
Exploiting Qualitative User Feedback in
Deterministic and Probabilistic Databases

by

Niccolò Meneghetti

August 11, 2016

A dissertation submitted to the
Faculty of the Graduate School of

the University at Buffalo, State University of New York
in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science and Engineering

c© Niccolò Meneghetti 2016

All Rights Reserved

To my sister Costanza and my parents Chiaretta and Ettore.

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my adviser, Dr. Jan Chomicki, for being

an excellent mentor and a constant point of reference during my graduate studies.

His guidance and support were indispensable for me to achieve my first publication.

I am also deeply grateful to my co-adviser Dr. Oliver Kennedy; many parts of this

dissertation are a direct result of our collaboration. I would like to thank Dr. Jing

Gao for serving in my committee, and for being always kind and encouraging. A

special thanks goes to all my co-authors: to Dr. Paolo Ciaccia, who introduced me

to the world of academic research, to Ying Yang, who is always passionate about

our shared projects, and to Denis Mindolin. I am deeply grateful to Dr. Wolfgang

Gatterbauer for his continued support and for investing so much time on our shared

research. I would also like to thank Dr. Jinhui Xu for introducing me to the beauties

of computational geometry, and Dr. Hung Ngo, whose lectures are a consistent source

of inspiration. Last, but not least, I would like to thank all my friends in Buffalo,

who made this whole experience much more enjoyable.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

ABSTRACT . vii

CHAPTER

I. Introduction . 1

1.1 Background and Motivation 1
1.2 Contributions . 3

II. Output-Sensitive Evaluation of P-Skyline Queries 5

2.1 Background and Notation . 5
2.1.1 Preferences . 6
2.1.2 P-Skyline Queries 7
2.1.3 Skyline Queries . 12

2.2 Contributions . 14
2.3 Output-Sensitive P-Skylines 15
2.4 Average-case Analysis . 21
2.5 P-Skylines in External Memory 22
2.6 Experimental Results . 24

2.6.1 Sampling random p-expressions 24
2.6.2 Synthetic data sets 25
2.6.3 Real data sets . 28

III. Beta Probabilistic Databases . 30

3.1 Introduction . 30
3.2 Background . 37

iv

3.2.1 Relational Databases 37
3.2.2 Tuple-independent Probabilistic Databases 41

3.3 Beta Probabilistic Databases 44
3.3.1 Multiple independent observations 46

3.4 Belief Updating . 48
3.4.1 Simple case: s = k = 1 49
3.4.2 General case . 53

3.5 Parameter Learning (MLE) 57
3.6 Computing conditional probabilities 58

3.6.1 CP-plans: Extensional Evaluation of P[xi|ϕj,H] for
Safe Queries . 60

3.7 Handling Qualitative Feedback 63
3.8 Experiments . 64
3.9 Related Work . 67

IV. Conclusions and Future Work 69

4.1 Conclusions . 69
4.2 Future Work . 70

APPENDICES . 71

A. Nomenclature . 72

A.1 Chapter II . 73
A.2 Chapter III . 74

B. Proofs . 75

B.1 Chapter II . 76
B.1.1 Proof of Theorem II.1 76
B.1.2 Complexity of P-Screening 77

B.2 Chapter III . 85
B.2.1 Proof of Theorem III.1 85

BIBLIOGRAPHY . 88

v

LIST OF TABLES

Table

A.1 Nomenclature of Chapter II . 73
A.2 Nomenclature of Chapter III . 74

vi

ABSTRACT

Exploiting Qualitative User Feedback in Deterministic and Probabilistic Databases

by

Niccolò Meneghetti

Committee:

Dr. Jan Chomicki (Chair)

Dr. Oliver Kennedy (Co-Chair)

Dr. Jing Gao

This dissertation consists of two parts. In the first part we investigate the use of qual-

itative user preferences in the context of deterministic databases. In the second part

we study the same problem in the context of probabilistic databases. A qualitative

preference is a partial order over a set of query-answers. In deterministic databases,

they are used to identify the answers that are most interesting to the user. In the first

part of this dissertation we adopt the framework of Prioritized Skylines, a popular

approach for preference reasoning. Our contribution focuses on query evaluation: we

introduce a novel output-sensitive algorithm, whose worst-case computational com-

plexity depends explicitly on the size of the output. This is a very desirable property

in the context of preference queries, as the output is expected to be, on average, only a

small fraction of the input. Additionally, we show our algorithm exhibits linear com-

plexity in the average-case scenario. The second part of this dissertation is dedicated

to probabilistic databases. In this context, qualitative preferences are used to encode

vii

a set of logical implications between query-answers: if the user states that a query-

answer implies another, then the marginal probability of the latter must be as large

as the marginal probability of the former. Such information can be used to speed-

up the training process of a probabilistic database. We introduce Beta Probabilistic

Databases (B-PDBs), a generalization of tuple-independent probabilistic databases,

designed to support Bayesian updates and parameter learning in an efficient, scal-

able way. The key feature of B-PDBs is that they can be trained using samples of

query-answers as evidence; this way, the user is relieved from the need of specifying

the model’s parameters explicitly, in a quantitative fashion. Additionally, B-PDBs

can leverage qualitative user-feedback to speed-up the learning process.

viii

CHAPTER I

Introduction

1.1 Background and Motivation

The most common way to query databases is to express users’ goals in a quanti-

tative fashion, by specifying a set of logical constraints to be satisfied, together with

a scoring function that ranks the answers into some desired order. For example, the

user of a travel booking website may submit the following query: “Retrieve all the

4-stars hotels in Cambridge, MA, whose distance to the Charles River is less than

3 miles; sort the results by increasing price and distance to the river”. This classic

approach presents several limitations. Without prior knowledge about the content

of the database, it is very hard to devise the right set of constraints to identify few

interesting query-answers. If the constraints are too strict, the database will likely

return an empty answer; if they are too permissive, the database will return too many

results. For example: if there are no hotels within 3 miles of the Charles River, the

user may still be willing to consider an accommodation that is 3.5 miles away, or a

3-stars hotel. On the other hand, if the distance threshold was set to 100 miles, the

database would return almost every hotel in Boston. In both scenarios the user is re-

quired to reformulate her queries, possibly several times, until the desired answers are

returned without being mixed with spurious results. Such trial-and-error procedure

is hardly efficient. Even when the selection constraints are easily found, choosing the

1

right sorting order is not a trivial task. In the example above, the sorting order is de-

termined by two factors, (1) price and (2) distance to the river, and the former is set

to a higher priority than the latter. Therefore, a cheap hotel must be ranked higher

than a more expensive one, independently from their respective distance to the river.

Such ranking criterion may not be the best way to describe the user’s preferences:

she may favor an accommodation that is slightly more expensive than another, if it

is significantly closer to the river.

In this dissertation we adopt a different paradigm for interacting with databases,

where the user, rather that expressing her goals in quantitative terms, by means

of selection predicates and scoring functions, specifies her objectives qualitatively.

Following [19, 20, 51], we define qualitative preferences as binary relations over query-

answers. Intuitively, a qualitative preference is a simple logical criterion for comparing

pairs of query-answers. For example, the user may state: “I prefer hotels that are

located near the Charles River, all else being equal or better”, meaning that given two

hotels h1 and h2, if h1 is closer to the river, it should be preferred to h2, as long as its

price is not greater than the price of h2, and h1 has as many stars as h2. In such case

we say h1 dominates h2. A database can exploit qualitative preferences by filtering

away all the answers that are dominated by some other answer [19]. This way, only

few results are returned, possibly those that are most interesting to the user. Skyline

queries [12] are one of the most common instances of preference reasoning. Given a

set of preference criteria, we say that an answer h1 Pareto-dominates an answer h2

if h1 dominates h2 w.r.t. at least one criterion and it is not dominated w.r.t. all the

others. Skyline queries return all the answers that are Pareto-optimal, i.e. all the

answers that are not Pareto-dominated by any other answer.

Qualitative preferences can be leveraged in the context of probabilistic databases

too. A probabilistic database [31, 45, 77] is designed to store noisy, uncertain re-

lational data. It defines a probability distribution P[·] over a collection of possible

2

worlds, a set of deterministic databases that share the same fixed schema. Given a

query, probabilistic databases return sets of possible answers, annotated with marginal

probabilities. The marginal probability of a query-answer is the likelihood of observ-

ing such answer when the query is executed over a possible world chosen at random

from P[·]. In the context of probabilistic databases, we say that an answer h1 dom-

inates an answer h2 if we believe that every possible world that returns h2 should

return h1 as well. In other words, the statement “h1 dominates h2” represents the

user’s belief that h2 implies h1 and, consequently, the marginal probability of the

latter should be at least as large as the marginal probability of the former.

1.2 Contributions

This dissertation consists of two parts. In the first part (Chapter II) we investigate

the use of qualitative preferences in the context of deterministic databases. In the

second part (Chapter III) we study the same problem in the context of probabilistic

databases.

In Chapter II we adopt the framework of P-Skyline queries, a generalization of

Skyline queries where the user is allowed to prioritize some preference criteria with re-

spect to others. P-skyline queries were originally studied in [51, 64]. Our contribution

focuses on query evaluation: we introduce a novel output-sensitive algorithm, whose

worst-case computational complexity depends explicitly on the size of the output.

This is a very desirable property in the context of p-skyline queries, as the output

is expected to be, on average, only a small fraction of the input. Additionally, we

prove that our algorithm exhibits linear complexity in the average-case scenario. We

conclude the study by presenting extensive experimental results. Most of the content

of Chapter II has been published in a SIGMOD paper [63].

In Chapter III we introduce Beta Probabilistic Databases (B-PDBs), a gener-

alization of tuple-independent probabilistic databases [31, 24], designed to support

3

Bayesian updates and parameter learning in a efficient, scalable way. The key feature

of B-PDBs is that they can be trained using samples of query-answers as evidence; this

way, the user is relieved from the need of specifying the model’s parameters explic-

itly, in a quantitative fashion. In Chapter III we show how to update the parameters

of a B-PDB in response to the observation of a new query-answer. Our procedure

supports arbitrary conjunctive query. We prove that multiple updates lead, in the

limit, to a maximum likelihood estimate of the model’s parameters. Eventually, we

show how to leverage user-provided feedback, in the form of a qualitative dominance

relationship, to speed-up the learning process.

4

CHAPTER II

Output-Sensitive Evaluation of P-Skyline Queries

Skylines assume that all attributes are equally important, as each dimension can

always be traded off for another. Prioritized skylines (p-skylines) generalize skylines,

by allowing the user to prioritize some dimensions w.r.t. others. In this chapter we

develop an efficient in-memory divide-and-conquer algorithm for answering p-skyline

queries. Our algorithm is output-sensitive; this is very desirable in the context of

preference queries, since the output is expected to be, on average, only a small fraction

of the input. We prove that our method is well behaved in both the worst- and the

average-case scenarios. We conclude our study with extensive experimental results.

2.1 Background and Notation

In this chapter we adopt the following typographic conventions: sets of tuples

(or operators returning set of tuples) are written as capital letters (like D, B, W

or M(D)), sets of attributes are written in calligraphic font (like A, C or E), actual

attributes are written in boldface font (for example: A1,A2, . . .). For readers’ con-

venience, Table A.1 summarizes the most common notations used throughout the

chapter. All notational conventions are formally introduced and explained in more

details in the following sections.

5

2.1.1 Preferences

Several frameworks have been proposed for modeling preferences in deterministic

databases, many of which are surveyed in [75]. In this chapter we follow the qualitative

approach [19, 51, 20], as we assume user’s wishes are modeled as strict partial orders.

We denote by A = {A1,A2, . . .} a finite set of attributes defining the schema of

the relation returned by a query, and by U the set of all possible tuples over such

schema (i.e. the set of all possible query-answers). Without lack of generality, we

assume attributes can be either discrete or range over the set of rational numbers. A

preference is a strict partial order � over U , a subset of U × U being transitive and

irreflexive. The assertion t′ � t (t′ dominates t) means the user prefers t′ over t, i.e.

she’s always willing to trade the answer t for the answer t′ if she is given the chance.

Given a relation instance D ⊆ U and a preference �, a preference query retrieves all

the maximal elements of the partially ordered set (D,�). Following the notation of

[54], we denote by M�(D) the set of all these maximal tuples:

M�(D) = {t ∈ D | @ t′ ∈ D s.t. t′ � t}

Every preference � induces an indifference relation (∼): t′ ∼ t holds whenever t′ � t

and t � t′. A preference � is a weak order when ∼ is transitive. A weak order

extension of � is simply an arbitrary weak order containing �. Two tuples t′ and

t are indistinguishable with respect to � when they agree on all attributes that are

relevant for deciding �. In such case we write t′ ≈ t. We denote by t′ � t the fact

that t′ is either better than or indistinguishable from t. If D and D′ are two relation

instances, we write D′ � D when there is no pair of tuples (t′, t) in D′×D such that

t′ � t.

Declaring a preference by enumerating its elements is impractical in all but the

most trivial domains. Kießling [51] suggested to define preferences in a constructive

6

fashion, by iteratively composing single-attribute preferences into more complex ones.

From his work we borrow two composition operators, namely the Pareto accumulation

(⊗) and the Prioritized accumulation (&). Denote�1 and�2 two strict partial orders;

their Pareto accumulation �1⊗2 is defined as follows

∀ t′, t t′ �1⊗2 t ⇐⇒ (t′ �1 t ∧ t′ �2 t) ∨ (t′ �2 t ∧ t′ �1 t)

In other words, t′ �1⊗2 t holds when t′ is better according to one of the preferences

�1 and �2, and better or indistinguishable from t according to the other. Hence, the

two preferences are equally important. The prioritized composition of �1 and �2 is

defined as follows

∀ t′, t t′ �1&2 t ⇐⇒ t′ �1 t ∨ (t′ ≈1 t ∧ t′ �2 t)

Clearly �1&2 gives more weight to the first preference, as �2 is taken into consid-

eration only when two tuples are indistinguishable w.r.t. �1. Both operators are

associative and the Pareto accumulation is commutative [51]. Several standard query

languages have been extended to support preference constructors like the Pareto- and

the Prioritized accumulation, including SQL [53], XPATH [52], and SPARQL [73].

2.1.2 P-Skyline Queries

A p-expression [64] is a formula denoting multiple applications of the above oper-

ators. P-expressions respect the following grammar:

pExpr → paretoAcc | prioritizedAcc | attribute

paretoAcc → pExpr ⊗ pExpr

prioritizedAcc → pExpr & pExpr

attribute → A1|A2| . . .

7

where all non-terminal symbols are lower-case and each terminal symbol is either a

composition operator (⊗ or &) or a single-attribute preference, with the restriction

that no attribute should appear more than once. A single-attribute preference (also

denoted by�Ai
) is simply an arbitrary total order defined over the attribute’s domain.

Without lack of generality, we will assume users rank values in natural order (i.e. they

prefer small values to larger ones), unless stated differently. With a little abuse of

notation, we will use single-attribute preferences for ranking either tuples or values,

depending on the context.

Example 1. Assume that a dealer is offering the following cars

id P (price) M (mileage) T (transmission)

t1 $ 11,500 50,000 miles automatic

t2 $ 11,500 60,000 miles manual

t3 $ 12,000 50,000 miles manual

t4 $ 12,000 60,000 miles automatic

and that we are looking for a cheap vehicle, with low mileage, possibly with manual

shift. Notice that while the first car is Pareto-optimal for price and mileage, if we want

a manual transmission we need to give up either on getting the best price or the best

mileage. Depending on our priorities, we can model our preferences in different ways.

All the following are well-formed and meaningful p-expressions:

1. P

2. (P ⊗M) & T

3. (P & T)⊗M

4. M & T & P

Expression (1) states that we care only about price. If that is the case, we should

buy either t1 or t2. Expression (2) states that we are looking for cars that are Pareto-

optimal w.r.t. price and mileage, and that we take into consideration transmission

only to decide between cars that are indistinguishable in terms of price and mileage.

In this case t1 is the best option. Expression (3) is more subtle: we are looking for

8

cheap cars, with low mileage and manual transmission, but we are not willing to pay

an extra price for the manual transmission. In this case we should buy either t1

or t2, since t1 dominates t3 and t4. Finally, expression (4) denotes a lexicographic

order: amongst the cars with the lowest mileage, we are looking for one with manual

transmission, and price is the least of our concerns. In this case we should buy t3.

Given a p-expression π we denote by �π the preference relation defined by it.

Notice that �π is guaranteed to be a strict partial order [51]. We denote by Var(π)

the set of attributes that appear inside π, i.e. those that are relevant for deciding

�π. Notice that t′ ≈π t holds iff t′ and t agree on every attribute in Var(π); in the

following we will simply say that t and t′ are indistinguishable w.r.t. attributes in

Var(π).

Definition 1. Given a relation instance D ⊆ U and a p-expression π, a p-skyline

query returns the set Mπ(D) of the maximal elements of the poset (D,�π).

The computational complexity of p-skyline queries depends strongly on the size

of the input, the size of the output, and the number of attributes that are relevant to

decide �π. Hence, our analysis will take in consideration mainly three parameters: n,

the number of tuples in the input, v the number of tuples that belong to the p-skyline,

and d, the cardinality of Var(π).

Every p-expression π implicitly induces a priority order over the attributes in

Var(π). Mindolin and Chomicki [64] modeled these orders using p-graphs, and showed

how they relate to the semantics of p-skyline preferences.

Definition 2. A p-graph Γπ is a directed acyclic graph having one vertex for each

attribute in Var(π). The set E(Γπ) of all edges connecting its vertices is defined

recursively as follows:

• if π is a single-attribute preference, then E(Γπ) ≡ ∅

• if π = π1 ⊗ π2 then E(Γπ) ≡ E(Γπ1) ∪ E(Γπ2)

9

• if π = π1 & π2 then E(Γπ) ≡ E(Γπ1) ∪ E(Γπ2) ∪ (Var(π1)× Var(π2))

Intuitively, a p-graph Γπ contains an edge from Ai to Aj iff the preference on Ai is

more important than the one on Aj. Notice that p-graphs are transitive by construc-

tion and, since p-expressions do not allow repeated attributes, they are guaranteed

to be acyclic. In order to simplify the notation in the following sections we will not

use p-graphs directly, but we will refer mostly to their transitive reductions1 Γrπ (see

Figure 2.1). In relation to Γrπ we define the following sets of attributes:

Succπ(Ai) immediate successors of Ai

Descπ(Ai) descendants of Ai

Preπ(Ai) immediate predecessors of Ai

Ancπ(Ai) ancestors of Ai

Rootsπ nodes having no ancestors

We will denote by dAi
the depth of Ai, i.e. the length of the longest path in Γrπ

from any root to Ai (roots have depth 0).

Example 2. A customer is looking for a low-mileage (M) car; amongst barely used

models, she is looking for a car that is available near her location (D) for a good

price (P), possibly still under warranty (W). In order to obtain a comprehensive

warranty she is willing to pay more, but not to drive to a distant dealership, since

regular maintenance would require her to go there every three months. All else being

equal, she prefers cars equipped with heated seats (H) and manual transmission (T).

Her preferences can be formulated using the following p-expression:

M & ((D&W)⊗P) & (T ⊗H)

Figure 2.1(a) shows the corresponding p-graph and Figure 2.1(b) its transitive reduc-

tion. Notice the p-graph is not a weak order, thus the attributes cannot be simply

1Since every p-graph is a finite strict partial order, the transitive reduction Γrπ is guaranteed
to exist and to be unique: it consists of all edges that form the only available path between their
endpoints.

10

ranked using a scoring function.

M

P D

H

W

T

(a) Γπ

M

P D

H

W

T

(b) Γrπ

Figure 2.1: (a) the p-graph of the expression M & ((D&W) ⊗ P) & (T ⊗H) and
(b) its transitive reduction.

We refer to Figure 2.1(b) to exemplify how the operators Succπ(·), Descπ(·),

Preπ(·) and Ancπ(·) work. It is easy to see that Descπ(D) = {W,T,H} while

Succπ(D) contains only W. Similarly, Ancπ(W) consists of {M,D}, but Preπ(W)

contains only D. Rootsπ contains only M.

The following result from [64] highlights the relation between p-graphs and the

semantics of p-skylines:

Proposition 1. [64] Denote by t and t′ two distinct tuples, by Betterπ(t′, t) the set

of attributes where t′ is preferred to t, and by T opπ(t′, t) the topmost elements in Γrπ

where t and t′ disagree. The following assertions are equivalent:

1. t′ �π t

2. Betterπ(t′, t) ⊇ T opπ(t′, t)

3. Descπ(Betterπ(t′, t)) ⊇ Betterπ(t, t′)

In other words, t′ �π t holds iff the two tuples are distinguishable and every node

in the p-graph for which t is preferred has an ancestor for which t′ is preferred. We

will take advantage of this result in Sections B.1.2 and 2.5.

11

2.1.3 Skyline Queries

A skyline query [12, 21] returns all the query-answers that are Pareto-optimal. A

tuple is Pareto-optimal if no other tuple dominates w.r.t. one dimension, without

being dominated w.r.t. some other dimension. Skyline queries can be seen as a

special case of p-skyline queries: the Pareto-optimality criterion over an arbitrary set

of attributes {Ai,Aj, . . . ,Ak} can be formulated simply as Ai⊗Aj⊗ . . .⊗Ak. From

now on we will denote by sky the above expression, and by Msky(D) the result of a

skyline query. Clearly, the meaning of this notation will depend on the content of

Var(sky).

Proposition 2. [64] Let π and π′ be two p-expressions such that Var(π) = Var(π′).

The following containment properties hold

�π⊂�π′⇔ E(Γπ) ⊂ E(Γπ′) (2.1)

�π=�π′⇔ E(Γπ) = E(Γπ′) (2.2)

From Proposition 2 we can directly infer that Mπ(D) ⊆ Msky(D) as long as

Var(π) = Var(sky).

Skyline queries have been very popular in the database community. Over several

years a plethora of algorithms have been proposed, including Bnl [12], Sfs [22],

Less [35], SaLSa [6], Bbs [68], and many others. For the purpose of this chapter we

briefly review Bnl, together with its extensions. Bnl (block-nested-loop) allocates

a fixed-size memory buffer able to store up to k tuples, the window, and repeatedly

performs a linear scan of the input; during each iteration i each tuple t is compared

with all the elements currently in the window. If t is dominated by any of those, it is

immediately discarded, otherwise all the elements of the window being dominated by

t are discarded and t is added to the window. If there is not enough space, t is written

to a temporary file Ti. At the end of each iteration i all the tuples that entered the

12

window when Ti was empty are removed and added to the final result; the others, if

any, are left in the window to be used during the successive iteration (i+ 1), that will

scan the tuples stored in Ti. The process is repeated until no tuples are left in the

temporary file.

Sfs (sort-filter-skyline) improves Bnl with a pre-sorting step; at the very begin-

ning the input is sorted according to a special ranking function, ensuring that no

tuple dominates another that precedes it. The resulting algorithm is pipelineable

and generally faster than Bnl. Less (Linear Elimination Sort for Skyline [35]) and

SaLSa (Sort and Limit Skyline algorithm [6]) improve this procedure by applying

an elimination filter and an early-stop condition.

Skylines have been studied for several decades in computational geometry, as an

instance of the maximal vector problem [59, 11, 54]. The first divide and conquer

algorithm is due to Kung, Luccio and Preparata [59] and is similar to the one used

in this chapter: the general idea is to split the data set in two halves, say B and

W , so that no tuple in W is indistinguishable from or dominates any tuple in B

(W �sky B); then, the skyline of both halves is computed recursively, obtaining

Msky(B) and Msky(W). The last step is to remove from Msky(W) all tuples dominated

by some element in Msky(B). This operation is called screening. Let W ′ be the

set of tuples from Msky(W) that survive the screening, the algorithm returns the

set Msky(B) ∪W ′, containing each and every skyline point. The base case for the

recursion is when B and W are small enough to make the computation of the skyline

trivial.

In [8] Bentley et al. developed a similar, alternative algorithm, and in [9] proposed

a method that is provably fast in the average-case. Kirkpatrick and Seidel [54] were

the first to propose an output-sensitive procedure. More recently, [72] developed a

divide-and-conquer algorithm that is efficient in external memory, [62] improved the

algorithm from Kirkpatrick and Seidel, while several results have been obtained using

13

the word-RAM model [32, 18, 3]. Following [54] we denote by Cd(v, n) the worst-case

complexity of skyline queries, and by Fd(b, w) the worst-case complexity of screening,

assuming b = |B| and w = |W |. The following complexity results were obtained in

[54, 58, 59]. In this chapter we will prove similar results in the context of p-skylines.

Proposition 3. [54] The following upper-bounds hold on the complexity of the max-

imal vector problem:

1. Cd(v, n) ≤ O (n) for d = 1

2. Cd(v, n) ≤ O (n log v) for d = 2, 3

3. Cd(v, n) ≤ O
(
n logd−2 v

)
for d ≥ 4

4. Cd(v, n) ≤ O (n) when v = 1

Proposition 4. [54, 58, 59] The following upper-bounds on the complexity of the

screening problem hold:

1. Fd(b, w) ≤ O (b+ w) for d = 1

2. Fd(b, w) ≤ O ((b+ w) log b) for d = 2, 3

3. Fd(b, w) ≤ O
(
(b+ w) logd−2 b

)
for d ≥ 4

4. Fd(b, w) ≤ O (w) when b = 1

2.2 Contributions

Output-sensitive algorithms are quite popular in computational geometry. Start-

ing from the classical results on convex hulls by Kirkpatrick and Seidel [55] and

Chan [17], output-sensitive solutions have been explored in several problem domains.

An output-sensitive algorithm is designed to be efficient when v (the output-size) is

a small fraction of n (the input-size). More specifically, its asymptotic complexity

should depend explicitly on v, and gracefully degrade to the level of the best known

output-insensitive algorithms when v ∈ Ω(n).

14

The main contribution of this chapter is to develop a novel output-sensitive algo-

rithm for p-skyline queries. We show the problem is O
(
n logd−2 v

)
in d ≥ 4 dimen-

sions, and O (n log v) in two and three dimensions. Hence, our work generalizes the

results in [54] to the context of p-skylines. Our solution differs significantly from [54],

as we show how to exploit the semantics of prioritized preferences for devising an

effective divide-and-conquer strategy. Additionally, we prove the algorithm is O (n)

in the average case. Our second contribution is a testing framework for p-skyline

algorithms. The problem is challenging, since their performance depends on many

factors that are related to both preferences and data. With respect to preferences,

we show how to sample them uniformly, with the purpose of running unbiased bench-

marks. With respect to data, we show how to highlight the effect of data correlation

on performance. We conclude our work presenting extensive experimental results on

real-life and synthetic data. Apart from the nice asymptotic properties, our algorithm

proves to be practical for processing realistically sized data sets. For our evaluations

we use data sets with up to one million records and up to 20 attributes. To the best of

our knowledge our benchmarks are in line with most of the studies of skyline queries

in the literature.

2.3 Output-Sensitive P-Skylines

In this section we present our output-sensitive algorithm for p-skyline queries.

We first introduce a simple divide and conquer algorithm, named Dc, showing the

problem is O
(
n · logd−2 n

)
. Later we extend it, making it output-sensitive and en-

suring an asymptotic worst-case complexity of O
(
n · logd−2 v

)
. Before discussing our

algorithms in detail, we need to generalize the concept of screening to the context of

p-skylines:

Definition 3. Given a p-expression π and two relation instances B and W , such

that W �π B, p-screening is the problem of detecting all tuples in W that are not

15

dominated by any tuple in B, according to �π.

Extending the notation of [58], we denote by
[
B
W

]
π

the problem of p-screening B

and W , and by F ∗d (b, w) its worst-case complexity2. In Appendix B.1.2 we will show

F ∗d (b, w) is O
(
(b+ w) · (log b)d−2

)
. For the moment we take this result as given. We

denote by C∗d(v, n) the worst-case complexity of p-skylines, where n and v are the

input- and the output-size.The complete code of Dc (Algorithm 1) is listed below.

Algorithm 1: DC (divide & conquer)

Input: a p-expression π, a relation instance D0

Output: the p-skyline Mπ(D0)
1 Procedure Dc(π,D0)
2 return DcRec(π,D0,Rootsπ, ∅)
3 Procedure DcRec(π, D, C, E)
4 if C = ∅ or |D| ≤ 1 then
5 return D
6 select an attribute A from the candidates set C
7 if all tuples in D assign the same value to A then
8 E ′ ← E ∪ {A}
9 C ′ ← C \ {A}

10 C ′′ ← C ′ ∪ {V ∈ Succπ(A) : Preπ(V) ⊆ E ′}
11 return DcRec(π,D, C ′′, E ′)
12 else
13 (B,W,m∗)← SplitByAttribute(D,A)
14 B′ ← DcRec(π,B, C, E)
15 W ′ ← PScreen(π,B′,W, C \ {A}, E)
16 W ′′ ← DcRec(π,W ′, C, E)
17 return B′ ∪W ′′

18 Procedure SplitByAttribute(D, A)
19 Select m∗ as the median w.r.t. �A in D
20 Compute the set B = {t ∈ D | t �A m∗}
21 Compute the set W = {t ∈ D | m∗ �A t}
22 return (B,W,m∗)

Similarly to the divide and conquer algorithm by [59], the strategy of Dc is to split

the input data set into two chunks, B and W , so that no tuple in W dominates or

is indistinguishable from any tuple in B (W �π B). The algorithm then computes

recursively the p-skyline of B, Mπ(B), and performs the p-screening of W against

2As in Section 2.1.1: d = |Var(π)|, b = |B| and w = |W |.

16

Mπ(B), i.e. it prunes all tuples in W that are dominated by some element of Mπ(B).

Eventually, it recursively computes the p-skyline of the tuples that survived the p-

screening, and returns it, together with Mπ(B), the p-skyline of B.

In order to understand how Dc works, it is important to understand how the

input data set is split into B and W : the goal is to ensure that no tuple in B is

dominated by (or indistinguishable from) any tuple in W . The general idea is to

select an attribute from Var(π), say A, and compute the median tuple m∗ w.r.t.

�A , over the entire data set; then we can put in B all tuples that assign to A a

better value than the one assigned by m∗, and put in W all the other tuples. If we

want to be sure that W �π B holds, we need to make sure that the preference on

attribute A is not overridden by some other, higher-priority attribute. Hence, we

need to choose A so that all tuples in both B and W agree w.r.t. all the attributes

in Ancπ(A). In order to choose A wisely, Dc keeps track of two sets of attributes,

namely E and C, ensuring the following invariants hold:

I1 : If an attribute belongs to E then no pair of tuples in D can disagree on the value

assigned to it. In other words: all tuples in D are indistinguishable w.r.t. all

attributes in E .

I2 : An attribute in A \ E belongs to C if and only if all its ancestors belong to E .

Clearly, attribute A is always chosen from C. Let’s see how Dc works in more

detail: at the beginning E is empty and C contains all the root nodes of Γrπ; at every

iteration the algorithm selects some attribute A from C and finds the median tuple

m∗ in D w.r.t. �A . If all tuples in D assign to A the same value, the algorithm

updates C and E accordingly and recurs (lines 8-11). Otherwise (lines 13-17) m∗

is used to split D into B and W : B contains all the tuples preferred to m∗, W

those that are indistinguishable from or dominated by m∗, according to �A . Clearly

W �A B holds by construction, and W �π B is a direct consequence of invariants

17

I1 and I2. Hence, the algorithm can compute Mπ(B) recursively (line 14), perform

the p-screening
[
Mπ(B)
W

]
π

(line 15), and compute the p-skyline of the remaining tuples

(line 16). The procedure PScreen at line 15 will be discussed in Appendix B.1.2.

Example 3. Let’s see how Dc would determine the p-skyline for the data set of

Example 1, with respect to the p-expression π = (P & T) ⊗M. The p-graph of π

contains three nodes and only one edge, from P to T. The following diagram shows

the invocation trace of the procedure DcRec. Each box represents an invocation, its

input, output and a short explanation of the actions performed. For the lack of space

we omit the invocations that process only one tuple.

DcRec[1]

D = {t1, t2, t3, t4}
C = {P,M}; E = ∅
Select P from C
B ← {t1, t2}; W ← {t3, t4}
Output:{t1, t2}

DcRec[2]

D = {t1, t2}
C = {P,M}; E = ∅
Select P from C
E ′ ← {P}; C′′ ← {M,T}
Output:{t1, t2}

DcRec[3]

D = {t1, t2}
C = {M,T}; E = {P}
Select M from C
B ← {t1}; W ← {t2}
Output:{t1, t2}

PScreen[4]

B = {t1, t2}
W = {t3, t4}
C = {M}; E = ∅
Output:∅

Figure 2.2: Execution of the procedure DcRec.

During the first invocation, the original set of cars is split into two halves, with respect

to price. The algorithm then recurs on the first half, {t1, t2}, in order to compute its

p-skyline. The second invocation performs no work, except updating C and E: attribute

P is moved from C to E, and attribute T enters C. The third invocation computes the

p-skyline of {t1, t2}, splitting w.r.t. mileage (no tuple is pruned). Back to the first

invocation of DcRec, the procedure PScreen is used for removing from {t3, t4} all

18

tuples dominated by some element in {t1, t2}. Both t3 and t4 are pruned. Since no

tuple survived the screening, the algorithm directly returns {t1, t2} without making an

additional recursive call.

The complexity analysis for Dc (Algorithm 1) is straightforward. If we denote

by T (n) its running time and we assume |B| ' |W | at every iteration, the following

upper bound holds for some fixed constant k0

T (n) ≤ k0n+ 2 · T
(n

2

)
+ F ∗d−1

(n
2
,
n

2

)

where the linear term k0n models the time spent by the SplitByAttribute proce-

dure; notice the p-screening operation at line 14 doesn’t need to take attribute A into

consideration, hence only d − 1 attributes need to be taken into account. Since we

assumed F ∗d (b, w) is O
(
(b+ w) · (log b)d−2

)
, we can apply the master theorem [10, 23]

and conclude that

T (n) ≤ O
(
n · logd−2 n

)
We show now how to make Dc (Algorithm 1) output-sensitive. Before moving to

the algorithm, we introduce some basic complexity results for C∗d(v, n) when v = 1

and for F ∗d (b, w) when b = 1.

Lemma 1. Given a relation instance D ⊆ U and a p-expression π, locating a single,

arbitrary element of Mπ (D) takes linear time.

Proof. We can use an arbitrary weak order extension of �π and locate a maximal

element p∗ ∈ D in linear time. It is easy to see p∗ must belong to Mπ (D). From now

on, we will denote this procedure as PSkylineSP(π,D).

As a corollary to Lemma 1 we can state that C∗d(1, n) ≤ O (n). A similar result

holds for p-screening:

Lemma 2. F ∗d (1, w) ≤ O (w) for any positive d and w.

19

Proof. If B contains only one element, then we can easily perform p-screening in

linear time: we only need one dominance test for each element of W . From now on,

we will refer to this procedure as PScreenSP(π,B,W).

Now that we have defined the two procedures PScreenSP and PSkylineSP,

we can introduce our output-sensitive algorithm, Osdc (listed as Algorithm 2).

Algorithm 2: Osdc (output-sensitive divide & conquer)

Input: a p-expression π, a relation instance D0

Output: the p-skyline Mπ(D0)
1 Procedure Osdc(π, D0)
2 return OsdcRec(π,D0,Rootsπ, ∅)
3 Procedure OsdcRec(π, D, C, E)
4 if C = ∅ or |D| ≤ 1 then
5 return D
6 select an attribute A from the candidates set C
7 if all tuples in D assign the same value to A then
8 E ′ ← E ∪ {A}
9 C ′ ← C \ {A}

10 C ′′ ← C ′ ∪ {V ∈ Succπ(A) : Preπ(V) ⊆ E ′}
11 return OsdcRec(π,D, C ′′, E ′)
12 else
13 (B,W,m∗)← SplitByAttribute(D,A)
14 p∗ ← PSkylineSP(π,B)
15 B′ ← PScreenSP(π, {p∗}, B \ {p∗})
16 W ′ ← PScreenSP(π, {p∗},W)
17 B′′ ← OsdcRec(π,B′, C, E)
18 W ′′ ← PScreen(π,B′′,W ′, C \ {A}, E)
19 W ′′′ ← OsdcRec(π,W ′′, C, E)
20 return {p∗} ∪B′′ ∪W ′′′

The divide and conquer strategy is similar to the one in Dc (Algorithm 1), except

for the look-ahead procedure at lines 14-16: at each recursion the algorithm spends

linear time to extract a single p-skyline point p∗ and prune from both B and W all

tuples dominated by it. As a consequence, if at some point in the execution either B

or W contains only a single p-skyline point, then either B′ or W ′ will be empty, and

the corresponding recursive call (either line 17 or line 19) will terminate immediately

(line 5). Algorithm 2 can be used for proving the following theorem:

20

Theorem II.1. C∗d(v, n) is O
(
n · logd−2 v

)
.

The proof of Theorem II.1 is given in Appendix B.1.1.

2.4 Average-case Analysis

The average-case performance for regular skyline algorithms has been studied ex-

tensively in several papers [35, 9, 11]. The most usual assumption is that the data

is distributed so that each attribute is independent from the others (statistical inde-

pendence) and the probability of two tuples agreeing on the same value for the same

attribute is negligible (sparseness). These two assumptions are usually called, collec-

tively, component independence (or CI, as in [11]). Under the CI assumption Less has

been shown to be O (n) in the average-case, while Sfs resulted to be O (n log n) [35].

In this section we show how to modify Osdc, in order to ensure a linear average-case

complexity. We start by making two key observations:

Observation 1 Over all the preference relations that can be expressed using p-

expressions, the skyline relation �sky represents a worst-case scenario for an

output-sensitive algorithm like Osdc. This follows directly from the contain-

ment property (Proposition 2): it is easy to see that for every �π we have that

Mπ(D) ⊆Msky(D) holds as long as Var(π) = Var(sky).

Observation 2 Buchta [14] proved that under the CI assumption the expected size

of Msky(D) is Hd−1,n, the (d− 1)-th order harmonic of n. Godfrey [34] observed

that if we drop the assumption of sparseness the size of Msky(D) is likely to

decrease.

Hence, computing regular skylines over data sets respecting the CI assumption is

a corner-case scenario for an output-sensitive p-skyline algorithm, in the sense that

introducing priorities between attributes or dropping the sparseness assumption would

only improve the algorithm’s performance. In order to show that our procedure is well-

21

behaved in the average-case, we will prove it is well-behaved under the assumptions

discussed above. More specifically, we will show how to make a simple modification

to Osdc and ensure an average performance of O (n) for skyline queries under the

CI assumption. The general idea is to follow a two-stage approach, similar to the one

proposed in [9]:

1. During the first phase a linear scan prunes all the points dominated by a virtual

tuple t∗, that is chosen so that the probability that no point dominates it is less

than 1/n, and the average number of points not dominated by it is o(n). Such

t∗ can be chosen using the strategy presented in [9].

2. With probability (n− 1)/n the virtual tuple t∗ is dominated by a real tuple in

D, and so the algorithm can compute the final answer by running Osdc only

on the o(n) points that survived the initial linear scan.

3. With probability 1/n the final answer needs to be computed by running Osdc

over the whole data set D.

It is easy to see that the amortized, average cost of this procedure is O (n), while the

worst-case complexity is still O
(
n logd−2 v

)
.

2.5 P-Skylines in External Memory

In the past scan-based skyline algorithms like Bnl, Sfs, SaLSa or Less have

generated a considerable interest in the database community. While all these algo-

rithms exhibit a sub-optimal worst-case performance of O(n2), they are known to be

well-behaved in the average-case scenario, and, for larger values of d, to be even more

practical than divide-and-conquer algorithms like [11] (we refer the reader to [35] for

an exhaustive discussion of the topic). Additionally, scan-based algorithms are easy

to embed into existing database systems, as they are easily pipelinable, and support

22

execution in external memory (where they still exhibit a sub-optimal, quadratic worst-

case performance, as discussed in [72]). In this section we show how to adapt two

scan-based skyline algorithms, Sfs and Less, in order to support p-skyline queries.

Our goal is twofold: on one hand we want to show that Osdc is faster than the

scan-based solutions, a part for its nice asymptotic properties (this will be done in

the Section 2.6); on the other hand we want to develop a p-skyline algorithm that

supports execution in external memory.

Both Sfs and Less sort the input dataset so that no tuple can dominate another

preceding it; to achieve a similar result with prioritized preferences, we propose to

presort the input w.r.t. the following weak order extension of �π

�ext
π = �sum0 & �sum1 & . . . & �sumd−1

(2.3)

Each �sumi
is defined as follows:

t′ �sumi
t ⇐⇒

∑
A∈Var(π):dA=i

t′[A] <
∑

A∈Var(π):dA=i

t[A]

That is, t′ �sumi
t holds when the sum over all attributes at depth i computed for t′

is lower than the same sum computed for t. After the sorting step, if t′ �ext
π t holds

tuple t′ is going to be processed before tuple t.

Theorem II.2. The relation �ext
π defined above is a weak order extension of �π.

Proof. First we want to show that for each pair of tuples (t′, t) in U2, t′ �ext
π t implies

t �π t
′. We can denote by i∗ the smallest index i such that (t′ �sumi∗ t). Since the

sum over all attributes at depth i∗ is smaller for t′ rather than for t, there must be

at least one attribute A at depth i∗ favoring t′ over t. It is easy to see that such A

belongs to T opπ(t′, t); from Proposition 1, point 2, we can conclude that t �π t
′. We

are left to prove that �ext
π is a weak order: this follows directly from (2.3), noting

23

that each �sumi
is a weak order, and the prioritized composition of weak orders is a

weak order itself.

2.6 Experimental Results

To the best of our knowledge there is no published work on measuring p-skyline

queries performance. The problem is difficult, since the response time depends on

many factors, including the topology of the p-graph and data properties like size,

correlation and likelihood of duplicated values.

In the following sections we try to address this issue by proposing a novel p-

skyline testing framework. First we show how to sample random p-expressions from

a uniform distribution, and how to generate meaningful synthetic data sets. Later we

present our experimental results from both real and synthetic data sets.

2.6.1 Sampling random p-expressions

P-expressions can encode a wide variety of preferences: they can represent lex-

icographic orders, classical skylines, or any combination of the two. In order to

keep evaluations fair and unbiased we should not polarize benchmarks on specific

preferences. Instead, our goal is to randomly sample p-expressions from a uniform

distribution, ensuring all preferences are equally represented.

Given the number of attributes d, sampling a random p-expression means building

a random p-graph over d vertices, ensuring that all legal p-graphs have the same

probability of being generated. We present a result from [64] to characterize the set

of p-graphs we want to sample from.

Theorem II.3. [64] Given a set of d attributes A, a graph Γ over A is a p-graph if

and only if:

1. Γ is transitive and irreflexive.

24

0

200

400

-0.05 0.00 0.05 0.10 0.15 0.20
Pearson’s correlation coefficient

av
g

re
sp

.
ti

m
e

(s
)

algorithm

BNL

LESS

OSDC

Performance vs. data
correlation

0

5000

10000

15000

20000

0 10 20
output size (% of the total)

av
g

re
sp

.
ti

m
e

(s
)

algorithm

BNL

LESS

OSDC

Performance vs. selectivity
(complete)

0

1000

2000

3000

0 2 4 6 8
output size (% of the total)

av
g

re
sp

.
ti

m
e

(s
)

algorithm

BNL

LESS

OSDC

Performance vs. selectivity
(magnified)

Figure 2.3: The effect of data correlation and query selectivity on performance (syn-
thetic data sets)

2. Γ respects the envelope property:

∀A1,A2,A3,A4 all different in A, (A1,A2) ∈ Γ∧ (A3,A4) ∈ Γ∧ (A3,A2) ∈ Γ

⇒ (A3,A1) ∈ Γ ∨ (A1,A4) ∈ Γ ∨ (A4,A2) ∈ Γ.

Iterating over all graphs that respect the above constraints is practical only for small

values of d. For larger values we use the following strategy: we convert the constraints

into a boolean satisfaction problem and sample from its solutions near-uniformly using

SampleSAT [78]. SampleSAT performs a random walk over the possible solutions of

a SAT problem, alternating greedy WalkSAT moves with simulated annealing steps.

The ratio of the frequencies of the two kinds of steps, denoted by f , determines the

trade-off between the uniformity of the sampling and the time spent to obtain it. For

our tests on synthetic data we used f = 0.5 for generating 200 p-expressions, with d

ranging from 5 to 20 attributes.

2.6.2 Synthetic data sets

Several papers, starting from [12], showed how data correlation affects the perfor-

mance of skyline queries. We wanted to test whether similar considerations apply to

p-skylines. Notice the role of correlation in this context is subtle: depending whether

two variables have the same priority or not, a correlation between them may have

different effects. For this reason we decided to generate synthetic data sets where

each pair of dimensions exhibits approximatively the same linear correlation. Let’s

25

-0.047127 -0.000001 0.042979 0.183413 0.212033

0

500

1000

1500

2000

0

100

200

300

0

30

60

90

120

0

2

4

6

0

1

2

3

4

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
of attributes in the p-graph (d)

av
g

re
sp

.
ti

m
e

(s
)

algorithm

BNL

LESS

OSDC

Performance vs. # of attributes in the p-graph

-0.047127 -0.000001 0.042979 0.183413 0.212033

0

5000

10000

15000

0

1000

2000

3000

0

200

400

600

800

0

10

20

30

40

0

5

10

15

20

25

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
of roots in the p-graph

av
g

re
sp

.
ti

m
e

(s
)

algorithm

BNL

LESS

OSDC

Performance vs. # of roots in the p-graph

Figure 2.4: The effect of the p-graph’s topology on performance (synthetic data sets)

denote by 1 a d-dimensional all-ones vector (1, 1, . . . , 1), and by M a d × d matrix

whose rows form an orthonormal basis for Rd, the first one being parallel with 1.

Notice that M represents a rotation centered on the origin. Let MD be a d× d diag-

onal matrix, having (α, 1, . . . , 1) as its main diagonal. We propose to test p-skyline

algorithms over a multivariate Gaussian distribution Nα, centered on the origin, with

covariance matrix Σα = M ×MD ×M−1. According to this distribution each pair

of distinct dimensions exhibits the same correlation, determined by the parameter

α. It is important to notice that Nα, amongst all the distributions where all pairs

of variables have the same correlation, is the one with maximum entropy given the

parameter α.

For our tests we sampled several data sets, varying the value of α; each set contains

one million tuples over d = 20 attributes. Since p-skylines make sense only when

some tuples agree on some attributes, we rounded the data off to four decimal digits

of precision, in order to ensure the presence of duplicated values. As a result, the

uncorrelated data sets (those with α = 1) have approximatively 7, 000 distinct values

in each column. We compared the performance of Osdc against Bnl and Less.

To keep the comparison fair we implemented an in-memory version of Bnl, setting

26

the size of the window to be large enough to store the whole input. This way, the

algorithm could answer each query with a single iteration. We adapted Less using

the strategy discussed in Section 2.5. We ran it using several different thresholds

on the size of the elimination filter, ranging between 50 and 10, 000 tuples. For

each experiment we report only the fastest response times. In order to avoid any

overhead, we precomputed the ranking �ext
π . All the algorithms were implemented

using Java, and tested on an Intel Core i7-2600 (3.4 GHz) machine equipped with

8 GB of RAM. We ran all the experiments using the Java Runtime Environment

version 1.7.0, limiting the maximum heap size to 4 GB.

On the average we observed Osdc to be significantly faster than Less and Bnl.

Here we analyze these results in relation with data correlation, and we study how

the topology of p-expressions affects the performance of each algorithm. Figure 2.3

(left) focuses on the effect of data correlation. We average the response time over

all queries, and plot it against the observed Pearson’s correlation coefficient3. The

Figure shows that Less and Bnl compete with Osdc in presence of positive data

correlation, but their performance decreases quickly on anti-correlated data. Osdc,

on the other hand, remains mostly unaffected by data correlation.

In Figure 2.4 we investigate the relation between performance and the topology

of p-graphs. We group queries according to the number of attributes (top) and roots

(bottom) in their p-graphs, and we aggregate response times w.r.t. data correlation.

For lack of space we report only five levels of correlation, the most significant ones.

Independently from data correlation, Osdc exhibits a distinct performance advantage

on queries with more than 10 attributes, especially if there are more than five roots;

Less shows a similar advantage in presence of positive data correlation, while Bnl

results are competitive mostly on queries with less than five roots. During our ex-

periments we observed that both p-graph topology and data correlation have a direct

3The correlation coefficient was measured after rounding the data sets.

27

0

5

10

15

8 10 12 14
of attributes in the p-graph (d)

av
g

re
sp

.
ti

m
e

(m
s) algorithm

BNL

LESS

OSDC

NBA: performance vs. # of attributes

0

50

100

150

0 1 2 3
output size (% of the total)

av
g

re
sp

.
ti

m
e

(m
s) algorithm

BNL

LESS

OSDC

NBA: performance vs. selectivity

Figure 2.5: NBA data set (21,959 tuples over 14 attributes)

0

1

2

3

4

5

5 6 7 8 9 10
of attributes in the p-graph (d)

av
g

re
sp

.
ti

m
e

(s
) algorithm

BNL

LESS

OSDC

CovType: performance vs. # of attributes

0

200

400

600

0.0 2.5 5.0 7.5
output size (% of the total)

av
g

re
sp

.
ti

m
e

(s
) algorithm

BNL

LESS

OSDC

CovType: performance vs. selectivity

Figure 2.6: CovType data set (581,012 tuples over 10 attributes).

influence on the size of the output: highly-prioritized p-expressions (those with few

roots) are likely to produce smaller p-skylines; similarly, positively correlated data is

likely to produce smaller result-sets. Therefore, we summarize our results by plotting

the average response time against the size of the output (Figure 2.3, on the right).

As expected, Osdc and Less show a clear advantage for large result-sets while Bnl

remains competitive only for queries returning few tuples. The lines on the graph

represent second-order polynomial regressions.

2.6.3 Real data sets

We tested our algorithms over the following real, publicly available data sets:

NBA NBA4 is a very popular data set for evaluating skyline algorithms. We used the

following regular season statistics: gp, minutes, pts, reb, asts, stl, blk, turnover,

pf, fga, fta, tpa, weight, height. After dropping null values, the data set contains

4www.databasebasketball.com

28

21,959 tuples. We generated 8,000 random p-expressions with d ranging from 7

to 14. For this data set we used the assumption that larger values are preferred.

CovType Forest Covertype5 contains a collection of cartographic observations per-

formed by the US Forest Service and the US Geological Survey. We extracted

a data set of 581,012 tuples over 10 attributes. We generated 6,000 random

p-expressions with d ranging from 5 to 10. For this data set we used the as-

sumption that smaller values are preferred.

Our results are presented in Figures 2.5 and 2.6. In the graphs on the left response

times are aggregated by the number d of attributes in each p-expression. In the

plots on the right response times are put in relation with the size of the output. On

both data sets our findings confirmed our average-case analysis and the results we

obtained from synthetic data: Osdc outperforms Less and Bnl, especially when the

output-size is over 1% of the input-size.

5archive.ics.uci.edu/ml/datasets/Covertype

29

CHAPTER III

Beta Probabilistic Databases

Tuple-independent probabilistic databases (TI-PDBs) handle uncertainty by an-

notating each tuple with a probability parameter; when the user submits a query, the

database derives the marginal probabilities of each output-tuple, assuming input-tuples

are statistically independent. While query processing in TI-PDBs has been studied ex-

tensively, limited research has been dedicated to the problems of updating or deriving

the parameters from observations of queries’ results. Addressing this problem is the

main focus of this chapter. We introduce Beta Probabilistic Databases (B-PDBs),

a generalization of TI-PDBs designed to support both (i) belief updating and (ii) pa-

rameter learning in a principled and scalable way. The key idea of B-PDBs is to treat

each parameter as a latent, Beta-distributed random variable. We show how this sim-

ple expedient enables both belief updating and parameter learning in a principled way,

without imposing any burden on regular query processing. As a result, B-PDBs can

be trained by simply observing query-answers, without requiring the user to provide

the model’s parameters explicitly.

3.1 Introduction

Uncertain data arises in numerous settings, including data exchange, ETL, ap-

proximate query processing, and more. In the last decade, the challenge of posing

30

queries over uncertain data – data specified by a probability distribution has received

considerable attention from the database community [4, 13, 16, 24, 29, 37, 44, 46, 50,

69, 71, 74]. In short, querying uncertain data is relatively well understood. However,

deriving the probability distribution behind a probabilistic database can be signifi-

cantly harder.

In this chapter, we address the challenge of building a probabilistic database from a

noisy, indirect signal. Specifically, we propose a new model for probabilistic databases

called Beta-Probabilistic Databases (B-PDBs) that enables principled approaches for

deriving or updating the database’s distribution. The information used to update or

derive the B-PDB may be indirect — a B-PDB can incorporate any information that

can be expressed as the output of a query over the database. This information may

also be noisy — the information incorporated into a B-PDB may itself be sampled,

as in a poll or a vote. Most importantly, B-PDBs are completely backwards compat-

ible with the widely used Tuple-Independent model [31, 13, 24, 25] for probabilistic

databases (TI-PDBs), allowing us to freely leverage query processing techniques de-

veloped for TI-PDBs, like pRA [31], Monte Carlo simulations [16, 46, 49], anytime

approximations [30], dissociations [33], lineage-based methods [38] and more.

In the Tuple-Independent model, a database is a set of n tuples {x1, . . . , xn},

annotated with independent probabilities {θ1, . . . , θn}. It represents a standard re-

lational database whose internal state is uncertain; the set of its plausible states

(its “possible worlds”) consists of the power-set of {x1, . . . , xn}. The probability of

a possible world w is simply the probability of selecting its tuples independently:

P[w] =
∏

xi∈w θi ·
∏

xj 6∈w(1− θj). Given a Boolean query q, the probability of q being

true is equal to the sum of the probabilities of the possible worlds that satisfy q:

P[q] =
∑

w|=q P[w].

Example 4. A TI-PDB may be used to encode noisy knowledge about the employment

history of a set of candidates:

31

Rp

name emp tid θ

Ada HP x1 .6

Ada IBM x2 .6

Bob HP x3 .5

If we want to find out whether the person named Ada ever had an employer, we run

the following Boolean query

exists(select * from Rp where name=’Ada’) (3.1)

The answer is expected to be true (“Ada had at least one employer in the past”) with

probability 0.84 and false (“Ada never had a job”) with probability 0.16.1

Let’s now assume we are given (i) a TI-PDB D whose parameters are hidden,

(ii) a set of Boolean queries Q def
= {q1, . . . , qk}, and (iii) a finite set of query-answers

sampled from P[q], for each q in Q. We denote by E (the “evidence”) the whole set

of samples and we assume each sample is drawn independently from all the others.

We focus mainly on two problems:

1. Belief updates: given an initial hypothesis about the hidden parameters of

D, we show how to refine such hypothesis as to incorporate the evidence E .

2. Parameter learning: we show how to derive a new hypothesis from scratch,

relying only on the given evidence.

Without lack of generality, we assume each query is observed exactly s times, and we

denote by τ the fraction of positive answers. Therefore, we model the evidence E as

a mapping that associates each query to its observed relative frequency of positive

answers: E def
= {(q1, τ1), (q2, τ2), . . . , (qk, τk)}.

1The probabilities follow from 1 − [(1 − 0.6) · (1 − 0.6)] = 0.84. Also notice that we adopt here
a closed-world assumption as is common with TI-PDBs: any missing tuple is assumed to have
probability 0.

32

0.0

1.0

2.0

3.0

4.0
p [θ1]

0.0

1.0

2.0

3.0

4.0
p [θ2]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

4.0
p [θ3]

before observing ¬(x1 ∨ x3)

name emp tid a b 〈θ〉 h [θ]

Ada HP x1 6 4 .6 −0.507
Ada IBM x2 18 12 .6 −1.014
Bob HP x3 2 2 .5 −0.125

after observing ¬(x1 ∨ x3)

name emp tid a b 〈θ〉 h [θ]

Ada HP x1 6 5 .54 −0.528
Ada IBM x2 18 12 .6 −1.014
Bob HP x3 2 3 .4 −0.235

Figure 3.1: A simple B-PDB with three tuples, before (solid red) and after (dashed
green) observing the answer “no” to the query exists(select * from R where

emp=’HP’) .

Example 4 (continued). If we crawled the web and retrieved 25 LinkedIn profiles that

are all plausible, equally likely matches for the entity named Ada, and all of them but 4

report some unspecified work experience, then we can associate the relative frequency

τ = 0.84 to query (3.1), and set s = 25. Evidence for other queries can be collected

in a similar fashion.

Belief updating is useful when someone wants to improve an already reliable prob-

abilistic model, exploiting some new, previously unseen, evidence. For example, let’s

assume we trust the information stored in relation Rp, but we want to improve our

knowledge about Ada’s work history. In order to do so, we submit the query “has

Ada ever worked for IBM?”2 to 10 independent data banks. If at least 7 of them

answer “yes”, then we may want to increase parameter θ1 in Rp (whose initial value

is 0.6) as to reflect this additional information. Clearly, the extent of the adjustment

will depend on how strong our initial confidence about the value of θ1 was. Belief

updating is about computing these adjustments to prior beliefs in a principled way.

Parameter learning is about using the experts’ opinion to build a new probabilistic

2In SQL: exists(select * from R where name=’Ada’ and emp=’IBM’).

33

model from scratch. For example: if we are told that the query

q = select emp from R where name=’Ada’

should return the answer {HP, IBM} (“Ada worked for both HP and IBM”) with

relative frequency 0.32 (or some other answer with relative frequency 1−0.32 = 0.68),

and should return the empty set ∅ (“Ada has not worked before”) with relative

frequency 0.22 (or some other non-empty answer with relative frequency 1 − 0.22 =

0.78), then our goal becomes to choose θ1 and θ2 so that the model (Rp) exhibits the

desired marginal probabilities for q. This is achieved either when (θ1, θ2) = (0.4, 0.8)

or when (θ1, θ2) = (0.8, 0.4).3

The key idea behind B-PDBs is to model the parameters {θ1, . . . , θn} as Beta-

distributed latent random variables. This simple expedient allows us to (i) model

both our current estimate of a probability and its confidence in a natural way, and (ii)

to deploy a principled way to update those estimates in the presence of new evidence.

We illustrate with Figure 3.1 (first table) a simple B-PDB, consisting of a single

relation, generalizing the TI-relation Rp we introduced in Example 4. Notice that for

each tuple xi the parameter θi has been replaced by two parameters, ai and bi. The

symbol θi is now used to identify a [0, 1]-valued random variable, whose probability

density is Beta-distributed:

p[θi]
def
= θai−1

i · (1− θi)bi−1 · B(ai, bi)
−1 (3.2)

Here B(·, ·) denotes the Beta function, which serves as a normalizing factor4 . The

three solid-red plots on the left in fig. 3.1 depict the density functions p[θ] for each

3Since 0.32 = 0.8 · 0.4 and 0.22 = 1 − (1 − 0.8)(1 − 0.6). Notice that q is not a Boolean query.
Nonetheless, the example is well defined: it is possible to write a Boolean query to verify whether
the answer to q is {HP, IBM}, and another one to verify whether the answer is ∅.

4Chapter 25 of [48] is a good introduction to Beta distributions.

34

tuple in the B-PDB. An intuitive way to understand Beta distributions is to think

about their parameters a and b as votes. Under this interpretation, the first row in

the B-PDB represents a poll where the query “has Ada ever worked for HP?” has

received 6 positive answers and 4 negative ones. Similarly, the second row can be seen

as a poll where the query “has Ada ever worked for IBM?” has received 18 positive

votes and 12 negative ones. While the relative frequency of positive answers is the

same for both the polls (0.6), the second poll should be considered more informative,

as it involves more votes (30 against 10). Consistently with this intuition, the plots

of p[θ1] and p[θ2] have both a peak on .6, but the former exhibits a higher entropy

than the latter.

In B-PDBs the marginal probability of a tuple xi is determined by the expected

value of the random variable θi:

P[xi] =

1∫
0

θi · p[θi] dθi (3.3)

From now on we denote with 〈θi〉 the expected value of θi. It is well known [48] that

the integral in eq. (3.3) admits the following closed solution: P[xi] = 〈θi〉 = ai/(ai+bi).

It follows that B-PDBs are indistinguishable from regular TI-PDBs when it comes

to query processing: all existing inference techniques, both exact and approximate,

that have been proposed in the past for TI-PDBs [25, 30, 33, 49, 66, 67] can be

readily applied to B-PDBs. To do so it is sufficient to convert the B-PDB into a

TI-DB by computing the expectation 〈θi〉 for each and every tuple in the database,

in polynomial time. Therefore, B-PDBs are a conservative generalization of TI-PDBs

that add a principled way to update the parameters, which is the main focus of our

chapter. The first table of fig. 3.1 shows the tuples’ marginal probabilities inside

column 〈θ〉. This column is shown for readers’ convenience only; it is not explicitly

stored in a B-PDB. It is immediate to verify that the given B-PDB is equivalent, in

35

terms of query processing, to the relation Rp introduced in Example 4.

Beyond estimating tuples’ probabilities B-PDBs can also evaluate the confidence

of such estimates. In the remainder of this chapter we adopt the differential entropy

h [θi] as a metric for the confidence of the B-PDB’s estimates of P[xi]. By definition,

the differential entropy of θi is:

h [θi]
def
=

∫
p[θi] · log(p[θi])dθi

The above integral admits a well-known [61, 28] closed form5. Intuitively, the smaller

h [θi] is the higher is the confidence of the estimate of P[xi]. For readers’ convenience

fig. 3.1 shows the differential entropies in the column h [θ]6.

In the following sections we will describe extensively how B-PDBs support belief

updates. We introduce the topic here with a simple example. The second table in

fig. 3.1 shows the effect of performing a belief update to incorporate the observation

of a single, negative answer to the Boolean query

exists(select * from R where emp=’HP’)

Intuitively, the observation suggests that neither Ada nor Bob have worked in the

past for HP. We react to this new information by adding a negative vote to both

the first and the third tuple in the B-PDB. The adjusted probability densities of θ1

and θ3 are plotted on the left, in dashed green. Notice that the update has a greater

impact on p[θ3] rather than on p[θ1], consistently with the fact that h [θ1] < h [θ3].

In the general case, belief updates may involve thousands of queries, and affect the

parameters of a B-PDB in a non-trivial way.

5The closed solution is h [θi] = log(B(ai, bi))− [(ai− 1) · (ψ(ai)−ψ(ai + bi))]− [(bi− 1) · (ψ(bi)−
ψ(ai + bi)), where ψ(·) denotes the Digamma function.

6As before, this information is given for readers’ convenience only and does not need to be stored
inside the B-PDB.

36

In the remainder of this chapter, we study (i) belief updates (§3.4) and (ii) param-

eter learning (§3.5) in great detail; we show how to perform both when we observe

answers to an arbitrary set of conjunctive, self-join-free queries.

Our contributions include:

1. Bayesian belief updates. Given a B-PDB and a set of queries’ results,

we show how to incorporate the new evidence into the B-PDB in a Bayesian

fashion. We analyze the complexity of computing such Bayesian updates and

provide efficient algorithms for tractable classes of queries.

2. Soft Expectation Maximization. We devise a soft-EM algorithm for com-

puting the maximum likelihood estimate of the parameters {θ1, . . . , θn} w.r.t.

some given queries’ results.

3. Benchmarks. We show how the algorithms we propose can be easily embedded

into a standard relational engine, so to exploit its optimization features. We

test our framework against a standard industry benchmark (TCP-H), annotated

with probabilities.

3.2 Background

In this section, we review some background notions and contextualize B-PDBs

w.r.t. previous work on probabilistic databases. For the sake of conciseness, we use the

following notation: given a real number z we denote by z its complement (1−z). When

ϕ is a Boolean expression ϕ denotes, as usual, its negation ¬ϕ. A comprehensive

notation table is given in Appendix A.

3.2.1 Relational Databases

A relational database consists of a finite collection of relations {R, S, T, . . .}, over

a finite set of n tuples {x1, . . . , xn}. A conjunctive query q is a first-order formula in

37

prenex normal form, respecting the following restrictions: (i) each predicate symbol

represents a relation, (ii) all variables are either existentially quantified or quantifier-

free, (iii) the formula is negation-free and (iv) disjunction-free. We use capital letters

to denote first-order logic variables. For example:

q(Z) = ∃X ∃Y R(X, Y) ∧ S(X,Z) (3.4)

We denote by hvar(q) the set of free (“head-”) variables of q, and by evar(q) the

set of existentially quantified variables. A conjunctive query is said to be self-join-

free iff every relation name appears at most once; it is said to be Boolean iff there

are no free variables. Given a database instance D, every non-Boolean conjunctive

query can be seen as a collection of Boolean queries, one for each of the possible

grounding of the free variables to values in their active domain [2]. In the remainder

of this paper we assume queries are always conjunctive and self-join-free. With limited

abuse of notation we will denote non-Boolean queries as vectors (q) and Boolean ones

as indexed vectors’ components (qj) that range over the groundings of q. Given a

database instance D and a Boolean query q, we denote by ΦD(q) the lineage [7, 15, 38]

of q, a propositional Boolean formula over the alphabet {x1, . . . , xn}, built according

to the following recursive rules

• ΦD(q) = ΦD(q′1) ∨ . . . ∨ ΦD(q′k) when q = ∃X q′, and hvar(q′) = {X} and

{q′1, . . . , q′k} are the groundings of q′ obtained by replacing X with one of the

constants in its active domain

• ΦD(q) = ΦD(q′) ∧ ΦD(q′′) when q = q′ ∧ q′′

• ΦD(q) = xi, when q is a ground atom7

A lineage expression ϕ is said to be read-once iff each literal appears at most once.

7In this section “atoms” are atomic first-order logic formulas. For example, the query from
eq. (3.4) contains two atoms, R(X,Y) and S(X,Y). An atom is ground when it has no variables:
R(’Ada’, ’HP’).

38

It is straightforward to extend the definition of lineage to query answers: if ϕ is the

lineage of q then the answer > has lineage ϕ, while the answer ⊥ has lineage ϕ.

In the following we often identify Boolean queries with their lineage. For the sake

of compactness we sometimes omit the ∧ symbol in lineage expressions (therefore,

x1x2 is an abbreviation for x1 ∧ x2) and use the common Datalog notation to express

conjunctive queries; for example: q(Z) :−R(X, Y), S(X,Z).

Given a variable X and a query q, we denote by at(X,q) the set of q’s atoms

where X appears. Variables that appear in every atom of q are called root variables.

We say that a query q is hierarchical iff, for any two existential variables (X, Y),

either at(X,q) ⊆ at(Y,q) or at(Y,q) ⊆ at(X,q) or at(X,q) ∩ at(Y,q) = ∅ holds.

Example 4 (continued). The query q from eq. (3.4) is hierarchical; the set of head-

variables hvar(q) contains only Z, while evar(q) consists of {X, Y }. X is a root

variable, but Y is not. Let D be a database instance where the relations R and S are

defined as follows:

R

name emp tid

Ada HP x1

Ada IBM x2

Bob HP x3

S

name lng tid

Ada eng x4

Bob eng x5

Bob ita x6

Within D the active domain of Z is {eng, ita}. Therefore query q can be seen as a

collection of two Boolean queries:

q1 :−R(X, Y), S(X, eng). q2 :−R(X, Y), S(X, ita).

Their lineage expressions are:

ΦD(q1) = x1x4 ∨ x2x4 ∨ x3x5 ΦD(q2) = x3x6

39

The lineage of q2 is read-once, while the lineage of q1 is not, as the literal x4 is used

twice (we will later show how to obtain a read-once expression for q1).

We define query plans as sentences respecting the following grammar:

P ::= R | πX(P ′) | σ(P ′) | ./ [P ′, P ′′, . . .]

where R denotes an arbitrary relation name and projections (π), selections (σ) and

natural joins (./) have the usual semantics. It is straightforward to extend the nota-

tion we use for queries to query plans: if P denotes a plan, then hvar(P) is the set of

attributes in its output schema, while evar(P) denotes the set of attributes that are

projected-away. In the following we write π−X(P) as short form for πhvar(P)\{X}(P).

A plan P is Boolean when hvar(P) is empty. Given a database instance D, a non-

Boolean plan P can be seen as a collection of Boolean plans {P1, . . . , Pk}, one for each

of its output-tuples. Each plan in {P1, . . . , Pk} is obtained from P by substituting its

head variables by the constants of the respective output-tuple. A query plan always

corresponds to exactly one query, but one query may have multiple distinct query

plans. Two query plans are logically equivalent if they answer the same query. Given

a database instance D and a Boolean plan P we denote by ΦD(P) the lineage of P ,

a Boolean expression built according to the following recursive rules:

• If P identifies a tuple, say x, then ΦD(P) = x.

• If P = P ′ ./ P ′′ then ΦD(P) = ΦD(P ′) ∧ ΦD(P ′′).

• If P = π∅ (P ′) then ΦD(P) = ΦD(P ′1) ∨ ΦD(P ′2) ∨ . . . ∨ ΦD(P ′k) assuming that

{P ′1, P ′2, . . . , P ′k} are the plans corresponding to the output-tuples of P ′.

If plan P answers query q, then ΦD(P) is logically equivalent to ΦD(q), for every D.

Example 4 (continued). Both the following query plans

P ′ = π−X(π−Y (R) ./ S) P ′′ = π−XY (R ./ S)

40

compute the correct answer for query q from eq. (3.4), but they produce different

lineage expressions:

P ′

lng ΦD

eng ((x1 ∨ x2) x4) ∨ x3x5

ita x3x6

P ′′

lng ΦD

eng x1x4 ∨ x2x4 ∨ x3x5

ita x3x6

Notice that all the lineage expressions produced by P ′ are read-once and logically

equivalent to the corresponding lineage expressions of q and P ′′.

3.2.2 Tuple-independent Probabilistic Databases

A tuple-independent probabilistic database (TI-PDB) is a regular relational database

where each tuple represents an independent probabilistic event. Each tuple xi is as-

sociated with a Bernoulli-distributed Boolean random variable, expected to be true

with probability θi and false with probability θi. It represents the belief that tuple

xi belongs to the database. In slight abuse of notation we use xi to denote both a

tuple and its associated Boolean random variable; we use the vector notation θ to

denote the whole set of parameters {θ1, . . . , θn}. Unlike deterministic databases, the

state of a TI-PDB is uncertain: the set of its plausible states (its “possible worlds”)

ranges over the power-set of its tuples. Hence, a possible world consists of a subset of

tuples, generated by including each tuple xi with probability θi. A TI-PDB D defines

a probability measure P[·] over possible worlds and Boolean queries. If w is a possible

world, we denote by w[i] a function that returns 1 when tuple xi belongs to w, and 0

otherwise. The probability of w is P[w|D]
def
=
∏

i:w[i]=1 θi ·
∏

i:w[i]=0 θi, the probability

of drawing its tuples independently; if q is a Boolean query, its marginal probability

is the sum of all possible worlds where q is satisfied: P[q|D]
def
=
∑

Asst(|=)q P[w]. If

ϕ is a lineage expression, we denote by P[ϕ|D] the probability of ϕ being satisfied,

given that each literal xi is true with probability θi and false otherwise. Notice that

41

P[q|D] = P[ϕ|D] when ϕ = ΦD(q).

TI-PDBs are often associated with Probabilistic Relational Algebra (pRA) [31], a

generalization of positive relational algebra that consists of three probabilistic oper-

ators: independent projection (πp), independent join (./p) and selection (σ). These

operators differ from standard relational algebra in the fact that they associate a

score to each output tuple. Let P be the Boolean plan associated with an arbitrary

output tuple; its score is computed according to the following recursive rules:

• If P identifies a tuple xi then score(P) = θi

• If P = P ′ ./p P ′′ then score(P) = score(P ′) · score(P ′′)

• If P = σ(P ′) then score(P) = score(P ′)

• If P = πp
∅ (P ′) then

score(P) = 1− [(1− score(P ′1)) · . . . · (1− score(P ′k))]

assuming that {P ′1, . . . , P ′k} are the plans corresponding to the output-tuples of

P ′. For the sake of conciseness we adopt the independent-or (⊗) operator:

score(P)
def
= score(P ′1)⊗ . . .⊗ score(P ′k)

def
=
⊗

i∈{1,...,k}

[score(P ′i)]

Let’s assume P ′ and P ′′ are two plans answering the Boolean queries q′ and q′′,

respectively, and P[q′|D] = score(P ′) and P[q′′|D] = score(P ′′). Notice that P[q′ ∧

q′′|D] = score(P ′ ./p P ′′) holds, but only if q′ and q′′ represent independent events.

Similar considerations apply to πp: if P ′ and P ′′ are the output-tuples of the plan

P , then the equivalence P[q′ ∨ q′′|D] = score(πp
∅(P)) holds only if q′ and q′′ represent

independent events. The probabilistic independence between q′ and q′′ is guaranteed

when their lineages do not share any literal. We can conclude that an arbitrary pRA

plan P computes the correct marginal probabilities only when all its intermediate

42

results consist of pairwise independent events. A plan respecting such property is

said to be “safe” and its lineage expressions are guaranteed to be read-once. The

following Lemma summarizes a variety of results about probabilistic query processing

over TI-PDBs

Lemma 3. [24, 25, 36, 66] Let q be a self-join-free conjunctive query consisting of k

Boolean queries {q1, . . . , qk}. The following statements are equivalent:

1. Query q is hierarchical.

2. For any D, query q admits a safe pRA plan.

3. For any D and qj ∈ q, the lineage of qj admits a read-once representation.

4. For any D and qj ∈ q, computing P[qj|D] takes polynomial time in the size of

D.

Deciding any (all) of the above properties (finding a certificate, if any exists) takes

polynomial time in the size of q. If such test fails (i.e. no certificate exists), then

anwering q is #P -hard.

Example 4 (continued). We can turn the relations R and S into a TI-PDB by

annotating each tuple with a probability, that we store in a dedicated column named

θ.

Rp

name emp tid θ

Ada HP x1 0.6

Ada IBM x2 0.6

Bob HP x3 0.5

Sp

name lng tid θ

Ada eng x4 0.4

Bob eng x5 0.2

Bob ita x6 0.6

We can rewrite the plans P ′ and P ′′ in terms of pRA:

P ′ = πp
−X(πp

−Y (Rp) ./p Sp) P ′′ = πp
−XY (Rp ./p Sp) (3.5)

They both produce the same output-tuples, but different scores:

43

P ′

lng score

eng ((θ1 ⊗ θ2) θ4)⊗ θ3θ5 = 0.4024

ita θ3θ6 = 0.3

P ′′

lng score

eng θ1θ4 ⊗ θ2θ4 ⊗ θ3θ5 = 0.48016

ita θ3θ6 = 0.3

Notice that plan P ′ is safe, while P ′′ is not: the correct value of P[q1|D] is 0.4024, it

is not 0.48016.

In conclusion, pRA is guaranteed to be sound only when dealing with hierarchical

queries. Dalvi and Suciu [24] developed a well-known algorithm to identify safe plans

for hierarchical queries. Other techniques, like [16, 46, 49, 30], must be used to answer

non-hierarchical queries.

3.3 Beta Probabilistic Databases

In this section we introduce Beta probabilistic databases (B-PDBs), our new gen-

eralization of TI-PDBs, based on the idea of imposing a prior distribution over the

parameters θ. In the resulting model, each parameter θi becomes an independent ran-

dom variable, whose probability density function follows a Beta distribution Be(ai, bi)

determined by two hyper-parameters, ai and bi:

p[θi|H]
def
= Be(ai, bi) (3.6)

p[θ|H]
def
=

n∏
i=1

p[θi|H] (3.7)

We denote by Be(a, b) the probability density function of a Beta distribution:

Be(a, b) def
= θa−1 · θb−1 · B(a, b)−1

We use a and b to denote the corresponding n-vectors of hyper-parameters, and

H def
= (a,b) to denote a Beta-database instance (the relational structure of H is

44

assumed to be fixed and, for the sake of conciseness, it is never mentioned explicitly).

In terms of graphical models, one can see a B-PDB as a collection of n independent

Boolean variables, distributed according to n independent Beta-Bernoulli compound

distributions :

θi ∼ Beta(ai, bi) xi ∼ Bernoulli(θi)

Given an arbitrary function f(θ) and a distribution p[θ] we denote by 〈f〉p[θ] the

expected value of f , assuming θ is sampled from p[θ]. Just like TI-PDBs, B-PDBs

define a probability measure over possible worlds and Boolean queries:

P[xi|H]
def
=

1∫
0

θi · Be(ai, bi) dθi (3.8)

P[Asst (|)H]
def
=

n∏
i=1

P[xi|H]Asst([)i] · P[xi|H]
Asst([)i]

(3.9)

P[ϕ|H]
def
=

∑
Asst(:) Asst(|=)ϕ

P[w|H] (3.10)

Equations 3.8, 3.9 and 3.10 denote, respectively, the probability of a literal, the

probability of a possible world, and the probability of a Boolean query. Notice that

ϕ may represent the lineage of the answer to a non-Boolean query. For example, if

we submit a non-Boolean query q consisting of three Boolean queries [ϕ1, ϕ2, ϕ3], the

probability of observing the answer [⊥,>,⊥] is P[ϕ1ϕ2ϕ3|H].

In practical terms, B-PDBs differ from TI-PDBs in that each tuple is annotated

with two R+-valued parameters, rather than with a single probability measure (com-

pare, for example, the table at the top of Figure 3.1 with the probabilistic relation Rp

discussed in Example 4). Notice that the marginal probability of xi can be computed

as [48]

P[xi|H] =

1∫
0

θi · Be(ai, bi) dθi = 〈θi〉H = ai
ai+bi

(3.11)

From eq. (3.11) it follows immediately that vector 〈θ〉H of expected tuple probabilities

45

underH, represents the parameters of a TI-PDB that behave identically to the B-PDB

H when it comes to query processing. In other words, the mapping H → 〈θ〉H allows

us to immediately re-use all the standard query processing techniques developed for

TI-PDBs, like pRA [31], Monte Carlo simulations [16, 46, 49], anytime approximations

[30], dissociations [33], lineage-based methods [38] and many others.

Given two queries ϕ and ϕ′, we denote by P[ϕ|ϕ′,H] the probability of observing

ϕ being true in a possible world of H that already satisfies ϕ′:

P[ϕ|ϕ′,H]
def
= P[ϕ∧ϕ′|H]

P[ϕ′|H]
(3.12)

We denote by p[θ|ϕ,H] the posterior probability density function of θ w.r.t. ϕ:

p[θ|ϕ,H]
def
=
p[θ, ϕ|H]

P[ϕ|H]
=
P[ϕ|θ] · p[θ|H]

P[ϕ|H]
(3.13)

Notice that P[ϕ|θ] represents the probability of observing ϕ being satisfied by a TI-

PDB with parameters θ.

3.3.1 Multiple independent observations

Given a B-PDB H and a positive integer s, we denote by Hs the distribution

obtained by replicating the model of H exactly s times. In other words, Hs represents

the distribution of a set of s possible worlds drawn independently from H. Figure 3.2

depicts model Hs using plate notation, and compares it with the model induced by

TI-DBs. Within a model Hs, we denote by x`,i and θ`,i the pairs of random variables

associated with the i-th tuple of the `-th possible world. Therefore

θ`,i ∼ Beta(ai, bi) x`,i ∼ Bernoulli(θ`,i)

46

We denote by x(·,i) the s-vector (x1,i, . . . , xs,i), by x(`,·) the n-vector (x`,1, . . . , x`,n) and

by x(·,·) the s-by-n matrix containing all the Boolean random variables of the model.

We adopt similar conventions for defining the semantics of θ(·,i), θ(`,·) and θ(·,·). Given

an integer t such that 0 ≤ t ≤ s, we denote by P[ϕt|Hs] the probability of observing

a set of s independent possible worlds from H where ϕ is satisfied exactly t times:

P[ϕt|Hs]
def
=

(
s

t

)
· P[ϕ|H]t · P[ϕ|H]s−t

The posterior probability density of θ(·,·) w.r.t. Hs and evidence ϕt is

p[θ(·,·)|ϕt,Hs]
def
=

(
s
t

)∏t
`=1 P[ϕ|θ(`,·)] ·

∏s
`=t+1 P[ϕ|θ(`,·)] ·

∏s
`=1 p[θ(`,·)|H]

P[ϕt|Hs]

Notice that the above formula generalizes eq. (3.13). Given a positive integer k, we

denote byHs,k the probability distribution obtained by replicatingHs exactly k times.

Equivalently, Hs,k represents the distribution of a set of s · k possible worlds sampled

independently from H. We extend our notation accordingly, denoting by xj,`,i and

θj,`,i the random variables associated with the (j · `)-th possible world. Given a set

of k distinct Boolean expressions {ϕ1, . . . , ϕk} and k integers {t1, . . . , tk} between 0

and s, we denote by E = {ϕt11 , . . . , ϕ
tk
k } the event of observing each ϕj in {ϕ1, . . . , ϕk}

being satisfied exactly tj over the s possible worlds {x(j,1,·), . . . , x(j,s,·)}. Its likelihood

is

P[E|Hs,k]
def
=

k∏
j=1

P[ϕ
tj
j |Hs]

The posterior probability density of θ(·,·,·) w.r.t. Hs,k and evidence E = {ϕt11 , . . . , ϕ
tk
k }

is

p[θ(·,·,·)|E ,Hs,k]
def
=

k∏
j=1

p[θ(j,·,·)|ϕ
tj
j ,Hs]

Example 5. Let’s assume we have a B-PDB H with two tuples, x1 and x2, and k = 2

queries: ϕ1 = x1 ∧ x2 and ϕ2 = x1 ∨ x2. Then:

47

• P[ϕ1 ∧ ϕ2|H] = 〈θ1〉H · 〈θ2〉H

• P[ϕ1|ϕ2,H] = (〈θ1〉H · 〈θ2〉H) · (〈θ1〉H ⊗ 〈θ2〉H)−1

• P[ϕ1|H2] = 1
2
· (〈θ1〉H · 〈θ2〉H) · (〈θ1〉H ⊗ 〈θ2〉H)

• P[ϕ1, ϕ2|H1,2] = (〈θ1〉H · 〈θ2〉H) · (〈θ1〉H ⊗ 〈θ2〉H)

From eq. (3.11) it is straightforward to derive the following Lemma:

Lemma 4. For any arbitrary evidence E = {ϕt11 , . . . , ϕ
tk
k } the likelihood function

P[E|Hs,k] respects the following properties:

1. If Ha and Hb are two B-PDBs such that 〈θ〉Ha = 〈θ〉Hb then P[E|Ha] = P[E|Hb].

2. Let H be a B-PDB and D a TI-PDB with parameters θ∗: if θ∗ = 〈θ〉H then

P[E|Hs,k] = P[E|Ds,k], where Ds,k denotes the distribution obtained by drawing

s · k independent samples from D.

The next two sections are dedicated to two specific operations supported by B-

PDBs, that involve the computation of the posterior p[θ(·,·,·)|E ,Hs,k]: belief updating

and maximum likelihood estimation. We introduce their formal definition here:

Definition 4 (Belief updating). Given a B-PDB H and an evidence event E =

{ϕt11 , . . . , ϕ
tk
k }, belief updating is the process of identifying the B-PDB Ĥ that mini-

mizes the relative entropy between the posterior p[θ(·,·,·)|E ,Hs,k] and the prior p[θ(·,·,·)|Ĥs,k].

Belief updating is discussed in §3.4.

Definition 5 (Maximum likelihood estimation). Given some evidence E = {ϕt11 , . . . , ϕ
tk
k },

maximum likelihood estimation is the problem of identifying a local maximum of the

likelihood function P[E|Hs,k]. Maximum likelihood estimation is discussed in §3.5.

3.4 Belief Updating

The goal of belief updating is to adjust the parameters a and b so to incorporate

some new, previously unseen, evidence. If H denotes the current state of the our

48

B-PDB and E = {ϕt11 , . . . , ϕ
tk
k } is the new evidence we observe, our goal is to identify

a new state Ĥ def
= (â, b̂) that minimizes the relative entropy between p[θ(·,·,·)|E ,Hs,k]

and p[θ(·,·,·)|Ĥ]. For the sake of clarity, we start introducing belief updates from the

simple case where s = k = 1 and E = {ϕ}. Later we will extend our discussion to the

general case.

3.4.1 Simple case: s = k = 1

When s = k = 1 holds and E = {ϕ}, Ĥ is supposed to minimize the relative

entropy between the posterior p[θ|ϕ,H] and the prior p[θ|Ĥ]. Since every tuple

of Ĥ is independent from the others, it is sufficient to minimize the relative entropy

between p[θi|ϕ,H] and p[θi|Ĥ] for each and every tuple. The first step in this direction

is to compute the marginal posterior p[θi|ϕ,H]. The following theorem addresses this

specific problem.

Theorem III.1. The marginal posterior probability of random variable θi, given hy-

pothesis H and evidence E = {ϕ}, can be computed as follows:

p[θi|ϕ,H] = P[xi|ϕ,H] · Be(ai + 1, bi) + P[xi|ϕ,H] · Be(ai, bi + 1)

Proof. The proof is given in ??.

ϕxθ ϕ

n
s

ϕjxθ

b

a
ϕ

n
s

Figure 3.2: Comparison between a regular TI-PDB (left) and a B-PDB (right) when
k = 1, using plate notation. TI-PDBs associate each tuple xi with a single Boolean,
Bernoulli-distributed random variable, whose probability mass function depends on
a single parameter (θi). B-PDBs associate each tuple with two random variables:
θi, which is [0, 1]-valued and Beta-distributed with hyper-parameters (ai, bi), and
xi, which is Boolean-valued and Bernoulli-distributed. For both TI-PDBs and B-
PDBs the evidence consists of observed query answers, that here are modeled by the
observable variable ϕ.

49

Theorem III.1 states that p[θi|ϕ,H] is a mixture of Beta distributions. It is well

known that the Beta distribution is the conjugate prior of the Bernoulli distribution.

Consequently, the posterior of a Beta-Bernoulli compound distribution is guaranteed

to be Beta-distributed. Within a B-PDB we can exploit such property whenever we

can infer the value of some random variable xi from the evidence; this is formalized

by the following Corollary:

Corollary 1. In a B-PDB H the conjugancy property holds if and only if the random

variable xi is fully observable from the evidence:

p[θi|ϕ,H] =

Be(ai + 1, bi) if ϕ |= xi

Be(ai, bi + 1) if ϕ |= xi

Corollary 1 suggests a very intuitive interpretation of the marginal posterior

p[θi|ϕ,H]: it can be seen as a random process in which we first make a guess about

the value taken by xi in the evidence and then we select the appropriate conjugate

prior. Notice that the complexity of computing p[θi|ϕ,H] depends on the complexity

of computing conditional probabilities in the form P[x|ϕ,H]. This problem is dis-

cussed extensively in §3.6; for the moment we just observe that it is #P-complete in

the general case.

Now that we know how to compute the marginal posterior p[θi|ϕ,H], we can move

our attention to the problem of computing an update H → Ĥ that minimizes the

relative entropy between p[θi|ϕ,H] and the marginal prior p[θi|Ĥ]
def
= Be(âi, b̂i). We

denote such measure with KLdivi :

KLdivi =

1∫
0

p[θi|ϕ,H] · log

(
p[θi|ϕ,H]

p[θi|Ĥ]

)
dθi

Notice that p[θi|Ĥ] belongs to the exponential family, and its sufficient statistics are

log θi and log θi. Therefore, if we want to minimize the relative entropy KLdiv we have

50

to choose (âi, b̂i) so that the expected value of (log θi, log θi) w.r.t. P[θi|Ĥ] matches

the expected value of the same statistics computed w.r.t. P[θ|ϕ,H]. This well-known

criterion is formalized in the following definition and justified in Proposition 18:

Definition 6. We denote by bfit(ai, bi, ϕ) the pair of parameters (â∗i , b̂
∗
i) satisfying

the following two equations:

∫ 1

0
Be(â∗i , b̂∗i) log θi dθi =

∫ 1

0
p[θi|ϕ,H] log θi dθi∫ 1

0
Be(â∗i , b̂∗i) log θi dθi =

∫ 1

0
p[θi|ϕ,H] log θi dθi

(3.14)

or, in terms of expectations:

〈log θi〉Be(â∗i ,b̂∗i) = 〈log θi〉p[θi|ϕ,H]

〈log θi〉Be(â∗i ,b̂∗i) = 〈log θi〉p[θi|E,H]

(3.15)

Proposition 1. When (âi, b̂i) = (â∗i , b̂
∗
i) = bfit(ai, bi, ϕ) the relative entropy between

the posterior p[θi|ϕ,H] and the Beta distribution P[θi|Ĥ] is minimized.

8A similar, more general result is proved in [42] for all the distributions in the exponential family.

51

Proof. The relative entropy between p[θi|ϕ,H] and p[θi|Ĥ] can be expressed as follows:

KLdivi =

1∫
0

p[θi|ϕ,H] · log

(
p[θi|ϕ,H]

p[θi|Ĥ]

)
dθi

= h [p[θi|ϕ,H]]−
1∫

0

p[θi|ϕ,H] · log
(
p[θi|Ĥ]

)
dθi

= h [p[θi|ϕ,H]] + log(B(âi, b̂i))−
1∫

0

p[θi|ϕ,H] · log

(
θâi−1
i · θi

b̂i−1
)
dθi

= h [p[θi|ϕ,H]] + log(B(âi, b̂i))−
1∫

0

p[θi|ϕ,H] · (âi − 1) · log θi dθi+

−
1∫

0

p[θi|ϕ,H] · (b̂i − 1) · log θi dθi

= h [p[θi|ϕ,H]] + log(B(âi, b̂i))− (âi − 1) · 〈log θi〉p[θi|ϕ,H] − (b̂i − 1) · 〈log θi〉p[θi|ϕ,H]

The gradient of KLdivi w.r.t. (âi, b̂i) is:

∇KLdivi =

∂KLdivi
∂âi

∂KLdivi
∂b̂i

 =

[ψ(âi)− ψ(âi + b̂i)]− 〈log θi〉p[θi|ϕ,H]

[ψ(b̂i)− ψ(âi + b̂i)]− 〈log θi〉p[θi|ϕ,H]

=

〈log θi〉p[θi|Ĥ] − 〈log θi〉p[θi|ϕ,H]

〈log θi〉p[θi|Ĥ] − 〈log θi〉p[θi|ϕ,H]

52

The Hessian of KLdivi w.r.t. (âi, b̂i) is positive semidefinite:

Hess[KLdivi] = ∇∇KLdivi =

ψ′(âi)− ψ′(âi + b̂i) −ψ′(âi + b̂i)

−ψ′(âi + b̂i) ψ′(b̂i)− ψ′(âi + b̂i)

Where ψ′(·) denotes the Trigamma function. The thesis follows immediately.

Finally, we observe that the relative entropy between p[θ|ϕ,H] and p[θ|Ĥ], that

we denote with KLdiv, is simply the sum of the tuple-wise KL divergences:

KLdiv =

∫
..

∫
p[θ|ϕ,H] · log

(
p[θ|ϕ,H]

p[θ|Ĥ]

)
dθ =

n∑
i=1

KLdivi

3.4.2 General case

First we address the case where k = 1, s > 1 and E = {ϕt}. Under these

assumptions the goal of belief updating is to minimize the KL divergence between

p[θ(·,·)|ϕt,Hs] and p[θ(·,·)|Ĥs]. Since the tuples of Ĥ are pairwise independent, it is

sufficient to minimize the relative entropy between p[θ(·,i)|ϕt,Hs] and p[θ(·,i)|Ĥs] for

every i in {1, . . . , n}. As usual θ(·,i) denotes the vector (θ1,i, . . . , θs,i). Its probability

density w.r.t. Ĥs is

p[θ(·,i)|Ĥs] =
s∏
`=1

p[θ`,i|Ĥ] (3.16)

while its posterior density w.r.t. Hs and evidence {ϕt} is

p[θ(·,i)|ϕt,Hs] =
t∏

`=1

p[θ`,i|ϕ,H] ·
s∏

`=t+1

p[θ`,i|ϕ,H] (3.17)

53

where p[θ`,i|ϕ,H] and p[θ`,i|ϕ,H] are computed according to Theorem III.1. We now

redefine KLdivi as the relative entropy between p[θ(·,i)|ϕt,Hs] and p[θ(·,i)|Ĥs]:

KLdivi =

1∫
0

..

1∫
0

p[θ(·,i)|ϕt,Hs] log
(
p[θ(·,i)|ϕt,Hs]
p[θ(·,i)|Ĥs]

)
dθ(·,i)

Definition 7. We denote by bfit(ai, bi, {ϕt}, s) the pair of parameters (â∗i , b̂
∗
i) satis-

fying the following two equations:

〈log θi〉Be(â∗i ,b̂∗i) = t

s
〈log θi〉p[θi|ϕ,H] + s−t

s
〈log θi〉p[θi|ϕ,H]

〈log θi〉Be(â∗i ,b̂∗i) = t
s
〈log θi〉p[θi|ϕ,H] + s−t

s
〈log θi〉p[θi|ϕ,H]

Proposition 2. When (âi, b̂i) = (â∗i , b̂
∗
i) = bfit(ai, bi, {ϕt}, s) the relative entropy

between p[θ(·,i)|ϕt,Hs] and p[θ(·,i)|Ĥs] is minimized.

Proof.

KLdivi =

1∫
0

..

1∫
0

p[θ(·,i)|ϕt,Hs] log
(
p[θ(·,i)|ϕt,Hs]
p[θ(·,i)|Ĥs]

)
dθ(·,i)

=
t∑

`=1

 1∫
0

p[θ`,i|ϕ,H] log

(
p[θ`,i|ϕ,H]

p[θ`,i|H]

)
dθ`,i

+

+
s∑

`=t+1

 1∫
0

p[θ`,i|ϕ,H] log

(
p[θ`,i|ϕ,H]

p[θ`,i|H]

)
dθ`,i

= h

[
p[Θ|ϕt,Hs]

]
+ s · log(B(âi, b̂i))+

− (âi − 1) ·
[
t · 〈log θi〉p[θi|ϕ,H] + (s− t)〈log θi〉p[θi|ϕ,H]

]
− (b̂i − 1) ·

[
t · 〈log θi〉p[θi|ϕ,H] + (s− t)〈log θi〉p[θi|ϕ,H]

]

54

The gradient ∇KLdivi is zero when

〈log θi〉p[θi|Ĥ] = t

s
〈log θi〉p[θi|ϕ,H] + s−t

s
〈log θi〉p[θi|ϕ,H]

〈log θi〉p[θi|Ĥ] = t
s
〈log θi〉p[θi|ϕ,H] + s−t

s
〈log θi〉p[θi|ϕ,H]

We can finally address the general case where k > 1, s > 1 and E = {ϕt11 , . . . , ϕ
tk
k }.

Under these assumptions the goal of belief updating is to minimize the KL divergence

between p[θ(·,·,·)|E ,Hs,k] and p[θ(·,·,·)|Ĥs,k], and is achieved by minimizing the KL di-

vergence between p[θ(·,·,i)|E ,Hs,k] and p[θ(·,·,i)|Ĥs,k], for every i in {1, . . . , n}, where

p[θ(·,·,i)|Ĥs,k] =
k∏
j=1

p[θ(j,·,i)|Ĥs] (3.18)

p[θ(·,·,i)|E ,Hs,k] =
k∏
j=1

p[θ(j,·,i)|ϕ
tj
j ,Hs] (3.19)

Therefore, we can redefine KLdivi as the relative entropy between p[θ(·,·,i)|E ,Hs,k] and

p[θ(·,·,i)|Ĥs,k]:

KLdivi =

1∫
0

..

1∫
0

p[θ(·,·,i)|E ,Hs,k] log
(
p[θ(·,·,i)|E,Hs,k]

p[θ(·,·,i)|Ĥs,k]

)
dθ(·,·,i)

Definition 8. We denote by bfit(ai, bi, E , s, k) the pair of parameters (â∗i , b̂
∗
i) satisfying

the following two equations:

〈log θi〉Ĥ∗ =

∑
j
tj
ks
〈log θi〉p[θi|ϕj ,H] +

s−tj
ks
〈log θi〉p[θi|ϕj ,H]

〈log θi〉Ĥ∗ =
∑

j
tj
ks
〈log θi〉p[θi|ϕj ,H] +

s−tj
ks
〈log θi〉p[θi|ϕj ,H]

Proposition 3. When (âi, b̂i) = bfit(ai, bi, E , s, k) the relative entropy between p[θ(·,·,i)|E ,Hs,k]

and p[θ(·,·,i)|Ĥs,k] is minimized.

55

The proof of Proposition 3 mimics the one of Proposition 2. For the sake of

conciseness we omit it. Before introducing our belief update algorithm, we observe

that the equations from Definition 8 can be rewritten as follows:

[ψ(â∗i)− ψ(â∗i + b̂∗i)]− [ψ(ai)− ψ(ai + bi)] = r

ai
− 1

ai+bi

[ψ(b̂∗i)− ψ(â∗i + b̂∗i)]− [ψ(bi)− ψ(ai + bi)] = r
bi
− 1

ai+bi

(3.20)

where r = 1
k

∑k
j=1

[
tj
s
P[xi|ϕj,H] +

s−tj
s
P[xi|ϕj,H]

]
and ψ(·) denotes the Digamma

function. From now on we denote by bu(ai, bi, r) the values (â∗, b̂∗) that satisfy

eq. (3.20).

We finally introduce Algorithm 3, that exploits Propositions 1 to 3 to perform s

belief updates, in response to arbitrary evidence E .

Algorithm 3: Belief Update

Data: Model H, evidence E = {ϕt11 , . . . , ϕ
tk
k }

1 for j ∈ {1, . . . , k} do
2 τj ← tj/s;
3 for ` ∈ {1, . . . , s} do
4 for i ∈ {1, . . . , n} do

5 ri ←
∑k

j=1
1
k
(τjP[xi|ϕj,H] + τjP[xi|ϕj,H])

6 (â∗i , b̂
∗
i)← bu(ai, bi, ri)

7 for i ∈ {1, . . . , n} do
8 ai ← â∗i
9 bi ← b̂∗i

Interestingly, Algorithm 3 allows us to update a B-PDB in an incremental fashion:

if the evidence is provided as a stream of query-answers, dynamically changing over

time both in terms of queries and observed relative frequencies, a B-PDB can incor-

porate such information by performing a new belief update every time a new chunk

of evidence becomes available. The idea of performing repeated Bayesian updates is

discussed in detail in the next Section.

56

3.5 Parameter Learning (MLE)

In this section we show how to exploit our belief update procedures to identify a

local maximum of the likelihood function P[E|Hs,k]. Our approach relies on the obser-

vation that belief updates can only increase the likelihood P[E|Hs,k]; it is immediate

to derive a soft-EM [26, 41] algorithm that performs repeated belief updates until

convergence. First we show how a single belief update H → Ĥ∗ affects P[E|Hs,k]:

KLdiv =

∫
..

∫
p[θ(·,·,·)|E ,Hs,k] log

[
p[θ(·,·,·)|E ,Hs,k]

p[θ(·,·,·)|Ĥs,k]

]
dθ(·,·,·)

=h
[
p[θ(·,·,·)|E ,Hs,k]

]
−
∫
..

∫
p[θ(·,·,·)|E ,Hs,k] log p[θ(·,·,·)|Ĥs,k]dθ(·,·,·)

=h
[
p[θ(·,·,·)|E ,Hs,k]

]
−
∫
..

∫
p[θ(·,·,·)|E ,Hs,k] log

p[E,θ(·,·,·)|Ĥs,k]

p[E|θ(·,·,·)]
dθ(·,·,·)

=h
[
p[θ(·,·,·)|E ,Hs,k]

]
+ 〈p[E|θ(·,·,·)]〉p[θ(·,·,·)|E,Hs,k] − 〈log p[E , θ(·,·,·)|Ĥs,k]〉log p[θ(·,·,·)|E,Hs,k]

Notice that the pair (a∗,b∗) from definition 8 is the value of Ĥs,k that maximizes the

quantity

〈log p[E , θ(·,·,·)|Ĥs,k]〉log p[θ|E,Hs,k]

which is a lower bound of the log-likelihood logP[E|Ĥs,k]. Therefore, it is possible to

apply the considerations from [65] to justify several variants of the EM algorithm. In

the following we provide the pseudo-code of the classic, fully Bayesian, soft-EM (here

named Algorithm 4). Intuitively, the “E-step” consists of the computation of the

posterior p[θ(·,·,·)|E ,Hs,k], while the “M-step” consists of the belief update H → Ĥ∗.

Example 5 (continued). Let’s assume we are given with a B-PDB with two tuples,

x1 and x2, and k = 2 queries: ϕ1 = x1 ∧ x2 and ϕ2 = x1 ∨ x2. The initial state of the

database, H0, is

a1 = 1 a2 = 1 b1 = 3 b2 = 3

Query ϕ1 is observed to be satisfied t1 = 32 times over s = 100 samples, while ϕ2

57

Algorithm 4: Greedy-MLE

Data: Model H, evidence E = {ϕt11 , . . . , ϕ
tk
k }

1 for j ∈ {1, . . . , k} do
2 τj ← tj/s;
3 repeat
4 for i ∈ {1, . . . , n} do

5 ri ←
∑k

j=1
1
k
(τjP[xi|ϕj,H] + τjP[xi|ϕj,H])

6 (â∗i , b̂
∗
i)← bu(ai, bi, ri)

7 for i ∈ {1, . . . , n} do
8 ai ← â∗i
9 bi ← b̂∗i

10 until convergence;

is observed to be true t2 = 88 times. Hence E = {ϕt11 , ϕt22 }, and the target marginal

probabilities for ϕ1 and ϕ2 are, respectively, τ1 = 0.32 and τ2 = 0.88. Given an

arbitrary B-PDB H, the likelihood of observing E being generated by H is

P[E|H100,2] =

(
100

32

)
P[ϕ1|H]32P[ϕ1|H]68 ·

(
100

88

)
P[ϕ2|H]88P[ϕ2|H]12

The likelihood is maximized when P[ϕ1|H] = τ1 and P[ϕ2|H] = τ2. There are two

values of θ that satisfy these conditions: either θ = (0.8, 0.4), or θ = (0.4, 0.8).

Figure 3.3 shows how algorithm 4 converges to one of the optimal values for θ: the

green dots represent the state of the database (in terms of 〈θ1〉H and 〈θ2〉H) after each

iteration of the cycle at lines 3-10. The starting point is 〈θ〉H = (0.25, 0.25).

3.6 Computing conditional probabilities

Computing conditional probabilities in the form P[xi|ϕj,H] is a central requirement

for both Algorithm 3 and Algorithm 4. As discussed in §3.3, P[xi|ϕj,H] denotes the

probability of observing tuple xi being present in a possible world sampled from H

that satisfies ϕj. In this Section we study the computational complexity of deriving

such probability. The following Theorem states that the dichotomy identified by [25]

58

〈θ1〉H

0.0
0.2

0.4
0.6

0.8
1.0 〈θ2

〉H
0.0

0.2
0.4

0.6
0.8

1.0

P[
E|
H
s
,k

]

0.000

0.005

0.010

Figure 3.3: Convergence of Algorithm 4 towards a maximum likelihood estimate of
(θ1, θ2).

(see Lemma 3) also applies to the computation of conditional probabilities in the form

P[xi|ϕj,H].

Theorem III.2. Let ϕj represents the lineage of a Boolean conjunctive query, and

xi be one of its literals. When ϕj is read-once, computing the conditional probabilities

P[xi|ϕj,H] (or P[xi|ϕj,H]) takes polynomial time in the worst case. When ϕj is not

read-once, the same problem becomes #P-complete.

Proof. The first assertion is proven by observing that

P[xi|ϕj,H] = P[ϕj|xi,H] · P[xi|H]/P[ϕj|H] (3.21)

Notice that P[ϕj|xi,H] represents the marginal probability of the formula obtained by

replacing xi with > in ϕj. We denote by (ϕj|xi) such formula, therefore P[(ϕj|xi)|H] =

P[ϕj|xi,H]. If ϕj is read-once then so is (ϕj|xi), therefore computing the RHS of

eq. (3.21) takes polynomial time. We prove the second assertion by reduction: let ϕj

59

be a non-read-once expression, and {x1, . . . , xn} the literals appearing in it; we want

to reduce the problem of computing P[ϕj|H] to the problem of computing conditional

probabilities in the form P[x|ϕ,H]. From 3.21 it is immediate to obtain

P[ϕj|H] = P[xi|H] · P[(ϕj|xi)|H]/P[xi|ϕj,H] (3.22)

Since Equation 3.22 holds for any literal in {x1, . . . , xn}, we can apply it n− 1 times

and obtain:

P[ϕj|H] = P[x1|H]
P[x1|ϕj ,H]

· P[x2|H]
P[x2|(ϕj |x1),H]

· . . . · P[xn−1|H]
P[xn−1|(ϕj |x1..xn−2),H]

· P[(ϕj|x1..xn−1)|H]

Notice that the last factor consists of the probability of a read-once boolean formula,

as the expression (ϕj|x1..xn−1) depends only on the literal xn. Therefore, if we have

an oracle able to compute conditional probabilities in the form P[x|ϕ,H], we can

compute P[ϕj|H] in polynomial time, by making (n− 1) calls.

From Lemma 3 and Theorem III.2 it follows immediately that computing a single

Bayesian update, to incorporate the answer to a hierarchical query, takes polynomial

time in data-size. In the next Section we adapt the well-known algorithm by Dalvi

and Suciu [24] to the goal of computing Bayesian updates extensionally, by means of

“CP-plans”.

3.6.1 CP-plans: Extensional Evaluation of P[xi|ϕj,H] for Safe Queries

Let q = [ϕ1, .., ϕk] be a non-Boolean hierarchical query. Our goal is to compute

P[xi|ϕj,H] for every Boolean query ϕj in {ϕ1, .., ϕk} and every literal xi appearing

in ϕj. We first show how to compute P[ϕj|H] and P[ϕj|xi,H] for every ϕj and xi,

extensionally. Once P[ϕj|H] and P[ϕj|xi,H] are known, it is immediate to obtain

P[xi|ϕj,H] by eq. (3.21). A plan performing such computation is called “CP-plan”.

60

In order to represent CP-plans compactly, we introduce a simple extension of pRA.

In our algebra, a CP-plan (P cp) is a sentence respecting the following grammar:

P cp ::= CP (Rp
0) | πc

X(P ′) | σc(P ′) | ./c [P ′, P ′′, . . .]

Rp
0 represents an arbitrary TI-relation, where each tuple has a unique identifier tid

and is associated with a marginal probability p. Let’s assume A is a key for Rp
0,

consisting of all the attributes except for tid and p. The operator CP (Rp) turns a

TI-relation Rp
0 into a pair (Rp, Rcp), where

Rp(A, p)
def
= πA,p(R

p
0)

Rcp(A, cp, lt)
def
= πRp.A,1,Rp.tid(R

p)

Intuitively, Rp is obtained from Rp
0 by projecting-away tid. Rcp associates each tuple

x of Rp with the conditional probability P[x|x], which is, by definition, equal to 1.

All the other operators of our algebra process pairs of relations in the form (Rp, Rcp).

Let B be a strict subset of A. If we apply the projection operator πc
B to the pair

(Rp, Rcp), we obtain a pair of relations (Qp, Qcp), defined as follows:

Qp(B, p)
def
= πB,(1−Πagg(Rp.p))(R

p)

Qcp(B, cp, lt)
def
= πA,cpexp,Rcp.lt[(R

p ./A Rcp) ./B Qp]

Where Πagg(·) denotes the aggregate product and cpexp
def
= 1 − (Qp.p · Rcp.cp/Rp.p).

The selection operator (σc) simply applies the selection predicate to both Rp and Rcp.

Therefore, the statement (Qp, Qcp) = σc(Rp, Rcp) is equivalent to the following RA

61

plan:

Qp(A, p)
def
= σ(Rp)

Qcp(A, cp, lt)
def
= σ(Rcp)

Let’s now assume we are given a collection of m relation pairs {(Rp
1, R

cp
1), .., (Rp

m, R
cp
m)}

and Ai = hvar(Rp
i) \ {p}. Let’s define A = ∪mi=1Ai. The statement (Qp, Qcp) = ./c

[(Rp
1, R

cp
1), .., (Rp

m, R
cp
m)] is equivalent to the following RA plan:

Qp(A, p)
def
= πA,(Πmi=1R

p
i .p)[./ [Rp

1, .., R
p
m]]

Vi(A, cp, lt)
def
= πA,cpexp,Rcp

i .lt
[./Ai

[Qp, Rp
i , R

cp
i]] ∀i ∈ {1..m}

Qcp(A, cp, lt)
def
=]mi=1Vi

Here cpexp
def
= (Qp.p · Rcp

i .cp/R
p
i .p). Now that we have defined all the operators of

our algebra, we can show how to build a CP-plan for a given hierarchical query.

The method we propose (Algorithm 5) is a straightforward adaptation of procedure

developed by Dalvi and Suciu [24] for constructing safe plans. Their algorithm is

known to be sound and complete; Algorithm 5 inherits both properties.

Algorithm 5: SafeCpPlan

Data: Hierarchical query q(..) :−R(..), S(..), . . .
1 if evar(q) = ∅ then
2 return CP (R) ./c CP (S) ./c . . .
3 else if q :−q′,q′′ and evar(q′) ∩ evar(q′′) = ∅ then
4 return SafeCpPlan(q′) ./c SafeCpPlan(q′′)
5 else if X ∈ evar(q) is a root variable then
6 return πc

−X(SafeCpPlan(q′(X, hvar(q)) :−R(..), S(..), . . .))

Let (Qp, Qcp) be the result of a CP-plan generated by Algorithm 5: if ϕj is the lineage

of a tuple in Qp and its literals are {x1, .., xm}, then Qcp is guaranteed to contain

m copies of such tuple, each copy being associated with a conditional probability

62

P[ϕj|xi], for every xi in {x1, .., xm}.

Example 4 (continued). If q denotes the hierarchical query from eq. (3.4), then

SafeCpPlan(q) returns the following plan:

(Qp, Qpc) = πc
−X(πc

−Y (CP (R)) ./c CP (S))

Notice that Qp is equivalent to the TI-relation returned by plan P ′ in eq. (3.5).

3.7 Handling Qualitative Feedback

In this section we show how B-PDBs can leverage user-provided qualitative feed-

back to speed-up the learning process. In the context of probabilistic databases, we

define qualitative feedback as a partial order (�) over query-answers. By definition,

� denotes a binary relation over Boolean queries that is reflexive, antisymmetric and

transitive. Therefore, if q, q′ and q′′ denote arbitrary Boolean queries, the following

holds:

1. q � q (reflexivity)

2. if q � q′ and q′ � q, then q and q′ are logically equivalent (antisymmetry)

3. if q � q′ and q′ � q′′, then if q � q′′ (transitivity)

The assertion “q � q′” (“q dominates q′”) represents the user belief that every possible

world w that satisfies q′ should satisfy q as well. Therefore, it represents the user

belief that the Boolean query q′∨ q should return > with probability 1. A dominance

relationship � can be seen as a collection of statements in the form “q � q′”. A

relation � is satisfiable when there is at least one possible world that satisfies it.

Under reasonable syntactic restrictions, it is possible to ensure that � is satisfiable.

Proposition 5. If Q = {q1, . . . , qk} is a collection of Boolean queries whose lineage

formulas are pair-wise independent, then any arbitrary dominance relationship � over

63

Q is satisfiable, as long as � is a reflexive, antisymmetric and transitive (i.e. a partial

order).

It is straightforward to extend Algorithms 3 and 4 as to handle qualitative user-

feedback that respects the constraints of Proposition 5. The general idea is to augment

the evidence with the additional information implied by �. Let q be an arbitrary

query in Q; let Q′ be the subset of queries in Q that are dominated by q, and Q′′

be the subset of queries in Q that dominate q. If we observe a positive answer to q,

then the Bayesian update of H should be computed w.r.t. to the augmented query

q∧ (∧qi∈Q′′qi). If we observe a negative answer to q, then the Bayesian update should

be computed w.r.t. to the augmented query q ∧ (∧qi∈Q′qi).

3.8 Experiments

The goal of this section is to demonstrate that a B-PDB can effectively learn its

parameters. In our experiments we use a TI-PDB with known parameters as ground

truth and a fixed set of queries to generate a stream of query-answers. We then

incrementally update a B-PDB accordingly, and observe the trajectory taken by its

internal state. From now on we denote with T the parameters of the ground-truth

TI-PDB, with Q a fixed set of conjunctive hierarchical queries, with H0 the initial

state of the B-PDB, and with Hm its state after m belief updates. Our goal is to

provide experimental validation of the following claims: (1) if m is large enough, the

distribution P[q|Hm] will converge towards P[q|T] for every q ∈ Q, independently

from the initial state H0; (2) if H0 mirrors the probabilities of T , except for a limited

amount of noise, with the right evidence expectation maximization may remove such

noise, so that 〈θ〉Hm converges towards T when m is large enough; (3) the algorithms

presented in this chapter are scalable as they can be parallelized effectively.

64

0 10 20 30 40 50

0

2

4

6

8

·104

of belief updates (m)

K
L
Q

(b
it

s)

sf = 0.1
sf = 0.5
sf = 1.0

(a) Experiment 1

0 50 100 150 200

500

1,000

1,500

of belief updates (m)

K
L
x

(b
it

s)

sf = 0.1

(b) Experiment 2

0 2 4 6 8

0.2

0.4

0.6

0.8

1

of threads

#
of

b
el

ie
f

u
p

d
at

es
p

er
se

co
n
d

sf = 0.5
sf = 1.0

(c) Experiment 3

Figure 3.4

We verify claim (1) and (2) by measuring the following metrics:

KLQ
def
=
∑
ϕ∈Q

P[ϕ|T] log

[
P[ϕ|T]

P[ϕ|Hm]

]
+ P[ϕ|T] log

[
P[ϕ|T]

P[ϕ|Hm]

]

KLx
def
=

n∑
i=1

P[xi|T] log

[
P[xi|T]

P[xi|Hm]

]
+ P[xi|T] log

[
P[xi|T]

P[xi|Hm]

]

Intuitively, KLQ represents the expected number of bits required to encode the differ-

ence in query-answers over Q between T and H. KLx is the KL divergence between

T and H. Notice that when the former equals zero, Hm and T are guaranteed to

exhibit the same marginal probabilities for every query in Q. When the latter equals

zero, Hm and T will exhibit the same marginal probabilities for any arbitrary query.9

We verify claim (3) by observing the actual response times of our algorithms as we

increasingly parallelize the execution.

Data and Queries. We use the TPC-H dbgen [1] utility to generate a dataset

of 1 GB. We obtain T by annotating each tuple with a random probability chosen

uniformly between 0.1 and 0.6. The query-set Q consists of queries Q3, Q4 and Q6

from the TPC-H benchmark. The choice of queries mirrors queries used to evaluate

prior work on PDBs [5, 24].

9In other words: 〈θ〉Hm
= T .

65

Implementation. Our prototype implementation of B-PDBs consists of two com-

ponents, a query planner and an execution engine. The query planner implements

Algorithm 5: it is responsible for generating a CP-plan and translating it into a set

of materialized SQL views, one pair of views for each step in the plan. Rather than

computing marginal and conditional probabilities (columns p and cp), the planner

associates a unique identifier to each intermediate tuple in the plan. The views are

then used to compile an execution plan, a compact representation of the CP-plan,

consisting only of the identifiers and their dependencies, without the relational data.

This is processed by the execution engine, that is responsible for the actual com-

putation of the probabilities (both marginal and conditional) associated with each

identifier, and for computing the Bayesian updates, as described in Algorithm 3 and

4. This decoupled architecture ensures that the SQL optimizer is called only once

per query, even if the same query is used over many iterations of Algorithm 4.

Experiment 1. We initialize H0 setting all its parameters ai and bi to 1, so that

all tuples in the database have the same uninformative probability 0.5. We then run

Algorithm 4 for 500 iterations;10 we repeat the test over several variants of the TPC-

H dataset, ranging the scale factor (sf) between 0.1 and 1.0.11 Figure 3.4a depicts

the observed KLQ against the number of belief updates (m). Independently from the

scaling factor, KLQ converges towards 0 in less than 300 iterations. One hundred

iterations are sufficient to drop KLQ below 100 bits.

Experiment 2. We first initialize H0 as a low-entropy copy of T , ensuring that

〈θ〉H = T and ai + bi = 106, for every tuple xi in H. We then add noise to 1% of

the tuples of H0, chosen at random, setting their parameters to a high-entropy state

(a := b := 1). Since the lineage of the TPC-H queries Q3, Q4 and Q6 does not cover

all the tuples in the dataset, we augment Q with 12 “group-by” queries, devoid of any

selection predicate. We then run Algorithm 4 for 500 iterations, measuring the value

10Each iteration process the same, fixed set of query-answers from T .
11A scale factor of 1.0 corresponds to about 1 GB of data.

66

of KLx after each belief update. Figure 3.4b reports our findings: after 230 updates

KLx drops below 160 bits, and remains mostly constant afterwards. As expected, the

ability of EM to reconstruct the whole set of parameters of T is not guaranteed, and

depends strongly on the evidence available. Nonetheless, given the right evidence,

EM can filter most of the noise introduced in H0. The experiment also highlights the

importance of the entropy h in B-PDBs: it can be used as a marker for parameters

that need updating and as a mean for providing implicit evidence.

Experiment 3. We repeat the computation from Experiment 1 on a multi-core ma-

chine, varying the number of threads between 1 and 8. Figure 3.4c shows the resulting

average processing speed, measured in number of belief updates per second. The plot

reports the average processing time of the Execution Engine, without including the

time spent on the initial planning phase. The dashed lines indicate the ideal speedup.

Up to 4 threads we observed the speedup to be almost perfect, and to slightly dete-

riorate afterwards. We believe this is due in part to the fact that TPC-H query Q4

consists of exactly four Boolean queries, all having very large lineage.

3.9 Related Work

Stoyanovich et al. [76] derive probability distributions for the missing parts of

incomplete databases, using the complete parts as evidence. Dylla and Theobald [27]

study the problem of deriving the parameters of a TI-PDB from a set of Boolean

queries, labeled with their marginal probabilities. They prove the problem is #P-

hard in the general case, and provide a sound criterion to identify problem instances

that admit a solution. Rather than computing a maximum-likelihood estimate of

the parameters, like we advocate in this chapter, they propose to derive them by

direct minimization of the mean squared error. Their approach does not consider

Bayesian updates. Parameter learning has been proposed in the context of Proba-

bilistic Logic Programming, either by minimizing the mean squared error [39] or by

67

maximum likelihood estimation [40]. It is also a central feature for many knowledge-

based model construction (KBMC) frameworks, including Probabilistic Relational

Models [57], Markov Logic [70], Multi-entity Bayesian Networks [60] and many oth-

ers. All the above approaches rely on probabilistic models that are significantly more

sophisticated than TI-PDBs, but without the complexity guarantees provided by the

dichotomy theorem [25]. Koch and Olteanu [56] were the first to address the problem

of conditioning in probabilistic databases. Their work relies on U-databases, while

ours focuses on TI-PDBs and hierarchical queries.

68

CHAPTER IV

Conclusions and Future Work

4.1 Conclusions

In this dissertation we investigated the use of qualitative feedback in combina-

tion with deterministic and probabilistic databases. In the context of deterministic

databases, we advanced the state-of-the-art by introducing a novel evaluation algo-

rithm for prioritized skylines. Our work shows that the complexity of answering

prioritized skyline queries is O
(
n logd−2 v

)
in the worst-case scenario, and O (n) in

the average-case, where n is the number of tuples, v is the output-size and d is the

number of dimensions. Since its worst-case complexity depends explicitly on v, our

algorithm is output-sensitive. This is a very desirable property in the context of

preference queries, since the output-size is expected to be very small. Beyond its

asymptotic complexity, our algorithm proved to be fast and effective w.r.t. to both

synthetic and real-world benchmarks.

In the context of probabilistic databases we introduced B-PDBs, a novel frame-

work that generalizes the popular tuple-independent model, and supports belief up-

dating and parameter learning in a principled, efficient way. To the best of our

knowledge, we are the first to design a probabilistic database that can be trained

through the observation of query-answers, in an incremental fashion. Our approach

relieves the user from the need of specifying the model’s parameters explicitly, defin-

69

ing a precise probability for each and every tuple. Additionally, we have shown how

B-PDBs’ belief updates can leverage user-provided qualitative feedback to speed-up

the convergence towards a maximum likelihood estimate of the parameters.

4.2 Future Work

Our research suggests several directions for future work. In the context of prior-

itized skyline, it would be interesting to develop a distribution-sweep algorithm for

p-screening, following the approach proposed by [43, 72] in the context of skyline

queries. The resulting algorithm would generalize the results presented in Chapter II

to the external memory model. A second direction of future investigation could be

the study of prioritized skyline queries in the context of noisy/uncertain data, in the

spirit of [47].

In the context of probabilistic databases, we believe that B-PDBs could be ex-

tended in several ways. First, it would be interesting to study the behavior of Bayesian

updates in combination with approximate inference algorithms, such as dissociations

[33], anytime-approximations [30] and Monte-Carlo simulations [49]. Secondly, it

would be interesting to drop the tuple independence assumption, adopting a more

general probabilistic model where tuples’ correlations are allowed, as in pc-tables

[38, 77]. The resulting framework would replace the Beta priors with Dirichlet dis-

tributions. Thirdly, we would like to generalize B-PDBs as to allow the adoption of

Beta-Binomial distributions. Fourthly, we would like to experiment the execution of

CP-plans over distributed Map/Reduce clusters.

70

APPENDICES

71

APPENDIX A

Nomenclature

72

A.1 Chapter II

Symbol Meaning
A a relation schema
D a relation instance
A1,A2, . . . attributes
t1, t2, . . . tuples
π a p-expression
�π the strict partial order induced by π
Msky(D) the skyline of D
Mπ(D) the p-skyline of D, w.r.t. π
n the size of the input (# of tuples)
v the size of the output (# of tuples)
d the number of relevant attributes
W �π B no tuple in W is better than (or indistinguishable from) any tuple in B
Γπ,Γ

r
π the p-graph of π and its trans. reduction

Var(π) the attributes appearing in π
Succπ(Ai) immediate successors of Ai in Γrπ
Descπ(Ai) descendants of Ai in Γrπ
Preπ(Ai) immediate predecessors of Ai in Γrπ
Ancπ(Ai) ancestors of Ai in Γrπ
Rootsπ attributes having no ancestors in Γrπ
Betterπ(t′, t) attributes where t′ is preferred to t
T opπ(t′, t) topmost attributes in Γrπ where t and t′ disagree
dAi

the depth of Ai, the length of the longest path in Γrπ from any root to Ai

Cd(v, n) worst-case complexity of skyline queries
Fd(b, w) w.c. complexity of screening queries
C∗d(v, n) w.c. complexity of p-skyline queries
F ∗d (b, w) w.c. complexity of p-screening queries

Table A.1: Nomenclature of Chapter II

73

A.2 Chapter III

Symbol Meaning
H Beta Probabilistic DB
D Tuple-independent Probabilistic DB
p[·] Probability density function
P[·] Probability measure
〈f(θ)〉p[θ] Expected value of f(θ) when θ ∼ p[·]
h [·] differential entropy
E Evidence
Be(ai, bi) P.d.f. of a Beta distribution
a, b Parameters of the Beta distribution
B(·) Beta function
Γ(·) Gamma function
ψ(·) Digamma function
ψ′(·) Trigamma function
w Possible world
x1, . . . , xn Tuples / Boolean random variables
θ1, . . . , θn Tuples’ marginal probabilities
θ Vector (θ1, . . . , θn)

θi Abbreviation for (1− θi)
q1, . . . , qk Conjunctive queries
ϕ1, . . . , ϕk Lineage formulas
ϕj Abbreviation for ¬ϕj
tj Observed frequency of positive answers to ϕj
τj Observed relative freq. of positive answers to ϕj
k Number of queries
s Number of samples per query
n Number of tuples
R,S, T, . . . Relations’ names
X,Y, Z, . . . First-order logic variables
ADom(·) Active domain
hvar(qj) The head variables of query qj
evar(qj) The existential variables of query qj
T Ground-truth

Table A.2: Nomenclature of Chapter III

74

APPENDIX B

Proofs

75

B.1 Chapter II

B.1.1 Proof of Theorem II.1

Proof. If we run Osdc (Algorithm 2), the following upper bound holds on C∗d(v, n),

for some fixed constant k0

C∗d(v, n) ≤ k0n+ C∗d

(
v′,

n

2

)
+ C∗d

(
v′′,

n

2

)
+ F ∗d−1

(
v′,

n

2

)

where v′ + v′′ + 1 = v. The linear term k0n models the time spent at lines 13-16, the

second and the third terms the recursive calls at lines 17 and 19, while the last term is

the p-screening operation at line 18. In order to keep track of the partitioning of v into

smaller chunks during the recursion, we need to introduce some additional notational

conventions. Let’s denote by v`,j the size of the j−th portion of v obtained at depth `

into the recursion. We can organize the different v`,j variables into a binary tree, as in

Figure B.1. Clearly, only a finite subtree rooted in v0,0 will cover the variables having

v0,0

v1,0 v1,1

v2,0 v2,1 v2,2 v2,3

Figure B.1

a strictly positive value. The root v0,0 is equal to v and, for all ` and j, v`,j is either

1 + v`+1,2j + v`+1,2j+1 or zero. Notice there are exactly v assignments to (`, j) such

that v`,j > 0, and the recursion proceeds up to a level `max such that v`max+1,j = 0 for

all j. Using this notation:

C∗d(v, n) ≤
`max∑
`=0

∑
{j:v`,j>0}

k0
n

2`
+ F ∗d−1

(
v`+1,2j,

n

2`+1

)

76

We don’t know `max a priori; depending on the input it could be anywhere between

log v and min(v, log n). On the other hand, we do know the above sum has exactly v

terms, and that their cost increases when the value of ` decreases. Therefore, in the

worst-case scenario only the first log v levels of recursion are used, i.e. `max = log v.

C∗d(v, n) ≤
log v∑
`=0

[
k0n+ 2` · F ∗d−1

(
v`+1,2j,

n

2`+1

)]

Assuming F ∗d (b, w) is O
(
(b+ w) · (log b)d−2

)
, there is a constant k1 such that

C∗d(v, n) ≤ k0n log v + k1n ·
log v−1∑
`=0

(log (v`+1,2j))
d−3

Since in the worst-case scenario only the first log v levels of recursion are used, we

have that v`,j ≤ v/2` ≤ n/2`, hence

C∗d(v, n) ≤ k0n log v + k1n ·
log v−1∑
`=0

(log (v)− (`+ 1))d−3

If we set h = log (v)− (`+ 1), we obtain

C∗d(v, n) ≤ k0n log v + k1n ·
log v−1∑
h=0

hd−3

We can conclude that C∗d(v, n) ≤ O
(
n · (log v)d−2

)
B.1.2 Complexity of P-Screening

We can now analyze the complexity of p-screening. We start from the simple case

d ≤ 3. When d = 1 the problem coincides with regular screening, and it is linear.

When d = 2 or d = 3 the following lemmas apply

Lemma 5. F ∗2 (b, w) ≤ O ((b+ w) log b) for any b > 1 and w > 0.

77

Proof. A p-expression with only two attributes can be either a lexicographical order

or a regular skyline. In the first case p-screening takes O (b+ w) time, in the second

it takes O ((b+ w) log b) time, as per Proposition 4.

Lemma 6. F ∗3 (b, w) ≤ O ((b+ w) log b) for any b > 1 and w > 0.

Proof. A p-expression π over three attributes can come in five possible forms:

Case 1 When π = A1⊗A2⊗A3 p-screening consists of a regular screening in three

dimensions: its complexity is O ((b+ w) · log b), as per Proposition 4.

Case 2 When π = A1 & A2 & A3, p-screening can be done in O (b+ w) time,

since π represents a lexicographical order. In O (b) time we can find a maximal

element p∗ in B, in additional O (w) time we can check for each t ∈ W whether

p∗ �π t holds.

Case 3 When π = A1 & (A2 ⊗ A3) we can proceed as follows: let a∗1 be the best

value for attribute A1 amongst all tuples in B, let Wb, We and Ww contain all

the tuples in W assigning to A1 a value respectively better, equal and worse

than a∗1; we have that

[
B

W

]
π

= Wb ∪
[
MA1(B)

We

]
A2⊗A3

Since MA1(B), Wb, We and Ww can be computed in linear time, the overall com-

plexity is dominated by the two-dimensional screening, that takesO ((b+ w) log b),

as per Proposition 4.

Case 4 When π = (A1 ⊗A2) & A3 we can proceed as follows: first we compute the

set

W ′ =

[
B

W

]
A1⊗A2

in O ((b+ w) log b) time, then we sort B by the lexicographic order �A1&A2&A3 ;

given an assignment to A1 and A2 finding the best value for A3 in B takes only

78

O (log b), therefore pruning all the remaining dominated points from W ′ takes

O (w log b).

Case 5 When π = (A1 & A2)⊗A3 we can proceed as follows: let k be the number

of distinct values for A1 in B, we can partition both B and W into k subsets,

such that Bk �A1 Bk−1 �A1 . . . �A1 B1 and1 Bi+1 �A1 Wi �A1 Bi−1, for each

i in {1, . . . , k}; then, for each i and j in {1, . . . , k} such that i ≤ j we perform

the screening of Wj against Bi. When i = j the screening is 2-dimensional,

and takes O (|Bi ∪Wj| log |Bi|) time; when i < j the screening is 1-dimensional

and takes O (|Bi ∪Wj|) time. All the 1-dimensional screenings take O (b+ w)

overall, while the 2-dimensional ones take O ((b+ w) log b).

Algorithm 6 (PScreen) shows how to perform p-screening in O
(
(b+ w) logd−2 b

)
when d ≥ 3. The algorithm is inspired by the one proposed by Kung, Luccio and

Preparata [59]: in order to perform the p-screening
[
B
W

]
π
, we split B in two halves,

namely Bb and Bw, ensuring that no tuple in Bw dominates or is indistinguishable

from any tuple in Bb (Bw �π Bb). We can obtain Bb and Bw with the same strategy

we used in Dc: we select an attribute A, making sure that all tuples in both B and

W agree w.r.t all the attributes in Ancπ(A). Then we find the median tuple m∗ w.r.t.

�A and split B accordingly. Clearly Bw �π Bb holds, as all tuples in Bb are better

than all tuples in Bw w.r.t. �A , while the preference on A is not overridden by other

higher-priority attributes. Then we proceed splitting W into three chunks: the set

Wb of tuples being preferred to m∗ (according to �A), those being indistinguishable

from m∗ (We) and those being dominated (Ww). Since we chose A so that all tuples

in both B and W agree w.r.t. all attributes in Ancπ(A), we are guaranteed that no

tuple in Bw can dominate (or be indistinguishable from) any tuple in Wb
2. Hence, the

1Here we assume B0 = Bk+1 = ∅
2Notice that for every pair of tuples (t′, t) in Bw ×Wb attribute A belongs to both T opπ(t′, t)

79

Algorithm 6: PScreen

Input: a p-expression π, two relation instances, B and W , s.t. W �π B
Output: the set W ′ of tuples in W that are not dominated by any tuple in B

1 Procedure PScreen(π, B, W)
2 return PScreenRec(π,B,W,Rootsπ, ∅)
3 Procedure PScreenRec(π, B, W , C, E)
4 if C is empty then
5 return ∅
6 else if |B| = 1 then
7 return PScreenSP(π,B,W)
8 else if |C ∪ Descπ(C)| ≤ 3 then
9 apply Lemma 6 and return

10 select an attribute A from the candidates set C
11 if all tuples in B assign the value a to A then
12 (Wb,We,Ww)← SplitByValue(W,A, a)
13 C ′ ← C \ {A}
14 W ′

w← PScreenRec(π,B,Ww, C ′, E)
15 E ′ ← E ∪ {A}
16 C ′′ ← C ′ ∪ {V ∈ Succπ(A) : Preπ(V) ⊆ E ′}
17 W ′

e ← PScreenRec(π,B,We, C ′′, E ′)
18 return W ′

w ∪W ′
e ∪Wb

19 else
20 (Bb, Bw,m

∗) ← SplitByAttribute(B,A)
21 (Wb,We,Ww)← SplitByValue(W,A,m∗)
22 W ′

b ← PScreenRec(π,Bb,Wb, C, E)
23 W ′

w ← PScreenRec(π,Bw,Ww ∪We, C, E)
24 W ′′

w ← PScreenRec(π,Bb,W
′
w, C \ {A}, E)

25 return W ′
b ∪W ′′

w

26 Procedure SplitByValue(D, A, m∗)
27 Compute the set Db = {t ∈ D | t[A] �A m∗}
28 Compute the set De = {t ∈ D | t[A] ≈A m∗}
29 Compute the set Dw = {t ∈ D | m∗ �A t[A]}
30 return (Db, De, Dw)

problem of p-screening B and W is reduced to following three smaller sub-problems,

as depicted in Figure B.2:

(i)

[
Bb

Wb

]
π

(ii)

[
Bb

Ww ∪We

]
π

(iii)

[
Bw

Ww ∪We

]
π

and Betterπ(t, t′). From Proposition 1 we can conclude that Bw �π Wb holds.

80

A

m∗

Wb

Ww ∪We

Bb

Bw

Figure B.2: Dividing p-screening into simpler subproblems. Each box represents a
set of tuples, each arrow a p-screening operation.

We can solve these three sub-problems by recursion. The recursion will stop when we

run out of attributes (d ≤ 3) or tuples (|B| ≤ 1). Notice that for sub-problem (ii) we

do not need to take attribute A into consideration, hence, for that recursion branch,

we reduced the dimensionality by one unit. In order to choose attribute A properly,

PScreen adopts the same strategy of Dc: it keeps track of two sets of attributes, C

and E , ensuring the following invariants:

I1 : If an attribute belongs to E then no pair of tuples in B ∪W can disagree on

the value assigned to it. That is, all tuples in B ∪W are indistinguishable with

respect to all attributes in E .

I2 : An attribute in A \ E belongs to C if and only if all its ancestors belong to E .

We can now analyze the pseudo-code of PScreen in more detail. Lines 20-25 define

the core logic of the recursion, lines 4-18 handle the base-cases, while lines 26-30

contain auxiliary methods. The algorithm takes as input two sets of tuples, B and

W , such that W �π B. At each iteration the algorithm selects an attribute A from C

(line 10), and tests whether the tuples in B are distinguishable w.r.t. A. If they are,

the block at lines 20-25 is executed, otherwise the one at lines 12-18. Let’s analyze

the first case. At line 20 B is split into Bb and Bw, at line 21 W is split into Wb,

We and Ww. At lines 22, 23 and 24 the algorithm recurs three times, in order to

solve the three sub-problems discussed above. We can now analyze the base-cases:

when C is left empty (line 4), all tuples in W are dominated by all tuples in B, so the

81

algorithm returns the empty set; when B contains only one element, the algorithm

applies the procedure from Lemma 2 (lines 6-7); when only three attributes are left

to be processed, the algorithm applies Lemma 6. When it is not possible to split B,

since all its tuples agree on some value a for A, the algorithm splits W into three sets

(Wb, We and Ww) containing tuples that are respectively better, indistinguishable

from and worse than a, w.r.t. �A . Then it proceeds to solve
[
B
Ww

]
π

and
[
B
We

]
π
. Notice

C and E are updated at lines 13, 15 and 16 in order to satisfy the invariants I1 and

I2.

Theorem B.1. F ∗d (b+ w) ≤ O
(
(b+ w) logd−2 b

)
for any d > 3, b and w.

Proof. We show that the above upper bound holds if we run Algorithm 6 to perform

p-screening. The proof is by induction on d, and will use the simplifying assumptions

that (i) b = 2m for some positive m and (ii) the splitting operation at line 19 divides B

into two almost equally sized halves. Since we proved the base case d = 3 in Lemma

6, the rest of the proof has a similar structure to the one proposed in [58, 59]. During

each recursion Algorithm 6 splits the set W in two parts; using a notation similar to

the one presented in Figure B.1, from now on we will denote by w`,j the size of the

j-th portion of W obtained at depth ` in the recursion. Clearly w0,0 = |W |, and for

each ` in {0, 1, . . . , log b− 1} the sum
∑2`

j=1 w`,j is equal to |W |. It is easy to see the

following upper bound holds on F ∗d , for some fixed constant k0

F ∗d (b, w0,0) ≤ k0(b+ w0,0) + F ∗d−1 (b, w0,0) + F ∗d

(
b

2
, w1,0

)
+ F ∗d

(
b

2
, w1,1

)
(B.1)

the linear term k0(b + w0,0) models the time spent for finding the median m∗ and

split B and W accordingly (lines 20 and 21), and the other three terms model the

recursive calls at lines 22, 23, and 24. Inequality B.1 holds during each recursion,

82

therefore

F ∗d

(
b

2`
, w`,j

)
≤ k0

(
b

2`
+ w`,j

)
+ F ∗d−1

(
b

2`
, w`,j

)
(B.2)

+ F ∗d

(
b

2`+1
, w`+1,2j

)
+ F ∗d

(
b

2`+1
, w`+1,2j+1

)

We can apply (B.2) to the last two terms of (B.1) and repeat the operation until we

obtain the following

F ∗d (b, w) ≤
log b−1∑

ˆ̀=0

2
ˆ̀∑

k=1

k0

(
b

2ˆ̀
+ wˆ̀,k

)
+

log b−1∑
ˆ̀=0

2
ˆ̀∑

k=1

F ∗d−1

(
b

2ˆ̀
, wˆ̀,k

)
+

2log b−1∑
k=0

F ∗d (1, wlog b−1,k)

By inductive hypothesis, we can assume

F ∗d−1 (b, w) ≤ O
(
(b+ w)(log b)d−3

)
Also, from Lemma 2 we know F ∗d (1, w) is O (w). Therefore, there exist constants k0,

k1 and k2 such that, for every b and w, the following holds

F ∗d (b, w) ≤ k0 · (b+ w) log b+ k1 ·
log b−1∑

ˆ̀=0

2
ˆ̀∑

j=1

(
b

2`
+ wˆ̀,j

)
·
(

log
b

2`

)d−3

+ k2 · w

Solving the sum over j, we get

F ∗d (b, w) ≤ k0 · (b+ w) log b+ k1 · (b+ w) ·
log b−1∑

ˆ̀=0

(
log b− ˆ̀

)d−3

+ k2 · w

If we set h = log b− ˆ̀, we obtain

F ∗d (b, w) ≤ k0 · (b+ w) log b+ k1 · (b+ w) ·
log b∑
h=1

hd−3 + k2 · w

83

Since
∑log b

h=1 h
d−3 is O

(
(log b)d−2

)
, it follows that

F ∗d (b, w) ≤ O
(
(b+ w) · (log b)d−2

)
This concludes our proof.

84

B.2 Chapter III

B.2.1 Proof of Theorem III.1

Proof. From the Bayes’ rule we have that

p[θ|ϕ,H] =
p[θ, ϕ|H]

P[ϕ|H]
=
P[ϕ|θ] · p[θ|H]

P[ϕ|H]

Where

P[ϕ|θ] =
∑
w:w|=ϕ

P[w|θ] =
∑
w:w|=ϕ

[
n∏
i=1

θ
w[i]
i · θi

w[i]

]

p[θ|H] =
n∏
i=1

p[θi|H] =
n∏
i=1

θ
(ai−1)
i · θi

(bi−1)

B(ai, bi)

P[ϕ|H] =
∑
w:w|=ϕ

[
n∏
i=1

(
ai

ai + bi

)w[i]

·
(

bi
ai + bi

)w[i]
]

Hence

p[θ|ϕ,H] =
P[ϕ|θ] · p[θ|H]

P[ϕ|H]
= 1

P[ϕ|H]
·
∑
w:w|=ϕ

(P[w|θ] · p[θ|H])

First we want to prove that

P[w|θ] · p[θ|H] = P[w|H] ·
n∏
i=1

Be(ai + w[i], bi + w[i])

85

Expanding P[w|θ] and p[θ|H] in the LHS we obtain

P[w|θ] · p[θ|H] =
n∏
i=1

θ
w[i]
i · θi

w[i] ·
n∏
i=1

θ
(ai−1)
i · θi

(bi−1)

B(ai, bi)

=
n∏
i=1

θ
(ai+w[i])−1
i · θi

(bi+w[i])−1

B(ai, bi)

=
n∏
i=1

Be(ai + w[i], bi + w[i]) · B(ai + w[i], bi + w[i])

B(ai, bi)

=
n∏
i=1

Be(ai + w[i], bi + w[i]) · Γ(ai + w[i]) · Γ(bi + w[i]) · Γ(ai + bi)

Γ(ai) · Γ(bi) · Γ(ai + bi + 1)

=
n∏
i=1

Be(ai + w[i], bi + w[i]) · (ai)
w[i] · (bi)w[i] · Γ(ai + bi)

Γ(ai + bi + 1)

=
n∏
i=1

Be(ai + w[i], bi + w[i]) · (ai)
w[i] · (bi)w[i]

ai + bi

=
n∏
i=1

Be(ai + w[i], bi + w[i]) ·
(

ai
ai + bi

)w[i]

·
(

bi
ai + bi

)w[i]

= P[w|H] ·
n∏
i=1

Be(ai + w[i], bi + w[i])

Therefore we can express the posterior p[θ|ϕ,H] as follows:

p[θ|ϕ,H] = 1
P[ϕ|H]

·
∑
w:w|=ϕ

P[w|H] ·
n∏
i=1

Be(ai + w[i], bi + w[i])

=
∑
w:w|=ϕ

P[w|ϕ,H] ·

(
n∏
i=1

Be(ai + w[i], bi + w[i])

)

Notice that
∑

w:w|=ϕ P[w|ϕ,H] = 1, therefore the posterior p[θ|ϕ,H] is a convex com-

bination (a mixture) of products of Beta distributions. When we marginalize it w.r.t.

86

the parameter θi, we obtain the following:

p[θi|ϕ,H] =

1∫
0

..

1∫
0

p[θ|ϕ,H] dθ1..dθi−1dθi+1..dθm

=
∑
w:w|=ϕ

P[w|ϕ,H] · Be(ai + w[i], bi + w[i])·

·
1∫

0

..

1∫
0

∏
j∈{1,..,m}\{i}

Be(aj + w[j], bj + w[j]) dθ1..dθi−1dθi+1..dθm

=
∑
w:w|=ϕ

P[w|ϕ,H] · Be(ai + w[i], bi + w[i]) · 1

= P[xi|ϕ,H] · Be(ai + 1, bi) + P[xi|ϕ,H] · Be(ai, bi + 1)

This concludes our proof.

87

BIBLIOGRAPHY

88

BIBLIOGRAPHY

[1] TPC-H benchmark. http://www.tpc.org/tpch/.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[3] P. Afshani. Fast computation of output-sensitive maxima in a word RAM. In
C. Chekuri, editor, SODA, pages 1414–1423. SIAM, 2014.

[4] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara,
and J. Widom. Trio: A system for data, uncertainty, and lineage. In Proceedings
of the 32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, pages 1151–1154, 2006.

[5] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational
processing of uncertain data. In Proceedings of the 24th International Conference
on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, México, pages 983–
992, 2008.

[6] I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation.
ACM Trans. Database Syst., 33(4):31:1–31:49, Dec. 2008.

[7] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs: Databases
with uncertainty and lineage. In Proceedings of the 32nd International Confer-
ence on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages
953–964, 2006.

[8] J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–
229, 1980.

[9] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time
algorithms for computing maxima and convex hulls. In D. S. Johnson, editor,
SODA, pages 179–187. SIAM, 1990.

[10] J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving divide-
and-conquer recurrences. SIGACT News, 12(3):36–44, Sept. 1980.

[11] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average
number of maxima in a set of vectors and applications. J. ACM, 25(4):536–543,
1978.

89

http://www.tpc.org/tpch/

[12] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings
of the 17th International Conference on Data Engineering, pages 421–430, 2001.

[13] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and D. Suciu. MYSTIQ:
a system for finding more answers by using probabilities. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, Baltimore,
Maryland, USA, June 14-16, 2005, pages 891–893, 2005.

[14] C. Buchta. On the average number of maxima in a set of vectors. Inf. Process.
Lett., 33(2):63–65, 1989.

[15] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characteriza-
tion of data provenance. In Database Theory - ICDT 2001, 8th International
Conference, London, UK, January 4-6, 2001, Proceedings., pages 316–330, 2001.

[16] Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. M. Jermaine.
Simulation of database-valued Markov chains using SimSQL. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013, pages 637–648, 2013.

[17] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16(4):361–368, 1996.

[18] T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on
the RAM, revisited. In Proceedings of the Twenty-seventh Annual Symposium
on Computational Geometry, SoCG ’11, pages 1–10, New York, NY, USA, 2011.
ACM.

[19] J. Chomicki. Querying with intrinsic preferences. In C. S. Jensen, K. G. Jeffery,
J. Pokorný, S. Saltenis, E. Bertino, K. Böhm, and M. Jarke, editors, EDBT,
volume 2287 of Lecture Notes in Computer Science, pages 34–51. Springer, 2002.

[20] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database
Syst., 28(4):427–466, Dec. 2003.

[21] J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline queries, front and back.
SIGMOD Record, 42(3):6–18, 2013.

[22] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In
ICDE, pages 717–719, 2003.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (3. ed.). MIT Press, 2009.

[24] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
In (e)Proceedings of the Thirtieth International Conference on Very Large Data
Bases, Toronto, Canada, August 31 - September 3 2004, pages 864–875, 2004.

90

[25] N. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions
of conjunctive queries. J. ACM, 59(6):30, 2012.

[26] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. JRSS-B, pages 1–38, 1977.

[27] M. Dylla and M. Theobald. Learning tuple probabilities in probabilistic
databases. Technical report, Max-Planck-Institut für Informatik, 2014.

[28] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Tables of Integral
Transforms: Vol.: 1. McGraw-Hill Book Company, Incorporated, 1954.

[29] R. Fink, A. Hogue, D. Olteanu, and S. Rath. SPROUT2: a squared query engine
for uncertain web data. In SIGMOD, 2011.

[30] R. Fink, J. Huang, and D. Olteanu. Anytime approximation in probabilistic
databases. VLDB J., 22(6):823–848, 2013.

[31] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM TOIS, 15(1):32–66, 1997.

[32] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. In R. A. DeMillo, editor, STOC, pages 135–143. ACM,
1984.

[33] W. Gatterbauer and D. Suciu. Oblivious bounds on the probability of boolean
functions. ACM TODS, 39(1):5, 2014.

[34] P. Godfrey. Skyline cardinality for relational processing. In D. Seipel and J. M. T.
Torres, editors, FoIKS, volume 2942 of Lecture Notes in Computer Science, pages
78–97. Springer, 2004.

[35] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data
sets. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and
B. C. Ooi, editors, VLDB, pages 229–240. ACM, 2005.

[36] M. C. Golumbic, A. Mintz, and U. Rotics. Factoring and recognition of read-
once functions using cographs and normality and the readability of functions
associated with partial k-trees. DAM, 154(10):1465–1477, 2006.

[37] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Provenance in
ORCHESTRA. IEEE Data Eng. Bull., 33(3):9–16, 2010.

[38] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In
L. Libkin, editor, PODS. ACM, 2007.

[39] B. Gutmann, A. Kimmig, K. Kersting, and L. D. Raedt. Parameter learning
in probabilistic databases: A least squares approach. In ECML/PKDD, pages
473–488, 2008.

91

[40] B. Gutmann, I. Thon, and L. D. Raedt. Learning the parameters of probabilistic
logic programs from interpretations. In ECML/PKDD, pages 581–596, 2011.

[41] H. Hartley. Maximum likelihood estimation from incomplete data. Biometrics,
14(2):174–194, 1958.

[42] R. Herbrich. Minimising the Kullback–Leibler divergence. Technical report,
Microsoft Research, 2005.

[43] X. Hu, C. Sheng, Y. Tao, Y. Yang, and S. Zhou. Output-sensitive skyline algo-
rithms in external memory. In S. Khanna, editor, SODA, pages 887–900. SIAM,
2013.

[44] J. Huang, L. Antova, C. Koch, and D. Olteanu. MayBMS: a probabilistic
database management system. In SIGMOD, 2009.

[45] T. Imielinski and W. L. Jr. On representing incomplete information in a relational
data base. In Very Large Data Bases, 7th International Conference, September 9-
11, 1981, Cannes, France, Proceedings, pages 388–397. IEEE Computer Society,
1981.

[46] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. MCDB:
a monte carlo approach to managing uncertain data. In SIGMOD, 2008.

[47] B. Jiang, J. Pei, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data:
model and bounding-pruning-refining methods. J. Intell. Inf. Syst., 38(1):1–39,
2012.

[48] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distribu-
tions, vol. 2, 1995.

[49] R. M. Karp, M. Luby, and N. Madras. Monte-carlo approximation algorithms
for enumeration problems. J. Algorithms, 10(3):429–448, 1989.

[50] O. Kennedy and C. Koch. PIP: A database system for great and small expecta-
tions. In ICDE, 2010.

[51] W. Kießling. Foundations of preferences in database systems. In VLDB, pages
311–322. Morgan Kaufmann, 2002.

[52] W. Kießling, B. Hafenrichter, S. Fischer, and S. Holland. Preference XPATH: A
query language for e-commerce. In H. U. Buhl, A. Huther, and B. Reitwiesner,
editors, Wirtschaftsinformatik, page 32. Physica Verlag / Springer, 2001.

[53] W. Kießling and G. Köstler. Preference SQL - design, implementation, experi-
ences. In VLDB, pages 990–1001. Morgan Kaufmann, 2002.

[54] D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding
maximal vectors. In Symposium on Computational Geometry, pages 89–96, 1985.

92

[55] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm?
SIAM J. Comput., 15(1):287–299, 1986.

[56] C. Koch and D. Olteanu. Conditioning probabilistic databases. PVLDB,
1(1):313–325, 2008.

[57] D. Koller. Probabilistic relational models. In ILP-99, pages 3–13, 1999.

[58] H. T. Kung. On the computational complexity of finding the maxima of a set of
vectors. In SWAT (FOCS), pages 117–121, 1974.

[59] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. J. ACM, 22(4):469–476, 1975.

[60] K. B. Laskey. MEBN: A language for first-order bayesian knowledge bases. Artif.
Intell., 172(2-3):140–178, 2008.

[61] A. C. G. V. Lazo and P. N. Rathie. On the entropy of continuous probability
distributions (corresp.). IEEE TOIT, 24(1):120–122, 1978.

[62] J. Liu, L. Xiong, and X. Xu. Faster output-sensitive skyline computation algo-
rithm. Inf. Process. Lett., 114(12):710–713, 2014.

[63] N. Meneghetti, D. Mindolin, P. Ciaccia, and J. Chomicki. Output-sensitive
evaluation of prioritized skyline queries. In T. Sellis, S. B. Davidson, and Z. Ives,
editors, Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 1955–1967. ACM, 2015.

[64] D. Mindolin and J. Chomicki. Preference elicitation in prioritized skyline queries.
In VLDB J., pages 157–182, 2011.

[65] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies in-
cremental, sparse, and other variants. In Learning in graphical models, pages
355–368. Springer, 1998.

[66] D. Olteanu and J. Huang. Using OBDDs for efficient query evaluation on prob-
abilistic databases. In SUM, 2008.

[67] D. Olteanu, J. Huang, and C. Koch. Approximate confidence computation in
probabilistic databases. In ICDE, 2010.

[68] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in
database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.

[69] L. D. Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic prolog and
its application in link discovery. In IJCAI, pages 2462–2467, 2007.

[70] M. Richardson and P. M. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

93

[71] P. Sen, A. Deshpande, and L. Getoor. PrDB: managing and exploiting rich
correlations in probabilistic databases. VLDB J., 18(5):1065–1090, 2009.

[72] C. Sheng and Y. Tao. Worst-case i/o-efficient skyline algorithms. ACM Trans-
actions on Database Systems (TODS), 37(4):26, 2012.

[73] W. Siberski, J. Z. Pan, and U. Thaden. Querying the semantic web with pref-
erences. In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, and L. Aroyo, editors, International Semantic Web Conference, vol-
ume 4273 of Lecture Notes in Computer Science, pages 612–624. Springer, 2006.

[74] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and R. Shah.
Orion 2.0: native support for uncertain data. In SIGMOD, 2008.

[75] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, compo-
sition and application of preferences in database systems. ACM Trans. Database
Syst., 36(3):19:1–19:45, Aug. 2011.

[76] J. Stoyanovich, S. B. Davidson, T. Milo, and V. Tannen. Deriving probabilistic
databases with inference ensembles. In ICDE, pages 303–314, 2011.

[77] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[78] W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Exploiting
random walk strategies. In D. L. McGuinness and G. Ferguson, editors, AAAI,
pages 670–676. AAAI Press / The MIT Press, 2004.

94

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	ABSTRACT
	Introduction
	Background and Motivation
	Contributions

	Output-Sensitive Evaluation of P-Skyline Queries
	Background and Notation
	Preferences
	P-Skyline Queries
	Skyline Queries

	Contributions
	Output-Sensitive P-Skylines
	Average-case Analysis
	P-Skylines in External Memory
	Experimental Results
	Sampling random p-expressions
	Synthetic data sets
	Real data sets

	Beta Probabilistic Databases
	Introduction
	Background
	Relational Databases
	Tuple-independent Probabilistic Databases

	Beta Probabilistic Databases
	Multiple independent observations

	Belief Updating
	Simple case: s=k=1
	General case

	Parameter Learning (MLE)
	Computing conditional probabilities
	CP-plans: Extensional Evaluation of P[xi|j,H] for Safe Queries

	Handling Qualitative Feedback
	Experiments
	Related Work

	Conclusions and Future Work
	Conclusions
	Future Work

	APPENDICES
	Nomenclature
	Chapter II
	Chapter III

	Proofs
	Chapter II
	Proof of Theorem II.1
	Complexity of P-Screening

	Chapter III
	Proof of th:W1evPosterior

	BIBLIOGRAPHY

