
Recurrence Width for Structured Dense Matrix Vector
Multiplication

ALBERT GU* ROHAN PUTTAGUNTA* CHRISTOPHER RÉ* ATRI RUDRA†

* Department of Computer Science
Stanford University

{albertgu,rohanp,chrismre}@stanford.edu
†Department of Computer Science and Engineering

University at Buffalo, SUNY
atri@buffalo.edu

Abstract

Matrix-vector multiplication is one of the most fundamental computing primitives that has been studied ex-
tensively. Given a matrix A ∈ FN×N and a vector b ∈ FN , it is known that in the worst-caseΘ(N 2) operations over F
are needed to compute Ab. Many classes of structured dense matrices have been investigated which can be repre-
sented with O(N) parameters, and for which matrix-vector multiplication can be performed with a sub-quadratic
number of operations. One such class of structured matrices that admit near-linear matrix-vector multiplication
are the orthogonal polynomial transforms whose rows correspond to a family of orthogonal polynomials. Other
well known classes include the Toeplitz, Hankel, Vandermonde, Cauchy matrices and their extensions (e.g. con-
fluent Cauchy-like matrices) which are all special cases of a displacement rank property. In this paper, we identify
a notion of recurrence width t of matrices A so that such matrices can be represented with t 2N elements from
F. For matrices with constant recurrence width we design algorithms to compute both Ab and AT b with a near-
linear number of operations. This notion of width is finer than all the above classes of structured matrices and
thus computes near-linear matrix-vector multiplication for all of them using the same core algorithm. Technically,
our work unifies, generalizes, and (we think) simplifies existing state-of-the-art results in structured matrix-vector
multiplication. We consider generalizations and variants of this width to other notions that can also be handled by
the same core algorithms. Finally, we show how applications in disparate areas such as multipoint evaluations of
multivariate polynomials and computing linear sequences can be reduced to problems involving low recurrence
width matrices.

1 Introduction

1.1 Background and Overview of Our Results

In this paper, we focus on matrices in FN×N , where F is any field, for which one can design a quasilinear time
matrix-vector multiplication algorithm: i.e. an algorithm that takes O(N logO(1) N) (which we will denote by Õ(N))
operations over F. Such algorithms have been dubbed superfast algorithms in the matrix-vector multiplication
literature [39]. Since superfast algorithms do not have time to read allΘ(N 2) elements of dense matrices, matrices
that admit superfast multiplication algorithms must be structured in the sense of being expressible with a small
number of parameters. Many problem such as the Discrete Fourier Transform, polynomial and rational multipoint
evaluation/interpolation, and orthogonal polynomial projections can be expressed as matrix-vector multiplica-
tion involving dense, structured matrices, and specialized superfast algorithms have been designed for many of
these specific problems [17, 22, 38]. We are interested in unifying these problems and their notions of structure.
To this end, we introduce the concept of recurrence width, a new measure of the structural complexity of certain
dense matrices, and design simple and general superfast matrix-vector multiplication algorithms for low-width
matrices.

We believe that our strongest contribution is in showing that the above classes of matrices, which were
seemingly disparate and handled by different specialized algorithms, all fall under the umbrella of low
recurrence width and can be handled with one class of algorithms.

Perhaps the poster child for matrices that allow for superfast vector multiplication is the Discrete Fourier Trans-
form. The famous Fast Fourier transform (or FFT) allows matrix-vector multiplication for the Fourier matrix in
O(N log N) operations [15]. Since then numerous followup work have extended this algorithm to solve the matrix
vector multiplication algorithm for other, increasingly general structured dense matrices. To motivate our notion
of structure, we will focus on the two strands of work that inspired much of our work, and describe how we capture
previous results.

Orthogonal polynomial transforms The first strand of work relates to orthogonal polynomial transforms. Or-
thogonal polynomials are widely used and independently important [1–3, 14] - see Section 2 for related work. The
transforms can be expressed as matrix-vector multiplication involving matrices A containing a family of orthogo-
nal polynomials evaluated at points. In particular, the i th row of A contains the evaluation at points {z1, . . . , zn} of
the i th polynomial fi (X). Further, these orthogonal polynomials satisfy the following three term recurrence:

fi+1(X) = (ai X +bi) fi (X)+ ci fi−1(X),

where ai ,bi ,ci ∈ F. Driscoll, Healy and Rockmore present an algorithm to perform the orthogonal polynomial
transform in O(N log2 N) operations [17]. In our first main result, we extended this class of transforms to polyno-
mials that satisfy a more general recurrence.

Definition 1.1. An N ×N matrix A has recurrence width t if the polynomials fi (X) =∑N−1
j=0 A[i , j]X j satisfy

fi+1(X) =
t∑

j=0
gi , j (X) fi− j (X), (1)

where the polynomials gi , j ∈ F[X] are of degree at most j +1.

This is the most basic notion of recurrence width that can be kept in mind as a prototypical example. A more
general definition that captures the other strands of work and applications is presented in Definition 3.1.

We note that the orthogonal polynomial recurrence implies that orthogonal polynomial transforms are essen-
tially recurrence width 1 matrices (the exact connection is in Section 10.2). We show in Section 9 that our notion
of recurrence width forms a strong hierarchy. In particular, we construct a simple matrix A with recurrence width
t +1 such that no matrix with recurrence width t can approximate Ab for all b to any reasonable accuracy. Conse-
quently, our extension is a meaningful one; the class of matrices we handle cannot be captured by previous results
on orthogonal polynomials. This also justifies our use of the term width in this setting.

1

Promisingly, our algorithms are optimal in the sense of matching the size of its parametrization, up to poly-log
factors.

Theorem 1.2. Given matrix A with recurrence width t and Õ(tωN) pre-processing operations (whereω is the matrix-
matrix multiplication exponent), the product Ab and AT b can be found in Õ(t 2N) for any vector b.

Ifω= 2, this is equal to the worst-case input size of a matrix with recurrence width t . Additionally, the recursive
structure allows us to generate matrix vector multiplication algorithms for both matrices A and AT in a simple
and general way. For example, we recover the bounds of Driscoll et al. [17], and Section 10.2 demonstrates how
their algorithm can actually be viewed as a direct application of ours. In certain cases we also get matrix vector
multiplication for A−1 and (A−1)T : e.g. for orthogonal polynomials (Section 10.2).

Displacement rank The second relevant strand of work are results for matrices with low displacement rank. The
notion of displacement rank (which was defined in the seminal work of Kailath et al. [28]) is defined as follows.
Given any pair of matrices (L,R), the displacement rank of A with respect to (L,R) is the rank of the error matrix:

E = LA−AR. (2)

To the best of our knowledge, the most powerful results on matrix-vector multiplication for matrices with low dis-
placement rank are in the work of Olshevsky and Shokrollahi [38], who show that any matrix with a displacement
rank of r with respect to Jordan form matrices L and R can be multiplied with an arbitrary vector with Õ(r N) oper-
ations. (They use these results and matrices to solve the Nevalina-Pick problem as well as solve the interpolation
step in some list decoding algorithms in a previous work [37].) Recall that Jordan normal form matrices are special
cases of matrices where only the diagonal and superdiagonal can be non-zero. In other words, both L and R are 2-
band upper triangular matrices. In this work we show that when both L and R are t-band matrices, any matrix with
displacement rank of r with respect to such matrices can be multiplied by a vector with Õ((t 2 + tr)N) operations.

Theorem 1.3. Let L and R be triangular t-band matrices sharing no eigenvalues, and let A be a matrix such that
LA−AR has rank r . Then A and AT can be multiplied by any vector b in Õ((t 2 + tr)N) operations.

We note that our results recover the work presented in Olshevsky and Shokrollahi [38], and we believe that our
algorithm even for their setting is much simpler. Furthermore, our result can handle more general matrices than
band matrices; in general, if one of L and R is a band matrix and the other admits superfast multiplication for the
associated Krylov matrix.

We find this connection compelling because the set of matrices with low recurrence width and those with low
displacement rank seem to be widely different. Indeed the existing algorithms for the class of orthogonal polyno-
mials [17] and low displacement rank [38] look very different. Specifically, the algorithm of Driscoll et al. [17] is a
divide and conquer algorithm, while that of Olshevsky and Shokrollahi [38] (and preceding works) heavily exploit
structural results on matrices with low displacement ranks. We believe that our strongest conceptual contribution
is showing that both of these classes of matrices can be handled with one class of algorithms. In particular, it turns
out that if one allows for error polynomials in recurrences for matrices with recurrence width t then this is enough
to handle the case of low displacement rank. In Section 3 we present the more abstract recurrence that captures
both of these classes of matrices. More importantly, we present efficient algorithms that work for these general
recurrences. We believe that unifying these existing threads of disparate work is interesting in its own right.

As we have pointed out earlier, orthogonal polynomials and low displacement rank matrices have applications
in numerous areas from signal processing to machine learning. Indeed orthogonal polynomials have their own
dedicated conference [4]. For more details on matrices with low displacement rank as well as its application,
please refer to the survey by Kailath and Sayed [29]. Our matrices naturally inherit these applications.

1.2 Our Algorithm and Techniques

At the heart of our basic algorithms is (in hindsight the simple) observation that given a matrix with recurrence
width t , one can re-initialize the recurrence at any point as long as we know the values of t consecutive rows of

2

the matrix. By pre-computing such rows selectively, we are able to break the problem into two independent halves
and design a divide and conquer algorithm.

Throughout this paper it is helpful to keep the following prototypical example in mind: Consider a matrix A ∈
FN×N with associated polynomials fi (X) =∑N−1

j=0 A[i , j]X j that satisfy a recurrence (1). Assume that the gi , j (X) are
polynomials satisfying deg gi , j (X) ≤ j +1 and that deg fi (X) ≤ i . Note that the orthogonal polynomial transforms
already fall under this limited case.

Basic algorithms The simplest algorithm is for computing AT b for any vector b. Because of the correspondence
between vectors and polynomials, this amounts to computing the combination

∑
b[i] fi (X). By the recurrence,

each fi (X) can be written as a linear combination of the f0(X), . . . , ft (X), where the coefficients of the combination
are polynomials of degree approximately i (this is formalized in Lemma 3.5). However, for i ≥ N /2, this can be bro-
ken down into two parts: the linear combination of fi (X) in terms of fN /2(X), . . . , fN /2+t (X), and the dependence
of fN /2(X), . . . , fN /2+t (X) on f0(X), . . . , ft (X). The former has size approximately i −N /2, and the latter N /2. So that
the sum

∑
b[i] fi (X) is broken into two parts for i < N /2 and i ≥ N /2, and the latter is re-initialized as a recurrence

starting from N /2. Thus the common theme is: break the recurrence into two recurrences of half the size, the first
half initialized from 0, the second half initialized from N /2, and the “jump” from f0 to fN /2.

This idea is illustrated particularly simply when t = 0, so that fi (X) =∏i−1
j=0 g j ,0(X). In this case, the quantity to

compute becomes

N−1∑
i=0

b[i] fi (X) =
(

N /2−1∑
i=0

b[i]g0,0(X) · · ·gi−1,0(X)

)
+ fN /2(X)

(
N−1∑

i=N /2
b[i]gN /2,0(X) · · ·gi−1,0(X)

)
As shown, the whole sum is split into two smaller sums of the same form, provided we can compute fN /2(X) =
g0,0(X) · · ·gN /2−1,0(X). Thus the entire sum can be computed in quasi-linear time if we know

∏(k+1)N /2d−1
i=kN /2d gi ,0(X)

for all d ∈ [log N],k ∈ [2d]. These can be pre-computed because they depend only on A and not b.
Computing the product Ab is more difficult because each polynomial fi (X) is not treated as a “single entity”

as in AT b. Rather, the coefficients are individual manipulated - in particular, we need to compute the dot prod-
uct of the coefficient vector of fi (X) with b. Here we use the observation that the dot product between two vec-
tors is a specific element of their convolution. Thus if b(X) = ∑

b[i]X N−i , the entries of Ab are the coefficients
of X N−1 in b(X), g0,0(X)b(X), . . . , g0,0(X) . . . gN−1,0(X)b(X). The second half of this is the coefficients of X N−1 in
fN /2(X)b(X), . . . , fN /2(X)gN /2,0(X) . . . gN−1,0(X)b(X) which becomes a similar problem of half the size by defining
b′(X) = fN /2(X)b(X). The details of this algorithm are in Section 6.

Extensions of the Recurrence Many of our applications require considering more complicated recurrences than (1).
One of our main new contributions, which has allowed us to reduce many problems including displacement rank
to the notion of recurrence width, is in identifying and solving these extensions]? The main generalizations we
consider are

1. We allow for the rows of A satisfy (1) with some error terms. That is, the recurrence takes the form

fi+1(X) =
t∑

j=0
gi , j (X) fi− j (X)+Ei+1(X) (3)

where the matrix E formed by putting the coefficients of Ei (X) on its rows has low rank.

2. Consider a rational recurrence modulo some polynomial

Di+1(X) · fi+1(X) ≡
t∑

j=0
gi , j (X) fi− j (X) (mod M(X)) (4)

where for each i , gcd(Di (X), M(X)) = 1 and we define fi+1(X) to be the unique polynomial of the smallest
degree that satisfies the above equation.

An equivalent way of thinking about this is considering the recurrence coefficients gi , j (X) in (1) to lie in the
quotient ring F[X]/(M(X)) instead of F[X].

3

3. We replace the variable X with a matrix R ∈ FN×N , such that

fi+1 ≡
t∑

j=0
gi , j (R)fi− j (5)

and fi = A[i , :] is directly interpreted as a vector instead of polynomial. This essentially recovers (1) when
R = S, the shift matrix.

Our connection to multipoint evaluation of multvariate polynomials involves matrices that have the form of
both (3) and (4), and the solution to (5) itself reduces to a problem of that form. Of particular interest is that
in Section 10.1, we show how the displacement rank equation (2) (where L,R are triangular t-banded matrices)
allows us to write the rows of A in the form of a recurrence using all three of these extensions:

Di+1(X) · fi+1 ≡
(

t∑
j=0

gi , j (R)fi− j

)
+E[i +1, :] (mod cR(X)). (6)

These first two extensions can be reduced fairly directly to the basic recurrence (1); this is done in Section 6.2
and Section 7 respectively. We elaborate on the third extension because it involves an intermediate problem with
potentially broader uses.

Matrix Functions and Krylov Efficiency Recurrence (5) involves evaluating functions at a matrix R; we focus
on triangular t-banded matrices which is sufficient for displacement rank. The question of evaluating a function
of a matrix is itself a well-studied and useful problem [26]. Classical ways of computing these matrix functions
use natural decompositions of the matrix, such as its eigendecomposition or Jordan normal form R = AJA−1. The
evaluation of an analytic function then becomes f (R) = A f (J)A−1 which admits superfast multiplication if each
component does. We note that the Jordan decomposition is generally hard to compute and much work has been
done on computing specific matrix functions without going through the Jordan form [41]. Despite this, in Sec-
tion 10.5 we show that it is possible to compute the Jordan decomposition quickly for several special subclasses of
the matrices we are interested in, using techniques involving low-width recurrences.

However, solving (5) has more structure and is easier than evaluating general matrix functions. Consider
again the simplified case when t = 0. Fixing the gi , j (X), we can define the polynomials fi (X) by (1). Note that
fi = gi−1,0(R) · · ·g0,0(R)f0 = fi (R)f0. So we can factor A = A′K, where A′ is the coefficient matrix of the basic poly-
nomial recurrence (Definition 1.1), and K is the matrix whose i -th column is Ri f0. Thus this reduces to the basic
recurrence (1) if we can multiply by K, the Krylov matrix on R and f0.1 We say that R is Krylov efficient if all of its
Krylov matrices admit superfast multiplication.

In Section 8, we show that the Krylov matrix itself satisfies a recurrence of type (3),(4) of width t . Using our
established results, this gives a single Õ(t 2N) algorithm that unifies the previous subclasses with Jordan decompo-
sitions, and implies all triangular banded matrices are Krylov efficient.

We remark that the Krylov efficiency concept does not apply only to our problem. If K is the Krylov matrix on
A and b, then Kb = ∑

b[i]Ai x is naturally related to contexts involving Krylov subspaces, matrix polynomials, and
so on. The product KT b = [b ·x,b ·Ax,b ·A2x, . . .] is also useful; it is the first step in the Wiedemann algorithm for
computing the minimal polynomial or kernel vectors of a matrix A [30].

Quick comparison with existing work Finally, we again highlight that we consider our techniques to be relatively
simple, but they work just as well as more involved techniques that only work in specific cases. In many of the past
cases, the algorithms for Ab and AT b would require different techniques, but in our case we get both the results
for a large class of structured dense matrices with essentially the same idea. Further, some of the existing results
that are based in structural results (e.g. those based on the Bezoutian [22] and on displacement rank [38]) seems
to invoke some fairly sophisticated algebraic techniques while our results use mostly combinatorial techniques (in
particular divide and conquer) except for polynomial interpolation and evaluation. Again our simpler techniques
give results that work for matrices that cannot be handled with these previous works.

1The image of this matrix is the Krylov subspace on R and f0.

4

Because of their simplicity, we believe that these algorithms are also practical and should be competitive
against existing algorithms that have been implemented. Our preliminary experimental results, presented in Sec-
tion 10.7, have been encouraging and we plan to explore more rigorous experimental results in future work.

1.3 Some Consequences and More Context

We believe that given the fundamental nature of the matrix vector multiplication problem, our main contribution
is presenting the notion of recurrence width for matrices for which we give optimal algorithms (up to poly-log
factors) and in the process unify quite a few known results. However, our results have consequences beyond just
the results in matrix-vector multiplication. We collect some of our favorite ones here.

A natural question to ask is if the matrices with recurrence width t (for say non-constant t) contain any interest-
ing class of matrices beyond the fact that (i) these contain both the classes of matrices considered in [17] and [38]
and (ii) these matrices have nice algorithmic properties. We first present a few examples of matrices that have
been studied before that indeed fall in this general category of matrices. In particular, we present applications in
the following order: (1) We present matrices that arise naturally in coding theory and (2) We present matrices that
arise when computing some well known sequences. Further, we would like to point out that our generic algorithms
solve problems from these different areas each of which typically have their own home-grown algorithms and in
some cases (e.g. Bernoulli numbers) we almost match the best known runtimes of these more specific algorithms.

Matrices from Coding Theory. We first observe that the problem of multipoint evaluation of multivariate poly-
nomials (i.e. given a multivariate polynomial f (X1, . . . , Xm) over F and N evaluation points a1, . . . ,aN ∈ Fm output
the vector (f (ai))i∈[N]) corresponds to matrix-vector multiplication for matrices with recurrence width t (where t is
polynomial but sub-linear in N). Further, the encoding problem of recently introduced multiplicity codes (which
have excellent local decoding properties [32–34]), which in turn corresponds to evaluating multivariate polynomi-
als and all of their derivatives up to a certain order, again corresponds to matrix vector multiplication with a matrix
with recurrence width t (where t is polynomial but sub-linear in N). This was already observed in the context of list
decoding Reed-Solomon codes for the case of m = 2 by Olshevsky and Shokrollahi [37] (we extend this observation
to m > 2). While we do not prove any new upper bounds for these probelms, it turns out that the connection to
multipoint evaluation of multivariate polynomials has some interesting complexity implications for our result. In
particular, recall that the worst-case input size of a matrix with recurrence width t is Θ(t 2N) (and our algorithms
are optimal with respect to this input measure). However, it is natural to wonder if one can have faster algorithms
with respect to a more per-instance input size. A natural such case would to be to represent the coefficients gi , j (X)
in (1) as sparse polynomials and count the input size as the total number of non-zero coefficients in all the gi , j (X)’s.
Another natural representation would be for cases where we can guarantee deg(gi , j (X)) ≤ d < t : in such a case can
we design efficient algorithms with respect to the input size Θ(td N)? In both cases we show that improving our
generic algorithm substantially will improve the state of the art results in multipoint evaluation of multivariate
polynomials over arbitrary fields.2 We present the details in Section 11.

Computing sequences. Second we observe that the recurrences that we consider for our matrices actually have
holonomic sequences as a special case, which are some of the very well studied sequences and many algorithms
for such sequences have been implemented in algebra packages [44]. Additionally, the computation of many well-
known sequences of numbers, including Stirling numbers of the second kind and Bernoulli numbers, are also very
well studied problems. There have been some recent ad-hoc algorithms to compute such numbers (e.g. the current
best algorithm to compute the Bernoulli numbers appears in [25]). Despite these sequences not being holonomic,
our general purpose algorithms can still be to compute them. In Section 10.4, we show how to compute the first
N Bernoulli numbers in O(N log2 N) operations, which recovers the same algorithmic bit complexity (potentially
with a log factor loss) as the algorithms that are specific to Bernoulli numbers.

2We note that for finite fields, Kedlaya and Umans [31] have essentially solved this problem. The case for general fields however, is much less
explored and (somewhat to our surprise) widely open.

5

2 Related Work

Superfast structured matrix vector multiplication has been a rich area of research. Toeplitz, Hankel, and Van-
dermonde matrices and their inverses all have classical superfast multiplication algorithms that correspond to
operations on polynomials [7, 10]. A superfast algorithm was developed for Cauchy matrices (and slight general-
izations) was developed by Gerasoulis in 1988 [20]. Multiplication with Cauchy matrices corresponds to operations
on rational polynomials; Cauchy matrices naturally fit in with the other three types of matrices. The four classes of
matrices are all generalized by the notion of displacement rank introduced by Kailath, Kung, and Morf in 1979 [28].
Kailath et al. used displacement rank to define Toeplitz-like matrices, generalizing Toeplitz matrices. In 1994, Go-
hberg and Olshevsky further used displacement rank to define Vandermonde-like, Hankel-like, and Cauchy-like
matrices and developed superfast algorithms for vector multiplication [22]. These matrix classes were unified and
generalized by Olshevsky and Shokrollahi in 2000 [38] with a class of matrices they named confluent Cauchy-like.
Confluent Cauchy-like matrices are those with low displacement rank with respect to Jordan form matrices; we
extend these results by investigating matrices with low displacement rank with respect to any triangular ∆-band
matrices, which we define to be matrices whose non-zero elements all appear in ∆ consecutive diagonals. Algo-
rithms for these four classes of matrices have continued to be refined for precision; we refer to Pan and Tsigaridas
in 2014 for an overview and for an algorithm with explicit bounds on precision [40].

Our work is spiritually closer to the study of orthogonal polynomial transforms, especially that of Driscoll,
Healy, and Rockmore [17]. Orthogonal polynomials are widely used and well worth studying in their own right:
for an introduction to the area, see the classic book of Chihara [14]. We present applications for some specific or-
thogonal polynomials. Chebyshev polynomials are used for numerical stability (see e.g. the ChebFun package [5])
as well as approximation theory (see e.g. Chebyshev approximation [1]). Jacobi polynomials form solutions of
certain differential equations [2]. Zernike polynomials have applications in optics and physics [3]. In fact, our
investigation into structured matrix-vector multiplication problems started with some applied work on Zernike
polynomials, and our results applied to fast Zernike transforms have been used in improved cancer imaging [43].
Driscoll et al. rely heavily on the three-term recurrence satisfied by orthogonal polynomials to devise a divide-
and-conquer algorithm for computing matrix-vector multiplication. Our first main result is a direct generalization
of the recurrence, and we rely heavily on the recurrence to formulate our own divide and conquer algorithm. As
discussed earlier, we view the connection of these two strands of work as our strongest conceptual contribution.

A third significant strand of research is the study of semiseparable matrices. We refer to an extensive survey by
Vandebril, Van Barel, Golub, and Mastronardi [42] for a detailed discussion of the body of work, but we provide a
brief commentary here. The most straightforward class of semiseparable matrices are the generator representable
semiseparable matrices, which are matrices whose upper triangular and lower triangular portions are both of (low)
rank. Our results can straightforwardly recover generator semiseparable matrices whose triangular portions are of
rank 1. However, semiseparable matrices are defined more generally with respect to the rank of matrix sub-blocks.
The idea of utilizing the ranks of matrix sub-blocks has been generalized many times, and we refer to Bella, Eidel-
man, Gohberg, and Olshevsky’s work on (H ,m)-quasiseparable matrices [45] for a relatively recent exploration of
various generalizations. This generalization actually has deep connections to polynomials that satisfy recurrences;
if we define pi (X) as the characteristic polynomial of the upper left i ×i submatrix, the pi form a family that satisfy
recurrence relations. Connecting our notion of recurrence - where the rows of our matrix form a recursive poly-
nomial family - to that of quasiseparable matrices will be explored in future work. As far as we are aware, there is
no fully general superfast matrix-vector multiplication algorithm for (H ,m)-quasiseparable matrices. We note that
this is an area of great active research; we point the reader to Bella et al.’s survey on computing with quasiseparable
matrices [9] for an overview of the wide array of work.

6

3 Preliminaries

3.1 Notation

We will use F to denote a field and use R and C to denote the field of real and complex numbers respectively.34

The set of polynomials over F and set of rational functions over F will be denoted by F[X] and F(X) respectively.
For polynomials p(X), q(X) ∈ F[X], we use the notation p(X) ≡ q(X) (mod M(X)) to indicate equivalence mod-
ulo M(X), i.e. M(X)|(p(X)− q(X)), and p(X) = q(X) (mod M(X)) to specify p(X) as the unique element of this
equivalence class with degree less than deg M(X). We will sometimes consider polynomials over multiple indeter-
minates; if f (X1, . . . , Xk) ∈ F[X1, . . . , Xk], we use deg(f) to mean the maximum degree of its monomials (i.e. sum of
powers of all indeterminates), and degXi

(f) to denote the degree of f when viewed as a polynomial over Xi . For
any integer m ≥ 1, we will use [m] to denote the set {1, . . . ,m}. Unless specified otherwise, indices in the paper start
from 0.

In this paper, vectors are boldset like x and are column vectors. Unless specifically mentioned otherwise we will
assume that x ∈ FN . We will denote the i th element in x by x[i] and the vector between the positions [`,r) : `≤ r by
x[` : r]. For any subset T ⊆ [N], eT denoted the characteristic vector of T . We will shorten e{i } by ei .

Matrices will be boldset like M and by default M ∈ FN×N . We will denote the element in the i th row and j th
column by M[i , j]. M[`1 : r1,`2 : r2] denotes the sub-matrix {M[i , j]}`1≤i<r1,`2≤ j<r2 . In particular we will use M[i , :]
and M[:, j] to denote the i th row and j th column of M respectively. (M[0,0] denotes the ‘top-left’ element of M.)
We will use S to denote the shift matrix (i.e. S[i , j] = 1 if j = i + 1 and 0 otherwise) and I to denote the identity
matrix. We will use V to denote the Vandermonde matrix. In particular if the ‘evaluation points’ are α0, . . . ,αN−1,

then V[i , j] =α j
i . Given a matrix A, we denote its transpose and inverse (assuming it exists) by AT (so that AT [i , j] =

A[j , i]) and A−1 (so that A ·A−1 = I). We will denote (AT)−1 by A−T .
Given a matrix M ∈ FN×N and a vector b ∈ FN , the Krylov matrix of M generated by b (denoted by K (M,b)) is the

N ×N matrix whose i th column for 0 ≤ i < N is given by Mi ·b. We say that M is (α,β)-Krylov efficient if for every
b ∈ FN , we have that K =K (M,b) admits the operations Kx and KT x (for any x ∈ FN) with Õ(βN) many operations
(with Õ(αN) pre-processing operations). (The Õ(·) notation is defined below.) Section 8 has examples of Krylov
efficient matrices.

Finally, we address some issues related to runtime analyses. We will use Õ(T (N)) to denote O
(
T (N) · logO(1)(T (N))

)
.

We will denote the size of a polynomial p(X) ∈ F[X] as the degree of p(X). The size of a fraction g (X) = a(X)
b(X) , de-

noted by ‖g‖ is the sum of sizes of a(X) and b(X). We will call a set of fractions S ⊆ F(X) to be nice if for any
g1(X), g2(X) ∈ S, we have

1. ‖g1 + g2‖ ≤ max(‖g1‖,‖g2‖). Further g1(X)+ g2(X) can be computed in Õ(‖g1 + g2‖) operations over F.

2. ‖g1 · g2‖ ≤ ‖g1‖+‖g2‖. Further g1(X) · g2(X) can be computed in Õ(‖g1 · g2‖) operations over F.

We note that any subset of F(X), where all the fractions have the same denominator (e.g. F[X]), is nice.

3.2 Known Results

Multiplication of two degree N univariate polynomials can be performed in Õ(N) operations: The classic FFT com-
putes it in O(N log N) operations for certain fields [15], and generalizations of the Schonhage-Strassen algorithm
compute it in O(N log N loglog N) ring operations in general [12]. Computing polynomial divisors and remainders,
i.e. p(X) (mod q(X)) with deg(p(X)),deg(q(X)) =O(N) can be done with the same number of operations [13].

The matrix-vector product by matrices A,AT (and A−1,A−T when they exist) for Toeplitz and Hankel matri-
ces A can be computed in O(N log N) operations [39]. When A is a Vandermonde matrix, these products takes
O(N log2 N) operations [39].

The characteristic polynomial cM(X) of a matrix M is equal to the determinant of X I−M. When M is triangular,
it is equal to

∏
(X −M[i , i]). By the Cayley-Hamilton Theorem, every matrix satisfies its own characteristic equation,

i.e. cM(M) = 0.

3Assume that F is large enough and supports the FFT. Otherwise, the runtime bounds occur an extra loglog N factor.
4All results in this paper hold if F is replaced by a commutative ring. We use fields for clarity; our known applications use R or C.

7

Aλ-Jordan block is a square matrix of the formλI+S, where S is the shift matrix which is 1 on the superdiagonal
and 0 elsewhere. A matrix in Jordan normal form is a direct sum of Jordan blocks. The minimal polynomial of a
matrix is equal to the product

∏
λ(X −λ)nλ where nλ is the size of the largest Jordan block for λ. Consequently, if a

matrix has equal minimal and characteristic polynomials, then it has only one Jordan block per eigenvalue.

3.3 Our Problem

In this paper, we are interested in the matrix-vector multiplication problem. In other words, given A ∈ FN×N and
b ∈ FN , we want to compute c = Ab such that for every 0 ≤ i < N :

c[i] =
N−1∑
j=0

A[i , j] ·b[j].

For the rest of the paper we will assume that N = 2m : this does not change the asymptotics but makes some
of the subsequent notations simpler. We will be interested in matrices A for which we can compute Ab and AT b
efficiently. In particular, we will be interested in structured matrices A such that its rows satisfy certain recurrences.
For notational convenience, define fT

i = A[i , :].

Definition 3.1. Let R be a ring and ⊗ : R×FN → FN be an operator satisfying

a ⊗ (b ⊗z) = (a ·b)⊗z (7)

a ⊗z+b ⊗z = (a +b)⊗z (8)

1⊗z = z (9)

A matrix A ∈ FN×N has recurrence width t if and only if its rows fT
i = A[i , :] satisfy

fi+1 =
t∑

j=0
gi , j ⊗ fi− j (10)

for i > t .

The ⊗ operator provides an abstraction so that the standard form (10) captures the recurrence variants and
extensions we are interested in. We note that the ⊗ operator essentially induces a left R-module structure over
FN [18]. We focus on when R is a subring or quotient ring of F(X) so that each gi , j can be represented by an
element gi , j (X) ∈ F(X). We additionally assume that ‖gi , j (X)‖ ≤ j +1. Finally, we call a recurrence in (10) to be nice
if all set of all coefficients (and its closure) is nice.

The basic polynomial recurrence as in Definition 1.1 as well as its extensions (aside from the recurrence with
error (3)) can all be viewed as various instantiations of the ⊗ operator.

Definition 3.2. Let R = F[X] and define a(X)⊗z to be the convolution between the coefficient vector of a and z.

This defines recurrence (1) and is the main type of recurrence we consider. The classic case is when deg(fi) ≤ i
for 0 ≤ i ≤ t , so that deg(gi , j) ≤ j +1 implies that deg(fi) ≤ i for all i (which is true for orthogonal polynomials with
t = 1). When the former does not hold, it may happen that deg(fi) ≥ N , but we can still define the matrix A by
cutting off the higher order terms, i.e. let A[i , j] be the coefficient of X j in fi (X). This is more precisely an instance
of the next definition of ⊗ with M(X) = X N .

Definition 3.3. Let R = F[X]/(M(X)) for M(X) ∈ F[X] of degree N , and define a(X)⊗z as in Definition 3.2. More
precisely, it is the coefficient vector of b(X) where b(X) = a(X) · (

∑
z[i]X i) (mod M(X)).

Note that Definition 3.3 captures recurrence (4): that equation is equivalent to writing fi = ∑
(gi , j /Di+1)⊗ fi− j

using this definition of ⊗.

Definition 3.4. Let R ∈ FN×N and R = F[X]/(M(X)) for a degree N polynomial M(X). Given a(X) ∈R, let a(X)⊗z =
a(R)z.

8

As usual the prototypical polynomial recurrence is through Definition 3.2. The other cases will reduce to this:
Definition 3.3 is covered in Section 6.2 and Definition 3.4 in Section 6.2. We call a R-matrix recurrence one that is
defined by Definition 3.4.

Finally, we will use G ∈ (F(X))N×(t+1) to compactly represent the input: we will set G[i , j] = gi , j (X) for 0 ≤ i < N
and 0 ≤ j ≤ t . Further, we will use F ∈ (F(X))t+1 to contain the initial condition, i.e. F[i] = fi for 0 ≤ i ≤ t . A common
instantiation of this vector will be when fi = δi , j for some 0 ≤ j ≤ t . In this case we will denote F by e j . Note that
the pair (G,F) completely specifies the recurrence and we will refer to it simply as (G,F)-recurrence.

3.4 Examples of matrices with low recurrence width

For concreteness, we provide a few typical cases of matrices with low recurrence width and show how they fall
under the above definitions.

Orthogonal Polynomials The matrix

A =


1 0 0 0 0
0 1 0 0 0
−1 0 2 0 0
0 −3 0 4 0
1 0 −8 0 8


has recurrence width 1 under Definition 3.2 with gi ,0 = 2x, gi ,1 = −1 for all i . This corresponds to Chebyshev
polynomials of the first kind; the matrix A encodes their coefficients.

Now consider

A =


1 1 1 1 1
0 1 2 3 4
−1 1 7 17 31
0 1 26 99 244
1 1 97 577 1921


This matrix also satisfies (10) with the same gi , j as above, but where ⊗ is defined by 3.4 with R = diag(0,1,2,3,4).
For example, f0, f1, f2 satisfy the relation 

−1
1
7

17
31

= 2R


0
1
2
3
4

−


1
1
1
1
1


Note in particular that if fi (X) is the i th Chebyshev polynomial, then A[i , j] = fi (j). Thus this matrix is actually

the orthogonal polynomial transform of Chebyshev polynomials at points {0,1,2,3,4}.

Displacement Rank Toeplitz, Vandermonde, and Cauchy matrices all have very simple displacement rank struc-
ture. For a slightly more complex example, we examine the Pascal matrix

A =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

 ,

which does not fall under the above categories. By Pascal’s identity A[i , j] = A[i −1, j]+A[i , j −1], so this matrix
satisfies 

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

A−A


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

=


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



9

so that it has displacement rank 1 with respect to Jordan matrices L,R, so it is a confluent Cauchy-like matrix [38].
Isolating the i +1th row yields fT

i − fT
i+1R = 0T , so fi+1 = R−T fi . In Appendix A, we show how this can be viewed as

an instance of (10) under Definition 3.4.

3.5 The work-horse lemma

Next, we present a lemma that formalizes the simple notion that one can re-initialize the recurrence from any
fk , fk+1, . . . , fk+t (where k need not be 0). This notation will be useful throughout the main algorithms.

First, for any 0 ≤ i < n, we will define the (t +1)× (t +1) matrix:

Ti =


gi ,0(X) gi ,1(X) · · · gi ,t−1(X) gi ,t (X)

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

 .

And for any `≤ r , define
T[`:r] = Tr−1 ×·· ·×T`.

Conceptually, this lemma states that every term in the recurrence can be written as a combination of any t +1
consecutive terms and provides properties about these combination coefficients. It is helpful to consider the poly-
nomial recurrence case (1), whence every term is a linear combination (with polynomial coefficients) of previous
consecutive terms.

Lemma 3.5. Given a sequence f0, . . . , fN specified by (10), for every index k, there exist h(k)
i , j (X) ∈ F(X) for 0 ≤ i <

N −k,0 ≤ j ≤ t such that

1. fi+k =
t∑

j=0
h(k)

i , j (X)⊗ fk+ j

2. h(k)
i+1, j (X) =

t∑
`=0

gi+k,`(X)h(k)
i−`, j (X) for i ≥ t and hi , j (X) = δi , j for i ≤ t .

Proof. Note that (2) can be written as

fi+1 =
[
gi ,0(X) · · · gi ,t (X)

]⊗ [
fi · · · fi−t

]T

or [
fi+1 · · · fi−t+1

]T = Ti ⊗
[
fi · · · fi−t

]T

By composing this, we get[
fk+i · · · fk+i−t

]T = Tk+i−1 ⊗
(
· · ·⊗

(
Tk ⊗

[
fk+t · · · fk

]T
))

= (Tk+i−1 ·Tk+i−2 · · ·Tk)⊗ [
fk+t · · · fk

]T

= T[k:k+i] ⊗
[
fk+t · · · fk

]T

The first part of the lemma is equivalent to the top row of this equation, where we define h(k)
i , j to be (1, j)-th entry

of T[k:k+i]. The second part of the lemma is equivalent to the top row of T[k:k+i+1] = Tk+i T[k:k+i].

The following result about the sizes of entries in T[`:r] will be useful later.

Lemma 3.6. Let the recurrence in (10) be nice. Then for any 0 ≤ i , j ≤ t , we have

‖T[`:r][i , j]‖ ≤ max((r −`− i)+ j ,0).

10

Proof. Fix any arbitrary `. We will prove the statement by induction on r −`. For the base case (i.e. when we are
considering T`), the bounds follow from the definition of T` and the our assumption on the sizes of g`, j (X) for
0 ≤ j ≤ t . Assume the result is true for r −`=∆≥ 0.

Now consider the case of r = `+∆+1. In this case note that T[`:r] = Tr−1 ·T[`:r−1]. Now by the action of Tr−1,
the last t rows of T[`:r] are the first t rows of T[`:r−1] and the size claims for entries in those rows follows from the
inductive hypothesis. Now note that for any 0 ≤ j ≤ t , we have

T[`:r][0, j] =
t∑

k=0
gr−1,k (X) ·T[`:r−1][k, j].

Since the recurrence is nice, we have that

‖T[`:r][0, j]‖ ≤ max
0≤k≤t

‖gr−1,k‖+‖T[`:r−1][k, j]‖ ≤ max
k

(k +1)+ (r −`−1−k)+ j) = r −`+ j ,

as desired.

The above along with induction implies that

Lemma 3.7. Let the recurrence in (1) be nice. Then for every 0 ≤ i < N , we have

‖fi‖ ≤ i ,

where we think of fi ∈ F(X).

We note that our algorithms can handle the case when the initial ‖f j ‖ for 0 ≤ j ≤ t are larger than that specified
in the above lemma.

4 Computing AT b

We consider the problem of computing

c =
N∑

i=0
b[i]fi

for the standard recurrence defined by 3.2.
We will solve this problem by isolating the effect of the ⊗ operator and reducing the problem to a main com-

putation just over F(X). Let F = [
f0 · · · ft

]T
. Lemma 3.5 implies that fi is the last element of T[t :i+t] ⊗F. Thus c is the

last element of
N−1∑
i=0

b[i]
(
T[t :i+t] ⊗F

)
(11)

This can be rewritten as
(∑N−1

i=0 b[i]T[t :i+t]
)⊗F. Thus it suffices to compute the last row of this sum in parenthesis.

It can be decomposed as
N /2−1∑

i=0
b[i]T[t :i+t] +

(
N∑

N /2
b[i]T[N /2+t :i+t]

)
T[t :N /2+t]

Note that both sums are the same problem but of size N /2, corresponding to both halves of the recurrence. This
motivates defining P`,r to be the last row of

∑r−1
i=` b[i]T[`+t :i+t], so that the desired answer is simply P0,N ⊗F. Fur-

thermore, this quantity satisfies the relation

P`,r = P`,m +Pm,r T[`:m] (12)

for any `≤ m < r , and thus can be computed with two recursive calls and a vector-matrix multiply over R(X)t+1.
Also, note that the T[`:r] are independent of b and the relevant ones will be pre-computed.

11

Algorithm 1 TRANSPOSEMULT

Input: b,G, a,k
Input: T[bN /2d :bN /2d+N /2d+1] for 0 ≤ d < m, 0 ≤ b < 2d

Output: Pk,k+2a = First row of
∑2a−1

i=0 b[k + i]T[k:k+i]

1: If 2a ≤ t then . Base case
2: Return

[
0 · · · b[k +2a −1] · · · b[k]

]
3: else
4: Return TRANSPOSEMULT(b,G, a −1,k)+TRANSPOSEMULT(b,G, a −1,k +2a−1)T[k:k+2a−1]

Finally, observe that when r −`≤ t , the last row of T[`:r] is simply an indicator vector with a 1 in the r −`-th spot
from the end (conceptually, the companion matrices act as a shift before reaching the recurrence width). Thus we
stop the recurrence when the problem size gets below t +1.

We present the full details of the algorithm in Algorithm 1. The initial call is TRANSPOSEMULT(b,G,m,0) (recall
that N = 2m) and the relevant T[`:r] are assumed to be precomputed, which we will describe next.

The above discussion implies that Algorithm 1 is correct:

Theorem 4.1. Assuming all the required T[·,·] are correctly computed, TRANSPOSEMULT(b,G,m,0) returns P0,N .

4.1 Pre-processing time

In this section, we will see how we can efficiently compute the matrices of fractions T[bN /2d :bN /2d+N /2d+1] for 0 ≤
d < m, 0 ≤ b < 2d . Since we have assumed that N is a power of 2, these ranges can be expressed in terms of dyadic
strings; we need to pre-compute T[s] for all strings s ∈ {0,1}∗, |s| ≤ lg N (where we interpret [s] as the corresponding
dyadic interval in [0, N −1]). All the required matrices can be computed in a natural bottom-up fashion:

Lemma 4.2. We can pre-compute T[s] for all strings s ∈ {0,1}∗, |s| ≤ lg N with O(N tωF log2 N) operations, where two
n ×n matrices over F can be multiplied with O(nωF) many operations over F.

Proof. Fix an arbitrary s∗ of length `< lg N . We can compute T[s∗] = T[s∗0] ·T[s∗1]. Using the matrix multiplication
algorithm, we have O(tωF) fraction multiplications to compute, where the fractions are of size at most N

2`
+ t by

Lemma 3.6. So computing T[s∗] takes O((N /2`+ t)tωF log N) operations. Computing T[s] for all |s| = ` takes O((N +
t2`)tωF log N), and computing all T[s] takes O(N tωF log2 N), as desired.5

The above implies that

Corollary 4.3. Pre-processing for Algorithm 1 can be done with O(N tωF log2 N) many operations over F.

4.2 Runtime analysis

We now analyze the runtime of Algorithm 1 assuming that the pre-processing step (i.e. computing all the required
T[·:·]) is already done. We do a simple recursive runtime analysis.

Lemma 4.4. After pre-processing, Algorithm 1 needs O(t 2N log2 N) operations over F.

Proof. Let T (N) denote the number of operations needed in the call TRANSPOSEMULT(b,G,m,0). Then it is easy
to see that

T (N) = 2T (N /2)+O(τ(N)),

where τ(N) is the number of operations taken in Step 4. We will show that τ(N) =O((t 2N + t 3) log N). Finally, note
that τ(t +1) =O(t). This immediately implies the claim (note that the O(t 3) term ultimately gets multiplied by N /t
since we stop the recursion when the input size is t +1).

5In the last estimate we note that when |s∗| ≤ log2(t +1), then all operations are over F and no fractions/polynomials are involved. Thus the

tωR+12` term only gets added up to `= log(N /t) and thus we do not pay an extra factor of t in the final analysis.

12

To see why τ(N) =O((t 2N + t 3) log N), we first note that by Lemma 3.6, each element of vector P`,r is a fraction
of size at most r −`. Thus the vector-matrix multiplication in Step 4 performs O(t 2) multiplications of fractions
of size at most N /2+ t . Thus, the total number of operations used by the call to TRANSPOSEMULT(b,G,m,0) is
O(t 2(N + t) log N), as desired.

4.3 Post-processing

We are not quite done yet with regard to computing AT b since after Algorithm 1, we still have to perform the step
P0,N ⊗ f. Note that for the case of nice rational recurrence we have to do t multiplications over F(X) of size at
most N : this can be done with O(t N log N) operations. Further for the case of an R-matrix recurrence when R is
(α,β)-Krylov efficient, implies that each of the t ⊗ operations can be done with Õ(βN) operations (and Õ(αN) pre-
processing operations).6 These observations along with Corollary 4.3 and Lemma 4.4 imply the following result:

Theorem 4.5. For any nice recurrence as in (1), with O(tωFN log2 N) pre-processing operations, any AT b can be
computed with O(t 2N log2 N) operations over F. For an R-matrix recurrence (5) that is nice and R is (α,β)-Krylov
efficient, pre-processing and computation need additional Õ(tαN) and Õ(tβN) operations respectively.

We make a final remark on an optimization that can be done with “batch queries”. First, note that equation 11
can be written as

N−1∑
i=0

[
b[i]0 · · · 0

](
T[t :i+t] ⊗F

)

Now suppose we are given r vectors b1, . . . ,br and want to compute Ab1, . . . ,Abr . Defining Bi =

b1[i] 0 · · · 0
...

...
. . .

...
br [i] 0 · · · 0

,

it suffices to compute
N−1∑
i=0

Bi T[t :i+t] (13)

We can call the above P0,N , defined the same way as before, and the recursive identity (12) still holds so we can
still run Algorithm 1. The analysis in Lemma 4.4 showed that the bottleneck of the algorithm, which led to the t 2

runtime coefficient, is in the multiplication of a 1× t and t × t matrix. Thus for this batch query, the runtime will
be Õ(αr N) where αr is the number of operations to multiply a r × t by t × t matrix.

Note in particular that r = t multiplications can be computed simultaneously in Õ(tωN) time, and in general
αr ≤ min(r t 2, (1+ r /t)tω). For large numbers of queries, the amortized multiplication time can be considered to
be Õ(tω−1N).

5 Overview of the rest of the paper

We present the rest of our main matrix-vector multiplication algorithms in Section 6. In particular, we present the
algorithm to compute Ab in Section 6 and show that our algorithms have the same complexity guarantees for this
problem as in Theorem 4.5. However, the arguments get a bit more tricky. First we show how to factor out a Krylov
matrix in the case of matrix recurrences, to reduce Definition 3.4 to 3.3. Using a series of transformations we then
reduce this to a basic polynomial recurrence 1.

Section 7 deals with the case when our recurrences have error. This is crucial for extending our results to work
for low displacement rank matrices (and beyond). One solution is fairly simple: for a recurrence with the error
matrix having rank r , we can reduce the problem with error to r +1 instantiations of the problem with no errors
and use our previous results as a black box. We also provide a more complicated approach with a reduced runtime.
We also show in Theorem 11.4 that doing substantially better than this reduction would improve the state of the
art algorithms for multipoint evaluation of multivariate polynomials.

6Indeed if P0,N [j] =∑N−1
i=0 pi X i , then P0,N [j](R)⊗ f j =K (R, f j) ·p, where p = (p0, . . . , pN−1).

13

In Section 9, we show that our notion of recurrence width satisfies a hierarchy in a very strong sense: in partic-
ular to represent a matrix with recurrence width t +1 with a matrix of recurrence width t needs an error matrix of
rank Ω(N). In Section 8 we present examples of some matrices that are Krylov efficient. We note that showing the
latter for band matrices needs to use our algorithm from Section 6 for computing Ab in the rational case.

In Section 10, we consider some special cases of our general framework. In Sections 10.1 and 10.2, we show
why low displacement rank matrices fall in our framework and how our results in some sense are simpler than
known results for orthogonal polynomial transforms. In Section 10.3, we show how to speed up our algorithms for
the case when the gi , j (X)s only depend on j (i.e. the ‘transition’ matrix Ti is independent of i). In Section 10.4
we show how our general purpose algorithm can be used to compute Bernoulli numbers. In Section 10.5, we
utilize our algorithm to compute the Jordan decomposition of some classes of matrices. In Section 10.6, we outline
why our algorithms have good bit complexity and in particular, why they are competitive with special purpose
algorithms [25] to compute Bernoulli numbers even in the bit complexity measure.

Finally in Section 11 we present the connections of our framework to multipoint evaluation of multivariate
polynomials as well as coding theory. The aim of this section is two-fold. First this section presents matrices that
have been studied in other contexts that have a small recurrence width in our setup (but do not easily fit into the
existing notions of width). Second, this section shows that if the efficiency of our algorithms can be improved in
some natural directions, then those improvements will immediately imply improvements over the state of the art
algorithms for multipoint evaluation of multivariate polynomials over arbitrary fields (and with arbitrary evalua-
tion points).

6 Computing Ab

In this section we will consider the problem of computing

c = Ab.

where the rows of A are defined by recurrence (10) as usual.
For now, we will make two simplifying assumptions:

1. Assume there is a vector e ∈ FN and elements fi (X) ∈R(X) : 0 ≤ i ≤ t such that fi = fi (X)⊗e.

2. Assume that the fi (X) generated from f0(X), . . . , ft (X) by (1) are polynomials.

The first assumption implies that fi = fi (X)⊗e for all 0 ≤ i < N . The second assumption allows us to define the
matrix A′ consisting of coefficients of the fi (X). Furthermore, the problem of computing (Ab)[i] is now

〈fi ,b〉 = 〈
fi (X)⊗e,b

〉
=

N−1∑
j=0

fi , j

〈
X j ⊗e,b

〉
Thus, defining the vector b′ where b′[i] = 〈

X j ⊗e,b
〉

, the problem becomes computing A′b′. Hence using these
assumptions, we can reduce the problem on a general recurrence (10) into one on a rational recurrence (that
produces polynomials) (1), plus the computation of b′.

For the remainder of this section, we first show how to solve the problem for a certain type of rational recur-
rence that satisfies assumptions 1 and 2. Next we address rational recurrences in a modulus, which allows us to
remove assumption 2. Finally, we comment on removing assumption 1.

6.1 Basic rational recurrences

Consider the following recurrence:

Di+1(X) fi+1(X) =
t∑

j=0
ni , j (X) · fi− j (X). (14)

14

We assume that for every 0 ≤ i < N and 0 ≤ j ≤ t , we have deg(Di (X)) = d̄ and deg(ni , j (X) ≤ d(j +1)+ d̄ for
non-negative integers d̄ and d . We note that the above captures (4) (with potentially larger parameters).

Before we proceed, we make a useful definition. For every 0 ≤ `≤ r < N , define

D[`:r](X) =
r−1∏
k=`

Dk (X).

We now make an assumption on the recurrence in (14) to guarantee that assumption 2 holds. In particular, we
will assume that for every 0 ≤ j ≤ t , we have that

D[j+1:N] divides f j (X) and deg(f j) ≤ j d + (N −1)d̄ . (15)

This assumption is sufficient to guarantee that the fi (X) are polynomials and allows us to consider the problem
of computing Ab for a matrix A whose rows correspond to coefficients of fi . Note that the prototypical example
of multiplying by a matrix A ∈ FN×N whose rows satisfy a polynomial recurrence falls exactly into this setting with
parameters d̄ = 0,d = 1, and Section 8 uses this algorithm with d̄ = 1,d = 0.

The main idea is to use the following observation to compute Ab. For any vector u ∈ FN , define the polynomial

u(X) =
N−1∑
i=0

ui ·X i .

Also define
uR = J ·u,

for the reverse vector, where J is the ‘reverse identity’ matrix. With the above notations we have

Lemma 6.1. For any vector u,v ∈ FN , we have 〈u,v〉(〈u,vR
〉)

is the coefficient of degree N − 1 in the polynomial
u(X) ·vR (X) (u(X) ·v(X) resp.).

Proof. The proof follows from noting that the coefficient of X N−1 in u(X) ·vR (X) is given by

N−1∑
j=0

u[i] ·vR [N −1− i] =
N−1∑
i=0

u[i] ·v[i] = 〈u,v〉 ,

where we used that fact that
(
vR

)R = v.

To handle (14) with the assumption (15), we define a new recurrence motivated by the above observation. For
every 0 ≤ i < N , define

pi (X) = fi (X)bR (X)

D[i+1:N](X)
. (16)

Next, we argue that the polynomials pi (X) satisfy a recurrence with bounded recurrence width. In particular,
we have that

Lemma 6.2. For i ≥ t we have

pi+1(X) =
t∑

j=0
gi , j (X)pi− j (X),

where gi , j (X) ∈ F[X] and deg(gi , j (X)) ≤ (j +1)(d̄ +d).

Proof. Multiplying both sides of (14) by bR (X)
D[i+1:N](X) along with (16) we get

pi+1(X) =
t∑

j=0
ni , j (X) ·D[i− j+1:i+1](X) ·pi− j (X)

=
t∑

j=0
gi , j (X)pi− j (X),

where we define gi , j (X) = ni , j (X) ·D[i− j+1:i+1](X). The claim on the degree of gi , j (X) follows from the degree
bounds on ni , j (X) and Di (X)s.

15

We note that assumption (15) implies that the starting functions pi (X) : 0 ≤ i ≤ t are polynomials (and not just
rational functions) and Lemma 6.2 implies that all pi (X) are polynomials. A similar argument shows that the fi (X)
are polynomials.

Lemma 6.3. Under assumption (15), the functions pi (X) defined by (16) are polynomials.

We can use the degrees of the starting polynomials, together with the recurrence, to show degree bounds on all
fi (X). It is straightforward to inductively show that deg fi (X)/D[i+1:N](X) ≤ i (d̄+d) using the fact that deg gi , j (X) ≤
(j +1)(d̄ +d). Then

deg(fi (X)) ≤ i (d̄ +d)+deg(D[i+1,N](X)) = i (d̄ +d)+ (N − i −1)d̄ = (N −1)d̄ + i d .

So the following lemma is true.

Lemma 6.4. For every 0 ≤ i < N , we have

deg(pi (X)) ≤ i (d̄ +d)+deg(bR (X)) and deg(fi (X)) ≤ (N −1)d̄ + i d .

Thus A is a matrix of dimensions N ×N where

N = (N −1)(d̄ +d)+1.

Note that A is square when d̄ +d = 1; this includes the basic polynomial recurrence (such as the one orthogo-
nal polynomials satisfy) as well as in applications such as Section 8. With these definitions, we will show how to
compute the product Ab where b is a vector of length N .

To obtain Ab, by Lemma 6.1 and (16), we need to compute the coefficient of the monomial X N−1 for every
0 ≤ i < N :

pi (X) ·D[i+1:N](X).

By Lemma 3.5, equivalently, we need to compute the coefficient of the monomial X N−1 for every 0 ≤ i < N :

t∑
j=0

h(0)
i , j (X)p j (X)D[i+1:N](X). (17)

Fix an 0 ≤ i < N /2. Rewriting the above, c[i] is the coefficient of X N−1 in the polynomial

t∑
j=0

(
h(0)

i , j (X)D[i+1:N /2](X)
)
· (p j (X)D[N /2:N](X)

)
.

Now note that

deg
(
h(0)

i , j (X)D[i+1:N /2](X)
)
≤ (i − j)(d̄ +d)+ (N /2− i −1)d̄ ≤ N

2
− j (d̄ +d),

where the first inequality follows from the fact (that can be proven by induction) that deg(h(0)
i , j (X)) ≤ (i − j)(d̄ +d)

and the second inequality uses the fact that i ≤ N /2−1. This implies that to compute c[i] for any 0 ≤ i < N /2, we

only need the coefficients of X k for k ∈
[

N
2 + j (d̄ +d), N −1

]
in the polynomial

q j (X) = p j (X)D[N /2:N](X).

for 0 ≤ j ≤ t .
In particular, we can first isolate the higher order N /2 coefficients of the starting polynomials. For convenience,

define the operator

Extract(f (X),n) =
(

f (X) mod X n
)− (

f (X) mod X n/2
)

X n/2

16

and for 0 ≤ j ≤ t let
p ′

j (X) = Extract(q j (X), N)

then note that c[i] is the coefficient of N
2 −1 in the polynomial

t∑
j=0

(
h(0)

i , j (X)D[i+1:N /2](X)
)
·p ′

j (X).

Comparing to equation (17), this is an problem of size N /2 and we can recurse. We now consider the output
element c[i +N /2] for 0 ≤ i < N /2. The argument is similar to the previous case. Again by Lemma 3.5), c[i +N /2]

is the coefficient of the monomial X N−1 in the polynomial

t∑
j=0

h(N /2)
i , j (X)D[i+N /2+1:N](X) ·pN /2+ j (X).

By the same argument in the previous case, we have that

deg
(
h(N /2)

i , j (X)D[i+N /2+1:N](X)
)
≤ N

2
− j (d̄ +d).

This implies that we need the coefficients of X i for i ∈
[

N
2 + j (d̄ +d), N −1

]
in pN /2+ j (X). If we define

p ′
N /2+ j (X) = Extract(pN /2+ j (X), N)

then c[i] is the coefficient of N
2 −1 in the polynomial

t∑
j=0

(
hN /2)

i , j (X)D[i+N /2+1:N](X)
)
·p ′

N /2+ j (X).

Thus, we have reduced our problem to size N /2 and we can recurse. Note that this assumes we have access to
pN /2+ j (X), which can be quickly computed assuming our usual pre-processing step.

The discussion above is formalized in Algorithm 2, the correctness of which follows from the above discussion.
(The initial call is to MATRIXVECTMULTRATIONAL(p0(X), . . . , pt (X), N ,m′,0), where we assume that N = 2m′

.)
We argue that Algorithm runs efficiently. In particular,

Lemma 6.5. A call to MATRIXVECTMULTRATIONAL(p0(X), . . . , pt (X), N ,m′,0) takes O(t 2(d̄ +d)N log2 N) many op-
erations.

Proof. If T (N) is the number of operations needed for a call to Algorithm 2, then we will show that

T (N) ≤ 2T (N /2)+O(t 2N log N)

with base case T (t) ≤O(t 3(d̄ +d) log2(t (d̄ +d))). This will prove the claimed runtime.
To see the base case note that computing each qi (X) involves O(t) polynomial multiplications where the poly-

nomials have degrees O(t (d̄ +d)), which implies O(t 2d log2(t (d̄ +d))) operations. Since there are O(t) such qi (X)
to compute, we have T (t) ≤O(t 3(d̄ +d) log2(t (d̄ +d))), as claimed.

Thus, to complete the argument we need to show that in a recursive call of size N we use O(t 2(d̄ +d) log N)
many operations.

For the first recursive call, the runtime is dominated by the the number of operations taken to compute q j (X).

Naively, this can be done with t multiplications of polynomials of degree O(N), so computing all the q j (X) takes

O(t 2N log2 N) operations. For the second recursive call, the runtime is dominated by Step 9 is matrix vector mul-
tiplication with dimension t + 1 where each entry is a polynomial of degree O(N). Hence, this steps also takes
O(t 2N log N) many operations, as desired.

Thus, we have argued the following result:

Theorem 6.6. For any nice recurrence as in (14) such that maxi deg(Di (X)) ≤ d̄ and deg(ni , j (X)) ≤ d(j + 1)+ d̄
and satisfying (15), with O(tωF (d̄ +d)N log2 N) pre-processing operations, any Ab can be computed with O(t 2(d̄ +
d)N log2 N) operations over F.

17

Algorithm 2 MATRIXVECTMULTRATIONAL

Input: p0(X), . . . , pt (X),∆, a,k with the assumption (15)
Input: T[

bN
2d : bN

2d + N
2d+1

] for 0 ≤ d < m and 0 ≤ b < 2d

Input: D[bN /2d :bN /2d+N /2d+1](X) for 0 ≤ d < m and 0 ≤ b < 2d

Output: c such that c[i] is the coefficient of X∆−1 of
∑t

j=0 h(k)
i , j (X)p j (X)D[k+i+1:k+2a](X) for 0 ≤ i < 2a

1: n ← 2a

2: If n ≤ t then . Base case
3: For every 0 ≤ i < n do
4: qi (X) ←∑t

j=0 h(k)
i , j (X)p j (X)D[k+i+1:k+n](X) = p j (X)D[k+i+1:k+n]

5: c[i] ← coefficient of X∆−1 in qi (X)

6: For every 0 ≤ j ≤ t do .Do computation for the first recursive call
7: p ′

j (X) ← Extract(p j (X)D[k+n/2:k+n](X), N)

8: c[k : k +n/2] ← MATRIXVECTMULTRATIONAL(p ′
0(X), . . . , p ′

t (X),∆/2, a −1,k)

9:
(
pn/2+t (X), . . . , pn/2(X)

)T ← T[k:k+n/2]
(
pt (X) · · · , p0(X)

)T
.Do computation for second recursive call

10: For every 0 ≤ j ≤ t do
11: p ′

n/2+ j ← Extract(pn/2+ j (X),∆)

12: c[k +n/2 : k +n] ← MATRIXVECTMULTRATIONAL(p ′
n/2(X), . . . , p ′

n/2+t (X),∆/2, a −1,k +n/2)
13: Return c[k : k +n]

6.2 Rational recurrences in a modulus

Suppose we have a recurrence (14) but the conditions (15) do not hold. In particular, it may not be the case that the
fi (X) are polynomials, so our usual way of defining the coefficient matrix A does not make sense. However, we may
still want to work with the functions fi (X). As an example, we may be interested in the projections

∑N−1
j=0 b j fi (α j)

- see section 10.2 for some connections. Note that if we are only interested in the evaluations of a functions at a
point α, we can consider inverses in F[X]/(X −α) instead of in F(X), i.e. 1/ f (α) = g (α) ⇐⇒ g = f −1 (mod X −α).
This motivates considering rational recurrences in a modulus:

Di+1(X) fi+1(X) ≡
t∑

j=0
ni , j (X) · fi− j (X) (mod M(X)). (18)

The above equation assumes that M(X) is chosen so that all Di (X) are invertible in the mod, or gcd(Di , M) = 1
for all i . We formally define the above recurrence to mean that given f0(X), . . . , fi (X), then fi+1(X) is defined to be
the unique polynomial of minimal degree satisfying (18).

We also assume that the roots of M(X) are known, which will be necessary in the matrix multiplication. In
the context of R-matrix recurrences, the primary motivation for considering this recurrence, this is equivalent to
knowing the eigenvalues of R.

The point of this recurrence is that it converts our applications involving rational functions into applications
involving polynomials, whence we can apply the techniques of section 6.1 (after another step described in this sec-
tion). Put another way, we will be able to remove the dependence on assumption 2. In general, the transformation
from a rational function fi (X) to a vector fi = fi (X)⊗e is heavily dependent on the behavior of the ⊗ operator and
must be considered on a case-by-case basis. Here are two core uses in line with our main interpretations of ⊗.

1. In the projection example, we suppose rational functions fi (X) satisfy recurrence (14) and want to calculate
Zb where Z[i , j] = fi (α j). If we instead define the fi (X) according to (18) with M(X) = ∏

(X −α j), then they
have the same evaluations at the α j . But now the fi are polynomials, so we can factor Z = AVT where A is the
coefficient matrix of the fi and V is the Vandermonde matrix on the 〈α j 〉.

2. Suppose we are in the setting of recurrence (5). We can instead consider the recurrence (18) with M(X) set to
the characteristic polynomial of R. Since M(R) = 0, the modular recurrence will produce a set of polynomials

18

fi (X) such that the resulting fi = fi (X)⊗e will be the same. This in fact generalizes the preceding application
by taking R = diag〈α j 〉 and e = 1 (the all 1s vector).

We now show, given (18), how to compute Ab and AT b where A is the coefficient matrix of the fi (X). Assume
that M(X) has degree N .

Define D(X) = D[0:N](X) and C (X) to be its inverse modulo M(X). Note that D(X) can be computed in time
O(d N log2 d N) by divide-and-conquer, and C (X) can also be computed in Õ(N) operations using the fast Eu-
clidean Algorithm.

Define gi (X) satisfying the same recurrence as the fi (X), but with starting conditions scaled by D(X), and over
F[X] instead of F[X]/(M(X)), i.e.

gi (X) = D(X) fi (X) 0 ≤ i ≤ t

Di+1(X)gi+1(X) =
t∑

j=0
ni , j (X) · gi− j (X) i > t

Note that this recurrence satisfies assumptions (15) so we can use the results of section 6.1. Also, these polynomials
satisfy a close relation with the fi (X).

Lemma 6.7. For all i , gi (X)C (X) ≡ fi (X) (mod M(X)).

Proof. We can show this inductively. For 0 ≤ i ≤ t , by construction M(X) divides gi (X)C (X)− fi (X) = fi (X)(C (X)D(X)−
1). For i > t , multiply the recurrence for gi (X) by C (X) and subtract (18). We are left with

Di+1(X)
(
gi+1(X)C (X)− fi+1(X)

)≡ t∑
j=0

ni , j (X) · (gi− j (X)C (X)− fi− j (X)
)

(mod M(X)).

Inductively, M(X) divides the RHS, so it divides the LHS as well. But it is relatively prime to Di+1(X), proving the
claim.

Finally, we show how to compute the queries AT b and Ab.
The answer to AT b is just the coefficients of the polynomial

∑
bi fi (X). This sum is equal to

∑
bi gi (X)C (X)

(mod M(X)). Let A′ be the coefficient matrix for the gi (X) - note that it has dimensions N×K where K = maxi deg(gi)
is clearly bounded by (d + d̄)N . Then it suffices to compute A′T b, then convolve with the coefficients of C (X) and
reduce (mod M(X)).

To compute Ab, we define Z to be the N × N evaluation matrix at the roots of M(X), i.e. Z[i , j] = fi (α j) =
gi (α j)C (α j). Define D = diag〈C (α j)〉 and V,V′ to be the Vandermonde matrices over roots α1, . . . ,αN of dimen-
sions N ×N and N ×K respectively. Then the definition of Z is equivalent to the identities A = AVT and A = A′V′T D.
Therefore multiplying by A = A′V′T DV−T is bottlenecked by and thus has the same asymptotic runtime as multi-
plying by A′.

So both types of multiplications reduce to the corresponding multiplications for rational recurrences without
a modulus, which are handled by Algorithm 2.

6.3 Removing the assumptions

Our description of the core Ab algorithm, described in Section 6.1, made the simplifying assumptions that fi =
fi (X)⊗e for 0 ≤ i ≤ t , and that the fi (X) are polynomials. These assumptions do hold often - for example, trivially
when ⊗ is interpreted as rational multiplication - but not always. However, even when they do not hold, we can
perform simple transformations to ensure that the algorithm still works.

First, when assumption 2 does not hold, we use the technique of Section 6.2 to reinterpret the recurrence in a
modulus so that the fi (X) are polynomials, before applying the main algorithm.

So assumption 2 is true; now suppose assumption 1 does not hold. Note that

fi = ·· ·+0⊗ fi−1 +1⊗ fi +0⊗ fi+1 + . . .

19

so we can define the f as the sum of t recurrences, where the j th recurrence has initial conditions δi , j ⊗fi : 0 ≤ i ≤ t .
Formally,

c[i] = 〈fi ,b〉

=
t∑

j=0

〈
h(0)

i , j (X)⊗ f j ,b
〉

(19)

=
t∑

j=0

N−1∑
`=0

h(0)
i , j ,`

〈
X `⊗ f j ,b

〉
(20)

=
t∑

j=0

N−1∑
`=0

h(0)
i , j ,`b j [`]. (21)

In the above (19) follows from Lemma 3.5, (20) follows by defining

h(k)
i , j (X) =

N−1∑
`=0

h(k)
i , j ,` ·X `

and (21) follows by defining the vectors b j such that

b j [`] =
〈

X `⊗ f j ,b
〉

. (22)

(21) implies that to compute Ab it is enough to be able to compute

t∑
j=0

H (0)
j b j , (23)

where H (0)
j [i ,`] = h(0)

i , j ,` and we can pre-compute the b j .

Note that by Lemma 3.5, each H (0)
j satisfies (1) and (2) so we can run t +1 passes of Algorithm 2.

However, we can get the same asymptotic result with a single pass but modifying the initial polynomials to be
a sum. Applying Lemma 6.1 to find c[i] means the only change necessary is replacing the numerator of defini-
tion (16) with

∑t
j=0 h(0)

i , j (X)bR
j (X). Thus the only change to Algorithm 2 is the computation of initial polynomials

p0(X), . . . , pt (X) which now takes time Õ(t 2(d̄ +d)N) instead of Õ(t (d̄ +d)N), and the algorithm is asymptotically
the same.

Finally, to run Algorithm 2, we need to compute the vectors b0, . . . ,bt according to (22). We consider two cases
corresponding to (1) and (5). For the case of nice rational recurrences, we note that X k · f j (X) just amounts to
shifting the coefficient vector f j by k. In particular, one can compute b j from b by multiplying a triangular Toeplitz
matrix (that depends on f j) with b, which can be done with O(N log N) operations and hence, all the b j ’s can be
computed with O(N t log N) operations. Further for the case of an R-matrix recurrence when R is (α,β)-Krylov
efficient, implies that each of the t ⊗ operations can be done with Õ(βN) operations (with Õ(αN) pre-processing
operations for each).7 Together with the fact that the pre-processing needed for Algorithm 2 is exactly the same as
in Section 4.1, implies the full result.

Theorem 6.8. For any nice recurrence as in (1), with O(tωFN log2 N) pre-processing operations, any Ab can be com-
puted with O(t 2N log2 N) operations over F. For an R-matrix recurrence (5) that is nice and R is (α,β)-Krylov effi-
cient, pre-processing and computation need additional Õ(tαN) and Õ(tβN) operations respectively.

7 Recurrences with Error

We now modify our approach to handle a low-rank error term in our recurrence. In particular, consider the follow-
ing recurrence relations:

fi+1 =
t∑

j=0
gi , j (X)⊗ fi− j +

r∑
`=1

ci ,`(X)⊗d` (24)

7Note that b j =K (R, f j) ·b.

20

for d` ∈ FN and ci ,` of size at most d , where gi , j (X) has size at most d(j +1). These additional vectors represent a
rank-r error in our recurrence. Such a recurrence is said to have recurrence error width of (t ,r).

We present two approaches for solving a recurrence of this type. The first approach is a direct reduction to
our standard recurrence (10), where we fold the error terms into the recurrence width. We can insert ‘dummy’
polynomials into the sequence to capture the errors. In particular, we insert r rows consisting of the d` between
every t of the original fi . Now note that every row of this resulting recurrence can be expressed in terms of the
previous t + r rows. Thus this results in a sequence of length O(N t+r

t) that follows a recurrence of width t + r . We
can then apply our previous algorithms to compute AT b and Ab. Note that the problem size depends on the width
N of the matrix and not the height N (1+r /t), because we avoid any computations involving rows corresponding to
the dummy polynomials since we already know them. Therefore the algorithms take O((r +t)2N log2 N) operations
and O((r + t)ωFN log2 N) preprocessing. We also remark that the r error terms can be separated and each handled
with a recurrence of width t +1, leading to runtime and preprocessing O(r t 2N log2 N) and O(tωFN log2 N) instead.

This results in a simple and direct reduction to our previous algorithms to handle recurrences with error, and
also showcases that our basic notion of recurrences (10) is powerful enough to capture more a more complicated
recurrence (24). However, this reduction is somewhat loose (i.e. a recurrence of width t+r is strictly more powerful
than a recurrence of width (t ,r)) and we can do better.

Next, we show how to handle the error terms more precisely to achieve a better algorithm runtime. This ap-
proach will also utilize on the previous algorithms, but as a subroutine of a larger divide-and-conquer. First we will
modify the work-horse lemma to handle all the error terms.

Consider a recurrence defined by (24) again. We will switch to using a presentation where we consider dummy
starting conditions f−t−1 = ·· · = f−1 = 0, and f0, . . . , ft are just elements defined by the recurrence with error: e.g.
ft =∑t

j=0 0⊗ ft−1− j + ft (compare to (24)).
In the style of the work-horse lemma, the recurrence (24) can be written as fi+1

...
fi−t+1

= Ti ⊗

 fi
...

fi−t

+

ci ,1 · · · ci ,r
...

. . .
...

0 · · · 0

⊗

d1
...

dr

 (25)

for 0 ≤ i < N . Let that ci ,` matrix be denoted Ci . Composing (25) and using f−t−1 = ·· · = f−1 = 0, we get an analog
to the work-horse lemma  fi

...
fi−t

= (
T[0:i]C0 +T[1:i]C1 +·· ·+T[i :i]Ci

)⊗
d1

...
dr


We can use this work-horse lemma to compute Ab and AT b with a divide-and-conquer algorithm. We will show

AT b here.
Let Bi = [

b[i] 0 · · · 0
] ∈ Ft+1, so that b[i]fi = Bi

[
fi · · · fi−t

]T
. Therefore, the query Ab or

∑
b[i]fi is

equal to
N−1∑
i=0

Bi

i∑
j=0

T[j :i]C j ⊗D =
(∑

0≤ j≤i<N
Bi T[j :i]C j

)
⊗D

where D = [
d1 · · · dr

]T
.

We will drop the ⊗D and perform it at the end, so we only care about the sum, which can be computed using
divide and conquer. We can break the sum into∑

0≤ j≤i<N
Bi T[j :i]C j =

∑
0≤ j≤i<N /2

Bi T[j :i]C j +
∑

j<N /2,i≥N /2
Bi T[j :i]C j +

∑
N /2≤ j≤i<N

Bi T[j :i]C j

= ∑
0≤ j≤i<N /2

Bi T[j :i]C j +
(∑

i≥N /2
Bi T[N /2:i]

)(∑
j<N /2

T[j :N /2]C j

)
+ ∑

N /2≤ j≤i<N
Bi T[j :i]C j

Note that the first sum corresponds to f0, . . . , fN /2−1 and the other two correspond to fN /2, . . . , fN−1. Also note that
the first and last terms are self-similar of half the size. Thus they can be computed with recursive calls, and we only
have to worry about the middle product.

21

We just need to compute the left and right sides of this product. Note that the left product is exactly equa-
tion (13) which is the main problem addressed in Section 4. It can be computed in O(t 2N log2 N) time, after seeing
the query b. The right product is again equivalent to equation (13), up to transpose and different indices on the
transition matrix ranges. Since the Ci are known upfront, these sums can be precomputed in O(αr N log2 N) oper-
ations, where αr is the time it takes to multiply a r × t by t × t matrix.

Given the left and right products, their product is found by a 1×t by t×r matrix multiplication over polynomials
of degree O(N), which takes O(r t N log N) operations. Performing the entire divide-and-conquer algorithm incurs
an additional log N factor. Thus the total runtime is O((t 2 + r t)N log2 N).

The product Ab can be computed with similar modifications, which we will provide an overview of. First we
make a high level observation about the AT b algorithm. We broke the problem into three pieces, two of which
were identical problems of half the size, so that it sufficed to compute the final one. We can do the same with

Ab. Formally, we can define f′i to be the first row of
(∑N /2−1

j=0 T[j : i +N /2]C j

)
⊗D, which is the part of fi+N /2 not

captured by the recursive subproblem. To compute AT b, we needed
∑N /2−1

i=0 b[i]f′i =
(∑

j<N /2,i≥N /2 Bi T[j :i]C j
)⊗D,

and the sum decomposed into a product where one side was exactly the problem solved in Section 4. To compute

Ab, we need 〈f′i ,b〉 = 〈
(
T[N /2:N /2+i]

∑N /2−1
j=0 T[j : N /2]C j

)
⊗D,b〉 for 0 ≤ i < N /2. Note that by identity (7), we can fold

the sum into D so that we need to compute 〈T[N /2:N /2+i] ⊗D′,b〉. This is precisely the problem solved in Section 6.
Therefore we have shown

Theorem 7.1. For any nice recurrence with error, with O(tαr N log2 N) pre-processing operations, any Ab or AT b
can be computed with O(t (r + t)N log2 N) operations over F. For an R-matrix recurrence with error that is nice
and R is (α,β)-Krylov efficient, pre-processing and computation need additional Õ(tαN) and Õ(tβN) operations
respectively.

Note that αr , the time it takes to multiply a r × t by t × t matrix, is bounded by O((1+k/t)tω) operations. Thus
the pre-processing computation can be bounded by O(r tω−1 + tω) operations.

We remark that this algorithm recovers the bounds in Theorems 6.8 and 4.5 when r = O(t). In particular, we
lose nothing by formulating a recurrence (1) as a recurrence with t +1 errors: each starting condition f j : 0 ≤ j ≤ t
is an error polynomial with corresponding coefficients ci , j = δi , j .

8 Krylov Efficiency

Recall that given a matrix M ∈ FN×N and a vector y ∈ FN , the Krylov matrix of M generated by y (denoted by K (M,y))
is the N×N matrix whose i th column for 0 ≤ i < N is Mi ·y. We say that M is (α,β)-Krylov efficient if for every y ∈ FN ,
we have that K = K (M,y) admits the operations Kx and KT x (for any x ∈ FN) with Õ(βN) many operations (with
Õ(αN) pre-processing operations).

First, we show how Krylov efficiency can be reduced to Jordan efficiency. In section 10.5, we define a matrix M
to have an efficient Jordan decomposition if it has a decomposition M = AJA−1 such that A and A−1 admit super-
fast matrix-vector multiplication. Suppose that R is Jordan efficient. Observe that the Krylov multiplication can be
expressed as

K (R,y)x =
N−1∑
i=0

x[i](Ri y)

=
(

N−1∑
i=0

x[i]Ri

)
y

= x(R)y

where we define the function x(X) =∑
x[i]X i .

Note that x(X) is analytic and the multi-point Hermite-type evaluation problem on it is computable in Õ(N)
time [38] [39]. Thus the Krylov multiplication can be performed using Lemma 10.11, and Krylov efficiency of R
reduces exactly to Jordan efficiency with the same complexity bounds. Therefore all Jordan-efficient matrices are
also Krylov-efficient.

22

However, this reduction is clearly one way– Jordan efficiency is stronger than Krylov efficiency, but the latter
problem has more structure that we can take advantage of. In this section, we will show that the class of banded
triangular matrices are Krylov efficient by showing that the Krylov matrix itself satisfies a recurrence to which we
can apply our techniques.

We remark that the application to recurrence width only requires Kx to be fast, but Krylov efficiency is a quite
fundamental concept that is useful in other contexts. The product Kx = ∑

x[i]Mi y is naturally related to applica-
tions involving Krylov subspaces, matrix polynomials, and so on; for us, Krylov efficiency arises from needing to
evaluate polynomials at a matrix. The product KT b = [b ·x,b ·Ax,b ·A2x, . . .] is also useful; for example, it is the first
step in the Wiedemann algorithm for computing the minimal polynomial or kernel vectors of a matrix A [30].

8.1 Krylov Efficiency of triangular banded matrices

Let M be an upper triangular ∆-banded matrix, i.e. all values other than M[i ,`] for i ≤ `< i +∆ are zero. Let y be
an arbitrary vector and let K denote the Krylov matrix of M with respect to y.

We will show that K satisfies a rational recurrence with recurrence error width of (∆,1). Note that these results
also hold for lower triangular matrices.

Define polynomials

fi (X) =
N−1∑
j=0

K[i , j] ·X j

Let F =

 f0(X)
...

fN−1(X)

. We can alternatively express this as

F =
N−1∑
j=0

K[:, j]X j =
N−1∑
j=0

(Mi y)X i =
(

N−1∑
j=0

(MX)i

)
y

Multiplying by I−MX , we get the equation

(I−MX)F = y− (MX)N y (26)

Therefore it is true that
(I−MX)F ≡ y (mod X N) (27)

and furthermore, F can be defined as the unique solution of equation (27) because I−MX is invertible in F[X]/(X N)
(since it is triangular and its diagonal is comprised of invertible elements (1−M[i , i]X)).

But equation (27) can be interpreted as a rational recurrence with error. Explicitly expanding (27), the fi (X)
satisfy

(1−M[i +1, i +1]X) fi+1(X) ≡
∆∑

j=0
M[i +1, i − j]X fi− j (X)+y[i] (mod X N)

Therefore the multiplications Kx and KT x can be computed using the techniques of Section 6 and Section 7.
Theorem 7.1, then implies that

Theorem 8.1. Any triangular ∆-banded matrix is (∆ω,∆2)-Krylov Efficient.

9 Hierarchy of Recurrence

In this section we show that a t +1-term recurrence cannot be recovered by a t-term recurrence, showing a clear
hierarchy among the matrices that satisfy our recurrence. Fix an arbitrary N . We will be looking at the simplest
form of our recurrence: a polynomial family f0, . . . , fN−1 such that

fi+1(X) =
t∑

j=0
gi , j (X) fi− j (X)

23

where deg(gi , j) ≤ j . Define P (t) to be all families of N polynomials that satisfy our recurrence of size t . For sim-
plicity, we assume that all polynomials have integer coefficients. For any polynomial family f ∈ P (t), we define the
matrix M(f) that contains the coefficients of the polynomials as its elements, as in Section 6. To show the hierarchy
of matrices, we will show that no family in P (t) can approximate the mapping specified by a particular family in
P (t +1).

Theorem 9.1. For every t ≥ 1, there exists an f ∈ P (t +1) such that for every g ∈ P (t)

∥∥M(f) ·1−M(g) ·1
∥∥2

2 =Ω
(

N

t

)
.

Proof. We are going to choose f such that fi (X) = X i if i = k(t +1) for some k ≥ 0 and fi (X) = 0 otherwise. Note
that f ∈ P (t +1). Let c = M(f) ·1. In particular,

c[i] =
{

1 if i = k(t +1) for some k ≥ 0

0 otherwise
.

Fix an arbitrary g ∈ P (t). Let c′ = M(g)·1; note that c′[i] = gi (1). Note that if any t consecutive gi (1), . . . , gi+t−1(1)
are 0, the t-term recurrence implies that all subsequent polynomials in family uniformly evaluate to 0 at 1. So we
have two cases: (1) gi (1) = 0 for all i > N /2 or (2) for each k, there exists an i such that k(t +1) < i < (k +1)(t +1) ≤
N /2 and gi (1) 6= 0. In the first case c′[i] = 0 for all i > N /2, and ‖c− c′‖2

2 ≥ N
2(t+1) . Similarly, in the second case

c′[i] 6= 0 and c[i] = 0 for each of the specified i , implying once again that ‖c−c′‖2
2 ≥ N

2(t+1) .

Corollary 9.2. For every t ≥ 1, there exists an f ∈ P (t +1) such that for every g ∈ P (t), r ank(M(f)−M(g)) =Ω(N
t).

Proof. Let H = M(f)−M(g). Once again, we define f such that fi (X) = X i if i = k(t+1) for some k ≥ 0 and fi (X) = 0
otherwise. Once again, we have two cases. First, deg (gi (X)) < i for all i = k(t +1), i > N /2. Then H[i , i] = 1 for all
i = k(t + 1), i > N /2, implying r ank(H) ≥ N

2t . In the second case, we rely on the degree bound of the transition
polynomials; in particular, if gi+1(X) =∑t

j=0 hi , j (X)gi− j (X), we bound deg (hi , j (X)) ≤ j . If deg (gi (X)) = i for some
i = k(t + 1), i > N /2, we know that for each value of k such that (k + 1)(t + 1) < N /2, there exists a j such that
k(t +1) < j < (k +1)(t +1) and deg (g j (X)) = j . For each of these j , H[j , j] 6= 0, implying r ank(H) ≥ N

2t .

10 Special Cases

10.1 Displacement Rank

The displacement rank of a matrix A with respect to matrices L,R is defined as the rank of the error matrix

E = LA−AR.

The concept of displacement rank has been used to generalize and unify common structured matrices such as
Hankel, Toeplitz, Vandermonde, and Cauchy matrices; these matrices all have low displacement ranks with respect
to diagonal or shift matrices being L and R. Olshevsky and Shokrollahi [38] defined the confluent Cauchy-like
matrices to be the class of matrices with low displacement rank with respect to Jordan form matrices; this class of
matrices generalized and unified the previously mentioned common structured matrices. Our class of structured
matrices captures the class of matrices with low displacement rank with respect to a more general form of matrices.

10.1.1 Basic conditions on L and R

Let L be Krylov efficient and suppose that we know its characteristic polynomial cL(X). Let R be triangular (through-
out this section, we will assume it is upper triangular) and ∆-banded and suppose that its eigenvalues are disjoint

24

from L’s. We will show that the columns of A satisfies a standard L-matrix recurrence. Suppose r ank(E) = r ; we
can then express any column of E in terms of a basis d0, . . . ,dr−1. Let fi = A[:, i].

Lfi −
i∑

j=i−∆
f j R[j , i] =

r−1∑
`=0

ci ,`d`

(L−R[i , i]I)fi =
i−1∑

j=i−∆
f j R[j , i]+

r−1∑
`=0

ci ,`d`

fi =
i−1∑

j=i−∆
(L−R[i , i]I)−1R[j , i]f j +

r−1∑
`=0

(L−R[i , i]I)−1ci ,`d`

fi =
i−1∑

j=i−∆

R[j , i]

(X −R[i , i])
⊗ f j +

r−1∑
`=0

ci ,`

(X −R[i , i])
⊗d`

where ⊗ is p ⊗ f = p(L)f. Note that the disjoint eigenvalue assumption asserts that L−R[i , i] is invertible for all i ,
hence the fi are well-defined and unique. The assumption of knowing cL(X) is necessary since these recurrence
coefficients are actually treated as elements of the quotient ring F[X]/(cL(X)) and not F(X) (see Section 6.2).

This last equation says that AT exactly satisfies a nice matrix recurrence with error, thus the algorithms of
Section 6 and 7 allow us to compute Ab and AT b.

We also note that the conditions on L,R are symmetric. Let (a) and (b) be matrix properties that apply through
transposition (i.e. if A satisfies (a) then so does AT). Now suppose that Ab and AT b admit fast multiplication
algorithms when L satisfies (a) and R satisfies (b). Then they are also efficient when R satisfies (a) and L satisfies
(b). This is because RT AT − AT LT = −ET is also rank r , let L′ = RT and R′ = LT which satisfy the appropriate
properties so AT and (AT)T admit fast multiplication.

Theorem 10.1. Suppose r ank(LA−AR) = r for L that is (α, β)-Krylov efficient and R that is upper triangular and
∆-banded. Suppose furthermore that R and L have disjoint eigenvalues. Then we can compute Ab and AT b for any
vector b in Õ(∆(∆+ r +β)N) with Õ((∆αr +∆α)N). preprocessing.

Proof. By Theorem 7.1

A Vandermonde-like matrix V is a matrix that has low displacement rank with respect to L = D, a diagonal
matrix, and R = ST . So the columns of V must follow the recurrence

fi = 1

X
fi−1 + ci

X
⊗d

where p(X)⊗ f = p(D)⊗ f.
As in the example of Vandermonde-like matrices, all previous displacement rank results in literature have L and

R in Jordan normal form, all of which are captured by Olshovsky and Shokrollahi [38]. The results in this section
cover all L and R in Jordan normal form that have distinct eigenvalues. We note that it is not possible to capture all
matrices with low displacement rank with respect to L,R in Jordan normal form. In particular, any arbitrary matrix
has low displacement rank with respect to L = R = I. However, there are fundamental results that have L and R with
shared eigenvalues; for example, Toeplitz matrices have low displacement rank with respect to L = R = ST . We can
generalize our results to capture these as well.

10.1.2 Further classes of displacement rank

The equation LA−AR = E only has a unique solution if L and R have disjoint eigenvalues. To see this, suppose
L and R have at least one shared eigenvalue; we will find a non-zero solution to LA−AR = 0. Let L = XJ0X−1 and
R = YJ1Y−1 be the Jordan decompositions of the two matrices. We then have J0X−1AY−X−1AYJ1 = 0. Since X and
Y are full rank, a non-zero solution A exists if and only if there exists a nonzero solution M to J0M−MJ1 = 0. Since
L and R share an eigenvalue, there exists x and y such that J0[x, x] = J1[y, y] and J0[x, :],J[:, y] are only non-zero on

25

the diagonal. Then M[x, y] is completely free; the the [x, y] element of J0M−MJ1 is M[x, y](J0[x, x]− J1[y, y]) = 0.
Therefore, LA−AR = E has multiple solutions if L and R have shared eigenvalues.

As such, to extend our results beyond disjoint eigenvalues, we need to allow for extra parameters to specify
A. In this section, we deal with cases where the extra parameters can be provided by the initial conditions of our
recurrence. As an example, we rework our derivation from the previous section with L = R = ST , which corresponds
to Toeplitz-like matrices. We have ST fi − fi−1 =∑r−1

`=0 ci ,`d`. This gives us the recurrence fi−1 = X ⊗ fi −∑r−1
`=0 ci ,`d`,

which means we can apply our matrix vector multiplication algorithm to A and AT . This example illustrates a
simple technique to expand the class of L,R that we capture: we can simply put a different element of the sequence
on the left side of the recurrence equation. Also note that the free element of A is specified by the initialization f0.

If we define a matrix M = R−X I over F[X]N×N , then we can express the relation among the fi with

N∑
j=0

M[j , i]⊗ f j =
r−1∑
`=0

ci ,`d` (28)

We would like to extract a ∆-width R-recurrence (with error) from this relationship. This requires specifying
some ordering of the fi such that the relation above can be interpreted as a ∆-width recurrence. Equivalently, we
need to have permutations σ,τ such that equation (28) reduces to the recurrence

M[σ(i),τ(i)]⊗ fσ(i) =
∆∑

j=1
M[σ(i − j),τ(i)]⊗ fσ(i− j) +

r−1∑
`=0

cτ(i),`d` (29)

Given a permutation σ, define a permutation matrix P(σ) such that P[i ,σ(i)] = 1 and 0 otherwise. Equation
(28) will only reduce to recurrence (29) if P(σ)MP(τ) is upper triangular and ∆-banded in rows [∆+1 : N −1]. In
other words, for i > ∆, M[σ(i),τ(j)] 6= 0 if and only if i ≤ j ≤ i +∆. Furthermore, the rational recurrence is only
usable if the polynomial M[σ(i),τ(i)] evaluated at L results in an invertible matrix for i >∆. In this case, we will say
M is pseudo similarto a pseudo ∆-banded upper triangular matrix.

Going back to the example of L = R = ST , M is a two-banded matrix with X on the diagonal and 1 on the
superdiagonal. Define σ(i) = N − i and τ(i) = i + 1 (with τ(N − 1) = 0). Then P(σ)MP(σ)P(τ) is a two-banded
matrix with 1 on the diagonal and X on the super diagonal (ignoring the first column). With these permutations,
recurrence (29) is equivalent to the recurrence derived earlier: fi−1 = X ⊗ fi −∑r−1

`=0 ci ,`d`.
By applying our previously established bounds to this recurrence, we can derive an explicit runtime. Note that

our computation will involve both the matrices L and R.

Theorem 10.2. Suppose M(L,R) is pseudo similar to a pseudo ∆-banded upper triangular matrix and R is (α, β)-
Krylov efficient. Let r = r ank(LA−AR) for some matrix A. Then with Õ((∆αr +∆α)N) pre-processing, both Ab and
AT b can be computed, for any b, in Õ(∆(∆+ r +β)N) operations.

The techniques in this section recover all of the classic Displacement Rank results: fast matrix vector multi-
plication for Cauchy-like, Vandermonde-like, Toeplitz-like, and Hankel-like matrices. In addition, as illustrated in
the example for Toeplitz-like matrices, the permutation techniques of this section allows for any L and R that are
Jordan blocks. Note that for all of these classes ∆,α,β=O(1), giving us an Õ(r N) runtime.

Olshevsky and Shokrollahi discuss L and R in general Jordan normal form [38]. Unfortunately, they do not ex-
plicitly deal with multiple solutions to the displacement rank equation; they do claim an extension of their results
could handle the general case. Similarly, for our recurrence-based approach, if we extend our rational recurrences
to use pseudo-inverses and allow for extra parameters specifying A to be added to the errors d, we could be able to
handle L,R sharing arbitrary eigenvalues. We leave this for future investigation.

10.2 Orthogonal Polynomials

Driscoll, Healy and Rockmore [17] found a superfast matrix vector multiplication algorithm for matrices whose
rows are orthogonal polynomials. They take advantage of the three-term recurrence that any family of orthogonal
polynomials must satisfy. This recurrence also implies that our results capture theirs.

26

In addition to being more general, we view our algorithm as being simpler and more direct. In fact, there are
two ways in which the Driscoll et al. algorithm can be viewed as a direct application of our algorithm. The Driscoll
et al. algorithm actually computes the projection of a vector b onto the orthogonal polynomials p0(X), . . . , pN−1(X)
as defined by

b̂[i] =
N−1∑
j=0

b j pi (z j).

Note that the algorithm combines the matrix multiplication with a multi-point evaluation, while our algorithm
more directly operates on the polynomials themselves instead of their evaluations. Thus if A is the matrix contain-
ing the orthogonal polynomials in its rows, then b̂ = (AVT)b, where V is the Vandermonde matrix with evaluation
points z0, . . . , zN−1. In fact, it can be shown that the operations performed by the Driscoll et. al. algorithm are
actually equivalent to first computing the projections onto monomials VT b, and then applying our algorithm to
multiply by A. The second way to use our algorithm to compute the result is by interpreting the orthogonal poly-
nomial evaluations as a matrix recurrence (5) with R = diag〈z0, . . . , zN−1〉, f0 = 1. This is a more general method
than the AVT factorization because it does not depend on the functions being polynomials - and when they are, it
turns out to be equivalent because K (R, f0) = V.

Orthogonal polynomials are also much more structured than our generalized polynomials, which we exem-
plify here by providing a simple algorithm for matrix-vector multiplication involving inverses. Suppose we have
orthogonal polynomials p1(X), . . . , pN (X) and a matrix A such that pi (X) = ∑N−1

j=0 A[i , j]X j . By definition [14],∫
pi (X) ¯p j (X)dµ(X) = δi j for some measure µ(X). Define the moment matrix M[i , j] = ∫

X̄ j X i dµ(X). Note that
if the measure is supported on the real line, then M[i , j] is a function of i + j and M is Hankel. Similarly, if µ is
supported on the complex circle, M[i , j] is a function of i − j and M is Toeplitz. Note however that M may not have
special structure in general.

Theorem 10.3. If A is a matrix of orthogonal polynomials with respect to the measure µ(X), and M is the moment
matrix over the measure, then

AMA∗ = I

Proof. Consider the following sequence of relations for 0 ≤ i , j < N :

(AMA∗)[i ,`] =
N−1∑
j=0

A[i , j]
N−1∑
k=0

M[j ,k]A∗[k,`]

=
N−1∑
j=0

N−1∑
k=0

A[i , j]

(∫
X j X

k
dµ(X)

)
A∗[k,`]

=
∫ (

N−1∑
j=0

A[i , j]X j

)(
N−1∑
k=0

A∗[k,`]X
k
)

dµ(X)

=
∫

pi (X)p`(X)dµ(X)

= δi ,`,

as desired.

In the case that our measure is supported on the real line, A∗ = AT and M is Hankel. Note that classical su-
perfast vector multiplication algorithms for Hankel matrices and their inverses have been well established [22].
This result implies that for orthogonal polynomials, an algorithm for the AT b implies an algorithm for A−1b and
an algorithm for Ab implies an algorithm for A−T b. So our algorithms presented in Sections 4 and 6 immediately
imply algorithms for inverses in the case that our matrices contain orthogonal polynomials.

We observe that our more general class of polynomials do not follow this nice structure. A−1A−T may not be a
Hankel matrix in general; it may not even be symmetric.

27

10.3 Constant Transition Matrix

There is a great body of research relating to linear recursive sequences in which the recurrence has a constant tran-
sition matrix [35]. These sequences can be generalized from scalars to polynomials, which leads to a recurrence
in which the gi , j (X) are independent of i . Some well-known families of polynomials fall under this setting, most
prominently the various types of Chebyshev polynomials which all satisfy a width-1 recurrence with constant tran-
sitions [21]. We also note that with some transformations, other families such as the Bernoulli numbers fall under
this category of recurrence, which we discuss in the next subsection.

In this case, Ti as defined by Section 3 are all identical. We can then express fi = Ti−t f where f = [
f0 · · · ft

]T
.

In this case, we have

AT b =
t∑

i=0
b[i]fi +

N∑
i=t+1

b[i]Ti−t f.

Similarly, we have
(Ab)[i] = bT Ti−t f.

We note that T is essentially a traditional companion matrix of a linear recursive sequence [27], except that the
coefficients in T are polynomials instead of constants.

With this constant transition matrix, we can use the approach of Fiduccia [19] to reduce both the pre-processing
and multiplication time to Õ(N t). Fiduccia investigates linear recurrences, and uses a fact about companion ma-
trices to derive a O(t log t logn) method to find any nth element of a linear recurrence with t terms. Specifically,
given a companion matrix C ∈Rn×n with characteristic polynomial p(Y), the transformations of multiplication by
C in Rn is isomorphic to multiplication by Y in R[Y]/(p(Y)). Therefore computing Ck can be reduced to comput-
ing Y k (mod p(Y)).

We can generalize this approach to our recurrence, the only change being that the elements of our companion
matrix T are polynomials - specifically, they are the gi , j (X) of (10) (which now don’t depend on i , so we will denote
them g j (X)). Then we can define the characteristic polynomial p(X ,Y) = Y t+1 −∑t

j=0 g j (X)Y t− j of T. The bot-
tlenecks of Algorithm 1 and Algorithm 2 lie in the pre-computations and multiplications of the ranged transition

matrices (see Lemmas 4.4 and 6.5), so we focus our attention on them. In this case, we need to examine T2b
for

b ∈ [0, log2 N]. As noted, the following formulations of jumping the recurrence by i rows are equivalent because of
the isomorphism between

(
T,F[X]t+1

)
and

(
Y ,F[X][Y]/(p(X ,Y))

)
: fk+i (X)

...
fk+i+t (X)

= Ti

 fk (X)
...

fk+t (X)


fk+i (X)+·· ·+ fk+i+t (X)Y t = Y i (fk (X)+·· ·+ fk+t (X)Y t) (mod p(X ,Y)) (30)

For the preprocessing step, we will calculate polynomials hi (X ,Y) : i = 2b such that degY (gi) ≤ t and hi (X ,Y) = Y i

(mod p(X ,Y)); these play the role of Ti . Note that reducing a polynomial’s Y -degree (mod p(X ,Y)) does not
increase its overall degree:

Lemma 10.4. Let q(X ,Y),r (X ,Y) ∈ F[X ,Y] such that q(X ,Y) ≡ r (X ,Y) (mod p(X ,Y)), deg(q) ≤ d, and degY (r) <
deg(p) = t +1. Then deg(r) ≤ d.

Proof. Consider the following process of computing r (X ,Y) starting from q(X ,Y); at every iteration, we will find
an equivalent polynomial (mod p(X ,Y)) but of lower Y -degree. If the polynomial has Y -degree at most t , we are
done and it must be r (X ,Y). Otherwise, replace its term of highest Y -degree by substituting

Y n = Y n−t−1Y t+1 = Y n−t−1
t∑

j=0
g j (X)Y t− j ,

which does not change its value (mod p(X ,Y)). It also cannot raise the polynomial’s degree because of the degree
bound deg(g j (X)) ≤ j +1.

28

In particular, deg(hi (X ,Y)) ≤ i . Given hi (X ,Y), we can compute h2i (X ,Y) by squaring hi (X ,Y) and reducing
(mod p(X ,Y)). Note that degX (hi) ≤ i and degY (hi) ≤ t . Treating hi as a polynomial in Y , squaring it takes Õ(t)
operations over its coefficients, which are elements of F[X] [12]. This in turn takes Õ(i) operations over F. Fur-
thermore, computing the polynomial remainder of h2i (X ,Y) by p(X ,Y) has the same complexity [13]. Thus each
hi (X ,Y) takes Õ(t i) operations to compute, and calculating h1, . . . ,hN through repeated squaring takes Õ(t N) op-
erations in total.

Now suppose we are given the pre-computations and are performing a matrix multiplication. For concreteness,
we will examine the top level of the recurrence for AT b. As noted in Lemma 4.4, the bottleneck was performing
a matrix-vector multiplication by T[0:N /2], which was done in Õ(t 2N) operations. In this constant-transition case,
the multiplication can be performed via (30), where we can replace Y i with the pre-computed hi (X ,Y). This is
again a multivariate polynomial multiplication and reduction, where the degree in X is O(N) and the degree in Y
is O(t). Thus only Õ(t N) operations are required to perform the ranged-transition multiplication. Replacing this
cost in the runtime analysis of Lemma 4.4 implies that the whole algorithm only needs Õ(t N) operations.

The same analysis applies for computing Ab by modifying Lemma 6.5. Finally, we incur the standard Krylov
efficiency cost in the case of matrix recurrences. Thus, we have shown that

Theorem 10.5. For any nice recurrence as in (10) where gi , j (X) are independent of i , with Õ(t N) pre-processing op-
erations, any AT b and Ab can be computed with Õ(t N) operations over F. For an R-matrix recurrence (5) that is nice
and R is (α,β)-Krylov efficient, pre-processing and computation need additional Õ(tαN) and Õ(tβN) operations
respectively.

10.4 Bernoulli Polynomials

Bernoulli polynomials appear in various topics of mathematics including the Euler-Maclaurin formulae relating
sums to integrals, and formulations of the Riemann zeta function [8]. In this section we will demonstrate how our
techniques are flexible enough to calculate quantities such as the Bernoulli numbers, even though they do not
ostensibly fall into the framework of bounded-width linear recurrences.

Bernoulli polynomials are traditionally defined by the recursive formula

Bi (X) = X i −
i−1∑
k=0

(
i

k

)
Bk (X)

i −k +1

with B0(X) = 1 [6]. This recurrence seemingly cannot be captured by our model of recurrences, since each poly-
nomial depends on every previous polynomial. However, with some additional work, a recurrence with bounded
recurrence width can also capture this larger recurrence, thereby facilitating superfast matrix-vector multiplication
involving B .

We start out by computing Bi (0) for each i . For notational convenience, we may drop the 0 and use Bi to denote
Bi (0). In particular

Bi =
i∑

k=0
(−1)k k !

k +1

{
i

k

}
where

{i
k

}
denotes the Stirling numbers of the second kind [6]. To compute Bi for 0 ≤ i ≤ N , we define the Stirling

matrix W such that W[i , j] = {i
j

}
and a vector a diagonal matrix D such that D[i , i] = i !, and a vector x such that

x[k] = (−1)k k !
k+1 ; the vector b = Wx will contain Bi (0) as b[i].

Lemma 10.6. If W[i , j] = {i
j

}
, we can multiply Wx or WT x for any vector x with O(N log2 N) operations.

Proof. Note that the Stirling numbers satisfy the recurrence [6]{
i +1

k

}
= k

{
i

k

}
+

{
i

k −1

}
.

If we let fi = W[i , :]T , the recurrence gives us that fi+1 = (D+S)fi . Note that by Theorem 8.1, (D+S) is (1,1)-Krylov
efficient. Theorems 6.8 and 4.5 complete the proof.

29

Corollary 10.7. We can compute Bi (0) for all i with O(N log2 N) operations.

We note that the Bi (0) are actually the Bernoulli numbers, and our algorithm facilitates the computation of the
Bernoulli numbers in the same runtime as recent state-of-the-art ad hoc approaches [25]. (See Section 10.6 for
more.)

We now focus on a matrix Z such that Z[i , j] = Bi (α j) for α0, . . . ,αN−1 ∈ F. Note that a superfast multiplication
algorithm for Z immediately implies one for B since Z = BVT

α , where Vα is the Vandermonde matrix defined by
evaluation points α0, . . . ,αN−1. We take advantage of the following identity relating Bi (X) to Bi :

Bi+1(X) = Bi+1 +
i∑

k=0

i +1

k +1

{
i

k

}
(X)k+1

where (X)k+1 = X (X −1) · · · (X −k) denotes the falling factorial [6].

Lemma 10.8. Suppose a matrix F is defined such that fi (X) =∑N−1
j=0 F[i , j]X j = (X)i . Then for any vector x, we can

multiply Fx and FT x in O(N log2 N).

Proof. By definition fi+1(X) = (X − i) fi (X), and hence, Theorems 6.8 and 4.5 imply that we can multiply F and FT

by vectors in O(N log2 N).

Theorem 10.9. For any vector b, we can compute Zb or ZT b with O(N log2 N) operations.

Proof. Suppose we define Ci+1, j = i+1
j+1

{i
j

}
. Note that C is just the Stirling matrix W multiplied by two diagonal

matrices, implying it supports O(N log2 N) vector multiplication. Furthermore, as in our previous lemma, define F
to be a matrix corresponding to the falling factorials. Then (CVαFT)[i , j] = Bi (α j)−Bi . So if we define a matrix M
such that M[i , j] = Bi , Z = CVαFT +M. Thus multiplying by Z or ZT reduces to multiplying by these components,
which by Lemmas 10.6 and 10.8 can be done in O(N log2 N) operations.

As discussed previously, this theorem immediately implies that we can compute matrix-vector multiplications
involving B in O(N log2 N) operations as well. We note that the numerical errors that may arise throughout these
computations come from rounding and not having enough bits to represent the data; there are no catastrophic
cancellation errors. As such, we only need to analyze the bit complexity of the algorithm to understand its numer-
ical properties (which we do in Section 10.6).

10.5 Efficient Jordan Decomposition

Every linear operator admits a Jordan normal form, which in some senses is the smallest and most uniform rep-
resentation of the operator under any basis. Knowing the Jordan decomposition of a matrix permits many useful
applications. For example, being able to quickly describe and manipulate the change of basis matrix, which is a
set of generalized eigenvectors, subsumes calculating and operating on the eigenvectors of the matrix.

Another use of the Jordan decomposition is being able to understand the evaluation of any analytic function
on the original matrix. We highlight this application because of its connection to Krylov efficiency in Section 8,
which can be solved by evaluating the matrix at a certain polynomial function. Computing matrix functions has
widespread uses, and there is a significant body of research on the design and analysis of algorithms for various
matrix functions, including the logarithm, matrix sign, pth root, sine and cosine [26]. Perhaps the most prominent
example of a matrix function is the matrix exponential, which is tied to the theory of differential equations - sys-
tems are well-approximated around equilibria by a linearization x′(t) = Mx(t), which is solved by the exponential
x(t) = e tMx(0) [24]. We note that much work has been done on computing the matrix exponential in particular
without going through the Jordan decomposition, since it is generally hard to compute [41].

We will show how our techniques facilitate fast computation and succinct description of the Jordan decompo-
sition for certain classes of matrices, and recapitulate how it can be used to easily compute matrix functions.

Consider a matrix M with a Jordan decomposition M = AJA−1. We say that M is (α,β)-Jordan efficient if A and
A−1 admit super-fast matrix-vector multiplication in Õ(βN) operations with Õ(αN) pre-processing steps.

Such matrices satisfy the property that their evaluation at any analytic function f also admits super-fast matrix-
vector multiplication.

30

Lemma 10.10 ([26]). Let J be a Jordan block with diagonal λ and f (z) be a function that is analytic at λ. Then

f (J) =


f (λ) f ′(λ) · · · f (n−1)(λ)

(n−1)!

0 f (λ) · · · f (n−2)(λ)
(n−2)!

...
...

. . .
...

0 0 · · · f (λ)


Proof. The proof follows from considering the Taylor series expansion f (z) = ∑ f (i)(λ)

i ! (z −λ)i and plugging in J =
λI+ST .

Lemma 10.11. Let M be (α,β)-Jordan efficient and f (z) be a function that is analytic at the eigenvalues of M. Then
f (M) admits super-fast matrix multiplication in Õ(βN) operations, with Õ(αN) pre-processing.

Proof. We can write a matrix-vector product as

f (M)b = f (AJA−1)b = A f (J)A−1b

By Lemma 10.10, assuming access to the multi-point Hermite-type evaluations of f at the eigenvalues of J, the
product f (J)b is a series of Toeplitz multiplications which can be computed in time O(N log N). Thus this product
is bottlenecked by the time it takes to multiply by A and A−1, and the result follows.

Here are some cases of Jordan-efficient matrices:

1. Suppose that M is a Jacobi matrix. Then it is diagonalizable with M = ADA−1, and A is an orthogonal poly-
nomial matrix. In this case, multiplication by A is our standard result and multiplication by A−1 can be done
using some properties of orthogonal polynomials, described in section 10.2.

2. Suppose that M is triangular ∆-banded, and M’s minimal polynomial equals its characteristic polynomial.
In this case, it turns out that the change of basis matrix can be expressed as AVT P, where A is a ∆-width
recurrence, V is a confluent Vandermonde matrix, and P is a permutation matrix, and furthermore AVT

is triangular. We can show how to describe A with Õ(∆ωN) operations, as well as perform matrix-vector
multiplication by A and A−1 in Õ(∆2N) operations. The full proof is detailed below.

3. When M is triangular ∆-banded and diagonal, we can also compute and multiply by A efficiently using sim-
ilar techniques to the above case.

Now consider a triangular ∆-banded N ×N matrix M whose minimal polynomial has full degree. Throughout
this section, we assume M is upper triangular. We will prove that M is (∆ωR ,∆2)-Jordan efficient in this case.

For such a matrix M, we will use cM(X) to denote the minimal and characteristic polynomial of M. Define F to
be the transpose of the companion matrix of cM(X).

10.5.1 Recurrence of A

M is similar to FM where FM
T is the Frobenius companion matrix for cM(X). In particular, suppose cM(X) = X N −

cN−1X N−1 · · ·− c0, then FM will be 
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
c0 c1 c2 . . . cN−1


This matrix FM

T is simply the Frobenius normal form, i.e., the canonical rational form, of MT .
For a matrix A, we define ai (X) as the polynomial corresponding to the i th row of A, i.e., ai (X) =∑N

j=0 A[i , j]X j .

31

Lemma 10.12. For some matrix A, MA = AFM if and only if (M−X I)

 a0(X)
...

aN−1(X)

= 0 mod cM(X).

Proof. Multiplying a vector by FM in R is isomorphic to multiplying the corresponding polynomial by X in R[X]/(cM(X)).

This implies that M

 a0(X)
...

aN−1(X)

= X

 a0(X)
...

aN−1(X)

 (mod cM(X)).

Corollary 10.13. There exists a ∆−1 width matrix A such that MA = AFM. More specifically, the rows of A satisfy

(X −M[i , i])ai (X) =
min(∆,N−i)∑

j=1
M[i , i + j]ai+ j (X)+di cM(X) (31)

where di ∈ F.

Proof. Note that the matrix M we are interested in is an upper-triangular, ∆-banded matrix. Our previous lemma

implies that that MA = AFM if and only if (M−X I)

 a0(X)
...

aN−1(X)

= 0 (mod cM(X)).

We remove the modulus and treat the ai (X) as polynomials over F[X] of degree less than N . The above condi-
tion becomes the system of equations 31. Since the left side has degree N , the di must have degree 0 so they are
scalars. Thus if a family of polynomials is defined to satisfy the recurrence above, the associated∆−1 width matrix
A must satisfy MA = AFM.

We say that a recurrence of form (31) has size N if the total length of the recurrence has length N and c(X) has
degree N , so that all polynomials are bounded by degree N−1. We call the scalars M[·, ·] the recurrence coefficients,
and the di the error coefficients.

From now on, our use of A will denote such a ∆−1 width matrix. Note that independent of the di coefficients,
the following divisibility lemma holds.

Lemma 10.14.
∏i−1

j=0(X −M[j , j])|ai (X) for 0 ≤ i ≤ N −1.

Proof. Proof by induction. As a base case, this is true for aN−1(X) by equation (31) since
∏N−1

j=0 (x−M[j , j]) = cM(X).
And (31) gives us the inductive step.

10.5.2 Conditions on the Error Coefficients

We showed in Section 10.5.1 that the equation MA = AF is equivalent to a recurrence (31). In order to complete the
task of finding A satisfying M = AFA−1, we must find scalars di in the recurrence that lead to an invertible matrix A.
The goal of this subsection is in proving a strong sufficiency condition on such sequences di .

We will first show some equivalent conditions to A being invertible.

Definition 10.15. Given a set of points p0, . . . , pN−1, let ni =
i−1∑
j=0

1(p j = pi) be the number of preceding points

identical to pi . Then the confluent Vandermonde matrix, denoted Vp0,...,pN−1 , is defined such that

V[i , j] =
{

0, j < ni
j !

(j−ni)!(ni)! pi
j−ni , j ≥ ni

for 0 ≤ i , j ≤ N −1. 8

8Some sources define the confluent Vandermonde matrix with the factor of ni ! in the denominator [39], and others do not. It makes no real
difference, but is slightly more convenient for us to use the former notation.

32

Note that for any vector y, Vp0,...,pN−1 y is equivalent to evaluating the polynomial v(X) =
N−1∑
i=0

y[i]X i at v (ni)(pi)

for each i . We define VM to be the confluent Vandermonde matrix VM[0,0],...,M[N−1,N−1].

Lemma 10.16. The following are true for A defined by recurrence (31), for any di .

(a) AVT
M is upper triangular.

(b) a
(n j)
i (M[j , j]) = 0 for all i and j < i .

(c)
∏

j<i (X −M[j , j]) |ai (X) for all i .

Proof. We show the equivalence of the conditions. This is sufficient since (c) is true by Lemma 10.14.

(a) ⇐⇒ (b) As noted above, AVT
M[i , j] can be understood as a Hermetian evaluations (evaluation a polynomial

and its derivatives) and is equal to a
(n j)
i (M[j , j]). The equivalence follows since upper triangularity the same

as saying AVT
M[i , j] = 0 for all j < i .

(b) ⇐⇒ (c) Fix an i . For every λ, let nλ be its multiplicity in
∏

j<i (X −M[j , j]). Note that condition (c) is equivalent
to saying (X −λ)nλ |ai (X) for all λ. For a fixed λ, the divisibility condition (X −λ)nλ |ai (X) is equivalent to
a(k)

i (λ) = 0 for k < nλ. This can be seen, for example, by considering the Taylor expansion of ai around λ.
Finally, the union of these equations over all λ is exactly (b), completing the equivalence.

The equivalence of the following conditions follows easily from the same reasoning.

Corollary 10.17. The following are equivalent for A defined by recurrence (31).

(a) A is invertible.

(b) AVT
M is invertible.

(c) a(ni)
i (M[i , i])! = 0.

(d)
∏

j≤i (X −M[j , j]) 6 |ai (X)

We use Corollary 10.17 and in particular (d) to find conditions when A is invertible. For convenience, define
pi (X) =∏

j<i M[j , j].
Consider a fixed i . We will show that if di+1, . . . ,dN−1 are fixed such that (d) is satisfied for all a[i+1:N](X), then

we can choose di such that (d) is satisfied for ai (X) as well.

Case 1: There does not exist j > i such that M[j , j] = M[i , i].

By the recurrence,

ai (X) =
∑

j>i M[i , j]a j (X)

X −M[i , i]
+di

pN (X)

X −M[i , i]

Note that the first term on the RHS is a polynomial and also is a multiple of pi (X) by inductively invoking
Lemma 10.14. Note that the second term is a multiple of pi (X) but not pi+1(X) by the assumption for this
case. Thus there exists some di such that

∏
j≤i (X −M[j , j]) 6 |ai (X) holds - in fact, there is only one di such

that it doesn’t hold.

Case 2: There exists j > i such that M[j , j] = M[i , i]. Choose j to be the largest such index.

Claim 1. Fix a j and follow the recurrence (1) without adding multiples of the modulus - i.e. let d[i : j] = 0. Let
this family of polynomials be a′

i (X). Then pi+1(X)|ai (X) if and only if pi+1(X)|a′
i (X).

33

Proof. ai (X) and a′
i (X) differ only through the terms ci pN (X), · · · ,c j−1pN (X) added while following (1) with

the modulus. All of these terms contribute a multiple of pi+1(X) to row i so ai (X) ≡ a′
i (X) (mod pi+1(X)).

Claim 2. pi+1(X)|a′
i (X) if and only if p j+1(X)|a j (X).

Proof. The recurrence without the mod can be written as the product of ∆×∆ transition matrices, and in
particular we can express a′

i (X) via the equation

a′
i (X)

pi (X)
= hi , j (X)

a j

p j
+hi , j+1(X −M[j , j])

a j+1

p j+1
+·· ·+hi , j+∆(X −M[j , j]) · · · (X −M[j +∆−1, j +∆−1])

a j+∆
p j+∆

Multiplying through again to isolate a′
i and taking this mod pi+1(X), we see that only the first term affects

whether pi+1(X)|a′
i (X).

Thus the claim is equivalent to saying that hi , j (X) is not a multiple of (X −M[i , i]). If it was, then note that
a′

i (X) will always be a multiple of pi+1(X) no matter what a j (X) is. Then ai (X) will be a multiple of pi+1(X)
no matter what ai+1, · · · , aN−1 are, and there is no family of polynomials satisfying (d) of Corollary 10.17. This
is a contradiction since there is some A satisfying recurrence (31) that is invertible - since there is a change
of basis matrix A such that M = AFA−1, and by Corollary 10.13 it satisfies (31).

The results above thus imply the following result.

Theorem 10.18. Let A be a matrix satisfying (31).

• AVT
M is upper triangular for any sequences di .

• We can pick dN−1, . . . ,d0 in order, such that each di chosen to satisfy the local condition a(ni)
i (M [i , i])! = 0.

Then the matrix AVT
M will be invertible. Furthermore, if there exists j > i such that M [i , i] = M [j , j] then di

can be anything, in particular 0.

10.5.3 Finding the Error Coefficients and Inverting AVM
T

The main goal of this section is to prove a structure result on AVT
M, that will easily allow us to

• Given a recurrence with unspecified error coefficients, pick the di such that AVT
M is invertible.

• Given a fully specified recurrence such that AVT
M is invertible, multiply (AVT

M)−1b fast.

Suppose we have fixed error coefficients d[0:N] and consider matrix A corresponding to the polynomials gener-
ated by a recurrence of the form (31)

(X −λi)ai (X) =
min(∆,N−i)∑

j=1
ci , j ai+ j (X)+di pλ[0:N] (X) (32)

(We will use the shorthand notation pα,β,...(X) = (X −α)(X −β) · · · .)
By triangularity, we can partition the matrix as follows

AVT
λ[0:N]

=
[

TL B
0 TR

]
.

The core result is that the two triangular sub-blocks have the same structure as itself.

34

Lemma 10.19. Given an N -size recurrence (32) that defines a matrix A, there exist N /2-size recurrences of the form
(32) producing matrices AL ,AR such that

TL = ALVT
λ[0:N /2]

and TR = AR VT
λ[N /2:N]

E

for a matrix E that is a direct sum of upper-triangular Toeplitz matrices and invertible.
Furthermore, the coefficients of these recurrences can be found with O(∆2N log3 N) operations.

Proof. Define cL(X) =∏N /2−1
i=0 (X −λi) and cR (X) =∏N−1

i=N /2(X −λi), corresponding to the left and right halves of the
diagonal elements.

Structure of TR

TR consists of the higher order (derivative) evaluations of a[N /2:N]. However, we would like to express it instead
as low order evaluations (namely, corresponding to Vλ[N /2:N]) of low-degree polynomials. Fix a root λ of pλ[N /2:N]

and suppose that TR “contains” the evaluations a(j)
i (λ), . . . , a(k)

i for k ≥ j ≥ 0. Equivalently, j is the multiplicity of λ
in λ[0:N /2] and k − j is the multiplicity in λ[N /2:N].

Let qi (X) = ai (X)/cL(X) and consider the Taylor expansions of ai (X), qi (X),cL(X) around λ

ai (X) =
∞∑
`= j

α(`)
i (λ)

`!
(X −λ)` qi (X) =

∞∑
`=0

q (`)
i (λ)

`!
(X −λ)` cL(X) =

∞∑
`= j

c(`)
L (λ)

`!
(X −λ)`

Since polynomial multiplication corresponds to a convolution of coefficients,
a(j)

i (λ)/ j !
...

a(k)
i (λ)/k !

=


q (0)

i (λ)/0!
...

q (k− j)
i (λ)/(k − j)!

∗


c(j)

L (λ)/ j !
...

c(k)
L (λ)/k !


where ∗ denotes the convolution. Consider the matrix AR where row i consists of the coefficients of qi = ai /cL .
If S is the indices of the subsequence of λ[N /2:N] corresponding to λ, then the above equation can be equivalently
written

(TR)i ,S = (AR VT
λ[N /2:N]

)i ,S


c(j)

L (λ)/ j ! · · · c(k)
L (λ)/k !

...
. . .

...

0 · · · c(j)
L (λ)/ j !


There is an analogous upper-triangular Toeplitz matrix for each λ, so define E to be the N ×N matrix that is the
appropriate direct sum of these Toeplitz matrices, such that (TR)i = (AR VT

λ[N /2:N]
)i E holds. Note that the unique

entries of E correspond to the evaluation of cL at the second half of Vλ[0:N] which can be computed in O(N log2 N).
Also, E is upper-triangular with non-zero diagonal. Since the above equation holds for all i ∈ [N /2 : N], we can
factor

TR = (AR VT
λ[N /2:N]

)E

Finally, the polynomials that AR correspond to satisfy a recurrence

(X −λi)qi (X) =
min(∆,N−i)∑

j=1
ci , j qi+ j (X)+di pλ[N /2:N] (X)

which directly follows from dividing (32) by pλ[0:N /2] .
Structure of TL

TL corresponds to evaluations of a[0:N /2](X) and their derivatives at λ[0:N /2]. Note that we can subtract cL(X)
from any polynomial without changing these evaluations. So if we define the polynomials qi (X) : i ∈ [0 : N /2] to be
the unique polynomials of degree less than N /2 such that qi = ai (mod cL) and AL to be the corresponding matrix
of coefficients of qi , then TL = ALVT

λ[0:N /2]
.

35

It remains to show that the qi satisfy a recurrence of the form (32) and to specify its coefficients. Then AL will be
parameterized the same way as A, completing the self-similarity result that TL has the same structure as AVT

λ[0:N /2]

but of half the size.
Consider an i ∈ [0 : N /2]. Note that (32) implies that

(X −λi)ai (X) =∑
ci , j ai+ j (X) (mod pλ[0:N] (X))

(X −λi)ai (X) =∑
ci , j ai+ j (X) (mod pλ[0:N /2] (X)) (33)

(X −λi)qi (X) =∑
ci , j qi+ j (X) (mod pλ[0:N /2] (X))

so that we know there exists scalars d ′
i such that

(X −λi)qi (X) =
min(∆,N−i)∑

j=1
ci , j qi+ j (X)+d ′

i pλ[0:N /2] (X) (34)

and the goal is to find these scalars. Define bi (X) = (ai −qi)/pλ[0:N /2] which is a polynomial from the definition of
qi . Subtract the previous equation from (32) and divide out pλ[0:N /2] to obtain

(X −λi)bi (X) =
min(∆,N−i)∑

j=1
ci , j bi+ j (X)+ (di pλ[N /2:N] (X)−d ′

i)

Therefore d ′
i is the unique element of F that makes the RHS of the above equation divisible by (X−λi). This element

is just
∑

ci , j bi+ j (λi)+di pλ[N /2:N] (λi). Note that pλ[N /2:N] can be evaluated at all λ[0:N /2] in time O(N log2 N) time,
so that term can be treated separately. Then define d ′′

i := d ′
i −di pλ[N /2:N] (λi) which is equivalently defined as the

unique number making
∑min(∆,N−i)

j=1 ci , j bi+ j (X)−d ′′
i divisible by (X −λi). It suffices to find the d ′′

i .

Proposition 10.20. Suppose bN , . . . ,bN+∆ are polynomials of degree N and λi ,ci , j are some fixed scalars. For i =
N −1, . . . ,0, define bi to be unique polynomial such that

(X −λi)bi (X) =
min(∆,N−i)∑

j=1
ci , j bi+ j (X)−d ′′

i

holds for some d ′′
i (which is also unique). Then we can find all the d ′′

i in time O(∆2N log3 N).

Proof. If N = O(∆), we can explicit compute the bi and d ′′
i naively in time at most O(∆3). Otherwise we will find

the d ′′
i with a divide-and-conquer algorithm.

As previously noted, the value of d ′′
i depends only on the values of b[i+1:i+∆] evaluated at λi . Conversely, the

polynomial bi contributes to the result only through its evaluations at λ[i−∆:i−1]. In particular, b[N /2+∆:N+∆] can be
reduced (mod

∏
[N /2:N](X −λ j)) without affecting the d ′′

i . So the remainders of the starting conditions b[N :N+∆]

mod
∏

[N /2:N](X −λ j) suffice to recursively compute d ′′
[N /2:N]. Using these, we can use the ranged transition matrix

to compute b[N /2:N /2+∆]. Reducing these (mod
∏

[0:N /2](X −λ j)) and recursing gives d ′′
[0:N /2]. The base cases need

O(∆3·N /∆) operations which is dominated by the main recursion, which has runtime T (N) = 2T (N /2)+∆2N log2 N
resolving to O(∆2N log3 N) assuming that the ranged transition matrices for the jumps are pre-computed.

This auxiliary algorithm gives us the following result.

Proposition 10.21. Given the coefficients of the recurrence (32) and starting conditions a[N /2:N /2+∆], we can find the
coefficients of recurrence (34) in O(∆2N log3 N) operations.

Proof. First find b[N /2:N /2+∆] which reduces ai mod pλ[0:N /2] . Then run the above algorithm to find all d ′′
[0:N /2].

Finally, set d ′
i = d ′′

i +di pλ[N /2:N] (λi). The bottleneck is the auxilliary algorithm which requires O(∆2N log3 N) time.

36

Corollary 10.22. Given the coefficients of recurrence (34), we can find coefficients of (32) in O(∆2N log3 N) opera-
tions.

Proof. Same as above, but the last step is reversed. Given d ′
i , we compute di as di = (d ′

i −d ′′
i)/pλ[N /2:N] (λi). This is

well-defined if pλ[N /2:N] (λi) is non-zero. Otherwise, λi appears later in the sequence and we can just set di = 0 by
Theorem 10.18.

This completes the proof of the self-similarity structure of sub-blocks of AVT
λ[0:N /2]

.

Using Lemma 10.19, we can pick coefficients di for (32) that generate an invertible A, and also multiply a vector
by A−1.

Corollary 10.23. Given a size-N recurrence (32) with fixed recurrence coefficients and starting conditions, and un-
specified error coefficients di , we can pick the di such that the resulting matrix A is invertible in time O(∆2N log4 N).

Proof. If N =O(∆), then we can explicitly compute aN−1, . . . , a0 in order using the recurrence while picking dN−1, . . . ,d0

appropriately; the results of Section 10.5.2 ensure that this is possible. Otherwise, we use Lemma 10.19 to recurse.
Since AR satisfies a size-N /2 recurrence with known recurrence coefficients and starting conditions and un-

known error coefficients, we can recursively find d[N /2:N] such that AR and hence TR is invertible.
For the other half, we can jump the recurrence using d[N /2:N] to find a[N /2:N /2+∆] (time O(∆2N log2 N)). Now

AL satisfies a size-N /2 recurrence with known recurrence coefficients and unknown error coefficients, and we can
use [corollary inside the lemma] to find di such that AL is invertible.

Thus we have picked di such that TL ,TR are invertible, and by triangularity so is AVT
λ[0:N /2]

.

Reducing to the subproblems is O(∆2N log3 N) work by Lemma 10.19.

Corollary 10.24. Given a fully specified recurrence (32) such that AVT
λ[0:N /2]

is invertible, we can compute (AVT
λ[0:N /2]

)−1b

for any vector b in O(∆2N log4 N) operations.

Proof. Note that inversion of a triangular block matrix can be expressed using the Schur complement as[
A B
0 C

]−1

=
[

A−1 −A−1BC−1

0 D−1

]
So by Lemma 10.19, the desired product can be written as

(AVT
λ[0:N /2]

)−1b =
[

(ALVT
λ[0:N /2]

)−1 −(ALVT
λ[0:N /2]

)−1B(AR VT
λ[N /2:N]

E)−1

0 (AR VT
λ[N /2:N]

E)−1

]
b =

[
(ALVT

λ[0:N /2]
)−1

(
bL −BE−1(AR VT

λ[N /2:N]
)−1bR

)
E−1(AR VT

λ[N /2:N]
)−1bR

]

where bL = b[0:N /2],bR = b[N /2:N].
So (AVT

λ[0:N /2]
)−1b can be computed with three matrix-vector multiplications: by (AR VT

λ[N /2:N]
)−1, E−1, B, and

(ALVT
λ[0:N /2]

)−1, in order. Note that multiplying by E−1 is easy since it is a direct sum of upper-triangular Toeplitz

matrices. B is a submatrix of A which we can multiply in ∆2(N log3 N) operations. Finally, the first and last multi-
plications are identical subproblems of half the size.

Thus we have shown:

Theorem 10.25. Let M be an upper-triangular, ∆-banded matrix whose minimal polynomial equals its charac-
teristic polyomial. Then M is (∆ωR ,∆2) Jordan efficient. More precisely, there exists a Jordan decomposition M =
AJA−1 such that with O(∆ω

R
N log2 N +∆2N log4 N) pre-processing time, multiplication by A,A−1 can be computed in

O(∆2N log4 N) operations.

37

10.6 Bit Complexity

It turns out that it is fairly easy to analyze the bit-complexity of our algorithms. In particular, we note that all the ba-
sic operations in our algorithms reduce to operations on polynomials. In particular, consider a matrix with recur-
rence width of t over the set of integersZ. (We note that in most of the problems of computing sequences the input
is indeed overZ.) Note that our results on the efficiency of our algorithms are stated in terms of the number of oper-
ations ofZ. When dealing with the bit complexity of our algorithms, we have to worry about the size of the integers.
It can be verified that given the input recurrence (G,F), all the integers are of size (max(‖F‖∞,‖G‖∞)O(N). Since two
n-bits integers are can multiplied with O(n logn loglogn)-bit operations, this implies to obtain the bit complexity
of our algorithms, we just need to multiply our bounds on the number of operations by Õ(N ·max(‖F‖∞,‖G‖∞)).

In particular, the above implies that for computing the Bernoulli numbers can be computed with Õ(N 2)-bit
operations. This is within Õ(1) factors of the best known algorithm developed specifically for this problem in [25].

10.7 Preliminary Experimental Results

We coded our basic algorithm in C++ and compared with a naive brute force algorithm. We would like to stress
that in this section, we only present preliminary experimental results with the goal of showing that in principle the
constants in our algorithms’ runtimes are reasonable (at least to the extent that preliminary implementations of
our algorithms beat the naive brute force algorithm).

We compare 3 facets of the algorithms: the preprocessing step, computing Ab, and computing AT b. We con-
sider matrices A whose rows are the coefficients of polynomials that follow our basic recurrence:

fi+1(X) =
t∑

i=0
gi , j (X) fi (X)

where deg(gi , j = j ,deg(fi) = i . We generate the coefficients of fi (X) for i ≤ t , the coefficients of gi , j (X) for i > t ,
and the elements of b pseudo-randomly in the range [-1, 1] using the C++ rand() function. The input to the
algorithms are the fi (X) for i ≤ t , gi , j (X) for i > t , and b.

The brute force’s preprocessing step is to explicitly compute the
(N+1

2

)
polynomial coefficients of fi (X) for all i ,

thereby computing the non-zero element of A. The vector multiplication is the straightforward O(N 2) algorithm.
Our approach’s preprocessing step uses the naive cubic matrix multiplication algorithm. And it uses the open-
source library FFTW to compute FFTs.

The experiments below were run on a 2-year old laptop with an i7-4500U processor (up to 3 GHz, 4 MB cache)
and 8 GB of RAM. All of the numbers below express times in seconds.

Preprocessing Ab AT b
Brute Force Our Approach Brute Force Our Approach Brute Force Our Approach

N = 100, t = 1 0.02 0.01 0.0004 0.003 0.0006 0.003
N = 100, t = 4 0.04 0.07 0.0005 0.009 0.0005 0.009

N = 1000, t = 1 1.3 0.13 0.05 0.04 0.06 0.04
N = 1000, t = 4 2.8 1.2 0.04 0.15 0.05 0.15

N = 10000, t = 1 127 1.7 4.8 0.4 5.6 0.5
N = 10000, t = 4 322.8 18.2 4.2 1.8 5.3 1.8

At N = 100, the brute force clearly outclasses ours, but notably our preprocessing isn’t much slower than what
brute force requires. Our approach starts to perform better at N = 1000 where the multiplication algorithms are
similar in runtime to the brute force multiplication algorithms and are significantly faster than the brute force
preprocessing. And at N = 10000, our approach universally outperforms the brute force approach.

11 Succinct Representations and Multivariate Polynomials

The goal of this section is two fold. The first goal is to present matrices that have low recurrence width in our sense
but were not captured by previous notions of widths of structured matrices. The second goal is to show that if one
can substantially improve upon the efficiency of our algorithms with respect to sharper notions of input size will

38

leads to improvements in the state-of-the-art algorithms for multipoint evaluation of multivariate polynomials.
Out initial interests in these matrices arose from their connections of coding theory, which we will also highlight
as we deal with the corresponding matrices.

11.1 Multipoint evaluation of multivariate polynomials

We consider the following problem.

Definition 11.1. Given an m-variate polynomial f (X1, . . . , Xm) such that each variable has degree at most d−1 and
N = d m distinct points x(i) = (x(i)1, . . . , x(i)m) for 1 ≤ i ≤ N , output the vector (f (x(i)))N

i=1.

The best runtime for an algorithm that solves the above problem (over an arbitrary field) takes time O(dω2(m−1)/2+1),
where an n×n matrix can be multiplied with an n×n2 matrix with O(nω2) operations [31,36]. (For the sake of com-
pleteness, we state these algorithms in Appendix B.) We remark on three points. First in the multipoint evaluation
problem we do not assume any structures on the N points: e.g. if the points form an m-dimensional grid, then
the problem can be solved in Õ(N) many operations using standard FFT techniques. Second, if we are fine with
solving the problem over finite fields, then the breakthrough result of Kedlaya and Umans [31] solves this problem
with N 1+o(1) operations (but for arbitrary N evaluation points). In other words, the problem is not fully solved only
if we do not have any structure in the evaluation points and we want our algorithms to work over arbitrary fields (or
even R or C). Finally, from a coding theory perspective, this problem (over finite fields) corresponds to encoding of
arbitrary puncturings of Reed-Muller codes.

Next, we aim to show that if we can improve our algorithms in certain settings then it would imply a fast mul-
tipoint evaluation of multivariate polynomials. In particular, we consider the following two more succinct ways
of representing the input. We start with the more succinct way of representing the input. For a given polynomial
f (X) ∈ F[X], let ‖ f ‖0 denote the size of the support of f . Finally, consider a matrix A defined by a recurrence in (24).
Define

‖A‖0 =
N−1∑
i=0

t∑
j=0

‖gi , j ‖0 + r N ,

i.e. the size of sum of the sizes of supports of gi , j ’s plus the size of the rank r -representation of the error matrix
in (24).

The second less succinct representation where we have an extra bound that ‖gi , j ‖ ≤ D (for potentially D < t)
for the recurrence in (24). Then note that the corresponding matrix A can be represented with size Θ(tDN + r N)
elements. In this case, we will explore if one can improve upon the dependence on r in Theorem 7.1.

We would like to point out that in all of the above the way we argue that the error matrix E has rank at most r
is by showing it has at most r non-zero columns. Thus, for our reductions r N is also an upper bound on ‖E‖0, so
there is no hope of getting improved results in terms of the sparsity of the error matrix instead of its rank without
improving upon the state-of-the-art results in multipoint evaluation of multivariate polynomials.

11.1.1 Multipoint evaluation of bivariate polynomials

We begin with the bivariate case (i.e. m = 2) since that is enough to connect improvements over our results to
improving the state-of-the-art results in multipoint evaluation of bivariate polynomials.

For notational simplicity we assume that the polynomial is f (X ,Y) = ∑d−1
i=0

∑d−1
j=0 fi , j X i Y j and the evaluation

points are (x1, y1), . . . , (xN , yN). Now consider the N ×N matrix

A(2) =


1 x1 · · · xd−1

1 y1 y1x1 · · · y1xd−1
1 y2

1 y2
1 x1 · · · y2

1 xd−1
1 · · · yd−1

1 yd−1
1 x1 · · · yd−1

1 xd−1
1

1 x2 · · · xd−1
2 y2 y2x2 · · · y2xd−1

2 y2
2 y2

2 x2 · · · y2
2 xd−1

2 · · · yd−1
2 yd−1

2 x2 · · · yd−1
2 xd−1

2
...

...
1 xN · · · xd−1

N yN yN xN · · · yN xd−1
N y2

N y2
N xN · · · y2

N xd−1
N · · · yd−1

N yd−1
N xN · · · yd−1

N xd−1
N

 .

Note that to solve the multipoint evaluation problem we just need to solve A(2) · f, where f contains the coef-
ficients of f (X ,Y). Let DX and DY denote the diagonal matrices with x = (x1, . . . , xN) and y = (y1, . . . , yN) on their

39

diagonals respectively. Finally, define Z = ST . Now consider the matrix

B(2) = D−1
X A(2) −A(2)Z.

It can be checked that B(2) has rank at most d . Indeed note that

B(2) =



1
x1

0 · · · 0 y1
x1

−xd−1
1 0 · · · 0 y1

(
y1
x1

−xd−1
1

)
0 · · · 0 · · · yd−2

1

(
y1
x1

−xd−1
1

)
0 · · · 0

1
x2

0 · · · 0 y2
x2

−xd−1
2 0 · · · 0 y2

(
y2
x2

−xd−1
2

)
0 · · · 0 · · · yd−2

2

(
y2
x2

−xd−1
2

)
0 · · · 0

...
...

1
xN

0 · · · 0 yN
xN

−xd−1
N 0 · · · 0 yN

(
yN
xN

−xd−1
N

)
0 · · · 0 · · · yd−2

N

(
yN
xN

−xd−1
N

)
0 · · · 0

 .

The above was already noticed in [37]. The above is not quite enough to argue what we want so we make the
following stronger observation. Consider

C(2) = D−1
Y B(2) −B(2)Zd = D−1

Y D−1
X A(2) −D−1

Y A(2)Z−D−1
X A(2)Zd −A(2)Zd+1. (35)

We now claim that the rank of C(2) is at most two. Indeed, note that

C(2) =



1
x1 y1

0 · · · 0
−xd−1

1
y1

0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

1
x2 y2

0 · · · 0
−xd−1

2
y2

0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
...

...
1

xN yN
0 · · · 0

−xd−1
N

yN
0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

 .

Note that we have t = 1, D = d +1 and r = 2. Theorem 7.1 implies that we can solve the above problem with
Õ(d 3) operations. The algorithm of [36] uses Õ(dω2/2+1) many operations. However, note that

‖A(2)‖0 =Θ(d 2).

Thus, we have the following result:

Theorem 11.2. If one can solve Ab for any b with Õ
(
(‖A‖0)ω2/4+1/2−ε) operations, then one will have an multipoint

evaluation of bivariate polynomials with Õ(dω2/2+1−2ε) operations, which would improve upon the currently best-
known algorithm for the latter.

11.1.2 Multipoint evaluation of multivariate polynomials

We now consider the general multivariate polynomial case. Note that we can represent the multipoint evaluation
of the m-variate polynomial f (X1, . . . , Xm) as A(m)f, where f is the vector of coefficients and A(m) is presented as
follows.

Each of the d m columns are indexed by tuples i ∈ Zm
d and the columns are sorted in lexicographic increasing

order of the indices. Note that this implies that the i = (i1, . . . , im) ∈Zm
d column is represented by

A(m)[:, i] =



∏m
j=1 x(1)

i j

j∏m
j=1 x(2)

i j

j
...∏m

j=1 x(N)
i j

j

 ,

where the evaluation points are given by x(1), . . . ,x(N).

40

For notational simplicity, we will assume that m is even. (The arguments below can be easily modified for odd
m.) Define recursively for 0 ≤ j ≤ m/2:

B(j) = D−1
Xm− j

B(j+1) −B(j+1)Zd j
, (36)

where DXk is the diagonal matrix with (x(1)k , . . . , x(N)k) on its diagonal. Finally, for the base case we have

B(m
2 +1) = A(m).

It can be verified (e.g. by induction) that the recurrence in (36) can be expanded out to

B(0) = ∑
S⊆[m/2,m]

(−1)m/2+1−|S|
(∏

j∈S
D−1

X j

)
A(m)

(∏
j∈[m/2,m]\S

Zd m− j

)
. (37)

We will argue that

Lemma 11.3. B(0) has rank at most 2m/2 ·d m/2−1.

Note that the above lemma implies that the recurrence in (37) is a Z-dependent recurrence with t = 1, D =
d 1+m/2−1

d−1 and r = 2m/2d m/2−1. Note that in this case we have tDN+r N =Θ((2d)3m/2−1). Thus, we have the following
result:

Theorem 11.4. If for an Z-dependent recurrence we could improve the algorithm from Theorem 7.1 to run with
Õ(poly(t) ·DN + r N) operations for matrix vector multiplication, then we would be able to solve the general mul-
tipoint evaluation of multivariate polynomials in time Õ((2d)3m/2−1), which would be a polynomial improvement
over the current best algorithm (when d =ω(1)), where currently we still have ω2 > 3.

Note that the above shows that improving the dependence in r in Theorem 7.1 significantly (even to the extent
of having some dependence on Dr) will improve upon the current best-known algorithms (unless ω2 = 3).

11.1.3 Proof of Lemma 11.3

We now prove Lemma 11.3. We will argue that all but at most 2m/2d m/2−1 columns of B(0) are 0, which would prove
the result. Towards this end we will use the expression in (37).

For notational convenience for any index i ∈ Zm
d , we will use X i to denote the monomial

∏m
j=1 X

i j

j . Then note

that A(m)[:, i] is just the evaluation of the monomial X i on the points x(1), . . . ,x(N). Further, it can be checked (e.g.
by induction) that that exists polynomials Pi(X1, . . . , Xm) such that B(0)[:, i] is the evaluation of Pi(X1, . . . , Xm) on the
points x(1), . . . ,x(N).

To simplify subsequent expressions, we introduce few more notation. For any S ⊆ [m/2,m], define the matrix

MS =
(∏

j∈S
D−1

X j

)
A(m)

(∏
j∈[m/2,m]\S

Zd m− j

)
. (38)

We can again argue by induction that for every i ∈ Zm
d , we have that Ms [:, i] is the evaluation of a polynomial

Q i
S (X1, . . . , Xm) on the points x(1), . . . ,x(N). Note that this along with (37), implies that

Pi(X1, . . . , Xm) = ∑
S⊆[m/2,m]

(−1)m/2+1−|S|Q i
S (X1, . . . , Xm). (39)

Now we claim that

Claim 3. For every i ∈ Zm
d that has an index m/2 ≤ j∗ ≤ m such that i j∗ ≥ 2 and S ⊆ [m/2,m] \ { j∗}, the following

holds:
Q i

S (X1, . . . Xm) =Q i
S∪{ j∗}(X1, . . . , Xm).

41

We first argue why the claim above completes the proof. Fix any i ∈ Zm
d that has an index m/2 ≤ j∗ ≤ m such

that i j∗ ≥ 2. Indeed by pairing up all S ⊆ [m/2,m] \ { j∗} with S ∪ { j∗}, Claim 3 along with (39) implies that

Pi(X1, . . . , Xm) ≡ 0.

Note that this implies that B(0)[:, i] = 0 if there exists an index m/2 ≤ j∗ ≤ m such that i j∗ ≥ 2. Note that there are at
least d m −2m/2 ·d m/2−1 such indices, which implies that at most 2m/2 ·d m/2−1 non-zero columns in B(0), as desired.

Proof of Claim 3. For any subset T ⊆ [m], recall that eT is the characteristic vector of T in {0,1}m . Then note that
for any S ⊆ [m/2,m], we have

Q i
S (X1, . . . , Xm) = X (iªe[m/2,m]\S)−eS ,

where ª is subtraction over Zm
d (and − is the usual subtraction over Zm). Indeed the ªe[m/2,m]\S term corresponds

to the matrix
(∏

j∈[m/2,m]\S Zd m− j
)

and the −eS term corresponds to the matrix
(∏

j∈S D−1
X j

)
in (38).

Fix a i ∈Zm
d that has an index m/2 ≤ j∗ ≤ m such that i j∗ ≥ 2 and S ⊆ [m/2,m] \ { j∗}. Define S′ = S ∪ { j∗}. Then

we claim that
(iªe[m/2,m]\S)−eS = (iªe[m/2,m]\S′)−eS′ ,

which is enough to prove the claim. To prove the above, we will argue that

(iªe[m/2,m]\S) = (iªe[m/2,m]\S′)−e j∗ .

Note that the above is sufficient by definition of S′. Now note that e[m/2,m]\S = e[m/2,m]\S′ +e j∗ . In particular, this
implies that it is sufficient to prove

(iªe[m/2,m]\S′)ªe j∗ = (iªe[m/2,m]\S′)−e j∗ . (40)

By the assumption that i j∗ ≥ 2, we have that

(iªe[m/2,m]\S′) j∗ ≥ 1,

which implies that both ªe j∗ and −e j∗ have the same effect on (iªe[m/2,m]\S′), which proves (40), as desired.

11.2 Multipoint evaluation of multivariate polynomials and their derivatives

In this section, we present another example of a matrix with our general notion of recurrence that has been studied
in coding theory. We would like to stress that currently this section does not yield any conditional “lower bounds"
along the lines of Theorem 11.2 or 11.4.

We begin by setting up the notation for the derivative of a multivariate polynomial f (X1, . . . , Xm). In particular,
given an ı = (i1, . . . , im), we denote the ıth derivative of f as follows:

f (ı)(X1, . . . , Xm) = ∂i1

∂X1
· · · ∂

im

∂Xm
f ,

where ∂0

∂X f = f . If the underlying field F is a finite field, then the derivatives are defined as the Hasse derivatives.
We consider the following problem.

Definition 11.5. Given an m-variate polynomial f (X1, . . . , Xm) such that each variable has degree at most d −1, an
integer 0 ≤ r < d and n = d m distinct points a(i) = (a(i)1, . . . , a(i)m) for 1 ≤ i ≤ N , output the vector(

f (ı)(a(j))
)

j∈[n],ı∈Zm
r

.

42

The above correspond to (puncturing) of multivariate multiplicity codes, which have been studied recently in
coding theory [32–34]. These codes have excellent local and list decoding properties. We note that in definition
of derivative codes d and r are limits on the total degree and the total order of derivatives while in our case these
are bounds for individual variables. However, these changes the problem size by only a factor that just depends
on m (i.e. we have at most a factor m! more rows and columns). Since we think of m as constant, we ignore
this difference. For such codes in [32, 34] the order of the derivatives r is assumed to be a constant. However,
the derivative code used in [33], r is non-constant. We would like to mention that these matrices turn up in list
decoding of Reed-Solomon and related codes (this was also observed in [37]).9 In particular, for the Reed-Solomon
list decoder of Guruswami and Sudan [23], the algorithm needs A with m = 2 and r being a polynomial in n.

We note that the problem above is the same as A · f, where f is the vector of coefficients of f (X1, . . . , Xm) =∑
∈Zm

d
f X  , where as before X  is the monomial

∏m
`=1 X j`

j and the matrix A is defined as follows:

A(k,ı),  =
m∏
`=1

(
j`
i`

)
(a(k)`) j`−i` ,

for k ∈ [n],  = (j1, . . . , jm) ∈Zm
d and ı = (i1, . . . , im) ∈Zm

r . We note that the definition holds over all fields.

We use the convention that
(b

c

)= 0 if b < c.
The aim of the rest of the section is to show that the matrix A satisfies a recurrence that we can handle.
For notational simplicity, let us fix k ∈ [n] and we drop the dependence on k from the indices. In particular,

consider the (submatrix):

Aı ,  =
m∏
`=1

(
j`
i`

)
(a`) j`−i` .

Think of ı = (ı0, ı1), where ı0 = (i1, . . . , im′) and ı1 = (im′+1, . . . , im) for some 1 ≤ m′ < m to be determined. Now fix
an ı = (ı0, ı1) such that ı1 6= 0 and define

Sı = {` ∈ {m′+1, . . . ,m}|i` 6= 0}.

Consider the following sequence of relations:

Aı ,  =
(∏
`∈[m]\Sı

(
j`
i`

)
(a`) j`−i`

)
·
(∏
`∈Sı

((
j`−1

i`−1

)
+

(
j`−1

i`

))
a j`−i`
`

)
(41)

= ∑
T⊆Sı

m∏
`=1

(
j`− 1`∈Sı

i`− 1`∈T

)
a j`−i`
`

(42)

= ∑
T⊆Sı

(
m∏
`=1

a
1`∈Sı −1`∈T

`

)
·
(

m∏
`=1

(
j`− 1`∈Sı

i`− 1`∈T

)
a

j`−1`∈Sı −(i`−1`∈T)
`

)
= ∑

T⊆Sı

aeSı −eT · Aı−eT , −eSı
. (43)

In the above (41) follows from the following equality for integers b ≥ 0 and c ≥ 1,
(b

c

) = (b−1
c−1

)+ (b−1
c

)
while (42)

follows from the notation that 1P is the indicator value for the predicate P .
Consider the matrix E defined as follows:

E[(k, ı), :] = A[(k, ı), :]− ∑
T⊆Sı

aeSı −eT ·A[(k, ı −eT), :] ·S
∑
`∈Sı d m−`

. (44)

By (43), we have that for every ı = (ı0, ı1) such that ı1 6= 0

E [(k, ı), ] = 0.

In other words, the only non-zero rows of E are rows E[(k, ı), :] with ı1 = 0. Thus, we have argued that

9However in the list decoding applications A is not square and one is interested in obtaining a non-zero element f from its kernel: i.e. a
non-zero f such that Af = 0.

43

Lemma 11.6. E as defined in (44) has rank at most nr m′
.

Proof. This follows from the fact that there are n · r m′
many indices (k, ı) with ı1 = 0.

This in turn implies the following:

Lemma 11.7. The recurrence in (44) has t = r m−m′+1−1
r−1 , D = d m−m′+1−1

d−1 and rank nr m′
.

11.2.1 Instantiation of parameters

We now consider few instantiation of parameters to get a feel for Lemma 11.7.
We start with the case of n = 1: note that in this case we have r = d (since we want N = n · r m = d m). In this

case the choice of m′ that makes all the parameters roughly equal is m′ = m/2. In this case we get that (11.7) is an
(2d m/2,2d m/2,d m/2)-recurrence (i.e. t = 2d m/2, D = 2d m/2 and rank d m/2). However, this does not give anything
algorithmically interesting since the input size for such a recurrence is alreadyΩ(d m/2 ·d m/2 ·N+d m/2 ·N) =Ω(N 2).

Recall that a (T,D,R) recurrence has an input size of (T D +R)N . Thus, to decrease the input size of the recur-
rence in (44), we need to pick m′ such that 2(m −m′) = m′. This implies that we pick m′ = 2m/3 and thus we have
an (2d m/3,2d m/3,d 2m/3) recurrence for an overall input size of O(d 5m/6) =O(N 5/3).

References

[1] https://en.wikipedia.org/wiki/Approximation_theory#Chebyshev_approximation.

[2] https://en.wikipedia.org/wiki/Jacobi_polynomials#Differential_equation.

[3] https://en.wikipedia.org/wiki/Zernike_polynomials.

[4] http://wis.kuleuven.be/events/OPSFA/.

[5] http://www.chebfun.org.

[6] NIST Handbook of Mathematical Functions. Cambridge University Press, New York, NY, 2010, ch. 24. Print
companion to [16].

[7] AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[8] APOSTOL, T. M. Introduction to analytic number theory. Springer Science & Business Media, 2013.

[9] BELLA, T., EIDELMAN, Y., GOHBERG, I., AND OLSHEVSKY, V. Computations with quasiseparable polynomials
and matrices. Theoretical Computer Science 409, 2 (2008), 158 – 179. Symbolic-Numerical Computations.

[10] BINI, D., AND PAN, V. Y. Polynomial and Matrix Computations (Vol. 1): Fundamental Algorithms. Birkhauser
Verlag, Basel, Switzerland, Switzerland, 1994.

[11] BRENT, R. P., AND KUNG, H. T. Fast algorithms for manipulating formal power series. J. ACM 25, 4 (Oct. 1978),
581–595.

[12] CANTOR, D. G., AND KALTOFEN, E. On fast multiplication of polynomials over arbitrary algebras. Acta Infor-
matica 28, 7 (1991), 693–701.

[13] CAO, Z., AND CAO, H. On fast division algorithm for polynomials using newton iteration. In International
Conference on Information Computing and Applications (2012), Springer, pp. 175–180.

[14] CHIHARA, T. An Introduction to Orthogonal Polynomials. Dover Books on Mathematics. Dover Publications,
2011.

44

[15] COOLEY, J. W., AND TUKEY, J. W. An algorithm for the machine calculation of complex fourier series. Math.
Comput. 19 (1965), 297–301.

[16] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.11 of 2016-06-08. Online
companion to [6].

[17] DRISCOLL, J. R., HEALY, JR., D. M., AND ROCKMORE, D. N. Fast discrete polynomial transforms with applica-
tions to data analysis for distance transitive graphs. SIAM J. Comput. 26, 4 (Aug. 1997), 1066–1099.

[18] DUMMIT, D. S., AND FOOTE, R. M. Abstract algebra, vol. 3. Wiley Hoboken, 2004.

[19] FIDUCCIA, C. M. An efficient formula for linear recurrences. SIAM J. Comput. 14, 1 (1985), 106–112.

[20] GERASOULIS, A. A fast algorithm for the multiplication of generalized hilbert matrices with vectors. Mathe-
matics of Computation 50, 181 (1988), 179–188.

[21] GIORGI, P. On polynomial multiplication in chebyshev basis. IEEE Trans. Comput. 61, 6 (June 2012), 780–789.

[22] GOHBERG, I., AND OLSHEVSKY, V. Complexity of multiplication with vectors for structured matrices. Linear
Algebra and its Applications 202 (1994), 163 – 192.

[23] GURUSWAMI, V., AND SUDAN, M. Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE
Transactions on Information Theory 45, 6 (1999), 1757–1767.

[24] HARTMAN, P. A lemma in the theory of structural stability of differential equations. Proceedings of the Ameri-
can Mathematical Society 11, 4 (1960), 610–620.

[25] HARVEY, D. A multimodular algorithm for computing bernoulli numbers. Math. Comput. 79, 272 (2010),
2361–2370.

[26] HIGHAM, N. J. Functions of matrices: theory and computation. Siam, 2008.

[27] HORN, R. A., AND JOHNSON, C. R., Eds. Matrix Analysis. Cambridge University Press, New York, NY, USA,
1986.

[28] KAILATH, T., KUNG, S.-Y., AND MORF, M. Displacement ranks of matrices and linear equations. Journal of
Mathematical Analysis and Applications 68, 2 (1979), 395 – 407.

[29] KAILATH, T., AND SAYED, A. H. Displacement structure: Theory and applications. SIAM Review 37, 3 (1995),
297–386.

[30] KALTOFEN, E., AND SAUNDERS, B. D. On wiedemann’s method of solving sparse linear systems. In Inter-
national Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes (1991), Springer
Berlin Heidelberg, pp. 29–38.

[31] KEDLAYA, K. S., AND UMANS, C. Fast polynomial factorization and modular composition. SIAM J. Comput.
40, 6 (2011), 1767–1802.

[32] KOPPARTY, S. List-decoding multiplicity codes. Theory of Computing 11 (2015), 149–182.

[33] KOPPARTY, S., MEIR, O., RON-ZEWI, N., AND SARAF, S. High rate locally-correctable and locally-testable codes
with sub-polynomial query complexity. CoRR abs/1504.05653 (2015).

[34] KOPPARTY, S., SARAF, S., AND YEKHANIN, S. High-rate codes with sublinear-time decoding. J. ACM 61, 5
(2014), 28:1–28:20.

[35] MILLER, K. S. On linear difference equations. The American Mathematical Monthly 75, 6 (1968), 630–632.

45

[36] NÜSKEN, M., AND ZIEGLER, M. Fast multipoint evaluation of bivariate polynomials. In Algorithms - ESA 2004,
12th Annual European Symposium, Bergen, Norway, September 14-17, 2004, Proceedings (2004), pp. 544–555.

[37] OLSHEVSKY, V., AND SHOKROLLAHI, M. A. A displacement approach to efficient decoding of algebraic-
geometric codes. In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA (1999), pp. 235–244.

[38] OLSHEVSKY, V., AND SHOKROLLAHI, M. A. Matrix-vector product for confluent cauchy-like matrices with
application to confluent rational interpolation. In Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR, USA (2000), pp. 573–581.

[39] PAN, V. Y. Structured Matrices and Polynomials: Unified Superfast Algorithms. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001.

[40] PAN, V. Y., AND TSIGARIDAS, E. P. Nearly optimal computations with structured matrices. In Symbolic-
Numeric Computation 2014, SNC ’14, Shanghai, China, July 28-31, 2014 (2014), pp. 21–30.

[41] PUTZER, E. J. Avoiding the jordan canonical form in the discussion of linear systems with constant coeffi-
cients. The American Mathematical Monthly 73, 1 (1966), 2–7.

[42] VANDEBRIL, R., BAREL, M. V., GOLUB, G., AND MASTRONARDI, N. A bibliography on semiseparable matrices*.
CALCOLO 42, 3, 249–270.

[43] YU, K.-H., ZHANG, C., BERRY, G. J., ALTMAN, R. B., RÉ, C., RUBIN, D. L., AND SNYDER, M. Predicting
non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Com-
munications 7 (2016).

[44] ZEILBERGER, D. A holonomic systems approach to special functions identities. Journal of Computational and
Applied Mathematics 32, 3 (1990), 321 – 368.

[45] ZHLOBICH, P., BELLA, T., EIDELMAN, Y., GOHBERG, I., AND OLSHEVSKY, V. Classifications of Recurrence
Relations via Subclasses of (H,m)-quasiseparable Matrices, vol. 15 of Lecture Notes in Electrical Engineering.
Springer-Verlag GmbH, 2011, p. 23.

A Further definitions of recurrence width in matrices

We provide one more instantiation of the ⊗ operator that arises in applications. In some of our applications (for
example displacement rank in Section 10.1), a matrix R ∈ FN×N is fixed and vectors fi are defined through a recur-
rence such as

Di+1(R)fi+1 =
t∑

j=0
gi , j (R)fi− j

where all Di+1(R) are invertible or equivalently gcd(Di ,cR) = 1. This equation is well-defined by fi+1 =∑
(Di+1(R)−1gi , j (R))fi− j ,

which can be rewritten as

fi+1 =
t∑

j=0
(gi , j /Di+1)⊗ fi− j

under the following definition.

Definition A.1. Let R ∈ FN×N and let R be the subring of F(X) consisting of fractions whose denominators are
not a multiple of cR(X). Given a(X) = (b(X)/c(X)) ∈ R, the evaluation a(R) is naturally defined as b(R)c(R)−1 =
c(R)−1b(R). Now define a(X)⊗z = a(R)z.

46

However, note the following: Let a(X),b(X) ∈ F[X] such that (b,cR) = 1, and let c(X) = a(X)b−1(X) (mod cR(X)).
It is straightforward to show that a(R)/b(R) = c(R) because cR(R) = 0. Therefore it is also true that

fi+1 =
t∑

j=0
(gi , j /Di+1)⊗ fi− j

under Definition 3.4. Importantly, here gi , j /Di+1 is treated as an element of F[X]/(cR(X)) (in particular, it can be
represented as a polynomial) instead of F(X) (where it is represented as a fraction). Thus Definition A.1 is more
natural than but weaker than Definition 3.4, and when it arises we will automatically assume that the recurrence
is interpreted under 3.4.

This is how we are formally defining recurrences such as (6): As written it considers matrices in a polynomial
modulus which does not make sense, but we use it to represent defining a polynomial recurrence with coefficients
in F[X]/(cR(X)) and then evaluating at R.

B Algorithms for multipoint evaluation of multivariate polynomials

Here we recollect known algorithms for multipoint evaluation of multivariate polynomials. Recall the multipoint
evaluation problem:

Definition B.1. Given an m-variate polynomial f (X1, . . . , Xm) such that each variable has degree at most d −1 and

N = d m distinct points x(i) = (x(i)1, . . . , x(i)m) for 1 ≤ i ≤ N , output the vector
(

f (x(i))
)N

i=1.

We will use the following reduction from [31, 36]. Let α1, . . . ,αN be distinct points. For i ∈ [m], define the
polynomial gi (X) of degree at most N −1 such that for every j ∈ [N], we have

gi (α j) = x(j)i .

Then as shown in [31], the multipoint evaluation algorithm is equivalent to computing the following polynomial:

c(X) = f (g1(X), . . . , gm(X)) mod h(X),

where h(X) = ∏N
j=1(X −αi). In particular, we have c(αi) = f (x(i)) for every i ∈ [N]. Thus, we aim to solve the

following problem:

Definition B.2 (Modular Composition). Given a polynomial f (X1, . . . , Xm) with individual degree at most d−1 and

m +1 polynomials g1(X), . . . , gm(X),h(X) all of degree at most N −1 (where N
def= d m), compute the polynomial

f (g1(X), . . . , gm(X)) mod h(X).

As was noted in [36], if for the multipoint evaluation problem all the x(j)1 for j ∈ [N] are distinct, then we can
take α j = x(j)1 and in this case deg(g1) = 1 since we can assume that g1(X) = X . We will see that this allows for
slight improvement in the runtime. Also in what follows, we will assume that an n ×n and n ×n2 matrix can be
multiplied with O(nω2) operations.

B.1 Algorithm for the general case

Consider Algorithm 3 (which is a straightforward generalization of the algorithm for m = 1 from [11]).

We will use X ı for any ı = (i1, . . . , im) to denote the monomial
∏m
`=1 X i`

`
. Let k be any integer that divides d and

define

q = d

k
.

With this notation, write down f as follows

f (X1, . . . , Xm) = ∑
∈Zm

q

 ∑
ı∈Zm

k

f  ,ı ·X ı

 ·X ·k , (45)

47

Algorithm 3 Algorithm for Modular Composition: general case

Input: f (X1, . . . , Xm) in the form of (45) and g1(X), . . . , gm(X),h(X) of degree at most N −1 with N = d m

Output:
f (g1(X), . . . , gm(X)) mod h(X)

1: Let k be an integer that divides d .We will use k =p
d

2: q ← d
k

3: For every ı = (i1, . . . , im) ∈Zm
k do

4: g ı (X) ←∏m
`=1

(
g`(X)

)i` mod h(X).

5: For every  = (j1, . . . , jm) ∈Zm
q do

6: g  (X) ←∏m
`=1

(
g`(X)

) j`·k mod h(X).

7: For every  ∈Zm
q do

8: a  (X) ←∑
ı∈Zm

k
f  ,ı · g ı (X)

9: Return
∑
∈Zm

q
a  (X) · g  (X) mod h(X)

where f  ,ı are constants.
Algorithm 3 presents the algorithm to solving the modular composition problem. The correctness of the algo-

rithm follows from definition. We now argue its runtime.
Note that for a fixed ı ∈ Zm

k , the polynomial g ı (X) can be computed in Õ(mN) operations since it involves m
exponentiations and m −1 product of polynomials of degree at most N −1 mod h(X). Thus, Step 3 overall takes
Õ(m · km · N) many operations. By a similar argument Step 5 takes Õ(m · qm · N) operations. Step 9 needs qm

polynomial multiplication (mod h(X)) and qm −1 polynomial multiplication where all polynomial are of degree at
most N −1 and hence, this step takes Õ(qm ·N) operations. So all these steps overall take Õ(m ·max(k, q)m ·d m)
many operations.

So the only step we need to analyze is Step 7. Towards this end note that for any  ∈Zm
q

a  (X) = ∑
ı∈Zm

k

f  ,ı · g ı (X)

= ∑
ı∈Zm

k

f  ,ı ·
N−1∑
`=0

g ı [`] ·X `

=
N−1∑
`=0

 ∑
ı∈Zm

k

f  ,ı · g ı [`]

 X `.

Thus, if we think of the qm ×d m matrix A, where A[ , :] has the coefficients of a  (X), then we have

A = F×G,

where F is an qm ×km matrix with F  ,ı = f  ,ı and G is an km ×d m matrix with Gı ,` = g ı [`]. Letω(r, s, t) be defined so
that one can multiply an nr ×ns with an ns ×nt matrix with nω(r,s,t) operations. If we set k = dε for some 0 ≤ ε≤ 1,
we have that Algorithm 3 can be implemented with

Õ
(
m ·d m(max(ε,1−ε)+1) +d m·ω(1−ε,ε,1))

many operations. It turns out that the expression above is optimized at ε= 1
2 , which leads to an overall (assuming

m is a constant) Õ
(
dω2m/2

)
many operations. Thus, we have argued that

Theorem B.3. The modular composition problem with parameters d and m can be solved with Õ
(
dω2m/2

)
many

operations.

48

B.1.1 A ‘direct’ algorithm for the multipoint evaluation case

We now note that one can convert Algorithm 3 into a “direct" algorithm for the multipoint evaluation problem.
Algorithm 4 has the details.

Algorithm 4 Algorithm for Multipoint Evaluation

Input: f (X1, . . . , Xm) in the form of (45) and evaluation points a(i) for i ∈ [N]
Output: (

f (a(i)
)

i∈[N]

1: For every ı = (i1, . . . , im/2) ∈Zm/2
d do

2: gı ←
(∏m/2

`=1 (a(k)`)i`
)

k∈[N]

3: For every  = (j1, . . . , jm) ∈Zm/2
d do

4: g  ← (∏m
`=m/2+1 (a(k)`)i`

)
k∈[N]

5: For every  ∈Zm/2
d do

6: b  ←
(∑

ı∈Zm/2
d

f  ,ı ·gı (k)
)

k∈[N]

7: Return
∑
∈Zm/2

d

〈
b  ,g 

〉
The correctness of the algorithm again follows from definition. It is easy to check that the computation of gı ,g 

and the output vectors can be accomplished with Õ(d 3m/2) many operations. Finally, the computation of the b 

can be done with Õ(dω2m/2) many operations using fast rectangular matrix multiplication.

B.2 Algorithm for the distinct first coordinate case

We now consider the case when all the x(j)1 for j ∈ [N] are distinct: i.e. we assume that g1(X) = X . In this case we
re-write f as follows:

f (X1, . . . , Xm) = ∑
∈Zm−1

q

 ∑
ı∈Zm−1

k

f  ,ı (X1) ·X ı
−1

 ·X ·k
−1 , (46)

where X ı
−1 denotes the monomial on the variables X2, . . . , Xm and each f  ,ı (X1) is of degree at most d −1.

Algorithm 5 Algorithm for Modular Composition: distinct first coordinate case

Input: f (X1, . . . , Xm) in the form of (46) and g2(X), . . . , gm(X),h(X) of degree at most N −1 with N = d m

Output:
f (X , g2(X), . . . , gm(X)) mod h(X)

1: Let k be an integer that divides d .We will use k =p
d

2: q ← d
k

3: For every ı = (i2, . . . , im) ∈Zm−1
k do

4: g ı (X) ←∏m
`=2

(
g`(X)

)i` mod h(X).

5: For every  = (j2, . . . , jm) ∈Zm−1
q do

6: g  (X) ←∏m
`=2

(
g`(X)

) j`·k mod h(X).

7: For every  ∈Zm−1
q do

8: a  (X) ←∑
ı∈Zm−1

k
f  ,ı (X) · g ı (X) mod h(X)

9: Return
∑
∈Zm−1

q
a  (X) · g  (X) mod h(X)

Algorithm 5 shows how to update Algorithm 3 to handle this special case. Again the correctness of this algo-
rithm follows from the definitions.

49

We next quickly outline how the analysis of Algorithm 5 differs from that of Algorithm 3. First, the same argu-
ment we used earlier can be used to show that Steps 3, 5 and 9 can be accomplished with Õ(m ·max(k, q)m−1 ·d m)
many operations.

As before the runtime is dominated by the number of operations needed for Step 7. Towards this end note that

a  (X) = ∑
ı∈Zm−1

k

f  ,ı (X) · g ı (X)

= ∑
ı∈Zm−1

k

f  ,ı (X) ·
d m−1−1∑
`=0

g ı [`](X) · (X d)`

=
d m−1−1∑
`=0

 ∑
ı∈Zm−1

k

f  ,ı (X) · g ı [`](X)

 (X d)`.

Note that in the above we have decomposed g ı as a polynomial in powers of X d (instead of X for Algorithm 3). In
particular, this implies that all of f  ,ı (X) and g ı [`](X) are polynomials of degree at most d −1. If we think of a  (X)
as polynomials in X d (with coefficients being polynomials of degree at most 2d −2), we can represent the above as

A = F×G,

where the qm−1 × km−1 matrix F is defined by F  ,ı = f  ,ı (X) and the km−1 ×d m−1 matrix G is defined by g ı ,` =
g ı [`](X). Again if we set k = nε, then the run time of Algorithm 5 is given by (we use the fact that each multiplication
and addition in F×G can be implemented with Õ(d) operations):

Õ
(
m ·d (m−1)max(ε,1−ε)+m +d ·d (m−1)·ω(1−ε,ε,1))

many operations. It turns out that the expression above is optimized at ε= 1
2 , which leads to an overall (assuming

m is a constant) Õ
(
d 1+ω2(m−1)/2

)
many operations. Thus, we have argued that

Theorem B.4. The modular composition problem with parameters d and m for the case of g1(X) = X can be solved
with Õ

(
d 1+ω2(m−1)/2

)
many operations.

50

