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ABSTRACT

Temporal Data Exchange and Repair

by

Ladan Golshanara

Committee:

Dr. Jan Chomicki, Chair

Dr. Bharat Jayaraman

Dr. Oliver Kennedy

Temporal data is needed by many organizations and individuals to support audit

trails. With temporal data one can represent when a fact is true and for how long.

The temporality of facts is also critical in diverse domains, from medical diagnosis

to assessing the changing business conditions of companies to taxi and rental bicycle

rides. To support temporal database applications suitable database features were re-

cently added to the SQL:2011 standard, and adopted by major database management

systems such as DB2, Oracle, and Teradata.

In today’s digital world information about an entity can be found at different

data sources at different times or in different versions of the same source. Despite

the need for frameworks for temporal data curation tasks including temporal data

cleaning, temporal data transformation, temporal data exchange and temporal data

provenance, there are no principled frameworks in the literature. The goal of this

research is to address the challenges that arise when one considers temporal data
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in the frameworks of data exchange and repair. The approach and the results can

be used in other temporal data curation tasks as well. The frameworks are based

on a formal two-tier view of temporal data consisting of the concrete view and the

abstract view. There are two models to show a temporal database in the abstract

view: snapshot model and timestamp model. In the snapshot model, temporal data

is shown as an infinite sequence of snapshots. In the timestamp model each fact in

the database is associated with every time point in which it is true. There may be

infinitely many such points because the database may extend arbitrarily far into the

future. In the concrete view each fact is associated with the time interval(s) in which

it is true. The concrete view provides efficiency in storing and manipulating data.

In the first part of this dissertation, we show how the framework of data exchange

can be systematically extended to temporal data. We first extend the chase procedure

for the abstract view using the snapshot model to have a conceptual basis for the data

exchange for temporal databases. Considering non-temporal source-to-target tuple

generating dependencies and equality generating dependencies, the chase algorithm

can be applied on each snapshot independently. Then we define a chase procedure

(called c-chase) on concrete instances and show the result of c-chase on a concrete

instance is semantically aligned with the result of chase on the corresponding abstract

instance. In order to interpret intervals as constants while checking if a dependency

or a query is satisfied by a concrete database, we will normalize the instance with

respect to the dependency or the query. To obtain the semantic alignment, the nulls

(which are introduced by data exchange and model incompleteness) in the concrete

view are annotated with temporal information. Furthermore, we show that the result

of the concrete chase provides a foundation for query answering. We define näıve

evaluation on the result of the c-chase and show it produces certain answers.

The second part of the dissertation aims to investigate temporal repair checking

with respect to temporal functional dependencies. Same as temporal data exchange

x



framework, building on the relational notion of repair we have defined concrete re-

pairs. We have also examined how a temporal repair checking algorithm can handle

infinite abstract databases. We show how to reduce the problem of temporal repair

checking on infinite temporal databases to the problem of temporal repair checking

on finite temporal databases. We also develop two temporal repair construction al-

gorithms: one is an extension of a relational repair construction algorithm while the

other algorithm fragments the concrete instance to find the conflicts and leverages

time intervals to build a repair. We have done some experiments on both temporal

real-life data and synthetic data to compare the performance of our suggested algo-

rithms for normalization and temporal repair construction. The results show that for

real-life data, when the number of conflicts w.r.t. temporal functional dependencies

is low (compared to the number of tuples in a relation), the algorithm that leverages

time intervals is better.
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CHAPTER 1

Introduction

Temporal data refers to historical data or data that is dated. Temporal data is

needed by many organizations and individuals to support audit trails. With temporal

data one can represent when a fact is true and for how long [15]. The temporality

of facts is also critical in diverse domains, from medical diagnosis to assessing the

changing business conditions of companies [33] to taxi and bicycle rides. To support

temporal database applications suitable database features were recently added to the

SQL:2011 standard [26], and adopted by major database management systems such

as DB2, Oracle, and Teradata.

In today’s digital world, information about an entity can often be found in mul-

tiple different data sources and in different versions of the same source at different

times. Temporal data can also be extracted from unstructured data sources such

as text and later be mapped and transformed into a desired format. Some of the

temporal data curation tasks have already been addressed in the literature, such as

temporal text extraction [32, 35, 40] and temporal entity resolution [8, 9, 28]. In this

dissertation we address other critical tasks in the data curation pipeline for temporal

data: (1) mapping and exchanging temporal data and (2) managing inconsistency

and repairing.

Temporal databases provide a uniform and systematic way of dealing with histori-
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cal data [13]. Prior work on temporal databases [24, 38, 13] has provided two views of

temporal data: the abstract temporal view (or abstract view in short) and the concrete

temporal view (or concrete view in short). Abstract view provides representation-

independent meaning of a temporal database while concrete view provides a finite

representation of temporal data. There are two dominant models for abstract view:

snapshot model and timestamp model.

Snapshot model: Conceptually, we associate to each time point ` the state db` of

a database at the time point `. Thus, a temporal database in the abstract view in

this model is a sequence of states (snapshots). The domain of time points is a totally

ordered set which is isomorphic to non-negative integers N0. For example, consider a

database schema E(name, company) and the fact that Ada worked at IBM between

time point 5 and 7 (inclusive). In the abstract view the snapshots of E associated

with the time points 5 to 7 contain the fact E(Ada, IBM).

Timestamp model: In this model, each relation is augmented with a temporal

attribute. The domain of the temporal attribute consists of time points.

Ia = {E(Ada, IBM, 5), E(Ada, IBM, 6), E(Ada, IBM, 7)}

is an abstract database showing that Ada worked in IBM from time point 5 to time

point 7.

Due to repetitive data in both of the snapshot model and the timestamp model,

storing information in the abstract view is not practical and is meant only to pro-

vide the semantics for the concrete view. In the concrete view, temporal data is

summarized in a single database instance in which data is time-stamped with a time

interval1 that indicates when the fact is true. The concrete view is an extension of

the relational model where each relation in a database is augmented with a temporal

attribute which takes time intervals as values. For example, in the concrete view the

1We assume time intervals have the format [s, e), where s, e ∈ N0 and e can be ∞.
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information above about Ada is usually represented as E(Ada, IBM, [5, 8)) where [5,

8) denotes the time points 5, 6 and 7. The fact that Ada has worked in Intel since

then can be represented as E(Ada, Intel, [7, ∞)). An infinite time interval, such as

[7, ∞), is a useful abstraction when the endpoint is not provided.

In the dissertation we use both views of temporal data. In chapter 3 we use the

snapshot model because then we can adopt many notions in relational data exchange

for defining the conceptual understanding of temporal data exchange. On the other

hand, in chapter 4 we use the timestamp model because it helps to adopt relational

repairing algorithms.

1.1 Data Exchange

Data exchange [16] refers to the problem of translating data that conforms to one

schema (called the source schema RS) into data that conforms to another schema

(called the target schema RT ), given a specification of the relationship between the

two schemas. This relationship is specified by means of a schema mapping consisting

of a set of source-to-target tuple generating dependencies (s-t tgds) and a set of tuple

generating dependencies (tgds) and equality generating dependencies (egds) on the

target schema. Given a schema mapping and a source instance I, the goal of data

exchange is to materialize a target instance J that satisfies the specification (i.e.

(I, J) satisfies s-t tgds and J satisfies tgds and egds). Such an instance J is called

a solution for I w.r.t the given schema mapping. For a given source instance, there

may be no solution since there may not exist a target instance that satisfies the

specification. On the other hand, there may be many solutions. It was shown in [16]

that among all solutions of a given source instance, the universal solutions are the

preferred solutions because they are the most general. In [16], the chase procedure

is used to find a universal solution. Universal solutions can be used to determine

certain answers to unions of conjunctive queries posed over a target schema. Certain
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answers to a query Q are the tuples that are in the answer of Q in any solution for a

source instance w.r.t a schema mapping.

1.2 Data Repairing

A database db is consistent w.r.t. a set of integrity constraints Σ defined on its

schema if it satisfies all the constraints in Σ (db |= Σ). Otherwise, the database

is inconsistent w.r.t. Σ. Two sources of inconsistency are data exchange and data

integration where data from different autonomous sources are integrated. Managing

inconsistency in databases has drawn the attention of many researchers for a few

decades. There are two approaches to obtain consistent information from an incon-

sistent database [5, 11]: finding a repair (another database instance that satisfies the

integrity constraints and minimally differs from the original one) and consistent query

answering (CQA)(query answers that are true in every repair of a given database).

1.2.1 Repair Checking

Repair checking [11] is the problem of determining whether for two given instances

one is a repair of the other. The complexity of this decision problem is investigated

in [11, 3] for different classes of constraints. In case of functional dependencies, the

problem of repair checking is in PTIME.

1.2.2 Repair Construction

Whether the repair checking problem is in PTIME or NP-Complete, there are

many papers addressing repair construction by using different heuristics, sampling or

using conditional functional dependencies and even the chase procedure as in LLU-

NATIC data cleaning framework [19].

In case of functional dependencies, a conflict is between two facts in the same

relation that violate a functional dependency. To resolve a conflict with respect to
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functional dependency, one of the tuples in the conflict is deleted. There might be

multiple repairs for an inconsistent database.

1.3 Contributions and Outline

• Data Exchange: We first extend the relational data exchange framework to

the abstract instances in the snapshot model. Moving to the concrete instances,

we introduce the notions of normalization of a concrete instance w.r.t. a set of

conjunctive formulas and interval-annotated nulls to model incompleteness in-

troduced as a result of temporal data exchange. We also study query answering

and certain answers on temporal databases and show the result of a concrete

chase is enough for obtaining certain answers of a (non-temporal) query.

• Repair Checking: We study the notion of repair in temporal databases when

the constraints are a set of temporal functional dependencies (tFDs). Develop-

ing based on the timestamp model, we will show the problem of repair checking

on infinite abstract instances can be reduced to the problem of repair checking

on finite abstract instances when the constraints are temporal functional de-

pendencies. The idea is to use a property of abstract instances that is called

the finite change condition and the smallest time point that satisfies this prop-

erty. Therefore, the complexity of temporal repair checking w.r.t. temporal

functional dependencies is the same as repair checking on relational databases

w.r.t. functional dependencies.

• Repair Construction: We propose two repair construction algorithms for

temporal data: one is based on time-points the other based on time-intervals.

Each has its own advantages and disadvantages. We have done some experi-

ments to compare these algorithms.

Outline. Chapter 2 discusses some background on temporal databases. Chapter 3
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studies temporal data exchange. Chapter 4 examines temporal data repair checking

and construction. Chapter 5 shows our experiments on the proposed normalization

algorithms as well as the repair algorithms. Chapter 6 describes the future research

directions.
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CHAPTER 2

Background and Preliminaries

This section provides background information on relational and temporal databases.

2.1 Relational Databases

We assume an infinite set Const of constants and an infinite set Null of labeled

nulls that is disjoint from Const. A (relational) database schema R is a finite sequence

〈R1, ..., Rk〉 of relation symbols, each with a fixed arity. Each relation symbol Ri is

associated with a relation schema which is a set of attributes. A database instance

over R is a sequence 〈RI
1, ..., R

I
k〉, where each RI

i is a finite relation of the same arity

as Ri. We often use database or instance to refer to a database instance. We use Ri

to denote both the relation symbol and the relation that interprets it.

Labeled nulls are distinguishable nulls that are used to model incompleteness,

usually denoted by the symbols N and M (with or without subscript).

2.2 Temporal Databases

Snapshot model: Let R be a fixed relational database schema. An abstract

database instance (abstract instance for short) Ia in the snapshot view is a infi-

nite sequence of relational databases 〈db0, db1, . . . , 〉, where for every ` ∈ N0 there is

a relational database (snapshot) db` over R.
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Timestamp model: If R is a database schema, we denote by R+ the corresponding

temporal database schema such that for each n-ary relation R(A1, . . . , An) in R there

is a (n+1)-ary temporal relation, denoted by R+(A1, . . . , An, T ) in R+ where T is the

temporal attribute and A1, . . . An are data attributes. The domain of the temporal

attribute consists of time points (i.e. a totally ordered set which is isomorphic to

non-negative integers N0). We call R+(a1, . . . , an, `) where ` ∈ N0 an abstract fact,

usually denoted by fa, f
′
a, f

′′
a in this dissertation.

The timestamp model and the snapshot model are equivalent [12]. Denote by

fa[D] and fa[T ] the data attributes and the temporal attribute of an abstract fact fa

respectively. In order to obtain the snapshot model of an abstract database Ia: For

any timepoint ` ∈ N0, if there is a fact fa ∈ Ia such that fa[T ] = `, then db` contains

fa[D]. If there is no fact with time point `, then db` = ∅.

As an example consider the infinite abstract database

I ′a = {E(Ada, IBM, 2), E(Ada, IBM, 3), ..., E(Ada,Google, 3), E(Ada,Google, 4), ...}

The snapshot representation of I ′a is an infinite sequence of relational databases

〈db0, db1, db2, db3, db4, . . .〉, where

• db0 = db1 = ∅

• db2 : {E(Ada, IBM)}

• db3 : {E(Ada, IBM), E(Ada,Google)}

• db4 : {E(Ada, IBM), E(Ada,Google)}

• db` = db4, ` > 4

Concrete databases Since an abstract database can be infinite, we use a concrete

temporal database (concrete database for short) as a space-efficient finite encoding of

timestamps. The temporal database schema that is used for concrete databases is

8



the same as the schema of abstract databases in the timestamp model, that is R+.

However, the domain of the temporal attribute in concrete databases is time intervals.

Time intervals have the format [s, e), where s, e ∈ N0 and e can be ∞.

In order to be able to represent an infinite abstract database with a finite concrete

database, the abstract instance should satisfy the finite change condition [14]. The

finite change condition intuitively says that after a time point, the abstract database

is the same as before that timepoint. Even though this condition can be defined on

both of the snapshot model and the timestamp model, it is more intuitive in the

snapshot model. The finite change condition indicates that there exists m ∈ N0 such

that dbm = dbm+1 = . . ..

A (single-dimensional) temporal database is coalesced if the facts with identical

data attribute values have disjoint (i.e. no overlap) or non-adjacent time intervals

[13, 7]. Two intervals [s, e) and [s′, e′) are adjacent if s′ = e (or s = e′). Any abstract

database can be represented by a unique coalesced concrete database. This is only

true if the temporal database has a single temporal attribute [13].

Example 1. Consider the following concrete databases:

• Ic = {E(Ada, IBM, [5, 8))}

• I ′c = {E(Ada, IBM, [5, 7)), E(Ada, IBM, [7, 8))}.

The concrete databases Ic and I ′c represents the same abstract database:

JIcK = JI ′cK = {E(Ada, IBM, 5), E(Ada, IBM, 6), E(Ada, IBM, 7)}

Note that Ic is coalesced but I ′c is not. 4

If a concrete (resp. abstract) database instance does not contain unknown in-

formation (nulls) we call it a complete concrete (resp. abstract) instance. If Ic is a

9



complete concrete instance, then we denote by JIcK the abstract database instance

that Ic represents:

• in the snapshot model, JIcK is the sequence of snapshots 〈db0, db1, . . .〉 such that

for all ` ∈ N0,

db` = { R(a) | ∃s.∃e. R+(a, [s, e)) ∈ Ic and s ≤ ` < e}

• in the timestamp model JIcK = {R+(a, `) | ∃s.∃e R+(a, [s, e)) ∈ Ic and s ≤ ` <

e}

We abuse the symbol J.K for both snapshot models and timestamp models.
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CHAPTER 3

Temporal Data Exchange

In this chapter whenever we mention abstract databases, we refer to the snapshot

model of the abstract databases.

3.1 Preliminaries

We use the symbols Ic, Jc, I
′
c, J

′
c (resp. Ia, Ja, I

′
a, J

′
a) to refer to concrete instances

(resp. abstract instances).

As in the classic data exchange [16, 4] we assume abstract source instances contain

only constants (and in case of concrete instances, constants and time intervals). Thus,

the abstract and concrete source instances are complete.

A non-temporal s-t tgd is of the form

σst : ∀x φ(x)→ ∃yψ(x,y)

and an egd is of the form

σeg : ∀x φ(x)→ x1 = x2

where x and y are vectors of variables and x1 and x2 are variables in x. In the rest

of the paper we will usually drop universal quantification.

The s-t tgds and the egds on concrete schemas are augmented with a universally
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quantified variable t in each atom in the left-hand-side (lhs for short) and right-hand-

side (rhs for short) of the dependency:

σ+
st : ∀x, t φ(x, t)→ ∃y ψ(x,y, t)

σ+
eg : ∀x, t φ(x, t)→ x1 = x2

The domain (sort) of variable t is time intervals.

A data exchange setting is a quadrupleM = (RS, RT ,Σst,Σeg) where RS and RT

are the source and target schemas, respectively; Σst is a set of s-t tgds and Σeg is a set

of egds. The source and the target schemas are disjoint. The corresponding temporal

setting (for concrete databases) is M+ = (R+
S , R

+
T ,Σ

+
st,Σ

+
eg).

We use the notation φ, σst, σeg for a conjunction of atomic formulas, a an s-t

tgd and an egd, respectively. Anytime we refer to a temporal conjunction of atomic

formulas (φ+), a temporal s-t tgd (σ+
st) or a temporal egd (σ+

eg), we mean that each

atom in φ, σst and respectively σeg is augmented with a variable t (w.l.o.g we assume

variable t is the last variable in the atom).

In [16], the chase procedure is used to find a universal solution for a data exchange

setting M. A solution is universal if it has homomorphisms to every other solution.

A homomorphism h from a relational instance J1 to another instance J2, denoted by

h : J1 → J2, is a function from the constants and labeled nulls in J1 to constants and

labeled nulls in J2 such that:

• h(a) = a, where a is a constant in J1.

• h(N0) = v, where N0 is a labeled null in J1 and v is either a constant or a

labeled null.

• for every R(v1, ..., vn) ∈ J1, R(h(v1), ..., h(vn)) is in J2.

A homomorphism h is also used for a mapping from a dependency (such as an s-
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E
Name Company
Ada IBM
Ada Google
Bob IBM

Figure 3.1: A non-temporal source instance

t tgd or an egd) to an instance I such that for every atom R(x1, . . . , xm) in the

dependency R(h(x1), . . . , h(xm)) is a fact in I. We denote h(x1), . . . , h(xm) by h(x),

where x = x1, . . . , xm.

The standard chase modifies an instance by a sequence of chase steps until all de-

pendencies are satisfied. A chase step is fired by a homomorphism and a dependency.

If the dependency is a tgd, a chase step generates new facts in the target instance.

Also, fresh labeled nulls are generated at each tgd chase step for each existentially

quantified variable. If the dependency is an egd, then the chase step might be suc-

cessful or not. If the chase step is successful, then some labeled nulls in facts are

replaced by other labeled nulls or constants. If one constant is equated to another

constant, the chase step fails. For a formal definition of the chase procedure refer to

[16].

Example 2. Consider a data exchange setting where the source schema contains

only one relation E and the target schema contains a relation Emp. Suppose there

are three facts in E (shown in Figure 3.1). Suppose Σst contains only one s-t tgd:

E(n, c)→ ∃m Emp(n, c,m)

and Σeg = ∅. Initially the target instance is empty. By applying three chase steps,

three new facts is generated in the target instance (shown in Figure 3.2). The chase

procedure stops (after generating the three facts) because the source and target in-

stances are satisfying the s-t tgd. 4
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3.2 Abstract data exchange

In this section we extend the standard chase procedure to abstract instances. As

mentioned in Section 3.1, the s-t tgds and egds we consider are same as the ones

introduced in [16] which are over relational databases.

Consider a data exchange setting M = (RS, RT ,Σst,Σeg). Since the s-t tgds and

egds are non-temporal, in order to apply the chase procedure on an abstract source

instance Ia w.r.t. M, we apply the chase procedure to each snapshot independently,

that is

chase(Ia,M) = 〈chase(db0,M), chase(db1,M), . . .〉

The fresh labeled nulls that are produced in a snapshot are distinct from the labeled

nulls produced in the other snapshots. Otherwise, it means that the same unknown

value appears in different snapshots which is not intended by non-temporal s-t tgds

and egds. In the Example 3 some snapshots of an abstract instance is shown.

If the result of at least one of the chase procedures on a snapshot is a failure, then

the result of chase(Ia,M) is a failure.

Example 3. Consider a source schema with two relations E(name, company) and

S(name, salary). Some snapshots of the abstract view of the temporal database is

shown in Figure 3.3.

We have the following non-temporal s-t tgds:

∀n, c E(n, c)→ ∃sEmp(n, c, s)

Emp
Name Company Manager
Ada IBM N
Ada Google M
Bob IBM N ′

Figure 3.2: A non-temporal target instance obtained by chase
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Ia
2012 {E(Ada, IBM)}
2013 {E(Ada, IBM), S(Ada, 18k), E(Bob, IBM)}
2014 {E(Ada, Google), S(Ada, 18k), E(Bob, IBM)}
2014 {E(Ada, Google), S(Ada, 18k), E(Bob, IBM)}
2015 {E(Ada, Google), S(Ada, 18k), E(Bob, IBM), S(Bob, 13k)}
. . . . . .

2018 {E(Ada, Google), S(Ada, 18k), S(Bob, 13k)}
. . . . . .

Figure 3.3: Some snapshots in the abstract view of a temporal source instance.

∀n, c, s E(n, c) ∧ S(n, s)→ Emp(n, c, s)

and the following egd:

∀n, c, s, s′ Emp(n, c, s) ∧ Emp(n, c, s′)→ s = s′

4

A target abstract instance Ja is a solution for a source instance Ia with respect

to a data exchange setting M if each snapshot db` (` ∈ N0) in (Ia, Ja) is a solution,

that is db` |= (Σst ∪Σeg), where |= represents the usual semantics of satisfaction of a

first order logic formula.

Consider two abstract instances Ia = 〈db0, db1, . . .〉 and I ′a = 〈db′0, db′1, . . .〉. There

exists a homomorphism h from Ia to I ′a (i.e. h : Ia 7→ I ′a) if:

1. For every ` ∈ N0 there is a homomorphism h` : db` 7→ db′`, ` ∈ N0

2.

∀i, j ∈ N0, i 6= j such that

hi : dbi 7→ db′i and hj : dbj 7→ db′j,

∀` ∈ N0. ∀N ∈ Null(db`), hi(N) = hj(N)
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J1

db0 E(Ada, IBM, N)
db1 E(Ada, IBM, N)

J2

db′0 E(Ada, IBM, M1)
db′1 E(Ada, IBM, M2)

Figure 3.4: Two abstract instances with nulls

Example 4. Consider the target schema Emp(name, company, salary). Two in-

stances of the target schema are shown in Figure 3.4. In the instance J1 the nulls in

two consecutive snapshots are the same, representing one unknown value. Though

from each snapshot in J1 there is a homomorphism to the corresponding snapshot in

J2, that is h1 : db0 7→ db′0 and h2 : db1 7→ db′1, the homomorphisms do not agree on

mapping N , that is h1(N) 6= h2(N). 4

In the Example 4, there is a homomorphism from the instance J2 to J1, but there

is no homomorphism from J1 to J2.

Definition 3.1. Universal solution: A target instance Ja = 〈db0, db1, . . .〉 is a univer-

sal solution for Ia with respect to a data exchange settingM if Ja is a solution and for

an arbitrary solution J ′a = 〈db′0, db′1, . . .〉, there exists a homomorphism h : Ja 7→ J ′a.

Proposition 3.2. Let M = (RS, RT ,Σst,Σeg) be a data exchange setting. Let Ia be

an abstract source instance.

1. The result of a successful chase(Ia,M) is a universal solution.

2. If the result of chase(Ia,M) is a failure then there is no solution.

Proof. Part 1: Let Ja = 〈db0, db1, . . .〉 be the target instance obtained by chase. Let

J ′a = 〈db′0, db′1, . . .〉 be any solution for Ia with respect toM. Based on Theorem 3.3 in

[16], the result of a successful chase on each snapshot is a universal solution, meaning

that there is a homomorphism h` from each snapshot db` in Ja to the corresponding

snapshot db′` in J ′a, ` ∈ N0. Each of the homomorphisms defined from a snapshot

in Ja to the corresponding snapshot in J ′a is identity on constants. Now we need

to show that these homomorphisms meet the second condition in the Definition 3.1.
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Ja
2012 {Emp(Ada, IBM, N)}
2013 {Emp(Ada, IBM, 18k), Emp(Bob, IBM, N ′)}
2014 {Emp(Ada, Google, 18k), Emp(Bob, IBM, N ′′)}
2014 {Emp(Ada, Google, 18k), Emp(Bob, IBM, M)}
2015 {Emp(Ada, Google, 18k), Emp(Bob, IBM, 13k)}
. . . . . .

2018 {Emp(Ada, Google, 18k)}
. . . . . .

Figure 3.5: Some snapshots of the abstract view of the result of chase(Ia,M)

The labeled nulls that are produced by the chase procedure in each snapshot in

Ja are different from the labeled nulls in other snapshots, that is ∀i ∈ N0. ∀j ∈

N0. (Null(dbi) ∩ Null(dbj)) = ∅. Therefore, the homomorphisms h0, h1, . . . can be

extended in the following way:

h′`(N) =



h0(N) if N ∈ Null(db0)

h1(N) if N ∈ Null(db1)

. . .

h`(N) if N ∈ Null(db`)

. . .

Hence, Ja is a universal solution.

Part 2: Let Ia = 〈db′′0, db′′1, . . . , 〉. If the result of chase(Ia,M) is a failure, then it

means for some ` ∈ N0 the result of chase(db′′` ,M) is a failure, where db′′` is a snapshot

in Ia. Based on the Theorem 3.3 in paper [16], there is no solution for the snapshot

db′′` . Therefore there is no target instance Ja such that (Ia, Ja) |= (Σst∪Σeg) (because

Σeg is not satisfied in the `th snapshot of (Ia, Ja)).

Example 5. The result of applying chase on each snapshot of Ia from Figure 3.3 is

shown in Figure 3.5. 4
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E+

Name Company Time
Ada IBM [2012, 2014)
Ada Google [2014, ∞)
Bob IBM [2013, 2018)

S+

Name Salary Time
Ada 18k [2013, ∞)
Bob 13k [2015, ∞)

Figure 3.6: A concrete source instance Ic

3.3 Concrete data exchange

In this section, we define a chase algorithm called c-chase for a temporal data

exchange setting M+ = (R+
S , R

+
T ,Σ

+
st,Σ

+
eg) and a concrete source instance. Note

that the dependencies in Σ+
st and Σ+

eg are implicitly non-temporal because they lack

the expressive power to express the temporal phenomena such as an event happened

before another event.

Example 6. The concrete view of the temporal database shown in Figure 3.3 is

shown in Figure 3.6. The s-t tgds and the egd are as follows:

σ1 : ∀n, c, t E+(n, c, t)→ ∃s Emp+(n, c, s, t)

σ2 : ∀n, c, s, t E+(n, c, t) ∧ S+(n, s, t)→ Emp+(n, c, s, t)

and the following egd:

∀n, c, s, s′, t Emp+(n, c, s, t) ∧ Emp+(n, c, s′, t)→ s = s′

4

3.3.1 Interval-annotated nulls

The c-chase procedure produces a new type of unknown value for representing

unknown values generated as a result of data exchange (that is, existentially quanti-

fied variables in the rhs of s-t tgds). The c-chase procedure cannot use labeled nulls
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any more. We show the insufficiency of labeled nulls with an example. Consider the

concrete fact Emp(Ada, IBM,N, [0, 2)), where N is a labeled null showing the salary

of Ada is missing during the time interval [0, 2). In the abstract view of this fact,

the snapshots db0 and db1 contain the fact Emp(Ada, IBM,N). The abstract view

of this fact is shown in the Example 4. In Example 4 we have shown that we cannot

define homomorphism from an instance in which the same labeled null appears in dif-

ferent snapshots to an instance that has different labeled nulls in each snapshot. The

chase on the abstract view generates different labeled nulls in different snapshots.

In order to be able to show that the result of the chase on the concrete view has

correct semantics (defined by the chase on the abstract view), we introduce interval-

annotated nulls. These nulls are annotated with the time interval of the concrete

facts they occur in. For example, N [s,e) is an interval-annotated null in a concrete

fact with the time interval [s, e). The concrete fact Emp(Ada, IBM,N [0,2), [0, 2))

shows that not only the salary of Ada is missing in the time interval [0, 2), but also

that it can be different at snapshots db0 and db1. As another example, consider

a concrete fact Emp(Ada, IBM,N [8,∞), [8,∞)). The interval-annotated null N [8,∞)

represents the sequence of labeled nulls 〈N8, N9, . . .〉. In the abstract view, the snap-

shot db8 contains the fact Emp(Ada, IBM, N8), the snapshot db9 contains the fact

Emp(Ada, IBM, N9) and so on.

An interval-annotated null is an expression N [s,e) where N is a label and [s, e) is a

time interval which is the temporal context of N . Each interval-annotated null N [s,e)

(where e 6=∞) corresponds to a finite sequence of distinct labeled nulls 〈Ns, ..., Ne−1〉.

In case of N [s,∞), the interval-annotated null corresponds to the infinite sequence

〈Ns, Ns+1, ...〉 of labeled nulls. In order to choose a labeled null in the sequence

of nulls represented by N [s,e) we project on a time point, that is Π`(N
[s,e)) = N`,

s ≤ ` < e. We denote by N[s,e), a vector of interval-annotated nulls that occur in a

concrete fact with the time interval of [s, e).We extend J.K to instances with interval-
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annotated nulls. Let Ic be a concrete instance, then JIcK is a sequence of snapshots

〈db0, db1, . . .〉 such that for all ` ∈ N0:

db` = { R(a,N) | ∃s.∃e. R+(a,N[s,e)], [s, e)) ∈ Ic and s ≤ ` < e}

3.3.2 Normalization

In a concrete source instance we have the temporal attribute with time intervals as

values. Chase steps use homomorphisms from the lhs of a dependency to an instance

to translate data. Informally, we would like to be able to define a homomorphism

from a conjunction of atomic formulas φ+(x, t) to a concrete instance Ic whenever

there are homomorphisms from φ(x) to JIcK. As an example, suppose we are trying

to define a homomorphism from the lhs of σ2 (in Example 6) to the constants and

time intervals in the instance shown in Figure 3.6:

h : {n 7→ Ada, c 7→ IBM, s 7→ 18k, t 7→?}

One cannot map the variable t to a single time interval h(t) such thatE+(h(n), h(c), h(t))

and S+(h(n), h(s), h(t)) are some concrete facts in the instance Ic shown in Figure 3.6.

In fact no homomorphism can be defined from the lhs of σ2 to Ic. However, if we con-

sider the abstract view of the same data (shown in Figure 3.3), many homomorphisms

can be defined from E(n, c) ∧ S(n, s) to JIcK including:

h′ : {n 7→ Ada, c 7→ IBM, s 7→ 18k}

from E(n, c) ∧ S(n, s) to the snapshot associated with time point 2013. We would

like to have a concrete instance Ic with the following property:

Definition 3.3. Normalization Property: Let Ic be a concrete instance and Φ+

be a set of temporal conjunctions respectively. Obtain the corresponding set of con-
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junction Φ on schema of snapshots in JIcK. The instance Ic has the normalization

property w.r.t. Φ+ when both of the following items hold.

• Condition 1 ∀φ ∈ Φ ∀` ∈ N0, if h` : φ(x) 7→ db` (db` ∈ JIcK), then there is

a homomorphism h from the conjunction of atomic formulas φ+(x, t) ∈ Φ+ to

Ic such that ` ∈ h(t) and h and h` map the same variable x ∈ x to the same

constant (that is ∀x ∈ x. h(x) = h`(x) if h`(x) = a).

• Condition 2 ∀φ+ ∈ Φ+ if h : φ+(x, t) 7→ Ic where h(t) = [s, e), then there

is a set of homomorphisms hs, . . . , he−1 from φ(x) to consecutive snapshots

dbs, . . . , dbe−1 such that:

– hs : φ(x) 7→ dbs,

– hs+1 : φ(x) 7→ dbs+1,

– . . .,

– he−1 : φ(x) 7→ dbe−1 ,

– ∀x ∈ x if h(x) = a, a ∈ Const, then ∀j ∈ {s, . . . , e− 1} hj(x) = a.

A concrete instance is normalized with respect to a set of temporal conjunctions

Φ+ if it has the normalization property w.r.t. Φ+. In a normalized concrete instance

the time intervals behave as constants (as shown in the Example 7).

Example 7. The instance I ′c shown in Figure 3.7 is normalized (by fragmenting the

concrete facts in Ic) with respect to E+(n, c, t) ∧ S+(n, s, t) (i.e. the lhs of σ2). For

example, there is a homomorphism h from E+(n, c, t) ∧ S+(n, s, t) to the concrete

instance such that

h = {n 7→ Ada, c 7→ Google, s 7→ 18k, t 7→ [2014,∞)}.

Since I ′c is normalized, there are infinitely many homomorphisms h`, ` ≥ 2014 from
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E+

Name Company Time
Ada IBM [2012, 2013)
Ada IBM [2013, 2014)
Ada Google [2014, ∞)
Bob IBM [2013, 2015)
Bob IBM [2015, 2018)

S+

Name Salary Time
Ada 18k [2013, 2014)
Ada 18k [2014, ∞)
Bob 13k [2015, 2018)
Bob 13k [2018, ∞)

Figure 3.7: A normalized concrete source instance I ′c w.r.t. E+(n, c, t) ∧ S+(n, s, t)

E(n, c) ∧ S(n, s) to snapshots db` ∈ JI ′cK such that:

h`(n) = h(n), h`(c) = h(c) and h`(s) = h(s), ` ∈ h(t)

Also, consider the homomorphism h′` (` = 2013) to snapshot db`:

h′` = {n 7→ Ada, c 7→ IBM, s 7→ 18k}

Since I ′c is normalized, there is a homomorphism h′ from E+(n, c, t) ∧ S+(n, s, t)

to Ic such that 2013 ∈ h′(t) = [2013, 2014) and h′(n) = h′`(n), h′(s) = h′`(s) and

h′(c) = h′`(c). 4

In the rest of this section, we discuss how to obtain a normalized instance with

respect to conjunctions of atomic formulas. Note that the lhs of s-t tgds and egds

(discarding the quantification) is conjunctions of atomic formulas.

Let Φ+ be a set of temporal conjunctions of the form φ+(x, t). Denote by |φ| the

number of atoms that are in φ. We denote by N (Φ+) the normalized form of Φ+ such

that for each formula φ+ ∈ Φ+ each occurrence of the variable t in φ+ is replaced

with a new variable t′ in N (Φ+).

Let Φ+ be temporal conjunctions of atomic formulas. Let Ic be a concrete instance

and {f1, . . . , fn} ⊆ Ic. Let φ∗ ∈ N (Φ+). We denote by h : φ∗ 7→ {f1, f2, . . . , fn},

where |φ∗| = n, a homomorphism from φ∗ to Ic such that for every atom Ri(x, t0) in
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φ∗, Ri(h(x), h(t0)) is fi, 1 ≤ i ≤ n.

Example 8. Let Φ contains a temporal conjunction φ+ = R+(x, t) ∧ S+(y, t). Then

the corresponding N (Φ) contains:

φ∗ = R+(x, t1) ∧ S+(y, t2)

4

The intuitive idea behind using N (Φ+) instead of Φ+ is to be able to map the

temporal variable in each atom in a conjunction in N (Φ+) to a different time interval.

Definition 3.4. Empty intersection property A concrete instance Ic has the

empty intersection property with respect to a set of temporal conjunctions Φ+ if for

every homomorphism h from a conjunction of atomic formulas φ ∈ N (Φ+) to Ic

such that h : φ∗ 7→ {f1, f2, . . . , fn}, then (
⋂
i∈{1,...,n} fi[T ]) = ∅ or

⋂
i∈{1,...,n} fi[T ] =⋃

i∈{1,...,n} fi[T ].

In the next theorem we will show that an instance has the normalization prop-

erty with respect to conjunctions of atomic formulas if and only if it has the empty

intersection property.

Theorem 3.5. Let Φ+ be a set of temporal conjunctions. A concrete instance Ic is

normalized with respect to Φ+ if and only if Ic has the empty intersection property

with respect to Φ+.

Proof. The if direction. In this direction, the concrete instance Ic is normalized

and we show Ic has the empty intersection property as well. Let h be a homomorphism

from φ+(x, t) ∈ Φ+ to the instance Ic such that the images of the atoms in φ+ under

h are the concrete facts f1, ..., fn, where n = |φ+|. The temporal variable t (under

h) has to map to a single interval h(t) = [s, e) (otherwise a homomorphism cannot

be defined). This means that ∀i ∈ {1, . . . , n}, fi[T ] = [s, e). Let φ∗ ∈ N (Φ+) be a
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conjunction of atomic formulas that is obtained by replacing each occurrence of the

temporal variable t in φ+(x, t) with a new variable. Define h′ as follows:

h′(x) = h(x),∀x ∈ x and h′(t′) = h(t), t′ a temporal variable in φ∗

We have h′ : φ∗ 7→ {f1, . . . , fn} (because h : φ+ 7→ {f1, . . . , fn} and by con-

struction of φ∗). Since ∀i ∈ {1, . . . , n}, fi[T ] = [s, e), we have
⋂
i∈{1,...,n} fi[T ] =⋃

i∈{1,...,n} fi[T ]. Thus, Ic has the empty intersection property.

The only if direction Consider a φ∗ ∈ N (Φ+). Let φ+ be the corresponding

temporal conjunction of atomic formulas with the same temporal variable in each

atom. Let B = {fc1 , . . . , fcn} be a subset of Ic. Let h′ be a homomorphism h′ : φ∗ 7→

B. Since Ic has the empty intersection property the time interval of the facts in B

are either equal or the intersection of the time intervals is empty. In the latter case,

no homomorphism can be defined from φ+(x, t) to Ic because the variable t in each

atom cannot be mapped to a single interval. Therefore, we just consider the former

case (that is the
⋃
fc∈B fc[T ] =

⋂
fc∈B fc[T ]). This means all the facts in B have the

same time interval, that is ∀fc ∈ B fc[T ] = [s, e). Consider any concrete fact fc ∈ B.

W.l.o.g. we assume the interval-annotated nulls in the fact fc are preceded by all the

constants, that is

fc = R(a,N[s,e), [s, e)).

By definition of J.K, for each fci ∈ B, 1 ≤ i ≤ n, the snapshot db` ∈ JIcK (s ≤ ` < e),

contains the fact

fai : R(a,Π`(N
[s,e))).

Let φ be the corresponding conjunction of φ+ over the snapshots. We need to show

Ic has the normalization property. Define h as follows:

h(x) = h′(x),∀x ∈ x and h(t) = [s, e)
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Since h′ is a homomorphism from φ∗ to B and all the concrete facts in B has the

same time interval, h is a homomorphism from φ+ to Ic such that the image of each

atom R+
i (x, t) under h is a fact in B. Define homomorphisms hs, . . . , he−1 from φ(x)

to consecutive snapshots dbs to dbe−1. For each ` ∈ {s, . . . , e− 1}, define

h`(x) =

 h(x) if h(x) is a constant

Π`(N
[s,e)) if h(x) is an interval-annotated null N [s,e)

For each atom Ri(x) in φ, the image of the atom under h`, that is Ri(h`(x)) =

R(a,N`) which is the fact fai in the snapshot db` (s ≤ ` < e). Thus, condition 2 of

the normalization property holds.

Consider any homomorphism h`, s ≤ ` < e. by definition of h′ and h` it follows

that:

∀x ∈ x if h`(x) = a then h`(x) = h(x)

Also, ` ∈ h(t) = [s, e). Thus, condition 1 in the definition of the normalization

property holds as well. Therefore, Ic is normalized.

Let Φ+ be a set of temporal conjunctions. Let Ic be a concrete instance with n

facts that is not normalized. We show the size of a normalized instance w.r.t. Φ+

(obtained by fragmenting the concrete facts in Ic) is O(n2).

Example 9. Suppose Ic is a concrete instance with two facts f1 and f2. Let Φ+

contains one temporal conjunction of atomic formulas φ+ (over schema of Ic). Suppose

Ic is not normalized and there is a homomorphism from φ∗ to {f1, f2} where φ∗ ∈

N (Φ+) is the corresponding conjunction for φ+. Let f1[T ] = [s1, e1) and f2[T ] =

[s2, e2). Since Ic is not normalized f1[T ]∩ f2[T ] 6= ∅. Since the time intervals overlap,

one of the following cases holds:

• s1 < s2 < e1 < e2
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• s2 < s1 < e2 < e1

• s1 < s2 < e2 < e1

• s2 < s1 < e1 < e2

Here we consider the first item and show how to fragment the facts. In order to make

Ic satisfy the empty intersection property, we fragment f1 and f2 as follows:

• f11, where f11[T ] = [s1, s2).

• f12, where f12[T ] = [s2, e1).

• f21, where f21[T ] = [s2, e1).

• f22, where f22[T ] = [e1, e2).

The data attribute values of f11 and f12 (resp. f21 and f22) are same as f1 (resp. f2).

Observe that any pair of the fragmented facts above satisfy φ∗ and has disjoint or

equal time intervals. 4

We assume whenever we fragment a concrete fact, the annotation of an interval-

annotated null in the concrete fact is changed in the fragmented facts such that the

annotation is always equal to the time interval of the fact the interval-annotated null

occurs in. So if f1 contains an interval-annotated null N [s1,e1), then f11 and f12 contain

interval-annotated nulls N [s1,s2) and N [s2,e1) respectively. Each of the facts f1 and f2

is fragmented into two facts (with smaller time intervals).

Theorem 3.6. Let Ic be a concrete instance with n facts that is not normalized w.r.t.

a set of temporal conjunctions Φ+. Let I ′c be a concrete instance that is obtained by

fragmenting the facts in Ic such that I ′c is normalized w.r.t. Φ+. The size of I ′c is

O(n2) if each fact in Ic needs to be fragmented.
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Proof. In general, a fact f ∈ Ic (that needs to be fragmented) with time interval

[si, ei) is fragmented into ki number of facts such that ki is the number of distinct

start points and endpoints that are greater than or equal to si and smaller than ei:

si < ... < sj < ... < em < ... <︸ ︷︷ ︸
ki

ei

An instance Ic that contains n concrete facts have at most 2n distinct start points

and end points. Therefore, ki ≤ 2n− 1. In the worst case (which depends on the set

of conjunctions and the time interval of the facts that satisfy a conjunction of atomic

formulas) each concrete fact needs to be fragmented considering all the distinct start

points and end points in the instance. Therefore, the normalized instance is of size

O(n2).

A näıve normalization algorithm, fragments each fact without considering any

conjunction of atomic formulas (that is, Φ+ = ∅) and only based on the start points

and end points of all the other facts. Such an algorithm needs to sort the start points

and endpoints of all the facts. Thus, the time complexity of a A näıve normalization

algorithm is O(nlogn) where n is the number of facts in the original (non-normalized)

instance. However, a näıve normalization algorithm generates unnecessary fragments

if there is no homomorphism from a conjunction of atomic formulas to any subset

of the facts. Figure 3.8 depicts a normalized instance w.r.t. Φ+ = ∅ (generated by

a naiv̈e normalization algorithm) which compared to the normalized instanced with

respect to E+(n, c, t) ∧ S+(n, s, t) shown in Figure 3.7 has more concrete facts.

We propose an algorithm that fragments the concrete facts in an instance based

on Φ+. The normalization algorithm norm(Ic,Φ
+) (Algorithm 1) receives a concrete

instance Ic and N (Φ+), fragments the concrete facts in Ic and returns a normalized

concrete instance I ′c w.r.t. Φ+. The algorithm first builds the set S which is a set

of sets of concrete facts in Ic that satisfy some formula φ+ ∈ N (Φ+). Then the sets
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E+

Name Company Time
Ada IBM [2012, 2013)
Ada IBM [2013, 2014)
Ada Google [2014, 2015)
Ada Google [2015, 2018)
Ada Google [2018, ∞)
Bob IBM [2013, 2014)
Bob IBM [2014, 2015)
Bob IBM [2015, 2018)

S+

Name Salary Time
Ada 18k [2013, 2014)
Ada 18k [2014, 2015)
Ada 18k [2015, 2018)
Ada 18k [2018, ∞)
Bob 13k [2015, 2018)
Bob 13k [2018, ∞)

Figure 3.8: A normalized concrete source instance obtained by a naiv̈e normalization
algorithm

R+

A T
f1 a [5,11)

P+

A T
f2 a [8,15)
f4 b [20, 25)

S+

A T
f3 a [7,10)
f5 b [18,∞)

Figure 3.9: Input of the normalization algorithm in Example 10

that have at least a concrete fact in common are moved to another set S∩. The sets

that are in S∩ and have a concrete fact in common are merged until no more merges

can be done. After adding the merged sets to S, the concrete facts that are in each

set ∆ ∈ S are fragmented by sorting the time intervals of the concrete facts in ∆ and

fragmenting the time intervals such that they do not overlap anymore. Example 10

shows how algorithm norm(Ic,Φ
+) works.

Example 10. Consider a schema with three relation symbols R+, P+, S each with

attributes A and T . Consider an instance of Ic of this schema with five facts as shown

in Figure 3.9. Let N (Φ+) contains two conjunctions of atomic formulas:

φ1 : R+(x, t1) ∧ P+(y, t2) and

φ2 : P+(x, t1) ∧ S+(y, t2)

The algorithm first builds the set S. In this example R is the only relation in the
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Algorithm 1: norm(Ic,Φ
+)

Input : Concrete instance Ic and Φ+.
Output: Normalized instance I ′c w.r.t. Φ+

1 I ′c = Ic;
2 build N (Φ+) ;
3

S = {∆ | ∆ = {f1, . . . , fm}, f1, . . . , fm ∈ Ic such that
⋂
f∈∆

f [T ] 6= ∅

and ∃φ+ such that φ+ ∈ N (Φ+) and m = |φ+| and there is a homomorphism h s.t. h : φ∗ 7→ ∆}4

5 S∩ = {∆ ∈ S | ∃∆′ ∈ S.∃f such that f ∈ (∆ ∩∆′)};

6 S = S\S∩;

7 while ∃∆1,∆2 ∈ S∩ such that (∆1 6= ∆2 and ∆1 ∩∆2 6= ∅) do
8 ∆′ = ∆1 ∪∆2;
9 S∩ = (S∩\∆1,∆2) ∪ {∆′};

10 end

11 S = S ∪ S∩;

12 for each ∆ ∈ S do
13 TP∆ = 〈tp1, tp2, . . . , tpm〉, where tpi is a distinct start point or end point in the

facts in ∆ and m is the number of distinct start points and end points in ∆;
14 Sort TP∆ in ascending order of time points;
15 for each f ∈ ∆ such that f [T ] = [si, ei): do
16 TPf = 〈si, . . . , ei〉 is a sub-sequence of TP∆ from time point si to time point

ei;
17 k = |TPf | − 1;
18 Fragment the fact fc to k facts such that

frg = ∀j ∈ {1, . . . , k} fj [D] = fc[D] and fj [T ] = [TPf [j], TPf [j + 1])

19 I ′c = I ′c\{f} ∪ frg

20 end

21 end
Output: I ′c
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instance, so

S = {{f1, f2}, {f2, f3}, {f4, f5}}

Each set ∆ in S satisfies a conjunction of atomic formulas (treating time intervals

as constants) and in each ∆ the intersection of the time intervals of the facts is not

empty. The algorithm continues by building the set S∩ which is a subset of S and

contains the sets of facts that have a common fact with each other. In this example

S∩ = {{f1, f2}, {f2, f3}}.

After building S∩, the algorithm removes the sets in S∩ from S and merges the sets

in S∩ that have common facts. In this example after merging the sets in S∩ we have:

S∩ = {{f1, f2, f3}}

After adding S∩ to S:

S = {{f1, f2, f3}, {f4, f5}}

In this example there are two sets ∆1 and ∆2 in S. The algorithm sorts the distinct

start points and end points of the facts in ∆1 and ∆2:

• TP∆1 : 〈5, 7, 8, 10, 11,∞〉

• TP∆2 : 〈15, 18, 20,∞〉

Here we just show how the fact f1 is fragmented.

• f11, where f11[T ] = [5, 7)

• f12, where f12[T ] = [7, 8)

• f13, where f13[T ] = [8, 10)

• f14, where f14[T ] = [10, 11)
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R+

A T
f11 a [5,7)
f12 a [7,8)
f13 a [8,10)
f14 a [10,11)

P+

A T
f21 a [8,10)
f22 a [10,11)
f23 a [11,15)
f4 b [20, 25)

S+

A T
f31 a [7,8)
f31 a [8,10)
f51 b [18,20)
f52 b [20,25)
f53 b [25,∞)

Figure 3.10: Output of the normalization algorithm

At the end the algorithm removes f1 from the instance I ′c and adds the fragmented

facts. The other facts in ∆1 and ∆2 are fragmented the same way as well. The final

normalized instance is shown in Figure 3.10. 4

Theorem 3.7. Let I ′c = norm(Ic,Φ
+). The instance I ′c is normalized.

Proof. We will show I ′c has the empty intersection property. Therefore, based on

Theorem 3.5, I ′c is normalized.

Let φ∗ be a conjunction of atomic formula in N (Φ+). Let h be a homomor-

phism from φ∗ to a set of concrete facts fc1 , . . . , fcn in I ′c. We need to show either

(
⋂
i∈{1,..,n} fci [T ]) = ∅ or

⋂
i∈{1,..,n} fci [T ] =

⋃
i∈{1,..,n} fi[T ].

Let B = {fc1 , . . . fcn}. Denote by br(f) the set of fragmented facts of a concrete

fact f ∈ Ic obtained by the algorithm. Each fact fci in B is either obtained by

fragmenting a concrete fact fi in Ic (that is fci ∈ br(fi)) or is a concrete fact in Ic

(that is fci = fi). Define h′ to be h except that the temporal variable ti in each atom

Ri is mapped to h′(ti) = fi[T ]. Since fci [D] = fi[D] and the temporal attribute values

of fci and fi do not matter when considering φ∗ ∈ N (Φ+), h′ is a homomorphism

from φ∗ to {f1, f2, . . . fn}.

If (
⋂
i∈{1,..,n} fi) = ∅, then it is obvious that (

⋂
i∈{1,..,n} fci [T ]) = ∅. So we consider

the case that (
⋂
i∈{1,..,n} fi) 6= ∅. Thus, there is a set in S such that f1, . . . fn ∈ ∆.

Let TP∆ contains the sorted distinct start points and end points of the facts in ∆,

that is 〈`1, . . . , `m〉, where m is the number of distinct start points and end points in
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∆. Consider an arbitrary fact fci in B. Let fci [T ] = [s, e). By construction of the fact

fci by the algorithm (which is obtained by fragmenting a concrete fact fi ∈ ∆), we

have 〈`1, . . . , s, e, . . . , `m〉. Observe that time point e is the immediate timepoint after

s in TP∆. Therefore, if any fact f ′ in B has another start point (that is f ′[T ] = [s′, e′)

and s 6= s′), then the
⋂
f∈∆ f [T ] = ∅. If all the facts in B have the same interval then⋃

f∈B f [T ] =
⋂
f∈B f [T ]. Therefore, I ′c has the empty intersection property.

The time complexity of the normalization algorithm norm(Ic,Φ
+) by the assump-

tion of fixing Φ+ is polynomial in the size of Ic. Näıve normalization algorithm has

a better time complexity but the size of the normalized instance is bigger because

of the possibility of unnecessary fragments. In general there is a trade off between

the cardinality of a normalized instance and the time complexity of a normalization

algorithm. In Chapter 5 we have done some experiments on näıve normalization and

norm(Ic,Φ
+) to show this trade off.

Note that even algorithm norm(Ic,N (Φ+)) might fragment a fact unnecessarily

because during merge the facts that are not directly satisfying a conjunction of atomic

formulas are merged together. For example, the fragments f11 and f12 in Figure 3.10

can be coalesced into a fact R+(a, [5, 8)) and the instance is still normalized. The

reason is that time point 7 which causes these fragments is the start point of the fact

f3 and the facts f1 and f3 are not directly satisfying a conjunction of atomic formulas

but they are in ∆1 = {f1, f2, f3}. The only reason that they are in the same set in S

is that the fact f2. However, since the start point of f3 (i.e. 7) is less that the start

point of f2 (i.e. 8) the fragmentation of f1 by considering time point 7 is unnecessary.

In order to find a minimum normalized instance, more computational time should be

spent to find such cases and coalesce them.
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3.3.3 Concrete chase (c-chase)

Putting everything together, in this section we define the concrete chase. Consid-

ering the lhs of all s-t tgds, first the concrete source instance needs to be normalized

w.r.t. the lhs of the s-t tgds. Then all s-t tgd c-chase steps are applied sequentially to

get a target instance. Then the target instance needs to be normalized w.r.t. the lhs

of the egds. Finally a concrete solution is obtained by applying a successful sequence

of egd c-chase steps. In the rest of this chapter, whenever we say a concrete instance

is normalized w.r.t. Σst (resp. Σeg) it means it is normalized w.r.t. the lhs of Σst

(resp. Σeg). The lhs of the s-t tgds and egds are considered as conjunctions of atomic

formulas.

Definition 3.8. c-chase step:

• (s-t tgd): Let σ+ : ∀x, t φ+(x, t) → ∃y ψ+(x,y, t) be an s-t tgd. Let Ic be

the concrete normalized source instance and Jc be a concrete target instance

(initially Jc = ∅). Let h be a homomorphism from lhs of σ to Ic such that there

is no extension h′ of h from φ+(x, t) ∧ ψ+(x,y, t) to (Ic, Jc). We say σ+ can be

applied to (Ic, Jc) with h. Let J ′c be the union of Jc with the set of facts obtained

by (a) extending h to h′ so that each variable in y is assigned to a fresh null

annotated with h(t), followed by (b) applying h′ to the rhs of σ+. We say the

result of applying σ+ to (Ic, Jc) is (Ic, J
′
c) and write (Ic, Jc)

σ+,h7−−→ (Ic, J
′
c).

• (egd): Let σ+ : ∀x, t φ+(x, t) → x1 = x2 be an egd. Let Jc be the concrete

normalized target instance such that (Ic, Jc) |= Σ+
st. Let h be a homomorphism

from σ to Jc such that h(x1) 6= h(x2). We say that σ+ can be applied to Jc with

h. We distinguish two cases:

– If both h(x1) and h(x2) are constant then the result of applying σ+ to Jc

with h is a failure and it is denoted by Jc
σ+,h7−−→ ⊥.
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EMP+

Name Company Salary Time

Ada IBM N [2012,2013) [2012, 2013)
Ada IBM 18k [2013, 2014)
Ada Google 18k [2014, ∞)

Bob IBM N [2013,2015) [2013, 2015)
Bob IBM 13k [2015, 2018)

Figure 3.11: The concrete view of c-chase(Ic,M+)

– Otherwise, let J ′c be Jc where we identify h(x1) and h(x2) as follows: if

one is a constant, then the interval-annotated null is replaced everywhere

by the constant; if both are interval-annotated nulls, then one is replaced

everywhere by the other. We say J ′c is the result of applying σ+ to Jc with

h, denoted by Jc
σ+,h7−−→ J ′c.

Note that in an egd c-chase step, the annotated nulls have the same time interval

because the only way a homomorphism can be defined to the lhs of an egd chase

step is to map variable t to a single time interval. We assumed that all the interval

annotated nulls in a fact are annotated with the fact’s time interval.

A concrete chase is a finite sequence of s-t tgd chase steps followed by egd chase

steps. We call the result of a successful concrete chase a concrete solution. If an egd

c-chase step fails, then the result of c-chase is a failure.

Example 11. The result of concrete chase on the concrete input instance shown in

Figure 3.6 with the schema mappings in the Example 6 is shown in Figure 3.11. 4

We have shown the result of a successful chase on the abstract view is a universal

solution (Proposition 3.2). Since in practice concrete instances are used the aim is

to show the result of c-chase on a concrete instance has the correct semantics as if

we were able to apply chase on the abstract view of that instance. This is shown in

Figure 3.12. Following the Fagin et al. [16] approach to prove that the result of the

chase procedure is a universal solution, we first show a property of a c-chase step in
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Ic JIcK

Jc JJcK ∼ Ja

J.K

c-chase chase

J.K

Figure 3.12: Correspondence between concrete chase on Ic and chase on JIcK

Lemma 3.9. Using this lemma we show in Theorem 3.10 that if Jc is the result of

a successful c-chase, then JJcK is a universal abstract solution. The proof steps in

Lemma 3.9 follows the proof steps of Lemma 3.4 in [16]. The main difference is that

the notion of homomorphism is defined from abstract instances to abstract instances

(not on concrete instances). Meanwhile, a concrete chase uses homomorphisms from

a temporal dependency to a concrete instance. Therefore, in the proof we have to

deal with a homomorphism from a temporal dependency to an instance and its effects

on a homomorphism from an abstract instance to another abstract instance.

Lemma 3.9. Let Kc = (Ic, Jc) be a concrete normalized instance w.r.t. a dependency

σ+. Let Kc
σ+,h7−−→ K ′c be a chase step. Let Ka = 〈db′′0, db′′1, . . .〉 be an abstract instance

such that Ka |= σ and h′ : JKcK 7→ Ka. Then there is a homomorphism g : JK ′cK 7→

Ka.

Proof. Let JKcK = 〈db0, db1, . . .〉. Let JK ′cK = 〈db′0, db′1, . . .〉. Having the homomor-

phism h′ : JKcK 7→ Ka means that there is a homomorphism from each snapshot in

JKcK to the corresponding snapshot in Ka,

h′` : db` 7→ db′′` .

Case 1: σ+ is an s-t tgd. Then h : φ+(x, t) 7→ Kc. Suppose h(t) = [s, e). Based

on Theorem 3.5 there are homomorphisms hs, . . . , he−1 from σ = φ(x) → ∃yψ(x,y)
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to dbs, . . . dbe−1, respectively in JKcK. Consider h` (s ≤ ` < e):

h` : φ(x) 7→ db`.

Composing homomorphisms yields homomorphisms, thus:

h′` ◦ h` : φ(x) 7→ db′′` .

Since db′′` |= σ, then there exists a homomorphism h′′ such that

h′′` : φ(x) ∧ ψ(x,y) 7→ db′′` ,

where h′′` is an extension of h′` ◦ h` such that h′′` (x) = h′`(h`(x)). For each variable

y ∈ y in ψ+, a fresh interval-annotated null is generated in K ′c that is annotated with

h(t) = [s, e). Denote by N ′[s,e) the interval-annotated null generated in the chase step

Kc
σ+,h7−−→ K ′c. Therefore, by definition of J.K, there is a labeled null N ′` in db′` ∈ JK ′cK

(s ≤ ` < e). Define g` on Null(db′`) as follows: g`(N`) = h′`(N`), if N` ∈ Null(db`), and

g`(N
′
`) = h′′` (y) for y ∈ y.

In order to show g : JK ′cK 7→ Ka we need to show there is a homomorphism between

the corresponding snapshots. Hence, we need to show that g` is a homomorphism

from db′` to db′′` , s ≤ ` < e. For the facts of db′` that are also in db` this is true because

h′ is a homomorphism; thus h′` : db` 7→ db′′` . Let R+(x0,y0, t) be an arbitrary atom

in ψ+. Therefore, the atom R(x0,y0) is in ψ. Then R+(h(x0), h(y0), h(t)) is a fact

in K ′c. By definition of J.K there is a fact R(h(x0), π`(h(y0)) = R(h(x0),Ny`
) in db′`.

Based on Theorem 3.5 we showed h(x0) = h`(x0). By replacing h with h` in R and

taking the image of this fact under g` we have:

R(g`(h`(x0)), g`(N`)) = R(h′′` (x0), h′′` (y0)).
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The homomorphism h′′ maps all the atoms of φ ∧ ψ, in particular R(x0,y0) into

facts in db′′` . Thus g` is a homomorphism. The only remaining thing is to show

∀i, j ∈ N0 such that i 6= j

and gi : dbi 7→ db′i and gj : dbj 7→ db′j,

∀N ∈ Null(db′`) gi(N) 6= gj(N)

For the nulls in db′` that are already in db` this is true because h′ is a homomorphism. A

null N ′[s,e) (replacing y ∈ y) generated by the concrete chase step Kc
σ+,h7−−→ K ′c results

in the labeled nulls 〈N ′s, N ′s+1, . . . , N
′
e−1〉 in the snapshots db′s, . . . db

′
e−1 respectively.

The homomorphism g′` is an extension of g` such that

g′`(N) =



hs(N) if N ∈ Null(dbs)

hs+1(N) if N ∈ Null(dbs+1)

. . .

h`(N) if N ∈ Null(db`)

. . .

he−1(N) if N ∈ Null(dbe−1).

Case 2: σ+ is an egd. In this case the difference between Kc and K ′c is that

some interval-annotated nulls in Kc are replaced with other interval-annotated nulls

or constants. But there is no new constant or interval-annotated null generated in

K ′c.

If σ+ can be applied on Kc with h, based on Theorem 3.5 we know there is a

homomorphism h` from φ(x) in db` ∈ JKcK. As in case 1:

h′` ◦ h` : φ(x) 7→ db′′` , ` ∈ N0, db′′` ∈ Ka.
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Since each snapshot db′′` (` ∈ N0) in Ka satisfies the egd σ,

h′`(h`(x1)) = h′`(h`(x2)).

We take g` to be h′`. We need to show h′` is still a homomorphism from db′` to db′′` .

The only way that h′` can fail to be a homomorphism on db′` is if h′` maps h`(x1)

and h`(x2) into two different constants or labeled nulls of db′′` , which is not the case

because h′`(h`(x1)) = h′`(h`(x2)).

Theorem 3.10. Assume a data exchange setting where Σ+
st consists of s-t tgds and

Σ+
eg consists of egds.

1. Let (Ic, Jc) be the result some successful finite concrete chase of (Ic, ∅) with

Σ+
st ∪ Σ+

eg. Then JJcK is a universal solution.

2. If there exists some failing chase of (I, ∅) with Σ+
st∪Σ+

eg, then there is no solution.

Proof. part 1: The proof is based on Lemma 3.9 and the proof of Theorem 3.3

in [16]. Let Ja be an arbitrary solution (for example the result of chase on JIcK).

Then (JIcK, Ja) satisfies Σst ∪ Σeg. The identity mapping id : (JIcK, ∅) 7→ (JIcK, Ja)

is a homomorphism. By applying lemma 3.9 at each s-t tgd c-chase steps, we have

h1 : (JIcK, JJ ′cK)→ (JIcK, Ja). Then by applying lemma 3.9 at each egd chase step, we

have h : (JIcK, JJcK)→ (JIcK, Ja). In particular h is a homomorphism from JJcK to Ja.

Thus, JJcK is a universal solution.

part 2: Let (Ic, Jc)
σ+,h7−−→ ∅ be the last egd c-chase step of a failing c-chase. Then

σ+ must be an egd in Σ+
eg, say φ(x, t) 7→ (x1 = x2) and h : φ(x, t) 7→ Jc is a homo-

morphism such that h(x1) and h(x2) are two distinct constants a1 and respectively,

a2. Suppose h(t) = [s, e). Let JJcK = 〈db0, db1, . . . , 〉. As in proof of Lemma 3.9 we

have a homomorphism h` from lhs σ : φ(x)→ x1 = x2 to db` (s ≤ ` < e):

h` : φ(x) 7→ db`
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Assume by contradiction that there exists a solution Ja = 〈db′0, db′1, . . . , 〉. Since

Ja is a solution, db′` |= σ, (s ≤ ` < e). The identity homomorphism

id : (JIcK, ∅) 7→ (JIcK, Ja)

implies, by Lemma 3.9, the existence of homomorphism g : (JIcK, JJcK) 7→ (JIcK, Ja).

In particular, g is also a homomorphism from JJcK to Ja, which means:

g` : db` 7→ db′`, ` ∈ N0

Then

g` ◦ h` : φ(x) 7→ db′′` s ≤ ` < e

Since db′` |= σ, it must be the case that g`(h`(x1)) = g`(h(x2)) and thus g`(a1) = g`(a2).

Homomorphisms are identity on Const, and so a1 = a2, which is a contradiction.

Corollary 3.11. Assume a data exchange setting in which Σ+
st consists of s-t tgds

and Σ+
eg consists of egds. Let Ic be a normalized concrete source instance w.r.t. Σst.

Let Jc be the result of c-chase on Ic. Let Ja be the result of chase on JIcK. Then JJcK

is homomorphically equivalent to Ja, that is JJcK ∼ Ja.

3.4 Query Answering

In addition to finding a universal solution for a data exchange problem, another

important issue in data exchange is query answering over the target schema [16].

When queries are posed over the target schema, different answers may be obtained

depending on the solution that is considered. To cope with the multiplicity of query

results the notion of certain answers is used, where the answers are the intersection

of all the answers to the query on each possible solution [16].

Let q be a non-temporal k-ary query, for k ≥ 0. Let Ia be an abstract instance,
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that is Ia = 〈db0, db1, . . .〉. Let M be a data exchange setting. The certain answers

of q w.r.t. Ia andM, denoted by certain(q, Ia,M), is the sequence of sets of certain

answers of q on each snapshot

certain(q, Ia,M) = 〈certain(q, db0,M), certain(q, db1,M), . . .〉

where certain(q, db`,M) ( ` ∈ N0) is the set of k-tuples r of constants from db`, such

that for every solution db′` of the snapshot db` w.r.t. a schema mappingM, r ∈ q(db′`):

certain(q, db,M) =
⋂

db′ is a solution for dbw.r.t.M

q(db′)

Näıve evaluation [1, 4, 22, 16] is a technique commonly used in the literature to

find certain answers for unions of conjunctive queries on näıve tables. It has been

shown [4, 16] that näıve evaluation of unions of conjunctive queries on a universal

solution db′ for a relational source instance db gives certain answers. Denote by q(db)↓

the result of näıve evaluation of query q on db which is obtained by treating the labeled

nulls as new constants (that is N = N , N 6= M , and N 6= a, where a ∈ Const). It is

shown that certain(q, db,M) = q(db′)↓ where db′ is a universal solution for db w.r.t.

a data exchange setting [4, 16]. Denote by q(Ja)↓ the result of näıve evaluation of the

query q on a universal solution Ja = 〈db′0, db′1, . . .〉 for a source instance Ia w.r.t. a

data exchange setting. Thus,

ceratin(q, Ia,M) = q(Ja)↓ = 〈q(db′0)↓, q(db
′
1)↓, . . .〉.

Let q be a query on the target schema in the abstract view. Denote by q+ the

corresponding query (obtained by augmenting all the atoms in the query q by a free

variable t) for the target schema in the concrete view.For concrete instances, . Given

a union of conjunctive queries q+ and a concrete solution Jc for a source instance Ic
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w.r.t. a data exchange setting, the näıve evaluation of q+ on Jc, denoted by q+(Jc)↓

is:

q+(Jc)↓ =
⋃

q′ is a disjunct of q+

q′(Jc)↓

where q′(Jc)↓ is defined as follows:

1. Normalize instance Jc w.r.t. q′. We denote the normalized instance by J ′c

2. Each interval-annotated null N [s,e) in Jc is replaced with a fresh constant cn[s,e)

everywhere it occurs. The result of this step is J ′′c .

3. Query q is evaluated by finding all homomorphisms from variables in q to J ′′c .

In particular, the variable t is mapped to a time interval. The result of this step

is denoted by q(J ′′c ).

4. Tuples with fresh constants are dropped from q(J ′′c ) to yield q′(Jc)↓.

The following theorem shows that näıve evaluation on a concrete solution produces

the same answers as näıve evaluation on the corresponding abstract solution under

the semantic mapping.

Theorem 3.12. Let Jc be a concrete solution for a source instance Ic w.r.t. M.

Let q+ be a union of conjunctive queries over the concrete target schema and q

the corresponding union of conjunctive queries on abstract target schema. Then

Jq+(Jc)↓K = q(JJcK)↓.

Proof. Let JJcK = 〈db0, db1, . . .〉. Let (a1, . . . , ak, [s, e)) be a (k + 1)-ary tuple in

q+(Jc)↓. Then, Jq+(Jc)↓K = 〈r0, r1, . . .〉 where r` ( ` ∈ N0) is a set of k-ary tuples

defined as follows:

r` = { (a1, . . . , ak) | ∃i.∃j. (a1, . . . ak, [i, j)) ∈ q+(Jc)↓, i ≤ ` < j}
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Since (a1, . . . , ak, [s, e)) ∈ q+(Jc)↓ there is a homomorphism h from a conjunctive

query q′ that is a disjunct of q+ to Jc. W.l.o.g. we assume q′ : ∃yφ+(x, y, t). The proof

can be easily extended when there is more than one existentially quantified variable.

Also, the snapshots rs to re−1 in Jq+(Jc)K contain the tuple h(x) by definition.

Let R+(x, y, t) be an arbitrary atom in φ+. Then R+(h(x), h(y), h(t)) is a fact

in Jc. Depending on whether h(y) is a constant or an interval-annotated null we

consider two cases:

Case 1: h(y) = a∗ where a∗ ∈ Const. In this case the snapshots dbs to dbe−1 in

JJcK contains the fact R(a1, . . . , ak, a
∗). Define homomorphisms hs, . . . he−1 as follows:

h`(x) = h(x) and h`(y) = h(y), s ≤ ` < e. Then hs, . . . , he−1 are homomorphisms

from φ(x, y) to dbs, . . . , dbe−1, respectively because R(h`(x), h`(y)) is a fact in db`,

s ≤ ` < e. Hence, h`(x) = (a1, . . . , ak) is in q(db`).

Case 2: h(y) = N [s,e). In this case, define homomorphisms hs, . . . he−1 as follows:

h`(x) = h(x) and h`(y) = π`(h(y)) = N`. Then hs, . . . , he−1 are homomorphisms from

φ(x, y) to dbs, . . . , dbe−1, respectively. Therefore, the tuple (a1, . . . , ak) is in q′(db`)

and consequently in q+(Jc)↓.

For the other direction, let (a1, . . . , ak) be a tuple in the result of q on consecutive

snapshots dbs, dbs+1, . . . dbe−1, that is

(a1, . . . , ak) ∈ q(db`), s ≤ ` < e

Therefore, there exists a conjunctive query ∃yφ(x, y) that is a disjunct of q and there

exists a homomorphism h`

h` : φ(x, y) 7→ db`.

That means if R(x, y) is an atom in φ then R(h`(x), h`(y)) is in db`. Observe that

in this direction we also assume one existentially variable y in the conjunctive query.

But this assumption is without loss of any generality.
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Based on the value of h`(y) we consider two cases:

Case 1: h`(y) = a∗, where a∗ ∈ Const. Thus, R+(a1, . . . , ak, a
∗, [s, e)) is a fact

in Jc. Define a homomorphism h on variables in φ+(x, y, t) (in a disjunct in q+) as

follows:

h(z) =

 h`(z) if h`(z) is a constant

[s, e) if z = t

h is a homomorphism from φ+(x, y, t) to Jc because it maps an arbitrary atom such

as R+(x, y, t) in φ+ to a fact R+(h(x), h(y), h(t)) in Jc. Therefore, (a1, . . . ak, [s, e))

is in q+(Jc)↓ which means r`, s ≤ ` < e contains the tuple (a1, . . . ak).

Case 2: h`(y) = N`, s ≤ ` < e. In this case by definition of JJcK, R+(a1, . . . , ak, N
[s,e), [s, e))

is a fact in Jc.

h(z) =


h`(z) if h`(z) is a constant

N [s,e) if h`(z) = N`

[s, e) if z = t

Same as previous case, h is a homomorphism from φ+(x, y, t) to Jc and r` in Jq+(Jc)K

contains the tuple (a1, . . . ak).

Corollary 3.13. Let Jc be the result of concrete chase on a concrete source instance

Ic w.r.t. a temporal schema mapping M = (RS, RT ,Σst,Σeg). Let q+ be a union of

conjunctive queries over the target schema. Then certain(q, JIcK,M) = Jq+(Jc)↓K.

3.5 Related Work

Here we overview the previous relevant work on data exchange and temporal

databases. The formal foundations of data exchange were developed by Fagin et al.

in [16]. The authors showed that the chase algorithm, previously used for checking
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implication of data dependencies, can be used to produce a universal solution for in-

stances of the data exchange problem. Universal solutions map homomorphically to

other solutions for the source instance. This property makes them the preferred solu-

tions to query answering. Universal solutions and, in general, solutions of instances of

data exchange problem can contain incomplete information. Representing incomplete

information and evaluating queries over them are more complex than in the complete

case as shown by Imielinski and Lipski [22] as well as Abiteboul et al. in [1]. The gap

between the theoretical work on incomplete information and what has been used in

practice is discussed by Gheerbrant et al. [20] and Libkin [30]. The chase algorithm

proposed by Fagin et al. in [16] produces labeled nulls for incomplete values. Re-

lations containing labeled nulls are called näıve tables [1, 22]. In data exchange the

semantics of answering queries is defined in terms of certain answers [4, 16]. Cer-

tain answers [22] are tuples that belong to the answer of the posed query no matter

which solution is used. Fagin et al. showed that whenever a universal solution can be

computed in polynomial time (for the class of dependencies identified in [16]), certain

answers to unions of conjunctive queries can also be computed in polynomial time in

data complexity in [16]. Computing certain answers for queries that have more than

one inequality, however, is a coNP-complete problem [16]. Data exchange and incom-

plete information and other possible semantics for query answering are discussed in

detail by Libkin in [29].

The formal foundations of temporal data models and query languages were stud-

ied by Chomicki in [10] and by Chomicki and Toman in [13]. Abstract versus concrete

temporal views were first developed in the context of the semantics of temporal query

languages [38]. These kinds of views of temporal data were also used in program de-

bugging and dynamic program analysis [27]. However, Chomicki [10] and Chomicki

and Toman [13] did not discuss incomplete temporal information and its possible

semantics. The notion of normalization was previously used in the context of query
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answering in temporal databases [27, 39] on tuples with the same schema that agree

on non-temporal attribute values. The normalization algorithms that we introduced

change the concrete instance w.r.t. conjunctions of atomic formulas. Koubarakis pro-

posed a unified framework for both finite and infinite, definite and indefinite temporal

data [25, 24]. His suggested framework extends conditional tables (a.k.a. c-tables) [22]

and can be used to store facts such as roomA is booked from 2 to sometime between

5 to 8. He used global conditions to define the constraints on the start point or end

point of a time interval. In his framework, the temporal attribute values can be un-

known. C-tables are a generalization of näıve tables where a table is associated with

global and local conditions specified by logic formulas [22]. In Koubarakis frame-

work the indefinite (incomplete) temporal data are not the result of data exchange.

His framework, does not deal with schema mappings or integrity constraints. We

proposed interval-annotated nulls for unknown values in concrete data exchange to

align the semantics of temporal data exchange with the data exchange on abstract

vie w. Also in our framework the value of the temporal attribute is known because

the schema mappings are non-temporal. Therefore, there is no condition on the tem-

poral attribute or non-temporal attributes as a result of data exchange. Näıve tables

are sufficient for representing incomplete information in temporal data exchange with

non-temporal schema mappings.

3.6 Conclusion

In this chapter, we proposed a framework for data exchange on temporal data

which relies on the distinction between the abstract and concrete view of the data.

Abstract view is responsible for the semantics while the concrete view is used in the

implementations. We considered a basic case where the schema mapping is non-

temporal. We first extended the standard chase procedure on abstract instances.

Defining chase on the abstract instances provides a conceptual tool on how a concrete
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chase should work. Then we defined a concrete chase on concrete instances. We

showed normalization of the concrete instance is necessary to define homomorphisms

from the lhs of a dependency with a shared temporal variable among the atoms to

a concrete instance. We finished the chapter by showing the result of the concrete

chase is a good candidate to be materialized and used for answering queries.
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CHAPTER 4

Temporal Repair Checking and Repair

Construction

A database db is consistent w.r.t. a set of integrity constraints Σ defined on its

schema if it satisfies all the constraints in Σ (db |= Σ). Data may be collected from

imprecise sources such as social media with imprecise procedures such as natural-

language processing. Inconsistency may also arise during data exchange and data

integration where data from different autonomous (and even separately consistent)

sources are integrated. Arenas et al. [5] introduced a principled approach to managing

inconsistency via the notions of repairs and consistent query answering. Repairing

a database means bringing the database in accordance with a given set of integrity

constraints by applying some minimal changes. If a database can be repaired in more

than one way, then the consistent answer to a query is defined as the intersection of

the query answers on all repaired versions of the database. If repairs can be obtained

only by tuple deletion, then they are called subset repairs. Subset repairs are the

maximal consistent subsets of the original database instance.

In this chapter, we first adopt a basic decision problem repair checking [11, 3]

(is a database a repair of another database?) to obtain temporal repair checking. A

repair checking algorithm (represented by RepChk(db, db′,Σ)) receives two databases

with the same schema as input (here db and db′) and returns true if db′ is a repair
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of db. The class of integrity constraints that we consider throughout the chapter is

temporal functional dependencies [13]. Then, we propose two algorithms for repairing

a temporal database. Note that this dissertation does not propose a criterion of

goodness to compare the repairs generated by each algorithm. The goal of comparing

these algorithms is mainly to contrast a time point based repair algorithm with a

time interval based repair algorithm.

4.1 Preliminaries

In this chapter we use the timestamp model for the abstract view. The reason

is that the relations in the timestamp model are the same as the relations in the

relational model (except that abstract relations can be infinite) and we can re-use

relational repair checking algorithms by providing the way of handling the infinity.

Recall from Chapter 2 that in the timestamp model, the same schema is used for

both the abstract and concrete databases.

Let fc = R(a, [s, e)) be a concrete fact in a concrete instance Ic, we denote by JfcK

the set of the abstract facts that it represents: JfcK = {R(a, `) | ` ∈ [s, e)}.

We assume the instances in this chapter are complete (i.e. without nulls). We

use f [D̄] and f [T ] to refer to data attribute values and respectively the temporal

attribute value of the fact f .

Definition 4.1. Switch point: Let Ia be an abstract instance in the snapshot model.

The smallest time point for which Ia satisfies the finite change condition is called the

switch point of Ia.

Definition 4.2. Temporal functional dependencies (tFDs): Consider the relation

schema R(X, Y, Z, T ), where X, Y, Z are sets of attributes and T is the temporal

attribute. A temporal functional dependency X,T → Y holds in an abstract database

Ia in the timestamp model if the classical functional dependency X,T → Y holds in
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Ia[13].

Every tFD can be written as a first-order sentence. For example, tFD X,T → Y

can be written as the following first-order sentence.

∀x̄, ȳ, ȳ′, z̄, z̄′, t R(x̄, ȳ, z̄, t) ∧R(x̄, ȳ′, z̄′, t)→ ȳ = ȳ′

A temporal key constraint over relation R is X,T → R which shows the values of the

attributes X and T uniquely identifies a fact in R.

Definition 4.3. Conflict: The abstract facts fa1 , . . . , fan are in a conflict w.r.t. an

integrity constraint σ if fa1 , . . . , fan witness a violation of σ, that is fa1 , . . . , fan 6|= σ.

The concrete facts fc1 , . . . , fcn are in a conflict w.r.t. an integrity constraint σ if

there exist fa1 ∈ Jfc1K, . . . , fan ∈ JfcnK such that fa1 , . . . , fan 6|= σ.

For the tFDs, a conflict involves only two facts in the same relation. Note that

when two abstract facts fa and f ′a are in a conflict w.r.t. a tFD, then fa[T ] = f ′a[T ].

On the other hand, if two concrete facts fc and f ′c are in a conflict w.r.t. a tFD, then

JfcK[T ] ∩ Jf ′cK[T ] 6= ∅.

As our integrity constraints are tFDs, it suffices to consider a database with a

single relation R(A1, . . . , An, T ). In a general database, our results can be applied to

each relation individually. In the rest of this chapter whenever we refer to a database

instance (abstract or concrete) it only has one relation.

Let Σ be a set of tFDs and R(X, Y, T ) be a concrete normalized relation w.r.t. Σ.

A tFD XT → Y holds in R if the tFD XT → Y holds in R′ which is obtained by

replacing the distinct intervals in R with distinct constants.

4.2 Temporal Repair Checking

In this section, we identify the cases where the relational repair checking cannot

be used for temporal databases and discuss the notion of temporal repair checking,
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which addresses the shortcomings of the relational repair framework.

If an abstract relation is finite, then a relational repair checking algorithm can

be used. In the rest of the paper, we just consider the temporal databases that

are infinite. Therefore, abstract databases contain an infinite relation and concrete

databases contain a fact with time interval of the form [s,∞) , s ∈ N0.

We define abstract repairs based on relational repairs.

Definition 4.4. [Abstract repair]: An instance I ′a is an abstract repair of Ia w.r.t. a

set of integrity constraints Σ if

• I ′a |= Σ;

• The set difference between Ia and I ′a is minimal;

• The snapshot view of I ′a satisfies the finite change condition.

Example 12. Consider the relation schema E(Name, WorksFor, Time). LetName, T ime→

WorksFor be a temporal functional dependency over relation E. Consider the con-

crete database Ic with two facts:

Ic : {f1 : E(Ada, IBM, [1, 8)), f2 : E(Ada,Google, [2,∞))}.

The concrete database Ic is inconsistent because JIcK is inconsistent. The concrete

facts f1 and f2 are in a conflict. Note that unlike in relational databases, removing a

concrete fact does not produce a repair here because the difference between JIcK and

Jf1K (resp. JIcK and Jf2K) is not minimal. In the Example 13, some of the repairs of

Ic are listed. 4

We define concrete repairs based on the abstract repairs.

Definition 4.5. Let Ic and I ′c be two concrete databases over the same schema. A

concrete database I ′c is a concrete repair of Ic if JI ′cK is an abstract repair of JIcK.

50



Definition 4.6. Temporal repair checking (TRepChk(Ic, I
′
c,Σ)): Given concrete databases

Ic and I ′c over the same schema, is I ′c a concrete repair of Ic?

Example 13. Consider the instance Ic from the Example 12. According to the defi-

nition of concrete repairs (Definition 4.5) any of the following instances is a concrete

repair for Ic:

1. I ′1 = {E(Ada, IBM, [1, 2)), E(Ada,Google, [2,∞))},

2. I ′2 = {E(Ada, IBM, [1, 8)), E(Ada,Google, [8,∞))},

3. I ′3 = {E(Ada, IBM, [1, 7)), E(Ada,Google, [7,∞))},

4.
I ′4 = {E(Ada, IBM, [1, 2)), E(Ada,Google, [2, 6)),

E(Ada, IBM, [6, 8)), E(Ada,Google, [8,∞))}

4

Observe that the cardinality of some of these concrete repairs is smaller than that

of the others.

Next we define e∗-reduction to reduce a concrete instance with infinite semantics

to a concrete instance with finite semantics.

Definition 4.7. [e∗-reduction]: An e∗-reduction with a time point e∗ (or reduction

if e∗ is known) is a function from concrete facts to concrete facts (i.e. e∗-reduction:

Fc 7→ Fc, where F is a set of concrete facts). The result of applying e∗-reduction on

a concrete fact fc is another concrete fact f ′c such that:

1. f ′c is not defined if fc[T ] = [s,∞) and s ≥ e∗,

2. f ′c[D] = fc[D] and f ′c[T ] = [s, e∗) if fc[T ] = [s,∞) and s < e∗,

3. f ′c = fc if fc[T ] = [s, e), e 6=∞.

We call f ′c the reduced fact of fc.
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Intuitively, an e∗-reduction is identity on the concrete facts with finite end points

and it only reduces the concrete facts with ∞ as the end point to concrete facts with

e∗ as the end point as long as e∗ is greater than the start point of the facts. Otherwise,

if s ≥ e∗, the resulting concrete fact f ′c is meaningless.

The e∗-reduction can be lifted from concrete facts to concrete instances Ic such

that the result of applying e∗-reduction on a concrete instance Ic ∈ Ic is another

concrete instance Ie∗ where

Ie∗ = e∗-reduction(Ic) =
⋃
fc∈Ic

e∗-reduction(fc)

We call Ie∗ the reduced instance of Ic.

Example 14.

Ic : {f1 = E(Ada, IBM, [7,∞)), f2 = E(Ada,Google, [7,∞))}

An e∗-reduction of Ic with any timepoint e∗ ≤ 7 is not defined. An e∗-reduction of Ic

with timepoint 8 is:

I8 = {E(Ada, IBM, [7, 8)), E(Ada,Google, [7, 8))}

Note that if NameTime→ WorksFor is the temporal key constraint (tkc) of relation

E, then the facts in Ic are in a conflict. Also, note that the facts in the reduced

instance I8 are also in a conflict w.r.t. the tkc. 4

Proposition 4.8 shows whenever the time point e∗ is greater than all the start

points in a concrete instance Ic, then JIe∗K ⊂ Ic, where I∗e = e∗-reduction(Ic).

Proposition 4.8. Let Ie∗ = e∗-reduction(Ic), where time point e∗ is greater than all

the start points in Ic. Then JIe∗K ⊂ Ic.
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A relational repair checking algorithm RepChk(db, db′,Σ) where Σ is a set of func-

tional dependencies, iteratively goes over each relational fact fr in db−db′ and checks

if db′ ∪ {fr} |= Σ. The issue that makes relational repair checking algorithms in-

applicable on concrete databases is that the concrete databases might have infinite

semantics. The goal in temporal repair checking TRepChk(Ic, I
′
c,Σ) is to use a re-

duction on a concrete instance to obtain another concrete instance that has finite

semantics and keeps the conflicts i.e. a lossless reduction. In this way we can use the

relational repair checking algorithms after the reduction has been applied.

Definition 4.9. [Lossless reduction:] An e∗-reduction of a concrete instance Ic is

lossless w.r.t. a set of integrity constraints if whenever the facts fc1 , . . . , fcn in Ic are

in a conflict then their reduced facts f ′c1 , . . . , f
′
cn in the reduced instance Ie∗ are also

in a conflict.

To find a lossless reduction w.r.t. a set of tFDs one needs the switch point of a

concrete instance.

Example 15. Consider the coalesced concrete database

Ic = {E(Ada, IBM, [2,∞)), E(Ada,Google, [3,∞))}.

The maximum of all start points and finite end points is 3, therefore, the timepoint 3

is the switch point based on Theorem 4.10. Note that if Ic is not coalesced, Theorem

4.10 fails. For example, consider

I ′c = {E(Ada, IBM, [2,∞)), E(Ada,Google, [3, 18)), E(Ada, IBM, [18,∞))}.

Note that JI ′cK = JIcK. However, the time point 18 is not the switch point of I ′c

because the smallest time point for which JI ′cK (in the snapshot model) satisfies the

finite change condition is time point 3. 4
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The finite change condition was defined in the snapshot model of temporal databases

where the abstract instance is an infinite sequence of relational databases. Theorem

4.10 shows the switch point of a coalesced concrete instance Ic is the maximum of all

start points and finite end points.

Theorem 4.10. Let Ic be a coalesced concrete database. The switch point of Ic is

the maximum of all start points and finite end points of the intervals in Ic (ignoring

e =∞).

Proof. The proof uses the equivalence of the timestamp and the snapshot models. If fc

is a concrete fact in Ic such that fc[T ] = [s, e), then the snapshots dbs, dbs+1, . . . , dbe−1

of JIcK contain the relational fact fc[D]. Note that for every abstract fact f ∈ fc,

f [D] = fc[D] by definition of the semantics mapping. A concrete database that has

finite semantics JIcK : 〈db1, . . . , dbn〉 can be seen as an infinite sequence of relational

databases JIcK : 〈db1, . . . , dbn, dbn+1, . . .〉 such that dbn+1 = dbn+2 = . . . = ∅.

Consider the snapshot view of JIcK, that is 〈db0, . . . , dbFP , dbFP+1, . . .〉. Let FP be

the switch point of JIcK, that is the smallest time point that satisfies the finite change

condition. We will show FP is the maximum of all start points and finite end points

in Ic.

Since FP is the switch point of JIcK we have dbFP = dbFP+1 = . . . and dbFP−1 6=

dbFP . Consider any relational fact fr in any snapshot dbFP+i, i ≥ 0. Because dbFP =

dbFP+1 = . . . there should be a concrete fact fc in Ic such that fr = fc[D]. We will

show fc[T ] = [s,∞) for some s ≤ FP . Because Ic is coalesced, it is not possible to

have a pair of concrete facts f ′c and f ′′c in Ic such that f ′c[D] = f ′′c [D] and f ′c[T ] = [s′, e′)

and f ′′c [T ] = [s′′, e′′) where e′ = s′′. Therefore, in order for fr = fc[D] to be in the

snapshot dbFP and any snapshot after the temporal attribute value of fc, that is fc[T ],

must be equal to [s,∞) for some s ≤ FP . This shows if the temporal attribute value

of a concrete fact has infinity as the end point, then the start point is less than or

equal to the switch point of the instance that contains the fact.
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Since dbFP−1 6= dbFP , one can conclude there is a fact f ′r ∈ dbFP−1 that is not in

dbFP or there is a fact f ′′r ∈ dbFP that is not in dbFP−1. In the former case there must

be a fact f ′c in Ic such that f ′r = f ′c[D] and f ′c[T ] = [s′, FP ) for some s′ < FP . In the

latter case there must be a fact f ′′c ∈ Ic such that f ′′r = f ′′c [D] and f ′′c [T ] = [FP, e),

for some e > FP . Both cases show that the time point FP is either the start point

or the endpoint of the temporal attribute value of a concrete fact in Ic. The end

point of f ′′c [T ] must be e = ∞ otherwise the snapshot dbe−1 contains f ′′c [D] while

f ′′c [D] /∈ dbe which contradicts with FP being the switch point of JIcK. Therefore,

f ′′c [T ] = [FP,∞). Hence, if the end point of a temporal attribute value of a fact is

other than infinity, then the endpoint is less than or equal to FP . The maximum of

all start points and end points in Ic is FP .

Theorem 4.11. Let Σ be a set of tFDs. Let FP be the switch point of a normalized

concrete instance Ic w.r.t. Σ. Any e∗-reduction of Ic with e∗ > FP is lossless.

Corollary 4.12 shows that if there is a conflict in the reduced instance, then it is

because there is a conflict in the original instance. In other words, no conflict w.r.t.

tFDs emerges by just limiting the end point of an instance.

Corollary 4.12. Let Ic be a normalized concrete instance and FP be the switch point

of Ic. Consider an instance Ie∗ which is obtained by e∗-reduction of Ic where e∗ > FP .

Let f ′1 and f ′2 in Ie∗ be the reduced facts of f1 and f2 in Ic. If f ′1 and f ′2 are in a

conflict w.r.t. a tFD, then the two facts f1 and f2 are in a conflict as well.

Proof. This is because JIe∗K ⊆ JIcK and the tFDs are monotone.

We call a reduction that is not lossless, a lossy reduction. As an example, consider

the instance Ic in the Example 14. The facts in Ic are in a conflict w.r.t. the temporal

key constraint. The reduction of Ic with time point 7 is lossy because the reduced

facts are not defined.
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We say I ′ is a maximal subset of I satisfying Σ (or I ′ is maximal for short) if

JI ′K is a maximal subset of JIK satisfying Σ. Lemma 4.13 shows that I ′ is a maximal

subset of I satisfying Σ, if and only if I ′e∗ (the reduced database of I ′) is a maximal

subset of Ie∗ (the reduced database of I) with e∗ = Max(FP, FP ′) + 1, where FP

and FP ′ are switch points of I and I ′ respectively.

Lemma 4.13. Let I and I ′ be two concrete instances such that JI ′K ⊆ JIK. Let Σ

be a set of tFDs. Suppose JI ′K satisfies Σ. Let FPm = Max(FP, FP ′) where FP

and FP ′ are the switch points of I and I ′ respectively. Let Ie∗ and I ′e∗ be the reduced

instances of I and respectively I ′ with e∗ = FPm + 1. I ′ is a maximal subset of I that

satisfies Σ (that is, 6 ∃fa ∈ JIK − JI ′K such that JI ′K ∪ {fa} |= Σ) if and only if I ′e∗ is

a maximal subset of Ie∗ satisfying Σ.

Theorem 4.14. Let I and I ′ be two concrete databases such that JI ′K ⊆ JIK. Let Σ

be the set of tFDs defined on the schema of I. Let FPm = Max(FP, FP ′), where

FP and FP ′ are the switch points of I and I ′ respectively. Let Ie∗ and I ′e∗ be the

e∗-reduction of I and I ′ respectively where e∗ = FPm + 1. Then

TRepChk(I, I ′,Σ) iff TRepChk(Ie∗, I
′
e∗,Σ)

Proof. First we prove if TRepChk(Ie∗, I
′
e∗,Σ) is true, then TRepChk(I, I ′,Σ) is true.

Assume by contrary that TRepChk(I, I ′,Σ) is false. Hence, either I ′ 6|= Σ or I ′ is not

a maximal subset satisfying Σ. We consider each case separately.

• JI ′K 6|= Σ: If JI ′K 6|= Σ that means there is a conflict in the database I ′. Since

the reduction of I ′ to I ′e∗ with FPm + 1 is lossless (according to Theorem 4.11)

there is a conflict in I ′e∗ as well which means JI ′e∗K is inconsistent; therefore, I ′e∗

is not a concrete repair.

• I ′ is not maximal: By Lemma 4.13, I ′e∗ is not maximal either.
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In both cases, it is concluded that I ′e∗ is not a repair of Ie∗ which is a contradiction.

Now we show if TRepChk(Ie∗, I
′
e∗ ,Σ) is false, then TRepChk(I, I ′,Σ) is false.

Since I ′e∗ is not a repair of Ie∗ , it means either I ′e∗ 6|= Σ or I ′e∗ is not maximal. If

I ′e∗ 6|= Σ, then I ′ is not a repair of I because based on Corollary 4.12 I ′e∗ 6|= Σ. If I ′e∗

is not maximal, then I ′ is also not maximal (Lemma 4.13).

Note that if TRepChk(I, I ′,Σ) is true, then TRepChk(Ie∗, I
′
e∗,Σ) is true as well

because if TRepChk(Ie∗, I
′
e∗,Σ) is false, it contradicts with TRepChk(I, I ′,Σ) being

true as we proved above. Also, if TRepChk(I, I ′,Σ) is false, then TRepChk(Ie∗, I
′
e∗,Σ)

is false as well, otherwise, it contradicts with TRepChk(I, I ′,Σ) being false as proved

above.

Algorithm 2 is the pseudo code of the implementation of Theorem 4.14.

The complexity of a repair checking algorithm depends on the complexity of check-

ing the consistency of an database (w.r.t. a class of constraints) and the complexity of

checking the minimality of the difference between the repair and the original database

[6]. The complexity of TRepChk algorithm is same as the complexity of relational

repair checking for functional dependencies, which is in PTIME.
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Algorithm 2: Temporal Repair Checking TRepChk(I, I ′,Σ)

Input : Two coalesced concrete databases I and I ′ such that JI ′K ⊂ JIK, a set

of tFDs Σ

Output: True if I ′ is a temporal repair of I w.r.t. Σ, False otherwise.

1 FPm ← maximum of all start points s and end points e in I and I ′;

2 e∗ ← FP + 1;

3 Ie∗ ← e∗-reduction(I);

4 I ′e∗ ← e∗-reduction(I ′);

5 if I ′e∗ 6|= Σ then

6 return False;

7 end

8 while there is a fact f in JIe∗K− JI ′e∗K do

9 if I ′e∗ ∪ {f} |= Σ then

10 return False;

11 end

12 JIe∗K← JIe∗K− {f};

13 end

14 return True;

4.3 Temporal Repair Construction

In this section, we discuss if it is possible to construct a repair for a concrete

database Ic by constructing a repair for its reduced database obtained by e∗ = FP+1,

where FP is the switch point of Ic.

Definition 4.15. e∗-expansion: An e∗-expansion with a time point e∗ (or expansion

if e∗ is known) is a function from Fc 7→ Fc, where Fc is a set of concrete facts. The

result of applying e∗-expansion on a concrete fact fc is another concrete fact f ′c such

that:
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I Ie∗

I ′ I ′e∗

reduction

Repair

expansion

Repair (?)
reduction

Figure 4.1: Repair construction for temporal concrete database I where e∗ = FP + 1

1. f ′c = fc if fc[T ] = [s, e) for some (e < e∗ or e > e∗).

2. f ′c[D] = fc[D] and f ′c[T ] = [s,∞) if fc[T ] = [s, e∗).

Similar to the e∗-reduction, an e∗-expansion can be lifted to concrete databases

as well:

e∗-expansion(Ic) =
⋃
fc∈Ic

(e∗-expansion(fc))

Observe that if all the concrete facts in Ic have end points less than e∗, then the

e∗-expansion of Ic is identity on Ic. The reduced concrete database obtained by an

e∗-expansion of an database is a super-set of the original database (considering the

abstract viewsv ).

Theorem 4.16 is the main result of this section. Figure 4.1 depicts this result.

Theorem 4.16. Let I be a concrete coalesced database with FP as the switch point.

Let e∗ = FP + 1. Let Ie∗ be the reduction of I. Let I ′e∗ be a repair of Ie∗ w.r.t. a set

of tFDs Σ. Then I ′ = e∗-expansion(Ie∗) is a repair for I.

Algorithm 2 (TRepChk(I, I ′,Σ)) can be modified to build a temporal repair. First

the database I is reduced to Ie∗ with FP + 1, where FP is the switch point of I.

Then by setting I ′e∗ to ∅ and iteratively adding a fact f ∈ JIe∗K − JI ′e∗K to I ′e∗ while

I ′e∗ ∪ {f} still satisfies Σ a repair is constructed for Ie∗ . At the end, by using an

expansion on I ′e∗ with FP + 1 a repair for I is obtained. We call this point based

repair construction algorithm PntRCon. Observe that, depending on the order of

adding facts, a different repair is obtained at each run of the algorithm.
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Algorithm 3: PntRCon(I) Point-based repair construction algorithm

Input : A coalesced concrete databases I, a set of tFDs Σ

Output: A temporal Repair of I w.r.t. Σ

1 FP ← switch point of I;

2 e∗ ← FP + 1;

3 Ie∗ ← e∗-reduction (I);

4 I ′fp ← ∅;

5 while there is an abstract fact fa in JIe∗K− JI ′e∗K do

6 if JI ′e∗K ∪ {fa} |= Σ then

7 fc[D] = fa[D];

8 fc[T ] = [fa[T ], fa[T ] + 1);

9 I ′e∗ ← I ′e∗ ∪ {fc};

10 end

11 JIe∗K← JIe∗K− fa;

12 end

13 coalesce the facts in Ie∗ ;

14 I ′ ← expansion (Ie∗);

15 return I ′;

In lines 4-9 we are finding a repair for Ie∗ based on relational repair construction

[11, 34]. Theorem 4.17 shows the switch point of a repair is the same as the switch

point of the original database.

Theorem 4.17. Let I be a concrete normalized database and FP be its switch point.

Let Σ be a set of tFDs. The switch point of the repair constructed by algorithm

PntRCon is also FP .

In the next proposition we will show Algorithm PntRCon is sound and complete,

that is it produces a repair for I with switch point of FP (soundness) and produces

all the repairs of I that have FP as their switch point (completeness)
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Proposition 4.18. Algorithm PntRCon is sound and complete.

Algorithm PntRCon is not efficient when the majority of the concrete facts are

not in a conflict. Let fc be a concrete fact in an inconsistent concrete database Ic.

Suppose fc is not in any conflicts in Ic. If we use the algorithm PntRCon to construct

a repair for Ic, for every abstract fact in JfcK, lines 4-8 will be executed. Therefore,

we propose another algorithm for temporal repair construction that uses factorization

and leverages the time intervals (Algorithm IntRCon). In Algorithm IntRCon, a fact

such as fc, which is not in any conflicts, will be in any repair without a need to loop

over every abstract fact in JfcK and check if it can be added to a repair. In algorithm

IntRCon(I,Σ) we first find all the subsets of the facts that are violating a tFD in Σ.

cs← {∆|∆ = {f1, f2} f1 ∈ Ic, f2 ∈ Ic and ∃σ ∈ Σ such that ∆ 6|= σ}

Since Ic is factorized, satisfaction of a temporal functional dependency σ ∈ Σ can

be checked by treating time intervals as constants. Also, observe that since Ic is

normalized the facts that are in a set ∆ ∈ cs have the same time interval.

Some of the sets in cs have a common concrete fact. Algorithm IntRCon(I,Σ)

merges the sets in cs with a common fact. After merging the algorithm continues by

selecting each set in cs.

For better understanding of the steps in the algorithm, suppose we have a schema

E’(Name, WorksFor, Salary, Time) where Name, T ime → WorksFor, Salary is the

tFD. Consider the temporal database in Figure 4.2(a). It is inconsistent w.r.t. the

tFD. The factorized database is shown in 4.2(b).

cs = {{f2, f3}, {f4, f5}, {f4, f6}, {f5, f6}}. The set cs∩ is a subset of cs containing

the sets that have a fact in common: cs∩ = {{f4, f5}, {f4, f6}, {f5, f6}}. After merging

we have:

cs = {{f2, f3}, {f4, f5, f6}}
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Name WorksFor Salary Time

Ed IBM 60k [0,10)

Ed Google 90k [5,∞)

Ed IBM 70k [2,10)

Jo Google 75k [8,∞)

(a)

Name WorksFor Salary Time

f1 Ed IBM 60k [0,2)

f2 Ed IBM 60k [2,5)

f3 Ed IBM 70k [2,5)

f4 Ed IBM 60k [5,10)

f5 Ed IBM 70k [5,10)

f6 Ed Google 90k [5,10)

f7 Ed Google 90k [10,∞)

f8 Jo Google 75k [8,∞)

(b)

Figure 4.2: (a) An inconsistent temporal database;(b) After normalization w.r.t. Σ

conflicts Name WorksFor Salary Time

∆1
Ed IBM 60k [2,5)
Ed IBM 70k [2,5)

∆2

Ed IBM 60k [5,10)
Ed IBM 70k [5,10)
Ed Google 90k [5,10)

Figure 4.3: The conflicts for database shown in Figure 4.2

which is shown in Figure 4.3. The facts that are not in cs will be in every repair. The

algorithm iterates over each set in cs; chooses a fact and a subset of its time interval

and adds it to the set A which is initially empty. The algorithm continues adding

facts until no more facts can be added and A is still consistent. Algorithm IntRCon

works as follows: After reducing the original instance I into the reduced instance Ie∗ .

the algorithm copies all the concrete facts that are not in any conflict set in Ie∗ into

the repair I ′e∗ . Then the algorithm iteratively picks a concrete fact f from a conflict

set and construct a subset of f (called f ′) and tries to add the constructed fact f ′ to

A which is initially empty. If after factorizing A ∪ {f ′} a conflict emerges then the

subset of f ′ that does not cause the conflict is added to A.

Algorithm IntRCon finds all the subsets of size two in I that are in a conflict

w.r.t. a tFD. It checks the satisfaction of tFDs and uses näıve normalization (needs

sorting of the start points and end points in A ∪ {f ′}). In the worst case all the the

subsets of size two are in cs. If m is the number of tFDs. We assume m is very
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Algorithm 4: IntRCon Interval-based repair construction algorithm

Input : A normalized concrete database I w.r.t. a set of tFDs Σ
Output: A repair of I w.r.t. Σ

1 I ′e∗ ← ∅;
2 I ′ ← ∅;
3 e∗ ← FP + 1;
4 Ie∗ ← reduction (I);
5 cs← {∆|∆ = {f1, f2} f1 ∈ Ic, f2 ∈ Ic and ∃σ ∈ Σ such that ∆ 6|= σ};
6 I ′ ← I\(

⋃
∆∈cs ∆);

7 cs∩ ← {∆ ∈ cs | ∃∆′ ∈ cs.∃f such that f ∈ (∆ ∩∆′)};

8 cs = cs\cs∩;

9 while ∃∆1,∆2 ∈ cs∩ such that (∆1 6= ∆2 and ∆1 ∩∆2 6= ∅) do
10 ∆′ = ∆1 ∪∆2;
11 cs∩ = (cs∩\∆1,∆2) ∪ {∆′};
12 end

13 cs = cs ∪ cs∩;
14 for each ∆ ∈ cs do
15 A← ∅;
16 while ∆ 6= ∅ do
17 choose a fact f in ∆ ;
18 choose a new interval [s1, e1) s.t. [s1, e1) is a subset of f [T ] ;
19 f ′[D]← f [D];
20 f ′[T ]← [s1, e1);
21 B ← normalize A ∪ {f ′};
22 for each fragment f ′′ of f ′ that causes conflict in B do
23 B ← B\{f ′′};
24 end
25 A← B;

26 end
27 I ′e∗ ← I ′e∗ ∪ A;

28 end
29 Coalesce the facts in I ′e∗;
30 I ′ ← expansion(I ′e∗);
31 output I ′;
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small compared to the size of the input instance. Therefore the time complexity is in

PTIME in the cardinality of the input instance.

Theorem 4.19 shows Algorithm IntRCon (Algorithm 4) is sound and complete.

Note that the switch point of the repair is also FP and the proof is same as the proof

for Theorem 4.17.

Theorem 4.19. Algorithm IntRCon is sound (i.e. always produces a repair) and

complete (i.e. all repairs can be produced by the algorithm).

Proof. In order to show that the algorithm is sound, one needs to show the produced

result is always a repair, meaning that the output instance I ′ not only satisfies Σ

but also is maximal. By definition of the set cs, the facts that are not in any set

in cs satisfy Σ. When the set of facts in A is added to the database I ′e∗ (that is,

I ′e∗ ← I ′e∗∪A), the database I ′e∗ still satisfies Σ because if there is a fact fc in I ′e∗ that

is in conflict with a fact f ′c in A w.r.t. a tFD, then fc should have been in a set in cs

in the first place. Therefore, set A not only does not contain any conflicts, but also

does not introduce any conflicts after being added to Ie∗ .

In order to show that the resulting database is minimally different from the original

one, we need to show when a fact f ′c with the interval [s1, e1) is discarded in Algorithm

IntRCon, no subset of it can be added to A and still satisfies Σ. Since Algorithm

IntRCon, factorizes A ∪ {f ′} and checks if a subset of f ′ (denoted by f ′2 in the

algorithm) or f ′ itself can be added to A. Only the time points in f ′[T ] that cause

conflicts in A are discarded.

For completeness proof, consider any repair I ′ of a database I such that FP is

the switch point of both I and I ′. Let I ′ be a coalesced database and I (the input of

the algorithm) a factorized database. Denote by I ′e∗ and Ie∗ the reduced databases of

I ′ and respectively I with e∗ = FP + 1. Note that since Σ is a set of tFDs, JI ′K ⊆ JIK

(and JI ′e∗K ⊆ JIe∗K). We show Algorithm IntRCon can generate I ′ which is obtained

by expansion of I ′e∗ . We need to fragment the instance I ′e∗ into an instance I ′′ such
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that:

∀f ∈ I ′′ ∃f ′ ∈ Ie∗ such that either f [T ] = f ′[T ] or JfK[T ] ⊂ Jf ′K[T ].

The reason to fragment the facts in I ′e∗ is to distinguish the concrete facts that are in

a conflict set in cs. For each ∆ ∈ cs, define the set rs∆ in the following way:

rs∆ = {f ′′|f ′′ ∈ I ′′ ∧ ∃f ∈ ∆ such that Jf ′′K[T ] ⊆ JfK[T ]}.

Since I ′ is a repair and Σ is a set of tFDs, we have:

rs∆ |= Σ.

Algorithm IntRCon first transfers all the facts in Ie∗ that are not in any conflict set

to the repair. Database I ′′ contains these facts because I ′e∗ is a repair and I ′e∗ contains

them.

When the algorithm constructs the set A for each ∆, one can deterministically

choose the facts in rs∆. Therefore, the repair obtained by the algorithm is the same

as I ′′. By coalescing the concrete facts in I ′′, the database I ′e∗ is obtained and the

expansion of I ′e∗ with e∗ results in I ′.

4.4 Related Work

We first survey the papers on relational repair checking and then discuss the paper

[14] which is more related to our approach.

There are a few papers that investigate the repair checking problem such as [11,

3]. Chomicki and Marcinkowski [11] investigated subset-repair checking problem for

different classes of integrity constraints such as functional dependencies and inclusion
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dependencies. They showed that if Σ (i.e. a set of integrity constraints) is a union of

acyclic set of inclusion dependencies and a set of functional dependencies, then repair

checking w.r.t. Σ is in PTIME. However, the repair checking problem for arbitrary

FDs and INDs is coNP-complete [11]. Later, Afrati and Kolaitis [3] proved that if

Σ is weakly acyclic sets of LAV tgds (which have only one atom on the left hand

side of the tgd) with a set of egds, the (subset) repair checking is in PTIME. Arming

et al. provide a thorough analysis of the complexity of the repair checking problem

for different kinds of constraints and different types of complexity (such as data and

combined) [6].

Chomicki and Wisjen in the paper [14] discuss consistent query answering in

temporal databases where the integrity constraints are non-temporal FDs to held in

every snapshot. This is equivalent to tFDs holding in the entire temporal database.

The authors tried to find a condition on repair functions such that each snapshot can

be repaired individually and independently of past and future snapshots. If a repair

function has this condition, then some query re-writings can be used for CQA for a

particular class of temporal queries. The authors also introduced persistent repairs.

A persistent repair is a maximal (w.r.t. cardinality) consistent subset of the minimal

factorized concrete temporal database instance 1. For example, in the Example 13,

repairs I ′1 and I ′2 are persistent repairs. Persistent repairs are obtained from the

factorized inconsistent concrete database by choosing only one of the concrete facts

in a conflict set. A persistent repair is a concrete repair but not vice versa because

concrete repairs choose subsets of concrete facts in a conflict set. Persistent repairs

have the smallest cardinality among all concrete repairs, however as shown in the

Example 13 that there are other concrete repairs (e.g. repair I ′3) with the same

cardinality as persistent repairs.

1See the sub-section 4.4.1 for definition of factorization.
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Name WorksFor Zipcode Country Time
Ada IBM 14221 USA [2,5)
Ada Intel 98345 USA [2,5)
Ada IBM 98345 Canada [2,5)
Bob Google 888 HQ USA [5,10)
Bob Oracle 78987 USA [5,10)

Figure 4.4: An inconsistent concrete instance w.r.t. σ1 and σ2

4.4.1 Detailed comparison with paper [14]

Factorization vs Normalization Let Ic be a concrete instance. Let Σ be a set

of denial constraints [18]. A conflict set of Ic w.r.t. Σ is a minimal (with respect

to set inclusion) subset cs of Ic that is inconsistent with respect to Σ. The concrete

database Ic is factorized with respect to Σ if for every conflict set cs of Ic, all temporal

facts of cs have identical time intervals [14]. We have not used any of these definitions

because of the ambiguity in the definition of a conflict set. For example, minimality

is defined based on set inclusion. Consider the instance shown in Figure 4.4 and the

following tFDs:

σ1 : Name, T ime→ WorksFor

σ2 : Zipcode, T ime→ Country

Are the first two facts in a conflict set, or the first three, or all of the facts in one

conflict set?

Persistent Repair vs Concrete Repair Persistent Repair are defined based on the

minimal factorized instance. Though the authors in [14] have shown such a unique

minimal factorized instance exists there is no discussion of the time complexity of

obtaining such an instance. A persistent repair is a concrete repair, the reverse does

not hold. The advantage of persistent repair is that it has the minimum cardinality.
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4.5 Conclusion

In this chapter, we showed by using the switch point of a temporal database we

can reduce the problem of temporal repair checking on infinite temporal database to

temporal repair checking on finite temporal databases without losing the conflicts that

are necessary for repair checking and even for building a repair. We showed in case of

temporal functional dependencies, a reduction based on the switch point is lossless.

In case of repairing a temporal database, we introduce an expansion function to get

an infinite temporal repair. We also proposed two algorithms for temporal repair

construction: one is based on time points and the other leverages time intervals.
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CHAPTER 5

Experiments

The goal of this chapter is to show the performance of the normalization algorithms

as well as the repair algorithms PntRCon and IntRCon on real-life and synthetic data.

First we present the datasets we are using, then we compare the näıve normalization

and norm(I,Φ). Finally we compare the repair algorithms. Note that we do not

compare the repairs obtained by each algorithm because in our research we did not

address any criteria to measure goodness of a repair in temporal databases.

5.1 Datasets

We have used both real-life and synthetic data. The following sub-sections describe

the data and the tFD(s) we are using in the experiments.

5.1.1 Real-life Data

MIMIC-III (Medical Information Mart for Intensive Care III) [23] is a large, freely-

available (upon request) database comprising de-identified health-related data asso-

ciated with over forty thousand patients who stayed in critical care units of the Beth

Israel Deaconess Medical Center between 2001 and 2012. We use four tables that

contain temporal information from this data : TRANSFERS, ADMISSIONS, ICUS-

TAYS and PRESCRIPTIONS. These data are available as csv files.
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• TRANSFERS: Patient movement from bed to bed within the hospital, including

ICU admission and discharge. Original cardinality = 261, 897 records.

• ADMISSIONS: Every unique hospitalization for each patient in the hospital.

Original cardinality = 58,976 records.

• ICUSTAYS: Every unique ICU stay in the hospital in the database. Original

cardinality: 61,532 records.

• PRESCRIPTIONS: Medications ordered for a given patient. Original cardinal-

ity: 4,156,450 records.

5.1.2 Pre-processing

TRANSFERS. We have removed the records with the same date as the start point

and end point. We have also removed the records about discharging a patient because

they do not have an end-point and replacing the endpoint with ∞ for discharge pa-

tients is not meaningful in this table. The cardinality of the table after pre-processing

is 145, 277 records. We define the following temporal key constraint on this table:

σtransfers = SUBJECT ID, INTIME,OUTTIME → TRANSFERS

ADMISSIONS. We have removed the records of patients who are admitted and discharged on

the same day. Each row of this table is given a unique number called HADM ID. We ignore the

uniqueness of HADM ID and define the following temporal key constraint on this table:

σadmission = SUBJECT ID,ADMITTIME,DISCHTIME → ADMISSIONS

According to our result, there is a conflict in this table. There are two records of one patient that

their time intervals overlap! ICUSTAYS. Each row of ICUSTAYS table is given a unique number

called ICUSTAY ID. We ignore this key and define the following temporal key constraint on this

table:

σicu = SUBJECT ID, INTIME,OUTTIME → ICUSTAY S
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PRESCRIPTIONS. We have used this table to check the scalability of Algorithm IntRCon. The

original table has more than 4 million records. We have removed the records without a start point

(3182 records) and the records with the same date as the start point and endpoint. The records of

patients in which the value of the start point is greater than the value of the end point are eliminated

as well (15922 records). We have replaced the unknown end points with ∞. We define the following

temporal functional dependency over this table: a patient cannot receive the same dose of a drug

on the same day. That is:

σpres =SUBJECT ID,FORMULARY DRUG CD,

NDC,DOSE V AL RX,STARTDATE,ENDDATE

→ ROUTE

(5.1)

The attributes FORMULARY DRUG CD and NDC are related to drug scientific name and

unique number respectively. The attribute ROUTE shows the route that the drug was given to the

patient.

5.1.3 Synthetic Data

The relation schema is Emp(Name, Company, ZipCode, Country, Time). We assume in our

domain that we have 10 names, 6 companies, and 5 countries and 22 zip codes. The start point of

each tuple is considered to be a year between the years 1960-2020 and the endpoint is either a year

greater than the start point and less than 2020 or ∞. The tables we generate are not normalized.

The following tFDs (Σemp) are defined on this schema:

1. Name, T ime→ Company

2. ZipCode, T ime→ Country

5.2 Results

5.2.1 Implementation

The algorithms have been implemented in Java. Both the synthetic data and the algorithms are

available online at github1. We have run each algorithm 20 times on an Intel Core i5-6200U CPU

@ 2.30 GHZ × 4 system with 8GB of memory. The Java heap size is set to 8GB as well.

1https://github.com/ladangol/IntRCon
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5.2.2 Näıve normalization vs. norm(I,Φ)

Table 5.1 compares the run time and the size of the normalized instance obtained by running

näıve normalization and norm(I,Φ) on synthetic and real datasets. Each algorithm is run for 20

times. For the synthetic data since the number of conflicts is high näıve normalization performs

better. The size of the normalized instance obtained by norm(I,Φ) is the same as the the one

obtained by näıve normalization (except for Emp100 which has lower number of conflicts) in the

case of the synthetic data. However there is a huge difference in the size of the normalized instances

obtained by these two algorithms when considering the real-life data with a lower number of conflicts.

5.2.3 Real-life data repair

We use the norm(I,Φ) algorithm for real-life data whenever necessary. Algorithm PntRCon

cannot be run on any of the real-life datasets that we are using because it ran out of the heap

space. Therefore, we select the Transfer table (because it has more conflicts than ADMISSIONS

and ICUSSTAYS tables) and consider the first 10k, 20k, 30k and 40k records of this table. Table

5.2 shows the the run time of IntRCon on Admission and ICUStays table.

TRANSFERS table. The TRANSFERS table is already normalized w.r.t the above tkc because

all the conflicts are between the records that have the same time interval ( no overlaps). Also, there

is no need to run the reduction and expansion functions on this table because there is no record

with ∞ as time point. We have compared PntRCon and IntRCon on this table. The x-axis shows

the different number of records of the TRANSFERS table, and y-axis show how long it took for the

algorithms to find a repair (in milliseconds). Each algorithm has been run 20 times and the average

of running times has been taken. The algorithm PntRCon runs out of memory when the number of

records of the table is more than 40,000.

PRESCRIPTIONS table. Since this table has a large number of records, we used it to study the

scalability of Algorithm IntRCon. As shown in Figure 5.2, the algorithm runs out of space when

considering 1.5 million records.

5.2.4 Synthetic data repair

As shown in Figure 5.3, Algorithm PntRCon outperforms when the number of conflicts are high.

We have used näıve normalization to normalize the tables before running Algorithm IntRCon.
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db Size (# of records) Time (sec)
ADMISSIONS 57,880 31.95

ICUSTAYS 61,531 35.61

Table 5.2: Run time of Algorithm IntRCon on ICUSTAYS and ADMISSIONS tables
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Figure 5.1: IntRCon vs PntRCon on the TRANSFERS table

Table # of conflicts # of tuple in the conflict
Emp50 93 47
Emp100 443 100
Emp500 11190 500
Emp1k 44335 1000
Emp5k 1118106 5000
Emp10k 4427796 10000

Table 5.3: Number of conflicts w.r.t. Σemp in the synthetic data
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Figure 5.2: IntRCon on the PRESCRIPTIONS table
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Figure 5.3: IntRCon vs PntRCon on the synthetic data with high number of conflicts
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5.3 Discussion

Regarding the normalization algorithms, in the MIMIC dataset less than 1% of data are in

conflicts. As Table 5.1 shows, if norm(db,Φ) is used, the size of the normalized instance is one order

of magnitude less than an instance obtained by the naïıve normalization. The size of the normalized

instance matters (as shown in Figure 5.2) because it is the input of the repair algorithms. On the

other hand, the run time of the näıve normalization is orders of magnitude faster. The generated

synthetic data intentionally had more conflicts. In such cases using näıve normalization is better

because the size of normalized instance is the same (or almost the same) while the näıve normalization

is faster.

Observe that the normalized output of the normalization algorithms is used as input for the

repair algorithms. As shown in our experiments (Figure 5.1) and Figure 5.2), Algorithm PntRCon

is not scaling well on big datasets because it stores a hash-map of the values of the lhs and rhs

attributes of tFDs for each time point in memory. Depending on the tFD, some parallelization in

the implementation might help which we left for future work. Algorithm PntRCon outperforms

IntRCon when the number of conflicts are high (and the size of the dataset is small). The advantage

of algorithm IntRCon is on datasets with less number of conflicts. We think most of the real-

life data sets have lower number of mistakes compared to our synthetic data. For example in the

PRESCRIPTIONS table, less than 1% of data has their start point bigger than their endpoint.

As shown in Figure 5.2 on the prescription table Algorithm IntRCon cannot handle more than 1.5

million records. The algorithm uses a hash-map that stores the lhs and rhs attribute values of a

tFD for each interval in a normalized instance. A parallel implementation of this algorithm might

be possible depending on the tFDs.
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CHAPTER 6

Future Work

Both temporal data exchange and temporal data repair can have their own extension which we

discuss below. However, managing inconsistency in the context of data exchange has been explored

in relational databases [36]. The classic data exchange does not handle the situations where there

is no solution (that is result of the chase procedure is a failure). In [36] a new semantics for data

exchange is suggested which is known as exchange-repair semantics. In the exchange-repair semantics

all the source instances that are minimally different from the original source instance and have a

solution are considered. One future direction is to adopt exchange-repair semantics in the context

of temporal data with the building blocks that we introduced in this dissertation for temporal data

exchange and temporal data repair.

6.1 Temporal Data Exchange

In the context of temporal data exchange a natural extension is to enrich the schema mappings

such that they can express temporal phenomena. For example, temporal modal operators such as

♦ (sometime in the future), � (always in the future), � ( sometime in the past) and � (always in

the past) can be added to the language. For example, consider the following constraint which says

every PhD graduate was a PhD candidate at some point before they graduate and they had a topic

and an adviser.

�(∀n PhDgrad(n)→ �∃adv, top PhDCan(n, adv, top))

This constraint is equivalent to the following constraint in two-sorted FOL (2-FOL)[13]:

∀n, t PhDgrad(n, t)→ ∃ adv, top, t′ PhDCan(n, adv, top, t′) ∧ t′ < t
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At any snapshot db` if there is a fact about a PhD graduate in PhDgrad, then a snapshot dbi,

i < `, should contain a fact about the PhD graduate in PhDCan with a topic and an adviser.

Considering these schema mappings, the notions of chase steps, solutions and universal solutions

should be redefined. As an example if � is used in the rhs of a dependency (such as the above

dependency), is it enough to choose an arbitrary snapshot and generate facts according to the rhs

of the dependency in that snapshot? What will be a universal solution in this case?

The schema mappings can also be enriched with linear order < as in [2] and with arithmetic

operations as in [37]. The linear order in [2] is interpreted over an arbitrary countable dense linear

order without endpoints while the domain of time points that we consider in this dissertation is

discrete linear order. Afrati et al. [2] conjecture that the results they obtained, regarding data

exchange and query answering in presence of arithmetic operations, would change significantly in

discrete ordered domains.

Another direction of research is to revisit the classical data exchange problems in the context

of temporal databases such as the notion of core [17] and comparing open world assumption and

closed world assumption [21, 31].

6.2 Temporal Data Repair

In the context of repair, the immediate extension is consideration of denial constraints [18]. A

denial constraint is a first-order logic formula in the form

∀x, t ¬(φ(x, t) ∧ β(x, t))

where β is a conjunction of atoms referring to built-in, arithmetic or comparison, predicates. Denial

constraints are more expressive than functional dependencies. For example with denial constraints

one can express the property that the salary of an employee cannot be reduced. Similarly to func-

tional dependencies, a repair of a database that is inconsistent w.r.t. a set of denial constraints is

obtained only by tuple deletion.

A lot of assumptions we made throughout Chapter 4 are not applicable for denial constraints. For

example, consider the schema E(name,worksfor, salary, time) and the following denial constraint

that checks the monotonicity of the salary attribute over time (a temporal denial constraint):

∀n,w, s, s′, t, t′ ¬(E(n,w, s, t) ∧ E(n,w, s′, t′) ∧ s < s′ ∧ t > t′)
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Consider the database Ic with two facts that are in a conflict w.r.t. the denial constraint:

Ic : E(Ada, IBM, 70k, [7,∞)), E(Ada, IBM, 60k, [7,∞))

A reduction with e∗ = FP + 1 = 8 is lossy in this case because for checking monotonicity of

salary two distinct time points are needed and the reduced database has only one time point (i.e.,

time point 7). It seems that in order to find a lossless reduction for denial constraints not only the

switch point but also the type of order constraint on temporal attributes in the constraint should be

considered as well. Another difference between tFDs and denial constraints is that a single fact can

be in a conflict w.r.t. a denial constraint, so it is not guaranteed that all intervals of the facts in the

source database are in the repair as well (therefore, the switch point might change after a repair).

Another direction, is to consider consistent query answering [5] for temporal and non-temporal

queries [14].
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