
Consensus in the Cloud: Paxos Systems Demystified

Ailidani Ailijiang∗, Aleksey Charapko† and Murat Demirbas‡
Computer Science and Engineering

University at Buffalo, SUNY
Buffalo, NY 14260

Email: ∗ailidani@buffalo.edu, †acharapk@buffalo.edu, ‡demirbas@buffalo.edu,

Abstract—Coordination and consensus play an important role
in datacenter and cloud computing, particularly in leader
election, group membership, cluster management, service dis-
covery, resource/access management, and consistent replication
of the master nodes in services. Paxos protocols and systems
provide a fault-tolerant solution to the distributed consensus
problem and have attracted significant attention as well as
generating substantial confusion. In order to elucidate the
correct use of distributed coordination systems, we compare
and contrast popular Paxos protocols and Paxos systems and
present advantages and disadvantages for each. We also cat-
egorize the coordination use-patterns in cloud, and examine
Google and Facebook infrastructures, as well as Apache top-
level projects to investigate how they use Paxos protocols
and systems. Finally, we analyze tradeoffs in the distributed
coordination domain and identify promising future directions
for achieving more scalable distributed coordination systems.

1. Introduction

Cloud computing deals mainly with big data storage,
processing, and serving. While these are mostly embarrass-
ingly parallel tasks, coordination still plays a major role
in cloud computing systems. Coordination is needed for
leader election, group membership, cluster management,
service discovery, resource/access management, consistent
replication of the master nodes in services, and finally for
barrier-orchestration when running large analytic tasks.

The coordination problem has been studied by the theory
of distributed systems extensively under the name “dis-
tributed consensus”. This problem has been the subject of
several impossibility results: while consensus is easy in
the absence of faults, it becomes prone to intricate failure-
scenarios in the presence of lossy channels, crashed par-
ticipants, and violation of synchrony/timing assumptions.
Several algorithms have been proposed to tackle the prob-
lem, however, Paxos introduced in 1989 [1] stood out from
the pack as it provided a simple formally-proven algo-
rithm to deal with the challenges of asynchrony, process
crash/recovery, and message loss in an elegant and uniform
manner.

Paxos’s rise to fame had to wait until after the large-scale
web services and datacenter computing took off in 2000s.

Around that time Google was already running into the fault-
induced corner cases that cause service downtimes. A fault-
tolerant coordination service was needed for the Google File
System (GFS), and Google adopted Paxos for implementing
the GFS lock service, namely the Google Chubby [2]. The
Google Chubby project boosted interest in the industry about
using Paxos protocols and Paxos systems for fault-tolerant
coordination.

An open-source implementation of the Google Chubby
lock service was provided by the Apache ZooKeeper
project [3]. ZooKeeper generalized the Chubby interface
slightly and provided a general ready-to-use system for
“coordination as a service”. ZooKeeper used a Paxos-variant
protocol Zab [4] for solving the distributed consensus prob-
lem. Since Zab is embedded in the ZooKeeper implemen-
tation, it remained obscure and did not get adopted as a
generic Paxos consensus component. Instead of the Zab
component, which required a lot of work for integrating
to the application, ZooKeeper’s ready-to-use file-system ab-
straction interface got popular and became the de facto
coordination service for cloud computing applications. How-
ever, since the bar on using the ZooKeeper interface was
so low, it has been abused/misused by many applications.
When ZooKeeper is improperly used, it often constituted the
bottleneck in performance of these applications and caused
scalability problems.

Recently Paxos protocols and Paxos systems quickly
grew in number adding further options to the choice
of which consensus/coordination protocols/systems to use.
Leveraging ZooKeeper, the BookKeeper [5] and Kafka [6]
projects introduced log/stream replication services. The Raft
protocol [7] went back to fundamentals and provided and
open-source implementation of Paxos protocol as a reusable
component. Despite the increased choices and specializa-
tion of Paxos protocols and Paxos systems, the confusion
remains about the proper use cases of these systems and
about which systems are more suitable for which tasks. A
common pitfall has been to confuse the Paxos protocols with
Paxos systems build on top of these protocols (see Figure 1).
Paxos protocols (such as Zab and Raft) are useful for
low-level components for server replication, whereas Paxos
systems (such as ZooKeeper) have been often shoehorned
to that task. The proper use case for Paxos systems is in
highly-available/durable metadata management, under the



Figure 1. Paxos protocols versus Paxos systems

conditions that all metadata fit in main-memory and are not
subject to very frequent changes.

Contributions of this paper.

1) We categorize and characterize consen-
sus/coordination use patterns in the cloud,
and analyze the needs/requirements of each use
case.

2) We compare and contrast Paxos protocols and
Paxos systems and present advantages and disad-
vantages for each. We present proper use criteria
for Paxos systems.

3) We examine Google and Facebook infrastructure as
well as Apache top-level projects to evaluate their
use of Paxos protocols and systems.

4) Finally we analyze tradeoffs in the distributed co-
ordination domain and identify promising future
directions for achieving more scalable distributed
coordination systems.

2. Paxos Protocols

In this section, we present Paxos protocol variants and
compare and contrast their differences.

2.1. Similarities among Paxos protocols

The original Paxos protocol, detailed in [1], was de-
veloped for achieving fault-tolerant consensus and conse-
quently for enabling fault-tolerant state machine replication
(SMR) [8]. Paxos employs consensus to serialize operations
at a leader and apply the operations at each replica in this
exact serialized order dictated by the leader. The Multi-
Paxos (a.k.a. multi-decree Paxos) flavor have extended the
protocol to run efficiently with the same leader for multiple
slots [9], [10], [11], [12], [13]. In particular, work by Van
Renesse [14] presented a reconfigurable version of Multi-
Paxos with a detailed and easy to implement operational
specification of replicas, leader and acceptors.

Zab (ZooKeeper Atomic Broadcast) is the Paxos-
variant consensus protocol that powers the core of
ZooKeeper, a popular open-source Paxos system [3], [4].
Zab is referred to as an atomic broadcast protocol because
it enables the nodes to deliver the same set of transactions
(state updates) in the same order. Atomic broadcast or total
order broadcast and consensus are equivalent problems [15],
[16].

Figure 2. Phases in Zab and Raft

Raft [7] is a recent consensus protocol that was designed
to enhance understandability of the Paxos protocol while
maintaining its correctness and performance.

As shown in Figure 2, both Zab and Raft implement
a dedicated phase to elect a distinguished primary leader.
Both Zab and Raft decompose the consensus problem into
independent subproblems: leader election, log replication,
and safety and liveness. The distinguished primary leader
approach provides a simpler foundation for building practi-
cal systems. A leader change is denoted by epoch e ∈ N
and term t ∈ N in Zab and Raft, respectively. A new
leader election will increase e or t, so all non-faulty nodes
only accept the leader with higher epoch or term number.
After leader election, in the normal operation, the leader
proposes and serializes client’s operations in total order at
each replica.

In all Paxos protocols, every chosen value (i.e., proposed
client operation) is a log entry, and each entry identifier z has
two components denoted as slot and ballot number in Paxos,
epoch and counter 〈e, c〉 in Zab, and as term and index in
Raft. When the leader broadcasts a proposal for the current
entry, a quorum of followers vote for the proposals and apply
the corresponding operations after the leader commits. All
Paxos protocols guarantee ordering, namely when command
〈z, c〉 is delivered, all commands 〈z′, c〉 where z′ < z is
delivered first, despite crashes of the leaders.

2.2. Differences among Paxos protocols

Leader election. Zab and Raft protocols differ from
Paxos as they divide execution into phases (called epochs
in Zab and terms in Raft), as shown in Figure 2 (redrawn
from [7]). Each epoch begins with a new election, goes
into the broadcast phase and ends with a leader failure. The
phases are sequential because of the additional safety prop-
erties are provided by the isLeader predicate. The isLeader()
predicate guarantees a single distinguished leader. That is, in
Zab and Raft there can be at most one leader at any time. In



Figure 3. Messaging in Zab and Raft

contrast, Paxos does not provide this strong leader property.
Since Paxos lacks a separate leader election phase, it can
have multiple leaders coexisting, however it still ensures
safety thanks to the ballot numbers and quorum concepts.

Zab algorithm has three phases and each node can be in
one of these three phases at any given time. Discovery phase
is where the leader election occurs, over current known
configuration of the quorum. A process can only be elected
if it has a higher epoch or if the epoch is same a higher
committed transaction id. In the synchronization phase, the
new leader synchronizes its initial history of previous epoch
with all followers. The leader proceeds for the broadcast
phase only after a quorum of followers acknowledged that
they are synchronized with the leader. The broadcast phase is
the normal operation mode, and the leader keeps proposing
new client requests until it fails.

In contrast to Zab, there is no distinct synchronization
phase in Raft: the leader stays synchronized with each
follower in the normal operation phase by comparing the
log index and term value of each entry. As shown in
figure 2, lack of distinct synchronization phase simplifies
Raft algorithmic states, but may result in longer recovery
time in practice.

Communication with the replicas. Zab adopts a mes-
saging model, where each update requires at least three mes-
sages: proposal, ack and commit as shown in Figure 3. In
contrast Raft relies on an underlying RPC system. Raft also
aims to minimize the state space and RPC types required
in the protocol by reusing a few techniques repeatedly. For
example, the AppendEntries RPCs are initiated by leader to
both replicate log and perform heartbeat.

Dynamic reconfiguration. The original Paxos was
limited as it assumed a static ensemble 2f + 1 that can
crash and recover but cannot expand or shrink. The ability
to dynamically reconfigure the membership of consensus
ensemble on the fly and while preserving data consistency
provides an important extension for Paxos protocols. Dy-
namic reconfiguration in all Paxos protocols share the fol-
lowing basic approach. A client proposes a special reconfig

Figure 4. Dynamic reconfiguration in Paxos protocols

command with a new configuration Cnew which is decided
in a log entry just like any other command. To ensure safety,
Cnew cannot be activated immediately and the configuration
changes must go through two phases. Due to the different
nature of the protocol, the reconfiguration algorithm differs
in each Paxos protocol.

Dynamic reconfiguration approach in Paxos [14] in-
troduces uncertainty of a slot’s configuration, therefore, it
imposes a bound on the concurrent processing of all com-
mands. A process can only propose commands for slots
with known configuration, ∀ρ : ρ.slotin < ρ.slotout+
WINDOW, as shown in Figure 4.

By exploiting primary order property provided by Zab
and Raft, both protocols are able to implement their re-
configuration algorithms without limitations to normal op-
erations or external services. Both Zab and Raft include a
pre-phase where the new processes in Cnew join the cluster
as a non-voting members so that the leader in Cold could
initialize their states by transferring currently committed
prefix of updates. Once the new processes have caught up
with the leader, the reconfiguration can proceed to schedule.
The difference is that in Zab, the time between Cnew pro-
posed and committed, any commands received after reconfig
is only scheduled but will not commit, as they are the
responsibility of Cnew. However, in Raft, the time interval
is decided by quorum of Cold,new.

2.3. Extensions to the Paxos protocols

In the SMR approach, to further improve efficiency,
under special cases a partial ordering of command sequence
can be used instead of total ordering of chosen values: e.g.,
two commutative commands can be executed in any order
since they produce the same state as the result. The resultant
protocol called Generalized Paxos [11] is an extension of



TABLE 1. LATENCY AND CONSISTENCY EXPECTATION

λ
Read Write

P(consistency) 0.999
Median 99.9th percentile Median 99.9th percentile

N = 3 1.5 1.11 ms 6.27 ms 1.98 ms 6.92 ms 94.65% 2.5 ms

N = 5 1.5 1.11 ms 6.27 ms 2.1 ms 7.16 ms 94.79% 3 ms

N = 7 1.5 1.11 ms 6.27 ms 2.18 ms 7.27 ms 95.05% 3.5 ms

N = 9 1.5 1.11 ms 6.27 ms 2.19 ms 7.43 ms 95.52% 3.5 ms

N = 3 0.1 16.65 ms 89.7 ms 29.57 ms 110.15 ms 94.2% 30 ms

N = 5 0.1 16.65 ms 89.7 ms 31.78 ms 107.04 ms 95.03% 30 ms

N = 7 0.1 16.65 ms 89.7 ms 32.24 ms 107.42 ms 95.48% 35 ms

N = 9 0.1 16.65 ms 89.7 ms 32.76 ms 112.47 ms 95.51% 35 ms

Fast Paxos [10], and allows acceptors to vote for indepen-
dent commands. Similarly EPaxos [13] is able to achieve
lower latency because it allows nodes to commit conflict-
free commands by checking the command dependency list.
However, EPaxos adds significant complexity and extra
effort to resolve the conflict if concurrent commands do
not commute. In addition, from an engineer’s perspective,
the sketch algorithm descriptions in the literature are often
underspecified, and lead to divergent interpretations and im-
plementations. Building such system using Paxos consensus
algorithm proved to be non-trivial [12].

Paxos users often face a trade-off between read latency
and staleness. Although each write is serialized and syn-
chronously replicated, such a write may only be applied to a
quorum of replicas. Thus, another client reading at a replica
where this write has not been replicated may still see the old
version. Since the leader is the only process guaranteed to
participate in all write quorums, stale reads can be avoided
by reading from current leader with a consequent increase
in latency.

The probability of stale reads is a function of the
network. Inspired by the probabilistically bounded stal-
eness (PBS1) [17], we modified the model to estimate
the Zab/Raft-like primary ordered consensus protocol’s
read/write latency and P (consistency). Our model adopts
6 different communication delays, CR (Client-Replica), P
(Proposal), A (Ack), C (Commit), R (Read), and S (Re-
sponse), in order to investigate possible read and write
message reordering and resultant stale-reads. The simulation
uses Monte Carlo method with each event drawn from
a predefined distribution. For simplicity, we assume each
channel latency fits in an exponential distribution character-
ized by λ and we assume message delays are symmetric,
CR = P = A = C = R = S = λ (λ = 1.5 means
0.66ms). In Table 1, P (consistency) show the probability
of consistent read of the last written version in different
ensemble sizes, given that the clients read from the first
responding replica.

3. Paxos Systems

In this section we compare and contrast three popular
Paxos systems, ZooKeeper, Chubby, and etcd, and examine
the features these systems provide to the clients. We also
discuss proper usage criteria for these Paxos systems, a topic
which has not received sufficient coverage.

1. http://pbs.cs.berkeley.edu/#demo

TABLE 2. FEATURES OF PAXOS SYSTEMS

Systems

Feature Chubby ZooKeeper etcd
Filesystem API X X X

Watches X X X

Ephemeral Storage X X X

Local Reads X X

Dynamic Reconfiguration X X

Observers X X X

Autoincremented Keys X X

Hidden Data X

Weighted Replicas X

3.1. Similarities among Paxos systems

Chubby [2], ZooKeeper [3] and etcd [18] are consensus
services designed specifically for loosely-coupled distributed
systems. Chubby, originally a lock service used in Google
productins, is the first service to provide consensus through
a service, with ZooKeeper and others arriving later.

All three services hide the replicated state machine and
log abstractions under a small data-store with filesystem-like
API. Filesystem interface was chosen for its familiarity to
the developers, reducing the learning curve. The interface
enables developers to reason about consensus and coordi-
nation as if they were working with a filesystem on a local
machine. ZooKeeper calls all data objects in the hierarchical
structure as znodes. Each znode can act as both the file for
storage and as a parent for other stored items.

An important feature common to these systems is the
ability to set watches on the data objects allowing the
clients to receive timely notifications of changes without
requiring polling. Typically, these systems implement one-
time watches, meaning that a system notifies the client only
for the first change of the object. If a client application
wants to continue receiving the updates, it must reinstitute
the watch in the system.

All three systems support temporary or ephemeral stor-
age that persists only while the client is alive and send-
ing heartbeat messages. This mechanism allows the clients
to use Paxos systems for failure detection and triggering
reconfiguration upon addition or removal of clients in the
application.

Both ZooKeeper and etcd provide the clients with the
ability to create auto-incremented keys for the data items
stored in a directory. This feature simplifies implementation
of certain counting data-structures, such as queues.

All three Paxos systems adopt observer servers. Ob-
server is a non-voting replica of an ensemble that learns
the entire committed log but does not belong to a quorum
set. Observers can serve reads with a consistent view of
some point in the recent past. This way, observers improve
system scalability and help disseminate data over a wide
geographic area without impacting the write latency.



3.2. Differences among Paxos systems

Despite serving the same purpose, Chubby, ZooKeeper,
and etcd have many differences both in terms of the feature
sets and internal implementations. Chubby uses the Multi-
Paxos algorithm to achieve linearizability, while Zab lies at
the heart of ZooKeeper and provides not only linearizability,
but also FIFO order for client requests, enabling the devel-
opers to build complex coordination primitives with ease.
Raft is the consensus protocol behind the etcd system.

Unlike ZooKeeper and Chubby, etcd is stateless with
respect to its clients. In other words, etcd system is oblivious
to any clients using it and no client information is retained
in the service. This allows etcd to use REST API as its
communication interface, obviating the need for a special
client software or library. Since etcd is stateless, it imple-
ments certain features very differently than ZooKeeper and
Chubby. For instance, watches require a persistent connec-
tion with the client using HTTP long polling technique,
while ephemeral storage requires clients to manually set
time-to-live (TTL) on the data objects and update the TTL
periodically.

Hidden data items is another interesting feature of etcd
inspired by hidden files in conventional filesystems. With
hidden object ability clients can write items that will not
be listed by the system when requesting a file or directory
listing, thus only clients who know the exact name of the
data object are able to access it.

The original Zab algorithm, as well as many other con-
sensus algorithms, only concern full replicas which contain
all the write-ahead log and state machine entity and involve
equally in voting process and in serving read requests.
ZooKeeper extends Zab and introduces weighted replicas
which can be assigned with different voting weights in the
quorum, so the majority condition is converted to greater
than half of the total weights. Replicas that have zero weight
are discarded and not considered when forming quorums.

Table 2 summarizes the main similarities and differences
among these Paxos systems. As the table shows, these sys-
tems provide expressive and comparable APIs to the clients,
allowing the developers to utilize them for distributed coor-
dination in many different use cases.

3.3. Proper use criteria for Paxos systems

The relative ease-of-use and generality of the client
interfaces of these Paxos systems allow for great flexibility
that sometimes leads to misuse. In order to prevent improper
and inefficient utilization of Paxos systems, we propose the
following criteria for proper use of Paxos systems. Violating
any one of these criteria does not automatically disqualify
the application from using a Paxos system, rather it calls for
a more thorough examination of goals to be achieved and
whether a better solution exists.

1) Paxos system should not be in the performance critical
path of the application. Consensus is an expensive task,
therefore a good use case tries to minimize performance

degradation by keeping the Paxos system use away from
the performance critical and frequently utilized path of the
application.

2) Frequency of write operations to the Paxos system
should be kept low. The first rule is especially important
for write operations due to the costs associated with achiev-
ing consensus and consistently replicating data across the
system.

3) Amount of data maintained in the Paxos system
should be kept small. Systems like ZooKeeper and etcd
are not designed as general-purpose data storage, so a proper
adoption of these systems would keep the amount of data
maintained/accumulated in the Paxos systems to a minimum.
Preferably only small metadata should be stored/maintained
in the Paxos system.

4) Application adopting the Paxos system should really
require strong consistency. Some applications may erro-
neously adopt a Paxos system when the strong consistency
level provided by the Paxos system may not be neces-
sary for the application. The Paxos systems linearize all
write operations, and such linearizability incurs performance
degradation and must be avoided unless it is necessary for
the application.

5) Application adopting the Paxos system should not be
distributed over the Wide Area Network (WAN). In Paxos
systems the leader and replicas are commonly located in the
same datacenter so that the roundtrip times do not affect
the performance very badly. Putting the replicas and appli-
cation clients far away from the leader, e.g., across multiple
datacenters and continents, would significantly degrade the
performance.

6) The API abstraction should be fit the goal. Paxos
systems provide filesystem-like API to the clients, but such
an abstraction may not be suitable for all tasks. In some
cases, such as the server replication discussed in the next
section, dealing with the filesystem abstraction can be too
cumbersome and error-prone that a different approach would
serve better.

4. Paxos Use Patterns

In this section, we categorize and characterize the most
common Paxos use patterns in the datacenter and cloud
computing applications.

Server Replication (SR). Server replication via the state
machine replication (SMR) approach is a canonical applica-
tion for Paxos protocol. The SMR requires a state machine
to be deterministic: multiple copies of the state machine
begin in the start state and receive the same inputs in
the same order and each replica will arrive at the same
state having generated the same outputs. Paxos is used for
serializing and replicating the operations to all nodes in
order to ensure that states of the machines are identical
and the same sequence of operations is applied. This use
case becomes the most practical when the input operations



causing the state changes are small compared to the large
state maintained at each node. Pure Paxos, Zab and Raft
protocols are better suited to achieve server replication than
Paxos systems, since using Paxos systems like ZooKeeper
introduces additional overhead of dealing with the filesystem
API and maintaining a separate consensus system cluster in
addition to the server to be replicated and its replicas.

Log Replication (LR). The objective of log replication
is different than that of server replication. Log replication
is applied in data integration systems that use the log
abstraction to duplicate data across different nodes, while
server replication is used in SMR to make copies of the
server state. Since Paxos systems such as ZooKeeper have
limited storage, they are not typically suitable for the data-
centric/intensive task of log replication. Systems like Book-
Keeper and Kafka are a better fit for this use case as they
remove consensus out of the critical path of data replication,
and employ Paxos only for maintaining the configuration of
a system.

Synchronization Service (SS). An important application
of consensus is to provide synchronization. Traditionally,
concurrent access to the shared data is controlled by some
form of mutual exclusion through locks. However such
approach requires applications to build their own failure
detection and recovery mechanism, and a slow or blocked
process can harm the overall performance. When the con-
sensus protocol/system is decoupled from the application,
the application not only gains fault tolerance of the shared
data, but also achieves wait-free concurrent data access with
guaranteed consistency.

Google Chubby [2] was originally designed to provide
a distributed lock service intended for coarse-grained syn-
chronization of activities through Multi-Paxos in its heart,
but it found wider use in other cases such as name service
and repository of configuration data. ZooKeeper [3] provides
simple code recipes for exclusive locks, fair locks and
shared locks. Since both Chubby and ZooKeeper expose
a filesystem interface where each data node is accessed
by a hierarchical path, the locks are represented by data
nodes created by clients. The data nodes used as locks are
usually ephemeral nodes which can be deleted explicitly
or automatically by the system when a session that creates
them terminates due to a failure. Since locks do not maintain
other metadata within data nodes, all operations on locks are
lightweight.

Barrier Orchestration (BO). Large-scale graph processing
systems based on BSP (Bulk Synchronous Parallel) model
like Google Pregel [19], Apache Giraph [20] and Apache
Hama [21] use Paxos systems for coordination between
computing processes. Since the graph systems process data
in an iterative manner, a double barrier is used to synchro-
nize the beginning and the end of each computation iteration
across all nodes. Barrier thresholds may be reconfigured
during each iteration as the number of units involved in
the computation changes.

Of course, violating the proper use criteria of Paxos

systems for this task can cause problems. Facebook Gi-
raph paper [22] discusses the following example for this
misuse pattern. Large-scale graph processing systems uses
aggregators to provide shared state across vertices. Each
vertex can send a value to an aggregator in superstep S,
a master combines those values using a reduction operator,
and the resulting value is made available to all vertices in
superstep S+1. In early version of Giraph, aggregators were
implemented using ZooKeeper, violating criteria 3. So this
does not scale in the case of executing k-means clustering
with millions of centroids, because it requires an equal
amount of aggregator and tens of gigabytes of aggregator
data coming to ZooKeeper from all vertices. To solve this
issue, Giraph bypassed ZooKeeper and implemented shared
aggregators, each randomly running on one of the workers.
This solution lost durability/fault-tolerance of ZooKeeper,
but achieved fast performance and scalability.

Configuration Management. Most Paxos systems provide
the ability to store arbitrary data by exposing a filesystem
or key-value abstraction to the systems. This gives the
applications access to durable and consistent storage for
small data items that can be used to maintain configuration
metadata like connection details or feature flags. These
metadata can be watched for changes, allowing applications
to reconfigure themselves when configuration parameters are
modified. Leader election (LE), group membership (GM),
service discovery (SD), and metadata management (MM)
are main use cases under configuration management, as they
are important for cluster management in cloud computing
systems.

Message Queues (Q). A common misuse pattern is to use
the Paxos system to maintain a distributed queue, such as a
publisher-subscriber message queue or a producer-consumer
queue. In ZooKeeper, with the use of watchers, one can
implement a message queue by letting all clients interested
in a certain topic register a watch on the topic znode, and
messages will be broadcast to all the clients by writing to
that znode. Unfortunately, queues in production can contain
many thousands of messages resulting in a large volume of
write operations and potentially huge amounts of data going
through the Paxos system, violating criteria 3. Moreover, in
this case the Paxos system stands in the critical path of every
queue operation (violating criteria 1 and 2), and this de-
creases the performance even further. Apache BookKeeper
and Kafka projects properly address the message queue use
case. Both of these distributed pub-sub messaging systems
rely on ZooKeeper to manage the metadata aspect of the
replication (partition information and memberships), and
handle replicating the actual data separately. By removing
consensus out of the critical path of data replication and
using it only for configuration management, both systems
achieve good throughput and scalable message replication.

Table 3 summarized and evaluates the Paxos use patterns
in terms of usage criteria discussed in section 3. If a using
pattern access the consensus system per-data operation, we
consider it as high frequency, otherwise it is low frequency
if application only access consensus system on rare events.



TABLE 3. EVALUATION OF PATTERNS

Patterns Frequency Data Volume API Paxos system use Better substitute
SR High Large Hard Bad Replication Protocol

LR High Medium Hard Bad Replication Protocol

SS Low Small Hard OK Distributed Locks

BO Low Depends Easy OK

SD Low Small Easy Good

GM Low Small Easy Good

LE Low Small Easy Good

MM Medium Medium Easy Good Distributed Datastore

Q High Large / Medium Hard Bad Kafka

Data volume describes the amount of data required by the
pattern on average. The file-system API abstraction provided
by most of the consensus system can be easy to utilize for
some tasks, but hard to get it right without recipe for others.
Overall, a using pattern is considered as a good or bad
use for Paxos systems. Finally, a few substitutes of Paxos
systems for particular task are also listed for reference.

5. Paxos Use in Production Systems

In this section, we examine the infrastructure stack of
Google and Facebook, and Apache Foundation’s top-level
projects to determine where Paxos protocols and Paxos
systems are used and what they are used for.

5.1. Google Stack

We reviewed Google’s publications to gather information
about the Google infrastructure stack. Each system related
literature is the sole source of our analysis of 18 projects,
among which 7 projects implement Paxos or directly depend
on the consensus system.

At the bottom of the stack is coordination and cluster
management systems. Borg [23] is Google’s cluster man-
ager that runs hundreds of thousands of jobs from many
applications in multiple clusters. Borg uses Chubby as a
consistent, highly available Paxos store to hold the metadata
for each submitted job and running task. Borg uses Paxos
in several places: (1) One usage is to write hostname and
port of each task in Chubby to provide naming service; (2)
Borgmaster implements Paxos for leader election and master
state replication; (3) Borg uses Paxos as a queue of new
submitted jobs which helps scheduling. Kubernetes [24] is a
recent open source project from Google for Linux container
cluster management. Kubernetes adopts etcd to keep state,
such as resource server membership and cluster metadata.

The second layer of the stack contains several data
storage components. The most important storage service
is the Google File System (GFS) [25] (and the successor
called Colossus [26]). GFS uses Chubby for master elec-
tion, and master state replication. Bigtable [27] is Google’s
distributed storage system for structured data. It heavily
relies on Chubby for a variety of tasks: (1) to ensure
there is at most one active master at any time (leader
election); (2) to store the bootstrap location of Bigtable data
(metadata management); (3) to discover tablet servers and

finalize tablet server deaths (group membership); (4) to store
Bigtable schemas (configuration management). Megastore
[28] is a cross datacenter database that provides ACID
semantics within fine-grained and replicated partitions of
data. Megastore is also the largest system deployed that
uses Paxos to replicate primary user data across datacenters
on every write. It extends Paxos to synchronously replicate
multiple write-ahead logs, each governing its own partition
of the data set. Google Spanner [26] is a globally distributed,
multiversion database that shards data across many sets of
Paxos state machines. Each spanserver implements a single
Paxos state machine on top of each tablet for replication,
and a set of replicas is collectively a Paxos group.

5.2. Facebook Stack

Facebook takes advantage of many open source projects
to build a foundation of its distributed architecture. Storage
layer is represented by both traditional relational systems
and NoSQL databases. HDFS [29] serves as the basis
for supporting large distributed key-value stores such as
HBase [30]. HDFS is part of the Apache Hadoop project
and uses ZooKeeper for all its coordination needs: resource
manager state replication, leader election and configuration
metadata replication. HBase is built on top of HDFS and
utilizes ZooKeeper for managing configuration metadata,
region server replication and shared resources concurrency
control. Cassandra [31] is another distributed data store
that relies on ZooKeeper for tasks like leader election,
configuration metadata management and service discovery.
MySQL is used as a relational backbone at Facebook with
many higher level storage systems, such as Haystack and
f4, interacting with it.

Data processing layer utilize the resources of the storage
architecture, making Facebook rely on systems that integrate
well with HDFS and HBase. Hadoop operates on top of
HDFS and provides MapReduce infrastructure to various
Facebook components. Hive [32] is an open source software
created for data warehousing on top of Hadoop and HBase.
It uses ZooKeeper as its consensus system for implementing
metadata storage and lock service.

Facebook uses a modified and optimized version of
ZooKeeper, called Zeus [33]. Currently Zeus is adopted
in the Configerator project, an internal tool for managing
configuration parameters of production systems. Zeus’s role
in the process is serializing and replicating configuration
changes across a large number of servers located throughout
Facebook’s datacenters. It is likely that over time more of
the company’s systems are going to use Zeus.

5.3. Apache Projects

Apache foundation has many distributed systems that
require a consensus algorithm for a variety of reasons.
Zookeeper, being an Apache project itself, can be seen
as the de facto coordination system for other applications
under the Apache umbrella. Currently, about 31% of Apache



projects in BigData, Cloud and Databse categories2 directly
use ZooKeeper, while many more applications relying on
other projects that depend on Apache’s consensus system.
This makes ZooKeeper an integral part of open source
distributed systems infrastructure. Below we briefly mention
some of the more prominent systems adopting ZooKeeper
as a consesnus service.

Apache Accumulo [34] is a distributed key-value store
based on the Google’s BigTable design. This project is
similar to Apache HBase and uses Zookeeper in some
of the identical ways: shared resource mutual exclusion,
configuration metadata management and tasks serialization.

BookKeeper [5] project implements a durable replicated
distributed log mechanism. It employs ZooKeeper for stor-
ing log metadata and keeping track of configuration changes,
such as server failures or additions. Hedwig is a publish-
subscribe message delivery system developed on top of
BookKeeper. The system consists of a set of hubs that
are responsible for handling various topics. Hedwig uses
ZooKeeper to write hub metadata, such as topics served
by each hub. Apache Kafka is another publish-subscribe
messaging software, unlike Hedwig, it does not rely on
BookKeeper, however it uses ZooKeeper for a number of
tasks: keeping track of removal or additions of nodes, coor-
dinating rebalancing of resources when system configuration
changes and keeping track of consumed messages [6].

Apache Solr [35] search engine uses ZooKeeper for
its distributed sharded deployments. Among other things,
ZooKeeper is used for leader election, distributed data-
structures such as queues and maps and storing various
configuration parameters.

5.4. Evaluation of Paxos use

In order to evaluate the way Paxos protocols and Paxos
systems are adopted by Google’s and Facebook’s software
stacks and Apache top-level projects, we have classified the
usage patterns into nine broad categories: server replication
(SR), log replication (LR), synchronization service (SS),
barrier orchestration (BO), service discovery (SD), group
membership (GM), leader election (LE), metadata manage-
ment (MM) and distributed queues (Q). The majority of
the investigated systems have used consensus for tasks in
more than one category. Table 4 summarizes various usage
patterns observed in different systems.

Figure 5 shows the frequency of consensus systems
being used for each of the task categories. As can be seen,
metadata management stands for 27% of all usages and is
the most popular adoption scenario of consensus systems,
closely followed by the leader election. It is worth to keep in
mind that metadata management is a rather broad category
that encompasses many usage arrangements by the end
systems including application configuration management or
managing state of some internal objects or components.
Synchronization service is another popular application for

2. https://projects.apache.org/projects.html?category

TABLE 4. PATTERNS OF PAXOS USE IN PROJECTS

Usage Patterns

Project Consensus System SR LR SS BO SD GM LE MM Q
GFS Chubby X X X

Borg Chubby/Paxos X X X

Kubernetes etcd X X

Megastore Paxos X

Spanner Paxos X

Bigtable Chubby X X X

Hadoop/HDFS ZooKeeper X X

HBase ZooKeeper X X X X

Hive ZooKeeper X X

Configerator Zeus X

Cassandra ZooKeeper X X X

Accumulo ZooKeeper X X X

BookKeeper ZooKeeper X X

Hedwig ZooKeeper X X

Kafka ZooKeeper X X X

Solr ZooKeeper X X X

Giraph ZooKeeper X X X

Hama ZooKeeper X

Mesos ZooKeeper X

CoreOS etcd X

OpenStack ZooKeeper X

Neo4j ZooKeeper X X

Figure 5. Relative Frequency of Consensus Systems Usage for Various
Tasks

consensus protocols, since they greatly simplify the im-
plementation of the distributed locks. Distributed queues,
despite being one of the suggested ZooKeeper recipes, are
used least frequently. This can be attributed to the fact that
using consensus for managing large queues may negatively
impact performance.

6. Concluding Remarks

We compared/contrasted popular Paxos-protocols and
Paxos-systems and investigated how they are adopted by
production systems at Google, Facebook, and other cloud
computing domains. We find that while Paxos systems
(and in particular ZooKeeper) are popularly adopted for
coordination, they are often over-used and misused. Paxos
systems are suitable as a durable metadata management
service. However, the metadata should remain small in size,
should not accumulate in size over time, and should not
get updated frequently. When Paxos systems are improperly
used, they constitute the bottleneck in performance and



cause scalability problems. A major limitation on Paxos
systems performance and scalability is that they fail to
provide a way to denote/process commutative operations via
the Generalized Paxos protocol. In other words, they force
every operation to be serialized through a single master.

We conclude by identifying tradeoffs for coordination
services and point out promising directions for achieving
more scalable coordination in the clouds.

Trading off strong-consistency for fast performance. If
strong-consistency is not the primary focus and require-
ment of the application, instead of a Paxos-protocol/Paxos-
system solution, an eventually-consistent solution replicated
via optimistic replication techniques [36] can be used for
fast performance, often with good consistency guarantees.
For example, in the Facebook’s TAO system, which is built
over a 2-level Memcached architecture, only 0.0004% of
reads violate linearizability [37]. Adopting Paxos would
have solved those linearizability violations, but providing
better performance is more favorable than eliminating a tiny
fraction of bad reads in the context of TAO usage.

Trading off performance for more expressivity.
ZooKeeper provides a filesystem API as the coordination
interface. This has shortcomings and is unnatural for many
tasks. Tango [38] provides a richer interface, by working at
a lower-layer. Tango uses Paxos to maintain a consistent and
durable log of operations. Then Tango clients use this log
to view-materialize different interfaces to serve. One Tango
client can serve a B+tree interface by reading and material-
izing the current state from the log, another client a queue
interface, yet another a filesystem interface. Unfortunately
this requires the Tango clients to forward each read/write
update towards getting a Paxos read/commit from the log,
which degrades the performance.

Trading off expressivity with fast performance and scal-
ability. In Paxos systems, the performance of update oper-
ations is a concern and can constitute bottlenecks. By using
a less expressive interface, it is possible to improve this
performance. If a plain distributed key-value store interface
is sufficient for an application, a consistent-replication key-
value store can be used based on chain replication [39].
Chain replication uses Paxos only for managing the con-
figuration of the replicas, and replication is achieved with
very good throughput without requiring Paxos commit for
each operation. Furthermore, in this solution reads can be
answered consistently by any replica. However, this solution
forgoes the multi-item coordination in the Paxos systems
API, since its API is restricted to put and get with key
operations.

Along the same lines, an in-memory transactional key-
value store can also be considered as a fast and scalable
alternative. Sinfonia [40] provides transactions over an in-
memory distributed key-value store. These transactions are
minitransactions that are less expressive than general trans-
actions, but they can be executed in one roundtrip. Recently
RAMCloud system [41] showed how to implement the Sin-
fonia transactions in a fast and durable manner using a write-

ahead replicated log structure. Since Paxos systems are lim-
ited by the size of one node’s memory, RAMCloud/Sinfonia
provides a scalable and fast alternative with minitransactions
over multiple-records, with a slightly less expressive API.

References

[1] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[2] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems.” in OSDI. USENIX Association, 2006, pp. 335–350.

[3] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems,” in USENIX ATC, vol. 10,
2010.

[4] F. Junqueira, B. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in Dependable Systems &
Networks (DSN). IEEE, 2011, pp. 245–256.

[5] F. P. Junqueira, I. Kelly, and B. Reed, “Durability with bookkeeper,”
ACM SIGOPS Operating Systems Review, vol. 47, no. 1, pp. 9–15,
2013.

[6] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing.” NetDB, 2011.

[7] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 USENIX Annual Technical Conference
(USENIX ATC 14), 2014, pp. 305–319.

[8] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” vol. 22, no. 4, pp. 299–319, Dec. 1990.

[9] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18–25, 2001.

[10] ——, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–
103, 2006.

[11] ——, “Generalized consensus and paxos,” Technical Report MSR-
TR-2005-33, Microsoft Research, Tech. Rep., 2005.

[12] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed computing. ACM,
2007, pp. 398–407.

[13] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more
consensus in egalitarian parliaments,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM,
2013, pp. 358–372.

[14] R. Van Renesse and D. Altinbuken, “Paxos made moderately com-
plex,” ACM Computing Surveys (CSUR), vol. 47, no. 3, p. 42, 2015.

[15] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchro-
nism needed for distributed consensus,” Journal of the ACM (JACM),
vol. 34, no. 1, pp. 77–97, 1987.

[16] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, 1996.

[17] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and
I. Stoica, “Probabilistically bounded staleness for practical partial
quorums,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp.
776–787, 2012.

[18] “etcd,” https://coreos.com/etcd/.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, ser. SIGMOD
’10. New York, NY, USA: ACM, 2010, pp. 135–146. [Online].
Available: http://doi.acm.org/10.1145/1807167.1807184

[20] “Apache giraph project,” http://incubator.apache.org/giraph/.



[21] “Apache hama project,” http://hama.apache.org/.

[22] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukr-
ishnan, “One trillion edges: graph processing at facebook-scale,”
Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1804–1815,
2015.

[23] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

[24] “Google kubernetes project,” http://kubernetes.io/.

[25] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS Operating Systems Review, vol. 37/5. ACM, 2003,
pp. 29–43.

[26] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s globally-
distributed database,” Proceedings of OSDI, 2012.

[27] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[28] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson,
J. Léon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” CIDR, pp.
223–234, 2011.

[29] “Apache hadoop project,” http://hadoop.apache.org/.

[30] L. George, HBase: The Definitive Guide,
1st ed. O’Reilly Media, 2011. [Online]. Avail-
able: http://www.amazon.de/HBase-Definitive-Guide-Lars-George/
dp/1449396100/ref=sr 1 1?ie=UTF8&qid=1317281653&sr=8-1

[31] A. Lakshman and P. Malik, “Cassandra: Structured storage system
on a p2p network,” in Proceedings of the 28th ACM Symposium on
Principles of Distributed Computing, ser. PODC ’09, 2009, pp. 5–5.

[32] “Apache hive project,” http://hive.apache.org/.

[33] C. Tang, T. Kooburat, P. Venkatachalam, A. Chandler, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic configuration man-
agement at Facebook,” Symposium on Operating Systems Principles
(SOSP), pp. 328–343, 2015. [Online]. Available: http://sigops.org/
sosp/sosp15/current/2015-Monterey/printable/008-tang.pdf

[34] “Apache accumulo project,” http://accumulo.apache.org/.

[35] “Apache solr,” http://lucene.apache.org/solr/.

[36] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Computing
Surveys (CSUR), vol. 37, no. 1, pp. 42–81, 2005.

[37] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J.
Song, W. Tobagus, S. Kumar, and W. Lloyd, “Existential
consistency: Measuring and understanding consistency at Facebook,”
Symposium on Operating Systems Principles (SOSP), pp. 295–
310, 2015. [Online]. Available: http://sigops.org/sosp/sosp15/current/
2015-Monterey/printable/240-lu.pdf

[38] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
data structures over a shared log,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM,
2013, pp. 325–340.

[39] R. van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability,” in Proceedings of the 6th conference
on Symposium on Operating Systems Design & Implementation,
vol. 6, 2004.

[40] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis,
“Sinfonia: a new paradigm for building scalable distributed systems,”
in ACM SIGOPS Operating Systems Review, vol. 41. ACM, 2007,
pp. 159–174.

[41] C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and J. Ousterhout,
“Implementing linearizability at large scale and low latency,” in
Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 2015, pp. 71–86.


