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Abstract—In order to take a consistent snapshot of a dis-
tributed system, it is necessary to collate and align local logs from
each node to construct a pairwise concurrent cut. By leveraging
NTP synchronized clocks, and augmenting them with logical
clock causality information, Retroscope provides a lightweight
solution for taking unplanned retrospective snapshots of past
distributed system states. Instead of storing a multiversion copy
of the entire system data, this is achieved efficiently by main-
taining a configurable-size sliding window-log at each node to
capture recent operations. In addition to instant and retrospective
snapshots, Retroscope also provides incremental and rolling snap-
shots that utilizes an existing full snapshot to reduce the cost of
constructing a new snapshot in proximity. This capability is useful
for performing stepwise debugging and root-cause analysis, and
supporting data-integrity monitoring and checkpoint-recovery.
We provide implementations of Retroscope for the Voldemort
distributed datastore and Hazelcast in-memory data grid, and
evaluate their performance under varying workloads.

I. INTRODUCTION

Logging system state, messages, and assertions is a com-
mon approach to providing auditability in a single computer
system. However, naive logging-based approaches fail for the
auditability of distributed systems. For distributed systems, it
is necessary to collate and align local logs from each node
into a globally consistent snapshot [1]. This is important, as
inconsistent snapshots are useless and even dangerous as they
give misinformation.

Unfortunately current distributed snapshot algorithms are
expensive and have shortcomings. The Chandy-Lamport snap-
shot algorithm [2] assumes FIFO channels and takes a proac-
tive approach. It allows only scheduled, planned snapshots, and
as such it is not amenable for taking a retrospective snapshot of
a past state. One way to achieve retrospective snapshots is via
the use of vector clocks (VCs) [3]-[5] with space complexity
of ©(n) to be included in each message in the system. This
incurs intolerable overhead that grows linearly with n, the
number of nodes. Moreover, VCs do not capture physical
time affinity and using VCs in partially synchronized systems
implies that potentially unreachable states may be reported as
false positives. Logical clocks (LCs) [6] can be considered
for reducing the cost of VC. However, taking a retrospective
snapshot with LCs also fails because, unlike VCs, LCs capture
causality partially, and cannot identify consistent snapshots
with sufficient affinity to a given physical time.

To get snapshots with sufficient affinity to physical time, one
can potentially utilize NTP [7]. However, since NTP clocks are
not perfectly synchronized, it is not possible to get a consistent
snapshot by just reading state at different nodes at physical
clock time 7. A globally consistent snapshot comprises of
pairwise concurrent local snapshots from the nodes, but the
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local snapshots at 7" may have causal precedence, invalidating
the resultant global snapshot (cf. Figure 1). Thus, using NTP to
obtain a pairwise consistent cut requires waiting out the clock
uncertainty [8], [9], which makes it unsuitable for retrospective
snapshots.
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Fig. 1: Using NTP only fails to take consistent shot

Retroscope. To address this problem, we leverage our
recent work on hybrid logical clocks (HLC) [10]. HLC is a
hybrid of LC and NTP, and combines causality with physical
clocks to derive scalar HLC timestamps. HLC facilitates dis-
tributed snapshots because a collection of local snapshots taken
at identical HLC timestamps are guaranteed to be a consistent
cut. Using this observation, we design and develop Retroscope,
a lightweight solution for constructing consistent distributed
snapshots by collating node-level independent snapshots.

Retroscope supports taking unplanned retrospective snap-
shots of a past system state in an efficient manner. Instead
of storing a multiversion copy of the entire system data,
this is achieved efficiently by maintaining a configurable-size
sliding window-log at each node to capture recent operations.
In addition to instant and retrospective snapshots, Retroscope
also provides incremental and rolling snapshots that utilizes an
existing full snapshot to compensate the cost of snapshot ex-
ploration in proximity. After a retrospective snapshot is taken
at a recent past time 7', the cost of taking snapshots at T'+ k,
for small values of k, becomes negligible. Using incremental
and rolling snapshots, Retroscope supports performing step-
wise debugging, root-cause analysis, data-integrity monitoring,
and checkpoint-recovery. A devops team can use Retroscope
to explore a problem by stepping through a time interval of
interest. Retroscope can also help identify a clean snapshot,
where data integrity constraints hold, in order to recover the
system with minimal lost updates.

We design and develop Retroscope as a standalone library
so it can be easily added to existing distributed systems. Our
Retroscope library implementation is available on github as an
opensource project [11]. To showcase Retroscope and evaluate
its performance, we provide two case studies: Retroscoping
Voldemort, and Retroscoping Hazelcast.



Retroscoping Voldemort. Voldemort [12] is a popular
opensource system used in LinkedIn [13], that implements a
Dynamo-like highly available distributed key-value store [14].
Our Retroscope instrumentation of Voldemort leverages the
Retroscope library functionality and required less than 1000
lines of code to be added to the data-store. Retroscoped
Voldemort maintains a sliding window log for capturing recent
events, and enables any client to initiate a snapshot for time
T within this window-log. When a snapshot is requested, this
window-log and the database state is used for constructing the
snapshot for the requested time. For a 2GB Voldemort database
maintained over a 10 node cluster, taking and finalizing a
snapshot for current time, 7},,,,, requires ~15 seconds. After
a snapshot is taken, it takes only ~100msecs for taking an
incremental snapshot in the vicinity of that snapshot. The
snapshots can go back to ~10 minutes in the past. Going
further in the past increases the window-log size, increasing
the snapshot completion time. Certain optimizations, such
as periodic window-log compaction, deferred snapshots, and
speculative snapshots, help improve the performance.

Retroscoping Hazelcast. Hazelcast [15] is a popular
opensource in-memory data grid system. Our Retroscope
instrumentation for Hazelcast, tested with 1GB data in a 3
nodes cluster, has only 7.8% overhead when maintaining the
window-log with a high throughput 100% write workload.
An invoked snapshot incurs up to 7.3% overhead on the
throughput during the snapshot completion time. Current state
snapshots require little time to finish, ~100msec, because they
are taken in-memory. Snapshots that explore history need more
time. For instance, a high throughput 100% write workload
causes the window-log to grow fast, making a snapshot of 1
hour in the past take as long as 45 seconds to complete.

Outline of the rest of the paper. We describe HLC
timestamping next. In Section III, we explain the basic mech-
anisms of Retroscope snapshots. In Section IV we present our
Retroscope implementation for Voldemort and Hazelcast. We
evaluate and quantify the performance of our Voldemort and
Hazelcast snapshot services in Sections V & VI. We discuss
extensions in Section VII. We review related work before our
concluding remarks.

II. HLC TIMESTAMPING

Logical clocks (LCs) satisfy the logical clock condition:
if e hb f then LC.e < LC.f, where hb is the happened-
before relation defined by Lamport [6]." This condition implies
that if we pick a snapshot where for all e and f on different
nodes LC.e = LC.f, then we have —(e hb f) and —(f hb e),
and therefore the snapshot is consistent.”However, since LC
timestamps are driven by occurrences of events, and the nodes
have different rate of event occurrences, it is unlikely to find
events at each node with the same LC values where all are
within a given physical clock affinity.

'Event e happened-before event f, if e and f are on the same node and e
comes earlier than f, or e is a send event and f is the corresponding receive
event, or is defined transitively based on the previous.

2NTP violates the logical clock condition. In Figure 1, e hb f but the NTP
timestamp of e, pt.e, is greater than that of f, pt.f.
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Fig. 2: Example of HLC operation with € = 2 on 3 process.
Dashed lines denote the physical clock ticks with timestamp
for each process next to it. HLC time is written above each
event in the “/,¢” format.

Since HLC [10] is a hybrid of NTP and LC, HLC satisfies
the logical clock condition: if e hb f then HLC.e < HLC.f.
Thus, a snapshot where, for all e and f on different nodes,
HLC.e = HLC.f is a consistent snapshot as shown in Figure 2.
Moreover, in HLC since logical time is driven by the physical
time, it is easy to find events at each node with the same
HLC values where all are within sufficient affinity of the given
physical time.

HLC implementation. Figure 2 illustrates HLC operation.
At any node j, HLC consists of [.j and c.j. The term [.j
denotes the maximum physical clock value, p, that j is aware
of. This maximum known physical clock value may come from
the physical clock at j, denoted as pt.j, or may come from
another node k via a message reception that includes [.k. Thus
given that NTP maintains the physical clocks at nodes within
a clock skew of at most €, [.j is guaranteed to be in the range
[pt.j,pt.j + €]. The second part of HLC, c.j, acts like an
overflow buffer for [.j. When a new local or receive event
occurs at j, if [.j stays the same 3 then in order to ensure the
logical clock condition c.j is incremented, as HLC.e < HLC. f
is defined tobe l.e < I.fV(l.e =1.f Ac.e < c.f). On the other
hand, c.j is reset to O when [.j increases (which inevitably
happens in the worst case when pt.j exceeds [.j). The value
of c.j is bounded. In theory, the bound on c.j is proportional to
the number of processes and ¢, and in practice c.; was found
to be a small number (< 10) under evaluations [16].

Our HLC implementation in Java is based on the HLC
implementation of CockroachDB [17] in Go. HLC can fit [.j
and c.j in 64 bits in a manner backwards compatible with
the NTP clock format [7] and can easily substitute for NTP
timestamps used in many distributed systems. HLC is also
resilient to synchronization uncertainty: The only effect of
degraded NTP synchronization is to increase the drift between
[ and pt values and to introduce larger c values.

ITI. RETROSCOPE SNAPSHOTS

Retroscope keeps a local log at each node to record the re-
cent state changes. This log is maintained as a sliding window,
and each state change in the window-log is accompanied by
an HLC timestamp. By ensuring that all nodes roll back to the

3This can happen if 1.5 is updated with 1.k from a received message, and
pt.j is still behind [.j.
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Fig. 3: Instant distributed snapshot.

same HLC time, Retroscope achieves a consistent cut. In this
section, we present different flavors of Retroscope snapshots,
including the instant and retrospective snapshots, and their
derivatives, incremental, rolling, and concurrent snapshots.

A. Snapshot Models

Instant snapshots. Figure 3 depicts our distributed snap-
shot system with logs at each node. Any node can become
the snapshot initiator. The initiator starts an instant snapshot
at the current HLC time at that node, 7;,,,,, and broadcasts
messages to other nodes. Once a node receives the message,
at time 7)., T} > T}, 0, it removes the bound on the growth of
its local window-log and starts copying its local state/database
for the snapshot. We do not freeze the state/database during
copying in order to keep the nodes available for serving normal
operations. The copying of local states finishes at different T’
times at the nodes. However, since each state transition has
been recorded to the window-log with an HLC timestamp,
this allows us to roll back any changes occurring after 7},,.,
in order to arrive the globally consistent snapshot at time 7}, 5y,
Figure 3 uses a green-dashed arrow to illustrate the backward
application of the window-log until reaching 7}, -

Upon successfully finishing the local snapshot, the nodes
report back to the initiator. Once the initiator receives all acks
from the nodes, the global snapshot has been taken. Local
snapshots are not transmitted to the initiator unless explicitly
requested. For example, for checking whether a conjunctive
predicate is violated, it would suffice to send the information
about whether the local predicate is true at that local snapshot.
A distributed reset service will also benefit from the in situ
local snapshots since the system is to be reset on mostly the
same set of machines.

Partial snapshot may result in case of a node failure or a
lost or delayed message: if a node receives a snapshot message
very late, then its window-log may have moved beyond the
requested point, and it may not be able to take that snapshot.
If partial snapshot does not provide sufficient information, the
initiator can take another snapshot.

Retrospective snapshots. The natural extension to the
instant snapshot protocol is to allow for retrospective snapshots
to examine system state at some time Tpqer < Tpow. The
procedure to take a retrospective snapshot remains the same
as with the instant snapshots except that the system needs
to traverse further along the window-log. Figures 4a and 4b
illustrate this comparison. The window-log size can be tuned
to provide a compromise between resource utilization and the
needed depth of retrospection. It is also possible to persist the
window-log to disk to allow going further in the past.
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Fig. 5: Backward-incremental snapshot using bidirectional
windowed-log on a single process.

Incremental snapshots. Taking multiple retrospective
snapshots in succession can help examine how system states
evolved, but that would be wasteful. To perform this in a
time/space efficient manner, Retroscope provides forward-
incremental and backward-incremental snapshots that capture
the system state after and before a given base snapshot re-
spectively. Figure 5 illustrates taking a backward-incremental
snapshot to arrive to a time 7} using a snapshot at time
Tpast as the base point. In order to get a snapshot at Ty, it
is unnecessary to traverse the entire log backwards from the
current state, and instead the system can just undo the changes
captured in the log between 7},s: and T, reducing processing
time of the snapshot. In addition, disk storage can be saved by
only keeping the changes between the base point and the new
snapshot, albeit at the increased computational cost incurred
upon snapshot retrieval.

Rolling snapshots. Monitoring and debugging services
can benefit from a snapshot that can quickly move through
the states of a distributed system. For applications, such
as root-cause analysis, that examine the snapshots one at a
time without the need to go back, keeping many incremen-
tal snapshots would be wasteful. Instead, rolling snapshots
provide the ability to progress from one state to the next
without preserving the prior snapshot, reducing the storage
and processing time needed for long chains of snapshots.

Multiple concurrent snapshots. Retroscope allows for
multiple initiators to take overlapping or concurrent snap-
shots. As an optimization, Retroscope can detect concurrent
snapshots running on the node and convert some of them to
incremental or backward-incremental snapshots in reference to
one or more of the currently executing snapshots.

B. Snapshot Limitations

Channel state snapshot. Capturing channel states can
be managed by employing a similar window-log mechanism.
However, for full generality, both sent and received messages
should be logged at each node. While some optimizations are
possible in maintaining these messages log (such as, using
pointers in lieu of data duplication, and recomputing instead
of storing), these additional logs can unduly tax the system



TABLE I: Basic Retroscope API

Method Description
HLC Management
timeTick() HLC time tick for local event

timeTick(HLCTime) HLC time tick caused by remote event with

a timestamp of HLCTime

wrapHLC(message) Performs an HLC time tick for local event
and prepends it to the message

unwrapHLC(message) Gets HLC from message, performs HLC
time tick and returns the new HLC time

Log Management

appendToLog(logName, | Appends a change of item K: 0ldV — newV

K, oldV, newV) to logName

computeDiff(logName, Computes a difference between the current

timelnPast) and prior state at timelnPast for logName

computeDiff(logName,
startTime, endTime)

Computes a difference between states at
startTime and endTime for logName

resources. Retroscope implementation does not capture the
channel states. The lack of channel states, however, does not
degrade the usefulness of our snapshots for many applications.
Invariant predicates for distributed systems are often written
over process states, rather than referring to the channel states.
This is because, channels are unreliable in distributed systems,
and important send/receive messages are encoded as process
state anyways. In particular, AP systems in CAP categoriza-
tion [18] are designed to be oblivious to channel state, and
employ mechanisms like gossip to tolerate inconsistencies
from lost messages and partitions.

Undo Limitations. While most operations are easy to
record in the window-log and undo, operations that involve
intrusive change to the system state are exceptions to this rule.
For example, dropping an entire database/table would require
Retroscope to place the table into the window-log in order
to be able to revert the operation. Even though the window-
log may allocate more storage by using disk instead of RAM,
keeping such large items would impact the performance and
increase the storage requirements.

IV. IMPLEMENTING RETROSCOPE

We implement Retroscope in Java as a standalone library.
Table I summarizes the Retroscope APIL.

HLC Management API provides functionality to manage
HLC by invoking timeTick() and timeTick(HLCTime) meth-
ods. To accommodate for various architectures and network
protocols, Retroscope also provides additional helper methods
to work with timestamps in different representations, such as
64-bit integer or slice of a byte stream.

The window-log API constitutes of appendToLog and com-
puteDiff methods. Append functionality allows an application
to record the changes to its state in Retroscope’s in-memory
window-logs. These logs use a sliding window and provide
multiple ways to control the maximum size, including trun-
cating the state history after a given duration or erasing the
old history when the size of the log reaches a given threshold.
With the help of computeDiff methods, Retroscope users can
calculate the difference between any two points in the log.
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Fig. 6: Redundancy that exists in the backward traversable log.
All operations after T, are shadowed by the results of traversal
from T to T}, ou

Such differences can later be applied to a current state to get a
full snapshot or to an existing snapshot to achieve incremental
or rolling snapshot.

As the log is traversed by computeDiff, we may encounter
multiple operations on the same key, but only the last operation
traversed for a key will have an impact on the final state. Such
operation shadowing is illustrated in Figure 6. With compute-
Diff, Retroscope eliminates the redundancy and compacts the
log into the key-value map of changes between two log points.
The efficiency of the compaction depends on the workload and
the size of a compaction window. Many real-world workloads
exhibit the tendency to access certain items more often, creat-
ing access hot-spots that benefit the compaction, as redundant
same-key operations can be eliminated.

The following formula gives a rough estimate for the
memory required by the window-log on a single machine in
the distributed system: S; = AtR,(2S;+ Sk +Syrc+S,). St
is the total size of the log, R, is the average rate of log append
operations per second, .S; is the average size of the data in the
log item, Sj is the average size of the item key, Sy ¢ is the
size of HLC timestamp, S, is the size of various overheads
due to the implementation and system requirement, and At is
the duration of the log window in seconds. In our Retroscope
implementation, Sy is 8 bytes and S, is no less than 152
bytes and depends on JVM settings and paddings incurred due
to the data.

A. Retroscoping Voldemort

Here we describe how we add the retrospective snapshots
to Voldemort key-value datastore [12] using our Retroscope
library. Voldemort is an open source implementation of Ama-
zon’s Dynamo [14], and is used at LinkedIn. Voldemort
optimistically replicates data across multiple nodes, and falls
under the AP system categorization [18], as it favors avail-
ability in the presence of network partitions. It uses version
vectors along with physical clock timestamps to detect and
resolve inconsistencies in the data that may arise due to the
partitions or node failures. Our changes to the system were
minimal, totaling around 1000 lines of code for adding HLC
to the network protocol, recording changes in the Retroscope
window-log, performing snapshot on BDB JE storage, and
adding snapshot API to the administrative client.

Adding HLC. Figure 7 depicts the high level architecture
of Voldemort snapshot system. Voldemort keeps the inter-
server communication to a minimum. In the typical usage
pattern of Voldemort’s Java API, a client is directly responsible
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for replicating an item to a set of nodes associated with the
item’s key.*With this replicating scheme, Voldemort nodes
keep an indirect communication with each other through
clients. However, HLC is still functional in this configuration,
as the client contacts the nodes and pass the timestamps along
with each message.

The snapshot initiator is an HLC-enabled administration
application that can transmit the snapshot request for a specific
HLC time to all the nodes in the cluster. The initiator can also
check the progress of snapshot at each node and restart the
snapshot if needed. Other clients are oblivious to a snapshot
being taken in the system and continue normal operation.

HLC time is kept within the Retroscope as we use the library
to perform time ticks for local events and encode timestamps
for network transmission. We also replace NTP timestamp
associated with each item with HLC timestamps.

Implementing the window-log. Voldemort nodes use
Berkeley DB Java Edition (BDB) database as the underlying
storage. We considered using BDB’s log for capturing op-
erations to be reversed, however, in the end, we went with
a more general approach and used in-memory window-log
provided by Retroscope. Not relying on BDB’s log enabled
us to improve the performance by maintaining the window-
log in-memory and not needing to read from disk. In addition,
BDB log cleaning was a problem to be managed, and could
have negatively impacted the disk utilization.

Taking a snapshot. Figure 8 illustrates the execution
stages of a retrospective snapshot in Voldemort, for both full
and rolling/incremental snapshots. In the data copy stage, we
obtain a copy of the data to be used for the snapshot. This
copy may not correspond to the requested snapshot time.
Window-log compaction phase is responsible for computing

4The Python API enables server-side routing, however it was not supported
by Voldemort, and had problems when we tried to use it.

the difference between the data obtained earlier and the desired
snapshot time. This step is handled by Retroscope library.
Window-log application step modifies the data obtained in the
first step by replaying the computed differences to reach the
state at the requested time. A full snapshot is one where we
create a full backup of the current database and then replay
the window-log backwards until we reach the requested time.
A full snapshot requires all three stages, and it produces a
complete, ready to use copy of underlying Voldemort storage.

A rolling or incremental snapshots use another snapshot as
the reference base, thus eliminating the need to perform an
expensive data copy every time. A rolling snapshot performs
only the last two stages of the snapshot process and applies
the differences between base snapshot and new desired time
to the base, replacing the original snapshot in the process with
the one for requested time.

Similarly, incremental snapshots only perform the com-
paction phase, after which the compacted log is saved for fu-
ture use along with the information about the parent snapshot.
In case an incremental snapshot needs to be used, the system
takes the compacted log difference between the two snapshots
and computes the full state of the system by applying the
changes recorded in the compacted log to the base snapshot.
The main advantage of this approach is the small overhead at
the snapshot taking time and low storage requirements. Next
we describe the phases of the retrospective snapshot in detail.

Data copy. Retroscope makes a copy of live database
without the need to lock the datastore and deny client requests.
For this, it follows the procedures outlined in Oracle’s docu-
mentation for BDB on how to perform a hot database backup
[19]. The BDB captures all the data and data changes in a
sequence/succession of write ahead log files that frequently
undergo cleaning to eliminate all old values masked by the new
writes to conserve disk space. Upon receiving the snapshot
request at time 7;., Retroscope makes BDB to flush all changes
to disk and close all of its existing log files, so that no further
data mutations are written to those log files. At this point the
BDB log captures the data-state at time 7,.. Since Retroscope
allows Voldemort clients to serve requests while performing
the snapshot, all mutations happening after 7). are preserved
in a new BDB write ahead log file that is not part of the
snapshot. The backup of BDB is constructed by copying the
closed BDB log files to a new directory, effectively capturing
the state of the node at time of message receive 7.

Window-log compaction. The difference between states
of the data we have obtained and the desired snapshot is
captured in Retroscope’s window-log. We use the window-
log management API to compute the difference between the
states at ;. and snapshot time Tiy,qpshot-

Window-log application. The difference map is then used
to arrive to the target snapshot. In full snapshot, the difference
is applied to the copy of the data we have made earlier,
while rolling snapshot modifies the base point, or parent,
snapshot. Since a data copy or parent snapshots are instances
of BDB, we can open such database for changes and add all
the differences to get the data at T, qpsnor- The incremental
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Fig. 9: Hazelcast with HLC

snapshots do not utilize the computed difference right away.
Instead the difference map is stored on disk and its application
is delayed until the snapshot is requested at a later time.
We keep each node’s snapshots locally and depending on
the application, the snapshots can be used locally or made
available to the initiator and/or other nodes upon the request,
e.g., by copying the local snapshot to a mountable shared
storage, such as EBS in AWS.

B. Retroscoping Hazelcast

To showcase Retroscope snapshots in the context of a
distributed in-memory data store, we implemented Retroscope
as an internal service in Hazelcast [15], a popular open-source
in-memory data grid. The Hazelcast API provides several
distributed data structures build on top of the NodeEngine
with RPC service. These data structures are represented as
sets of key-value records internally. Hazelcast distributes the
data by partitioning the keys. Each key is hashed over a total
of 271 partitions (by default) to identify the partition container
it belongs to. The partitions are distributed equally among the
nodes of the cluster, with configurable backups of partitions
in neighboring nodes for redundancy. In the example shown
in Figure 9, the server on top holds partition ¢ and the backup
of partition j, while the bottom server maintains partition j
and the backup of .

We implemented Retroscope in Hazelcast such that when
the snapshot feature is enabled, an HLC timestamp is im-
planted in every remote operation in the RPC layer. The
RPC operations injected with HLC are not limited to data
query/updates, but also include replication, metadata ex-
change, health monitoring, etc.

Two snapshot methods were added to Hazelcast’s existing
distributed Map<K, V> datastructure: (1) snapshot (), with-
out a parameter, initiates the snapshot at 7;,,,, on the directly
connected server, then broadcasts to the entire cluster with
Thow as the HLC timestamp. (2) snapshot (¢), by given
a specific time in the past as its parameter, the snapshot is
initiated with the corresponding HLC timestamp ¢. If A is the
desired amount of time to refer back to, ¢ can be easily given
as system’s current time in milliseconds using t. — A.

We implement the snapshot operation at the partition level,
i.e. snapshots are taken concurrently within each partition. This
design choice simplifies the relation between snapshots be-
cause partitions may be moved around among member nodes.
More importantly, this also reduces the impact on normal
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operation’s overall throughput with fine-grained concurrency
control. Once a server receives a snapshot request, a snapshot
Op; is invoked on partition #i. Op; first copies the current
partition state, then traverses back the log for ¢. Each node
has an aggregator that collects all snapshots of partitions it
holds. The aggregator is also responsible for persisting the
snapshot to the disk asynchronously. Window-log in Hazelcast
implementation is bounded by a user-specified maximum size.

V. EVALUATION OF RETROSCOPE ON VOLDEMORT

We evaluate our Voldemort Retroscope implementation on
an Amazon EC2 [20] cluster of 10 instances, each with 2
vCPUs and 8 GB of RAM. A separate VM is used for gener-
ating the workload by simulating 11 clients interacting with the
system. We test Retroscope under different workloads, ranging
from 10% write to 100% write, with random item selection
unless otherwise stated. The evaluation is conducted through a
snapshot API we have exposed to the Voldemort administrative
client. The main method used is doSnapshot(HLCtime, store,
snapshotDirectory, baseDirectory), which allows taking snap-
shots in all supported modes. For instance, if baseDirectory is
empty, Voldemort performs a full snapshot, but if a parameter
is specified, the data-store will carry out either incremental or
rolling snapshot, depending on snapshotDirectory.

A. Retroscope overhead

Retroscope introduces window-log and HLC instrumen-
tation to Voldemort. In order to test how much overhead
these additions cause over the original Voldemort system, we
conduct a set of experiments on our cluster using various
database sizes, ranging from a small database of 100,000
items to a moderately large one at 10,000,000 key-value pairs.
Since most of the changes are introduced on the write path
of Voldemort, we use write intensive workloads of 50% and
100% writes to evaluate the Retroscope overheads.

Figure 10 shows the average throughput over 10 runs of
the experiment for each of the chosen database size and
workloads. Very little difference in performance is incurred
from enabling snapshot capability, despite the added overhead
of HLC timestamp in each message and the need to maintain
an in-memory window-log. For the small databases we observe
1.8% overhead in throughput, while the largest databases show
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instant snapshot at 50% write workload.

overhead of up to 10% —although we also observe bigger
variances during those tests.

We use the same set of experiments for evaluating the
latency overhead of Retroscope instrumentation, and find that
the average latency for Voldemort showed little degradation
from our additions as seen in Figure 11.

After demonstrating the overhead of Retroscope instrumen-
tation on performance, we next evaluate the overhead of ac-
tually taking a snapshot. Figure 12 illustrates how throughput
of a system is affected while instant snapshot is progressing.
Retroscope snapshots allow Voldemort to stay available for
client requests during the snapshot. Similar to our previous
experiment, the Voldemort cluster is used with a database of
10,000,000 items of 100 bytes each. Voldemort is configured
with replication factor of 2 nodes, meaning that only 2
machines in the cluster maintain the copy of each key-value
pair. We collect the throughput, average latency, and 99th
percentile latency for every 1 second of execution.

In Figure 12, we observe some performance degradation and
variance soon after the snapshot is initiated on the cluster. The
overall throughput degrades by 18%, and latency increases by
25% during the snapshot execution. We also observe a spike in
99% latency during the snapshot processing time. The decline
in performance can be attributed to multiple factors: flushing
any in-memory changes held by the underlying BDB storage
engine to disk, copying the database and writing to window-
log changes to the BDB copy. Using a separate disk to store
snapshot would alleviate some disk contention and improve
system performance.
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Fig. 13: Memory consumption of a single Voldemort node
under write load.
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B. Reach of Retroscope snapshots

Our Voldemort prototype keeps the window-log in memory,
as such the amount of RAM available to Retroscope becomes
a limiting factor for the retrospection. Here we evaluate the
memory-usage overhead of Retroscope, and its limitations on
the extent of past state reach for retrospective snapshots.

Figure 13 shows the memory usage of a single Voldemort
node with unbounded window-log serving write requests. We
include a projected log size based on our estimation formula in
Section IV. During the first 410 seconds of operation, the node
is not under memory pressure and shows high performance
of 5004 operations per second or 1251 Kb/s on average,
however as the memory consumption gets closer to a 2GB
limit, JVM spends more time in garbage collection, greatly
reducing Voldemorts performance. JVM seizes to operate
with OutOfMemoryException after 560 seconds of runtime.
Obviously, higher throughput will result in lower maximum
window-log size, but distributing the workload among the
nodes in a system will prolong the reach of retrospection
available to the operator.

Our formulaic estimation foresees that in the first 410
seconds of experiment, the window-log would require at least
1362 MB of memory. In fact, the JVM was using 1509
MB. The difference between our estimation and true memory
utilization are mostly due to the rest of the Voldemort system
not accounted in the estimate.

C. Retroscope snapshot latency

The latency of a Retroscope snapshot is correlated with how
far back it needs to reach, as snapshots going further in the
past must traverse larger log segment to compute the difference
between current and past states. Far reaching snapshots will
likely also have more data to revert, increasing the number
of disk I/O operations. Figure 14 shows the time of taking
a full snapshot of a 10 million items database under the
workloads of various write intensity. We measure the snapshot
latency as the time between issuing a snapshot request and
the time last node completes the procedure. The figure shows
an increasing cost of taking a full snapshot. As expected,
an instant snapshot, taken at O seconds back, is the fastest
one and increasing the reach of retrospection also increases
the snapshot latency. We also observe that write-intensive
workloads take longer to process snapshot. A snapshot under
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a 100% write workload takes as much as 33% longer to
complete compared to a 10% write workload. This is due
to the bigger window-log accumulated for the same time
interval. Overall snapshot latency is also impacted by BDB
JE operation. Under heavy load, BDB undergoes frequent log
cleaning, however this procedure keeps the data files open,
preventing snapshot routine from making a copy, thus a system
must wait for cleaning to complete. We employ our Retroscope
library to monitor of BDB JE activity itself and learn that
the cleaning procedure takes as much as 15 seconds on the
database this size and a single node undergoing log cleaning
negatively impacts the latency for the entire cluster.

The latency increase for longer retrospection in the previous
experiment is due to the time it takes to compute and write
larger changes to a disk. However, the high variances in BDB
operation make it difficult to observe the pattern of latency
degradation. Rolling snapshots are less susceptible to effects
of BDB cleaning. We use a 10 million items database of 75
byte items under a 10%, 50% and all write workloads with
rolling snapshots to measure the latency. Figure 15 shows a
linear latency increase as the rolling interval grows.

In order to test how frequently accessed items impact the
snapshot performance, we run a workload where 20% of
the items are accessed 80% of the time. The latency shows
improvement due to more efficient log compaction as more of
the keys in the window-log shadow each other, reducing the
amount of data written to disk. The improvement is little for
the 10% and 50% write-intensive workloads.

VI. EVALUATION OF RETROSCOPE ON HAZELCAST

To evaluate our Retroscope implementation in Hazelcast,
we conduct a series of experiments on a cluster of 3 AWS
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EC2 medium instances. Our micro-benchmark clients run in a
separate instance within the same datacenter. Each experiment
consists of 10 clients generating 100% write workload over the
same Map<K, V> object. Each write size is 100 bytes.

A. Retroscope overhead

Figure 16 shows the overhead of Retroscope instrumented
Hazelcast, compared to the original Hazelcast system in terms
of average throughput and latency. Retroscope instrumented
Hazelcast is tested under two modes: “on” means window-log
is enabled, and “off” means window-log is disabled but HLC
instrumentation is still present. Our benchmark records aver-
age throughput and latency every 10 seconds on a workload
of 10 million keys. The experiment shows that the off-mode
has a 3.9% overhead in throughput, while the on-mode has a
slightly bigger overhead of 7.8% compared to the original.

A snapshot request incurs additional overheads over the
normal Hazelcast operation. Most importantly, while the nodes
perform the data copying, they lock the keys being copied,
making all requests writing these keys to block momentarily.
To evaluate the impact of an ongoing snapshot operation
on the system throughput, we run 10 clients with 100%-
write workload, and then make one of the clients issue a
snapshot () request at the 30th second mark. Figure 17
shows that the throughput only drops 7.3% in next second
and then returns back to normal.

B. Reach of Retroscope snapshots

To evaluate how far back Retroscope full snapshots can
reach, we start the workload at time %, with ten clients sending
100% write requests. The average throughput is taken every
second. We take a snapshot of ¢y at the end of every 5 minutes,
Figure 18 shows both the latency of each snapshot and impact
on background throughput. Given 4GB physical memory and
2GB window-log limit, even in the worst case scenario of
pure write workload, Retroscope can travel back 60 minutes
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with an end-to-end snapshot latency of less than 45 seconds.
Figure 19 shows the differences between 10% and 100% write
workloads over average throughput every minute. We took a
snapshot of tg every 5 minutes, the drop of throughput due to
snapshot is less noticeable with the 10% write workload.

C. Retroscope snapshot latency

The snapshot operation latency depends mainly on the
database size, since a large database takes longer to copy all
the data. Figure 20 shows an experiment where we generate
10000 new records of 1000 bytes at every step, and measure
the snapshot latency for each of the database sizes. The red
line indicates the linear trend of end-to-end snapshot latency
with respect to increasing size of the database. At the end
of the experiment, database reaches 1GB, and the snapshot
completes in around 100 milliseconds.

The snapshot operation latency also depends on the write
workload. A heavy write workload will cause a larger window-
log that Retroscope needs to traverse back to reach T}, .
However, for instant snapshots this effect remains small com-
pared to the effect of the database size.

VII. IMPROVING RETROSCOPE PERFORMANCE

We describe four optimizations for Retroscope performance.
These techniques are orthogonal and can be combined together
for improving the performance further.

Memory Utilization. High memory utilization is a major
limiting factor for Retroscope. Reducing the memory required
to maintain the window-log will allow a higher depth of
retrospection. We can apply data compression methods to state
history to improve the log memory utilization. Our current
log implementation is realized in Java and has high memory
overhead for the internal housekeeping needs. In applications
dealing with small data items, this penalty is especially no-
ticeable. We can reduce implementation overheads by using a
lower-level language, such as C, for window-log.

Deferred snapshots. When the database size is large,
taking a snapshot at all nodes simultaneously may incur load
that reduces the throughput for the database clients. However,
Retroscope snapshot does not need to be taken simultaneously
at all the nodes. Retroscope leverages HLC timestamps so that
each node can take a snapshot individually, and the collated
snapshots still represent a consistent global snapshot. Having
a snapshot where nodes start in a deferred off-phase manner
can balance the snapshot processing in time, and flatten the
overhead of snapshot.

Deferred snapshots can be implemented using the node IDs
to dictate the snapshot order in the cluster in such a way that
no more than %k nodes fully overlap in time when taking a
snapshot. Node i+k will start the snapshot some At time after
it" node. With the deferred snapshot approach nodes with
higher IDs will be required to capture more history using the
window-log. This tradeoff makes sense if smoothly shedding
the snapshot load in time is beneficial for ensuring a high
throughput capacity for the clients.

Periodic window-log compaction. As a retrospective
snapshot extends far in the past, the window-log increases in
size. This can make the window-log compaction phase the
overwhelming factor in determining the latency of snapshot
completion, as shown in Figure 8.

One way to reduce the cost of window-log compaction
phase is to perform periodic window-log compactions in the
background. This way, when a snapshot is ordered, a compact
window-log would be readily available. This also helps reduce
the memory-usage of the window-log and can extend the reach
of retrospective snapshots. A drawback of this approach is that
it restricts the granularity of where a Retroscope snapshot can
travel in time to that of the compaction period. This tradeoff
makes sense when improving the latency of the snapshot is
more important than the precision of target snapshot time, and
we can pay a small fraction of background work for periodic
window-log compaction.

Speculative snapshots. As Figure 8 shows, a rolling
snapshot performs less work compared to a full snapshot
as it skips the data copying phase, relying on a reference
base snapshot instead. This introduces the opportunity to take
occasional speculative snapshots so that when a snapshot is
actually needed we may have a nearby reference base snapshot
to leverage. When that is the case, we can perform a rolling
snapshot and complete the request in less time.

There is a tradeoff associated with taking speculative snap-
shots: we are making a bet that an actual snapshot will be



requested soon. A good prediction for when a snapshot will be
required improves the benefit we get from speculative snap-
shots. Using historical data or identifying certain triggering
conditions for a snapshot can boost the hit rate of a speculative
snapshot. That being said, a mispredicted speculative snapshot
can also find some use as a backup.

VIII. RELATED WORK

Berkeley DB Retrospection. Retro allows past state
querying and inspection against a Berkeley DB [21]. Retro,
does not have the ability to inspect arbitrary past state, instead
all retroactive snapshots must be planned ahead of time by
issuing a snapshot now command. At a later time, users can
query the database for items in any of the past snapshots.
The system makes its own retrospective component persist on
the disk alongside the BDB log without modifying the code
responsible for the current state requests, preserving the API
compatibility with BDB. Unlike Voldemort, which uses many
independent BDB JE instances on different servers, Retro is
limited to a single BDB deployment.

Eidetic systems. FEidetic systems can recall any past state
that existed on the computer, including all versions of all files,
the memory and register state of processes, interprocess com-
munication, and network input. In [22], the authors develop
an eidetic system by modifying Linux kernel to record all
nondeterministic data that enters a process: the order, return
values, and memory addresses modified by a system call,
the timing and values of received signals, and the results of
querying the system time. The major space saving technique
in that work is to use model-based compression: the system
constructs a model for predictable operations and records only
instances in which the returned data differs from the model.
That is, the system only saves nondeterministic choices or new
input and can recompute everything else. The results in [22]
are for single CPU machines and do not account for issues in
distributed systems.

Freeze-frame file system. The Freeze-Frame File System
(FFFS) [23] uses HLC [10] to implement retrospective query-
ing on the HDFS file system [24]. FFFS uses multiple logs to
capture data changes on HDFS NameNode and DataNodes and
such logs are meant to persist to a low-latency storage, such
as an SSD. An indexing scheme is used to access the logs and
retrieve requested pages from the past. FFFS required intrusive
changes to the underlying system and replaced HDFS append-
only logs with multiple HLC-enabled logs and indexes. FFFS
records every update to data and metadata, and in effect
implements a multiversion data store. In contrast, Retroscope
focuses on low overhead design of a snapshot primitive, and
keeps a window-log for undoing recent updates to take a
retrospective snapshot.

Distributed tracing tools. There has been several work
on distributed tracing tools [25]-[30] for troubleshooting of
distributed systems. Two main challenges in tracing are that
instrumentation is decided at development time, and dynamic
dependencies in the distributed system of systems. Pivot
tracing [28] attempts to overcome these challenges by using

dynamic instrumentation and causal tracing. In particular, it
models systems events as tuples in a streaming distributed
dataset, and dynamically evaluate relational queries over this
dataset using the “happened-before join” operator.

Retroscope takes a complementary approach to the tracing
work. In a Retroscope snapshot, state across nodes is being
considered at a given physical time in a globally consistent
manner. This is particularly useful for evaluating cross-node
consistency/synchronization predicates. Pivot tracing employs
a nice SQL-like querying interface for monitoring logs. In
future work, we plan to use a similar interface to facilitate
system operators to query distributed snapshots.

Conflict handling. Last write wins rule causes problem for
distributed key-value stores that rely on NTP timestamping,
like Cassandra and Riak [31], [32]. Retroscope could help in
investigating what went a miss. As the preventative measure,
adopting HLC and substituting it for NTP would help resolve
the last write wins caused problems. Conflict-free Replicated
Data Types (CRDT) [33] provide eventually consistent com-
mutative data structures that can help deal with partitions.

IX. CONCLUDING REMARKS

We introduced Retroscope for performing lightweight, in-
cremental, and retrospective distributed snapshots. Retroscope
leverages HLC timestamping to collate node-level independent
snapshots for obtaining a coherent global consistent cut. As
such it avoids the inconsistent cut problems associated with
NTP timestamping, and the inscalability of VC timestamping
with respect to the number of nodes in the system. Retroscope
provides an efficient implementation of retrospective snapshots
by utilizing a configurable-size window-log to capture recent
operations, and avoids the cost of maintaining a multiver-
sion copy of the entire system data. Moreover, Retroscope
introduces incremental and rolling snapshots that leverage an
existing full snapshot to reduce the cost of constructing new
snapshots in that proximity. We demonstrated implementations
of Retroscope for Voldemort and Hazelcast datastores, and
evaluated their performance under different workloads.

An important use case for Retroscope is for re-establishing
data integrity after a failure or security attack. If there have
been bad inputs around time 7', the operators can revert the
datastore to a safe/clean state in the recent past of 7 to purge
the bad inputs. Since Retroscope provides rolling snapshots,
the operators can explore around the problematic time interval,
and perform step-by-step debugging and root cause analysis.
Retroscope also facilitates the reset/revert operation. Since a
Retroscope snapshot is globally consistent, it can be used
for performing a consistent reset for the entire system. After
identifying a suitable clean snapshot, in order to complete the
reset for Voldemort, the database needs to be closed, the BDB
files copied from the snapshot location into the environment
location, and the database reopened. Most of the time in this
operation is spend in copying the files, which for our 1 GB
test database takes ~8 seconds. In future work, we aim to
provide programmatic toolkit support for snapshot evaluation
and distributed reset.
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