
FleetDB: Follow-the-workload Data Migration
for Globe-Spanning Databases

Aleksey Charapko
University at Buffalo

acharapk@buffalo.edu

Ailidani Ailijiang
University at Buffalo

ailidani@buffalo.edu

Murat Demirbas
University at Buffalo

demirbas@buffalo.edu

Abstract. Globally distributed databases provide lim-
ited support for access locality optimization and fine-grained
object migration. We present FleetDB: a WPaxos-backed
strongly-consistent geo-distributed database that adapts to
the locality of accesses quickly, safely, and at the most fine-
grained level —any object can migrate freely across regions
to be oriented for ideal performance. FleetDB achieves near-
local average read and update latencies for workloads that
show access-locality. By leveraging its core WPaxos pro-
tocol, FleetDB also implements transactions across objects
and provides per-object linearizability and transaction seri-
alizability.

1. INTRODUCTION
Today several distributed databases span across many dat-

acenters and geographic regions to serve users across the
globe [7, 8, 5]. These systems often experience changing
access patterns across the regions [17] and need to adjust
to the workload locality in order to allow faster read/write
operations and to eliminate/reduce the wide area network
(WAN) latencies. Since cross-region communication typi-
cally takes up to two orders of magnitude more time than
local/intra-datacenter communication, trading even a small
fraction of remote operations for local ones can provide a sig-
nificant speedup. By reducing cross-datacenter traffic, these
systems can also save on operational costs.

Unfortunately, very few database systems provide native
support for data migration in response to shifts in work-
load patterns. Some systems, like PNUTS, ZooNet, and
Eiger replicate the data globally to allow local reads at any
datacenter [6, 15, 16]. While this approach improves read
performance, the writes remain slow, as a dedicated region
is responsible for all updates and the traffic must go through
that region. Spanner employs Paxos-groups across datacen-
ters to replicate the data, and has the capability to relocate
data from one Paxos-group in one region to a group in an-
other region, using a movedir command [7]. CockroachDB
adjusts the leaseholder node in each Raft-group to relocate

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

an object to a nearby datacenter [5].
Even fewer systems [12, 18] provide high-resolution, object-

level data placement/migration strategies. The majority
of databases, however, often chunk data into large blocks
or partitions, limiting object/data-level relocation. For in-
stance, in Spanner and CockroachDB data items sharded
to a partition must follow the same geographical placement
and replication rules as all other items of that partition.
Datastores that adapt the locality at a per-object level often
do not provide strong per-record/object consistency guar-
antees. For instance, selective replication in PNUTS [12]
allows the system to replicate records to a sub-set of all dat-
acenters based on the access pattern, but such replicas may
still provide stale data to the client. However, some applica-
tions, such as metadata management for global-spanning file
systems [3] or multi-user document sharing, require strong
consistency guarantees all while providing low latency at the
global scale.

Contributions. We present FleetDB, a globe-spanning,
write-optimized, low-latency, strongly consistent key-value
datastore with per object linearizability and transaction se-
rializability. Unlike previous work, FleetDB can adapt to the
locality of accesses quickly and at the most fine-grained level:
any object can automatically relocate across regions for ideal
performance. To manage object-locality, FleetDB supports
a rich set of object-migration policies. A simple policy may
move each object to the region where majority of accesses
for that object originate. More sophisticated policies can
take into account minimizing latency for multi-party clients
simultaneously, exploiting the replication groups to provide
quicker migration, and adhering to load balancing and re-
source capability concerns of the clusters. In addition to
providing these guarantees, FleetDB supports atomic, seri-
alizable multi-object transactions as well. The transactions
are implemented at the core protocol level, all within Paxos
to ensure reliability and safety.

To provide assurance, reliability, and strong-consistency
in FleetDB, we leverage our recent work on WPaxos [2], a
WAN-optimized multileader Paxos protocol. WPaxos se-
lects leaders (and maintains logs) to be per-object, and em-
ploys an object stealing protocol, with adaptive stealing im-
provements to match the workload access locality. Multiple
concurrent leaders coinciding in different zones steal owner-
ship of objects from each other using phase-1 of Paxos, and
then use phase-2 to commit update-requests on these objects
locally until they are stolen by other leaders. To achieve fast
phase-2 commits, WPaxos appoints phase-2 acceptors to be
close to their respective leaders within the same or adjacent

columns in the grid topology overlaid across regions. This
way WPaxos provides per-object linearizability in an effi-
cient and fault-tolerant way, while obviating the need for
another service for object relocation.

In FleetDB we adopt WPaxos in a novel way to provide
dynamically configurable partial replication capability. By
providing configurable fault tolerance, FleetDB allows users
to strike a balance between desired levels of performance
and fault tolerance. In the fastest configuration, FleetDB
can only tolerate some node failures within each zone, but
not entire zone crash. More resilient setups, however, can
handle full datacenter outages. Moreover, unlike the generic
WPaxos, FleetDB does not perform full replication to all
nodes, unless it is configured to do so. It replicates the
objects within a replication group, consisting of one or more
availability zones.

Since a naive application of WPaxos’s object stealing may
lead to an imbalance in the system, FleetDB controls the
global distribution of data in the system and take actions to
prevent disproportional load. FleetDB is designed to halt
object stealing to a leader upon reaching a certain misbal-
ance threshold at that node. Instead, FleetDB resorts to one
of the following measures: stealing to another leader within
the region, stealing to another leader in a nearby region, or
performing object swap —explicitly giving up the leadership
of one object in exchange for another.

While allowing for a fine-grained, object-level locality con-
trol, FleetDB manages to support transactions and enables
atomic multi-object operations all within the Paxos proto-
col. By staying within Paxos, the FleetDB transactions are
guaranteed to be safe/correct to the face of concurrency and
faults, and FleetDB does not incur extra complexity of over-
lay protocols. This is achieved by acquiring the leadership
of all objects involved in a transaction under the same node.
While this disrupts the normal data placement procedures
—as the objects must be transferred to a single region re-
gardless of their access locality—, it is often the case that the
same objects participate in a transaction more than once,
and this alleviates the relocation cost.

We implemented FleetDB in Go as an opensource project
https://github.com/acharapko/fleetdb and evaluated the sys-
tem to showcase its dynamic object migration and transac-
tion capabilities. We show that FleetDB exhibits a bimodal
latency pattern for the client requests: for the local items the
system may finish in under 10 milliseconds, while accessing
remote objects incurs additional WAN RTT. Despite having
to pay WAN costs occassionally, with good locality the sys-
tem achieves an average latency of just 30 milliseconds. For
workloads that include transactions, the locality also bene-
fits the performance when the system is configured to have
a dedicated leader per zone.

2. FLEETDB
FleetDB is a globally distributed, write-optimized, strongly

consistent key-value datastore with per object linearizabil-
ity and transaction serializability. FleetDB keeps track of
object-locality and uses an object-migration policy to move
each item to the region of majority access. The system uses
REST API to expose basic client operations, such as Get,
Put, and Delete.

We illustrate the high-level overview of FleetDB architec-
ture in Figure 1. The system consists of nodes, arranged
in a grid manner; each column in the grid represents the

Figure 1: Overview of FleetDB architecture.

Geographically close

Geographically far apart

q1

q2

(a) WPaxos q1 and q2 quorum
and their intersection.

q2
Leader

Replication Group

(b) A q2 within a replication
group in FleetDB.

Figure 2: WPaxos quorums and FleetDB replication groups

machines in the same datacenter or availability zone. Ev-
ery node of the datastore is identical, and consists of logs
for each object owned by the node, key cache and sharded
persistent storage. FleetDB uses WPaxos [2] for object log
replication.

2.1 WPaxos
WPaxos is a multileader WAN-optimized Paxos proto-

col [2]. Similar to other Paxos [14] variants, WPaxos op-
erates in three distinct phases: promise (phase-1), accept
(phase-2) and commit. Phase-1 establishes some node in
the system as a leader with the follower nodes promising
to accept leader’s commands. Phase-2, typically repeated
many times, tells the followers to accept a command, and a
commit phase finalizes the commands and allows replicas to
execute them.

The requirement for majority quorums means that in WAN
settings, both phase-1 and phase-2 incur significant latency
due to the geographical distances between the nodes. Re-
cent flexible quorums [11] result shows that the majority
quorums requirement in Paxos can be relaxed to the follow-
ing: any potential quorum q1 used for phase-1 of Paxos must
intersect with any potential quorum q2 used for phase-2. As
shown in Figure 2a, WPaxos leverages this finding to trade
off a large but rare phase-1 quorum that spans most or all
regions, with a frequently used phase-2 quorum of followers
located within the region or nearby regions.

WPaxos can move an object between regions to optimize
for access locality. The object migration is safe, as it is
carried out entirely within the Paxos protocol. Upon moving
an object from one region to another, the leader in new
region needs to start the phase-1 of Paxos on some large q1
with higher ballot number. In this phase, new leader learns
of the object’s log since it is guaranteed to intersect the q2
quorums that was responsible for accepting and committing
object’s values. After successful completion of phase-1, new
leader may use a nearby q2 to commit quickly. Since not
all q1 quorums intersect in WPaxos, it is possible to for
multiple potential leaders to complete phase-1 at the same
time. However, only one leader will be able to successfully
complete phase-2.

2.2 Replication

FleetDB takes advantage of WPaxos to drive the replica-
tion and guarantee safety. In FleetDB, every object has its
own WPaxos log, allowing unrelated objects to have differ-
ent leader nodes and fast q2s. Such per-object replication
allows for optimal geographical placement of data to mini-
mize the latency.

A replica or FleetDB node is a basic unit of replication in
the system. Each replica holds a copy of some objects and
may act as a leader for a subset of them. Replicas belong
to availability zones, and availability zones belong to some
geographical region. Many zones may coexist within the
same region.

Unlike many other databases, FleetDB does not have to
perform full replication to every region, although it is still
an option if so configured. Instead, every object is kept
within a replication group, spanning one or more availabil-
ity zone. At the very minimum, the replication group has
enough nodes and zones to form a valid q2 quorum. How-
ever, for increased redundancy, faster failure recovery and
faster migration speed, a replication group may span addi-
tional nodes and zones, as shown in Figure 2b.

FleetDB uses WPaxos to replicate the log for each object
by running a phase-2 in a replication group and executing
the operations against the datastore. The replication round
requires some valid q2 within the group to reply back to
the object leader. Typically, the fastest replying q2 is the
one closest to the item owner, however if this quorum is
not available due to the fault or network congestion, some
other q2 may complete the operation. This makes it very
important for a replication group to span nearby zones to
achieve low operation latency.

FleetDB provides fault tolerance that is configurable by
adjusting the number of zones required for each quorum
type. For instance, the configuration tolerating no zone fail-
ures requires a q2 spanning just a single zone, and q1 span-
ning all zones to guarantee the intersection requirement be-
tween phase-1 and phase-2 quorums. Such configuration can
complete phase-2 operations very quickly but cannot toler-
ate zone failure. On the other hand, a two-zone q2 paired
with n−1 zone q1, where n is the total number of zones, can
tolerate one entire availability zone failure while continuing
the normal operations.

FleetDB benefits from having a replication group larger
than the q2 when it comes to failure recovery and ownership
transfer. In case of a replication region spanning the same
number of zones as the q2, a zone failure will prevent the
only possible q2 from replying to the leader, making the
operation time-out before the leader has a chance to try
on some other q2. Having some quorum redundancy in the
replication group eliminates the need for time-out wait and
system silently shifts to a second fastest q2 in the group.

Even in the case of critical zone failures beyond the tol-
erance limit, FleetDB provides some availability for disaster
tolerance. For instance, in a single-zone q2 deployment (i.e.,
no zone-failure tolerance), after a zone failure, only objects
owned by nodes in the crashed zone become unavailable,
whereas operations on all objects in non-affected zones can
proceed. However, since no q1 exists in such configuration,
this limits both object migration and new object creation.

2.3 Data Migration Policies
FleetDB aims to provide optimal placement of data within

the system at the object granularity. In order to achieve this,

we use some object migration policy to define the optimal
data placement, which may differ depending on the applica-
tion or workload.

For example, a policy may optimize for fast object mi-
gration. In that case the migration is preferred to happen
within the replication group, as this avoids the object’s full
log copy and reply at the new leader, since all nodes in the
replication group are largely caught-up with the object’s log.

Some applications with highly region-biased access pat-
terns may benefit from a policy that minimizes latency at
the majority access region. One example may be a social
application where a user and majority of user’s friends are
in the same region. With such policy FleetDB migrates the
object over to the region of majority access, allowing quick
read and write in the region and progressively slower access
from further regions.

Some applications, however, may require a more strategic
placement of data in the system. For example, a metadata
service for a globe-spanning file system, such as SCFS [3]
requires both strong consistency to orchestrate the access to
some file and optimal latency for users frequently accessing
the file. FleetDB can achieve this by placing the metadata
object in some central location for the clients, minimizing
the access latency for every participant.

Object migration policies also take the data-balance in
the system into the consideration. A policy will never pick
an overloaded node for migration, even if that node was
the most optimal candidate. Instead, the policy will find
the next best non-overloaded node for the object placement.
FleetDB makes a decision about the load on each replica
through a periodic gossip about the number of objects owned
by each replica.

The objects migrate when a chosen policy decides that
current location is not optimal. To that order, we col-
lect some access statistics to perform a running calculation
on the optimal placement, given the policy rules and con-
straints. Once the current owner of the objects decides to
move it to another location, it sends a handover message to
the better suited node. Upon receiving the handover mes-
sage, the new leader must run phase-1 of WPaxos against
a q1 quorum to establish itself as the new owner of the ob-
ject. At this point all regions are aware of the leader change
and normal operation resumes. FleetDB keeps a hash index
of all objects in the system at every node to facilitate both
object migration and client requests.

In a situation when some node becomes overloaded, FleetDB
employs a backpressure protocol that triggers an overloaded
replica to evict some of its least-used objects to other nodes.
The rate of eviction depends on the severity of replica’s over-
load.

3. TRANSACTIONS
In addition to key-value point access commands, FleetDB

supports minitransactions [1] operating on a set of items.
Our minitransactions are serializable atomic write, read, and
read-write operations on multiple objects.

3.1 Transaction Protocol
FleetDB implements transactions natively at the core pro-

tocol level by leveraging WPaxos. The core idea of transac-
tion execution is to consolidate object ownership at one node
and perform transaction commit and execute on all items in
the transaction atomically, as shown in Figure 3. We give

A B C

Put (A,B,C)

(a) Transaction begins in the region own-
ing object B.

A B C

Put (A,B,C)

Steal (A) Steal (C)

(b) A and C are moved to a transaction
holder.

A,B,C

RunTx (A, B, C) & ACK to Client

(c) Transaction holder commits A, B, C
in their logs before atomic execution.

Figure 3: High-level overview of a transaction protocol.

a description of the transaction protocol in Algorithm 1.

Algorithm 1 Minitransaction

1: TxCommands ← request from client
2: for each c ∈ T xCommands do
3: if Own(c.key) = TRUE then . if own an object
4: Put TxLease on c.key with phase-2
5: else
6: Acquire ownership of c.key with phase-1
7: Put TxLease on c.key with phase-2
8: end if
9: if HasLease(c.key) = FALSE then

10: Abort TX . Abort Tx if lease failed
11: end if
12: end for
13: Send TxAccept to q2
14: if q2 reply OK then
15: Send TxCommit . commit and execute
16: Commit TxCommands
17: Atomically Execute TxCommands
18: else
19: Abort TX . Abort Tx due to a q2 NACK
20: end if

A replica receiving a transaction request from a client be-
comes a transaction holder and assigns a timestamp to the
transaction. At this point the transaction holder needs to
obtain the ownership of all objects involved in the transac-
tion (line 6) by running a Paxos phase-1 for any items it
does not have. The holder also tries to acquire transaction
leases on all transaction objects as shown on lines 4 and 7.

Transaction leases allow FleetDB to reduce the object
contention when some other node tries to get the lead of
the transaction object before the transaction has been com-
pleted. To acquire a lease for an object, a transaction holder
commits the lease to the object’s log using q2. The lease
prevents the object migration in case of contention: if some
other node with a higher ballot tries to run the phase-1,
the node with a lease will reject the phase-1 with a lease
time and duration. At this point the incumbent leader will
back-off and retry later. Note, that leases do not completely
solve the problems associated with object contention, but
help minimize some negative performance impacts.

After acquiring all leases, the transaction holder runs the
accept phase (phase-2) of WPaxos to get the slots for objects
in a transaction and put the values into these slots (line 13).
Only after a q2 has succeeded, the holder sends a commit
message (line 15) and executes the transaction. The system
ensures that the transaction execution is atomic by block-
ing at the transaction slot the logs of the involved objects
until all commands in the transaction have been commit-
ted. This blocking prevents any newer commands on any
of the transaction objects from executing before any of the
commands in the transaction. We illustrate the steps for
running transactions in Figure 4.

3.2 Deadlock Prevention
In some rare cases, multiple transactions may attempt

to operate on some overlapping set of objects. This makes
a deadlock situation possible as each transaction may suc-
cessfully steal and place leases on some items but not the
others. FleetDB prevents the deadlock with a wound-wait
scheme: younger transaction cannot steal from the older
and has to wait, while older transaction can steal from the
younger, causing it to abort. We use Hybrid Logical Clocks
(HLC) [13] for transaction timestamping.

3.3 Transaction Recovery
A transaction may fail due to the transaction holder crash

or network partition. In such circumstances, it is important
to either finish the transaction when possible or safely abort.
Since our minitransaction protocol heavily relies on Paxos,
the recovery from the transaction leader failure is also based
on Paxos. In particular, the recovery starts when some node
steals an object involved in the transaction. At this point
that new leader must also acquire the remaining transaction
objects. If the transaction was successfully anchored by the
previous leader, then all transaction objects will have slots
and values available at the new leader, allowing to finish the
transaction. In case some or all transaction commands are
not anchored and the new leader is not able to learn these
commands, the transaction will safely abort.

4. EVALUATION
We have implemented a prototype FleetDB in Go [10]

version 1.10 on top of our earlier WPaxos implementation.
We use goleveldb [9] for the underlying key-value storage
engine. The database exposes a client API accessible over
HTTP protocol using which we implement a REST client
and a benchmark.

4.1 Throughput and Latency
We’ve looked at the overall performance of FleetDB under

the access locality conditions. We used a majority access
migration policy that transfers the object ownership over
to the region with most object requests. We deployed the
system in 3 AWS regions: California, Oregon and Virginia.

FleetDB is deployed with a pool of N objects with each
object having a unique key in the range [0, N). Every client
can access any object in the system. The probability of a
client accessing a particular object is determined by a Nor-
mal distribution N (−N

6
+ Nr

3
, σ2), where r is client’s region

ID and σ is a distribution’s standard deviation. This access
probability rule allow us to have some objects to be predom-
inantly accessed in a single region, and some objects shared
between the adjacent regions. l We ran transactional and
non-transactional workloads with 50% read operations and
N = 10, 000 objects and σ = 1, 200. Transactional workload

(a) Transaction holder starts
multi-write transaction, all
objects have been moved.

(b) Transaction holder tries to
commit transaction leases on
A and B.

(c) q2 accept phase on A and
B after leases committed and
executed.

(d) When phase-2 succeeded
on q2, transactions gets com-
mitted and executed.

Figure 4: Transaction commit protocol within a replication group.

0 20 40 60 80 100 120
of Clients per Region

20

40

60

80

100

A
v
e
ra

g
e
 L

a
te

n
cy

 (
m

s)

25
%

 T
X -

de
ce

nt
ra

liz
ed

25% TX - 1
 zo

ne leader

No TX - decentralized

No TX - 1 zone leader

(a) Latency

0 20 40 60 80 100 120
of Clients per Region

1000

2000
3000

4000

5000

6000

7000
8000

A
g

g
re

g
a
te

 T
h
ro

u
g
h
p

u
t

(O
p

s/
s)

25% TX - decentralized

25% TX - 1 zone leader

No TX - decentralized
No TX - 1 zone leader

(b) Throughput

Figure 5: Throughput and latency in locality workload.

had 25% of all operation to be write-only minitransactions
on 3 objects. We used FleetDB in two configurations: first
one had a dedicated leader node per zone, while the other
one was fully decentralized with every node assuming the
ownership of some objects. Figure 5 shows how throughput
and latency changed as we increased the number of clients in
each region. We measure the throughput in operations per
second, and each transaction carries multiple operations.

Workload with 25% transactions shows overall lower per-
formance largely due to the need to acquire leadership of
all items in the transaction. This is especially a problem
with fully decentralized FleetDB deployment, where every
node can act as a leader over some keys. Despite the lo-
cality, transaction objects may be on different replicas in
the same region, causing the system to undergo expensive
phase-1 operation to perform a migration. The transactional
performance is much better when each region has only one
leader, as it completely eliminates the need to move objects
within the region. Transactions also break locality adapta-
tion of the system, as the object may have to move to the
transaction owner against its access locality. Additionally,
minitransactions require more messages, and tend to satu-
rate the system faster, as we observe in Figure 5b. With this
FleetDB experiment we show that decentralization may hurt
the performance, as it requires too much communication to
achieve our consistency guarantees. Having one leader per
regions strikes a good balance between enough decentral-
ization to provide region-local latencies for most operations
without incurring unnecessary communication penalty when
running transactions.

Small key-space in the above experiment also creates high
object contention for transactions, further degrading the
performance. When multiple concurrent transactions re-
quire the same item, it is likely for one transaction to wait or
even get aborted. As we show in Figure 6, larger keys-space

No Transactions Transactions
0

20

40

60

80

100

A
v
e
ra

g
e
 L

a
te

n
cy

 (
m

s)

10k Keys
500k Keys

(a) Latency

No Transactions Transactions
0

1000

2000

3000

4000

5000

A
g

g
re

g
a
te

 T
h
ro

u
g

h
p

u
t

(O
p

s/
s)

10k Keys
500k Keys

(b) Throughput

Figure 6: Latency and throughput for different key-space
sizes

20 40 60 80 100 120 140 160 180 200

of Clients in Stress Region

0

50

100

150

200

250
L

a
te

n
cy

 (
m

s)

Latency Non Balanced

Latency Balanced

0

500

1000

1500

2000

T
h

ro
u

g
h

p
u

t
(o

p
s/

s)

Throughput Non Balanced

Throughput Balanced

(a) Balanced and non-balanced
FleetDB with biased region

California*
39.8% Keys

Virginia
39.9%Keys

Ireland
20.3%Keys

California*

99.8%Keys

Balancing Enabled Balancing Disabled

(b) Balance in the workload
with biased region (Califor-
nia)

Figure 7: Data balancing in FleetDB

with identical locality is beneficial for transaction workloads,
while having small impact on non-transactional performance.

4.2 Data Distribution
In this experiment we study how the system performs un-

der the heavily skewed workload: California had 5 times
more clients than Virginia and 10 more clients than Ireland.
We measured how the performance observed by clients in
the biased region changes as the number of clients increases.
We run this experiment with uniformly random access pat-
terns and high misbalance threshold of 10% to make sure the
backpressure does not start data migration too soon. Figure
7a shows latency and throughput as the workload increases.

Balanced deployment is at disadvantage under light load,
since California region can sustain the load despite the mis-
balance. As we add more concurrent clients, California
gets saturated and slows down significantly, allowing bal-
anced setup to perform better despite some WAN opera-
tions. Keeping proper balance of data prevents premature
saturation of some nodes, by shifting the work elsewhere.

In Figure 7b we show the difference in object distribu-
tion between balanced and unbalanced deployment. In both
cases, we ran a highly-skewed workload in California region
and measured the data balance at the end of an experimental
run. For this experiment we used a tighter, 3% misbalance
threshold to achieve better overall data balancing.

5. FUTURE WORK
Improving Transaction Performance. FleetDB trans-

action performance is limited by the need to acquire leases
and in many cases steal remote objects, breaking the ac-
cess locality. Preserving the access locality is the key for
improving transactional performance. One optimization in-
volves adjusting the data-migration procedures to make it
difficult to separately migrate objects that often appear in
the same transaction. Another approach to improve locality
in transactional workloads is to have read-only transactions
(RoT) that do not force data-migration. We can achieve this
with the help of hybrid logical clocks (HLC) coupled with
a log or multi-version datastore. This allows the system to
obtain consistent snapshots at some arbitrary HLC times-
tamp [4] without requiring any additional communication
or synchronization.

Multi-universe FleetDB. Many databases [8, 7, 5] par-
tition the data into independent units of storage and replica-
tion to achieve better horizontal scalability. Multi-universe
FleetDB consists of such independent and partitioned de-
ployments of FleetDB. The näıve implementation of multi-
universe FleetDB loses the ability to perform transaction
across universes. However, classical solutions such as two-
phase commit can be placed on top of FleetDB to facilitate
cross-universe transactions. Alternatively, it may be possi-
ble to compose FleetDB instances in a way to guarantee the
intersection between them and extending our Paxos based
protocol to perform transaction across universes by stealing
the objects into the shared regions.

6. CONCLUDING REMARKS
We presented FleetDB, a globe-spanning strongly-consistent

key-value datastore. Unlike previous work, FleetDB can
nimbly adapt to dynamic workload changes in a fine grained
manner. Migrating the ownership of an object is auto-
matic, fast, safe (done using WPaxos phase-1), and allows
reads and writes to be served locally in the migrated re-
gion. FleetDB also supports sophisticated migration policies
that take into account load balancing, replication groups,
and multiple simultaneous requesting regions. In addition
to providing these guarantees, FleetDB manages to support
atomic, serializable multi-object minitransaction.

We implemented FleetDB in Go and made it accessible as
opensource project at https://github.com/acharapko/fleetdb.
We experimentally showed the effectiveness of dynamic ob-
ject migration by achieving average request latencies as low
as 10 milliseconds for workloads with good object access lo-
cality. We also illustrated that fully decentralized solutions
may not always benefit the performance. In our case, the
transaction performance is better when we limit each zone to
have a single dedicated leader node as it helps avoid unnec-
essary object migrations across leaders in the same region.

7. REFERENCES
[1] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. In ACM
SIGOPS Operating Systems Review, volume 41, pages
159–174. ACM, 2007.

[2] A. Ailijiang, A. Charapko, M. Demirbas, and
T. Kosar. Wpaxos: Ruling the archipelago with fast
consensus.

[3] A. N. Bessani, R. Mendes, T. Oliveira, N. F. Neves,
M. Correia, M. Pasin, and P. Verissimo. Scfs: A
shared cloud-backed file system. In USENIX Annual
Technical Conference, pages 169–180, 2014.

[4] A. Charapko, A. Ailijiang, M. Demirbas, and
S. Kulkarni. Retrospective lightweight distributed
snapshots using loosely synchronized clocks. In
Distributed Computing Systems (ICDCS), 2017 IEEE
37th International Conference on, pages 2061–2066.
IEEE, 2017.

[5] Cockroachdb: A scalable, transactional, geo-replicated
data store. http://cockroachdb.org/.

[6] B. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB
Endowment, 1(2):1277–1288, 2008.

[7] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. Proceedings of
OSDI, 2012.

[8] Cosmos db - globally distributed, multi-model
database service. https:
//azure.microsoft.com/en-us/services/cosmos-db/,
2018.

[9] Leveldb key/value database in go.
https://github.com/syndtr/goleveldb, 2018.

[10] Google. The go programming language, 2018.
https://golang.org/.

[11] H. Howard, D. Malkhi, and A. Spiegelman. Flexible
paxos: Quorum intersection revisited. arXiv preprint
arXiv:1608.06696, 2016.

[12] S. Kadambi, J. Chen, B. F. Cooper, D. Lomax,
R. Ramakrishnan, A. Silberstein, E. Tam, and
H. Garcia-Molina. Where in the world is my data. In
Proceedings International Conference on Very Large
Data Bases. VLDB Endowment, 2011.

[13] S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and
M. Leone. Logical physical clocks. In Principles of
Distributed Systems, pages 17–32. Springer, 2014.

[14] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, 2001.

[15] K. Lev-ari, E. Bortnikov, I. Keidar, A. Shraer,
E. Engineering, and M. View. Modular Composition
of Coordination Services. 2016 USENIX Annual
Technical Conference, 2016.

[16] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency
geo-replicated storage. In NSDI, volume 13, pages
313–328, 2013.

[17] Z. Shen, Q. Jia, G.-E. Sela, W. Song,
H. Weatherspoon, and R. Van Renesse. Supercloud: A
library cloud for exploiting cloud diversity. ACM
Transactions on Computer Systems (TOCS), 35(2):6,
2017.

[18] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive
data replication algorithm. ACM Transactions on
Database Systems (TODS), 22(2):255–314, 1997.

