
User Authentication with Keystroke Dynamics in Long-Text Data

Hayreddin Çeker and Shambhu Upadhyaya
University at Buffalo

Buffalo NY 14260, USA
hayreddi@buffalo.edu, shambhu@buffalo.edu

Abstract

Keystroke dynamics is a form of behavioral biometrics
that can be used for continuous authentication of users
while working at a terminal. In this paper, we extend the
use of support vector machine (SVM) for continuous au-
thentication with long-text data, from one-time password
based authentication using short text. In result, we show
we can authenticate legitimate users and reject impostors
with negligible error (close to 0% equal error rate) by set-
ting a one-class SVM for each user using a dataset of 34
users in a controlled environment. Our results show that by
standardizing the input and setting the correct kernel scale,
one-class SVM can be utilized as a tool to continuously au-
thenticate users, and recognize keystroke dynamics with a
high accuracy.

1. Introduction
Conventional authentication mechanisms use a single

point of entry for users to log in with a credential in an eas-
ily usable way. However, when the session remains active,
typical systems fail to verify that the user originally authen-
ticated is the user still at the terminal. The trade-off between
security and usability can be addressed by utilizing active
authentication based on behavioral biometrics. The active
authentication paradigm suggests that a system should be
able to recognize and continuously verify the identity of a
user [8].

Keystroke dynamics is one of the efficient and inex-
pensive behavioral biometrics that can be used to authen-
ticate computer users in the background while the user is
actively working at the terminal. Typing characteristics
have been shown to be distinctive enough to distinguish
a computer user from another because of the unique tim-
ing of keystrokes that each individual performs during typ-
ing. Among the machine learning techniques proposed,
support vector machine (SVM) has been only applied on
short text [19], namely, password. However, authentica-
tion mechanisms using short text can be insufficient in prac-
tice, especially those that require all users to type the same

passphrase during training for consistent feature extraction.
Therefore, a mechanism to process long-text data is re-
quired to realize the active authentication paradigm without
prompting users with a password screen.

In our experiments, the users transcribe a text in a con-
trolled environment and answer survey questions freely. We
propose a new methodology to process the long text and ex-
tract features to be used for long-term continuous authenti-
cation. The contributions of this paper include processing of
long text using SVM and a new feature extraction method
for keystroke dynamics. Also, we show that SVM can be
utilized to differentiate users with high accuracy and low
performance overhead.

The paper is organized as follows. Section 2 provides
the related works on the use of SVM methods in keystroke
dynamics. Then, the details on data collection and feature
extraction are given, and the experiments conducted are de-
scribed in Section 3. Section 4 presents the results of using
SVM with long-text data and its effectiveness in recogniz-
ing users over short-text data. Finally Section 5 summarizes
our findings and gives an insight into how our technique
could be improved further.

2. Related Work
Over the years, many different methods and classifiers

have been proposed in the area of keystroke dynamics to
distinguish an individual from another. In security, typing
pattern of a user is a behavioral biometrics that can be used
as a means of authentication. In this section, basically the
research on keystroke dynamics involving support vector
machine (SVM) is discussed. Also, the way the SVM is
integrated in the experiments is explored.

Yu et al. [21] consider the problem of authenticating le-
gitimate users while rejecting impostors as an outlier detec-
tion problem that can be solved by using one-class SVM.
This way, a hypersphere can be drawn to encompass data
points from legitimate users, and disallow any other points
that fall off the sphere. In addition, they employ a genetic
algorithm to select a subset of features that yields the best
results by randomized searching. As a result of the exper-

iments, they report the average false reject rate (FRR) of
21 users when the classifier makes no false positive (FAR
reaches 0% error). The experiments in [1, 18] are conducted
by using a similar method with faster feature selection pro-
cesses that enable a more diverse set of features.

Saggio et al. [15] employ a two-class SVM with lin-
ear kernel using dwell time (time between press and re-
lease of the same key) and flight time (time between key
presses) of digraphs. They create a separate SVM with
one-vs-all method for each user by accepting the legitimate
data as positive, and all other data as negative. The users
are enrolled in the experiments typing short passwords,
though one-vs-all method can be impractical for large train-
ing datasets and long-text data. Sang et al. [16] uses a nu-
meric keypad in the experiments and allow users to select
numerical passwords to record user’s keystroke dynamics.
In addition to one-class SVM, they also employ one-vs-all
method by categorizing all impostors data as the negative
class. The results show that one-class SVM outperforms
two-class SVM, and has a closer ROC curve to the top cor-
ner of the error chart. Similarly, the experiments of Paula et
al. [14] support the fact that the typing pattern of a user can
be better recognized by using one-vs-one (one-class) SVM
than using one-vs-all SVM.

Ngugi et al. [13] investigate the changes in PIN entry
on a numeric keypad by analyzing how typing patterns be-
have over time. After filtering out the outliers, the features
are scaled and fed to an SVM with radial basis function
(RBF). Giot and Rosenberger [6] also use RBF kernel to
train keystrokes for gender recognition. They use the pub-
licly available GREYC short-text dataset. The results are
reported by using a cross-validation process in which the
dataset is split into partitions, and one partition is tested
against the others in an order.

The experiments conducted in the aforementioned stud-
ies are for verification purposes using only short texts
(e.g., name, password). They are used as a sec-
ondary/supplementary authentication mechanism rather
than as a continuous user monitoring and transparent au-
thentication system. The features are extracted when a user
enters the password several times in the training session.
The next time the user tries to login, the extracted features
are compared and the user is authenticated if enough simi-
larity is found. However, in our experiments each user has
long text data (13,461 keystroke records on average) to train
the system.

The only experiment with long-text data is performed
by Garg et al. [5] as a proof-of-concept using GUI-based
activities and mouse movements for 3 users. Two-class
SVM is used by combining over 100 features composed of
mouse angles, key press/hold time, background processes,
etc. The results show that up to 96% detection rate is pro-
vided based on various feature combinations. Our work is

different in terms of feature extraction and prediction meth-
ods, and requires the analysis of only certain digraphs effi-
ciently without additional modalities. Also, we use a much
larger dataset in this paper, which will help generalize the
results.

In Section 5, we provide a table of summary including
our current work that lists reported results and important de-
tails about these experiments. In addition, the comparison
study by Killourhy and Maxion [10] is a valuable resource
to find out how classifiers perform under the same condi-
tions using the same password and feature sets.

3. Methodology
3.1. Data Collection

In the data collection process, a desktop environment is
set up to record the keystroke data in a lab at Clarkson Uni-
versity. Thirty nine subjects from the university employees
and students are enrolled in two different sessions within a
period of 11 months. Each session takes approximately 1
hour on two separate days. The users who didn’t take the
second session are removed. At the end, 34 users are left
for cross-validation.

The first session includes a set of survey questions that
the subjects are asked to answer. The survey is carefully de-
signed so that the subjects can respond to questions without
long pauses and hesitations. To involve more natural typing
effect in the experiment, some questions require subjects
to choose their own writing topics. Also, the participants
describe a picture of a crowded scene with various human
activities. The second session consists of a static long-text
typing process in which Steve Jobs’ famous commencement
speech at Stanford University is required to be transcribed
by the subjects.

The key-logger is a browser based Java Script program
that collects the character and key’s press and release time
in millisecond. It records the timing data in real time and
transfers them to a PHP web server. The program enforces
subjects to type at least 500 characters to answer the ques-
tions. In this dataset, the digraphs whose latency is above
200 ms are ignored. Also, if a frequency of occurrence of
a digraph in the text is less than 50, we exclude it. At the
end, we obtain 13,461 keystrokes on average in Table 1 for
both sessions after the filtering. This data set is publicly
available for research by contacting the authors at Clarkson
University [2, 20] and signing a non-disclosure agreement
(NDA).

Statistics Number of keys
Average 13,461

Standard deviation 2,775
Min 6,597
Max 17,271

Table 1: Keystroke Statistics in the Dataset

3.2. Feature Selection

Most of the papers referred in Section 2 feed SVM clas-
sifier with the features extracted from inter-key latencies.
Since all of these studies involve short text, alignment of
the features is not an issue for different users or in different
sessions of the same user as the dimension of the feature
space is always the same. In other words, the users type
the same password in the experiments; hence comparison
is easy and simple to operate without any extra processing.
However, in long text data which include both transcribed
and free text, the feature extraction process is not an easy
task since a session may include various sizes of keystrokes
with repeated digraphs. Therefore, we propose a new fea-
ture alignment method for long-text keystroke dynamics.

digraph1 digraph2 · · · digraphd

useri

f11 f12 f13 · · ·
· · · · · ·
fk1 fk2 fk3 · · ·

f11 f12 f13 · · ·
· · · · · ·
f t1 f t2 f t3 · · ·

· · ·
· · · f11 f12 f13

· · · · · ·
· · · fn1 fn2 fn3︸ ︷︷ ︸

m× d

Table 2: Feature matrix of long-text data

In this new approach, we calculate the most commonly-
typed digraphs by processing the entire text in advance.
We run our experiments by including various number
of digraphs (d) from the list. Thus, the size of fea-
ture vector depends on the value, d, accordingly. We
treat each digraph as a separate record that only includes
information about the respective keys (f values under
digraph1, digraph2, · · · , digraphd); all other fields are
set to 0 (blank cells). Suppose we extract flight time (f∗1)
and dwell times (f∗2 and f∗3) of a particular digraph that is
selected from the list of size d. We initialize a two dimen-
sional feature matrix that has m × d number of columns,
wherem is the number of digraph features included (m = 3
in this example for flight time of the digraph and dwell times
of the individual keys).

During the processing of the long-text data, each time
we come across the particular digraph, we create a new row
and calculate the flight and dwell times accordingly. We
set the first 3 columns with these values and fill the rest of
the row with 0s. This way, we can include all instances

of this digraph in separate rows. For instance, digraph1
has k rows in Table 2 in which only the first 3 columns
are filled with digraph timing information, and the rest is
set as 0. Afterwards, we continue with the next digraph in
the most commonly-typed digraph list, and apply the same
procedure by moving the column cursor by m so that data
from different digraphs do not align under the same column.
Note that the values for digraph2 shifts by 3 columns and
contain t instances.

Finally, we obtain a training set which includes as many
records as the number of digraphs from the list within the
long text. This way, we can integrate all data points that be-
long to the most commonly-used digraphs which have been
used as a good identifier of an individual [11]. This process
is repeated for each user separately. Then every user’s data
is partitioned into training (80%) and testing (20%) groups.
A one-class SVM is trained for each user separately (line 3
in Alg. 1) using only the digraph information that belong to
the particular user since it is not required to provide nega-
tive data points in one-class SVM. Once all users’ data are
processed, we obtain 34 separate SVM classifiers.

Algorithm 1 One-class SVM prediction algorithm

Input: The most common D digraphs L = {l1, ..., ld}
Input: Kernel scale s
Output: Prediction scores ofN users with cross-validation

R = {r1,1, r1,2, ..., rn,n}
1: Extract features from L for all users and partition into

training Ltr and test Ltest dataset
2: for i:=1 to N do
3: Fit Ltr(i) to one-class SVM by scaling with s:

OCSVMi := fit(Ltr(i), s)
4: for j:=1 to N do
5: R(i, j) := predict(OCSVMi, Ltest(j))
6: end for
7: end for

Then, an overall score is calculated as to how likely a
particular user’s test dataset belongs to the user whose SVM
classifier is used for prediction. That is, all users are cross-
checked with each other to find out how one-class SVM is
successful in drawing hyperplanes that separate a user from
another. The overall score is simply calculated by summing
up the prediction scores given by the SVM for the testing
data points. At the end, every classifier contains an overall
score for a user (line 5 in Alg. 1). Our expectation is that all
SVMs have their user’s overall score as the highest among
others. This way, we can deduce that one-class SVM can
transform standardized keystroke data points to another di-
mension where the users are obviously distinguishable. We
use MATLAB’s SVM package as software, and train the
system with the dataset by setting the proper parameters de-
scribed in the training process.

3.3. Training Process

Normalization in SVM can have an impact on accuracy
of a system, too. Input values are scaled to have a unit norm
and lie between 0 and 1. Graf et al. [7] explore the nor-
malization in input space, feature space and in both spaces,
and conclude that feature space normalization with adjusted
kernel parameter b results in the lowest error rate. How-
ever, the normalization experiment conducted in [7] is use-
ful for linear and polynomial kernel functions. It doesn’t
have an impact on Gaussian kernels since the division op-
eration by symmetric values in RBF kernels always yields
1 (K(x, x) = 1) which doesn’t affect the result. Therefore,
we omit the normalization process in this study.

In a practical guide for SVM, it is suggested that scaling
before applying SVM can yield better results. The main
advantage of scaling is to avoid features in greater numeric
ranges dominating those in smaller numeric ranges [9]. In
Gaussian RBF kernel, scaling the input vectors corresponds
to scaling variance (σ). That is, when we scale inputs in
Eq. 1 by a factor s, we obtain the scaled kernel as in Eq.
2. Scaling at a feature-space level is also applied by some
researchers [3] but since we standardize the input and for
the sake of simplicity, our scaling level is kept only at the
input-space. In this paper, we iterate over various kernel
scale parameters to find out the optimal one.

k(x, y) = exp

(
−||x− y||

2

2σ2

)
(1)

ks(x, y) = exp

(
−
||x/s− y/s||2

2σ2

)
= exp

(
−
||x− y||2

2(σ ∗ s)2

)
(2)

4. Results
The test results are based on two separate long-text ses-

sions from 34 users. Each user is compared against the
other, and the SVM prediction score is calculated. Leggett
and Williams [11] run experiments with different sets of di-
graphs, e.g., the most frequent, left hand or right hand di-
graphs. In this paper, we utilize a similar procedure to find
out the set that yields the highest accuracy.

We first begin with the most common 4 digraphs (he,
re, th, an) using the flight time and dwell time features.
The digraph sets in this study are formed statistically using
the text typed by the users. The most common ones are
iteratively selected and partitioned into sets as follows:

4 digraphs: hrta/eehn
6 digraphs: hrtate/eehnor
8 digraphs: hnhrtate/adeehnor
12 digraphs: hnhrvtlaiteo/adeeehlnnorr
14 digraphs: hnhrvntalaiteo/adeeeghllnnorr
16 digraphs: hnhrvntalaeiteoo/adeeeghllnnnorru

False positive rate
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
ru

e
p

o
si

ti
ve

 r
at

e

0.4

0.5

0.6

0.7

0.8

0.9

1

hrta/eehn
hrtate/eehnor
hnhrtate/adeehnor
12 digraphs
14 digraphs
16 digraphs
19 digraphs
27 digraphs

Figure 1: ROC by the most common digraphs

19 digraphs: hnhrtvntalaeiteoiao/adeeeeghllnnnorrstu
27 digraphs: hlnhlmrtvnttalaeioctaeoiaio/aadeeeeeeghillnnnnoorrrsttu

The most common digraphs are displayed in a way that
the first letter is on the left side and the second letter is on
the right side of the backslash (/), e.g., the most common 6
digraphs are he, re, th, an, to, er. Fig. 1 shows how receiver
operating characteristics (ROC) change by the number of
most common digraphs. ROC is a heavily used statistics in
machine learning to illustrate the performance of a classi-
fier as its discrimination threshold changes [17]. The area
under the curve (AUC) describes the likelihood that a ran-
domly chosen legitimate data point is classified as positive,
is higher than that of a randomly chosen negative example.
More information about the ROC analysis can be found in
[4]. In short, high AUC value represents a good differentia-
tion capability of a classifier.

Digraph set Kernel Scale Training Time Testing Time AUC EER %
hrta/eehn 0.31 0.12 0.0077 0.9947 2.94

hrtate/eehnor 0.36 0.20 0.0128 0.9973 2.58
hnhrtate/adeehnor 0.46 0.28 0.0169 0.9979 2.94

12 digraphs 0.54 0.55 0.0275 1 0
14 digraphs 0.56 0.67 0.0379 1 0
16 digraphs 0.65 0.84 0.0448 1 0

Table 3: Computational cost of the digraph sets

Accordingly, we can observe in Fig. 1 that as we include
more digraphs, the trendline gets closer to the corner and
AUC approaches to 1, which is the ideal condition. How-
ever, the drawback of increasing the number of digraphs
is that it has a negative effect on performance because the
number of features increments by a factor of 3 as we add
another digraph (see Feature Selection in Section 3). For
instance, training with 19 digraphs for all users takes 23.9
seconds yielding 0.979 AUC; while 27 digraphs takes 54.5
seconds yielding 0.996 AUC with an only 1.7% improve-
ment.

To overcome the performance degradation caused by the

high number of digraphs, we rather optimize the kernel
scale described in Eq. 2. Our experiments show that we can
achieve better results with less number of digraphs by set-
ting a proper and fine-tuned kernel scale value. Therefore,
we iterate over numerous kernel scale values using differ-
ent number of digraphs plotted in Fig. 1. In result, we
surprisingly find out that each digraph set has its own op-
timal kernel scale, and achieves perfect accuracy with mul-
tiple digraph set and kernel scale. In Fig. 2, we plot the
AUC with respect to various kernel sizes. From the figure,
we conclude that as we include more digraphs to differenti-
ate users from keystroke dynamics, the optimal kernel scale
shifts forward accordingly. The reason being is that as more
digraphs are included, more features are extracted, and thus
higher variance occurs among the values. Therefore, it is
consistent to reach the perfect accuracy (AUC = 1) with
higher kernel scales as we increase the number of digraphs.

Kernel scale
0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
re

a
u

n
d

er
 t

h
e

cu
rv

e
(A

U
C

)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

hrta/eehn
hrtate/eehnor
hnhrtate/adeehnor
12 digraphs
14 digraphs
16 digraphs

Figure 2: AUC by kernel size

Furthermore, we observe that there is not a single pre-
cise value resulting in an AUC value of 1 in the experiments
which we run with high number of digraphs. Instead, there
is a range of kernel scale values that yields 1.0 AUC. The in-
tervals for 12, 14 and 16 digraphs are [0.49 – 0.54], [0.54 –
0.6] and [0.59 – 0.66], respectively. We interpret this result
as follows: A high number of digraphs, and consequently
more features in training stage add tolerance to the recog-
nition process. Though it takes more time to generate the
separating hypersphere of the legitimate data, and shrink it
to a smaller space, at that level, it becomes more achievable
to scale and play around with the variance of the surround-
ing sphere.

Now that we have multiple pairs that have 100% accu-
racy, it is desirable to have a table that exhibits the compu-
tational costs of the experiments for an arbitrary user. In
Table 3, we show the time elapsed in the training and test-
ing stages of the digraph sets along with their kernel scales
which give the highest AUC value. We run each experiment
with the same parameters 100 times and take the average
of the resulting durations on a MacBook Pro with 2.5 GHz
Intel Core i5 processor and 8GB RAM. For the kernel scale

values that yield the same AUC, we pick the one with short-
est training time. In result, we see that use of 12 most com-
mon digraphs is sufficient to be able to fully recognize 34
users in our experiments with almost no classification er-
ror. Also, the testing time is promising and advisable for a
continuous authentication mechanism that runs in the back-
ground.

Study FAR% FRR% EER% SVM Type Text Length # of users
Yu et al. [21] 0 3.54 - One-class Short 21
Sung et al. [18] 3.85 13.10 - One-class Short 75
Sang et al. [16] - - 20/60 One/Two-class Short 10
Paula et al. [14] 9/29 7/29 - One/Two-class Short 6
Azevedo et al. [1] 9/29 7/29 - One/Two-class Short 24
Martono et al. [12] 0.95-14.7 5.7 - One-class Short 5
Killourhy et al. [10] - - 10.2 One-class Short 51
Ngugi et al. [13] - - 2 Two-class Short 12
Saggio et al. [15] 4.93 5.10 - Two-class Short 16
Giot et al. [6] - - 8.45 Two-class Short 8
Current work - - 0.0-2.94 One-class Long 34
Garg et al. [5] 96% detection rate Two-class Long 3

Table 4: Comparison of Error Rates

We provide a summary of results in Table 4 including
our current research and related works in the literature. The
EER in our study varies from 2.94% down to 0%, when 4
and 12 (or more) number of digraphs are used, respectively.
Note that AUC = 1 in ROC curves indicates 0% EER. Our
results outperform the only long-text study in the literature,
as well as most of the short-text experiments under different
conditions.

5. Conclusion

Active authentication paradigm suggests that a system
should be able to recognize and continuously verify identity
of a user. For an active authentication mechanism, a system
should authenticate a user unobtrusively and transparently
in a continuous manner. Support vector machine (SVM) is
a great tool to meet these criteria to analyze and classify
users continuously in the background.

In addition, keystroke dynamics is one of the efficient
and inexpensive behavioral biometrics that can be used to
authenticate computer users in the background while the
user is actively working at the terminal. In this paper, we
show that SVM can be utilized as the classification engine
of active authentication mechanism due to its high recogni-
tion rate and efficient processing. By using flight and dwell
times of 12 most common digraphs, we are able to distin-
guish all 34 users enrolled in the experiments with an ap-
propriate scale of RBF kernel in one-class SVM. Also, our
study demonstrates how kernel scale shifts forward as we
include more digraphs along with the computational over-
head brought by the new features. As a future work, we plan
to run experiments under various space and time conditions
to test the robustness of our algorithm. Also, design of an
adaptive SVM that can determine the optimal kernel scale
value, is in our future plans.

Acknowledgments
This research is supported in part by National Science

Foundation Grant No. CNS: 1314803. Usual disclaimers
apply. The authors like to thank the Clarkson University
research team led by Stephanie Schuckers for providing the
dataset for our experiments.
References
[1] G. Azevedo, G. Cavalcanti, and C. Filho. An approach

to feature selection for keystroke dynamics systems
based on PSO and feature weighting. 2007 IEEE
Congress on Evolutionary Computation, (OCTOBER
2007), 2007.

[2] H. Çeker and S. Upadhyaya. Enhanced Recognition
of Keystroke Dynamics using Gaussian Mixture Mod-
els. In Military Communications Conference, MIL-
COM 2015-2015 IEEE, number 2015-02, pages 1305–
1310, 2015.

[3] Q. Chang, Q. Chen, and X. Wang. Scaling Gaus-
sian RBF kernel width to improve SVM classification.
2005 International Conference on Neural Networks
and Brain, 1:19–22, 2005.

[4] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861–874, 2006.

[5] A. Garg, S. Upadhyaya, and K. Kwiat. A User Be-
havior Monitoring and Profiling Scheme for Masquer-
ade Detection. In V. Govindaraju and C. R. Rao, edi-
tors, Handbook of Statistics – Machine Learning, vol-
ume 31, pages 353–379. Elsevier, 2013.

[6] R. Giot and C. Rosenberger. A new soft biometric ap-
proach for keystroke dynamics based on gender recog-
nition. International Journal of Information Technol-
ogy and Management, 11(1/2):35, 2012.

[7] A. Graf and S. Borer. Normalization in support vector
machines. Lecture notes in computer science, 2001.

[8] R. P. Guidorizzi. Security: Active authentication. IT
Professional, (July/August):4–7, 2013.

[9] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A Practical
Guide to Support Vector Classification. BJU interna-
tional, 101(1):1396–400, 2008.

[10] K. S. Killourhy and R. A. Maxion. Comparing
anomaly-detection algorithms for keystroke dynam-
ics. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on,
pages 125–134. IEEE, 2009.

[11] J. Leggett and G. Williams. Verifying identity via
keystroke characterstics. International Journal of
Man-Machine Studies, 28:67–76, 1988.

[12] W. Martono, H. Ali, and M. J. E. Salami. Keystroke
pressure-based typing biometrics authentication sys-
tem using support vector machines. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 4706 LNCS(PART 2):85–93, 2007.

[13] B. Ngugi, B. K. Kahn, and M. Tremaine. Typing Bio-
metrics: Impact of Human Learning on Performance
Quality. Journal of Data and Information Quality,
2(2):1–21, 2011.

[14] M. V. S. Paula, E. a. Kinto, E. D. M. Hernandez, and
T. Carvalho. User Authentication based on Human
Typing Pattern with Artificial Neural Networks and
Support Vector Machine. pages 484–493, 2005.

[15] G. Saggio, G. Costantini, and M. Todisco. Giovanni
Saggio, Giovanni Costantini, Massimiliano Todisco.
Journal of Computer and Information Technology,
1:2–11, 2011.

[16] Y. Sang, H. Shen, and P. Fan. Novel Impostors Detec-
tion in Keystroke Dynamics by Support Vector Ma-
chine. Lecture Notes in Computer Science, 3320:666–
669, 2004.

[17] B. Song, G. Zhang, W. Zhu, and Z. Liang. ROC
operating point selection for classification of imbal-
anced data with application to computer-aided polyp
detection in CT colonography. International journal
of computer assisted radiology and surgery, 9(1):79–
89, jan 2014.

[18] K.-s. Sung and S. Cho. GA SVM wrapper ensem-
ble for keystroke dynamics authentication. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 3832 LNCS:654–660, 2006.

[19] P. S. Teh, A. B. J. Teoh, and S. Yue. A survey of
keystroke dynamics biometrics. The Scientific World
Journal, 2013, 2013.

[20] E. Vural, J. Huang, D. Hou, and S. Schuckers. Shared
research dataset to support development of keystroke
authentication. IJCB 2014 - 2014 IEEE/IAPR Interna-
tional Joint Conference on Biometrics, 2014.

[21] E. Yu and S. Cho. Novelty Detection Approach
for Keystroke Dynamics Identity Verification. In-
telligent Data Engineering and Automated Learning,
2690:1016–1023, 2003.

