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Abstract

WPaxos is a multileader Paxos protocol that provides
low-latency and high-throughput consensus across wide-
area network (WAN) deployments. Unlike statically par-
titioned multiple Paxos deployments, WPaxos perpetu-
ally adapts to the changing access locality through object
stealing. Multiple concurrent leaders coinciding in dif-
ferent zones steal ownership of objects from each other
using phase-1 of Paxos, and then use phase-2 to com-
mit update-requests on these objects locally until they
are stolen by other leaders. To achieve zone-local phase-
2 commits, WPaxos adopts the flexible quorums idea in
a novel manner, and appoints phase-2 acceptors to be at
the same zone as their respective leaders.

The perpetual dynamic partitioning of the object-space
and emphasis on zone-local commits allow WPaxos to
significantly outperform leaderless approaches, such as
EPaxos, while maintaining the same consistency guaran-
tees. We implemented WPaxos and evaluated it on WAN
deployments across 5 AWS regions using the bench-
marks introduced in the EPaxos work. Our results show
that, for a ~70% access locality workload, WPaxos
achieves 2.4 times faster average request latency and 3.9
times faster median latency than EPaxos due to the re-
duction in WAN communication. For a ~90% access lo-
cality workload, WPaxos improves further and achieves
6 times faster average request latency and 59 times faster
median latency than EPaxos.

1 Introduction

Paxos, introduced in 1989 [17], provides a formally-
proven solution to the fault-tolerant distributed consen-
sus problem. Notably, Paxos preserves the safety specifi-
cation of distributed consensus (i.e., no two nodes decide
differently) in the face of concurrent and asynchronous
execution, crash/recovery of the nodes, and arbitrary loss

0 An archipelago is a chain, cluster, or collection of islands.

of messages. When the conditions improve such that dis-
tributed consensus becomes solvable, Paxos satisfies the
progress property (i.e., nodes decide on a value as a func-
tion of the inputs).

The Paxos algorithm and its variants have been de-
ployed widely, including in Google Chubby [5]] based on
Paxos [28]], Apache ZooKeeper [13]] based on Zab [15],
and etcd [[7] based on Raft [24]. All of these imple-
mentations depend on a centralized primary process (i.e.,
the leader) to serialize all commands/updates. During
normal operation, only one node acts as the leader: all
client requests are forwarded to that leader, and the leader
commits the requests by performing phase-2 of Paxos
with the acceptors. Due to this dependence on a single
centralized leader, these Paxos implementations support
deployments in local area and cannot deal with write-
intensive scenarios across wide area networks (WANs)
well. In recent years, however, coordination over wide-
area (across zones, such as datacenters and sites) has
gained greater importance, especially for database ap-
plications and NewSQL datastores [3}6,29], distributed
filesystems [9,22,26]], and social network metadata up-
dates [4}20].

In order to eliminate the single leader bottleneck,
EPaxos [23]] proposes a leaderless Paxos protocol where
any replica at any zone can propose and commit com-
mands opportunistically, provided that the commands
are non-interfering. This opportunistic commit proto-
col requires an agreement from a fast-quorum of roughly
3/4ths of the acceptorﬂ which means that WAN la-
tencies are still incurred. Moreover, if the commands
proposed by multiple concurrent opportunistic proposers
do interfere, the protocol requires performing a second
phase to record the acquired dependencies, and agree-
ment from a majority of the Paxos acceptors is needed.

Another way to eliminate the single leader bottleneck
is to use a separate Paxos group deployed at each zone.

IFor a deployment of size 2F + 1, fast-quorum is F + LFT“J



Systems like Google Spanner [6]], ZooNet [19], Bizur
[11] achieve this via a static partitioning of the global
object-space to different zones, each responsible for a
shard of the object-space. However, such static parti-
tioning is inflexible and WAN latencies will be incurred
persistently to access/update an object mapped to a dif-
ferent zone.

Contributions. We present WPaxos, a novel mul-
tileader Paxos protocol that provides low-latency and
high-throughput consensus across WAN deployments.

WPaxos adapts the “flexible quorums” idea (which
was introduced in 2016 summer as part of FPaxos [12]])
to cut WAN communication costs. WPaxos uses the flex-
ible quorums idea in a novel manner for deploying multi-
ple concurrent leaders across the WAN. By strategically
appointing the phase-2 acceptors to be at the same zone
as the leader, WPaxos achieves local-area network com-
mit decisions. We present how this is accomplished in
Section 211

Unlike the FPaxos protocol which uses a single-leader
and does not scale to WAN distances, WPaxos uses mul-
tileaders and partitions the object-space among these
multileaders. On the other hand, WPaxos differs from
the existing static partitioned multiple Paxos deployment
solutions, because it implements a dynamic partition-
ing scheme: leaders coinciding in different zones steal
ownership/leadership of an object from each other us-
ing phase-1 of Paxos, and then use phase-2 to commit
update-requests on the object locally until the object is
stolen by another leader. We describe the WPaxos pro-
tocol in Sections 2.2} 2.3] and [2.4] and present the algo-
rithm in detail in Section 3]

With its multileader protocol, WPaxos achieves the
same consistency guarantees as in EPaxos: lineariz-
ability is ensured per object, and strict serializability
is ensured across objects. We present safety and live-
ness properties of WPaxos in Section 3.4 We mod-
eled WPaxos in TLA+ [16] and verified the consistency
properties by model checking this TLA+ specification.
The TLA+ specification is available athttp: //github.
com/wpaxos/tlal

To quantify the performance benefits from WPaxos,
we implemented WPaxos and performed evaluations on
WAN deployments across 5 AWS regions using the
benchmarks introduced in EPaxos [23]. Our results
in Section E] show that WPaxos outperforms EPaxos,
achieving 2.4 times faster average request latency and 3.9
times faster median latency than EPaxos using a ~70%
access locality workload. Moreover, for a ~90% ac-
cess locality workload, WPaxos improves further and
achieves X times faster average request latency and Y
times faster median latency than EPaxos. This is be-
cause, while the EPaxos opportunistic commit protocol
requires about 3/4ths of the Paxos acceptors to agree and

incurs one WAN round-trip latency, WPaxos is able to
achieve low latency commits using the zone-local phase-
2 acceptors.

When we test for increased throughput in WAN de-
ployments using the 70% locality workload, we found
that WPaxos is able to maintain low-latency responses
long after EPaxos latencies take a big hit. Under 10,000
requests/sec, WPaxos achieves 9 times faster average re-
quest latency and 54 times faster median latency than
EPaxos. We also evaluated WPaxos with a shifting lo-
cality workload and show that WPaxos seamlessly adapts
and significantly outperforms static partitioned multiple
Paxos deployments.

While achieving low latency and high throughput,
WPaxos also achieves seamless high-availability by hav-
ing multileaders: failure of a leader is handled grace-
fully as other leaders can serve the requests previously
processed by that leader via the object stealing mecha-
nism. Since leader re-election (i.e., object stealing) is
handled through the Paxos protocol, safety is always up-
held to the face of node failure/recovery, message loss,
and asynchronous concurrent execution. We discuss
fault-tolerance properties of WPaxos in Section[5] While
WPaxos helps most for slashing WAN latencies, it is also
suitable for deployment entirely inside the same datacen-
ter/cluster for its high-availability and throughput bene-
fits.

2 WPaxos

In this section we present a high-level overview of
WPaxos, relegating a detailed presentation of the proto-
col to Section

2.1 WPaxos Quorums

WPaxos leverages on the flexible quorums idea [12].
This surprising result shows that we can weaken Paxos’
“all quorums should intersect” assertion to instead “only
quorums from different phases should intersect”. That is,
majority quorums are not necessary for Paxos, provided
that phase-1 quorums (Q1s) intersect with phase-2 quo-
rums (Q2s). Flexible-Paxos, i.e., FPaxos, allows trading
off Q1 and Q2 sizes to improve performance. Assum-
ing failures and resulting leader changes are rare, phase-
2 (where the leader tells the acceptors to decide values)
is run more often than phase-1 (where a new leader is
elected). Thus it is possible to improve performance of
Paxos by reducing the size of Q2 at the expense of mak-
ing the infrequently used Q1 larger.

WPaxos adopts the flexible quorum idea to WAN de-
ployments for the first time. Our quorum concept de-
rives from the grid quorum layout, shown in Figure
in which rows and columns act as Q1 and Q2 quorums
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Table 1: Terminology used in this work

Term | Meaning

Zone | Geographical isolation unit, such as datacenter or a region

Node
Leader
Ballot

Maintainer of consensus state, combination of proposer and acceptor roles
Sequencer of proposals, maintains a subset of all objects
Round of consensus, combination of counter, zone ID and node ID

Slot | Uniquely identifies a sequence of instances proposed by a leader

Phase-1
Phase-2

Accept phase, normal case

Q2 Quorums

i
r 2l
z z2 z3 z4

(b) WPaxos quorum with 2
nodes per region in Q1

Q2 Quorums
A

Q1 Quorums
Q1 Quorums

1 z4

(a) Grid quorums with Q1s in
rows and O2s in columns

Figure 1: Grid and WPaxos quorums. (a) Regular grid
quorum. (b) WPaxos quorum with one possible Q1 of 2
nodes per region.

respectively. An attractive property of this grid quorum
arrangement is Q1 + Q2 does not need to exceed N, the
total number of acceptors, in order to guarantee intersec-
tion of any Q1 and Q2. Since Q1s are chosen from rows
and Q2s are chosen from columns, any Q1 and Q2 are
guaranteed to intersect even when Q1+ Q2 < N.

In WPaxos quorums, each column represents a zone
and acts as a unit of geographical partitioning. The col-
lection of all columns/zones form a grid. In this setup,
Q1 quorums span across all the zones, while Q2s remain
bound to a column, making phase-2 of the protocol oper-
ate locally without a need for WAN message exchange.

WPaxos further relaxes the grid quorum constraints
for Q1 to achieve a more fault-tolerant and efficient alter-
native. Instead of using rigid grid rows for Q1s, WPaxos
picks nodes from each column regardless of their row po-
sition. Figure[Tb|shows the WPaxos flexible grid deploy-
ment used in this paper. (As we discuss in Section [3] it
is possible to use alternative deployments for improved
fault-tolerance.) In this deployment, each zone has 3
nodes, and each Q2 quorum is any 2 of the 3 nodes in a
zone. The Q1 quorum, consists of 2 flexible rows across
zones, that is, it includes any 2 nodes from each zone.
Using a 2 row QI rather than 1 row Q1 has negligible
effect on the performance, as we show in the evaluation.
On the other hand, using a 2 row Q1 allows us to better
handle node failures within a zone, because the 2-node
02 quorum will intersect the Q1 even in the presence of
a single node failure. Additionally, this allows for Q2
performance improvement, as a single straggler will not

Prepare phase, protocol to establish a new ballot/leader

penalize the phase-2 progress.

2.2  WPaxos Protocol Overview

In contrast to FPaxos which uses flexible quorums with a
classical single-leader Paxos protocol, WPaxos presents
a multileader protocol over flexible quorums. Every node
in WPaxos acts as a leader for a subset of all objects in
the system. This allows the protocol to process requests
for objects under different leaders concurrently. Each ob-
ject in the system is maintained in its own commit log,
allowing for per-object linearizability. A node can lead
multiple objects at once, all of which may have different
ballot and slot numbers in their corresponding logs.

The WPaxos protocol consists of two phases. The
concurrent leaders steal ownership/leadership of objects
from each other using phase-1 of Paxos executed over
Q1. Then phase-2 commits the update-requests to the
object over the corresponding Q2, and can execute mul-
tiple times until some other node steals the object.

The phase-1 of the protocol starts only if a client has
a request for a brand new object that is not in the system
or the node needs to steal an object from a remote leader.
This phase of the algorithm causes the ballot number to
grow for the object involved. After a node becomes the
owner/leader for an object, it repeats phase-2 multiple
times on that object for committing commands/updates,
incrementing the slot number at each iteration, while the
ballot number for the object stays the same.

Figure [2] shows the normal operation of both phases,
and also references each operation to the algorithms in
Section[3l Table [Tl summarizes some common terminol-
ogy used throughout the paper.

2.3 Immediate Object Stealing

When a node needs to steal an object from another leader
in order to carry out a client request, it first consults its
internal cache to determine the last ballot number used
for the object and starts the WPaxos phase-1 on some
Q1 quorum with a larger ballot. Object stealing will be
successful if the local node is able to out-ballot the exist-
ing leader. Most of the times this is achieved in just one
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Figure 2: Normal case messaging flow of WPaxos.

phase-1 attempt, provided that the local cache is current
and the remote leader is not engaged in another phase-1.

Once the object is stolen, the old leader will not be
able to act on it, since the object is now associated with
a higher ballot number than the ballot it had at the old
leader. This is true even when the old leader was not in
the Q1 when the key was stolen, because the intersected
node in Q2 will reject any object operations attempted
with the old ballot. The object stealing procedure may
occur when some commands for the objects are still in
progress, therefore, a new leader must recover any ac-
cepted, but not yet committed commands for the object.

WPaxos maintains separate ballot numbers for all ob-
jects isolating the effects of object stealing. Keeping per-
leader ballot numbers, i.e., keeping a single ballot num-
ber for all objects maintained by the leader, would ne-
cessitate out-balloting all objects of a remote leader when
trying to steal one object. This would then create a leader
dueling problem in which two nodes try to steal objects
from each other by constantly proposing with higher bal-
lot than the opponent, as shown in Figure

Using separate ballot numbers for each object allows
us to reduce ballot contention, although it can still hap-
pen when two leaders are trying to take over the same
object currently owned by a third leader. To mitigate that
issue, we use two additional safeguards: resolving bal-
lot conflict by zone ID and node ID in case the ballot
counters are the same (Figure [3b)), and implementing a
random back-off mechanism in case a new dueling iter-
ation starts anyway. The overheads of maintaining per-
object ballots are negligible and far outweigh the perfor-
mance penalty incurred by having per-leader ballots. For
instance, maintaining per-object ballot numbers for one
million objects would only require 16 MB of memory: 8
MB for 64-bit keys for objects and 8 MB more for the
corresponding ballots.

2.4 Locality Adaptive Object Stealing

The basic protocol migrates the object from a remote re-
gion to a local region upon the first request. Unfortu-

b=101 b=<101,1, 1>

b=100 b=<100, 1, 1>
b=80 b=<80, 2, 1>
b =101 b=<101,2, 1>

(b) Ballot conflict is resolved
by comparing ids

(a) Ballot conflict between
two nodes

Figure 3: Two nodes compete on the ballot number: (a)
prepare with the same ballot number, causing phase-1 to
restart for both; (b) ballots are ordered by zone ID and
node ID when counters are the same, one node wins.
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Figure 4: Leader election and adaptive object stealing:
(a) WPaxos starts the operation with no prior leader for
the object X when operation Opz» is issued in Z2; (b)
initial leader is elected in the zone of the first request; (c)
heavy traffic Opz3 from Z3 must do WAN communica-
tion; (d) object X is stolen to Z3.

nately, that approach may cause a performance degrada-
tion when an object is frequently needed in many zone
and incurs WAN latency penalty of traveling back-and-
forth between zones.

With locality adaptive object stealing we can delay
or deny the object transfer to a zone issuing the request
based on WPaxos object migration policy. The intuition
behind this approach is to move objects to a zone whose
clients will benefit the most from not having to commu-
nicate over WAN, while allowing clients from less fre-
quent zones to send their requests over WAN to the re-
mote leaders. In this adaptive mode, clients still commu-
nicate with the local nodes, however the nodes may not
steal the objects right away, and may instead choose to
forward the requests to the remote leaders.

Our majority-zone migration policy aims to improve
the locality of reference by transferring the objects to
zones sending out the highest number of requests for



the objects, as shown in Figure @ Since the current ob-
ject leader handles all the requests, it has the information
about which clients access the object more frequently. If
the leader L, detects that the object X has more requests
coming from a remote zone, it will initiate the object han-
dover by communicating with the node L,,, and in its turn
L, will start the phase-1 protocol to steal the leadership
of the object.

3 Algorithm

We assume a set of nodes communicating through mes-
sage passing in an asynchronous environment. Each
WPaxos node is a deterministic state machine that main-
tains a set of variables and an internal datastore. The
protocol updates the states of a node’s variables when
processing the incoming messages, and eventually com-
mits and executes a sequence of commands X against the
datastore. For every leader there is an unbounded se-
quence of instances in X, identified by an increasing slot
number s. At most one command will be decided in any
instance.

In the basic algorithm we present here, every com-
mand 7 accesses only one object, identified by y.0. Ev-
ery node o leads its own set of objects Oy, however,
each object has its command log. Object states are repli-
cated to every node in the system, with local Q2 relying
on phase-2 for replication, while the rest of the nodes
learn the states as non-voting learners. Ballot numbers
b for each object’s log are constructed by concatenation
of counter and the leader-node id (c e A). Therefore, any
acceptor & can identify the current leader by examining
object’s ballot number. When a node tries to acquire the
leadership of a new object, it adds the object and all fol-
lowing corresponding requests into the set IT until the
phase-1 of protocol completes. Nodes also maintain a
history H of all accesses for objects to be used for the
locality-adaptive object-stealing. A summary of WPaxos
notation is given as follows:

A,a,B | Nodes
A usually represents leader
Client
Commands
Set of ballot numbers
Set of slot numbers
Set of phase-1 requests
Sequence of instances
Set of objects led by 4
Access history
Concatenation operator
General message format

=
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Algorithms 1-6 show the operations of a WPaxos

node. Phase-1 of the protocol is described in the algo-
rithms 1-3, while algorithms 4-6 cover phase-2.

3.1 Initialization

Node « Initialization

1: function INIT(O)

20 bysILY,H«0

33 YoeO:blo]+ (lea)
4: Yoe O:slo]+0

> Initial ballot number
> Initial slot number

The INIT(QO) function describes the state initialization
of the nodes. We assume no prior knowledge of the lo-
cations of objects or ballots. While WPaxos makes the
initial object assignment optional, a user may provide the
set of starting objects, allowing the initialization routine
to construct ballots (lines 3-4).

3.2 Phase-1: Prepare

Algorithm 1 Node «: client request handler

1: function RECEIVE({request,y) from k
2 04+ 7Y.0 > The object in command y
3 if o ¢ b then > Unknown object
4 STARTPHASE-1(y) > Phase 1
5: return
6: (ce L) < b[o] > Get leader from ballot
7 if o« = A then > Leader is self o
8: if o € I1 then > 3 phasel-request of o
9: o] « o] U{y} > Append to current phase-1
10: else > a is the current leader of o
11: STARTPHASE-2(Y) > Phase 2
12: H<+— HU{o,x} > Save to access history H
13: if H triggers migration event then
14: SEND(S, (migrate, y.0))
15: else > o0 is owned by other node
16: if Immediate object stealing then
17: blo] < blo] + 1 > Steal with new ballot
18: STARTPHASE-1(Y)
19: else > Adaptive object stealing
20: SEND(A, (request, x,y) > Forward to node A

21: function STARTPHASE-1(7)

22: 04 Y.0

23: if o € I1 then

24: o] + o] U{y}

25: return

26: IT[o] <~ NEWQUORUM(Q1) > Waiting quorum of phase 1
27: BROADCAST((prepare,o,b[o])) > Start phase 1

28: function STARTPHASE-2(7)

29: 04 v.0
30: s[o] < s[o] +1 > Next available slot
31: X[o][s[o]] + (instance, y,b[o], NEWQUORUM(Q2))

> Create new instance

32: MULTICAST((accept, ¥,b[o],s[0])) > Start phase 2

As shown in Algorithm [T} the WPaxos protocol starts
with the client Kk sending a (request,y) message to one



of the nodes « in the system. A client typically chooses a
node in a local zone to minimize the initial communica-
tion costs. The request message includes the command
7, containing some object Y.o0 on which the command
needs to be executed. Upon receiving the command, the
node o checks if the object exists in the set of ballots
b, and starts phase-1 for any new objects by invoking
STARTPHASE-1 procedure (lines 3-5).

If the ballot points to the node itself, then it appends
the request to current in progress phase-1 if exists, or ini-
tiates phase-2 of the protocol in STARTPHASE-2 func-
tion (lines 7-11). Phase-2 sends a message to its 02 quo-
rum, and creates a new instance for slot s (lines 29-32).
However, if the object is found to be managed by some
other remote leader A, depending on the configuration,
a will either start immediate object stealing with larger
ballot in phase-1 (lines 16-18), or forward the request to
A (line 20). Forwarding may fail when the local hints of
the leader is obsolete, in which case node o will broad-
cast the request.

As part of the locality adaptive object stealing, the
leader keeps track of every object’s access history (line
12) to determine the most suitable location for the ob-
ject. Current object leader may decide to relinquish the
object ownership based on the locality adaptive rule. In
that case, the leader sends out a migrate message to the
node it determined to be more suitable to lead the object
(lines 13-14).

Algorithm 2 Node «: prepare message handler

1: function HANDLE((prepare,o,b,)) from A

2 for all s € s[o] do

3 if £[o][s].b = b[o] AZ[o][s].committed = false then
4: accepted < accepted U(bo],s,2Z[o][s].0)

S: ifb; > bo] then

6 b[()] b 2

7 SEND(A, (prepareReply, o, b[o], accepted))

The HANDLE routine of algorithm 2] processes the in-
coming prepare message sent during phase-1 initiation.
The node a can accept the sender node A as the leader
for object o only if ballot b, it received is greater than the
ballot number « is currently aware of (lines 5-6). Node o
collects all uncommitted instances with their slot, ballot
and command into the accepted set, and replies node 4
with the accepted set so that any unresolved commands
can be committed by the new leader (lines 2-4).

Algorithm [3}'s HANDLE function collects the prepare
replies sent by the Algorithm [2| and updates the uncom-
mitted instances with a higher accepted ballot (lines 2-
5). The node becomes the leader of object only if the Q1
quorum is satisfied after receiving the current message
from B (lines 6-7). The new leader can then recover any
uncommitted slots with suggested commands (line 8-9),
and start the accept phase for the pending requests that

Algorithm 3 Node «: prepareReply message handler

1: function HANDLE((prepareReply, 0, b, accepted)) from f3

2 if bg = bo] then

3 for all (b,s,8) € accepted do

4: if b > Z[o][s].b then

5: Z[o][s] « (b,5)

6: I[0].01.ACK(B) > Ack by
7 if Q1.SATISFIED then

8: for all (s, §) € Z[o] not committed do

9: MULTICAST({accept, §,b[o],s))
10: for all y € IT[o] do > Process all pending requests
11: HANDLE((request, y))
12: I+ 11\ {0}
13:  elseif bg > b[o] then > Preempted
14: b[o] < bg > Update ballot
15: for all y € I1[o] do
16: HANDLE((request, y)) > Retry pending requests
17: else return > Ignore old reply msg

have accumulated in IT (lines 10-11). Finally, the object
is removed from the phase-1 outstanding set IT (line 12).
However, if any reply message has a higher ballot bg, it
means bB has adopted another leader. As such, it is no
longer possible to decide commands using current bal-
lot, so the node simply updates ballot b[o] to the value
it learned (lines 13-14) and retries any pending requests
after some random back-off time (lines 16-17).

3.3 Phase-2: Accept

Phase-2 of the protocol starts after the completion of
phase-1 or when it is determined that no phase-1 is re-
quired for a given object. The accept phase can be re-
peated many times until some remote leader steals the
object. WPaxos carries out this phase on a Q2 quorum
residing in a single zone, thus all communication is kept
local to the zone, greatly reducing the latency.

Algorithm 4 Node o: accept message handler

1: function HANDLE((accept, y,b, ,s)) from A

2: 04=7v.0

3:  ifby =blo] then

4 X[o][s] + (instance, Y, b, ,committed « false)
5 SEND(A, (acceptReply,0,b[0],s))

Once the leader of the object sends out the accept mes-
sage at the beginning of the phase-2, the acceptors re-
spond to this message as shown in Algorithm 4 Node o
updates its instance X[o][s] at slot s only if the message
ballot b, is same as accepted ballot b[o] (lines 3-4).

The node collects replies from its Q2 acceptors in Al-
gorithm [5] The request proposal either gets committed
when a sufficient number of successful replies are re-
ceived (lines 2-6), or aborted if some acceptors reject the
proposal citing a higher ballot bg (lines 7-11). In case of



Algorithm 5 Node «: acceptReply message handler

1: function HANDLE((acceptReply,0,bg,s)) from f3
2 if bg = b[o] then

3 X[o][s].Q2.ACK(B) > Ack by
4 if 02.SATISFIED then

5: X[o][s].committed < true

6: BROADCAST({commit, Z[0][s].7,b[0],s))

7

8

else if bg > b[o] then

: b[()] — bﬁ
9: if X[o][s] # L then
10: Put Z[0][s].y back to main request queue
11: Xo][s] + L
12: else return > Ignore old reply msg

rejection, the node updates a local ballot and puts the re-
quest in this instance back to main request queue to retry
later (lines 8-11).

Algorithm 6 Node «o: commit message handler

1: function HANDLE((commit, ¥, b, ,s)) from A
2: 04 Y.0

3 ifby > blo] then
4: blo] < by,

5: if X[o][s] = L then
6: Z[o][s] + (instance, y,b; ,committed « true)
7 else

8 Z[o][s].commit < true

Finally, Algorithm 6] shows the receipt of a (commit)
message for slot s by a node ¢. Since o may not be
included in the Q2 of the accept phase, it needs to up-
date the local ballot (lines 3-4) and create the instance in
X[o][s] if it is absent (lines 5-6).

3.4 Properties

WPaxos protocol provides similar guarantees and prop-
erties offered by other Paxos variants, such as EPaxos
and Generalized Paxos.

Non-triviality. For any node o, the set of commit-
ted commands is always a sequence ¢ of proposed com-
mands, i.e. 30 : committed|o] = L e . Non-triviality is
straightforward since nodes only start phase-1 or phase-2
for commands proposed by clients in Algorithm 1.

Stability. For any node ¢, the sequence of commit-
ted commands at any time is a prefix of the sequence
at any later time, i.e. 30 : committed[o] = y at any
t = committed[0] = Yo O att+A.

Consistency. For any slot of any object, no two lead-
ers can commit different values. This property asserts
that object stealing and failure recovery procedures do
not override any previously accepted or committed val-
ues. We verified this consistency property by model
checking a TLA+ specification of WPaxos algorithm.

WPaxos consistency guarantees are on par with other
protocols, such as EPaxos, that solve the generalized
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(a) Logs for 3 objects A,
B, and C. Dashed box en-
compasses multi-object com-
mands.

(b) Object logs are serial-
ized. Multi-object commands
are ordered based on the slot
numbers.

Figure 5: Possible log serialization for objects A, B, and
C.

consensus problem, first introduced in 2005 [18]. Gen-
eralized consensus relaxes the consensus requirement by
allowing non-interfering commands to be processed con-
currently. Generalized consensus no longer enforces a
totally ordered set of commands. Instead only conflict-
ing commands need to be ordered with respect to each
other, making the command log a partially ordered set.
WPaxos maintains separate logs for every object and
provides per-object linearizability. Moreover, for multi-
object commands WPaxos can solve generalized consen-
sus and provide strict serializability. This is achieved
by collating/serializing the logs together, establishing the
order of interfering commands by comparing the slot
numbers of the objects in the commands, as shown in
Figure [5] This ordering happens naturally as the com-
mands cannot get executed before the previous slots for
all objects in the command are executed. The serializ-
ability we achieve through the logs collation along with
the per-object linearizability of all objects in the system
make WPaxos a strictly serializable protocol [[1,/10]. We
relegate implementation and evaluation of multi-object
commands to future work.

Liveness. A proposed command 7y will eventually be
committed by all non-faulty nodes a, i.e. oVor:y €
committed|c].

4 Evaluation

We developed a general framework, called Paxi to con-
duct our evaluation. The framework allows us to com-
pare WPaxos, EPaxos, and several other Paxos protocols
in the same controlled environment under identical work-
loads. We implemented Paxi along with WPaxos and
EPaxos in Go version 1.8 and released it as an open-
source project on GitHub at https://github.com/
wpaxos/paxi. The framework provides extended ab-
stractions to be shared between all Paxos variants, in-
cluding location-aware configuration, network commu-
nication, client library, and a quorum management mod-
ule (which accommodates majority quorum, fast quo-
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Figure 6: Workload with locality in each region.

rum, grid quorum and flexible quorum). Paxi’s network-
ing layer encapsulates a message passing model and ex-
poses basic interfaces for a variety of message exchange
patterns, ranging from direct messaging between nodes
to broadcasting for the entire cluster. Additionally, our
Paxi framework incorporates mechanisms to facilitate
the startup of the system by sharing the initial parame-
ters through the configuration management tool.

4.1 Setup

We evaluated WPaxos using the key-value store abstrac-
tion provided by our Paxi framework. We used Ama-
zon AWS EC2 [2] to deploy WPaxos across 5 different
regions: Virginia (VA), California (CA), Oregon (OR),
Japan (JP), and Ireland (EU). In our experiments, we
used 3 medium instances with 2 vCPUs and 4 GB of
RAM at each AWS region to host WPaxos.

In order to simulate workloads with tunable access lo-
cality patterns we used a normal distribution to control
the probability of performing a request on each object
from a set of all objects. As shown in the Figure [6] we
used a pool of 1000 common objects, with the probabil-
ity function of each region denoting how likely an object
is to be selected at a particular zone. Each region has a
set of objects it is more likely to access. We define local-
ity as the percentage of the requests or commands pulled
from such set of likely objects.

The workload with conflicting objects exhibits no lo-
cality if the objects are selected uniformly random at
each zone. We introduce locality to our evaluation by
drawing the conflicting keys from a Normal distribution
N (u,0?), where p can be varied for different zones to
control the locality, and o is shared between zones. The
locality can be visualized as the non-overlapping area un-
der the probability density functions in Figure|[6]

Definition 4.1. Locality L is the complement of the
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Figure 7: Median and 99%ile latencies for phase-1 (left)
and phase-2 (right).

overlapping coefficient (OVLEI among workload distri-
butions: L =1 — OVL.

Let ®(*5F) denote the cumulative distribution func-
tion (CDF) of any normal distribution with mean p and
deviation o, and £ as the x-coordinate of the point in-
tersected by two distributions, locality is given by L =
D (%) — D, (X). At the two ends of the spectrum, locality
equals to O if two overlapping distributions are congru-
ent, and locality equals to 1 if two distributions do not
intersect.

4.2 Quorum Latencies

Choosing proper quorums in a flexible quorum setup is
important for the overall performance of the system. It is
possible to tune the performance and fault tolerance by
adjusting the Q1 and Q2 selections.

In this first set of experiments, we compare the latency
of Q1 and Q2 accesses in two types of quorums: flexible
grid (FG) and flexible 2 rows (F2R). Flexible grid quo-
rum uses a single node per zone/region for Q1, requir-
ing all nodes in the zone/region to form a Q2. Flexible
2 row configuration is default for WPaxos and uses any
2 rows per zone for Q1 and consequently requires one
fewer node in Q2 than FG. This means that 02 quorum
in a region with 3 nodes consists of any 2 nodes and can
tolerate one node failure. For this experiment we used a 3
region WPaxos deployment. In each region we simulta-
neously generated a fixed number of phase-1 and phase-2
requests, and measured the latency for each phase. Fig-
ure [/| shows the median and 99th percentile latency in
phase-1 (left) and phase-2 (right).

Quorum size of Q1 in FG is a half of that for F2R,
but both experience a similar median latency of about

2The overlapping coefficient (OVL) is a measurement of similar-
ity between two probability distributions, refers to the shadowing area
under two probability density functions simultaneously [14].
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Figure 8: Random workload.

one round trip to the farthest peer, since the communica-
tion happens in parallel and both FG and F2R are equally
affected by the WAN latency. Within a zone, however,
F2R can tolerate one straggler node, reducing both me-
dian and 99th percentile latency for the most frequently
used quorum type.

4.3 Latency

We compare the commit latency between WPaxos and
EPaxos with three sets of workloads, random (Figure
), ~70% locality (Figure [0)), and ~90% locality (Fig-
ure@). In a duration of 5 minutes, clients in each region
generate requests concurrently. WPaxos is deployed with
both Immediate and Adaptive versions and EPaxos is de-
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Figure 9: Locality (70%) workload.

ployed with 5 and 15 node versions.

Figure [8a] compares the median (color bar) and 95th
percentile (error bar) latency of random workload in 5
regions. Each region experiences different latency due
to their asymmetrical location in the geographical topol-
ogy. WPaxos with immediate object stealing shows a
similar performance with EPaxos because the random
workload causes many phase-1 invocations which re-
quire wide area RTT. However, WPaxos with adaptive
mode outperforms EPaxos in every region. Figure [8b]
shows the distributions of aggregated latencies. Even
though WPaxos immediate mode enables around 20% of
local commit latency, WPaxos adaptive mode smoothens
the latency by avoiding unnecessary leader changes and
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Figure 10: Locality (90%) workload.

improves average latency.

EPaxos always has to pay the price of WAN com-
munication, while WPaxos tries to keep operations lo-
cally as much as possible. Figure [9a] shows that, under
~70% locality workload, regions located in geographic
center improve their median latencies. Regions JP and
EU suffer from WPaxos immediate object stealing be-
cause their Q1 latencies are longer as they remain more
towards the edge of the topology. WPaxos adaptive al-
leviates and smoothens these effects. With EPaxos 5
nodes deployment, the median latency is about 1 RTT
between the regions and its second closest neighbor be-
cause the fast quorum size is 3. In EPaxos 15 nodes, the
fast quorum size increases to 11, which increases the la-
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Figure 11: Request latency as the throughput increases.

250 300 350 400 tency and reduce chance of conflict free commits. From

an aggregated perspective, the cumulative distribution in
Figure [0b] indicates about half of the requests are com-
mit in local-area latency in WPaxos. The global aver-
age latency of WPaxos Adaptive and EPaxos 5 nodes are
45.3ms and 107.3ms respectively.

In Figure [T0a] we increase the locality to ~90%.
EPaxos shows similar pattern as previous experiments,
whereas WPaxos achieves local median latency in all re-
gions. In Figure[I0b] 80% of all requests are able to com-
mit with local quorum in WPaxos. The average latency
of WPaxos Adaptive and EPaxos 5 nodes are 14ms and
86.8ms respectively, and the median latencies are 1.21ms
and 71.98ms.

4.4 Throughput

We experiment on scalability of WPaxos with respect to
the number of requests it processes by driving a steady
workload at each zone. Instead of the medium instances
we used in our other experiments, we used a cluster of 15
large EC2 instances with 2 vCPUs and 8 GB RAM each

20000

20000



to host WPaxos deployments. EPaxos is hosted at the
same instances, but with only one EPaxos node per zone.
We opted out of using EPaxos with 15 nodes, because
our preliminary experiments showed significantly higher
latencies with such a large EPaxos deployment. (A 15
node EPaxos cluster needs very large fast quorum, and
additionally having 3 nodes at each region results in the
unnecessary contention for the objects that belong to the
region.)

Clients on a separate VM in each region generate the
workload by issuing a specific number of requests each
second. We limit WPaxos deployments to a single leader
per zone to be better comparable to EPaxos. We grad-
ually increase the load on the systems by issuing more
requests and measure the latency at each of the through-
put levels. Figure|l 1|shows the latencies as the aggregate
throughput increases.

At low load, we observe both immediate and adaptive
WPaxos significantly outperform EPaxos as expected.
With relatively small number of requests coming through
the system, WPaxos has low contention for object steal-
ing, and can perform many operations locally within a
region. On the contrary, even without the contention,
EPaxos needs to pay WAN cost to reach to a fast quo-
rum, making its requests take longer. As the number of
requests increases and contention rises, performance of
both EPaxos and WPaxos with immediate object steal-
ing deteriorates.

Immediate WPaxos suffers from leaders competing
for objects with neighboring regions, degrading its per-
formance faster than EPaxos. Figure illustrating
median request latencies shows this deterioration more
clearly. This behavior in WPaxos with immediate object
stealing is caused by dueling leaders: as two nodes in
neighboring zones try to acquire ownership of the same
object, each restarts phase-1 of the protocol before the
other leader has a chance to finish its phase-2. When
studying performance of WPaxos under 90% locality, we
observed much greater scalability of immediate object
stealing mode due to greatly reduced contention for the
objects between neighboring zones.

On the other hand, WPaxos in adaptive object steal-
ing mode scales much better and shows almost no degra-
dation until it starts to reach the CPU and networking
limits of individual instances. Adaptive WPaxos median
latency actually decreases under the medium workloads,
while EPaxos shows gradual latency increases. At the
workload of 10000 req/s adaptive WPaxos outperforms
EPaxos 9 times in terms of average latency and 54 times
in terms of median latency.
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Figure 12: The average latency in each second.

4.5 Shifting Locality Workload

Many applications in the WAN setting may experience
workloads with shifting access patterns. Diurnal patterns
are common for large scale applications that process hu-
man input [8,|30]. For instance, social networks may
experience drifting access patterns as activity of people
changes depending on the time of the day. WPaxos is
capable to adapt to such changes in the workload access
patterns while still maintaining the benefits of locality.
While statically partitioned solutions perform well when
there are many local requests accessing each partition,
they require a priori knowledge of the best possible par-
titioning. Moreover, statically partitioned Paxos systems
cannot adjust to changes in the access pattern, thus their
performance degrade when the locality shifts.

In Figure we illustrate the effects of shifting lo-
cality in the workload. Statically key-partitioned Paxos
(KPaxos) starts in the optimal state with most of the re-
quests done on the local objects. When the access lo-
cality is gradually shifted by changing the mean of the
locality distributions at a rate of 2 objects/sec, the ac-
cess pattern shifts further from optimal for statically par-
titioned Paxos, and its latency increases. WPaxos, on the
other hand, does not suffer from the shifts in the local-
ity. The adaptive algorithm slowly migrates the objects
to regions with more demand, providing stable and pre-
dictable performance under shifting access locality.

5 Fault-tolerance

WPaxos is able to make progress as long as it can form
valid Q1 and Q2 quorums. Our default deployment
scheme uses 3 nodes per zone, thus it can mask failure
of a single node per zone to form Q2 quorums at that
zone and form Q1 quorums passing through that zone.
It is possible to further increase the fault tolerance guar-
antees by configuring the number of nodes in each zone
and sizes of Q1 and Q2 quorums.
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Figure 13: Leader failure in one zone has no measurable
impact on performance.

A leader recovery is handled naturally by the object
stealing procedure. Upon a leader failure, all of its ob-
jects will become unreachable through that leader, forc-
ing the system to start the object stealing phase. A failed
node does not prevent the new leader from forming a
Q1 quorum needed for acquiring an object, thus the new
leader can proceed and get the leadership of any object.
The object stealing procedure also recovers accepted but
not committed instances in the previous leaders log for
the object and the same procedure is carried out when
recovering from a failure.

Figure[I3alillustrates that there is negligible impact on
performance due to a single leader/node failure. In this
experiment, we ran a steady locality biased workload of
about 2500 reg/s through the WPaxos deployment. At
25 second mark we took the leader replica in OR region
offline, however this has virtually no impact on the sys-
tem performance. For immediate WPaxos, leader failure
means all clients in that zone can simply communicate to
another available local replica, and that replica will start
phase-1 to acquire the objects of the dead node when a

40
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request for the object comes. Adaptive WPaxos will act
in a similar way, except it will not start phase-1 if the
object has already been acquired by another region. The
effects of a single leader failure are not instant either, and
the full recovery spreads in time, as recovery for each in-
dividual object happens only when that object is needed.
The throughput of the system is not affected either, as
shown in Figure

A zone failure will make forming the Q1 impossible
in WPaxos, halting all object movement in the system.
Howeyver, leaders in all unaffected zones can continue to
process requests on the objects they already own. Imme-
diate WPaxos suffers more, as it will not be able to per-
form remote requests on unaffected objects. On the other
hand, adaptive WPaxos can still serve all request (re-
mote or local) for all unaffected objects. In both WPaxos
modes, objects in the affected regions will be unavailable
for the duration of zone recovery.

Network partitioning can affect the system in a sim-
ilar manner as a zone failure. If a region is partitioned
from the rest of the system, no object movement is pos-
sible, however both partitions will be able to make some
progress in WPaxos under the adaptive object stealing
rules.

6 Related Work

Several attempts have been made for improving the scal-
ability of Paxos. Table[2] summarizes properties of some
of the significant ones.

Mencius [21]] proposes to reduce the bottlenecks of a
single leader by incorporating multiple rotating leaders.
Mencius tries to achieve better load balancing by parti-
tioning consensus sequence/slot numbers among multi-
ple servers, and aims to distribute the strain over the net-
work bandwidth and CPU. However, Mencius does not
address reducing the WAN latency of consensus.

Other Paxos variants go for a leaderless approach.
EPaxos [23] is leaderless in the sense that any node can
opportunistically become a leader for an operation. At
first EPaxos tries the request on a fast quorum and if the
operation was performed on a non-conflicting object, the
fast quorum will decide on the operation and replicate it
across the system. However, if fast quorum detects a con-
flict (i.e., another node trying to decide another operation
for the same object), EPaxos requires performing a sec-
ond phase to record the acquired dependencies requiring
agreement from a majority of the Paxos acceptors.

A recent Paxos variant, called M2Paxos [25], takes
advantage of multileaders: each node leads a subset of
all objects while forwarding the requests for objects it
does not own to other nodes. Each leader runs phase-
2 of Paxos on its objects using classical majority quo-
rums. Object stealing is not used for single-object



Table 2: Protocol comparison

WPaxos EPaxos M?Paxos Bizur ZooNet | FPaxos
WAN-optimized v v X X v X
Multi-leader v X (leaderless) v v (static) v X
Concurrent v v v v (across buckets) v X
Object-stealing v X v (partial) v X X
Locality adaptive v X v (partial) X X X
Quorums flexible fast & classical classical classical classical | flexible
Log per-object per-node per-object register per-zone | single
Consistency generalized generalized generalized per-bucket reads strong

commands, but is supported for multiple-object update
clients. M?Paxos does not address WAN deployments
and is subject to WAN latencies for commit operations
since it uses majority quorums.

Bizur [[11] also uses multileaders to process indepen-
dent keys from its internal key-value store in parallel.
However, it does not account for the data-locality nor
is able to migrate the keys between the leaders. Bizur
elects a leader for each bucket, and the leader becomes
responsible for handling all requests and replicating the
objects mapped to the bucket. The buckets are static,
with no procedure to move the key from one bucket to an-
other: such an operation will require not only expensive
reconfiguration phase, but also change in the key map-
ping function.

ZooNet [19]] is a client approach at improving the per-
formance of WAN coordination. By deploying multiple
ZooKeeper services in different regions with observers in
every other region, it tries to achieve fast reads at the ex-
pense of slow writes and data-staleness. In other words,
the system operates like ZooKeeper with the object-
space statically partitioned across regions. ZooNet pro-
vides a client API for consistent reads by injecting sync
requests when reading from remote regions. ZooNet
does not support load adaptive object ownership migra-
tion.

Supercloud [27] takes a different approach to handling
diurnal patterns in the workload. Instead of making end
systems adjustable to access patterns, Supercloud pro-
vides the solution to move non-adjustable components to
the places of most frequent use by using live-VM migra-
tion. One key advantage of Supercloud is its ability to
migrate not only standalone systems that reside in a sin-
gle VM, but also interconnected distributed applications
without breaking them.

7 Concluding Remarks

WPaxos achieves fast wide-area coordination by dynam-
ically partitioning the objects across multiple leaders
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that are deployed strategically using flexible quorums.
Such partitioning and emphasis on local operations al-
low our protocol to significantly outperform leaderless
approaches, such as EPaxos, while maintaining the same
consistency guarantees. Unlike statically partitioned
Paxos, WPaxos adapts dynamically to the changing ac-
cess locality through adaptive object stealing. The object
stealing mechanism also enables support for multi-object
transactional updates: move all the needed objects to the
same leader, before processing the multi-object update
command at that leader. In future work, we will inves-
tigate the feasibility of this straightforward implementa-
tion and explore optimizations. We will also investigate
more sophisticated object stealing strategies that better
cater to the needs of the clients and that proactively move
objects to zones with high demand.
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