in the summary is 10
with stopwords and the average number of summaries per video is eight. There is a recent data set
also about cooking [Rohrbach et al., 2012] but it is a fixed scene dataset and no object annotations are
included.

Low Level Features for Topic Model: We use different types of low level video features for different
events in the MED12 dataset. HOG3D [Kläser et al., 2008] is the common feature that we use for all
events. We resize the video frames such that the largest dimension (height or width) was 160 pixels,
and extract HOG3D features from a dense sampling of frames. We then use K-means clustering to
create a 4000-word codebook following from a random sampling of the MED12 training data. Instead of
color histograms, we use transformed color histogram (TCH) features [van de Sande et al., 2010] for the
videos in MED12 dataset due to poor resolution in most of them. We use a 4096 dimensional codebook
for TCH. The different visual features that we use for five events in the MED12 and MER12 test datasets
are as follows: for events 1, 2, 3 and 4 we use HOG3D and TCH; for event 5 we only use HOG3D only.
These decisions are made through 5-fold cross validation performance using the quantitative evaluation
mentioned in Section 6.5.2.2 on the MED12 training data for the five events in MER12 test set. Held-out
data log likelihoods only help in setting a minimum number of topics which is found to be 10. A higher
number of topics do not improve end task performance significantly.

For our YouCook dataset, the low level features we use are HOG3D and color histograms. We use
a 1000-word codebook for the HOG3D features due to sparsity of the training set and also following
[Bilinski and Bremond, 2011]. Color histograms are computed using 512 RGB color bins. Further,
they are computed over each frame and merged across the video. Due to large deviations in the extreme
values, we use the histogram between the 15th and 85th percentiles averaged over the entire video.

6http://www.nist.gov/itl/iad/mig/med12.cfm
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Events P-T-
KW

P-D-S P-T-S P-DT-
S

R-T-
KW

R-D-
S

R-
TM-S

R-
DT-S

Cleaning appliance 20.03 11.69(∗) 17.52 10.68(∗) 19.16(−) 35.76 32.60 48.15
Renovating home 6.66 12.55 15.29 9.99 7.31(−) 30.67 43.41 49.52
Rock climbing 24.45 24.52 16.21(∗) 12.61(∗) 44.09 46.23 59.22 65.84
Town hall meeting 17.35 27.56 14.41 13.36 13.80(−) 45.55 28.66 56.44
Metal crafts project 16.73 31.68 18.12 15.63 19.01(−) 25.87 41.87 54.84

Table 6.6: ROUGE-1 precision and recall scores for MER12 test set. A (−) for the R-T-KW column
means significantly lower performance than the next 2 columns. The bold numbers in the last column is
significantly better than the previous 3 columns in terms of recall. The bold numbers in P-D-S column
are significantly better than those in P-T-KW column. A (∗) in columns 3, 4 or 5 means significantly
lower than P-T-KW. A 95% confidence interval is used for significance testing.

Since the events for the test videos are known, separate topic models are built for each event that vary
based on the text vocabulary—the visual feature codebooks are not event specific. This also improves
performance and reduces compute time.

6.5.2.2 QUANTITATIVE EVALUATION

We use the ROUGE [Lin and Hovy, 2003] tool to evaluate whether the flow of evidence bottom up
results in more relevant content being generated as a video summary. As used in [Yang et al., 2011],
ROUGE is a standard for comparing text summarization systems which focuses on recall of relevant
information coverage. The BLEU [Papineni et al., 2002] scorer is more precision oriented and is useful
for comparing accuracy and fluency (usually using 4-grams) of the outputs of text translation systems as
used in [Belz and Reiter, 2006, Kulkarni et al., 2011] which is not our end task.

The problem presented here is extremely difficult to solve—in the UIUC PASCAL sentence dataset
[Rashtchian et al., 2010], five sentences are used per image. On the other hand we only allow at most 5
sentences per video per level – low or middle up to a maximum of ten. A human, on the other hand, can
describe a video, on average, in just one sentence!

Table 6.6 shows the ROUGE-1 recall and precision scores obtained from the different outputs from
our system for the MER12 test set. In tables 6.6 and 6.7, T means the low level topic model and D is the
DPM model in [Felzenszwalb et al., 2010]. R means “Recall” and P means “Precision.” Note that we
use top 15 keywords with redundancy particularly retaining subjects like “man,” “woman” etc. and verb
morphologies (which otherwise stem to the same prefix) as proxies for ten-word training synopses. KW
means keywords and S means sentences. The baseline system is a single set of keywords—the output
from our lowest level.

From Table 6.6, it is clear that lingual descriptions from both the lower and middle levels of our
system cover more relevant information, albeit, at the cost of introducing additional words. Increasing
the number of keywords improves recall but precision drops dramatically. The drop in precision for
our final output is also due to increased length of the descriptions. However, the scores remain within
the 95% confidence interval of that from the keywords for “Renovating home,” “Town hall meeting”
and “Metal crafts project” events. The “Rock climbing” event has very short synopses as reference
summaries and the “Cleaning an appliance” event is a very hard event both for DPM as well as MMLDA
since multiple related concepts indicative of appliances in context appear in prediction and detection.
From Table 6.6 we see the efficacy of the short lingual descriptions from sparse object stitching in terms
of precision while the final output of our system significantly outperforms relevant content coverage of
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the lingual descriptions from the other individual levels with regards to recall.

P2-T -
KW

P1-T -
KW

R2-T -
KW

R1-T -
KW

P2-
DT-S

P1-
DT-S

R2-
DT-S

R1-
DT-S

6E-4 15.47 6E-4 19.02 5.04 24.82 6.81 34.2
Table 6.7: ROUGE scores for our “YouCook” dataset

Table 6.7 shows ROUGE scores for both 1-gram and 2-gram comparisons. R1 means ROUGE-
1-Recall and P1 means ROUGE-1-Precision. Similarly for R2 and P2. The length of the all system
summaries are truncated at 67 words based on the average human synopses lengths. The sentences
from the low level are chosen based on the top 15 predictions only. For fair comparison on recall, the
number of keywords (KW columns in Table 6.7) is chosen to be 67. The numbers in bold are significant
at 95% confidence over corresponding columns in the left. R-2 is non-zero for keywords since some
paired keywords are indeed phrases. Our method thus performs significantly well even when compared
against longer synopses. Our lingual descriptions built on top of concept labels and just a few keywords
significantly outperform labeling with even four times as large a set of keywords! This can also tune
language models to context since creating a sentence out of the predicted nouns and verbs do not increase
recall based on unigrams.

6.5.2.3 QUALITATIVE EXAMPLES

The first four rows in Fig. 6.20 show examples from the MER12 test set. The first one or two italicized
sentences in each row are the result of tripartite template graph output. The “health care reform” in the
second row is a noise phrase that actually cannot be verified though our middle level but remains in the
sentence due to our conservative ranking formula. Next we show a good and a bad example from our
YouCook dataset. The two human synopses in last 2 rows are shown for the purpose of illustrating their
variance and yet their relevancy. The last cooking video has a low R1-R score of 21% due to imprecise
predictions and detections.

6.6 Summary
Documents containing video and text are becoming more and more widespread and yet content analy-
sis of those documents depends primarily on the text. Although automated discovery of semantically
related words from text improves free text query understanding, translating videos into text summaries
can also yield better information needs that capture the semantic content of the videos as well. This
facilitates better video search particularly in the absence of accompanying text. In this paper, we pro-
pose a multimedia topic modeling framework suitable for providing a basis for automatically discovering
and translating semantically related words obtained from textual metadata of multimedia documents to
semantically related videos or frames from videos. The framework jointly models video and text and
is flexible enough to handle different types of document features in their constituent domains such as
discrete and real valued features from videos representing actions, objects, colors and scenes as well as
discrete features from text. Our proposed models show much better fit to the multimedia data in terms of
held-out data log likelihoods. For a given query video, our models translate low level vision features into
bag of keyword summaries, which can be further translated using simple natural language generation
techniques into human readable paragraphs ideal for information extraction needs. We quantitatively
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Keywords: refrigerator/OBJ cleans/VERB man/SUBJ-HUMAN clean/VERB blender/OBJ cleaning/VERB woman/SUBJ-HUMAN 

person/SUBJ-HUMAN stove/OBJ microwave/OBJ sponge/NOUN food/OBJ home/OBJ hose/OBJ oven/OBJ  

Sentences from Our System 1. A person is using dish towel and hand held brush or vacuum to clean panel with knobs and 

washing basin or sink 2: Man cleaning a refrigerator. 3: Man cleans his blender. 4: Woman cleans old food out of refrigerator. 

5: Man cleans top of microwave with sponge. 

Human Synopsis: Two standing persons clean a stove top with a vacuum clean with a hose. 

Keywords: meeting/VERB town/NOUN hall/OBJ microphone/OBJ talking/VERB people/OBJ podium/OBJ speech/OBJ woman/SUBJ-

HUMAN man/SUBJ-HUMAN chairs/NOUN clapping/VERB speaks/VERB questions/VERB giving/VERB  

Sentences from Our System 1: A person is speaking to a small group of sitting people and a small group of standing people 

with board in the back. 2: A person is speaking to a small group of standing people with board in the back 3: Man opens 

town hall meeting. 4: Woman speaks at town meeting. 5: Man gives speech on health care reform at a town hall meeting. 

Human Synopsis: A man talks to a mob of sitting persons who clap at the end of his short speech.  

Keywords: people/SUBJ-HUMAN, home/OBJ, group/OBJ, renovating/VERB, working/VERB, montage/OBJ, stop/VERB, 

motion/OBJ, appears/VERB, building/VERB, floor/OBJ, tiles/OBJ, floorboards/OTHER, man/SUBJ-HUMAN, laying/VERB 

Sentences from Our System: 1. A person is using power drill to renovate a house. 2. A crouching person is using power 

drill to renovate a house. 3. A person is using trowel to renovate a house. 4:  man lays out underlay for installing flooring. 5: 

A man lays a plywood floor in time lapsed video. 

Human Synopsis: Time lapse video of people making a concrete porch with sanders, brooms, vacuums and other tools.  

Cleaning an appliance 

Town hall meeting 

Renovating home 

Keywords: metal/OBJ man/SUBJ-HUMAN bending/VERB hammer/VERB piece/OBJ tools/OBJ rods/OBJ hammering/VERB 

craft/VERB iron/OBJ workshop/OBJ holding/VERB works/VERB steel/OBJ bicycle/OBJ   

Sentences from Our System 1. A person is working with pliers. 2 Man hammering metal. 3. Man bending metal in 

workshop. 4. Man works various pieces of metal. 5. A man works on a metal craft at a workshop. 

Human Synopsis: A man is shaping a star with a hammer. 
Metal crafts project 

In the images below, no detections are shown for clarity. The sentences in italics are output through tripartite
template graphs (Section 6.5.1.2)

Keywords: metal/OBJ man/SUBJ-HUMAN bending/VERB hammer/VERB piece/OBJ tools/OBJ rods/OBJ hammering/VERB 

craft/VERB iron/OBJ workshop/OBJ holding/VERB works/VERB steel/OBJ bicycle/OBJ   

Sentences from Our System 1. A person is working with pliers. 2 Man hammering metal. 3. Man bending metal in 

workshop. 4. Man works various pieces of metal. 5. A man works on a metal craft at a workshop. 

Human Synopsis: A man is shaping a star with a hammer. 

Keywords: rock/OBJ climbing/VERB man/SUBJ-HUMAN hands/OBJ climbs/VERB face/OBJ body/NOUN wall/OBJ 

outcroppings/OTHER moving/VERB harness/VERB feet/OBJ mats/OBJ jumping/VERB rope/OBJ   

Sentences from Our System 1: A person is on rock wall and mountain peaks with helmet. 2: Man climbs rock wall. 3: 

Young man climbing a rock. 4: Man films himself rock climbing. 5: Young man tries to climb rough rock face. 

Human Synopsis: A man climbs a rock wall.  

Keywords: bowl/OBJ pan/OBJ video/OBJ adds/VERB lady/OBJ pieces/OBJ ingredients/OBJ oil/OBJ glass/OBJ liquid/OBJ 

butter/SUBJ-HUMAN woman/SUBJ-HUMAN add/VERB stove/OBJ salt/OBJ  

Sentences from Our System: 1. A person is cooking butter with bowl and stovetop. 2. In a pan add little butter. 3. She adds 

some oil and a piece of butter in the pan. 4. A woman holds up Bisquick flour and then adds several ingredients to a bowl. 5. 

A woman adds ingredients to a blender. 
Human Synopsis1: A lady wearing red colored dress,  blending (think butter) in a big sized bowl. Besides there is 2 small bowls 

containing white color powders. It may be maida flour and sugar. After she is mixing the both powders in that big bowl and blending 

together. Human Synopsis2: In this video,  a woman first adds the ingredients from a plate to a large porcelain bowl. She then adds 

various other ingredients from various different bowls. She then mixes all the ingredients with a wooden spoon. 

D) Metal crafts project 

E) Rock climbing 

Cooking video: High ROUGE score 

Keywords: bowl/OBJ pan/OBJ video/OBJ adds/VERB ingredients/OBJ lady/OBJ woman/SUBJ-HUMAN add/VERB pieces/OBJ 

stove/OBJ oil/OBJ put/VERB added/VERB mixes/VERB glass/OBJ  

Sentences from Our System: 1. A person is cooking with pan and bowl. 2. A person is cooking with pan. 2. A woman adds 

ingredients to a blender. 2. In this video, a woman adds a few ingredients in a glass bowl and mixes them well. 3. In this 

video, a woman first adds the ingredients from a plate to a large porcelain bowl 4. The woman is mixing some ingredients in 

a bowl. 5. the woman in the video has a large glass bowl. 
Human Synopsis1: The woman is giving directions on how to cook bacon omelette. She shows the ingredients for cooking and was 

frying the bacon,  scrambling the egg,  melting the butter and garnishing it with onions and placed some cheese on top. The woman 

then placed the scrambled egg and bacon to cook and then placed it on a dish. Human Synopsis2: in this video  the woman takes 

bacon,  eggs,  cheese , onion  in different containers. On a pan she cooks the bacon on low flame. Side by side she beats the eggs in a 

bowl. she removes the cooked bacon on a plate. In the pan she fries onions and then adds the beaten eggs. She sprinkles grated cheese 

on the pan and cooks well. She then adds the fried bacon on the eggs in the pan and cook well. She transfers the cooked egg with bacon 

to as serving plate. 

Cooking video: Low ROUGE score 

Figure 6.20: Qualitative results from MER12 test and our “YouCook” dataset. Only top 5 sentences
from our system are shown.

compare the results of video to text translation in the bag of words form against a state-of-the-art base-
line object recognition model from computer vision. We show that text translations from multimodal
topic models vastly outperform the baseline on a multimedia dataset downloaded from the Internet.

In general Corr-MMGLDA improves on text to video translation while the non-correspondence
versions perform better in video to text summarization. Video summarization through topic models
significantly out-perform that through state-of-the-art object detectors and thus can be used as new base-
lines. Our NLG component has suffered from severe data sparsity and impoverished language models
and we wish to overcome these using external knowledge bases.

We further combine the best aspects of top-down and bottom-up methods of producing lingual de-
scriptions of videos in-the-wild that exploit the rich semantic space of both text and visual features. Our
contribution is unique in that the class of concept detectors semantically verify low level predictions from
bottom up and leverage both sentence generation and selection that together outperforms the coverage
of information need output from independent modules.
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6.8 Appendix

6.8.1 Some Important Derivations
In order to derive the optimal solution for q(µi,Λi) we start with its factorization and selecting only
those terms which depend on µ and Λ.

ln q∗(µ,Λ) =

K∑
i=1

ln p(µi,Λi) + Eq(Z)[ln p(Z|θ)] +

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i] lnN (wd,o|µi,Λi) + const

(6.45)

where lnN (w|µi,Λi) = 1/2
[
− ln(2π) + ln |Λi| −

(
wTΛiw − µTi Λiw −wTΛiµi + µTi Λiµi

)]
.

Denoting P to be the dimensionality of w and expanding, we have:

ln q∗(µi,Λi) = (−κ0/2)
(

(µi −m0)TΛi(µi −m0)
)

+ (1/2) ln |Λi| − (1/2)Tr(ΛiW
−1
0 )

+
ν0 − P − 1

2
ln |Λi| − (1/2)

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]
(

(wd,o − µi)
TΛi(wd,o − µi)

)
+ (1/2)(

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]) ln |Λi|+ const (6.46)

Using the product rule of probability, we can express ln q∗(µi,Λi) as ln q∗(µi|Λi)+ ln q∗(Λi). To
identify the distribution for µi, we select the terms on the right hand side of Equ. 6.46 which depend on
µi, yielding:

ln q∗(µi|Λi) = −(1/2)µTi

[
κ0 +

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]

]
Λiµi

+ µTi Λi

[
κ0 +

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]wo

]
+ const

= −(1/2)µTi [κ0 +Ni]Λiµi + µTi Λi[κ0m0 +Nix̄i] + const (6.47)

where we have made use of the expressions in 6.27. Thus we see that ln q∗(µi|Λi) is a Gaussian
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distribution i.e. a quadratic in µi. Completing the squares of the quadratic expression in Equ. 6.47 and
that for the Gaussian distribution and identifying the coefficients allows us to determine the mean and
precision of this Gaussian, yielding:

q∗(µi|Λi) = N (µi|mi, (κiΛi)) (6.48)

where

κi = κ0 +Ni; mi =
1

κi
(κ0m0 +Nix̄i) (6.49)

The expressions in Equ. 6.49 are intuitive and follows from the conjugate prior properties of the param-
eters. The posterior for κi is effectively reflecting the amount of the expected number of observations
in component i added to the initial number of pseudo observations. The posterior for mi captures the
updated value of m through the first order sufficient statistics of component i.

Next we determine the distributional form of ln q∗(Λi) by using the fact that

ln q∗(Λi) = ln q∗(µi,Λi)− ln q∗(µi|Λi) (6.50)

Substituting Equs. 6.48 and 6.49 in the right hand side of Equ. 6.50 and keeping only those terms that
depend on Λi we obtain the following:

ln q∗(Λi) = (−κ0/2)
(
(µi −m0)′Λi(µi −m0)

)
+ (1/2) ln |Λi| − (1/2)Tr(ΛiW

−1
0 )

+
ν0 − P − 1

2
ln |Λi| − (1/2)

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]
(

(wd,o − µi)
TΛi(wd,o − µi)

)
+

1

2

((
D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]

)
ln |Λi|+ κ0

(
(µi −m0)TΛi(µi −m0)

)
− ln |Λi|

)
+ const

=
νi − P − 1

2
ln |Λi| − (1/2)Tr(ΛiW

−1
i ) + const (6.51)

The expression for q∗(Λi) in Equ. 6.51 has the functional form of the probability density func-
tion of the Wishart distribution defined in general as lnW(Λ|W, ν) = lnZ(W, ν) + (ν − P −
1)/2 ln |Λ| − (1/2)Tr(W−1Λ) where Z(W, ν) is the normalization constant given by Z(W, ν) =

|W|−ν/2
(

2νP/2πP (P−1)/4
∏P
p=1 Γ

(
ν+1−p

2

))−1

. By expanding and matching coefficients we obtain:

W−1
i = W−1

0 + κ0(µi −m0)(µi −m0)T +

D∑
d=1

O∑
o=1

Eq(Z)[zd,o,i](wd,o − µi)(wd,o − µi)
T

− κ0(µi −mk)(µi −mk)T

= W−1
0 +NiSi +

κ0Ni
κ0 +Ni

(x̄i − µ0)(x̄i − µ0)T (6.52)

and

νi = ν0 +

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i] = ν0 +Ni (6.53)
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where we have used the result:

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]wd,ow
T
d,o =

D∑
d=1

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i](wd,o − x̄i)(wd,o − x̄i)
T +Nix̄ix̄

T
i

(6.54)

The terms involving µi have canceled out in Equ. 6.52 and this is intuitive since q∗(Λi) is independent
of µi. Thus q∗(Λi) is a Wishart distribution of the form q∗(Λi) = W(Λi|Wi, νi). The interpretation
for the posteriors over νi and Wi are exactly the same as that for κi and mi, the only difference being
the use of second order sufficient statistics.

It is interesting to note that if we do not use any priors over the Gaussian parameters µi and Λ−1
i =

Σi, then we fall back to the MLE for Σi as in [Blei and Jordan, 2003] as follows:

L[Σi] = Eq(Z(O)) log p(W,W(O),W(H),θ,Z,Z(O),Z(H)) =
1

2

D∑
d=1

O∑
o=1

K∑
i=1

φ
(O)
d,o,i

[
log |Σ|−1

i − Tr(Σ
−1
i Si)

]
(6.55)

where as in Equ. 6.27,
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D∑
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Od∑
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(O)
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Taking derivatives w.r.t Σi we have,

∴ 2
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′
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]
(6.56)

Now if we denote Σ−1
i = X, then we have the following [Harville, 2008]:

∂|X|
∂xi,j

= Tr

[
Adj(X)

∂X

∂xi,j

]
= |X|Tr

[
X−1 ∂X

∂xi,j

]
∴
∂ log |X|
∂xi,j

= Tr

[
X−1 ∂X

∂xi,j

]
= Tr

[
X−1eie

′
j

]
= Tr

[
e′jX

−1ei
]

= yj,i (6.57)

where yj,i is the j, ith element of X−1 i.e. the i, jth element of [X−1]′. Also, Adj(X) is the adjoint of
the square matrix X and ei is the unit vector whose ith component is 1 and 0 everywhere else.

∴
∂ log |X|
∂X

= (X−1)′ = X−1 iff xi,j = xj,i (6.58)

Thus Equ. 6.56 becomes:

∴
∂L[Σi]

∂Σ−1
i

=
1

2

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iΣi −

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iTr

(
∂

∂(Σ−1
i )m,n

Σ−1
i (wd,o − x̄i)(wd,o − x̄i)

′
)]]
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=
1

2

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iΣi −

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iTr

(
eme′n(wd,o − x̄i)(wd,o − x̄i)

′)]]

=
1

2

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iΣi −

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iTr

(
e′n(wd,o − x̄i)(wd,o − x̄i)

′
em
)]]

=
1

2

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iΣi −

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,i

(
wd,o − x̄i)(wd,o − x̄i)

′)
n,m

]]

=
1

2

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iΣi −

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,i

(
wd,o − x̄i)(wd,o − x̄i)

′)′]]

=
1

2

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,iΣi −

[
D∑
d=1

O∑
o=1

φ
(O)
d,o,i (wd,o − x̄i)(wd,o − x̄i))

′

]]
by symmetry of covariance matrix

=
1

2
[NiΣi − [NiSi]] (6.59)

Setting Equ. 6.59 to 0 for maximum likelihood estimation of Σi, we obtain:

Σi = Si =

∑D
d=1

∑Od
o=1 φ

(O)
d,o,i(wd,o − x̄i)(wd,o − x̄i)

′

Ni
(6.60)

To obtain Eq(µi,Λi)[(wo − µi)TΛi(wo − µi)], we first write down the double integral:

Eq(µi,Λi)

[
(wo − µi)

TΛi(wo − µi)
]

=

∫ ∫
Tr
{

Λi(wo − µi)(wo − µi)
T
}
q∗(µi|Λi)q

∗(Λi)dµidΛi

(6.61)

Next we use the result q∗(µi|Λi) = N (µi|mi, (κiΛi)) to perform integration over µi. Using the
standard expressions for expectations under a Gaussian distribution we have:

Eq(µi)[µi] = mi (6.62)

Eq(µi)[µiµ
T
i ] = κ−1

i Λ−1
i − Eq(µi)

[
−µim

T
i −miµ

T
i + mim

T
i

]
= κ−1

i Λ−1
i −

[
−2mim

T
i + mim

T
i

]
= mim

T
i + κ−1

i Λ−1
i (6.63)

from which we obtain the expression with respect to µi in the form

Eq(µi)

[
(wo − µi)(wo − µi)

T
]

= wow
T
o −wom

T
i −miw

T
o + mim

T
i + κ−1

i Λ−1
i (6.64)

= (wo −mi)(wo −mi)
T + κ−1

i Λ−1
i (6.65)

Finally taking expectation w.r.t. Λi we have:

Eq(µi,Λi)

[
(wd,o − µi)

TΛi(wd,o − µi)
]

=

∫
Tr
{

Λi

[
(wd,o −mi)(wd,o −mi)

T
]

+ κ−1
i ΛiΛ

−1
i

}
q∗(Λi)dΛi

=

∫ {
(wd,o −mi)

TΛi(wd,o −mi) + Pκ−1
i

}
q∗(Λi)dΛi

= Pκ−1
i + νi(wd,o −mi)

TWi(wd,o −mi) (6.66)
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Here we have used q∗(Λi) =W(Λi|Wi, νi) together with the standard result for the expectation under
a Wishart distribution to obtain Eq(Λi)[Λi] = νiWi. For the Wishart distribution expressions, we have,

W(Λ|W, ν) = Z(W, ν)|Λ|(ν−P−1)/2 exp
{
−(1/2)Tr(W−1Λ)

}
(6.67)

where,

Z(W, ν) = |W|−ν/2
(

2νP/2πP (P−1)/4
P∏
p=1

Γ

(
ν + 1− p

2

))−1

Eq(Λi)[Λ] = νW

Eq(Λi)[ln |Λ|] =

P∑
p=1

Ψ(
ν + 1− p

2
) + P ln 2 + ln |W|

H[Λ] = − lnZ(W, ν)− ν − P − 1

2
E[ln |Λ|] +

νP

2
(6.68)

Here W is a P ×P symmetric positive definite matrix and Ψ(.) is the digamma function. The parameter
ν is the degrees of freedom of the distribution and is restricted to be ≥ P .

To derive the expression: E[ln p(wO|zO,µ,Λ)] for every video document d, we use Equ. 6.61 and
the expression for E[ln |Λ|] ≡ ln Λ̂i

Eq(Z,µi,Λi)[ln p(wO|zO,µ,Λ)]

=
1

2

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]
{
Eq(Λi)[ln Λi]− Eq(µi,Λi)[(wd,o − µi)Λi(wd,o − µi)]− P ln(2π)

}
=

1

2

O∑
o=1

K∑
i=1

Eq(Z)[zd,o,i]
{

ln Λ̂i − Pκ−1
i − νi(wd,o −mi)

TWi(wd,o −mi)− P ln(2π)
}

(6.69)

Typically, for a mixture model like mixture of Gaussians, where the document hierarchy is absent,
we can derive an equivalent expression as follows, using Equ. 6.54:

Eq(Z,µi,Λi)[ln p(wO|zO,µ,Λ)] =
1

2

K∑
i=1

Eq(Z)[zd,o,i]
{

ln Λ̂i − Pκ−1
i − νiTr(SiWi) (6.70)

−νi(x̄i −mi)
TWi(x̄i −mi)− P ln(2π)

}

In our scenario, the LDA family of models is a mixed membership model where each document
itself is a distribution over the mixture component proportions. Thus in the VB-EM framework, we need
to locally optimize over the tractable family of distributions to find the best one which provides a better
improvement to the lower bound of the log likelihood w.r.t. the original model. Had this not been the
case, plugging in the expression in Equ. 6.70 for a mixture model is the best option both computationally
and numerically.

To derive the expressions for,
∑K
i=1Eq[µi,Λi] [ln p(µi,Λi)], we have:

K∑
i=1

Eq(µi,Λi) [ln p(µi,Λi)] =
1

2

K∑
i=1

{
P ln(

κ0

2π
) + ln Λ̂i −

κ0P

κi
− κ0νi(mi −m0)

′
Wi(mi −m0)

}
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+K lnZ(W0, ν0) +
ν0 − P − 1

2

K∑
i=1

ln Λ̂i −
1

2

K∑
i=1

νiTr(W
−1
0 Wi)

(6.71)

We start with the definition of the prior p(µ,Λ) to obtain an expression for Eq[µi,Λi] [ln p(µ,Λ)].
We have:

Eq(µi,Λi) [ln p(µ,Λ)] =
1

2

K∑
i=1

{
P lnκ0 − P ln(2π) + E[ln |Λi|]− κ0E[(µi −m0)TΛi(µi −m0)]

}
+K lnZ(W0, ν0) +

K∑
i=1

{
ν0 − P − 1

2
E[ln |Λi| −

1

2
Tr(W−1

0 E[Λi])]

}
(6.72)

To evaluate the term E[(µi −m0)], we first perform expectation w.r.t. q∗(µi|Λi) then w.r.t. q∗(Λi).
Using the standard results of moments under a Gaussian, we haveE[µi] = mi andE[µiµ

T
i ] = mim

T
i +

κiΛ
−1
i . Using these we can obtain:

Eq(µi,Λi)

[
(µi −m0)TΛi(µi −m0)

]
= Tr

(
Eµi,Λi

[
Λi(µi −m0)(µi −m0)T )

])
= Tr

(
EΛi

[
Λi(κ

−1
i Λ−1

i + mim
T
i −m0m

T
i −mim

T
0 + m0m

T
0 )
])

= Kκ−1
i + (mi −m0)TE[Λi](mi −m0) (6.73)

We now just substitute the expressions Eq(Λi)[Λi] = νiWi and Eq(Λi)[ln |Λi|] = ln Λ̂i to obtain Equ.
6.71.

Finally, we derive the expressions for Eq(µ,Λ)
[ln q(µ,Λ)] and H[q(Λi)] and show them to be:

Eq(µ,Λ)
[ln q(µ,Λ)] =

K∑
i=1

{
1

2
ln Λ̂i +

P

2
ln
κi
2π
− P

2
−H[q(Λi)]

}
(6.74)

H[q(Λi)] = − lnZ(Wi, νi)−
(νi − P − 1)

2
ln Λ̂i +

νiP

2
(6.75)

(6.76)

where the following expressions are obtained using standard results

� Z(Wi, νi) = |Wi|−νi/2
(

2νiP/2πP (P−1)/4
P∏
p=1

Γ

(
νi + 1− p

2

))−1

(6.77)

� ln Λ̂i = Eq(Λi)[ln |Λi|] =

P∑
p=1

Ψ

(
νi + 1− p

2

)
+ P ln 2 + ln |Wi| (6.78)

Note that Ψ is the digamma function and Ψ′ is the trigamma function. To compute the en-
tropy of Gaussian-Wishart distribution we first note that ln q(µi,Λi) = ln q(µi|Λi) + ln q(Λi) Now,
q(µi,Λi) = q(µi|Λi)q(Λi) is distributed as N (µi|mi, (κ

−1
i Λ−1

i ))W(Λi|Wi, νi). So when we are
taking expectation w.r.t µi of the expression E[ln q(µi|Λi)], we can make use of the standard result of
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the entropy of the Gaussian, H[x] = 1
2 ln |Λ|+ P

2 (1 + ln(2π)) if x ∼ N (x|µ,Λ) to yield:

Eq(µi,Λi)[ln q(µi|Λi)] = Eq(Λi)

[
1

2
ln |Λi|+

P

2
(lnκi − 1− ln(2π))

]
=

1

2
ln Λ̂i +

P

2
(lnκi − 1− ln(2π)) (6.79)

The term Eq(Λi)[ln q(Λi)] is simply the negative entropy of the Wishart distribution which we write as
−H[q(Λi)].

6.8.2 Object Bank Vocabulary
In this section, we list the labels from Object Bank[Li et al., 2010b] that intersect with the human
summary vocabularies obtained from the training and the Dev-T sets. Note that tokens in a phrase like
“open air” or “dish washer” etc. have been treated separately since unigrams help in the ROUGE-1
scoring of summaries. The token sets are as follows:

For the Training set:
{air, animal, art, auto, automobile, bag, ball, balloon, band, baseball, basket, basketball, bath, bathtub, be, beach,

bear, bed, bench, big, bike, bird, blanket, board, boat, book, boot, bottle, bouquet, bowl, box, boy, bride, bridegroom,

bridge, bubble, build, bus, button, cabinet, camera, candle, car, carpet, cat, chair, child, clock, clothe, computer,

concert, couch, counter, court, cover, cow, cross, crowd, curtain, desk, dinner, dirt, dish, dishwasher, display,

document, dog, door, drawer, dress, drum, duck, electric, electrical, elephant, face, facility, fan, female, fence, filter,

fish, flag, floor, flower, fork, french, fridge, fruit, garage, girl, glass, glove, goggles, gown, grass, groom, guitar,

hat, helmet, hook, hoop, horn, horse, human, image, individual, kid, king, kitchen, knife, lamp, lid, life, light,

little, lounge, machine, male, mallet, man, mask, microphone, microwave, military, monkey, motorcycle, mount,

mountain, mouse, mug, museum, musician, napkin, necklace, newspaper, ocean, of, open, outdoors, oven, paper,

participant, passenger, pavement, pen, people, person, phone, picture, pillow, pin, place, plain, plane, plant, plate,

playground, plunger, podium, pool, process, public, rabbit, rack, rail, refrigerator, rock, roller, room, rope, rubber,

runway, sail, sand, screen, seashore, seat, set, sheet, shelf, ship, shirt, shoe, shower, sidewalk, sign, singer, sink, ski,

slide, soap, soccer, sofa, someone, son, speaker, stage, stair, station, stave, step, stick, stone, stop, street, student,

stump, suit, swing, switch, system, t-shirt, table, tank, teacher, tent, tire, tissue, toilet, tool, towel, tower, traffic,

train, tree, truck, tub, turtle, tv, umbrella, uniform, vehicle, veil, video, wall, wash, washer, water, wave, wax, wed,

wheel, window, wing, write}. Match = 9.15%

For the Dev-T set:
{air, animal, art, bag, ball, balloon, band, basket, bath, bathtub, be, beach, bear, bench, big, bike, bird, blind,

board, boat, book, bookshelf, boot, bottle, bouquet, bowl, box, boy, bridal, bride, bridge, bubble, buff, build, cabi-

net, camera, candle, car, carpet, cat, chair, child, corsage, couch, cover, cow, cross, dish, dishwasher, display, diver,

dog, door, dress, drum, duck, electric, face, fan, faucet, fence, field, fin, fish, floor, flower, french, fridge, garage,

girl, glove, goggles, gown, grass, groom, guitar, hat, hook, horse, kid, king, kitchen, knife, lamp, life, light, little,

machine, mallet, man, microphone, military, monkey, motorcycle, museum, necklace, ocean, of, open, outdoors,

paper, pavement, pen, people, person, phone, picture, pin, place, plane, plate, playground, pool, public, rabbit,

rack, radio, rail, rock, room, rope, rubber, sailboat, sand, scuba, set, shelf, shoe, sidewalk, ski, slide, snail, soccer,

somebody, someone, son, stage, stair, step, stick, stone, stop, street, stump, suit, table, tank, tire, tool, towel, train,

tree, truck, turtle, umbrella, vase, vehicle, video, wall, wash, washer, water, wave, wax, wed, wheel}. Match =

13.6%
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In all our experiments we removed standard English stopwords and ran ROUGE [Lin and Hovy,
2003] using the following parameters: -n 2 -x -m -2 4 -u -c 95 -f A -p 0.5 -t 0 -a -d.

6.8.3 Implementation
In this section, we outline the algorithmic procedures to implement the proposed models in the paper.
The baseline topic models can be implemented similarly.

Recall that for the Corr-MMGLDA model,
Eq[ln p(wM |zyM , β)] expands out to be:

Md∑
m=1

K∑
k=1

(
Od∑
o=1

φd,m,oφ
(O)
d,o,k

)
lnβk,wd,m (6.80)

We mentioned in the paper that equation (6.80) is both the bottleneck and the strong point of the corre-
spondence class of the LDA models. It is a computational bottleneck because finding the confidence of
the word wm over topic i necessitates the elimination of uncertainties of wm’s dependence on wo and
wo’s dependence on topic i. This is also a strong point since the summation suggests a stronger influence
of a topic on a summary word if that influence is justified by most wOs.

The computational burden for the correspondence class of models increase precisely for the inner
sum appearing in the variational distribution update expressions in the E-step. For a sufficiently large
number of topics, K, and a sufficiently large number of corresponding observations O, Corr-MMGLDA
is computationally more expensive. If these conditions are not true, as is the case in our experiments, we
observed that both models took approximately the same training time.

The rest of this supplementary material outlines the key steps for implementing the multimedia topic
models. We have used the well tested GNU Scientific Library7 (GSL) to implement the linear algebraic
operations but the rest of the code is developed in-house and written in C++. Note that the tractable
mean field distribution vectors for φ(H) and φd,m,i or φd,m,o can be thrown out as each document is
processed but the φ(O)s need to be stored and updated for each iteration since they are needed in the
Maximization step for updating the priors for the Gaussians.

6.8.4 Algorithm and Pseudocodes

ALGORITHM 2: vb em
1: if algorithm mode == “training′′ then
2: initialize statistics(); {use random or seeded initialization for ρ and β and random initialization for m and

W from randomly initialized real valued data vectors}
3: vb m step();
4: end if
5: if algorithm mode == “predict′′ then
6: load up the parameters; {ρ, m, W, κ and νs are modified through discrete and real valued distributions in

test set and the trained β is accessed only after convergence to obtain word predictions. A simple to enforce
the latter is to set up a dummy textual word index and set its count to 0. All βi,js will be 0 in this way which
is equivalent to not looking at β at all.}

7: end if
7http://www.gnu.org/software/gsl/
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8: elbo prev ← 0

9: elbo current← 0;
10: iters← 0

11: while NOT CONV ERGED do
12: elbo current← vb e step() {update hidden variables}
13: vb m step() {update model parameters}
14: converged← (elbo prev − elbo current)/(elbo prev)

15: elbo prev ← elbo current

16: iters← iters+ 1

17: end while

ALGORITHM 3: vb e step
1: zero initialize statistics();
2: elbo current← 0

3: for d = 1 to D do
4: doc← corpus.video document vec[d]

5: elbo current += doc e step(d, doc)
{also accumulate sufficient statistics for ρi, βi, Ni, x̄i and Si for each topic i.
The doc e step() routine updates γd,i, φ

(H)
d,h,i, φ

(O)
d,o,i and φd,m,i or φd,m,o based on whether the model is

MMGLDA or Corr-MMGLDA.}
{Update sufficient statistics for alpha as follows:}

6: if symmetric dirichlet then
7: gamma sum← 0

8: for k = 1→ K do
9: gamma sum+ = γ[d][k]

10: alpha ss+ = Ψ(γ[d][k]) {alpha ss holds sufficient statistics for symmetric alpha}
11: end for
12: alpha ss− = K ×Ψ(gamma sum) {Ψ(.) is the digamma function}
13: end if
14: if asymmetric dirichlet then
15: gamma sum← 0

16: for k = 1→ K do
17: gamma sum+ = γ[d][k]

18: alpha ss[k]+ = Ψ(γ[d][k])

19: alpha ss exp aux[k] = Ψ(γ[d][k]) {alpha ss exp aux is an auxilliary array}
20: end for
21: for k = 1→ K do
22: alpha ss[k]− = Ψ(gamma sum)

23: alpha ss exp aux[k]− = Ψ(γ[d][k])

24: end for
25: for k = 1→ K do
26: expo← exp (alpha ss exp aux[k])

27: alpha ss exp[k]+ = expo

28: alpha ss exp square[k]+ = expo × expo {alpha ss exp and alpha ss exp square hold sufficient
statistics for asymmetric alpha}

29: end for
30: end if
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31: end for
32: for k = 1→ K do
33: elbo current + = Eq[µi,Λi] [ln p(µi,Λi)]

34: elbo current − = Eq[µi,Λi] [ln q(µi,Λi)]

35: end for
36: return elbo current;

ALGORITHM 4: doc e step
1: γd,i = α+ (doc.total num words

K
+ doc.total num corr words

K
+ doc.num real valued observations)

K

2: φ(H)
d,h,i = 1.0

K

3: φ(O)
d,o,i = 1.0

K

4: φm,i = 1.0
K
{If model is MMGLDA OR}

φm,o = 1.0
doc.num real valued observations

{If model is Corr-MMGLDA}
5: elbo current← 0;
6: while not converged do
7: update φ(H)

d,h,i

8: update φ(O)
d,o,i

9: update φd,m,i {If model is MMGLDA} {OR} update φd,m,o {If model is Corr-MMGLDA}
10: update γd,i
11: elbo current ← compute likelihood() {To compute likelihoods use the expressions in L(MMGLDA) for

MMG LDA or L(Corr−MMGLDA) for Corr-MMGLDA}
12: end while
13: return elbo current;

ALGORITHM 5: vb m step
1: for all i ∈ 1, ..,K, v ∈ 1, .., V , corr v ∈ 1, ..., corrV do
2: update ρi,corr v and βi,v from sufficient statistics
3: update mi,Wi, κi and νi from sufficient statistics
4: update α {For symmetric α, several publicly available VB implementations corresponding to [Blei et al.,

2003] can be used as a blackbox; for asymmetric α, algorithms 4 through 7 implement the Newton Raphson
method of optimizing the α parameter using the derivations in [Blei et al., 2003] and [Minka, 2009] }

5: end for

ALGORITHM 6: initialize guesses
1: input: alpha ss exp, alpha ss exp square, D and K
2: output: init a - vector containing initial starting points for optimizing α[k] obtained from data
3: for k = 1→ K do
4: init a[k]← alpha ss exp[k]/D

5: m[k]← alpha ss exp square[k]/D

6: s[k]← (init a[k]−m[k])/(m[k]− init a[k]× init a[k])

7: end for
8: median← median(s)

9: if median > 0 then
10: for k = 1→ K do
11: init a[k]← init a[k]×median
12: end for

225



13: end if
14: return init a
15: {Using this initialization lowers the number of iterations in optimize asym dirichlet() by at least a factor of 2-3}

ALGORITHM 7: asym alpha lhood
1: input: alpha, alpha ss, D and K
2: sum alpha← sum(alpha)

3: lhood← ln Γ(sum alpha)

4: for k = 1→ K do
5: lhood+ = (alpha[k]− 1)× alpha ss[k]/D − ln Γ(alpha[k])

6: end for
7: return lhood

ALGORITHM 8: compute H inverse g
1: input: α guess, g, K
2: output: hg - vector containing Hessian inverse × gradient for each component
3: sum a← sum(α guess)

4: q ← α guess

5: for k = 1→ K do
6: q[k]← 1.0/ (−trigamma(alpha guess[k]))

7: end for
8: z ← trigamma(sum a)

9: sum q ← sum(q)

10: sum gq ← 0

11: for k = 1→ K do
12: sum gq+ = g[k]× q[k]

13: end for
14: b← sum gq/(1.0/z + sum q)

15: for k = 1→ K do
16: hg[k]← (g[k]− b)× q[k]

17: end for
18: return hg {for equations concerning derivations, see [Blei et al., 2003]}

ALGORITHM 9: optimize asym dirichlet
1: input: α ss, α ss exp, α ss exp square, D and K
2: output: a - which is the optimized α
3: a← initialize guesses(α ss exp, α ss exp square,D,K)

4: initialize K-dimensional vectors g, hg and a minus hg to 0

5: old lh← D × asym alpha lhood(a, α ss,D,K)

6: ε← DBL EPSILON

7: λ← 0.1

8: max iter ← 100

9: for iter = 1→ max iter do
10: old a← a; sum a← sum(a)

11: if sum a == 0 then
12: break
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13: end if
14: for k = 1→ K do
15: g[k]← Ψ(sum a)−Ψ(a[k]) + α ss[k]/D

16: end for
17: break flag ← false

18: while true do
19: hg ← compute H inverse g(a, g,K)

20: if hg < a for all dimensions then
21: for k = 1→ K do
22: a minus hg[k]← (a[k]− hg[k])

23: end for
24: new lh← D × asym alpha lhood(

a minus hg, α ss,D,K)

25: if new lh > old lh then
26: old lh← new lh

27: a← a minus hg

28: λ← λ/C {C was set to 10 in this paper}
29: break
30: end if
31: end if
32: λ← λ× C {C was set to 10 in this paper}
33: if λ > Large Constant then
34: break flag ← true; break;
35: end if
36: end while
37: if break flag then
38: new lh← old lh

39: break
40: end if
41: for k = 1→ K do
42: if a[k] < ε then
43: a[k]← ε

44: end if
45: end for
46: max abs a minus olda← max(abs(a− old a))

47: if max abs a minus olda < 10−10 then
48: break
49: end if
50: end for
51: return a
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6.8.5 Important low level features from videos

6.8.5.1 HOG3D FEATURES

The low level HOG3D features for our YouCook videos are obtained using the open source software
provided by Klaeser et al. [Kläser et al., 2008]8. The codebooks are computed in a standard way using
the K-Means algorithm9. We outline the main steps in Algo. 8:

Algorithm 8 Codebook computation: a general outline
1: Compute HOG3D features from frames sampled from the videos in the training set. Listings 6.1 and

6.2 show the Matlab code for extracting the feature vectors corresponding to a sample training video
using the method described in [Kläser et al., 2008].

2: Compute K-Means over the HOG3D features of the training dataset (see Listing 6.3). A maximum
of 10,000 feature vectors (each a 300-dimensional descriptor) for each video is obtained and con-
catenated for all videos in the training set to form the initial dataset for K-Means clustering. After
this, clustering is performed for a maximum of 100 iterations and the codebook vectors are saved.

3: A K-dimensional histogram of HOG3D features are computed for each video (training or test) using
the codebook obtained in Step 2 and its HOG3D feature descriptor (see Listing 6.4).

After the first step in Algo. 8, we obtain large feature files for each video where each line in output
of the HOG3D feature extractor corresponds to a frame of the video and consists of a 308-dimensional
vector in the following format:

<x> <y> <frame> <x-norm.> <y-norm.> <t-norm.> <xy-scale> <t-scale>

<descriptor>

The “descriptor” is the actual 300-dimensional action descriptor that is ultimately used in codebook
computation. The stride for the spatial scale is set to nine and that for the temporal scale is set to five.
We spatially rescale the video such that the larger of its width and height is 160 pixels.

There is also a [xy/t]-max-scale option that controls at which spatial/temporal scale the sampling is
stopped. We set this option’s value to one to reduce computational time.

6.8.5.2 COLOR HISTOGRAM FEATURES

The low level color histogram features are computed in an efficient way from the frames obtained by
using the ffmpeg command:

ffmpeg -i <movie-file> -y <output-directory>/frame%05d.jpg

Listing 6.5 shows the Java code for extracting color histogram for an image using an user specified
number of bins for each of the red, green and blue components. We set the number of such bins for
each component to be eight for a total of 512-dimensional color histogram for each frame of the video.
Histograms from all such frames are concatenated to form the color histogram for the entire video. The
text file containing concatenated features for a video are stored on disk in g-zipped format. For use in
topic models, we use the average of the values of the color combinations (i.e. the bins) from all of these
histograms as the color histogram descriptor of a single video.

8http://lear.inrialpes.fr/people/klaeser/software_3d_video_descriptor
9http://crcv.ucf.edu/source/K-Means
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When we use the color histogram features in the topic model, we only use the bins that contain
values within the 15th to 85th percentile of the values in the bins. The higher values need to be removed
since they often increase the magnitude of the slopes around the fixed points in the fixed point iterations
of the local (video document specific) E-step in variational Bayes optimization framework to be more
than one and thus leading to non-convergence [Conte and Boor, 1980] and possible degeneration of the
proportions of a few topic components. The lower values are removed to offset the bias in removing the
higher band. The rest of the bin values are normalized to lie in [0, 255].

6.8.6 Code snippets

Listing 6.1: Driver for obtaining HOG3D histogram

1cookingVidPaths = [’videos/0002.mp4’]; % add more here

2tmpPath=’ffprobe_tmp.txt’;

3featureDir=’feature’;

4

5c = cellstr(cookingVidPaths);

6nVids = size(c);

7mkdir(featureDir);

8for i = 1: nVids

9videoPath = c{i};

10HOG3DExtractor(videoPath, tmpPath, featureDir);

11end

Listing 6.2: Extracting HOG3D features for a video using the static executable in [Kläser et al., 2008]

1function xyscale = HOG3DExtractor(videoPath, tmpPath, featureDir)

2% videoPath: path to the input video

3% tmpPath: output of "ffprob -show_streams videoPath > tmpPath".

4% featureDir: Directory that you want to save feature.

5%

6addpath(’.’);

7% extract width and height

8[˜, name, ˜] = fileparts(videoPath);

9fprintf(’Processing video %s.... \n’, videoPath);

10system(sprintf(’ffprobe -show_streams %s > %s’, videoPath, tmpPath));

11[˜, grep_width] = system(sprintf(’grep "width=*" %s’, tmpPath));

12[˜, grep_height] = system(sprintf(’grep "height=*" %s’, tmpPath));

13width = sscanf(grep_width, ’width=%d’);

14height = sscanf(grep_height, ’height=%d’);

15max_w_h = max(width, height);

16xyscale = -1;

17if(any (size(max_w_h) == 0))

18fprintf(’!!! error in ffprobe of %s. !!!\n’, name);

19return;

20end

21xy_srtride = 9;

22t_stride = 5;

23% compute rescaling ratio

24xyscale = 160 / max_w_h;

25featurePath = sprintf(’%s/%s.txt’, featureDir, name);
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26system(sprintf(’./extractFeatures_static --simg %f --xy-stride %d --xy-max-scale 1 --t

-stride %d --t-max-scale 1 %s > %s’, xyscale, xy_srtride, t_stride, videoPath,

featurePath));

27featureInfo = dir(featurePath);

28if( ˜exist(featurePath, ’file’) || featureInfo.bytes == 0)

29fprintf(’!!! error in feature extraction of file %s. !!!\n’, name);

30return;

31end

32fprintf(’video %s was processed successfully.\n\n’, videoPath);

33ffprobe_file = tmpPath

34delete(ffprobe_file);

35rmpath(’.’);

Listing 6.3: Computing HOG3D codebook vectors using K-Means

1cookingHOG3DPaths = [’/data/Cooking/features/HOG3D/tmp/0002.txt’]; % add more here

2

3c = cellstr(cookingHOG3DPaths);

4nVids = size(c);

5

6D = [];

7nFrames = 10000;

8for i = 1: nVids

9HOG3DPath = c{i};

10fprintf(’loading file %s\n’,HOG3DPath);

11A = load(HOG3DPath);

12P = A(:,9:308)’;

13[row, col] = size(P);

14if ( col > nFrames )

15interval = floor(col/nFrames);

16else

17interval = 1;

18end

19index = [0:interval:col-1]+1;

20D = [D P(:,index)];

21end

22

23nClusters = 1000;

24[CX, sse] = vgg_kmeans(D, nClusters, ’maxiters’, 100);

25

26dlmwrite(’/data/Cooking/features/HOG3D/1000CW_dictionary.txt’, CX’);

Listing 6.4: Quantizing a video using a pre-computed HOG3D K-means codebook

1%

2% videoPath: path to the input video

3% tmpPath: output of "ffprob -show_streams videoPath > tmpPath".

4% featureDir: Directory that you want to save feature.

5% codebookPath: address of the coreword

6% wordDir: directory to save the quantized feature

7% histDir: directort to save the global histogram of HOG3D

8%

9function xyscale = quantizeVideo(videoPath, tmpPath, featureDir, codebookFile, wordDir

, histDir)
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10

11addpath(’/sfw/HOG3D/VGG_KMeans’);

12

13scanFormat = ’%d %d %d %f %f %f %d %d ’;

14for i = 1 : 300

15if i ˜= 300

16scanFormat = [scanFormat, ’%f ’];

17else

18scanFormat = [scanFormat, ’%f’];

19end

20end

21

22% read codeword dictionary

23clusterCen = load(codebookFile);

24

25% extract width and height

26[pathstr, name, ext] = fileparts(videoPath);

27fprintf(’Processing video %s.... \n’, videoPath);

28system(sprintf(’ffprobe -show_streams %s > %s’, videoPath, tmpPath));

29[status grep_width] = system(sprintf(’grep "width=*" %s’, tmpPath));

30[status grep_height] = system(sprintf(’grep "height=*" %s’, tmpPath));

31

32width = sscanf(grep_width, ’width=%d’);

33height = sscanf(grep_height, ’height=%d’);

34

35max_w_h = max(width, height);

36xyscale = -1;

37if(any (size(max_w_h) == 0))

38fprintf(’!!! error in ffprobe of %s. !!!\n’, name);

39return;

40end

41

42xy_srtride = 9;

43t_stride = 5;

44% compute rescaling ratio

45xyscale = 160 / max_w_h;

46

47featureFile = sprintf(’%s/%s.txt’, featureDir, name);

48if exist(featureFile, ’file’)

49system(sprintf(’rm -f %s’, featureFile));

50end

51system(sprintf(’/sfw/HOG3D/hog3dcode/extractFeatures_static --simg %f --xy-stride %d

--xy-max-scale 1 --t-stride %d --t-max-scale 1 %s > %s’, xyscale, xy_srtride,

t_stride, videoPath, featureFile));

52

53ftrInfo = dir(featureFile);

54if( ˜exist(featureFile, ’file’) || ftrInfo.bytes == 0)

55fprintf(’!!! error in feature extraction of file %s. !!!\n’, name);

56return;

57end

58

59% read features, save their indeces i.e. Quantize the extracted features using the pre

-computed words

60fid = fopen(featureFile);
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61A = fscanf(fid, scanFormat, [308 100000]);

62word2 = cell(100,1);

63i = 1;

64while ˜any(size(A)==0)

65[ind d2] = vgg_nearest_neighbour(A(9:end,:), clusterCen’);

66word2{i} = [A(1:3, :)’ ind];

67i = i+1;

68A = fscanf(fid, scanFormat, [308 100000]);

69end

70words = cat(1, word2{:});

71fclose(fid);

72

73system(sprintf(’rm -f %s’, featureFile));

74

75fprintf(’saving the words.\n’);

76% compute histogram from the quantized features

77hist = zeros(size(clusterCen, 1), 1);

78for i=1:size(words,1)

79hist(words(i,4)) = hist(words(i,4)) + 1;

80end

81save_word_name = sprintf(’%s/%s.txt’, wordDir, name);

82dlmwrite(save_word_name, words);

83

84% This is what we are interested in ultimately

85save_hist_name = sprintf(’%s/%s.txt’, histDir, name);

86dlmwrite(save_hist_name, hist);

87

88fprintf(’video %s was processed successfully.\n\n’, videoPath);

89rmpath(’/sfw/HOG3D/VGG_KMeans’);

Listing 6.5: Java code for computing color histogram from an image

1public static int[] binnedImageHistogram(BufferedImage input, int nBins)

2{

3int[] hist = new int[nBins*nBins*nBins];

4int interval = 256/nBins; int nBinsSquared = nBins*nBins;

5int W = input.getWidth(); int H = input.getHeight();

6for(int i = 0; i < W; ++i) {

7for(int j = 0; j < H; ++j) {

8int red = new Color(input.getRGB (i, j)).getRed(); // 0 to 255

9int green = new Color(input.getRGB (i, j)).getGreen(); // 0 to 255

10int blue = new Color(input.getRGB (i, j)).getBlue(); // 0 to 255

11

12int rBin = red/interval;

13int bBin = blue/interval;

14int gBin = green/interval;

15int coord = rBin*nBinsSquared + gBin*nBins + bBin;

16

17hist[coord]++;

18}

19}

20return hist;

21}
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Chapter 7

Conclusion and Talking Points

“A decent thesis makes a slight impact. A good thesis transforms you. Anything
more tries to transform mankind through you.”

- Pradipto Das, after completing his thesis.

Up to this point, the materials covered in this thesis have primarily focused on three important questions:
[i ] How do we create faceted latent topics i.e. topics conditional on different types of word annota-

tions which are influenced by document level meta data? This question is very important since
often times fine grained supervised models such as those producing automatic content annotations
and meta data work at a document or sentence level. On the other hand, unsupervised corpus
centric models of topical analysis work at a “global” corpus level and are competitive rather than
collaborative with the finer grained local models.

[ii ] How can we apply topic models and discourse analysis through rhetorical parsing to create bullet
list summaries?

[iii ] Is the summarization problem intrinsically important? In other words, when we look at the world
around us, do we speak all that we see?

We now emphasize some talking points which can be a basis for related research within the fore-
seeable horizon. Touching upon the first point, the issue of automatically deciding the number of topics
using non-parametric Bayes has been an active area of research in the context of the LDA model [Ger-
shman et al., 2012, Wang and Blei, 2009, Graber and Blei, 2009, McAuliffe et al., 2006, Blei and
Jordan, 2004]. Non-parametric extensions of multimodal LDA has received much less research focus
[Yakhnenko and Honavar, 2009]. Hybrid models like the Tag2LDA models described in this thesis will
benefit much from non-parametric extensions to decide on the number of topics automatically and is
indeed an important research direction. Further, online tag-topic models with infinite vocabulary similar
in spirit to [Zhai and Boyd-Graber, 2013], integrating basic ideas of tag-topic models to large scale deep
belief networks [Bartlett et al., 2012] and their connection to transfer learning [Pan and Yang, 2010] all
give rise to very interesting research areas.

On the problem of bullet list summarization, there is ample research opportunity on automatically
identifying upon rhetorical relations in a semi-supervised manner. Additionally, ranking of bullet lists
incorporating diversity [Lin and Bilmes, 2012, Kulesza and Taskar, 2012] to reduce redundancy is an
obvious avenue of research.
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On the problem of video analytics, particularly with the capability of generating lingual descriptions
from videos, there is a natural direction in analyzing the social structure of videos along the following
premises:

[i ] What is the central theme of the video and who is/are the main subject/s of the video? This
answers questions about role discovery of objects or concepts within videos.

[ii ] What is more interesting is to understand the intentions of the person shooting the video. A
person rarely shoots a video of something that he/she is not interested/curious about. If we have
several videos that a person has shot over a period of time, can we understand what general things
he is interested on during that time (this is answered in part by the first point). How do those
interests subside over time and what new interests arise? Are there similar people sharing similar
intentions? How do we define a distribution over such intention space with the mass/density being
how many people share the same intention? What lies in the tail of such distribution?

[iii ] How do we evaluate such an intention space automatically?

The applications of the models and ideas developed in the course of this thesis can have profound
consequences in the way we interact with our surroundings on a day to day basis both on the visual as
well as on the textual front.
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