
Availability-aware Mapping of Service Function
Chains

Jingyuan Fan, Chaowen Guan, Yangming Zhao, and Chunming Qiao
Department of Computer Science and Engineering

University at Buffalo, Buffalo, NY 14260 USA

Abstract—Network Function Virtualization (NFV) is a promis-
ing technique to greatly improve the effectiveness and flexibility
of network services through a process named Service Function
Chain (SFC) mapping, with which different network services are
deployed over virtualized and shared platforms in data centers.
However, such an evolution towards software-defined network
functions introduces new challenges to network services which
require high availability. One effective way of protecting the
network services is to use sufficient redundancy.

By doing so, however, the efficiency of physical resources
may be greatly decreased. To address such an issue, this paper
defines an optimal availability-aware SFC mapping problem
and presents a novel online algorithm that can minimize the
physical resources consumption while guaranteeing the required
high availability within a polynomial time. Simulation results
show that our proposed algorithm can significantly improve
SFC mapping request acceptance ratio and reduce resource
consumption.

I. INTRODUCTION

Network Function Virtualization (NFV) is a driving force
behind implementing network functions on a virtualized and
shared platform, and it can significantly reduce the hard-
ware cost and investment, as well as greatly improve the
efficiency and flexibility of utilizing hardware resources. In
NFV, network functions are deployed through a process called
Service Function Chain (SFC) mapping. An SFC consists of
a set of Virtual Network Functions (VNFs) interconnected by
logical links. Multiple SFCs from distinct clients may share
the computing and networking resources in order to improve
the resource utilization.

However, service chaining aggravates the availability prob-
lem faced by the cloud industry. Even if the availability of
each VNF is high, the availability of a service chain may be
unacceptable. For example, assume we have a linear chain
which consists of 6 VNFs, and the availability of each VNF
is 0.95, therefore the availability of this chain is 0.956, that
is about 0.74, which cannot meet most applications’ require-
ments. To mask failures, redundancy is a de-facto technique
[14], [19], [7]. However, when deploying redundancy, careful
planning is necessary to avoid waste of resources for service
chains. As shown in Fig. 1, we have a service chain with 4
primary VNFs and the availability requirement is 0.82. The
number near each VNF is its availability. Here we use the
traditional active/standby (i.e., 1+1) redundancy model such
that the primary VNF can be failed over to the standby
entity in case it fails. The solid line and the dashed line
represent one redundancy deployment strategy respectively.

Fig. 1: Two redundancy deployment strategies

While both strategies can achieve the availability requirement
(their availabilities are 0.825 and 0.8205, respectively), it is
clear that the solid one uses less backup VNFs, and may save
resources for other chain requests.

In this paper, we take the first step by addressing the
following problem of availability-aware SFC mapping with
off-site redundancy: what is the minimum number of off-site
backup VNFs service provider needs to provision to guaran-
tee a certain degree of availability of a service chain? In
particular, we are interested in providing off-site redundancy.
It is recommended [4] that such off-site resources should be
available. The objective of our work is to meet each request’s
heterogeneous availability requirement such that a higher SFC
request acceptance ratio can be achieved, while reducing
resource consumption for service providers. To the best of our
knowledge, none of the existing works has considered similar
problems.

In order to solve the problem, we develop a novel algorithm
that improves a service chain’s availability in an iterative
way, and in each iteration, we try to solve the following
two sub-problems: how to efficiently and accurately evaluate
availability of a service chain with off-site redundancy? What
is the optimal strategy to deploy off-site backup VNFs? To
answer the former one, we propose a novel method which
can evaluate a service chain’s availability incrementally in a
polynomial time with negligible error. For the latter one, we
propose a greedy algorithm with a theoretical lower bound
and also show that it is optimal under some circumstances.
By simulation, we show that our proposed algorithm can
significantly improve SFC mapping request acceptance ratio
and reduce resource consumption.

The rest of the paper is organized as follows. Section II
describes our availability and redundancy models. Section III
defines the problem of availability-aware SFC mapping and
shows its complexity. Section IV introduces a polynomial

���
�

���
�

((a)) Linearly Connected Two VNFs

���
�

���
�

((b)) Parallelly Connected Two VNFs

Fig. 2: Two ways of combining VNFs

running time algorithm for availability evaluation and an
approximation algorithm with a theoretical lower bound for
backup VNF selection. We evaluate the performance of the
proposed algorithms in Section V, followed by a conclusion
in Section VI.

II. AVAILABILITY AND REDUNDANCY MODELS

In this section, we briefly discuss the end-to-end availability
model and various redundancy models considered in our work.

A. Availability Model

To estimate the availability for a given service chain de-
ployment, we first need to model the logical structure. In our
work, we assume that the failure of each VNF is independent.

1) Availability of one single component: The availability
of a complex system such as a service chain deployment can
be modelled by decomposing it into constituent components
[4], of which the availability are known. The availability of
a component is the relative share of time the component is
functioning, and thus the probability to find the component
working if checking it at a random point in time. Therefore, the
availability of a VNF can be expressed using uptime followed
by downtime, which can be characterized in terms of Mean
Time Between Failures (MTBF) and Mean Time To Repair
(MTTR), respectively. In general, the availability of a VNF
can be characterized as

A =
Uptime

Uptime+Downtime
=

MTBF

MTBF +MTTR
(1)

2) Availability of composed system: An SFC is generally
composed of a number of VNFs. In order to estimate the
availability of such composite system, which is derived from
the individual components it consists of, two basic ways
of combining components, serial and parallel, need to be
understood. If individual components are connected in a serial
manner, all components that the SFC comprises need to
function at the same time. For example, as shown in Fig. 2
(a), in order to have packets processed by all the functions
provided by this SFC, both V NF 1 and V NF 2 need to be
available at a given time. Therefore, the availability of this
SFC request is:

ASFC = AV NF 1
×AV NF 2

(2)

where AV NF 1 and AV NF 2 are the availabilities of V NF 1

and V NF 2, respectively.

If two individual components are connected in a parallel
way, as shown in Fig. 2 (b), and if both V NF 1 and V NF 2

provide the same function, the requested service is available
when at least one of these two independent components
can function, assuming there is no service disruption due to
fail over. Thus, the availability of this SFC request can be
described as:

ASFC = 1− ((1−AV NF 1)× (1−AV NF 2)) (3)

3) Computing end-to-end availability: In this paper, we
only consider VNF failures for simplicity. Therefore we define
end-to-end availability of a service chain as the probability
to find all functions provided by this chain are available at a
given time. Using these two basic models mentioned above, we
can model and evaluate the end-to-end availability of a more
complicated SFC request with different redundancy models.

B. Redundancy Models

In this paper, we mainly consider three off-site redundancy
models mentioned in [12]. For dedicated protection (DP), the
backup VNF carries no traffic, and assumes the identity of the
primary VNF only in case of a failure. For shared protection
(SP), one backup VNF can take over the traffic when any
one of the primary VNFs it protects fails by allocating the
maximum amount of resources required among all primary
VNFs. The third one is joint protection (JP), which is a
variation of SP and its effectiveness has been shown in [12].
In general, JP requires a backup VNF to reserve resources
that are sufficient for all primary VNFs it protects. In a wide
area network, when the VNFs of a service chain are mapped
to multiple data center sites connected by fiber links, Optical
Orthogonal Frequency Division Multiplexing can be used to
carry the huge amount of traffic flow between these sites, and
JP can effectively save link resources compared to the other
two redundancy modes. For simplicity, for both SP and JP,
we assume one VNF can backup at most two primaries, and
leave the generalization to more primary VNFs to the future
work. However, for such a simple case, we have the following
theorem:

Theorem 1. Verifying if the availability of a given deployed
service chain with backups is above a given threshold is PP-
complete.

Detailed proof can be found in the appendix.

III. PROBLEM FORMULATION & COMPLEXITY

In this section, we formally describe the availability-aware
SFC mapping problem and show the hardness of the problem.

A. Availability-aware SFC Mapping Problem

Given a Physical Network P = (N,E), where N donates
a set of nodes, including data center sites ND where VNFs
can be deployed1 and flow access/exit points NF , and E is the

1For the rest of the paper, terms ”site” and ”data center” are used
interchangeably.

set of physical links (optical fibers) connecting N. Each site
n ∈ ND is associated with a set of k types of resources Skn =
{sin|i ∈ [1, k]}, where sin denotes the capacity of resource
of type i. Each physical link e ∈ E has different amount of
bandwidth be, and the communication delay of each link e
is de. Given the set of resources available at a site n, it can
provide a set of VNFs denoted by Fn (i.e., function constraint).
F =

⋃ND
i=1 Fi is the set of all VNFs.

Assume that there is a set of m service chain requests in the
network, denoted by Γ = {γ1, γ2, . . . , γm}. Each request can
be described by γi = (sγi , dγi , f(γi), Fγi , lγi , αγi). sγi and
dγi represent the ingress and egress of the chain, respectively,
and they are fixed in the network. Fγi is the set of primary
VNFs (corresponding to backup VNFs) of chain γi and the z-
th VNF (1 ≤ z ≤ |Fγi |) in chain is denoted by fzγi . Each VNF
fzγi incurs a processing delay, denoted as dzγi . Thus, a chain
is logically represented as (|Fγi |+2) nodes, including ingress
and egress, and there are (|Fγi | + 1) logical links between
nodes. f(γi) is the bandwidth required for the request, and
nzjγi is the amount of resource of type j that VNF fzγi requires
where j ∈ [1, k]. Each request requires that the end-to-end
delay from ingress to egress is within lγi and the availability is
above αγi . To map a chain request onto the physical network,
we not only need to map all VNFs onto ND but logical links
onto E. To map a VNF to a data center site, we need to
reserve an appropriate amount of resources at that site. In a
wide area network, primary VNFs of a service chain may be
implemented in one single data center for low latency [20],
[18] or distributed at geographically different locations [25]
for reasons [2], [1], [21], [8], such as 1) some data centers
may only implement limited types of network functions to
reduce OPEX, and 2) 3rd party VNFs can be hosted in public
cloud, places like Amazon AWS rather than service providers’
infrastructure. However, each VNF can only be mapped to one
single site. To map logical link between data centers, we need
to allocate an appropriate amount of bandwidth along each and
every physical link along the chosen path to carry the traffic
flow from one VNF to another VNF, if these two VNFs are
mapped to different data center sites. Since we assume the data
center sites are connected with fibers, two constraints needs
to be considered [22]: 1) the wavelength/spectrum continuity,
and 2) the transmission reach of the light-path of a logical link
with a specific modulation format. Link mapping/optimization
inside a data center is beyond the scope of this work, and
plenty of research have been conducted in that area [17]. When
mapping VNFs, their ordering should also be considered.

When no redundant VNFs are provisioned, the availability
of a service chain request γi can be obtained as Aγi =∏
f∈Fγi

Af , where Af is the availability of the VNF f ∈ Fγi .
Here we assume that the ingress and egress nodes and all the
data center sites are always available (i.e., availabilities are 1),
and the service provider can know the availability of a VNF
after it is deployed. Note that all VNFs have heterogeneous
availabilities. However, when there are redundancy, evaluating
availability becomes a hard problem (discussed in Section
II-B). Upon mapping, we also need to consider four key

constraints:
1) Site capacity: the total load of resource type i across

all chain requests and all VNFs, including primary and
backup, at each data center site n ∈ ND should be less
than or equal to its capacity sin.

2) Link capacity: the total load across all chain request and
all logical links at each physical link e ∈ E should be
less than or equal to its bandwidth capacity be.

3) Delay: for a wide area service chain, the end to end
delay of each request γi should be less than or equal
to lγi . The delay includes both VNF processing delay
at data center sites and communication delay along the
links.

4) Availability: The availability of one chain request should
meet the client’s requirement with redundant VNFs if
necessary.

If any of the above requirements cannot be met, we consider
this chain request as being blocked. Note that we only consider
the delay constraint when mapping primary VNFs, and will
extend it to both primary and backup VNF mapping in our
future work. Therefore, we can define the SFC availability-
aware mapping problem as follows. Given a set of SFC
requests, each with a specific availability requirement, we need
to find out the minimum number of backup VNFs needed,
efficiently place primary and backup VNFs to the data center
sites and map logical links to physical links that can satisfy all
the constraints mentioned above. A decision algorithm can be
embedded in a centralized system, such as NFV Management
& Orchestration (MANO), that manages all the incoming
requests.

B. Problem Complexity

In this section, we will briefly discuss the complexity of our
problem. Due to the limit of pages, we defer more details of
the complexity analysis to the appendix. Concretely, below
we list the conclusions we draw from the analysis.

Even with an oracle to compute availability given a mapped
chain request with backups (Theorem 1), we still cannot
optimally decide if there exists a solution for this service chain
request, and finding a local optimal is difficult.

Theorem 2. Determining if there exists a solution for a service
chain request is NPPP -complete.

Theorem 3. Finding a local optimal solution for a chain
request is co-NPPP-complete.

The objective of globally minimizing the number of backup
VNFs further elevates the complexity.

Theorem 4. Finding the optimal solution for one service chain
request belongs to NPNP

PP

.

The complexity classes we mention satisfy these contain-
ment properties and relations to other classes [16]:

P ⊆
NP

co-NP
⊆ PP ⊆

NPPP

co-NPPP ⊆ NPNPPP
⊆ PSPACE

Hence the availability-aware SFC mapping problem is be-
lieved to be intractable.

IV. ALGORITHM DESIGN

In this section, we propose an online algorithm to provide
off-site redundancy for availability-aware wide area service
chaining.

Our design is independent of the specific topology used
by the physical network or service. Our goal is to find the
most resource-efficient mapping for each SFC request while
meeting all four constraints mentioned in III-A. The metric of
interest is the SFC acceptance ratio, defined by the number
of accepted SFC request by the decision algorithm over the
total number of SFC request. The redundancy model used is
JP mentioned in Section II-B.

A. Overview

Based on our complexity analysis in Section III-B, we know
finding the optimal solution is challenging. Hence, to address
the challenges, we can decompose the mapping problem into
two phases: primary mapping and backup mapping. In primary
mapping, we need to map all primary VNFs and the associated
logical links to the physical network. In backup mapping,
we only consider the availability constraint in order to select
backup VNFs. As we decompose our solution in this way, one
can always add more constraints to the problem, which will
only change how primary mapping is done, while our backup
mapping solution can still work; furthermore, it makes the
backup mapping process a “patch” to improve the availability
in other SFC mapping works. The algorithm is summarized
as the follows.

Algorithm 1 Availability-aware SFC mapping

1: for each pair of ingress nin ∈ NF , egress ne ∈ NF do
2: compute K-shortest path offline, denoted as Kninne

3: sort Kninne in descending order based on the delay
4: end for
5: for each service chain request γi ∈ Γ do
6: for each path e ∈ Ksγidγi

do
7: map all VNFs Fγi to the data centers along the

path e while balancing load across all the data centers
subject to the function constraint (similar to copying books
problem)

8: delay = compute the end-to-end delay
9: if delay < lγi & primary mapping succeeds then

10: backup = Ø
11: while EVAL(Fγi

⋃
backup) < αγi do

12: backup = SELECT(Fγi
⋃
backup)

13: end while
14: if a valid backup plan is found then
15: map the backup VNFs and links
16: end if
17: end if
18: end for
19: end for

For primary mapping, we first offline compute K-shortest
path [23] between each pair of ingress and egress nin, ne ∈
NF and sort K paths for each set of paths Kninne in de-
scending order based on the end-to-end communication delay.
Obviously, there are data center sites along each path. Given
a request with fixed ingress sγi and egress dγi , we map it
to the physical network by iterating over all K-shortest path
Ksγidγi

. The primary VNFs of the request are mapped to the
sites along the selected path while balancing load across all
these sites, subject to the delay, site capacity, link capacity and
function constraints. Note that without the function constraint,
our algorithm can still work.

Backup mapping consists of two components: a ’backup
picker’ (Theorem 6 in Section IV-B) that proposes backup
VNFs selection which will maximize the availability, subject
to the resource availability for each site and physical link
(SELECT in Algorithm 1), and a ’backup validator’ (Section
IV-C) that confirms or rejects the proposal by evaluating
the availability and comparing the evaluation with the SFC
requirement (EVAL in Algorithm 1). The process repeats until
either the availability requirement is met, confirmed by the
validator, or no more site and/or link resource is available to
improve the availability of the request, output by the picker.
In each iteration, the picker chooses one backup VNF for two
primary VNFs. If a request is rejected in any one of the above
steps, we redo primary mapping until all K paths are checked.
Note that our backup mapping algorithm can work, regardless
of whether primary VNFs are mapped to one or multiple data
center sites since our algorithm works with the granularity of
VNF.

Next, we in detail discuss the backup mapping procedure.
Since how we choose backup in each iteration depends on how
we evaluate the availability, we first describe the validator.

B. Validating Backup Choice

The validator determines whether the backups proposed by
the picker are enough to meet the availability requirement. As
seen from Theorem 1, the problem is PP-complete, so there’s
no polynomial time solution to solve the problem. Computing
the exact availability requires one to go over exponential
possible states [10]. In order to address this problem, previous
research [15], [24] proposed solutions using Monte Carlo
related methods, but it’s hard to determine how many steps
are needed to converge to the stationary distribution within
an acceptable error, and the procedure is time consuming. In
this subsection, we will show how to estimate availability in
an easier way. In a nutshell, since we choose backups in an
iterative way, the availability of a service chain can be built
incrementally. Compared to other approximation approaches
used in [10], our method does not require one to re-evaluate
the availability of the whole service chain every time the picker
selects.

Let us explain the rationale first. We consider a whole
chain as a composition of several independent sub-chains, and
thus, the availability of the request is the multiplication of the
availability of each independent sub-chains. Here we say a

sub-chain is independent if any VNFs in this sub-chain does
not share backups with VNFs in other sub-chains. Therefore,
before any backup is provisioned, all VNFs are considered as
independent sub-chains, so the availability of a service chain
is the multiplication of the availability of all primary VNFs.
Based on our algorithm, until the availability requirement is
met, two primary VNFs with a backup VNF are selected in
each iteration by the picker (explained in Section IV-C). Note
that these two primary VNFs may or may not belong to the
same sub-chain (i.e., the sub-chain(s) they belong to may or
may not be independent). Then, we will have a new sub-chain
which includes the backup VNF and two sub-chains, each of
which contains one of the two selected primary VNFs. For
example, assume we have a service chain with three sub-chains
N1, N2 and N3. If the picker selects one VNF from N1 and
another one from N2, and provide them with a backup, the
availability of the whole chain would be A12 × A3, where
A12 is the availability of the new sub-chain including sub-
chains N1, N2 and the backup and A3 is the availability
of N3 if N3 is an independent sub-chain. Therefore, how to
efficiently compute A12 is important. Next, we discuss it with
four mutually excluded cases.

Assume the availabilities of the two selected VNFs ni, nj
are Ai, Aj respectively, and the availability of the backup b is
Ab. ni and nj provide functions fni , fnj respectively. Upon
provisioning b as backup there are totally four possible cases:

1) Neither ni nor nj has backups: If neither ni nor nj has
backups, then both ni and nj are considered as independent
sub-chains. Therefore if a backup is provisioned to them, the
availability Aij of the new sub-chain, including ni, nj and b,
equals to the probability that the backup is available plus the
probability that both ni and nj are available while the backup
b is not. Therefore

Aij = 1− (1−Ab)× (1−AiAj) (4)

2) Only one of ni or nj has backups: Without loss of
generality, we assume nj is the VNF with backups, and denote
the sub-chain containing nj as N . With a backup b using JP,
we can see that the function required by nj can be provisioned
either by the sub-chain N or the new backup b, and these
two cases are mutually excluded. Hence the new sub-chain is
considered available if the sub-chain N functions properly and
at least one of the backup b and ni works properly (to provide
function fni), or backup b is available and all the VNFs in
sub-chain N except for the ones providing fnj are available.
Therefore, the availability Aij of the sub-chain, including ni,
N and b, is

Aij = AN × (1− (1−Ab)(1−Ai)) +Ab ×AN\j (5)

where AN\j is the probability that sub-chain N can provide all
the functions except fnj . To compute AN\j , we decompose
AN = A′N − AN\j = A′N − (1 − Aj)

∏M
k=1(1−Ajk)A′′N ,

where A′N is the probability that the sub-chain N may or may
not be able provide fnj , while all the other VNFs are available,
A′′N is the probability that all VNFs except the one providing

fnj in sub-chain N are available, Ajk is the availability of the
k-th backup for nj excluding backup b, and M is the total
number of backups that nj has. We then define τ =

A′
N

A′′
N
≈

1 + ε, where ε is a small constant. Note that as the sub-chain
contains more VNFs, τ gets closer to 1. So

AN\j =
(1−Aj)

∏M
k=1(1−Ajk)AN

τ − (1−Aj)
∏M
k=1(1−Ajk)

(6)

3) Both ni and nj have backups and they belong to different
sub-chains: We denote the sub-chains containing ni and
nj using W and N respectively. Applying similar strategy
described in the previous case, the probability that all the
VNFs in the new sub-chain are available can be decomposed
into two cases: 1) both sub-chains W and N work properly,
and 2) backup b is available and at least one of the sub-chain
W and N fails to provide fni and/or fnj while other VNFs
are available. Hence, the availability Aij of the sub-chain,
including W , N and b, is

Aij = AN ×AW +Ab(AN\jAW\i +AN\jAW +AW\iAN)
(7)

4) Both ni and nj have backups and they belong to the
same sub-chain: Similarly, when all the VNFs in the sub-chain
N containing both ni and nj are available, whether backup
b is available has no influence on the availability of N . On
the other hand, when backup b is available, at most one of
the VNFs providing function fni and fnj should be available.
Thus, the availability Aij of the sub-chain, including N and
b, is

Aij = AN +Ab ×AN\ij (8)

where AN\ij denotes the probability that sub-chain N can
provide all functions except for fni and fnj . Here, verifying
if ni and nj have common backup VNFs is necessary to avoid
double calculating.

Accordingly, the availability of the VNFs selected by the
picker needs to be updated as well. As seen from the methods
described in this subsection, for each iteration the computation
complexity of computing availability is polynomial time with
respect to the number of backup that the selected VNF has.
We will later show in the simulation that the estimation error
is small enough to be neglected.

C. Choosing Backup

The primary job of the picker is to select minimum number
of backups that a service chain requires to meet the availability
requirement. Hence, the Proposition immediately follows [16].

Proposition 1. Selecting minimum number of backups cannot
be approximated within any fixed factor in polynomial time
unless P=NP.

The intractability result holds in general, i.e., when no
further constraints are put on the problem instances. Therefore,
solving this problem is also hard. In this subsection, we
propose a greedy heuristic to select backup VNFs (SELECT in
Algorithm 1) to maximize the availability that a service chain

can achieve in each iteration assuming all backups have the
same availabilities and we can compute the exact availability
of a chain in polynomial time. Before presenting the detailed
algorithm we first define improvement ratio of availability.

Definition 1. Define an improvement ratio as the ratio of the
improvement of the end-to-end availability to the end-to-end
availability before provisioning a backup.

Then we can have the following Theorem.

Theorem 5. Provisioning a backup VNF to two primary
VNFs whose availabilities are among the lowest maximizes the
improvement ratio for each case described in Section IV-B.

Here we only prove Theorem 5 for the second case in
Section IV-B. Note that we can similarly prove Theorem 5
for other cases as well (in fact, case 1 is simpler, and cases 3
and 4 are based on case 2).

Proof. Given two VNFs ni and nj selected, b as a backup
VNF, and assume nj already has backups. As nj already has
backups, we must have computed the availability of the sub-
chain N which contains nj according to Section IV-B. Then
the end-to-end availability before provisioning backup b is
Abefore = A1A2 . . . AkAiANAp . . . Aq , and the availability
after adding the backup is Aafter = A1A2 . . . Ak(AN (1 −
(1 − Ab)(1 − Ai)) + AbAN\j)Ap . . . Aq where A1A2 . . . Ak
and Ap . . . Aq are the availabilities of the rest independent
sub-chains, and AN is dependent on Aj . Therefore u is,

u =
Aafter −Abefore

Abefore
= −Ab +

Ab
AiAN

(AN +AN\j) (9)

Let’s substitute Eq. (6) for AN\j , and let S = (1 −
Aj)

∏M
k=1(1−Ajk) then calculate the partial derivatives with

respect to Ai and Aj respectively,

uAi =
∂u

∂Ai
= − Ab

A2
iAN

(AN +AN\j) (10)

uAj =
Ab
Ai

(S′A2
N + 2∂AN∂Aj

S ×AN)(τ − S)− (τ − S)′S ×A2
N

(τ − S)
2

(11)
As the availability is always greater than or equal to 0, and

Ai ∈ [0, 1], from Eq. (10) we can easily tell that u decreases
monotonically as Ai increases. While the monotonic property
of Eq. (11) is not as obvious as Eq. (10). To see that, we let
uAj = 0 to compute the critical point, and get

2
∂AN
∂Aj

= (
S

τ − S
+ 1)

AN
1−Aj

(12)

Solve this partial differential equation, and get

AN =

√√√√ τ∏M
k=1(1−Ajk)

− (1−Aj)

1−Aj
(13)

which means that when the equation holds true, we get the
critical point. However, τ∏M

k=1(1−Ajk)
� 1 since τ > 1,

M ≥ 1 and both AN ∈ [0, 1] and Aj ∈ [0, 1]. Therefore

this equation can never hold, which means u is a monotone
function respect to Aj in its domain. Also we can easily check
uAj=1 < uAj=0, so we know that u decreases monotonically
as Aj increases. Therefore, selecting two VNFs with lowest
availabilities leads to the largest improvement ratio.

Define AE(B) as the function to accurately calculate the
availability of a service chain with a set of backup VNF
B, and ρb(B) = AE(B ∪ {b})−AE(B) as the availability
improvement when adding a backup VNF b. So AE(Ø) is the
availability of the service chain without any backups. Define ρib
as the availability improvement when a backup b is provisioned
and the relationship of the two VNFs that the picker selects
belongs to case i. i is the case number as defined in Section
IV-B. Then we have the following Lemma.

Lemma 1. ρ1b > ρ2b > ρ3b > ρ4b

Proof. Here we only prove the first inequality. One can prove
the rest using the same method. Given a service chain which
consists of three independent sub-chains, N1, N2 and N3. In
N1 and N2 all VNFs are primary while N3 is composed of
primary and backup VNFs. Either we can provide a backup b
for VNF i and j or VNF i and p, where VNF i, j and p are
primary VNFs in sub-chain N1, N2 and N3, respectively. If
VNF i and j are selected, ρ1b = (Ab−AbAN1AN2)×AN3 ; if
VNF i and p are selected, ρ2b = (AN3

−AN3
AN2

+AN3\p)×
AbAN1

. For ρ1b > ρ2b , the following inequality must hold

1−AN1

AN1

>
AN3\p

AN3

(14)

We argue that this inequality should hold in practice where
failure of a VNF happens relatively rarely, which makes 1 −
AN1 is at least one order of magnitude larger than AN3\p,
while AN1

and AN3
are about the same order.

Together with Theorem 5, we outline how picker selects
backup VNFs with the following Theorem.

Theorem 6. Selecting two VNFs whose relationship belongs
to the category in Section IV-B with the smallest case number,
and settling ties by choosing the VNFs whose availabilities are
among the lowest would maximize the availability improve-
ment for each iteration (Line 11-13 in Algorithm 1).

Proof. Based on Theorem 5 and Lemma 1, the theorem
follows immediately.

Next, we analyze how close the availability derived from
the backup plan selected by the picker is to the one achieved
by the optimal backup solution. Assume the request has n
primary VNFs, and Kb is the number of backup VNFs that
can be provisioned.

Theorem 7. When Kb ≤ dn2 e, our greedy backup selection
method can achieve the optimal solution.

Proof. When Kb < dn2 e, or Kb = dn2 e and n is even,
according to Lemma 1, the VNFs that each one of Kb backup
protects should not overlap. To prove the optimality of this

greedy algorithm, we need to prove the greedy choice property
and the optimal structure property [11].

Greedy Choice Property: The greedy algorithm selects two
VNFs with the lowest availabilities among all primary VNFs
as the first pair of VNFs to be provisioned with a backup.
Say these two VNFs are i and j, and the backup VNF is b.
We have to show that there exists an optimal backup strategy
that also contains a backup to protect i and j. There are four
possible cases:

1) The optimal backup strategy contains a backup to protect
VNFs i and j, then we are done.

2) The optimal backup strategy doesn’t contain any backup
to protect either i or j. Then we can remove any one
backup from the optimal strategy and add a backup to
protect i and j. By doing so, we get a higher availability.
Contradiction.

3) The optimal backup strategy contains a backup to protect
one of i and j. Similarly, we can remove this backup
from the optimal strategy and add a backup to protect
i and j so that we can get a higher availability. Contra-
diction.

4) The optimal backup strategy contains two backups
which protect i and j respectively. Assume VNFs i and p
is one pair and VNFs j and q is the other pair. Without
loss of generality, we assume Ai < Aj < Ap ≤ Aq ,
then we need to show when i and j form a pair and p
and q form another pair, we have a higher availability.
Based on case 1 in Section IV-B, if we can get a higher
availability, then

(Ab + (1−Ab)AiAj)(Ab + (1−Ab)ApAq) >
(Ab + (1−Ab)AiAp)(Ab + (1−Ab)AjAq)

⇔ AiAj +ApAq > AiAp +AjAq

⇔ Ap(Aq −Ai) > Aj(Aq −Ai) (15)

Since Aq > Ai and Ap > Aj by our assumption, the
inequality holds. Contradiction.

Optimal Structure property: Let P1 be the subproblem
obtained from the original problem P by removing VNFs i
and j. Let S be an optimal backup strategy for the original
problem P , in which VNF i and j are the first pair of VNFs
that is selected by the picker. Let S1 be obtained from S by
deleting b. Then S1 is a backup strategy for the subproblem
P1. We need to show that S1 is an optimal solution for P1.
Towards a contradiction, suppose this is not the case and we
have S′1 as the optimal solution for P1. Then we can build a
backup strategy S′ = S′1

⋃
b for P with a higher availability.

This contradicts the fact that S is an optimal strategy of P .
Since both properties hold, the greedy algorithm is correct.
When Kb = dn2 e and n is odd, after we choose bn2 c pairs of

VNFs to provide with a backup each, we achieve the maximum
availability possible. Then we greedily find the VNF with a
backup protected and the lowest availability and pair it with the
only left primary VNF which doesn’t have a backup to provide
them a with backup, which can maximize the availability based
on Theorem 5. This concludes the proof.

With Kb > dn2 e, we can prove our algorithm is near-
optimal.

Theorem 8. when Kb > dn2 e, the algorithm computes a
backup scheme which maximizes the availability with a nor-
malized relative error of e−1

e AE(OPT) + 1
eAE(Ø), where

AE(OPT) and AE(Ø) are the availabilities with an optimal
backup solution and without backups, respectively.

Proof. For arbitrary backup set S and T with T − S =
{j1, j2, . . . , jτ} and S − T = {k1, k2, . . . , kν}, we have

AE(S ∪ T)−AE(S) =
τ∑
t=1

[AE(S∪{j1, j2, . . . , jt})−AE(S∪{j1, j2, . . . , jt−1})] =

τ∑
t=1

ρjt(S ∪ {j1, j2, . . . , jt−1}) ≤
∑

v∈T−S
ρϕ(S

′)
v (S′) (16)

where ϕ(S′) is the smallest case number of calculating ρj1 ,
and this can be realized by dynamically changing S’. When
adding an element, say jp, into the backup set, if the way
of calculating the availability is the same as the way of
calculating availability when adding the 1st element, S′ = S∪
{j1, j2, . . . , jν−1}; otherwise, S′ = S ∪ {j1, j2, . . . , jν−1} −
{Q}, where Q ⊆ S ∪ {j1, j2, . . . , jν−1} so as to ensure
the availability is calculated using the same case number
when adding the 1st backup VNF. Based on Lemma 1, this
inequality holds. Similarly,

AE(S ∪ T)−AE(T) =
ν∑
t=1

[AE(T∪{k1, k2, . . . , jt})−AE(T∪{k1, k2, . . . , kt−1})] =

ν∑
t=1

ρkt(T ∪ {k1, k2, . . . , kt−1} − kt) ≥
∑

v∈S−T
ρϕ(χ)v (χ)

(17)

where χ = T ∪ S − {v} and v ∈ S − T . Subtracting Eq. (17)
from Eq. (16), we get

AE(T)−AE(S) ≤∑
v∈T−S

ρ
ϕ(S′)
j (S′)−

∑
v∈S−T

ρ
ϕ(χ)
j (χ) ≤

∑
v∈T−S

ρ
ϕ(S′)
j (S′)

(18)

since the improvement of availability is always greater than
or equal to 0. Taking T as the optimal solution, S to be the
set St generated after t iterations of the greedy algorithm, and
using

AE(St) = AE(Ø) +

t−1∑
i=0

ρi (19)

and AE(OPT) = AE(T), |T − St| ≤ Kb, we have

AE(OPT) ≤ AE(Ø) +

t−1∑
i=0

ρi +
∑

v∈T−St
ρϕ(S

′′)
v (S′′) (20)

where S′′ is constructed from St in the same way as con-
structing S′ from S. Now take t = 0, we have

AE(OPT) ≤ AE(Ø) +Kb × ρmax (21)

where ρmax = max(ρ
ϕ(S′′)
v (S′′)), ∀v ∈ T − St. So,

AE(OPT)−AE(Ø) ≤ Kbρmax ≤ Kb(AE(Φ)−AE(Ø))
(22)

where AE(Φ) is the availability of a backup solution picked by
the picker. ρmax ≤ AE(Φ)−AE(Ø) holds based on Lemma
1 and Theorem 7. So we have,

AE(OPT)−AE(Φ)

AE(OPT)−AE(Ø)
≤ Kb − 1

Kb
(23)

Since (Kb−1Kb
)
Kb ≤ e−1 [13], we have the approximation

ratio
e− 1

e
AE(OPT) +

1

e
AE(Ø) ≤ AE(Φ) (24)

V. EVALUATION

In this section, we use synthetic policy to evaluate our
algorithm in terms of (i) SFC request acceptance ratio, (ii)
backup resource consumed by requests, and (iii) accuracy of
availability evaluation by the validator (Section IV-B).

A. Experimental Workloads

1) Physical Network: For physical networks, we use the
network map and delay statistics of a large ISP network [5].
Each node of the network represents one single data center,
which can provide three types of resources, namely CPU,
memory and storage, with the capacity between [1500, 2500]
units each. Each data center is associated with an ingress and
an egress. The delay between the ingress/egress with their
associated data center site is assumed to be between [1, 3]
ms. We assume there are 10 types of functions in the network,
and each of the data center sites can provide four to six
functions. Each of the fiber links between the data center sites
has a spectrum capacity of 16THz with a spacing of 12.5GHz
per spectrum slot. The availability of each mapped VNF is
randomly distributed within [0.9, 0.99].

2) Service Chain Requests: Each service chain request con-
sists of two to six VNFs interconnected. Each VNF demands
three types of resources and can provide one function, and
the demand for each kind of resource is uniformly distributed
between 0 and 30. Each logical link has a bandwidth demand
among {10, 40, 100, 200} Gb/s with equal probability. For
each service chain request, we select the availability require-
ment among {95%, 99%, 99.9%}, similar to the ones used
by Google Apps [3]. The processing delay of a VNF is set to
50-150µs [9], and the end-to-end delay budget of each service
chain request is set to 50-300ms [6].

We evaluate our algorithm using a Macbook with OS X
10.9 with 1.7 GHz Intel Core i7 processor and 8GB memory.
Our algorithms are implemented in C++. The statistics are the
average results.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

C
D

F

Availability Estimation Error (10-4)

Fig. 3: CDF of the estimation
error

0

100

200

300

400

500

600

300 500 700

N
u

m
b

er
 o

f
A

cc
e

p
te

d
 R

eq
u

e
st

s

Number of Requests

DP+picker
SP+picker
JP+random
JP+baseline
JP+picker

Fig. 4: Number of accepted
requests

B. Availability Evaluation Accuracy

We first evaluate the availability evaluation accuracy
achieved by validator proposed in Section IV-B. Table I
summarizes the median estimation error when the number of
VNF is randomly chosen from two to six and τ is varied.

TABLE I: Median Estimation Error Achieved by Validator

τ 0.03 0.05 0.07 0.09 0.11
Median Error (10−4) 1.63 1.55 1.38 1.71 2.2

From the table, we can see that when τ is 0.07, the
estimation error is the smallest, and we fix τ to 0.07 for the
rest simulations. With τ = 0.07, we evaluate the Cumulative
Distribution Function (CDF) of the estimation error of val-
idator as shown in Fig. 3 when the number of request is 100
to ensure that the request acceptance ratio is 100%, and the
availability threshold is set to 99.9%. We can observe that 90%
of the error is smaller than 3.5 × 10−4, which demonstrates
the effectiveness of using the validator to predict the service
availability.

C. SFC Request Acceptance Ratio

To understand how the picker and JP works, we compare
the number of requests which can be accepted with different
redundancy models and backup selection methods. Since a
request can be accepted if and only if there is enough
resource and the availability requirement can be met, the
rationale behind this experiment is that an algorithm with
better resource efficiency can accept more requests. From Fig.
4, we can see that JP + picker achieves the best acceptance
ratio performance, and in particular, it outperforms SP and
DP, both of which adopt the picker, by 15.1% and 42.8%,
respectively when the number of request is 700. To show
the effectiveness of our algorithm in picking backups, we
compare the picker with a random selector (JP+random)
which randomly selects two VNFs for each iteration to add
a backup, as well as a baseline VNF selection algorithm
(JP+baseline) in [12] which in each iteration the picker selects
two primary VNFs whose availabilities are among the lowest.
JP+random achieves almost the same performance as SP +
picker, and JP+baseline performs about 9% worse than the
optimal. Another interesting thing we can find from the figure
is that when the number of requests is small (i.e., 300), all four
algorithms have similar performance; while as the number of

0

1

2

3

4

300 500 700

Ti
m

e
(s

)

Number of Requests

Validator
Picker

Fig. 5: Running time of picker and validator

4

6

8

10

12

14

95 99 99.9

A
ve

ra
ge

 N
u

m
b

er
 o

f
Lo

gi
ca

l L
in

ks

Availability Requirement (%)

DP+picker
SP+picker
JP+picker

Fig. 6: Average logical links
number w.r.t. different avail-
ability requirement

1

2

3

4

5

6

7

95 99 99.9

A
ve

ra
ge

 N
u

m
b

er
 o

f
B

ac
ku

p
 V

N
Fs

Availability Requirement (%)

DP+picker

SP+picker

JP+picker

Fig. 7: Average backup VNF
number w.r.t. different avail-
ability requirement

requests increases, the other three algorithms saturate faster
than JP + picker. Therefore we can know that compared with
other methods, JP + picker can meet availability requirement
while consuming less resources. Furthermore, we analyze the
running time of our algorithm as shown in Fig. 5. With 700
service chain requests, the total running time is less than 4
seconds, while the validator never uses more than 2 seconds.

D. Backup Resource Consumption

To further understand how JP + picker can save resources,
we compare the average number of backup VNFs and logi-
cal links used for each service chain request w.r.t. different
availability requirement. Here logical links refer to the links
connecting a backup and their associated primary VNFs. The
number of request used in this experiment is 700, and only
the accepted requests are considered. As shown in Fig. 6,
JP + picker uses 27.6% and 10.9% fewer links compared
with the other two methods respectively when the availability
requirement is “three nines” (i.e., 99.9%). Similar observations
can be made when comparing the number of backup VNFs as
illustrated in Fig. 7. We can see that JP + picker requires fewer
number of backup VNFs. In particular, JP + picker can save
up to 42.1% of backup VNFs.

VI. CONCLUSION

NFV explores the virtualization technologies to of-
fer network-as-as-Services through connected/chained VNFs.
Since telecom networks must be always on, it is critical to
provide effective and efficient protection and resource alloca-
tion schemes for guaranteeing network service availability. In
this paper, we propose an online algorithm for availability-
aware SFC mapping for wide area service chaining, which

can minimize the resources allocated to service chain requests
while meeting clients’ heterogeneous availability requirement.
In addition we have developed a lower bound for our backup
VNFs picking algorithm. Furthermore, we have shown that
our design is able to evaluate service availability with a
negligible estimation error in polynomial time. We have
also validated our design through extensive simulations and
demonstrated that it can achieve a significant performance
improvement compared to traditional redundancy models and
baseline backup VNFs picking method.

REFERENCES

[1] Aryaka. www.aryaka.com.
[2] At&t domain 2.0 vision white paper. https://www.att.com/Common/

about us/pdf/AT&T\%20Domain\%202.0\%20Vision\%20White\
%20Paper.pdf.

[3] Google apps service level agreement. http://www.google.com/apps/intl/
en/terms/sla.html.

[4] Network functions virtualisation (nfv) resiliency requirements, 2015.
http://www.etsi.org/deliver/etsi gs/NFV-REL/001 099/001/01.01.01
60/gs nfv-rel001v010101p.pdf.

[5] U.s. network latency. http://ipnetwork.bgtmo.ip.att.net/pws/network
delay.html.

[6] Verizon network infrastructure planning. http://innovation.verizon.com/
content/dam/vic/PDF/Verizon SDN-NFV Reference Architecture.pdf.

[7] vsphere. https://www.vmware.com/products/vsphere/features/
fault-tolerance.

[8] A. Abujoda and P. Papadimitriou. Midas: Middlebox discovery and
selection for on-path flow processing. In COMSNETS, pages 1–8, 2015.

[9] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann.
Applying nfv and sdn to lte mobile core gateways, the functions
placement problem. In Proceedings of the 4th workshop on All things
cellular: operations, applications, & challenges, pages 33–38. ACM,
2014.

[10] C. J. Colbourn and C. Colbourn. The combinatorics of network
reliability, volume 200. Oxford University Press New York, 1987.

[11] T. H. Cormen. Introduction to algorithms. MIT press, 2009.
[12] J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao. Grep: Guaranteeing

reliability with enhanced protection in nfv. In Proceedings of the 2015
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, pages 13–18. ACM, 2015.

[13] M. Feldman, J. Naor, and R. Schwartz. A unified continuous greedy
algorithm for submodular maximization. In Foundations of Computer
Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages 570–
579. IEEE, 2011.

[14] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data
centers: measurement, analysis, and implications. In ACM SIGCOMM
Computer Communication Review, volume 41, pages 350–361. ACM,
2011.

[15] M. Jerrum and A. Sinclair. The markov chain monte carlo method:
an approach to approximate counting and integration. Approximation
algorithms for NP-hard problems, pages 482–520, 1996.

[16] J. Kwisthout. Most probable explanations in bayesian networks: Com-
plexity and tractability. International Journal of Approximate Reasoning,
52(9):1452–1469, 2011.

[17] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of
data center networks with traffic-aware virtual machine placement. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[18] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker. E2: a framework for nfv applications. In Proceedings of
the 25th Symposium on Operating Systems Principles, pages 121–136,
2015.

[19] R. Potharaju and N. Jain. Demystifying the dark side of the middle:
a field study of middlebox failures in datacenters. In Proceedings of
the 2013 conference on Internet measurement conference, pages 9–22.
ACM, 2013.

[20] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 323–336, 2012.

[21] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network pro-
cessing as a cloud service. ACM SIGCOMM Computer Communication
Review, 42(4):13–24, 2012.

[22] Z. Ye, A. N. Patel, P. N. Ji, C. Qiao, and T. Wang. Virtual infrastructure
embedding over software-defined flex-grid optical networks. In 2013
IEEE Globecom Workshops (GC Wkshps), pages 1204–1209. IEEE,
2013.

[23] J. Y. Yen. Finding the k shortest loopless paths in a network. manage-
ment Science, 17(11):712–716, 1971.

[24] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba. Venice: Reliable
virtual data center embedding in clouds. In IEEE INFOCOM 2014-IEEE
Conference on Computer Communications, pages 289–297. IEEE, 2014.

[25] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
et al. Steering: A software-defined networking for inline service
chaining. In IEEE ICNP, pages 1–10, 2013.

APPENDIX

In the appendix, we prove the availability-aware SFC map-
ping problem belongs to NPNPPP

, which is commonly believed
to be intractable. We first formally formulate the problem
as a Boolean formula. Since a data center can provide a
set of functions, and based on the joint protection method
we propose, we need several auxiliary variables. Note that
using SP instead cannot reduce the time complexity, and we
can prove the same properties by changing the formulation
slightly; using DP only simplifies the evaluation process, while
this problem still remains hard. Given that JP can potentially
brings more advantages in terms of effectiveness and resource
consumption, here we only prove the case using JP .

For a data center n, pn represents if n is used for mapping
for the request, and qn and q̄n denote if n is used as a mapping
site for a primary VNF or a backup VNF, respectively. Assume
a site n can provide a set of functions Fn, then we use
{xin|n ∈ ND} to show the set of functions site n provides.
For example, given a physical network with 3 data centers
n1, n2 and n3, which can provide functions f1, f2, f3, f2 and
f1, f3 respectively, and a service chain request which needs
functions f2, f3, we can write the Boolean formula as

ϕ = C(n1) ∧ C(n2) ∧ C(n3) ∧ func(n1, n2, n3)

= (((p1 ∧ q1) ∧ (x11 ∧ x̄21 ∧ x̄31) ∧ (x̄11 ∧ x21 ∧ x̄31)

∧ (x̄11 ∧ x̄21 ∧ x31)) ∨ ((p1 ∧ q̄1) ∧ (x11 ∧ x21 ∧ x̄31)

∧ (x̄11 ∧ x21 ∧ x31) ∧ (x11 ∧ x̄21 ∧ x31))

∨ (p̄1 ∧ x̄11 ∧ x̄21 ∧ x̄31)) ∧ ((p2 ∧ x22) ∨ (p̄2 ∧ x̄22))

∧ (((p3 ∧ q3) ∧ (x13 ∧ x̄33) ∧ (x̄13 ∧ x33))

∨ ((p3 ∧ q̄3) ∧ (x13 ∧ x33)) ∨ (p̄3 ∧ x̄13 ∧ x̄33))

∧ (((x21 ∧ x1) ∨ (x22 ∧ x2)) ∧ ((x31 ∧ x1) ∨ (x33 ∧ x3)))

where C(ni) shows the constraints for site i, and
func(n1, n2, n3) indicates the functions provided by each site.
x1, x2 and x3 is 1 if this site can function normally at a given
time and 0 otherwise. We are trying to find the minimum
number of backup VNFs needed to be selected, which is
equivalent to finding the maximum set A ∈ ND, and the value
of each element pn in this set can be set to 0 such that the
rest can satisfy the Boolean formula with probability greater

or equal to certain threshold. As the first step, we show that
verifying if the availability is above clients’ requirement in a
polynomial time is not a viable option.

Theorem 9. Verifying if the availability of a given deployed
service chain with backups, donated as problem VA, is above
a given threshold is PP-complete.

Proof. By the definition of language in PP, it is clear problem
VA is in PP. Note that MAJSAT [16] is a PP-complete
problem. To show PP-completeness, we can reduce MAJSAT
problem to problem VA. Note that, for an instance φ with n
variables of MAJSAT, the number of all possible assignments
to φ is 2n. Thus, we have

φ ∈MAJSAT ⇐⇒ the number of assignments that

satisfies φ is greater than 2n−1

⇐⇒ Pr[φ(x)] >
1

2
with x ∈ {0, 1}n

Given that problem VA’s instance is a pair (φ, θ) consisting
of a Boolean formula φ and a threshold θ. Hence, with a
MAJSAT instance φ, we can set instance (φ, 1/2) for problem
VA. To verify the correctness,

φ ∈MAJSAT ⇐⇒ Pr[φ(x)] >
1

2
with x ∈ {0, 1}n

⇐⇒ the probability that a given formula

φ can be satisfied is greater than

a given threshold
1

2

⇐⇒ (φ,
1

2
) ∈ V A,

φ /∈MAJSAT ⇐⇒ Pr[φ(x)] ≤ 1

2
with x ∈ {0, 1}n

⇐⇒ the probability that a given formula

φ can be satisfied than a given

threshold
1

2

⇐⇒ (φ,
1

2
) /∈ V A.

Thus, it is a valid many-one reduction from MAJSAT problem
to problem VA. Therefore, problem VA is also PP-complete.

Even with an oracle to the problem VA, we still cannot
optimally decide if there exists a solution for a certain request,
and finding a local optimal is difficult.

Theorem 10. Determining if there exists a solution for a
service chain request, denoted as problem DE, is NPPP -
complete.

Proof. We can construct a nondeterministic oracle Turing ma-
chine N with oracle that solves problem VA, which conducts
the following three steps to solve the given instance (A, φ, θ)
of problem DE:

1) Randomly guess a solution to set A, which takes time
O(|A|)

2) Hardcode the guess to φ to obtain φ′, which takes time
O(|φ|)

3) Query the VA oracle with (φ, θ)

Since O(|Y |) and O(|φ|) are polynomials in terms of n, this
satisfies the definition of NPPP class. Hence, problem DE is
in NPPP. To show NPPP-completeness, we reduce E-MAJSAT
[16] to problem DE. In E-MAJSAT problem, for an instance
(k, φ) (we represent a sequence of variables x as x1x2 · · ·xn),

(k, φ) ∈ E −MAJSAT ⇐⇒ (∃ x1x2 · · ·xk ∈ {0, 1}k)

](assignments to xk+1 · · ·xn
that satisfies φ) > 2n−k

⇐⇒ (∃x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] >
1

2
,

where](Y) denotes the number of elements in set Y . With
such an E-MAJSAT instance, we first define a set of variables
as A = x1, x2, · · · , xk and then set instance (A, φ, 1/2) for
problem DE. To verify correctness

(k, φ) ∈ E −MAJSAT ⇐⇒ (∃ x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] >
1

2
⇐⇒ there exists a solution to set

A such that the probability

that a given φ can be

satisfied is greater than

a given threshold

⇐⇒ (A, φ,
1

2
) ∈ DE,

(k, φ) /∈ E −MAJSAT ⇐⇒ (6 ∃ x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] >
1

2
⇐⇒ (∀x1x2 · · ·xk ∈ {0, 1}k)

Pr[φ(x)|x1x2 · · ·xk] ≤ 1

2
⇐⇒ there DOESNOT exist a

solution to set A such that

the probability that a given

φ can be satisfied is greater

than a given threshold

⇐⇒ (A, φ,
1

2
) /∈ DE,

Thus, this is a valid many-one reduction from E-MAJSAT
problem to DE problem. Therefore, problem DE is NPPP-
complete.

Let LM denote the problem of finding a local optimal
solution for a chain request. Now we can define the decision
problem form of LM.

Definition 2. Does there exist a set of backups of size that
can make the availability of a given service chain request γi
at least θ, given a set of sites A, where each element is set to
0?

We denote this decision problem version of LM as DLM.
We can see that the input to DLM is a set of backups along
with φ and θ, and the output is a boolean value. Apparently,
we can solve DLM once we can solve LM. This means that
LM is at least as hard as DLM. Moreover, LM and DLM
are actually equivalent. To prove that, we can just prove the
following lemma.

Lemma 2. DLM is at least as hard as LM.

We can prove this lemma by constructing an algorithm
solving LM using a DLM problem oracle, denoted as
ODLM (A, φ, θ). The algorithm solving LM with a given chain
request φ and a threshold θ as input is as follows:

Algorithm 2 Deciding local optimal

1: S ← {n1, · · · , n|ND|}
2: A← ∅
3: for k from 1 to n do
4: A← A ∪ {bk}
5: result← ODLM (A, φ, θ)
6: if result = FALSE then
7: A← A\{bk}
8: end if
9: end for

10: return A

Note that the above algorithm is actually a polynomial-time
Turing reduction. This means via the above algorithm, LM can
be solved with a DLM oracle, which indicates that DLM is
at least as hard as LM. Overall, we obtain that DLM and LM
are equivalent.

Lemma 3. The decision problem DLM is co-NPPP-complete.

Proof. To show co-NPPP-completeness, we need to prove that
1) DLM is in the co-NPPP class and 2) DLM is co-NPPP-hard.
For 1), since the worse case happens when all the variables in
A are set as 0, then by definition of co-NP, such case satisfies
means all other assignments to A also satisfy the boolean
function. Overall, it becomes for all assignments to A, at least
half of the assignments to the rest backups satisfy the boolean
function, which is computed using a PP oracle. Hence, we can
see that 1) follows from the definition of class co-NPPP. Next,
to prove 2), we can construct a many-one reduction from A-
MAJSAT problem to this problem. Concretely, note that the
formula φ in the input instance (k, φ) is not necessarily of
monotone form, while the Boolean formula in instance for
problem DLM is monotone. Hence, in order to transfer an
A-MAJSAT instance to a DLM instance, we need to employ
the standard way of converting general Boolean formula to
monotone CNF Boolean formula φ′. Observe that, if fixing a
subset of variables A, in such a monotone CNF Boolean for-

mula, the number of satisfying assignments to φ′ is minimum
with all variables in A set to be 0. It is trivial to derive such
a set A from k in A-MAJSAT instance. At this point, we set
a threshold θ as 1

2 and then get an instance (A, φ′, 12). With
this (A, φ′, 12) as input to the DLM oracle, if it outputs TRUE,
then it means the majority of the assignments are satisfying
when all the variables in A are set as 0 (which is the minimum
case). Thus, for A being set to other assignment, the majority
of the assignments must satisfies φ′. Hence, we can use an
oracle solving problem DLM to solve A-MAJSAT problem. It
is easy to check the validity of this many-one reduction. Since
A-MAJSAT problem is co-NPPP-complete, therefore, problem
DLM is also co-NPPP-complete.

Theorem 11. Finding a local optimal solution for a chain
request is co-NPPP-complete.

Proof. Based on Lemma 2 and Lemma 3, this theorem
immediately follows.

The objective of globally minimizing the number of backup
VNFs further elevates the time complexity.

Theorem 12. Finding the optimal solution for one service
chain request belongs to NPNP

PP

.

Proof. By the definition of NPNPPP
[16], we can construct

a polynomial-time bounded nondeterministic oracle Turing
machine M to accept our problem with oracle to a problem in
co-NPPP as follows:
Taken an instance (φ, θ) of our problem as input

1) Randomly guess a maximum set A that will meet our
property

2) Use (A, φ, θ) to access the DLM oracle to decide the
maximal set

Clearly, before verifying, the randomly generated set A by
machine M is just a possible candidate for maximum set. To
make sure that, M uses DLM oracle to verify the correctness.
Note that we reply on the power of nondeterministic Turing
machine to guess a possible solution, which takes O(n) time.
Also DLM is co-NPPP-complete. Therefore, our problem is in
NPNPPP

.

