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Abstract—WPaxos is a multileader Paxos protocol that pro-
vides low-latency and high-throughput consensus across wide-
area network (WAN) deployments. Unlike statically partitioned
multiple Paxos deployments, WPaxos perpetually adapts to the
changing access locality through object stealing. Multiple con-
current leaders coinciding in different zones steal ownership
of objects from each other using phase-1 of Paxos, and then
use phase-2 to commit update-requests on these objects locally
until they are stolen by other leaders. To achieve fast phase-2
commits, WPaxos adopts the flexible quorums idea in a novel
manner, and appoints phase-2 acceptors to be close to their
respective leaders. We implemented WPaxos and evaluated it
on WAN deployments across 5 AWS regions. The dynamic
partitioning of the object-space and emphasis on zone-local
commits allow WPaxos to significantly outperform both par-
titioned Paxos deployments and leaderless Paxos approaches,
while providing the same consistency guarantees.

1. Introduction

Paxos [1] provides a formally-proven solution to the
fault-tolerant distributed consensus problem. Notably, Paxos
preserves the safety specification of distributed consensus
(i.e., no two nodes decide differently) in the face of con-
current and asynchronous execution, crash/recovery of the
nodes, and arbitrary loss of messages. When the conditions
improve such that distributed consensus becomes solvable,
Paxos satisfies the progress property (i.e., nodes decide on
a value as a function of the inputs).

Paxos and its variants have been deployed widely,
including in Chubby [2] based on Paxos [3], Apache
ZooKeeper [4] based on Zab [5], and etcd [6] based on
Raft [7]. All of these implementations depend on a cen-
tralized primary process(i.e., the leader) to serialize all
commands. During normal operation, only one node acts as
the leader: all client requests are forwarded to that leader,
and the leader commits the requests by performing phase-2
of Paxos with the acceptors. Due to this dependence on
a single centralized leader, these Paxos implementations
support deployments in local area and cannot deal with
write-intensive scenarios across wide area networks (WANs)
well. In recent years, however, coordination over wide-area
(across zones, such as datacenters and sites) has gained
greater importance, especially for database applications and

NewSQL datastores [8]–[10], distributed filesystems [11]–
[13], and social networks [14,15].

In order to eliminate the single leader bottleneck, EPaxos
[16] proposes a leaderless Paxos protocol where any replica
at any zone can propose and commit commands opportunis-
tically, provided that the commands are non-interfering. This
opportunistic commit protocol requires an agreement from
a fast-quorum of roughly 3/4ths of the acceptors1, which
means that WAN latencies are still incurred. Moreover, if the
commands proposed by multiple concurrent opportunistic
proposers do interfere, the protocol requires performing
a second phase to record the acquired dependencies, and
agreement from a majority of the Paxos acceptors is needed.

Another way to eliminate the single leader bottleneck
is to use a separate Paxos group deployed at each zone.
Systems like Google Spanner [8], ZooNet [17], Bizur [18]
achieve this via a static partitioning of the global object-
space to different zones, each responsible for a shard of
the object-space. However, such static partitioning is in-
flexible and WAN latencies will be incurred persistently to
access/update an object mapped to a different zone.

Contributions. We present WPaxos, a novel multi-
leader Paxos protocol that provides low-latency and high-
throughput consensus across WAN deployments. WPaxos
leverages the flexible quorums [19] idea to cut WAN com-
munication costs. WPaxos deploys flexible quorums in a
novel manner to appoint multiple concurrent leaders across
the WAN. By strategically selecting the phase-2 acceptors
to be close to the leader, WPaxos achieves fast commit de-
cisions. We present how this is accomplished in Section 2.1.

Unlike the FPaxos protocol which uses a single-leader
and does not scale to WAN distances, WPaxos uses multi-
leaders and partitions the object-space among these multi-
leaders. Every node in WPaxos acts as a leader for a subset
of objects in the system. This allows the protocol to process
requests for objects under different leaders concurrently.
Each object in the system is maintained in its own commit
log, allowing for per-object linearizability. On the other
hand, WPaxos differs from the existing static partitioned
multiple Paxos deployment solutions because it implements
a dynamic partitioning scheme: leaders coinciding in dif-
ferent zones steal ownership/leadership of an object from
each other using phase-1 of Paxos, and then use phase-2 to

1. For a deployment of size 2F + 1, fast-quorum is F + bF+1
2 c



commit update-requests on the object locally until the object
is stolen by another leader.

With its multileader protocol, WPaxos achieves the
same consistency guarantees as in EPaxos: linearizability
is ensured per object, and when deployed with multi-object
transactions, strict serializability is ensured across objects.
We present safety and liveness properties of WPaxos in
Section 3.4. We model WPaxos in TLA+/PlusCal [20] and
present the algorithm using the PlusCal specification in
Section 3. The consistency properties of WPaxos are verified
by model checking this specification, which is available at
http://github.com/ailidani/paxi/tree/master/tla.

Since object stealing is an integrated part of phase-1
of Paxos, WPaxos remains simple as a pure Paxos flavor
and obviates the need for another service/protocol. There is
no need for a configuration service for relocating objects
to zones as in Spanner [8] and vertical Paxos [21]. Since
the base WPaxos protocol guarantees safety to concurrency,
asynchrony, and faults, the performance can be tuned or-
thogonally and aggressively, as we discuss in Section 4.
To improve performance, we present a locality adaptive
object stealing extension in Section 4.1. We also provide
an embedded solution for transactions all inside the basic
Paxos/WPaxos protocol in Section 4.3. This solution obvi-
ates the need for integrating a separate two-phase commit
for transactions as in Spanner [8].

To quantify the performance benefits from WPaxos, we
implemented WPaxos in Go (http://github.com/ailidani/paxi)
and performed evaluations on WAN deployments across 5
AWS regions. Our results in Section 6 show that WPaxos
outperforms EPaxos, achieving 2.4 times faster average
request latency and 3.9 times faster median latency than
EPaxos using a ⇠70% access locality workload. Moreover,
for a ⇠90% access locality workload, WPaxos improves
further and achieves 6 times faster average request latency
and 59 times faster median latency than EPaxos. This is
because, while the EPaxos opportunistic commit protocol
requires about 3/4ths of the Paxos acceptors to agree and in-
curs one WAN round-trip latency, WPaxos is able to achieve
low latency commits using the zone-local phase-2 acceptors.
Moreover, WPaxos is able to maintain low-latency responses
under a heavy workload: Under 10,000 requests/sec, using a
⇠70% access locality workload, WPaxos achieves 9 times
faster average request latency and 54 times faster median
latency than EPaxos. Finally, we evaluate WPaxos with a
shifting locality workload and show that WPaxos seamlessly
adapts and significantly outperforms static partitioned mul-
tiple Paxos deployments.

While achieving low latency and high throughput,
WPaxos also achieves seamless high-availability by having
multileaders: failure of a leader is handled gracefully as
other leaders can serve the requests previously processed
by that leader via the object stealing mechanism. Since
leader re-election (i.e., object stealing) is handled through
the Paxos protocol, safety is always upheld to the face of
node failure/recovery, message loss, and asynchronous con-
current execution. We discuss fault-tolerance properties and
present a reconfiguration protocol for WPaxos in Section 5.

While WPaxos helps most for slashing WAN latencies, it is
also suitable for intra-datacenter deployments for its high-
availability and throughput benefits.

2. WPaxos

We assume a set of nodes communicating through mes-
sage passing in an asynchronous environment. The nodes
are deployed in a set of zones, which are the unit of
availability isolation. Depending on the deployment, a zone
can range from a cluster or datacenter to geographically
isolated regions. Zones can be added to or removed from
a running system through reconfigurations. We assume at
most f nodes may crash in a zone of N = 2f + 1 nodes,
and at most F zones may become unavailable out of a total
Z zones. Each node is identified by a tuple consisting of a
zone ID and node ID, i.e. Nodes , 1..Z ⇥ 1..N .

Every node maintains a sequence of instances ordered by
an increasing slot number. Every instance is committed with
a ballot number. Each ballot has a unique leader. Similar to
Paxos implementation [3], we construct the ballot number as
lexicographically ordered pairs of an integer and its leader
identifier, s.t. Ballots , Nat⇥Nodes. Consequently, ballot
numbers are unique and totally ordered, and any node can
easily retrieve the id of the leader from a given ballot.

2.1. WPaxos Quorums

WPaxos leverages on the flexible quorums idea [19].
This result shows that we can weaken Paxos’ “all quorums
should intersect” assertion to instead “only quorums from
different phases should intersect”. That is, majority quorums
are not necessary for Paxos, provided that phase-1 quo-
rums (Q1) intersect with phase-2 quorums (Q2). Flexible-
Paxos, i.e., FPaxos, allows trading off Q1 and Q2 sizes
to improve performance. Assuming failures and resulting
leader changes are rare, phase-2 (where the leader tells the
acceptors to decide values) is run more often than phase-
1 (where a new leader is elected). Thus it is possible to
improve performance of Paxos by reducing the size of Q2

at the expense of making the infrequently used Q1 larger.

Definition 1. A quorum system over the set of nodes is safe
if the quorums used in phase-1 and phase-2, named Q1 and
Q2, intersect. That is, 8q1 2 Q1, q2 2 Q2 : q1 \ q2 6= ;.

WPaxos adopts the flexible quorum idea to WAN de-
ployments. Our quorum system derives from the grid quo-
rum layout, shown in Figure 1a, in which rows and columns
act as Q1 and Q2 quorums respectively. An attractive prop-
erty of this grid quorum arrangement is Q1 + Q2 does
not need to exceed N , the total number of acceptors, in
order to guarantee intersection of any Q1 and Q2. Let
q1, q2 denote one specific instance in Q1 and Q2. Since
q1 2 Q1 are chosen from rows and q2 2 Q2 are chosen
from columns, any q1 and q2 are guaranteed to intersect
even when |q1 + q2| < N .

In WPaxos quorums, each column represents a zone and
acts as a unit of availability or geographical partitioning.

http://github.com/ailidani/paxi/tree/master/tla
http://github.com/ailidani/paxi
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Figure 1: (a) Grid quorums with Q1 in rows and Q2 in columns
(b) WPaxos quorum where f = F = 1

The collection of all zones form a grid. In this setup, we
further relax the grid quorum constraints in both Q1 and
Q2 to achieve a more fault-tolerant and efficient alternative.
Instead of using rigid grid columns, WPaxos picks f + 1
(majority) nodes in a zone over 2f +1 nodes, regardless of
their row position, to tolerate f crash failures in every zone.
In addition, so as to tolerate F zone failures within Z zones,
q1 2 Q1 is selected from Z � F zones, and q2 2 Q2 from
F + 1 zones. Figure 1b shows one such example of q1 and
q2 intersecting at one node. In that deployment, each zone
has 3 nodes, and each q2 includes 2 out of 3 nodes from 2
zones. The q1 quorum spans 3 out of 4 zones and includes
any 2 nodes from each zone. Using a 2 row q1 rather than 1
row q1 has negligible effect on the performance, as we show
in the evaluation. But then using a larger quorum allows us
to better handle failures, as we discuss in Section 5.

Next, we formally define WPaxos quorums in
TLA+ [20] and prove that our quorums always intersect.

vertical , {q 2 SUBSET Nodes : ^ 8i, j 2 q : i[1] = j[1]

^ Cardinality(q) = f + 1}

Q1 , {q 2 SUBSET Nodes : 2

^ Cardinality(q) = (f + 1)⇥ (Z � F )

^ Cardinality({i[1] : i 2 q}) = Z � F

^ Cardinality({z 2 vertical : z ✓ q}) = Z � F}

Q2 , {q 2 SUBSET Nodes :
^ Cardinality(q) = (f + 1)⇥ (F + 1)

^ Cardinality({i[1] : i 2 q}) = F + 1

^ Cardinality({z 2 vertical : z ✓ q}) = F + 1}

Lemma 1. WPaxos Q1 and Q2 quorums satisfy intersection
requirement (Definition 1).

Proof. (1) WPaxos q1s involve Z�F zones and q2s involve
F + 1 zones, since Z � F + F + 1 = Z + 1 > Z, there is
at least one zone selected by both quorums. (2) Within the
common zone, both q1 and q2 selects f + 1 nodes out of
2f + 1 nodes, since 2f + 2 > 2f + 1, there is at least one
node in the intersection.

2. SUBSET S is the set of subsets of S

Figure 2: Normal case messaging flow

2.2. Multi-leader

In contrast to FPaxos [19] which uses flexible quo-
rums with a classical single-leader Paxos protocol, WPaxos
presents a multi-leader protocol over flexible quorums. Ev-
ery node in WPaxos can act as a leader for a subset of
objects in the system. This allows the protocol to process
requests for objects under different leaders concurrently.
Each object in the system is maintained in its own commit
log, allowing for per-object linearizability. A node can lead
multiple objects at once, all of which may have different
ballot and slot numbers in their corresponding logs.

The WPaxos protocol consists of two phases. The con-
current leaders steal ownership/leadership of objects from
each other using phase-1 of Paxos executed over q1 2 Q1.
Then phase-2 commits the update-requests to the object
over q2 2 Q2, selected from the leader’s zone (and nearby
zones) for improved locality. The leader can execute phase-2
multiple times until some other node steals the object.

The phase-1 of the protocol starts only the node needs
to steal an object from a remote leader or if a client has a
request for a brand new object that is not in the system. This
phase of the algorithm causes the ballot number to grow for
the object involved. After a node becomes the owner/leader
for an object, it repeats phase-2 multiple times on that object
for committing commands/updates, incrementing the slot
number at each iteration, while the ballot number for the
object stays the same.

Figure 2 shows the normal operation of both phases, and
also references each operation to the algorithms in Section 3.

2.3. Object Stealing

When a node needs to steal an object from another leader
in order to carry out a client request, it first consults its
internal cache to determine the last ballot number used for
the object and performs phase-1 on some q1 2 Q1 with a
larger ballot. Object stealing is successful if the candidate
node can out-ballot the existing leader. This is achieved in
just one phase-1 attempt, provided that the local cache is
current and a remote leader is not engaged in another phase-
1 on the same object.

Once the object is stolen, the old leader cannot act on
it, since the object is now associated with a higher ballot
number than the ballot it had at the old leader. This is true
even when the old leader was not in the q1 when the key



was stolen, because the intersected node in q2 will reject any
object operations attempted with the old ballot. The object
stealing may occur when some commands for the objects are
still in progress, therefore, a new leader must recover any
accepted, but not yet committed commands for the object.

WPaxos maintains separate ballot numbers for all ob-
jects isolating the effects of object stealing. Keeping per-
leader ballot numbers, i.e., keeping a single ballot number
for all objects maintained by the leader, would necessitate
out-balloting all objects of a remote leader when trying to
steal one object. This would then create a leader dueling
problem in which two nodes try to steal different objects
from each other by constantly proposing a higher ballot than
the opponent. Using separate ballot numbers for each object
alleviates ballot contention, although it can still happen
when two leaders are trying to take over the same object
currently owned by a third leader. To mitigate that issue, we
use two additional safeguards: (1) resolving ballot conflict
by zone ID and node ID in case the ballot counters are the
same, and (2) implementing a random back-off mechanism
in case a new dueling iteration starts anyway.

Object stealing is part of core WPaxos protocol. In
contrast to the simplicity and agility of object stealing in
WPaxos, object relocation in other systems require integra-
tion of another service, such as movedir in Spanner [8], or
performing multiple reconfiguration or coordination steps
as in Vertical Paxos [21]. Vertical Paxos depends on a re-
liable master service that overseeing configuration changes.
Object relocation involves configuration change in the node
responsible for processing commands on that object. When
a node in a different region attempts to steal the object,
it must first contact the reconfiguration master to obtain
the current ballot number and next ballot to be used. The
new leader then must complete phase-1 of Paxos on the
old configuration to learn the previous commands. Upon
finishing the phase-1, the new leader can commit any un-
committed slots with its own set of acceptors. At the same
time the new leader notifies the master of completing phase-
1 with its ballot. Only after the master replies and activates
the new configuration, the leader can start serving user
requests. This process can be extended to multiple objects,
by keeping track of separate ballot numbers for each object.
Vertical Paxos requires three separate WAN communications
to change the leadership, while WPaxos can do so with just
one WAN communication.

3. Algorithm

In the basic algorithm, every node maintains a set of
variables and a sequence of commands written into the
command log. The command log can be committed out of
order, but has to be executed against the state machine in
the same order without any gap. Every command accesses
only one object o. Every node leads its own set of objects
in a set called own.

All nodes in WPaxos initialize their state with above
variables. We assume no prior knowledge of the ownership
of the objects; a user can optionally provide initial object

process(self 2 Nodes) Initialization
variables

1: ballots = [o 2 Objects 7! h0, selfi];
2: slots = [o 2 Objects 7! 0];
3: own = {}
4: log =[o 2 Objects 7!

[s 2 Slots 7!
[b 7! 0, v 7! hi, c 7! FALSE]]];

assignments. The highest known ballot numbers for objects
are constructed by concatenating counter=0 and the node ID
(line 1). The slot numbers start from zero (line 2), and the
objects self owned is an empty set (line 3). Inside the log,
an instance contains three components, the ballot number b
for that slot, the proposed command/value v and a flag c
indicates whether the instance is committed (line 4).

3.1. Phase-1: Prepare

Algorithm 1 Phase-1a
1: macro p1a () {
2: with (o 2 Objects) {
3: await o /2 own;
4: ballots[o] := hballots[o][1] + 1, selfi;
5: Send([type 7! “1a”,

n 7! self,
o 7! o,
b 7! ballots[o]]); }}

WPaxos starts with a client sending requests to one of
the nodes. A client typically chooses a node in the local zone
to minimize the initial communication costs. The request
message includes a command and some object o on which
the command needs to be executed. Upon receiving the
request, the node checks if the object exists in the set of
own, and start phase-1 for any new objects by invoking
p1a() procedure in Algorithm 1. If the object is already
owned by this node, the node can directly start phase-2 of
the protocol. In p1a(), a larger ballot number is selected and
“1a” message is sent to a Q1 quorum.

Algorithm 2 Phase-1b
1: macro p1b () {
2: with (m 2 msgs) {
3: await m.type = “1a”;
4: await m.b ⌫ ballots[m.o];
5: ballots[m.o] := m.b;
6: if (o 2 own) own := own \ {m.o};
7: Send([type 7! “1b”,

n 7! self,
o 7! m.o,
b 7! m.b,
s 7! slots[m.o]]); }}

The p1b() procedure processes the incoming “1a” mes-
sage sent during phase-1 initiation. A node can accept the
sender as the leader for object o only if the sender’s ballot
m.b is greater or equal to the ballot number it knows of (line
4). If object o is owned by current node, it is removed from
set own (line 6). Finally, the “1b” message acknowledging
the accepted ballot number is send (line 7). The highest slot



associated with o is also attached to the reply message, so
that any unresolved commands can be committed by the
new leader.

3.2. Phase-2: Accept

Phase-2 of the protocol starts after the completion of
phase-1 or when it is determined that no phase-1 is required
for a given object. WPaxos carries out this phase on a
Q2 quorum residing in the closest F + 1 zones, thus all
communication is kept local, greatly reducing the latency.

Algorithm 3 Phase-2a
1: Q1Satisfied(o, b) ,9q 2 Q1 : 8n 2 q : 9m 2 msgs :

^m.type = “1b”
^m.o = o
^m.b = b
^m.n = n

2: macro p2a () {
3: with (m 2 msgs) {
4: await m.type = “1b”;
5: await m.b = hballots[m.o][1], selfi;
6: await m.o /2 own;
7: if (Q1Satisfied(m.o,m.b)) {
8: own := own [ {m.o};
9: slots[m.o] := slots[m.o] + 1;

10: log[m.o][slots[m.o]] := [b 7! m.b,
v 7! hslots[m.o], selfi,
c 7! FALSE];

11: Send([type 7! “2a”,
n 7! self,
o 7! m.o,
b 7! m.b,
s 7! slots[m.o],
v 7! hslots[m.o], selfi]); }}}

Procedure p2a() in Algorithm 3 collects the “1b” mes-
sages for itself (lines 4-6). The node becomes the leader of
the object only if Q1 quorum is satisfied (line 7,8). The new
leader then recovers any uncommitted slots with suggested
values and starts the accept phase for the pending requests
that have accumulated in queue. Phase-2 is launched by
increasing the highest slot (line 9), and creates new entry in
log (line 10), sending “2a” message (line 11).

Algorithm 4 Phase-2b
1: macro p2b () {
2: with (m 2 msgs) {
3: await m.type = “2a”;
4: await m.b ⌫ ballots[m.o];
5: ballots[m.o] := m.b;
6: log[m.o][m.s] := [b 7! m.b, v 7! m.v, c 7! FALSE];
7: Send([type 7! “2b”,

n 7! self,
o 7! m.o,
b 7! m.b,
s 7! m.s]); }}

Once the leader of the object sends out the “2a” message
at the beginning of phase-2, the replicas respond to this
message as shown in Algorithm 4. The leader node updates
its instance at slot m.s only if the message ballot m.b is
greater or equal to accepted ballot (line 4-6).

Algorithm 5 Phase-3
1: Q2Satisfied(o, b, s) ,9q 2 Q2 : 8n 2 q : 9m 2 msgs :

^m.type = “2b”
^m.o = o
^m.b = b
^m.s = s
^m.n = n

2: macro p3 () {
3: with (m 2 msgs) {
4: await m.type = “2b”;
5: await m.b = hballots[m.o][1], selfi;
6: await log[m.o][m.s].c 6= TRUE;
7: if (Q2Satisfied(m.o,m.b,m.s)) {
8: log[m.o][m.s].c := TRUE;
9: Send([type 7! “3”,

n 7! self,
o 7! m.o,
b 7! m.b,
s 7! m.s,
v 7! log[m.o][m.s].v]); }}}

3.3. Phase-3: Commit
The leader collects replies from its Q2 acceptors. The

request proposal either gets committed with replies satisfy-
ing a Q2 quorum, or aborted if some acceptors reject the
proposal citing a higher ballot number. In case of rejection,
the node updates a local ballot and puts the request in this
instance back to main request queue to retry later.

3.4. Properties

Non-triviality. For any node n, the set of committed
commands is always a sequence � of proposed commands,
i.e. 9� : committed[n] = ? • �. Non-triviality is straight-
forward since nodes only start phase-1 or phase-2 for com-
mands proposed by clients in Algorithm 1.

Stability. For any node n, the sequence of commit-
ted commands at any time is a prefix of the sequence at
any later time, i.e. 9� : committed[n] = � at t =)
committed[n] = � • � at t+�. Stability asserts any com-
mitted command cannot be overridden later. It is guaranteed
and proven by Paxos that any leader with higher ballot
number will learn previous values before proposing new
slots. WPaxos inherits the same process.

Consistency. For any slot of any object, no two leaders
can commit different values. This property asserts that object
stealing and failure recovery procedures do not override any
previously accepted or committed values. We verified this
consistency property by model checking a TLA+ specifica-
tion of WPaxos algorithm.

WPaxos consistency guarantees are on par with other
protocols, such as EPaxos, that solve the generalized consen-
sus problem [22]. Generalized consensus relaxes the consen-
sus requirement by allowing non-interfering commands to
be processed concurrently. Generalized consensus no longer
enforces a totally ordered set of commands. Instead only
conflicting commands need to be ordered with respect to
each other, making the command log a partially ordered
set. WPaxos maintains separate logs for every object and
provides per-object linearizability.

Liveness. A proposed command � will eventually be
committed by all non-faulty nodes n, i.e. ⇧8n 2 Nodes :



(a) (b)

Figure 3: (a) Initial leader ↵ observes heavy cross-region traffic
from node �, thus triggers � to start phase-1 on its q1. (b) �
becomes new leader and benefits more on the workload.

� 2 committed[n]. The PlusCal code presented in Section 3
specifies what actions each node is allowed to perform, but
not when to perform, which affects liveness. The liveness
property satisfied by WPaxos algorithm is same to that of
ordinary Paxos: as long as there exists q1 2 Q1 and q2 2 Q2

are alive, the system will progress.

4. Extensions

4.1. Locality Adaptive Object Stealing

The basic protocol migrates the object from a remote
region to a local region upon the first request, but that causes
a performance degradation when an object is frequently
accessed across many zones. With locality adaptive object
stealing we can delay or deny the object transfer to a zone
issuing the request based on an object migration policy.
The intuition behind this approach is to move objects to a
zone whose clients will benefit the most from not having to
communicate over WAN, while allowing clients accessing
the object from less frequent zones to get their requests
forwarded to the remote leader.

Our majority-zone migration policy aims to improve the
locality of reference by transferring the objects to zones that
sending out the highest number of requests for the objects,
as shown in Figure 3. Since the current object leader handles
all the requests, it has the information about which clients
access the object more frequently. If the leader ↵ detects that
the object has more requests coming from a remote zone,
it will initiate the object handover by communicating with
the node �, and in its turn � will start the phase-1 protocol
to steal the leadership of that object.

4.2. Replication Set

WPaxos provides flexibility in selecting a replication
set. The phase-2 (p2a) message need not be broadcast to
the entire system, but only to a subset of Q2 quorums,
denoted as a replication Q2 or RQ2. The user has the
freedom to choose the replication factor across zones from
the minimal required F + 1 zones up to the total number
of Z zones. Such choice can be seen as a trade off between
communication overhead and a more predictable latency,
since the replication zone may not always be the fastest to
reply. Additionally, if a node outside of the RQ2 becomes

(a) (b)

Figure 4: (a) Logs for A, B, C three objects where dashed boxes
encompass multi-object transactions. (b) One possible serialization
ordered by common object B’s slot numbers.

the new leader of the object, that may delay the new phase-
2 as the leader need to catch up with the missing logs in
previous ballots. One way to minimize the delay is let the
RQ2 reply on phase-2 messages for replication, while the
potential leader nodes learn the states as non-voting learners.

4.3. Transactions

Here we present a simple implementation of multi-object
transactions that happens entirely within the Paxos protocol,
and that obviates the need for integrating a separate two-
phase commit for transactions as in Spanner [8]. In this
implementation, the node that initiates a transactional oper-
ation, first steals all the objects needed for the transaction to
itself. This is done in increasing order of object IDs to avoid
deadlock and livelock. This phase may require multiple Q1

accesses. Then the leader commits the transaction in phase-
2 via a Q2 access. The execution order is achieved by
collating/serializing the logs together, establishing the order
of interfering transactions by comparing the slot numbers
of the common objects in the transactions, as shown in
Figure 4. This ordering happens naturally as the transactions
cannot get executed before the previous slots for all related
objects are executed. The serializability we achieve through
the logs collation along with the per-object linearizability of
all objects in the system make WPaxos a serializable proto-
col [23,24]. WPaxos transactions ensure strict serializability
if the commit notification for any request is sent to client
after execution.

To improve the performance, it is possible to implement
an object-group abstraction that packs closely-coupled ob-
jects in one object-group to use one log/ballot. We relegate
optimization and evaluation of multi-object transaction im-
plementation to future work.

5. Fault-tolerance & Reconfiguration

5.1. Fault Tolerance

WPaxos can make progress as long as it can form valid
q1 and q2 quorums. The flexibility of WPaxos enables the
user to deploy the system with quorum configuration tailored
to their needs. Some configurations are geared towards
performance, while others may prioritize fault tolerance.
By default, WPaxos configures the quorums to tolerate



one zone failure and minority node failures per zone, and
thus provides similar fault tolerance as Spanner with Paxos
groups deployed over three zones.

WPaxos remains partially available when more zones
fail than the tolerance threshold it was configured for. In
such a case, no valid q1 quorum may be formed, which
halts the object stealing routine, however the operations can
proceed for objects owned in the remaining live regions, as
long as there are enough zones left to form a q2 quorum.

5.2. Dynamic Reconfiguration
The ability to reconfigure, i.e., dynamically change the

membership of the system, is critical to provide reliability
for long periods as it allows crashed nodes to be replaced.
WPaxos achieves high throughput by allowing pipelining
(like Paxos and Raft algorithms) in which new commands
may begin phase-2 before any previous instances/slots have
been committed. Pipelining architecture brings more com-
plexity to reconfiguration, as there may be another recon-
figuration operation in the pipeline which could change
the quorum and invalidate a previous proposal. Paxos [3]
solves this by limiting the length of the pipeline window
to ↵ > 0 and only activating the new config C 0 chosen at
slot i until slot i + ↵. Depending on the value of ↵, this
approach either limits throughput or latency of the system.
On the other hand, Raft [7] does not impose any limitation of
concurrency and proposes two solutions. The first solution
is to restrict the reconfiguration operation, i.e. what can be
reconfigured. For example, if each operation only adds one
node or removes one node, a sequence of these operations
can be scheduled to achieve arbitrary changes. The second
solution is to change configuration in two phases: a union
of both old and new configuration C + C 0 is proposed in
the log first, and committed by the quorums combined. Only
after the commit, the leader may propose the new config C 0.
During the two phases, any election or command proposal
should be committed by quorum in both C and C 0. To ensure
safety during reconfiguration, all these solutions essentially
prevent two configurations C and C 0 to make decision at
the same time that leads to divergent system states.

WPaxos adopts the more general two-phase reconfigu-
ration procedure from Raft for arbitrary C 0s, where C =
hQ1, Q2i, C 0 = hQ0

1, Q
0
2i. WPaxos further reduces the two

phases into one in certain special cases since adding and
removing one zone or one row operations are the most
common reconfigurations in the WAN topology. These four
operations are equivalent to the Raft’s first solution because
the combined quorum of C+C 0 is equivalent to quorum in
C 0. We show one example of adding new zone of dashed
nodes in the Figure 5.

Previous configuration Q1 involves two zones, whereas
the new config Q0

1 involves three zones including the new
zone added. The quorums in Q0

1 combines quorums in Q1 is
same as Q0

1. Both Q2 and Q0
2 remains the same size of two

zones. The general quorum intersection assumption and the
restrictions Q0

1 [Q1 = Q0
1 and Q0

2 [Q2 = Q0
2 ensure that

old and new configuration cannot make separate decisions
and provides same safety property as in S2.

Figure 5: Add one zone Figure 6: Locality Workload

6. Evaluation

We developed a general framework, called Paxi to con-
duct our evaluation. The framework allows us to com-
pare WPaxos, EPaxos, and other Paxos protocols in the
same controlled environment under identical workloads.
We implemented Paxi along with WPaxos and EPaxos in
Go version 1.9 and released it as an open-source project
on GitHub at https://github.com/ailidani/paxi. The frame-
work provides extended abstractions to be shared between
all Paxos variants, including location-aware configuration,
network communication, client library with RESTful API,
and a quorum management module (which accommodates
majority quorum, fast quorum, grid quorum and flexible
quorum). Paxi’s networking layer encapsulates a message
passing model and exposes basic interfaces for a variety
of message exchange patterns, and transparently supports
TCP, UDP and simulated connection with Go channels.
Additionally, our Paxi framework incorporates mechanisms
to facilitate the startup of the system by sharing the initial
parameters through the configuration management tool.

6.1. Setup
We evaluated WPaxos using the key-value store abstrac-

tion provided by our Paxi framework. We used AWS EC2
[25] nodes to deploy WPaxos across 5 different regions:
Virginia (VA), California (CA), Oregon (OR), Tokyo (JP),
and Ireland (EU). In our experiments, we used 3 medium
instances at each AWS region to host WPaxos.

In order to simulate workloads with tunable access lo-
cality patterns we used a normal distribution to control the
probability of generating a request on each object. As shown
in the Figure 6, we used a pool of 1000 common objects,
with the probability function of each region denoting how
likely an object is to be selected at a particular zone. Each
region has a set of objects it is more likely to access.
We define locality as the percentage of the requests pulled
from such set of likely objects. We introduce locality to our
evaluation by drawing the conflicting keys from a Normal
distribution N (µ,�2), where µ can be varied for different
zones to control the locality, and � is shared between zones.
The locality can be visualized as the non-overlapping area
under the probability density functions in Figure 6.

Definition 2. Locality L is the complement of the over-
lapping coefficient (OVL)3 among workload distributions:

3. The overlapping coefficient (OVL) is a measurement of similarity
between two probability distributions, refers to the shadowed area under
two probability density functions simultaneously [26].

https://github.com/ailidani/paxi
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Figure 7: Average latency for phase-1 (left) and phase-2 (right) in
different quorum systems

L = 1� [OV L.

Let �(x�µ

�

) denote the cumulative distribution function
(CDF) of any normal distribution with mean µ and deviation
�, and x̂ as the x-coordinate of the point intersected by two
distributions, locality is given by L = �1(x̂) � �2(x̂). At
the two ends of the spectrum, locality equals to 0 if two
overlapping distributions are congruent, and locality equals
to 1 if two distributions do not intersect.

6.2. Quorum Latencies
In this first set of experiments, we compare the latency of

Q1 and Q2 accesses in three types of quorums: grid quorum
and WPaxos quorum with F = 0 and 1. The grid quorum
uses a single node per zone/region for Q1, requiring all
nodes in one zone/region to form Q2. WPaxos quorum uses
majority nodes in a zone consequently requires one fewer
node in Q2 than Grid to tolerant one node failure. When
F=0, Q1 uses all 5 zones and Q2 remains in the same region.
With F=1, Q1 uses 4 zones which reduce phase-1 latency
simnifically, but Q2 requires 2 zones/regions thus exhibits
WAN latency. In each region we simultaneously generated
a fixed number (1000) of phase-1 and phase-2 requests, and
measured the latency for each phase. Figure 7 shows the
average latency in phase-1 (left) and phase-2 (right), and
the differences between WPaxos F=0 quorum with Grid
quorum in data labels above the bar.

Quorum size of Q1 in Grid is half of that for WPaxos
F=0, but both experience average latency of about one round
trip to the farthest peer region, since the communication
happens in parallel. Within a zone, however, F=0 can tol-
erate one straggler node, reducing the latency for the most
frequently used Q2 quorum type. Due to lack of space, we
use F=0 quorum in following experiments to show the better
performance of WPaxos, as similar performance may also
achieved with F=1 when two zones are deployed in different
AWS availability zones in the same region.

6.3. Latency
We compare the commit latency between WPaxos and

EPaxos with three sets of workloads, random (Figure 8a),
⇠70% locality (Figure 8b), and ⇠90% locality (Figure 8c).
In a duration of 5 minutes, clients in each region generate

requests concurrently. WPaxos is deployed with both Imme-
diate and Adaptive versions and EPaxos is deployed with 5
and 15 nodes versions.

Figure 8a compares the median (color bar) and 95th
percentile (error bar) latency of random workload in 5 re-
gions. Each region experiences different latency due to their
asymmetrical location in the geographical topology. WPaxos
with immediate object stealing shows a similar performance
with EPaxos because the random workload causes many
phase-1 invocations which require wide area RTT. However,
WPaxos with adaptive mode outperforms EPaxos in every
region. Figure 8a also shows the distributions of aggregated
latencies. Even though WPaxos immediate mode enables
around 20% of local commit latency, WPaxos adaptive
mode smoothens the latency by avoiding unnecessary leader
changes and improves average latency.

EPaxos always has to pay the price of WAN communica-
tion, while WPaxos tries to keep operations locally as much
as possible. Figure 8b shows that, under ⇠70% locality
workload, regions located in geographic center improve their
median latencies. Regions JP and EU suffer from WPaxos
immediate object stealing because their Q1 latencies are
longer as they remain more towards the edge of the topology.
WPaxos adaptive alleviates and smoothens these effects.
With EPaxos 5 nodes deployment, the median latency is
about 1 RTT between the regions and its second closest
neighbor because the fast quorum size is 3. In EPaxos 15
nodes, the fast quorum size increases to 11, which increases
the latency and reduce chance of conflict free commits.
From an aggregated perspective, the cumulative distribution
in Figure 8b indicates about half of the requests are commit
in local-area latency in WPaxos. The global average latency
of WPaxos Adaptive and EPaxos 5 nodes are 45.3ms and
107.3ms respectively.

In Figure 8c we increase the locality to ⇠90%. EPaxos
shows similar pattern as previous experiments, whereas
WPaxos achieves local median latency in all regions. In
Figure 8c, 80% of all requests are able to commit with local
quorum in WPaxos. The average latency of WPaxos Adap-
tive and EPaxos 5 nodes are 14ms and 86.8ms respectively,
and the median latencies are 1.21ms and 71.98ms.

6.4. Throughput
We experiment on scalability of WPaxos with respect

to the number of requests it processes by driving a steady
workload at each zone. Instead of the medium instances, we
used a cluster of 15 large EC2 nodes to host WPaxos deploy-
ments. EPaxos is hosted at the same nodes, but with only
one EPaxos node per zone. We opted out of using EPaxos
with 15 nodes, because our preliminary experiments showed
significantly higher latencies with such a large EPaxos de-
ployment. We limit WPaxos deployments to a single leader
per zone to be better comparable to EPaxos. We gradually
increase the load on the systems by issuing more requests
and measure the latency at each of the throughput levels.
Figure 9 shows the latencies as the aggregate throughput
increases.



(a) Uniformly random workload (b) Locality (70%) workload (c) Locality (90%) workload

Figure 8: Median/95th percentile latencies in different regions and their global CDF
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Figure 9: Request latency as the throughput increases.

At low load, we observe both immediate and adaptive
WPaxos significantly outperform EPaxos as expected. With
relatively small number of requests coming through the
system, WPaxos has low contention for object stealing,
and can perform many operations locally within a region.
As the number of requests increases and contention rises,
performance of both EPaxos and WPaxos with immediate
object stealing deteriorates.

Immediate WPaxos suffers from leaders competing for
objects with neighboring regions, degrading its performance
faster than EPaxos. Figure 9 illustrating median request la-
tencies shows this deterioration more clearly. This behavior
in WPaxos with immediate object stealing is caused by
dueling leaders: as two nodes in neighboring zones try to
acquire ownership of the same object, each restarts phase-1
of the protocol before the other leader has a chance to finish
its phase-2. When studying performance of WPaxos under
90% locality, we observed greater scalability of immediate
object stealing mode due to reduced contention for the
objects between neighboring zones.

On the other hand, WPaxos in adaptive object stealing
mode scales better and shows almost no degradation until it
starts to reach the CPU and networking limits of individual

Figure 10: The average latency in each second.

instances. Adaptive WPaxos median latency actually de-
creases under the medium workloads, while EPaxos shows
gradual latency increases. At the workload of 10000 req/s
adaptive WPaxos outperforms EPaxos 9 times in terms of
average latency and 54 times in terms of median latency.

6.5. Shifting Locality Workload

Many applications in the WAN setting may experience
workloads with shifting access patterns such as diurnal
patterns [27,28]. Figure 10 illustrates the effects of shifting
locality in the workload on WPaxos and statically key-
partitioned Paxos (KPaxos). KPaxos starts in the optimal
state with most of the requests done on the local objects.
When the access locality is gradually shifted by changing the
mean of the locality distributions at a rate of 2 objects/sec,
the access pattern shifts further from optimal for statically
partitioned Paxos, and its latency increases. WPaxos, on the
other hand, does not suffer from the shifts in the locality.
The adaptive algorithm slowly migrates the objects to re-
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Figure 11: Leader failure in one zone has no measurable impact
on performance.

gions with more demand, providing stable and predictable
performance under shifting access locality.

6.6. Fault Tolerance
Figure 11 illustrates that there is negligible impact on

performance due to a single leader/node failure. In this ex-
periment, we run a steady locality biased workload through
the WPaxos deployment. At 25th second mark we kill the
leader replica in OR region, however this has virtually no
impact on the system performance. For immediate WPaxos,
leader failure means all clients in that zone can simply
communicate to another available local replica, and that
replica will start phase-1 to acquire the objects of the dead
node when a request for the object comes. Adaptive WPaxos
will act in a similar way, except it will not start phase-1
if the object has already been acquired by another region.
The effects of a single leader failure are also insignificant,
and the recovery is spread in time, as recovery for each
individual object happens only when that object is needed.
The throughput is unaffected.

7. Related Work
Several attempts have been made for improving the

scalability of Paxos. Mencius [29] proposes to reduce the
bottlenecks of a single leader by incorporating multiple
rotating leaders. Mencius tries to achieve better load balanc-
ing by partitioning consensus sequence/slot numbers among
multiple servers, and aims to distribute the strain over the
network bandwidth and CPU. However, Mencius does not
address reducing the WAN latency of consensus.

Other Paxos variants go for a leaderless approach.
EPaxos [16] is leaderless in the sense that any node can
opportunistically become a leader for an operation. At first
EPaxos tries the request on a fast quorum and if the op-
eration was performed on a non-conflicting object, the fast
quorum will decide on the operation and replicate it across
the system. However, if fast quorum detects a conflict (i.e.,
another node trying to decide another operation for the
same object), EPaxos requires performing a second phase to
record the acquired dependencies requiring agreement from
a majority of the Paxos acceptors.

A recent Paxos variant, called M2Paxos [30], takes
advantage of multileaders: each node leads a subset of all
objects while forwarding the requests for objects it does not
own to other nodes. Each leader runs phase-2 of Paxos on its
objects using classical majority quorums. Object stealing is
not used for single-object commands, but is supported for

multiple-object updates. M2Paxos does not address WAN
deployments and is subject to WAN latencies for commit
operations since it uses majority quorums.

Bizur [18] also uses multileaders to process independent
keys from its internal key-value store in parallel. However, it
does not account for the data-locality nor is able to migrate
the keys between the leaders. Bizur elects a leader for each
bucket, and the leader becomes responsible for handling all
requests and replicating the objects mapped to the bucket.
The buckets are static, with no procedure to move the key
from one bucket to another: such an operation will require
not only expensive reconfiguration phase, but also change
in the key mapping function.

ZooNet [17] is a client approach at improving the
performance of WAN coordination. By deploying multiple
ZooKeeper services in different regions with observers in ev-
ery other region, it tries to achieve fast reads at the expense
of slow writes and data-staleness. That is, the object-space
is statically partitioned across regions. ZooNet provides a
client API for consistent reads by injecting sync requests
when reading from remote regions. ZooNet does not support
load adaptive object ownership migration.

Supercloud [31] takes a different approach to handling
diurnal patterns in the workload. Instead of making end
systems adjustable to access patterns, Supercloud moves
non-adjustable components to the places of most frequent
use by using live-VM migration.

We presented WanKeeper [32] for WAN coordination.
WanKeeper uses a token broker architecture where the cen-
tralized broker gets to observe access patterns and improves
locality of update operations by migrating tokens when
appropriate. To achieve scalability in WAN deployments,
WanKeeper uses hierarchical composition of brokers, and
employs the concept of token migration to give sites locality
of access and autonomy. WanKeeper provides local reads at
sites, and when locality of access is present, it also enables
local writes at the sites. WPaxos provides a simple flexible
protocol and can be used as building primitive for other
protocols, services, and applications.

8. Concluding Remarks
WPaxos achieves fast wide-area coordination by dynam-

ically partitioning the objects across multiple leaders that are
deployed strategically using flexible quorums. Such parti-
tioning and emphasis on local operations allow our protocol
to significantly outperform other WAN Paxos solutions,
while maintaining the same consistency guarantees. Since
the object stealing is an integrated part of phase-1 of Paxos,
WPaxos remains simple as a pure Paxos flavor and obviates
the need for another service/protocol for relocating objects
to zones. Since the base WPaxos protocol guarantees safety
to concurrency, asynchrony, and faults, the performance can
be tuned orthogonally and aggressively. In future work, we
will investigate smarter object stealing that can proactively
move objects to zones with high demand. We will also inves-
tigate implementing transactions more efficiently leveraging
WPaxos optimizations.
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