
Multileader WAN Paxos: Ruling the Archipelago with Fast Consensus

Ailidani Ailijiang Aleksey Charapko Murat Demirbas Tevfik Kosar
Computer Science and Engineering

University at Buffalo, SUNY

Abstract

We present WPaxos, a multileader wide area net-
work (WAN) Paxos protocol, that achieves low-latency
high-throughput consensus across WAN deployments.
WPaxos dynamically partitions the global object-space
across multiple concurrent leaders that are deployed
strategically using flexible quorums. This partitioning
and emphasis on local operations allow our protocol to
significantly outperform leaderless approaches, such as
EPaxos, while maintaining the same consistency guaran-
tees. Unlike statically partitioned multiple Paxos deploy-
ments, WPaxos adapts dynamically to the changing ac-
cess locality through adaptive object stealing. The abil-
ity to quickly react to changing access locality not only
speeds up the protocol, but also enables support for mini-
transactions.

We implemented WPaxos and evaluated it across
WAN deployments using the benchmarks introduced
in the EPaxos work. Our results show that WPaxos
achieves up to 10 times faster average request comple-
tion than EPaxos due to the reduction in WAN commu-
nication.

1 Introduction

Paxos, introduced in 1989 [15], provides a formally-
proven solution to the fault-tolerant distributed consen-
sus problem. Notably Paxos preserves the safety specifi-
cation of distributed consensus (i.e., no two nodes decide
differently) to the face of concurrent and asynchronous
execution of the nodes, crash/recovery of the nodes, and
arbitrary message loss. When the conditions improve so
that distributed consensus becomes solvable, Paxos also
satisfies the progress property (i.e., nodes decide on suit-
able decision value as a function of the inputs).

0An archipelago is a chain, cluster or collection of islands. https:
//en.wikipedia.org/wiki/Archipelago

Paxos algorithm and its variants have been deployed
widely, including for Google Chubby [5] (Paxos [23]),
Apache ZooKeeper [11] (Zab [13]), and recently for
etcd [7] (Raft [21]). All of these implementations de-
pend on a centralized primary process (a.k.a., leader)
to serialize all operations and updates. During normal
operation, only one server acts as the leader, all client
requests are forwarded to that leader, and that leader
commits the requests by performing the second phase
of Paxos with the acceptors. Due to this dependance
on a single centralized leader, these Paxos implemen-
tations only support deployments in local area and can-
not deal with write-intensive scenarios across wide area
networks (WANs) well. In recent years, however, coor-
dination over wide-area (across zones, such as clusters,
sites and datacenters) has gained greater importance.
WAN coordination has become essential for database
applications and NewSQL datastores [3, 6], distributed
filesystems [8, 19, 22], and social network metadata up-
dates [4, 17].

In order to eliminate the single leader bottleneck,
EPaxos [20] proposes a leaderless Paxos protocol where
any replica at any zone can propose and commit com-
mands opportunistically provided the commands are
non-interfering. This opportunistic commit protocol re-
quires an agreement from a fast-quorum of roughly
3/4ths of the acceptors1, which means that WAN laten-
cies are still incurred. Moreover, if the commands pro-
posed by multiple concurrent opportunistic leaders do in-
terfere, the protocol requires performing a second phase
to record the acquired dependencies requiring agreement
from a majority of the Paxos acceptors.

Another way to eliminate the single leader bottleneck
is to use a separate Paxos group deployed at each zone.
Systems like Google Spanner [6], ZooNet [16], Bizur [9]
achieve this via a static partitioning of the global object-
space to different zones, each responsible for a shard

1For 2F +1 cluster, fast-quorum is F + b F+1
2 c

1

of the object-space. However, such static partitioning
is inflexible and WAN latencies will be incurred per-
sistently to access/update an object mapped to a differ-
ent zone. Moreover, in order to perform transactions
involving objects in different zones, a separate mecha-
nism (such a two-phase commit) would need to be im-
plemented across the corresponding Paxos groups.

Contributions. We present WPaxos, a multileader
WAN Paxos protocol, that achieves low-latency high-
throughput consensus across a WAN deployment.

To achieve communication-efficient WAN coordina-
tion, WPaxos adapts the “flexible quorums” idea (which
was introduced in 2016 summer as part of FPaxos [10]).
WPaxos uses the flexible quorums rule in a novel man-
ner for deploying multiple concurrent leaders across the
WAN strategically. The commit decisions for updates
are fast as WPaxos appoints the phase-2 acceptors to be
at the same zone as the leader. We present how this is
achieved in Section 2.1.

Unlike the FPaxos protocol which uses a single-leader
and do not scale to WAN distances, WPaxos uses mul-
tileaders and partitions the object-space among the mul-
tiple leaders. On the other hand, WPaxos differs from
the existing static partitioned multiple Paxos deployment
solutions, because it implements a dynamic partitioning
scheme: The concurrent leaders steal objects from each
other using phase-1 of Paxos. This object-stealing mech-
anism also enables transactions across leaders (such as a
consistent read of multiple objects in different partitions)
naturally within the Paxos updates, obviating the need
for a separate two phase commit protocol across zone-
leaders. We describe the WPaxos protocol in Section 2.2,
Section 2.5, and present the algorithm in Section 3.

With its multileader protocol, WPaxos achieves the
same consistency guarantees as in EPaxos: linearizabil-
ity is ensured per object, and serializability and causal-
consistency are ensured across objects. To quantify the
performance benefits from WPaxos, we implemented
WPaxos2 and performed evaluations across WAN de-
ployments using the evaluation benchmarks introduced
in EPaxos [20]. Our results in Section 4 show that
WPaxos significantly outperforms EPaxos, achieving up
to 5 times faster average request commit than EPaxos.
This is because, while the EPaxos opportunistic com-
mit protocol requires about 3/4ths of the Paxos acceptors
to agree and incurs almost one WAN round-trip latency,
WPaxos is able to achieve zone-local-latency Paxos com-
mits using the zone-local phase-2 acceptors.

While achieving low-latency and high-throughput,
WPaxos also achieves incessant high-availability by hav-
ing multileaders: failure of a leader is handled grace-
fully as other leaders can serve the requests previously

2Our implementation will be made available as an opensource
project on https://github.com/ailidani/paxi

processed by that leader via the object stealing mecha-
nism. Since leader re-elections are handled through the
Paxos protocol, safety is always upheld to the face of
node failure/recovery, message loss, and asynchronous
concurrent execution. We discuss fault-tolerance proper-
ties of WPaxos in Section 5. Finally, while WPaxos helps
most for slashing WAN latencies, it is also possible to de-
ploy WPaxos entirely inside the same datacenter across
clusters for its high-availability and throughput benefits.
WPaxos provides throughput benefits by load-balanced
parallel deployment of coordinating multileaders across
the object space.

2 WPaxos

In this section we present a high level overview of
WPaxos, and relegate a detailed explanation of the pro-
tocol to Section 3. Table 1 summarizes some common
terminology used throughout the rest of the paper.

2.1 WPaxos Quorums
WPaxos relies on flexible quorums [10]. This surpris-
ing result showed we can weaken Paxos’s assertion that
“all quorums should intersect” to instead “only quorums
from different phases should intersect”. That is, major-
ity quorums are not necessary for Paxos, provided that
phase-1 quorums (Q1s) intersect with phase-2 quorums
(Q2s). Flexible Paxos allows trading off Q1 and Q2 sizes
to improve performance. Assuming failures and result-
ing leader changes are rare, phase-2 (where the leader
tells the acceptors to decide values) is run more often
than phase-1 (where a new leader is elected). Thus it is
possible to improve performance of Paxos by reducing
the size of Q2 at the expense of making the infrequently
used Q1 larger.

WPaxos adopts the flexible quorum idea to WAN de-
ployments for the first time. Our quorum concept de-
rives from the grid quorum layout, shown in Figure 1a,
in which rows and columns act as Q1 and Q2 quorums
respectively. An attractive property of this grid quorum
arrangement is Q1+Q2 does not need to be greater than
N, the total number of acceptors, in order to guarantee in-
tersection of any Q1 and Q2. Since Q1s are chosen from
rows and Q2s are chosen from columns, any Q1 and Q2
are guaranteed to intersect even when Q1+Q2 < N.

In WPaxos quorums, each column represents a zone
and acts as a unit of geographical partitioning. The col-
lection of all columns/zones form a grid. In this setup,
Q1 quorums span across all the zones, while Q2s remain
bound to a column, making phase-2 of the protocol oper-
ate locally without a need for WAN message exchange.
We also relax some of the grid quorum constraints for Q1
to get a more fault-tolerant and efficient alternative. Our

2

Table 1: Terminology used in this work

Term Meaning
Zone Geographical isolation unit, such as datacenter or a region
Node Maintainer of consensus state, combination of proposer and acceptor roles

Leader Sequencer of proposals. Maintains a subset of all objects
Ballot Round of consensus, combination of counter and zone ID and node ID

Slot Uniquely identifies a sequence of instances proposed by a leader
Phase-1 Prepare phase, protocol to establish a new ballot/leader
Phase-2 Accept phase, normal case

(a) Grid quorums with Q1s in
rows and Q2s in columns

(b) WPaxos quorum with 2
nodes per region in Q1

Figure 1: Grid and WPaxos quorums. (a) Regular grid
quorum. (b) WPaxos quorum with one possible Q1 of 2
nodes per region.

quorums no longer use rigid grid rows for selecting Q1s,
instead we pick nodes from each column, no matter their
row position.

Figure 1b shows the WPaxos flexible grid deployment
used in this paper. (As we discuss in Section 5, it is pos-
sible to use alternative deployments for more improved
fault-tolerance.) In this deployment each zone has 3
nodes, and each Q2 quorum is the 2 of the 3 nodes in a
zone. The Q1 quorum, consists of 2 flexible rows across
zones, that is, it includes any 2 nodes from each zone.
Using a 2 row Q1 rather than 1 row Q1 has negligible
effect on the performance, as we show in the evaluation.
On the other hand, using a 2 row Q1 allows us to better
handle node failures within a zone, because the 2-node
Q2 quorum will intersect the Q1 even in the presence of
a single node failure. Additionally, this allows for Q2
performance improvement, as a single straggler will not
penalize the phase-2 progress.

2.2 WPaxos Protocol Overview

WPaxos is a multi-leader protocol flexible quorum,
which contrasts with single-leader approach taken in
FPaxos. Every node in WPaxos acts as a leader for a
subset of all objects in the system. This allows the proto-
col to process requests for objects under different leaders
concurrently. Each leader maintains a single log for all
of its objects, making the objects linearizable with re-
spect to each other for the time the objects remain under

Figure 2: Normal case messaging flow of WPaxos

the same leadership. Unlike a single shared log, objects
get their own ballot numbers that do not depend on each
other.

Basic WPaxos protocol is broken down into two dis-
tinct phases, and each phase operates on a separate quo-
rum. Phase-1 of the protocol, or the object-stealing phase
is responsible for moving the ownership of the object be-
tween different leaders, while phase-2 replicates the ob-
ject requests on some Q2. Phase-2 can execute multiple
times until some other node steals the object.

The phase-1 of the protocol starts if a client has a re-
quest for a brand new object that is not in the system or
the node needs to steal an object from a remote leader.
This phase of the algorithm causes the ballot number to
grow for the object involved. It is very similar to regular
Paxos phase-1, however, WPaxos performs it on some
global Q1 quorum. Successful completion of phase-1
transitions the protocol into phase-2, which in turn will
run on a local Q2 quorum. This stage is used to decide
the operations on the particular object. WPaxos repeats
phase-2 multiple times, incrementing the slot number on
each iteration.

Figure 2 shows the normal operation of both phases,
and also references each operation to the algorithms in
Section 3.

3

2.3 Immediate Object Stealing

WPaxos dynamically partitions objects across leaders in
various zones, creating use cases when a client needs
an object that belongs to a different zone. Our protocol
makes this remote operation transparent for the client,
allowing the client contact any local node with a remote
request instead of reaching out across zones. The node,
however, needs to deal with such request in a special
manner, because it cannot process the request locally: it
needs to steal the object from the current leader in order
to carry out the request. Node consults its internal cache
to determine the last ballot number used for the object
and starts the WPaxos phase-1 on some Q1 quorum with
a larger ballot. Object stealing will be successful if the
local node is able to out-ballot the existing leader. Most
of the times this is achieved in just one phase-1 attempt,
provided that the local cache is current and the remote
leader is not engaged in another phase-1. Once the ob-
ject is stolen, the old leader will not be able to act on it,
since the object is now associated with a higher ballot
number than the ballot it had at the old leader. This is
true even when the old leader was not in the Q1 when
the key was stolen, because the intersected node in Q2
will reject any object operations attempted with the old
ballot. Object stealing procedure may occur when some
commands for the objects are still in progress, therefore,
a new leader must recover any accepted, but not yet com-
mitted commands for the object.

WPaxos maintains separate ballot numbers for all ob-
jects, making sure that object stealing is not negatively
affecting other objects. Our original design kept a single
ballot number for all objects maintained by the leader,
thus stealing the object required a node to out-ballot all
objects of a remote leader. This created a leader duel-
ing problem in which two nodes try to steal objects from
each other by constantly proposing with higher ballot
than the opponent, as shown in figure 3a.

Separate ballot numbers for different objects allow us
to reduce ballot contention, although it can still happen
when two leaders are trying to take over the same object
currently owned by a third leader. To finally mitigate the
issue we have placed two additional safeguards: resolv-
ing ballot conflict by zone ID and node ID in case the
ballot counters are the same (figure 3b), and implement-
ing a random back-off mechanism in case a new dueling
iteration starts anyway. The overheads of maintaining
per-object ballots are negligible and far outweigh the per-
formance penalty incurred by having per-leader ballots.
For instance, one million objects would only require 16
Mb of memory to store ballots: 8 Mb for a 64-bit key and
8 Mb more for actual ballots.

(a) Ballot conflict between
two nodes

(b) Ballot conflict is resolved
by comparing ids

Figure 3: Two nodes compete on the ballot number: (a)
prepare with the same ballot number, causing phase-1 to
restart for both; (b) ballots are ordered by zone ID and
node ID when counters are the same, one node wins.

(a) Initial leader election for X (b) Leader for X

(c) Heavy cross-region traffic (d) Object is migrated.

Figure 4: Leader election and adaptive object stealing:
(a) WPaxos starts the operation with no prior leader for
the object X when operation OpZ2 is issued in Z2; (b)
initial leader is elected in the zone of the first request; (c)
heavy traffic OpZ3 from Z3 must do WAN communica-
tion; (d) object X is stolen to Z3.

2.4 Locality Adaptive Object Stealing

The basic protocol migrates the object from a remote
region to a local region upon the first request. Unfor-
tunately, immediate approach may cause a performance
degradation once the object is frequently needed in more
than one zone and incurs WAN latency penalty of travel-
ing back-and-forth between zones.

With locality adaptive object stealing we can delay
or deny the object transfer to a zone issuing the request
based on WPaxos object migration policy. The intuition
behind this approach is to move objects to a zone whose
clients will benefit the most from not having to commu-
nicate over WAN, while allowing clients from less fre-
quent zones to send their requests over WAN to the re-
mote leaders. In this adaptive mode clients still commu-
nicate with the local nodes, however the nodes may not
steal the objects right away, instead choose to forward

4

the requests to the remote leaders.
Our majority-zone migration policy aims to improve

the locality of reference by transferring the objects to
zones sending out the highest number of requests for
the objects, as shown in Figure 4. Since the current ob-
ject leader handles all the requests, it has the information
about which clients access the object more frequently. If
the leader Lo detects that the object X has more requests
coming from a remote zone, it will initiate the object han-
dover by communicating with the node Ln, and in its turn
Ln will start the phase-1 protocol to steal the leadership
of the object.

2.5 Minitransactions
Linearizability guarantees provided to the objects under
the same leader combined with the ability for a node to
steal the objects enable WPaxos to support Sinfonia-style
minitransactions [1]. Minitransactions are achieved by
moving all objects involved in the transaction to a single
leader, before processing the transaction.

This transaction process starts with a client sending a
minitransaction request to a node it already believes to
have the most of the required objects. In its turn, the
leader will steal the missing objects and once all objects
are collected, the minitransaction can proceed as a sin-
gle command. This approach, however, is not without
a penalty for overall system performance, since stealing
objects disrupts the locality balancing.

3 Algorithm

Each WPaxos node is a deterministic state machine that
maintains a set of variables and an internal datastore. We
assume a set of nodes communicating through message
passing in an asynchronous environment. The protocol
updates the states of its variables when processing the in-
coming messages, and eventually commits and executes
a sequence of commands Σ against the datastore. For ev-
ery leader there is an unbounded sequence of instances
in Σ, identified by an increasing slot number s. At most
one command will be decided in any instance. We as-
sume the commands are defined to access one or multiple
objects. In this section, we present the basic algorithm
that each command γ only access one object, identified
by γ.o. Every node α leads its own set of objectsOα and
provides linearizability for all objects in that set. Nodes
also replicates a complete state of all other leaders in the
system. Each node α keeps an index I, mapping each
object o to the leader of o known to α , i.e. I[o] = λ .
When a node tries to acquire the leadership of a new ob-
ject, it adds the object and all following corresponding
requests into the set Π until the phase-1 of protocol com-
pletes. Nodes also maintain a set of ballot numbers b for

all objects, and keep a history H of all accesses for ob-
jects to be used for the locality-adaptive object-stealing.
A summary of WPaxos notation is given as follows:

λ ,α,β Nodes
λ usually represent command leader

κ Client
γ,δ Commands

b Set of ballot numbers
s Set of slot numbers

Π Set of phase-1 requests
Σ Sequence of instances

I[o] Index, mapping objects to leaders
Oλ Set of objects led by λ

H Access history
• Concatenation operator

〈type,γ,b[o],s〉 General message format.

Algorithms 1-5 show the operations of a WPaxos
node. Phase-1 of the protocol is described in the algo-
rithms 1-3, while algorithms 4 and 5 cover phase-2.

3.1 Initialization

Node α Initialization
1: function INIT(O)
2: b← /0 . No known ballot numbers
3: Π← /0 . Phase-1 requests initially empty
4: ∀β ∈ peers : s[β]←−1 . Initial slot numbers
5: ∀β ∈ peers : Σ[β]← /0 . Phase-2 instances initially empty
6: I← /0 . No known index
7: H← /0 . Empty access history
8: ∀o ∈O : I[o]← α . Initial index
9: ∀o ∈O : b[o]← 〈1•α〉 . Initial Ballot

The INIT(O) function describes the state initialization
of any node before it becomes active. We assume no
prior knowledge of ballots or the locations of objects.
However, WPaxos makes the initial object assignment
optional, a user may provide the set of starting objects,
allowing the initialization routine to construct ballots and
indices (line 8-9).

3.2 Phase-1: Prepare
Algorithm 1 describes the initial stage of processing ev-
ery new request received by the node from the client.
WPaxos protocol starts with the client κ sending a
〈request,κ,γ〉message to one of the nodes in the system.
Client typically chooses a local zone node to minimize
the initial communication costs. The request message
includes the command γ , containing some object γ.o on
which the command needs to be executed. Upon receiv-
ing the command from the client, a node α checks if the

5

Algorithm 1 Node α: client request handler
1: function RECEIVE(〈request,γ) from κ

2: o← γ.o . The object in command γ

3: if o /∈ I then . Unknown object
4: STARTPHASE-1(γ) . Phase 1
5: return
6: λ ← I[o]
7: if α = λ then . α is leader of o
8: if o ∈Π then . Request for o exists
9: Π[o]←Π[o]∪{γ} . Append to current phase-1

10: else . α is the current leader of o
11: STARTPHASE-2(γ) . Phase 2
12: H←H∪{o,κ} . Save to access history H
13: if H triggers migration event then
14: SENDTO(β ,〈migrate,γ.o〉)
15: else . o is owned by other node
16: if Immediate object stealing then
17: b[o]← b[o]+1 . Steal with new ballot
18: STARTPHASE-1(γ)
19: else . Adaptive object stealing
20: SENDTO(λ ,〈request,κ,γ) . Forward to node λ

21: function STARTPHASE-1(γ)
22: o← γ.o
23: I[o]← α

24: if o ∈Π then
25: Π[o]←Π[o]∪{γ}
26: return
27: Π[o]← NEWQUORUM(Q1) . Waiting quorum of phase 1
28: BROADCAST(〈prepare,o,b[o]〉) . Start phase 1

29: function STARTPHASE-2(γ)
30: o← γ.o
31: sα ← sα +1 . Next available slot
32: Σ[α][sα]← 〈instance,γ,b[o],NEWQUORUM(Q2)〉

. Create new instance
33: MULTICAST(〈accept,γ,b[o],s[α]〉) . Start phase 2

object exists in the index I, and starts phase-1 for any
missing objects by invoking STARTPHASE-1 procedure
(lines 3-5). If the object is known to belong to the node,
then it initiates phase-2 of the protocol in STARTPHASE-
2 function which sends a message to its Q2 quorum, and
creates a new instance for slot sα (lines 30-33). How-
ever, if the object is found to be managed by some other
remote leader λ , depending on the configuration, α will
either forward the request to λ (line 20), or start imme-
diate object stealing with larger ballot in phase-1 (lines
16-18).

Our protocol keeps track of the past accesses in or-
der to facilitate the locality adaptive leader stealing. The
leader keeps track of every object’s access history (line
12) to determine the best possible position for the object.
Current object leader may decide to relinquish its object
ownership based on the locality adaptive object stealing
rule in place. In that case, the leader sends out a migrate
message to the node it determined to be more suitable to
lead the object (line 13-14).

The HANDLE routine of algorithm 2 processes the in-

Algorithm 2 Node α: prepare message handler
1: function HANDLE(〈prepare,o,b〉) from β

2: λ ← I[o]
3: s′← max({i : o ∈ Σ[λ][i]}) . Get the largest slot for o
4: δ ← Σ[λ][s′] . Get instance command
5: if β = λ then . Old leader
6: b[o]← max(b[o],b) . Update ballot of object o
7: SENDTO(β ,〈prepareReply,o,ok← true,b[o],(s′,δ)〉)
8: else . New leader
9: if b > b[o] then . Accept only if higher ballot

10: if o ∈Π then . If there is outstanding phase 1
11: ∀r ∈Π[o] : Retry request r after random time
12: Π←Π\o
13: b[o]← b
14: I[o]← β

15: SENDTO(β ,〈prepareReply,o,ok ←
true,b[o],(s′,δ)〉)

16: else . Reject
17: SENDTO(β ,〈prepareReply,o,ok← f alse,(λ ,b[o])〉)

coming prepare message sent during phase-1 initiation.
The node α can accept the sender node β as the leader
for object o in one of two cases: there is no leader change
and the sender is the same node as kept in the local in-
dex (lines 5-7) or sender’s ballot number b of o is greater
than the ballot number α is aware of (lines 9-15). In the
second case, node α also checks if it currently involves
in phase-1 for the same object (line 10). It cancels and
schedule retries of those pending requests for a random
back-off time (lines 11-12). Node α replies the accepted
leader with the largest slot number and its accepted com-
mand, such that any unresolved commands can be recov-
ered by the new leader (lines 3,4,7,15). Otherwise, the
node rejects β as the leader λ for object o, and sends
back the ballot number that has caused the rejection (line
17).

Algorithm 3 Node α: prepareReply message handler
1: function HANDLE(〈prepareReply,o,ok,(s,δ),(λ ,b)〉) from β

2: if o /∈Π∨b < b[o] then
3: return . Ignore old reply msg
4: if ok then . Acked
5: Π[o].Q1.ACK(β)
6: Π[o]←Π[o]∪ (s,δ)
7: if Q1.SATISFIED then
8: Recover MAX((s′,δ ′) ∈Π[o])
9: HANDLE({r : ∀r ∈Π[o]})

. Process all pending requests
10: Π←Π\o
11: else . Handle reject message
12: I[o]← λ . Update index
13: b[o]←max(b[o],b) . Update ballot
14: Retry {r : ∀r ∈Π[o]} after random time
15: Π←Π\o

Algorithm 3’s HANDLE function collects the prepare
replies sent by the algorithm 2 (lines 4-6), and checks
if the Q1 quorum is satisfied, at which point the new
leader select the largest slot to depend on, and recover

6

any uncommitted slots with suggested commands (lines
7-8), then start accept phase for the pending requests that
have accumulated in Π (line 9). Finally, the object is re-
moved from the phase-1 outstanding set Π (line 10). If
the phase-1 is rejected, the local caches for remote ob-
ject and index are updated with new information (lines
11-13), and the pending requests in such phase-1 are re-
tried by scheduling a random back-off time to push them
back to the main request queue (line 14).

3.3 Phase-2: Accept

Phase-2 of the protocol starts after the completion of
phase-1 or when it is determined that no phase-1 is re-
quired for a given object. The accept phase can be re-
peated many times until some remote leader steals the
object. WPaxos carries out this phase on a Q2 quorum
residing in a single zone, thus all inter-node communi-
cations are kept local to the zone, greatly reducing the
latency.

Algorithm 4 Node α: accept message handler
1: function HANDLE(〈accept,γ,b,s〉) from β

2: if γ.o /∈ I then
3: I[γ.o]← β

4: λ ← I[γ.o]
5: if β = λ ∨b≥ b[o] then . Known leader or new ballot
6: I[o]← β

7: b[o]←max(b[o],b)
8: if Σ[λ][s] =⊥ then Σ[λ][s]← 〈instance,γ,b〉

. Create instance if not exists
9: if b≥ Σ[λ][s].b then

10: SENDTO(λ ,〈acceptReply,ok← true,o,λ ,b,s,〉)
11: else
12: SENDTO(λ ,〈acceptReply,ok ←

f alse,o,λ ,Σ[λ][s].b,s,〉)
13: else . Old ballot
14: SENDTO(λ ,〈acceptReply,ok← f alse,o,λ ,b[o],s〉)

Once the leader sends out the accept message at the be-
ginning of the phase-2, acceptors must properly respond
to this message. Algorithm 4 shows how acceptors han-
dle the 〈accept〉 message. In the normal case, node will
accept the message if it is a known leader with the same
or higher ballot number (lines 5-10). However, if there
exists a different leader or the proposed ballot number is
smaller than the instance of the same slot s, node will re-
ject with existing ballot from the instance (lines 11-14).

Leader collects the replies from its Q2 acceptors in
Algorithm 5. The request proposal either gets commit-
ted when a sufficient number of successful replies are
received (lines 6-8), or aborted if some acceptors reject
the proposal (lines 9-15). In case of rejection, leader also
updates its cache with new object and index information
it has received from the rejecting acceptors.

Algorithm 5 Node α: acceptReply message handler
1: function HANDLE(〈acceptReply,ok,o,λ ,b,s〉) from β

2: if ok then
3: if b < Σ[α][s].b∨Σ[α][s] is committed then
4: return . Ignore old reply
5: Σ[α][s].ACK(β)
6: if Σ[α][s].Q2.SATISFIED then
7: Σ[α][s]← committed
8: BROADCAST(〈commit,α,b[o],s,γ〉)
9: else

10: if b > b[o] then
11: I[o] = λ

12: b[o] = b
13: if Σ[α][s] 6=⊥∧ is not committed then
14: Put Σ[α][s].δ back to main request queue
15: Σ[α][s]←⊥

3.4 Properties

WPaxos provides similar guarantees offered by other
Paxos variants (EPaxos, Generalized Paxos) as well as
some unique properties to its clients.

Non-triviality. For any node α , the set of commit-
ted commands is always a sequence σ of proposed com-
mands, i.e. ∃σ : committed[α] =⊥•σ . Non-triviality is
straightforward since nodes only start phase-1 or phase-2
for commands proposed by clients, in Algorithm 1.

Stability. For any node α , the set of committed com-
mands at any time is a prefix of the set at any later time,
i.e. ∃σ : committed[α] = γ at any t =⇒ committed[α] =
γ •σ at t +∆.

Consistency. For any leader α , if command γ is com-
mitted at instance Oα .i by some node, no other node can
have a different command committed for the same in-
stance.

Liveness. A proposed command γ will eventually
be committed by all non-faulty nodes, i.e. �∀α : γ ∈
committed[α].

In the next revision, we will provide a modeling of
WPaxos in TLA+ [14] and model-checking of these
properties against the model.

4 Evaluation

We implemented WPaxos on top of Paxi, our reusable
framework for evaluating Paxos-style consensus proto-
col. This framework allowed us to compare WPaxos
and EPaxos in the same controlled environment under
identical workloads. We conducted our experiments on
a testbed consisting of AWS [2] EC2 medium Linux in-
stances3 located at four AWS regions, namely: Califor-
nia (CA), Virginia (VA), Ireland (EU), and Japan (JP).
Each AWS region corresponds to a single WPaxos zone.

3Two 64-bit virtual cores and 4GB memory.

7

Figure 5: Schematic representation of Paxi framework
and WPaxos

4.1 Implementation
We implemented a general framework, called Paxi, to
accommodate for various styles of Paxos algorithms.
WPaxos protocol was placed on top of Paxi by adding
the inter-node message definition and message handling
procedures. We also adopted the original EPaxos code
to work with our framework. Both the framework and
WPaxos protocol were built in Go version 1.8 and they
will be available as an opensource project on GitHub
repository https://github.com/ailidani/paxi.

Paxi provides extended abstractions to be shared be-
tween all Paxos variants, including location-aware con-
figuration, network communication, client library and
four types of quorum systems (majority quorum, fast
quorum, grid quorum and flexible quorum), as shown in
Figure 5. Networking layer encapsulates message pass-
ing model and exposes basic interfaces including broad-
cast, multicast, intra-zone, inter-zone and peer-to-peer
messaging for cross-node traffics. Similar to EPaxos,
Paxi incorporates the mechanisms to facilitate the startup
for the system and share initial parameters through the
configuration management. Paxi framework can accom-
modate a greater variety of quorums through its quorum
management module. Both nodes and clients use the API
provided by the framework.

4.2 Workload
Paxi provides a replicated key-value store as the state ma-
chine on top of the protocols under evaluation. The client
library of Paxi’s key-value store has both synchronous
and asynchronous version of update (put) and query (get)
operations. We used different types of put operations in
our evaluation to simulate practical and realistic work-
loads. Our experimental workloads exercise two primary
parameters: conflict and locality.

Definition 4.1. Conflict c is the proportion of commands
operated on the objects shared across zones.

0 100 200 300 400 500 600
Conflicting Keys

0.000

0.002

0.004

0.006

0.008

Pr
ob

ab
ili

ty

1 2 3
CA
VA
EU

Figure 6: Workload with locality in each region

The workload with conflicting objects exhibits no lo-
cality if the objects are selected uniformly random at
each zone. We introduce locality to our evaluation by
drawing the conflicting keys from a Normal distribution
N (µ,σ2), where µ can be varied for different zones to
control the locality, and σ is shared between zones. The
locality can be visualized as the non-overlapping area un-
der the probability density functions, as illustrated in Fig-
ure 6.

Definition 4.2. Locality l is the complement of the over-
lapping coefficient (OVL)4 among workload distribu-
tions: l = 1− ÔV L.

Let Φ(x−µ

σ
) denote the cumulative distribution func-

tion (CDF) of any normal distribution with mean µ and
deviation σ , and x̂ as the x-coordinate of the point in-
tersected by two distributions, locality is given by l =
Φ1(x̂)−Φ2(x̂). It is worth mentioning the two special
cases when there is no single intersecting point: locality
equals to 0 if two overlapping distributions are congru-
ent, or equals to 1 if two distributions do not intersect.

In our experiments we vary the conflict and locality
parameters to test WPaxos under different scenarios. We
run each experiment for 5 minutes, given 500 keys that
are shared across regions and 500 designated keys local
to each region. We perform the experiments with three
nodes in each of the three regions.

4.3 Quorum Tests
In the first set of experiments, we compare the latency of
both Q1 and Q2 in two types of quorums, Flexible Grid
(FG) and Flexible 2 Rows (F2R). Flexible grid quorum
uses a single node per region for Q1, while F2R is our
chosen WPaxos quorum approach as described in Sec-
tion 2. Clients in each region simultaneously generate

4The overlapping coefficient (OVL) is a measurement of similar-
ity between two probability distributions, refers to the shadowing area
under two probability density functions simultaneously [12].

8

CA VA EU
0

20

40

60

80

100

120

140
La

te
nc

y
(m

s)

CA VA EU
0.0

0.5

1.0

1.5

2.0
FG
F2R

Figure 7: Median and 99%ile latency for phase-1 (left)
and phase-2 (right)

the same number of phase-1 and phase-2 requests, and
measure the commit latency for each phase. Figure 7
shows the median and 99th percentile latency in phase-1
(left) and phase-2 (right).

Quorum size of Q1 in FG is a half of that for F2R, but
both experience a similar median latency of about one
round trip to the farthest peer, since the communication
happens in parallel and both FG and F2R are affected by
WAN communication. Within a zone, however, F2R can
tolerate one struggler node, reducing both median and
99th percentile latency.

4.4 Impact of Leader Switching
Objects in WPaxos can change their geographical loca-
tion through object stealing procedures. The simplest
routine attempts to steal the object from the remote zone
upon the very first request, however this is not an ideal
case for many realistic workloads in which objects ex-
hibit locality, and yet need to be accessed from different
zones. Our adaptive object stealing procedure utilizes the
request frequency metric to control which zone can steal
the object and when. The results of the adaptive stealing
experiments will be added in the future revisions of this
work. All the experiments below are performed with the
immediate object stealing scheme.

4.5 Latency
We compare the commit latency between WPaxos and
EPaxos with two set of workloads.

Figure 8 compares the median (color bar) and 99th
percentile (error bar) latency with different conflicts in
three regions. EPaxos always have to pay the price of
WAN communication, while WPaxos tries to keep as
many operations locally. With small conflicts c ≤ 50%,
the median latency of EPaxos is about 1 RTT between
the region and its closest neighboring region. WPaxos

0 100 200 300
Latency (ms)

WPaxos-CA

WPaxos-VA

WPaxos-EU

EPaxos-CA

EPaxos-VA

EPaxos-EU

0%
2%
25%
50%
100%

Figure 8: Median (color bar) and 99%ile (error bar) la-
tency for EPaxos and WPaxos

0 50 100 150 200 250 300
Median Latency (ms)

CA

VA

EU

JP

WPaxos
EPaxos

Figure 9: 100% Conflict median latency of 4 regions for
EPaxos and WPaxos

reduces median latency to local commit time. Under full
conflict (c = 100%), both EPaxos and WPaxos degrade
to full WAN RTT, as EPaxos no longer able to commit
most commands in fast quorum, and WPaxos is forced
to do frequent object-stealing. WPaxos, however can
achieve good median latency in VA, which is a geograph-
ically central region in our topology. This is because the
performance penalty for stealing an object to this region
is significantly lower, allowing VA to process more re-
quests, some of which will be local due to the previously
stolen objects.

We repeat the 100% conflict experiment with 4 re-
gions, adding Tokyo (JP) in Figure 9. In the new topol-
ogy, EPaxos’s fast quorum size expends to 3 regions
instead of 2, hence the minimum commit latency in-
creases to the second smallest RTT. The median latency
of EPaxos, however, reflects more normal Paxos rounds
under high conflicts.

Figure 11 shows the average latency of workload with
locality derived from Figure 6, where conflict c = 100%,
σ = 50, µ = 150,300,450 repectively, and locality l =
86.6%. EPaxos replica in VA region experiences the

9

CA VA EU
0

20

40

60

80

100
Av

er
ag

e
La

te
nc

y
(m

s)
WPaxos
EPaxos

Figure 10: Average latency of locality workload for
EPaxos and WPaxos

CA VA EU JP
0

50

100

150

200

Av
er

ag
e

La
te

nc
y

(m
s)

WPaxos
EPaxos

Figure 11: Average latency of locality workload of 4 re-
gions for EPaxos and WPaxos

highest average commit latency because its distribution
has overlaps with two other regions, whereas in WPaxos,
this disadvantage is canceled out by favorable location
that enable VA region to steal more objects. The average
latency in WPaxos is one third to one fifth (depends on
the region) compared to that of EPaxos.

4.6 Throughput
Similar to latency, we compare throughput of WPaxos
and EPaxos. In theory, both system can process multi-
ple non-conflicting objects independently. Throughput
experiments will be added in the future revisions of this
work.

5 Fault-tolerance

In WPaxos, progress is still possible as long as it can
form a valid Q1 and Q2 quorums. Our default deploy-
ment scheme uses 3 nodes per zone, thus it can mask
failure of a single node per zone and can still form Q2
quorum at that zone and Q1 quorums passing through

that zone in an unaffected manner. It is possible to fine-
tune the per-zone fault tolerance by changing the number
of nodes in each zone and sizes of Q1 and Q2 quorums.

A zone failure will make forming the Q1 impossible,
thus halting all object movement in the system, however,
object of leaders in unaffected zones can continue pro-
cess requests, albeit with no locality adaptive properties.
Objects in the affected zone will be unavailable for the
duration of zone recovery.

A leader recovery is handled naturally by the object
stealing procedure. Upon a leader failure, all of its ob-
jects will become unreachable at that leader, forcing the
system to start object stealing phase. A failed node does
not prevent the new leader from forming a Q1 quorum
needed for object stealing, thus the new leader can pro-
ceed and acquire the leadership of an object. Normal
object stealing procedure also calls for a recovery of ac-
cepted but not committed instances for the object in the
failed leader log and the same procedure is carried out
even when the original leader has failed.

6 Related Work

Several attempts have been made for addressing consen-
sus scalability. Certain systems, such as Mencius [18] try
to reduce the bottlenecks of a single leader by incorporat-
ing multiple rotating leaders. Mencius tries to eliminate
the single entry-point requirement of Paxos and achieve
better load balancing by partitioning consensus sequence
numbers (consensus requests/instances) among multiple
servers. This load balancing helps distribute the network
bandwidth and CPU load better. However, Mencius does
not address reducing the WAN latency of consensus.

Other Paxos variants go for a leaderless approach.
EPaxos [20] is leaderless in the sense that any node can
opportunistically become a leader for an operation. At
first EPaxos tries the request on a fast quorum and if
the operation was performed on a non-conflicting object,
fast quorum will decide on the operation and replicate
it across the system. However, if fast quorum detects a
conflict (i.e., another node trying to decide another op-
eration for the same object), EPaxos will default to the
standard Paxos procedure.

Bizur [9] aims to process independent keys from its
internal key-value store in parallel with the help of mul-
tiple leaders. However, it does not account for the data-
locality nor is able to migrate the keys between the lead-
ers. Bizur maps each key into a bucket with a hash
function and replicates these buckets within the clus-
ter, allowing different buckets to proceed independently.
The buckets are rather static, with no quick procedure
to move the key from one bucket to another, since such
operation will require not only expensive reconfigura-
tion phase, but also change in the key mapping function.

10

Bizur elects a leader for each bucket, and the leader be-
comes responsible for handling all requests and replicat-
ing the bucket in the cluster. The system can scale up by
moving the buckets to new servers, however such scala-
bility is assumed to be in the same datacenter.

ZooNet [16] is a client approach at improving the
performance of WAN coordination. It tries to achieve
fast reads at the expense of some data-staleness and
slow writes by deploying multiple ZooKeeper services
in different regions with observers in every other re-
gion. As such, the system operates just like ZooKeeper
with the object-space statically partitioned across re-
gions. ZooNet provides a client API for consistent reads
by injecting sync requests when reading from remote re-
gions.

7 Concluding Remarks

WPaxos achieves fast wide-area coordination by dy-
namically partitioning the objects across multiple lead-
ers that are deployed strategically using flexible quo-
rums. Such partitioning and emphasis on local opera-
tions allow our protocol to significantly outperform lead-
erless approaches, such as EPaxos, while maintaining
the same consistency guarantees. Unlike statically par-
titioned Paxos used in Google’s Spanner and other sys-
tems, WPaxos adapts dynamically to the changing ac-
cess locality through adaptive object stealing. The abil-
ity to quickly react to variations in access locality not
only speeds up the protocol, but also enables support for
minitransactions. Future work is to develop more sophis-
ticated object stealing strategies, that not only pay atten-
tion to the actual object requests, but also for the object
demand, since the demand may not perfectly match the
number of requests made.

References
[1] AGUILERA, M., MERCHANT, A., SHAH, M., VEITCH, A.,

AND KARAMANOLIS, C. Sinfonia: a new paradigm for building
scalable distributed systems. In ACM SIGOPS Operating Systems
Review (2007), vol. 41, ACM, pp. 159–174.

[2] http://aws.amazon.com.

[3] BAKER, J., BOND, C., CORBETT, J., FURMAN, J., KHORLIN,
A., LARSON, J., ET AL. Megastore: Providing scalable, highly
available storage for interactive services. CIDR (2011), 223–234.

[4] BRONSON, N., AMSDEN, Z., CABRERA, G., CHAKKA, P., DI-
MOV, P., DING, H., FERRIS, J., GIARDULLO, A., KULKARNI,
S., LI, H., MARCHUKOV, M., PETROV, D., PUZAR, L., SONG,
Y. J., AND VENKATARAMANI, V. TAO: Facebook’s distributed
data store for the social graph. Usenix Atc’13 (2013), 49–60.

[5] BURROWS, M. The chubby lock service for loosely-coupled
distributed systems. In OSDI (2006), USENIX Association,
pp. 335–350.

[6] CORBETT, J., DEAN, J., EPSTEIN, M., FIKES, A., FROST, C.,
FURMAN, J., ET AL. Spanner: Google’s globally-distributed
database. Proceedings of OSDI (2012).

[7] A distributed, reliable key-value store for the most critical data of
a distributed system. https://coreos.com/etcd/, 2017.

[8] GRIMSHAW, A., MORGAN, M., AND KALYANARAMAN, A.
Gffs – the XSEDE global federated file system. Parallel Pro-
cessing Letters 23, 02 (2013), 1340005.

[9] HOCH, E. N., BEN-YEHUDA, Y., LEWIS, N., AND VIGDER,
A. Bizur: A Key-value Consensus Algorithm for Scalable File-
systems.

[10] HOWARD, H., MALKHI, D., AND SPIEGELMAN, A. Flexible
Paxos: Quorum intersection revisited.

[11] HUNT, P., KONAR, M., JUNQUEIRA, F., AND REED, B.
Zookeeper: Wait-free coordination for internet-scale systems. In
USENIX ATC (2010), vol. 10.

[12] INMAN, H. F., AND BRADLEY JR, E. L. The overlapping co-
efficient as a measure of agreement between probability distribu-
tions and point estimation of the overlap of two normal densities.
Communications in Statistics-Theory and Methods 18, 10 (1989),
3851–3874.

[13] JUNQUEIRA, F., REED, B., AND SERAFINI, M. Zab: High-
performance broadcast for primary-backup systems. In Depend-
able Systems & Networks (DSN) (2011), IEEE, pp. 245–256.

[14] LAMPORT, L. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems 16, 3 (May 1994), 872–
923.

[15] LAMPORT, L. The part-time parliament. ACM Transactions on
Computer Systems (TOCS) 16, 2 (1998), 133–169.

[16] LEV-ARI, K., BORTNIKOV, E., KEIDAR, I., AND SHRAER, A.
Modular composition of coordination services. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16) (2016).

[17] LLOYD, W., FREEDMAN, M., KAMINSKY, M., AND ANDER-
SEN, D. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with cops. In SOSP (2011), pp. 401–416.

[18] MAO, Y., JUNQUEIRA, F. P., AND MARZULLO, K. Mencius:
Building Efficient Replicated State Machines for WANs. Pro-
ceedings of the Symposium on Operating System Design and Im-
plementation (2008), 369–384.

[19] MASHTIZADEH, A. J., BITTAU, A., HUANG, Y. F., AND
MAZIÈRES, D. Replication, history, and grafting in the ori file
system. In Proceedings of SOSP (New York, NY,, 2013), SOSP
’13, pp. 151–166.

[20] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. There
is more consensus in egalitarian parliaments. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples (2013), ACM, pp. 358–372.

[21] ONGARO, D., AND OUSTERHOUT, J. In search of an under-
standable consensus algorithm. In 2014 USENIX Annual Techni-
cal Conference (USENIX ATC 14) (2014), pp. 305–319.

[22] QUINTERO, D., BARZAGHI, M., BREWSTER, R., KIM, W. H.,
NORMANN, S., QUEIROZ, P., ET AL. Implementing the IBM
General Parallel File System (GPFS) in a Cross Platform Envi-
ronment. IBM Redbooks, 2011.

[23] VAN RENESSE, R., AND ALTINBUKEN, D. Paxos made mod-
erately complex. ACM Computing Surveys (CSUR) 47, 3 (2015),
42.

11

