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Abstract—Keystroke dynamics is a form of behavioral
biometrics that can be used for continuous authentication of
computer users. Many classifiers have been proposed for the
analysis of acquired user patterns and verification of users on
computer terminals. The underlying machine learning methods
that use Gaussian density estimator for outlier detection
typically assume that the digraph patterns in keystroke data are
generated from a single Gaussian distribution. In this paper,
we relax this assumption by allowing digraphs to fit more than
one distribution via the Gaussian Mixture Model (GMM). We
have conducted an experiment with a public data set collected
in a controlled environment. Out of 30 users with dynamic text,
we obtain 0.08% Equal Error Rate (EER) with 2 components
by using GMM; while pure Gaussian yields 1.3% EER for
the same data set (an improvement of EER by 93.8%). Our
results show that GMM can recognize keystroke dynamics more
precisely and authenticate users with higher confidence level.

Index Terms—authentication, biometrics, Gaussian mixture
model, human computer interaction, keystroke dynamics.

I. INTRODUCTION

Keystroke dynamics is one of the efficient and inexpen-
sive techniques that can authenticate computer users in the
background while the user is actively working at the termi-
nal. Typing characteristics have been shown to be distinctive
enough to distinguish a computer user from another because of
the unique timing of keystrokes that each individual performs
during typing. There have been many proposed techniques for
authenticating users using statistical approaches and machine
learning. Of the statistical methods, the most common one
is the Gaussian density estimator. It assumes that timing
information of two consecutive keystrokes, better known as
digraph, exhibits a pure Gaussian. The user can be identified
if most of the typed digraphs are within a specific time
interval determined by the mean and standard deviation of the
distribution. However, the assumption of a single Gaussian
can be too restrictive in practice. Depending on the word that
the digraph is embedded in, the mean time can change for
some cases significantly [20], which causes a degradation in
accuracy of the system and leads to false rejections. Also,
there are always some under-represented digraphs that do not
frequently occur in language as pointed out in [11], which
might require more advanced techniques for separability and
user identification.

Gaussian Mixture Model (GMM) can simply be described
as the weighted sum of Gaussian components. It can po-

tentially represent seemingly complex and hard-to-map data
to an understandable and distinguishable format. The use of
GMM for representing dipraphs can also be supported by
the common notion in pattern recognition that the individual
Gaussians can model some underlying set of hidden features
or attributes. That is to say, a user can be authenticated by
some under-represented features that are consolidated using
current methods. For example, a letter might be typed with
different speeds depending upon the position within the word,
as pointed out by Salthouse [16]. This distortion can only be
acquired by a more complex estimator, for instance, the GMM.

In this paper, we focus on the fact that digraphs do not
necessarily exhibit pure Gaussian but a mixture of Gaussians.
Users might have different tendencies in typing some of the
digraphs based on the word they are embedded in, the position,
etc., which causes the pattern to be distorted or shifted to some
extent. Therefore, since high accuracy in biometrics is required
by many standards (The European Standard for Access Control
(EN-50133) states that FAR should be less than 0.001% and
FRR should be less than 1% for any commercially available
authentication systems [13]), our paper investigates the ap-
plication of GMM to keystroke dynamics for higher security
and identification. The contributions of this paper include the
demonstration of the strength/advantage of the mixture model
over pure Gaussian in recognition of keystroke dynamics.
Also, we want to show that existing studies which involve
pure Gaussian can improve the accuracy by involving GMM.

The paper is organized as follows. The paper continues
with the background information and a brief review of Gaus-
sian Mixture Model in Section II followed by related work
about the use of Gaussian distribution and mixture model in
keystroke dynamics in Section III. Then, the details on data
collection and feature extraction are given and the experiments
conducted are described in Section IV. Section V presents
the results of using GMM and its effectiveness in recognizing
users over existing pure Gaussian models. Section VI discusses
how current works can make use of GMM, and finally Section
VII summarizes our findings and gives an insight into how our
technique could be improved further.

II. BACKGROUND

To better understand how digraphs spread over the distribu-
tion and how they vary, we rather go deeper into the historic
literature in social sciences and provide a brief background



about how human brain processes action of typing at low
levels.

Salthouse [16] proposes a model for the steps taking place
during typing. In the first stage, the text is perceived and
divided into easily remembered chunks [4]. In the parsing
stage, the perceived text is stored in memory for a short time
and the chunks are separated into discrete characters. Having
divided the text into chunks and then into characters can imply
that not all digraphs are processed in the same way because
the conversion can slightly change based on the chunks the
digraphs are embedded in and the internal clock mentioned
in [17]. For example, the pattern of the digraph or in the
word orange may be somewhat different than that of color.
Related to this example, it has been found that for the first
keystroke in a word, the typing speed is generally slower than
that of subsequent keystrokes in the word. This word-initiation
effect has been documented clearly by Salthouse [15], where
the latency of the first keystroke in a word is found to be
approximately 20% longer than the latency of the following
keystrokes.

In the translation stage, the characters are converted into
movement commands. These commands specify which hand
and finger to be used, and to which direction to extend. The
fourth stage is the actual execution of the text followed by a
feedback mechanism. After the keys are typed, a feedback is
sent to ensure the accuracy.

A. Gaussian Mixture Model
Gaussian Mixture Model (GMM) is a parametric density

function shaped by the weighted sum of Gaussian components.
GMM generates a vector of mean values corresponding to each
component and a matrix of covariance including components’
variances and the co-variances between each other. GMM has
been used for representing features in biometric systems [14]
especially in speaker recognition as it has the potential to
encompass a large set of sample distributions and fit arbitrarily
shaped densities with smooth approximations.

Pure Gaussian fits the data by a single peak (mean) and
an elliptic shape (variance); whereas GMM can represent it
in higher dimensions by using a discrete set of Gaussian
functions, each with its own mean and covariance matrix, to
allow a better modeling capability.

GMM is expressed by the parameter set λ comprising of
component weights wi, mean vector ~µi and covariance matrix
Σi:

λ = {wi, ~µi,Σi}, i = 1, . . . .,M (1)

The parameters are estimated using the iterative expecta-
tion–maximization (EM) algorithm [6]. Parameter lambda (λ)
is updated in every iteration that yields a higher likelihood to
refine the parameters and fit the distribution of the training
dataset.

For the ~x vector, the mixture density is defined as the
weighted linear combination of M pure Gaussian distributions:

p(~x|λ) =

M∑
i=1

wipi(~x) (2)

where

pi(~x) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(~x− ~µ)′(Σi)

−1(~x− ~µ)

}
In our experiments, we vary the number of components,

M, from 1 (pure Gaussian) to 5 to investigate the effect of
components on the accuracy of results.

III. RELATED WORK

Over the years, many different methods and classifiers have
been proposed in the area of keystroke dynamics to distinguish
an individual from another. In security, typing pattern of a
user is a behavioral biometrics that can be used as a means
of authentication. In this section, basically the research on
keystroke dynamics involving only Gaussian (normal) distri-
bution is discussed. Also, the way the Gaussian distribution is
integrated in the experiments is explored. Some studies report
promising results and low error rates in the recognition of
the individuals; while some of them deal with verifying active
users transparently. However, because of the lack of a standard
comparison method, it is a difficult task to compare previous
works accurately. Therefore, Table I summarizes the related
works referred in this section by listing the reported results
and important details about the various experiments.

Study FAR % FRR % EER % Text
Length

Free
Text

# of
users

Leggett et al. Static /
Dynamic [11]*

5.0 / 12.8 5.5 / 11.1 - Long χ 36

Bleha et al. [2] 3.1 0.5 - Short χ 10+22>

Monrose et al. [12] 85.63 / 87.18 γ Short χ 63
Hosseinzadeh et al.[9] 4.3 4.8 4.4 Short

√
41

Teh et al. [18] - - 6.46 Short - 50
Deng et al. (GMM /
GMM-UBM) [7]

- - 8.7 / 5.5 Short χ 51

Vural et al. [22]
(Th = 0.9/0.85)

0.25 / 3.45 17.65 / 8.82 - Long
√

39

*FAR stands for False Alarm Rate in that paper. >The number of valid and invalid (random) users, respectively. γOnly

detection rates were reported. Th = Threshold

TABLE I: Comparison of Error Rates

Generally in statistical models, a reference profile is created
using a feature set, then a test profile is compared against
the reference to measure the similarity score as to verify the
user’s identity. Leggett et al. [11] use the digraph latency
(the time elapsed between the two keys of the digraphs)
as a feature in the profile creation process. The generation
of the reference profile consists of recording all possible
digraphs latency values and the calculation of their mean and
standard deviation. Since every digraph is assumed to exhibit
a Gaussian distribution, a normal curve is plotted using the
corresponding mean and standard deviation to validate the
digraphs in the testing process. Accordingly, the test digraphs
are expected to fall within at most δ∗σ distance from the mean
(µ) of the normal curve which is represented as the zone of
acceptance by the shaded area of Fig. 1.

The similarity of the test profile against the reference profile
is calculated as the ratio of the number of digraphs fallen into
the zone of acceptance over all digraphs. It is necessary for a
user to pass a certain percentage of test digraphs to be accepted
as legitimate, where 60% was found enough [21] to confirm
that the test profile was typed by the same user. However, by
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Fig. 1: Zone of Acceptance

utilizing the same technique, Vural et al. [22] report that with
a δ = 1 distance and 0.85 threshold, they obtain a better result
using their own dataset.

Similarly, Bleha et al. [2] extract features from keystroke
timings and compare the test profile against the reference
profile by setting a predetermined threshold value to accept or
reject a user. They use a more complex classification method:
multivariate Gaussian distribution, though, which is the gen-
eralization of Gaussian distribution in higher dimensions.
Basically, the multivariate function is trained with each user’s
passphrase (or name) timing vector separately. Then, the user
whose density is most likely to have generated the test vector
is chosen as the legitimate one among the remaining users
who could have passed the elimination process in previous
steps. Hwang et al. [10] refer to the same technique as a
novelty detector as to how the trained system can detect the
outliers that are different from the normal ones. Also, note that
multivariate Gaussian distribution is a different concept than
the GMM that we use in this paper.

The works by Hosseinzadeh et al. [9] and Deng et al. [7] are
the only ones that make use of GMM for keystroke dynamics.
Hosseinzadeh et al. [9] measure the digraph latency, hold time
and flight time and the combination of them to explore which
fusion ends with the lowest error rate. They find out that hold
time and flight time result in the lowest EER using decision-
level (unanimity rule) fusion. Deng et al. [7], in addition, uses
a Universal Background Model to train another GMM from a
large pool of impostor subjects to generate an impostor profile
to improve authentication. The experiments conducted in these
studies are for verification purposes using only short texts (e.g.,
name, password) to be used as a secondary/supplementary
authentication mechanism rather than continuous user monitor-
ing and transparent authentication. The features are extracted
when a user enters password several times in training session.
The next time the user tries to login, the extracted features are
compared and the user is authenticated if enough similarity
is found. However, in our experiments each user has long
text data to train the system. Each user has 20000 keystroke
records on average. The separation of short vs long text is
an important criterion since in long text data, the system can
capture all digraph statistics and a user can be authenticated

transparently by typing any arbitrary text; whereas short text
data is only based on the length and sequence of the characters
in the phrase, and users are required to type exact same phrase
for every attempt.

Monrose and Rubin [12] generate a reference profile rep-
resented by N-dimensional feature vectors for a user. They
assume that each feature is distributed by a Gaussian function,
and the features are assigned a score using the corresponding
Gaussian by applying similar procedures with the previous
works. Now that a score is obtained for every feature, the
final score is calculated by summing up the scores with
two different methods: weighted and non-weighted probability
measure. In non-weighted measure, all the weights are the
same and the scores are directly added; whereas in weighted
measure, the scores are multiplied with a weight. Teh et al.
[18] also involve weighted sum rule by employing Gaussian
probability distribution and another method to enhance the
final result.

IV. METHODOLOGY

A. Data Collection

In the data collection process, a desktop environment is
set up to record the keystroke data in a lab at Clarkson
University. Thirty nine subjects are enrolled in two different
sessions within a period of 11 months. Each session takes
approximately 1 hour on two separate days. The users who
didn’t take the second session or who had a very high
variability between the sessions are removed. At the end, 30
users are left for cross-validation.

The first session includes a set of survey questions that the
subjects are asked to answer. The survey is carefully designed
so that the subjects can respond to questions without long
pauses and hesitations. To involve more natural typing effect in
the experiment, some questions require subjects to choose their
own writing topics. Also, the participants describe a picture
of a crowded scene with various human activities. The second
session consists of a static-text typing process in which Steve
Jobs’ famous commencement speech at Stanford University is
required to be transcribed by the subjects.

The key-logger is a browser based Java Script program
that collects the character and key’s press and release time in
millisecond. It records the timing data in real time and transfer
them to a PHP web server. The program enforces subjects to
type at least 500 characters to answer the questions. For more
details on the data set, the reader may refer to Vural et al.
[22] whose results can be found in Table I. This data set is
publicly available for research by contacting the authors at
Clarkson University.

B. Measure of Similarity

Digraph is the major feature used in keystroke dynamics [8,
19]. We are also utilizing the digraph latency between the press
times of two consecutive keys in this paper. We expand the
procedure for a single Gaussian described in [11] by applying
it on Gaussian mixtures to which the digraphs are compared
with each component separately. In this method, we created



a 26x26 matrix in which rows and columns are assigned to
letters and the values inside the cells correspond to the mean
and standard deviation of the intersecting letters, i.e., digraph.

In our dataset, the digraphs whose latency is above 200 ms
are ignored. Also, if the occurrence frequency of the digraph
in the text is less than 50, we exclude it.

Algorithm 1 Digraph similarity algorithm

Input: Digraph latency information D = {l1, l2, ..., ln}
Input: Number of components M
Input: Distance δ
Output: Measure of similarity from every component S =
{s1, s2, ..., sm}

1: Partition data D into training Dtrain and test Dtest dataset
2: Fit data Dtrain to a GMM with M number of components
3: Set ~µ, ~σ, ~w from the previous step
4: for i:=1 to M do
5: pass := 0
6: for j:=1 to Ntest do
7: if lj > µi − δ ∗ σi and lj < µi + δ ∗ σi then
8: pass := pass+ 1
9: end if

10: end for
11: si := pass ∗ wi

12: end for

In the training session, the digraphs are parsed from raw
data, and the latency is calculated as the difference between
timestamps. We use the digraph latency between successive
key presses as the measure of similarity as one of the inputs
in Alg. 1. Data is partitioned into train (80%) and test (20%)
data set. The GMM is trained with the digraph train dataset
and the statistics are saved to corresponding vectors. Then,
each data point in the test dataset is checked if it falls into the
zone of acceptance referred in Fig. 1 within δ ∗ σ tolerance
(line 7). The numbers of passed data points are recorded for
each component of the mixture and scaled with the weight
vector to reflect the relative importance of the components on
the output score vector S.

This process is repeated for every digraph of a particular
user. Once we iterate over all users, we scale the scores
resulted by Alg. 1 and report Equal Error Rate (EER) with
respect to various threshold values.

V. RESULTS

The test results are based on two separate long-text sessions
from 30 users. Each user is compared against the other,
and the similarity score is recorded. We use digraph latency
with various options mentioned in [11] to reach the optimum
configurations. We end up with the conclusion that using all
alphabet letters yields the lowest error rate in distinguishing
users. In contrast to Leggett et al. [11], including the space
character does not improve the detection rate in our study.

False Accept Rate (FAR) and False Rejection Rate (FRR)
are two common measurements to report the accuracy of a
system. FAR is calculated by leave-one-out cross-validation

where each user’s similarity is compared with all other users.
FRR is the ratio of the legitimate users who couldn’t pass the
threshold.

We occasionally use pure Gaussian to mean unimodal /
single Gaussian (normal) distribution. Sometimes the word
distribution (or density) is dropped from Gaussian distribution
and only Gaussian (or Gaussians for plural) is used in the
rest of the paper. Also, 1G (single Gaussian), 2G (GMM with
2 components), 3G (GMM with 3 components) abbreviations
are used for ease of describing the results in this section.

The current practice in error reporting is generally by
iterating over distance values with a predefined threshold.
However, by varying both the distance (δ) and threshold (Th)
values, we surprisingly found out that each component (M )
has its own optimal configuration (Γ). 1G (pure Gaussain)
exhibits its best result with {δ = 1, Th = 0.95}; while
2G (GMM with 2 components) peaks at the configuration,
{M = 2, δ = 1, Th = 1}. Table II summarizes all the results
and corresponding configurations.

Leggett et al. [11] set {δ = 0.5, Th = 0.6} to accept the
digraph as valid, while Vural et al. [22] use {δ = 1, Th =
[0.85, 0.9]} as the configuration. The corresponding error rates
can be found in Table I of Section III. Note that we use the
same dataset with Vural et al. [22] in our experiments.

Component FAR % FRR % Distance (δ) Threshold (Th)
1G 0.61 2.94 1 0.95
2G 0.09 2.94 1 1
3G 4.58 5.88 0.9 0.9
4G 4.93 2.94 0.9 0.9
5G 5.44 5.88 1.1 0.9

TABLE II: FAR and FRR

Nonetheless, comparing the accuracy of a system only with
respect to FAR and FRR can sometimes be questionable. These
two error measures tend to be mutually exclusive because if
one of the rates improves to a considerable degree, the other
one turns out to be disruptive [5]. Accordingly, in contrast
to the enhancements in the false accept rate, having a better
detection can cause an increase in the false rejection rate and
users might be declined even if they’re genuine. Therefore,
Equal Error Rate (EER), the intersection of FAR and FRR, is
suggested as a good candidate for comparative analysis [3]. In
this way, the definition of configuration can be expanded to
Γ = {M, δ, Th,EER} by adding the EER. Fig. 2 and Fig. 3
show a more detailed error reporting analysis.

Fig. 2 displays the EER with respect to distance. Although
1G begins with lower error for small thresholds (tight accep-
tance zone), 2G outperforms as it reaches to its best distance
and threshold values. However, the recognition in higher
dimensions degrades and doesn’t follow a regular pattern
because of the singularities that occur in maximum likelihood
approaches (see Section VI).

The best distance values obtained from this experiment are
used in Fig. 3 to plot the charts with respect to threshold. The
charts in Fig. 3 display how FAR and FRR differ by the thresh-
old values, along with the intersection points (EER) marked
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with black dot to show the performance of each component.
The corresponding EER values are listed in Table III. The EER
analysis shows that, 2G can enhance the recognition by up to
93.8 % if applied properly on long text data.
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Fig. 3: Performance by threshold

1G 2G 3G 4G 5G
1.3 % 0.08 % 5.88 % 3.36 % 5.28 %

TABLE III: Equal Error Rate

VI. DISCUSSION

In keystroke dynamics, false acceptance usually stems from
the similarity in user’s rhythm during typing the most common
digraphs. In Gaussian-based identification, this statement cor-
responds to having similar mean and variance values. Gaussian
Mixture Model (GMM) is capable of overcoming this issue by
incrementing the number of components, if enough distinction
is not provided. For example, Fig. 4 and Fig. 5 show the
’th’ digraph distribution for two different users. Although the

histogram bars are quite different, statistically they both share
similar mean and standard deviation with 1 and 2 Gaussians
(components). However, when we run the experiment with
3 components, the users are separated to a considerable
degree. In this way, the system can be adjusted to involve
more components and separate the graph into 2, 3, 4 and
more Gaussians until it eventually makes the separation clear
with additional performance overhead. Consequently, existing
studies which employ Gaussian distribution might enhance the
recognition, by using GMM where applicable.

Fig. 4: GMM with 1, 2 and 3 components

Fig. 5: GMM with 1, 2 and 3 components

In this paper, we show that 2G outperforms 1G in almost all
distance values. However, training in higher dimensions (3G,
4G, etc.) can sometimes adversely affect the recognition as
shown in Fig 2. This phenomenon can be explained by the
curse of dimensionality notion and presence of singularities
[1]. Basically, when one of the Gaussian components ‘col-
lapses’ onto an outlier data point, it may cause severe over-
fitting that can occur in a maximum likelihood (ML) approach
in expectation–maximization algorithm. ML estimates may
lead to mixture models with high variance which yields over-
confident predictions when it underestimates the noise level
[23]. Adopting a Bayesian approach can alleviate this problem
for which we will leave as future work. Readers may refer to
Bishop’s book [1] for more detail.

VII. CONCLUSION

Psychological experiments show that keystroke dynamics
are performed by a set of actions that in each stage, it imple-
ments uniqueness to user’s typing behavior [16]. Keystroke
dynamics can be used in security to authenticate users as
they provide enough distinction if the stages involved during
typing are addressed properly. Since the digraph pattern can
be distorted based on the position or the word it is embedded
in, Gaussian Mixture Model (GMM) is a more appropriate
tool to model the digraphs rather than fitting it into a pure
Gaussian with a single mean and variance. In our experiments,
we show that 2G (GMM with 2 components) can enhance
the recognition by 93.8% over the commonly used 1G (pure
Gaussian). 2G reduces the error rate from 1.3% EER down
to 0.08 % EER. This improvement not only demonstrates
the high accuracy in detection but also signifies the fact that



existing studies can enhance their recognition by applying the
mixture model elaborated in this paper.

In addition, our work points out how the optimal distance
and threshold values can change by varying the number of
components. While 2G outperforms 1G, the improvement does
not follow a regular pattern.

The variability of optimal configuration value based on the
component number will be investigated as a future work along
with user specific parameters emphasized in [9]. Furthermore,
the implementation of a generic algorithm to adjust the pa-
rameters is in our future plans. The algorithm will make the
sensitivity analysis and decide the required number of compo-
nents that is enough for the system to differentiate all users,
taking into account the required accuracy and performance
overhead.
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