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Abstract

Conventional machine learning algorithms based on
keystroke dynamics build a classifier from labeled data in
one or more sessions but assume that the dataset at the
time of verification exhibits the same distribution. A user’s
typing characteristics may gradually change over time and
space. Therefore, a traditional classifier may perform
poorly on another dataset that is acquired under different
environmental conditions. In this paper, we investigate the
applicability of transfer learning to update a classifier ac-
cording to the changing environmental conditions with min-
imum amount of re-training. We show that by using adap-
tive techniques, it is possible to identify an individual at a
different time by acquiring only a few samples from another
session, and at the same time obtain up to 13% higher accu-
racy. We make a comparative analysis among the proposed
algorithms and conclude that adaptive classifiers exhibit a
higher start by a good approximation and perform better
than the classifier trained from start-over.

1. Introduction

Biometrics has become ubiquitous and spurred common
use in many authentication mechanisms. Despite its reliable
identification and secure authentication, since different im-
pressions of a user’s acquired biometrics are not exactly the
same, the verification system outputs a score that measures
the degree of similarity between an existing profile and the
samples acquired at the time of acquisition. For behavioral
biometrics such as keystroke dynamics, gait and handwrit-
ing recognition, the verification is even more challenging
[3, 6]. A user might be in different acquisition conditions
and state of mind than at the time of enrollment. This may
cause perturbations of behaviors and yet, reduce the simi-
larity score.

Currently, a user is authenticated by being evaluated with
a classifier that is trained on a single dataset even after a
long time period has passed. However, the data is sen-
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sitive to several factors such as emotion, time of the day,
keyboard layout, etc., for which we refer to as environmen-
tal conditions throughout the paper. Alternatively, the user
may enroll in another training session at a different time
period to generalize a system’s recognition. Then, the in-
puts that have temporal variations are processed by a new
classifier to acquire the changes incurred by the new envi-
ronment. However, both options have their own limitations.
While the former one deteriorates the accuracy of a system
by time, the latter one requires a completely new classifier
trained from scratch without taking advantage of a previ-
ously acquired profile.

In this paper, we propose a new adaptive classification
mechanism called transfer learning to transfer acquired
knowledge to a different domain in the context of keystroke
dynamics. Our objective is to authenticate an enrolled
user under different environmental conditions with the least
amount of re-training. If the user moves to different condi-
tions and types at a different time, the knowledge acquired
from previous sessions is transferred via parameters that
contain classifier information. Hence, the system can learn
the updated profile faster by integrating the parameters, and
recognize the latest typing pattern efficiently.

The contributions of this paper include the application of
transfer learning on keystroke dynamics for the first time in
the literature. We believe that transfer learning is a suitable
tool to improve the recognition of behavioral biometrics.
We employ 3 different adaptive SVM techniques described
in [2] to enable knowledge transfer from one setting to an-
other. The source profile is introduced as the regularizer of
the target profile in the SVM cost function so that the clas-
sifier can learn from substantially less number of samples
at a different time. Also, we make a comparative analysis
among the adaptive schemes and the classifier trained from
start.

The paper is organized as follows. The background in-
formation about transfer learning is provided in Section 2
followed by related work on the use of transfer learning on
different domains and adaptive methods in keystroke dy-



namics in Section 3. Then, the details on data collection and
feature extraction are given, and the experiments conducted
are described in Section 4. Section 5 presents the results
of using adaptive SVM techniques and their effectiveness
in transferring knowledge to a new environment. Finally,
Section 6 summarizes our findings and gives an insight into
how the methods could be improved further.

2. Background

Ideally, the keystroke data collected at a session is ex-
pected to be an invariant representation of an individual’s
behavioral biometrics. In real applications, however, the
data is sensitive to several factors such as emotion, time of
the day and keyboard layout [18]. Therefore, an efficient
adaptation mechanism is required to utilize an existing tem-
plate and integrate new samples that may have a slightly
different distribution.

2.1. Transfer Learning

Transfer learning allows an existing classifier to adapt to
environmental conditions that may cause perturbations on
the distribution of the original dataset. The existing classi-
fier or the template that has been generated for a particular
user is called the source task. The updated classifier that is
adapted to the new environmental conditions is referred to
target task in the transfer learning literature. Basically, the
purpose in transfer learning is to create a target task by uti-
lizing the knowledge that is acquired during the source task
generation. In other words, transfer learning benefits from
knowledge acquired from one or more tasks to recognize a
related task in a faster and more efficient way. This way,
prior knowledge is leveraged to generate a better and more
representative model.

Another advantage of transfer learning is that the avail-
ability of the source data is not required. The parameters
that shape up a classifier are sufficient to supervise the tar-
get task in the generation of an adapted profile. This way,
the target task does not process the source data directly, and
runs very fast to create the new profile. Furthermore, if
a user’s typing profile is to be transferred to another ter-
minal, it is very efficient to send only a set of parameters
instead of the entire dataset, especially when we consider
large datasets.

3. Related Work

The concept of classifier adaptation can be considered as
one of the important issues in machine learning. This prob-
lem is sometimes referred to concept drift in data mining
[17] and sometimes as incremental learning [14] or cross-
domain learning [15] in the literature.

Concept drift is different in the sense that the adapted
profile is generated by using both the source and target
datasets [18]. Whereas, transfer learning can directly ma-

nipulate the source task parameters without processing pre-
vious information. This way, the adaptation is efficient and
more applicable where old data is inaccessible. Incremental
learning is another related technique that shares a common
background with transfer learning except it focuses on scal-
ability problems in which the data is processed in part to
consume less power [14]. As for cross-domain learning, it
has been mostly used inter-changeably with transfer learn-
ing in the literature. It indicates a large variance among the
domains that the knowledge transfer happens.

In biometric systems, the data acquired from an indi-
vidual is susceptible to perturbations due to environmen-
tal conditions and sensor-based variations [16]. Biometric
measurements tend to have a large intra-class variability,
hence, it is very likely for an existing profile to be relatively
different from a person’s future profile. Solutions to intra-
class variability problem include a template selection and
periodic template update processes [10]. The main purpose
of these operations is to involve the most representative fea-
tures using various methods. This way, misclassification
errors can be reduced by keeping the most similar[11], the
most recently or the most frequently used records [12].

Specifically in keystroke dynamics, Giot et al. [4] pro-
pose a semi-supervised approach by involving the highly
genuine samples in the update process. Similarly, Monrose
et al. [9] use distinguishing features in keystroke dynam-
ics updating with recent consistent inputs, thus, the refer-
ence profile acquires the modifications in a user’s typing
pattern. In [1, 7], the newest samples are appended to or
replaced with the existing ones. In [5], the authors suggest
a leave-one-out cross validation method using samples of
the same pass-phrase typed by a particular user, and deter-
mine a threshold accordingly. Profile generation and thresh-
old calculation are repeated each time a user is tested. This
way, the threshold value becomes adaptive and can reflect
the changes of the user over time.

However, the template update process discards existing
templates and replaces them with the most current ones or
consolidate two templates to reflect the most updated pro-
file. In both cases, the recognition system runs from the
beginning and may need previous set of features or raw
data. Re-training of a system is very costly and compu-
tationally intensive, thus, a more efficient template update
mechanism is required. In the next section, we present an
adaptive mechanism that benefits from the existing profile
(not the dataset!) and updates the parameters with only a
few samples from the new environment.

4. Methodology
4.1. Dataset

In this paper, we consider the problem of recognizing in-
dividuals using their previously learned profiles. For this



goal, we use the public keystroke dataset published online
by Killourhy and Maxion from CMU labs [8]. The data is
collected in a controlled environment with 51 users at § dif-
ferent sessions. The sessions have at least one day interval
in between, to reflect the variation incurred by time. All
users are required to type the same password ".tieSRoanl",
50 times at each session for consistency. The key events
and the corresponding time stamps are recorded, and fea-
ture vector (V') is created by the timing information of the
password. It consists of 31 features for each password in-
cluding the hold time (H,: the time that each key in the
password is kept pressed) and the flight times (DD, UD,:
elapsed time between press down and press up events of
successive keys). A part of the feature vector is as follows:

V ={..,Hs,DDsr,UDsg, Hr, DDpg,...}, (1)

where it shows the key events related to ’5” and 'R’ keys
in the password. Since all users type exactly the same input,
the values in the feature vector are aligned based on the po-
sition in the password, and does not require post-processing.
We believe that this dataset is suitable to demonstrate the
applicability of transfer learning on keystroke dynamics
since it has a time dimension that may incur variations
among the sessions. When the variation is observed, the
knowledge transfer can be realized by enabling a fast con-
vergence and robust adaptation in the target task.
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Figure 1: SVM Projection [2]

4.2. Proposed Techniques

It is assumed that the hyperplane that separates the data
collected at another session, if not the same, is geometri-
cally related to the hyperplane of the source dataset that is
drawn by its constraints. Adaptive SVMs take advantage of
this fact and adapt existing SVM to the new environment
based on some projection techniques. Fig. 1 shows the pro-
jection of the target model parameter w; onto the separating
hyperplane of the source model.

e Adaptive SVM (A-SVM) [18]: Regularization of the

distance between the model parameter of the source
(ws) and the target (w;) is the basic part of this tech-
nique. A-SVM tries to shift and rotate the separat-
ing hyperplane by updating model parameter with the
help of some samples from the target dataset. In this
method, a new parameter I' emerges to control the
amount of transfer based on how the target samples
are similar to the source profile. Accordingly, the ob-
jective function turns into Eq. 2:
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where I' corresponds to the amount of regularization.
A-SVM aims at minimizing the distance between wy
and I'wg, hence, keeping the angle 6 at minimum
(||we]|cosf at maximum) while inducing transfer by
fitting the target samples. Aytar and Zisserman pro-
vide a detailed analysis of A-SVM by describing the
parameter I" as a spring between w; and 'ws, and how
it manages the tradeoff between margin maximization
and knowledge transfer in [2].

Deformable Adaptive SVM (DA-SVM) [2]: Knowl-
edge transfer by adapting an hyperplane can also be
performed by implementing local deformations on w;
to acquire the target samples and fit with a high ac-
curacy. In this method, not only the hyperplane is
adapted but also each element of the source model
vector, wy is transformed by a function of f into an-
other element in target model vector, w;. This way,
small deformations in the adapted SVM can carry on
a more flexible regularization. The objective function
becomes:
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where A refers to the amount of deformation, namely,
the overall distance between the source and target ele-
ments of the model parameters. The additional param-
eter A corresponds to the weight of deformations such
that high values yield a similar solution to that of Eq. 2
while small values allow more deformations with less
regularization.

Projective Model Transfer SVM (PMT-SVM) [2]:
An alternative way of reducing € can be achieved by
minimizing the projection of w; onto the plane orthog-
onal to ws. That is, ||w;||sind in Fig. 1 is minimized
with a regularization factor I' while providing margin
maximization. The objection function, in this case, is:
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Figure 2: ROC with various step sizes
Sample Size: 1 5 11 15
Classic SVM | 71.28 + 11.39 | 80.01 £ 9.01 | 93.71 +4.55 | 96.20 £ 3.42
A-SVM 80.11 £2.61 | 85.54 +3.49 | 93.33 £2.33 | 94.86 + 1.84
PMT-SVM 82.64 £9.00 | 87.12 +£6.95 | 95.86 £ 2.74 | 95.76 + 2.75
DA-SVM 84.39 £4.03 | 92.53+342 | 97.18 £ 1.10 | 97.37 + 1.01
AUC values are multiplied with 100 for higher precision
Table 1: Area Under Curve (AUC) by sample size
5. Results
) 1 5 ) ! Our results are based on the the dataset that is publicly
min o [wel” + T [ Pwe ™ + szi “) available from CMU labs [8]. The experiments are con-
i=1 ducted by using the adaptive algorithms described earlier
w.wT and an SVM classifier that is trained from start without any
where P = I — ; - corresponds to projection ma- knowledge transfer (It is denoted by ‘Classic SVM’ in the
trix. Ws Ws tables and figures). We test the accuracy of the system step
4.3. Training by step by increasing the sample size from the transferring

We pick two users from the dataset described in Section
4.1, and label one of the users as positive and the other
as negative class to train the source (SV M,) and target
(SV M) classifiers. Out of 8 sessions, we randomly pick
a source session for the users and train SV M using source
dataset, Ds. Then, we pick a target session to be used for
the target task, and partition the dataset, D, into transferring
(Dé: labeled) and testing (D}': unlabeled) dataset. Our goal
is to generate the target classifier, SV M; using D! to help
classify D} building upon SV Mj.

When SV M; is trained with a complete session of the
users, the model parameter, w; is created. SV M, builds
w; upon w, by using D! to learn the typing pattern faster.
SVM classifiers are trained with a linear kernel and the cost
variable is set C' = 0.002 for all experiments similar to the
experiments conducted in [2]. Other parameters including
the regularization factor in the equations are set different
based on the results of the experiments. The value of the
parameters that we use in our experiments are as follows:
I'=0.01inEq. 2; T = 0.1, A = 0.0001 and A = 4 in Eq.
3;I'=51n Eq. 4.

dataset. Sample in the figures denotes to a user’s attempt of
typing the password at a time. At each step, the receiver op-
erating characteristic (ROC) curve is plotted with respect to
true positive rate (TPR) and false positive rate (FPR). ROC
is a heavily used statistics in machine learning to illustrate
the performance of a classifier as its discrimination thresh-
old changes [13]. Also, the area under curve (AUC) is cal-
culated by testing against the unlabeled testing dataset.

Fig. 2 plots the ROC curve of 4 different settings, each
showing the results of different sample sizes for adaptive al-
gorithms and the classic SVM classifier that is trained from
start. The sample size of 1 (single-shot learning) clearly
exhibits the advantage of using transfer learning over clas-
sic SVM since TPRs for adaptive algorithms are higher for
almost all FPRs. As we increase the sample size, the ROC
curves approach to the corner for all algorithms as expected.
Nevertheless, the adaptive algorithms perform better and
learn faster for almost all sample sizes since they start the
learning process by initializing the target model parameter,
wy with a good approximation of ws.

Accordingly, we calculate the AUC for scalar compar-



abled us to exert a direct effect on the convergence speed of
the algorithm. Also, by allowing local deformations on the
source model parameter, wg in Eq. 3, DA-SVM algorithm
can switch to w; in a more robust way. This fast adaptation
of DA-SVM has also been proven by Aytar et al. [2] in an
image classification experiment.
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Figure 3: Comparison of SVM Algorithms

ison of the algorithms. We run the experiments 50 times
to avoid bias and get consistent results, each time shuffling
the target dataset. We take the mean and standard deviation
for various sample sizes. Table 1 shows the corresponding
AUC values and the standard deviation of the algorithms
multiplied by 100 for higher precision. We can see that the
adaptive SVMs outperform the classic SVM model, espe-
cially for a small number of samples. Also, it is important
to note that the standard deviations for adaptive SVMs are
less than the classic SVM, which indicates the robustness of
the adaptive algorithms regardless of random good or bad
sample selection during training.

To make a better comparison analysis, we plot the AUC
results of the SVM algorithms including the source and the
target SVMs. The source SVM is trained with the first
(source) session, while the target SVM is trained with the
transferring dataset (15 samples in this example) of the tar-
get task. For all SVMs plotted in Fig. 3, the AUC results
are calculated by testing against the testing dataset (35 sam-
ples) that is left after partitioning. It is expected that the
target SVM performs better than the source SVM since a
classifier yields better results when testing against a dataset
of the same session. Note that both source and target SVM
are trained and tested once during this experiment to give
a better sense of comparison, and this is why the trendlines
are constant through the changing sample size. The AUC
line of the target SVM can be seen as the upper limit of
classic SVM since both of them are supposed to have the
same configurations at the level of 15 samples.

Fig. 3 exhibits higher start and fast convergence of adap-
tive SVMs. In particular, DA-SVM has a relatively better
learning rate among all others. It reaches the upper limit
of classic SVM and even increases further by incorporating
more samples from the target task. We believe that the use
of a flexible regularization inside the square term has en-
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Figure 4: Performance of Adaptive-SVM Algorithms

Nevertheless, the boosted performance of DA-SVM al-
gorithm requires intensive computation. To show the trade-
off between the convergence rate and computational cost,
we draw Fig. 4 that displays the elapsed time during the
training process of each SVM by using Matlab’s built-
in timeit function. It runs the training method multiple
times, and reports the median of the measurements. As ex-
pected, the flexibility provided by DA-SVM requires rela-
tively more computation compared to other SVMs.

6. Conclusion

Keystroke dynamics is a behavioral biometrics that can
be used as a means of authentication. Due to the nature of
behavioral biometrics, the characteristics of an individual
may change gradually based on environmental conditions.
A user’s profile can show a degradation of performance
over time. Therefore, a classifier with an existing profile
may perform poorly on another dataset that is acquired un-
der psychologically, temporally or spatially different con-
ditions. In this paper, we propose using 3 different adap-
tive techniques: Adaptive SVM, Deformable Adaptive SVM
and Projective Model Transfer SVM. They are used to up-
date a classifier and transfer the knowledge acquired from
a learned profile to an adapted target profile. The source
model parameter is introduced as the regularizer in target
profile generation so that the classifier can learn from sub-
stantially less number of samples at a different time. By uti-
lizing a publicly available keystroke dataset, we are able to
demonstrate the effect of transfer learning in verifying users



at a different session. Our results show that, adapted SVMs
exhibit a higher start by a good approximation and perform
up to 13% better than the classifier trained from scratch.
In addition, we make a comparative analysis between the
adaptive SVMs with respect to accuracy results and compu-
tational costs. Although the size of the dataset in a session
is not large enough to run extensive experiments, we believe
this study can be considered as a proof-of-concept about the
applicability of transfer learning on keystroke dynamics or
behavioral biometrics, in general. We plan to move this re-
search further and collect large scale data to validate the
results and conduct thorough experiments in the future.
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