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ABSTRACT

Creating or modifying a primary index is a time-consuming
process, as the index typically needs to be rebuilt from scratch.
In this paper, we explore a more graceful “just-in-time” ap-
proach to index reorganization, where small changes are
dynamically applied in the background. To enable this type
of reorganization, we formalize a composable organizational
grammar, expressive enough to capture instances of not only
existing index structures, but arbitrary hybrids as well. We
introduce an algebra of rewrite rules for such structures,
and a framework for defining and optimizing policies for
just-in-time rewriting. Our experimental analysis shows that
the resulting index structure is flexible enough to adapt to a
variety of performance goals, while also remaining competi-
tive with existing structures like the C++ standard template
library map.

1 INTRODUCTION

An in-memory index is backed by a data structure that stores
and facilitates access to records. An alphabet soup of such
data structures have been developed to date ([6, 7, 10, 12,
19–22, 26, 30] to list only a few). Each structure targets a
specific trade-off between a range of performance metrics
(e.g., read cost, write cost), resource constraints (e.g., memory,
cache), and supported functionality (e.g. range scans or out-
of-core storage). As a trivial example, contrast linked lists
with a sorted arrays: The former provides fast writes and
slow lookups, while the latter does exactly the opposite.
Creating or modifying an in-memory index is a time-

consuming process, since the data structure backing the
index typically needs to be rebuilt from scratch when its
parameters change. During this time, the index is unusable,
penalizing the performance of any database relying on it. In
this paper, we propose a more graceful approach to runtime
index adaptation. Self-Adapting Indexes (SAIs) continuously
make small, incremental reorganizations in the background,
while client threads continue to access the structure. Each
reorganization brings the SAI closer to a state that mimicks
a specific target data structure. As illustrated in Figure 1,
the performance of a SAI continuously improves as it transi-
tions from one state to another, while other data structures
improve only after fixed investments of organizational effort.
Three core challenges must be addressed to realize SAIs.

First, because each individual step is small, at any given
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Figure 1: A classical index data structure provides no

benefits until ready, while SAIs provide continuous in-
cremental performance improvements.

point in time an SAI may need to be in some intermediate
state between two classical data structures. For example, an
SAI transitioning from a linked list to a binary tree may
need to occupy a state that is neither linked list, nor binary
tree, but some combination of the two. Second, there may be
multiple pathways to transition from a given source state to
the desired target state. For example, to get from an unsorted
array to a sorted array, we might sort the array (faster in the
long-term) or crack [12] the array (more short-term benefits).
Finally, we want to avoid blocking client access to the SAI
while it is being reorganized. Client threads should be able
to query the structure while the background thread works.

We address the first challenge by building on just-in-time
data structures [17], a form of adaptive index that dynami-
cally assembles indexes from composable, immutable build-
ing blocks. Mimicking the behavior of a just-in-time com-
piler, a just-in-time data structure dynamically reorganizes
building blocks to improve index performance. Our main
contributions in this paper address the remaining challenges.

We first precisely characterize the space of available state
transitions by formalizing the behavior of just-in-time data
structures into a composable organizational grammar (cog).
A sentence in cog corresponds directly to a specific physi-
cal layout. Many classical data structures like binary trees,
linked lists, and arrays are simply syntactic restrictions on
cog. Lifting these restrictions allows intermediate hybrid
structures that combine elements of each. Thus, the grammar
can precisely characterize any possible state of a SAI.
Next, we define transforms, syntactic rewrite rules over

cog and show how these rewrite rules can be combined into
a policy that dictate how and where transforms should be
applied. This choice generally requires runtime decisions, so
we identify a specific family of “local hierarchical” policies
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Figure 2: Node types in a SAI

in which runtime decisions can be implemented by an effi-
ciently maintainable priority heap. As an example, we define
a family of policies for transitioning between unsorted and
sorted arrays (e.g., for interactive analysis on a data file that
has just been loaded [1]).

To automate policy design, we provide a simulator frame-
work that predictively models the performance of a SAI un-
der a given policy. The simulator can generate performance-
over-time curves for a set of potential policies. These curves
can then be queried to find a policy that best satisfies user
desiderata like “get to 300ms lookups as soon as possible” or
“give me the best scan performance possible within 5s”.

Finally, we address the issue of concurrency by propos-
ing a new form of “semi-functional” data structure. Like a
functional (immutable) data structure, elements of a semi-
functional data structure are stable once created. However,
using handle-style [11] pointer indirection, we draw a clear
distinction between code that expects physical stability and
code that merely expects logical stability. In the latter case
correctness is preserved even if the element is modified, so
long as the element’s logical content remains unchanged.

1.1 System Overview

A Self-Adjusting Index (SAI) is a key-value style primary
(clustered) index storing a collection of records, each (non-
uniquely) identified by a key with a well defined sort order.
As illustrated in Figure 3, a SAI consists of three parts: an
index, an optimizer, and a policy simulator. The SAI’s in-
dex is a tree rooted at a node designated root. Following
just-in-time data structures, SAIs use four types of nodes,
summarized in Figure 2: (1) Array: A leaf node storing an
unsorted array of records, (2) Sorted: A leaf node storing
a sorted array of records, (3) Concat: An inner node point-
ing to two additional nodes, and (4) BinTree: A binary tree
node that segments records in the two nodes it points to by
a separator value.

The second component of SAI is a just-in-time optimizer,
an asynchronous process that incrementally reorganizes the
index, progressively rewriting its component parts to adapt
it to the currently running workload. These rewrites are
guided by a policy, a set of rules for identifying points in
the index to be rewritten and for determining what rewrites
to apply. To help users to select an appropriate policy, SAI
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Figure 3: A SAI

includes a policy simulator that generates predicted perfor-
mance over time curves for specific policies. This simulator
can be used to quickly compare policies, helping users to
select the policy that best meets the user’s requirements for
latency, preparation time, or throughput.

1.2 Access Paths

A SAI provides lock-free access to its contents through access
paths that recursively traverse the index: (1) get(key) re-
turns the first record with a target key, (2) iterator(lower)
returns an un-ordered iterator over records with keys greater
than or equal to lower, and (3) ordered_iterator(lower)
returns an iterator over the same records, but in key order.
As an example, Algorithm 1 implements the first of these
access paths by recursively descending through the index.
Semantic constraints on the layout provided by Sorted and
BinTree are exploited where they are available.

Algorithm 1 Get(C, k)

Require: C: A SAI node k : A key
Ensure: r : A record with key k or None if none exist.
if C matches Array(®r ) then

return linearScan(k, ®r )
else if C matches Sorted(®r ) then

return binarySearch(k, ®r )
else if C matches Concat(C1,C2) then

r = Get(C1, k)
if r , None then return r
else return Get(C2, k)

else if C matches BinTree(k ′,C1,C2) then

if k ′ ⪯ k then return Get(C2, k)
else return Get(C1, k)

1.3 Updates

Organizational effort in a SAI is entirely offloaded to the
just-in-time optimizer. Client threads performing updates
do the minimum work possible to register their changes. To
insert, the updating thread instantiates a new Array nodeC
and creates a subtree linking it and the current index root:

Concat(root,C)
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This subtree becomes a new version of the root. Although
only one thread may update the index at a time, updates can
proceed concurrently with the background worker thread.
This is achieved through a layer of indirection called a handle
that we introduce and discuss further in Section 5.

1.4 Organization and Policy

The background worker thread is responsible for iteratively
rewriting fragments of the index into (hopefully) more effi-
cient forms. It needs (1) to identify fragments of the structure
that need to be rewritten, (2) to decide how to rewrite those
fragments, and (3) to decide how to prioritize these tasks.
We address the first two challenges by defining a fixed set of
transformations for SAI. Like rewrite rules in an optimizing
compiler, transformations replace subtrees of the grammar
with logically equivalent structures. Following this line of
thought, we first develop a formalism that treats the state of
the index at any point in time as a sentence in a grammar
over the four node types. We show that transformations can
be expressed as structural rewrites over this grammar, and
that for any sentence (i.e., index instance) we can enumerate
the sentence fragments to which a transformation can be
successfully applied. A policy that balances the trade-offs
between different types of transformations is then defined
to prioritize which transforms should be applied and when.

1.5 Paper Outline

The remainder of this paper is organized as follows.

Encoding hybrid index structures. In Section 2, we intro-
duce and formalize the cog grammar and show how it allows
us to encode a wide range of tree-structured physical data
layouts. These include restricted sub-grammars that capture,
for example, singly linked lists or binary trees. The gram-
mar can express transitional physical layouts that combine
elements of multiple classes of data structure.

Data structure transitions as an algebra. We next out-
line an algebra over the cog grammar in Section 3. Specif-
ically we introduce the concept of transforms, rewrites on
the structure of a sentence in cog that preserve logical equiv-
alence and syntactic constraints over the structure.

Combining transforms into a policy. Next, in Section 4,
we show how sequences of transforms, guided by a policy,
may be used to incrementally re-organize an index. In order
to remain competitive with classical index structures, policies
need to make split-second decisions on which transforms to
apply. Accordingly, we identify a specific class of local hierar-
chical policies that can be implemented via an incrementally
maintained priority queue that tracks organizational goals
and efficiently selects transforms.

Implementation and runtime. After providing a theo-
retical basis for SAIs, we describe how we addressed key
challenges in implementing them, outline the primary com-
ponents of the SAI runtime, and provide an illustrative ex-
ample policy: Crack-or-Sort.

Policy optimization. Section 6 introduces a SAI simulator.
This simulator emulates the evolution of a SAI, allowing us to
efficiently determine which of a range of alternative policies
best meets user-provided performance goals for transitioning
between index structures.

Assessing SAI’s generality. Section 7 uses a taxonomy
of index data structures proposed in [16] to evaluate SAI’s
generality. We propose three ideas for future work that could
fully generalize 19 of the 22 design dimensions identified.

Evaluation. Finally, in Section 8, we assess the performance
overheads SAIs, relative to both commonly used and state-
of-the art in-memory indexes.

2 A GRAMMAR OF DATA STRUCTURES

Each record r ∈ R is accessed exclusively by a (potentially
non-unique) identifier id (r ) ∈ I. We assume a total order
⪯ is defined over elements of I. We abuse syntax and use
records and keys interchangeably with respect to the order,
writing r ⪯ k to mean id (r ) ⪯ k . We write [τ ], {τ }, and {| τ |}
to denote the type of arrays, sets, and bags (respectively) with
elements of type τ . Wewrite [r1, . . . , rN ] (resp., {. . .}, {| . . . |})
to denote an array (or set or bag) with elements r1, . . . , rN .

To support incremental index transitions, we need away to
represent intermediate states of an index, part way between
one physical layout and another. In this section we propose a
compositional organizational grammar (cog) that will allow
us to reason about the state of a SAI, and the correctness of
its state transitions.

2.1 Notation and Definitions

The atoms of cog are defined by four symbolsArray, Sorted,
Concat, BinTree. A cog instance is a sentence in cog, de-
fined by the grammar C as follows:

C = Array([R]) | Sorted([R])

| Concat(C,C) | BinTree(I,C,C)

Atoms in cog map directly to physical building blocks of a
data structure, while atom instances correspond to instances
of a data structure or one of its sub-structures. For example
an instance of Array represents an array of records laid out
contiguously in memory, while Concat represents a tuple
of pointers referencing other instances. We write typeof(C)
to denote the atom symbol at the root of an instance C ∈ C.

3



Example 1 (Linked List). A linked list may be defined as

a syntactic restriction over cog as follows

LL = Concat(Array([R]),LL) | Array([R])

A linked list is either a concatenation of an array (with one

element by convention), and a pointer to the next element, or a

terminal array (with no elements by convention).

Two different instances, corresponding to different repre-
sentations may still encode the same data. We describe the
logical contents of an instance C as a bag, denoted by D (C),
and use this term to define logical equivalence between two
instances.

D (C) =


{| r1, . . . , rN |} if C = Array([r1, . . . , rN ])

{| r1, . . . , rN |} if C = Sorted([r1, . . . , rN ])

D (C1) ⊎ D (C2) if C = Concat(C1,C2)

D (C1) ⊎ D (C2) if C = BinTree( _ ,C1,C2)

Definition 1 (Logical Eqivalence). Two instances C1
andC2 are logically equivalent if and only if D (C1) = D (C2).

To denote logical equivalence we write C1 ≈ C2.

We write C∗ to denote the bag consisting of the instance
C and its descendants.

C∗ =


C∗1 ⊎C

∗
2 ⊎ {|C |} if C = Concat(C1,C2)

C∗1 ⊎C
∗
2 ⊎ {|C |} if C = BinTree( _ ,C1,C2)

{|C |} otherwise

Proposition 1. The set C∗ is finite for any C .

2.2 cog Semantics

Array andConcat represent the physical layout of elements
of a data structure. The remaining two atoms provide provide
semantic constraints (using the identifier order ⪯) over the
physical layout that can be exploited to make the structure
more efficient to query.We say that instances satisfying these
constraints are structurally correct.

Definition 2 (Structural Correctness). We define the

structural correctness of an instance C ∈ C (denoted by the

unary relation StrCor (C)) for each atom individually:

Case 1. Array instance is structurally correct.

Case 2. The instance Concat(C1,C2) is structurally correct if

and only if C1 and C2 are both structurally correct.

Case 3. The instance Sorted([r1, . . . , rN ]) is structurally cor-

rect if and only if ∀0 ≤ i < j ≤ N : ri ⪯ r j
Case 4. The instanceBinTree(k,C1,C2) is structurally correct

if and only if both C1 and C2 are structurally correct,

and if ∀r1 ∈ D (C1) : r1 ≺ k and r2 ∈ D (C2) : k ⪯
r2.

In short, Sorted is structurally correct if it represents a
sorted array. Similarly, BinTree is structurally correct if it

corresponds to a binary tree node, with its children parti-
tioned by its identifier. Both Concat and BinTree addition-
ally require that their children be structurally correct.

Example 2 (Binary Tree). A binary tree may be defined

as a syntactic restriction over cog as follows

B = BinTree(I,B,B) | Array([R])

A binary tree is a hierarchy of BinTree inner nodes, over

Array leaf nodes (containing one element by convention).

3 TRANSFORMS OVER COG

We next formalize state transitions in a SAI through pattern-
matching rewrite rules over cog called transforms.

Definition 3 (Transform). We define a transform T as

any member of the family T of endomorphisms over cog

instances. Equivalently, any transform T ∈ T is a morphism

T : C → C from instance to instance.

Figure 4 illustrates a range of common transforms that
correspond to common operations on index structures. For
consistency, we define transforms over all instances and not
just instances where the operation “makes sense.” On other
instances, transforms behave as the identity (id(C) = C).

Clearly not all possible transforms are useful for organiz-
ing data. For example, the well defined, but rather unhelpful
transform Empty(C) = Array([]) transforms any cog in-
stance into an empty array. To capture this notion of a “useful”
transform, we define two correctness properties: structure
preservation and equivalence preservation.

Definition 4 (Eqivalence Preserving Transforms).
A transform T is defined to be equivalence preserving if and
only if ∀C : C ≈ T (C) (Definition 1).

Definition 5 (Structure Preserving Transforms). A
transform T is defined to be structure preserving if and only

if ∀C : StrCor (C) =⇒ StrCor (T (C)) (Definition 2).

A transform is equivalence preserving if it preserves the
logical content of the instance. It is structure preserving if
it preserves the structure’s semantic constraints (e.g., the
record ordering constraint on instances of the Sorted atom).
If it is both, we say that the transform is correct.

Definition 6 (Correct Transform). We define a trans-

form T to be correct (denoted Correct (T )) if T is both struc-

ture and equivalence preserving.

In Appendix A we give proofs of correctness for each of
the transforms in Figure 4.

3.1 Meta Transforms

Transforms such as those illustrated in Figure 4 form the
atomic building blocks of a policy for re-organizing data
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UnSort(C) =

{
Array( ®r ) if C = Sorted( ®r )

C otherwise

Sort(C) =

{
Sorted(sort( ®r )) if C = Array( ®r )

C otherwise

Divide(C) =

{
Concat(Array(

[
r1 . . . r⌊ N2 ⌋

]
),Array(

[
r⌊ N2 ⌋+1

. . . rN
]
)) if C = Array([r1 . . . rN ])

C otherwise

Crack(C) =

{
BinTree(id

(
r⌊ N2 ⌋

)
,Array(

[
ri

�� ri ≺ r⌊ N2 ⌋

]
),Array(

[
ri

�� r⌊ N2 ⌋ ⪯ ri
]
) if C = Array([r1 . . . rN ]))

C otherwise

Merge(C) =


Array([r1 . . . rN , rN+1 . . . rM ]) if C = Concat(Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

Array([r1 . . . rN , rN+1 . . . rM ]) if C = BinTree( _ ,Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))
C otherwise

PivotLeft(C) =


Concat(Concat(C1,C2),C3) if C = Concat(C1,Concat(C2,C3))

BinTree(k2,BinTree(k1,C1,C2),C3) if C = k1 ≺ k2 and BinTree(k1,C1,BinTree(k2,C2,C3))

C otherwise

Figure 4: Examples of correct transforms. Sort and UnSort convert between Array and Sorted and visa versa. Crack

and Divide both fragment Arrays, and both are reverted by Merge. Crack in particular uses an arbitrary array

element to partition its input value (the
N
2 th element in this example), analogous to the RadixCrack operation

of [15]. PivotLeft rotates tree structures counterclockwise and a symmetric PivotRight may also be defined. The

function sort : [R] → [R] returns a transposition of its input sorted according to ⪯.

structures. For the purposes of this paper, we refer to these
six transforms, together with PivotRight and the identity
transform id, collectively as the atomic transforms, denoted
A. We next introduce a framework for constructing more
complex transforms from these building blocks.

Definition 7 (Composition). For any two transforms

T1,T2 ∈ T , we denote by T1 ◦T2 the composition of T1 and T2:

(T1 ◦T2)(C)
def
= T2(T1(C))

Transform composition allows us to build more complex
transforms from the set of atomic transforms. We also con-
sider meta transforms that manipulate transform behavior.

Definition 8 (Meta Transform). A meta transformM
is any correctness-preserving endofunctor over the set of trans-

forms. That is, any functor M : T → T is a meta transform

if and only if ∀T ∈ T : Correct (T ) =⇒ Correct (M[T ])
(Definition 6).

We are specifically interested in two meta transforms that
will allow us to apply transforms not just to the root of an
instance, but to any of its descendants as well.

LHS[T ](C) =


Concat(T (C1),C2) if C = Concat(C1,C2)

BinTree(k,T (C1),C2) if C = BinTree(k,C1,C2)

C otherwise

RHS[T ](C) =


Concat(C1,T (C2)) if C = Concat(C1,C2)

BinTree(k,C1,T (C2)) if C = BinTree(k,C1,C2)

C otherwise

Theorem 1 (LHS andRHS are meta transforms). LHS
and RHS are correctness-preserving endofunctors over T .

The proof, given in Appendix B, is a simple structural
recursion over cases.

We refer to the closure of LHS and RHS over the atomic
transforms as the set of hierarchical transforms, denoted ∆.

∆ = A ∪ { LHS[T ] | T ∈ ∆ } ∪ { RHS[T ] | T ∈ ∆ }

Corrolary 1. Any hierarchical transform is correct.

4 POLICIES FOR TRANSFORMS

Transforms give us a means of manipulating instances, but
to actually allow an index to transition from one form to
another we need a set of rules, called a policy, to dictate
which transform to apply and when. We begin by defining
policies broadly, before refining them into an efficiently im-
plementable family of enumerable score-based policies.

Definition 9 (Policy). A policy P is defined by the 2-tuple

P = ⟨ D,H ⟩, where the policy’s domain D ⊆ T is a set of

transforms andH : C → D is a heuristic function that selects

one of these transforms to apply to a given instance.
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A policy guides the transition of an index from an instance
representing its initial state to a final state achieved by re-
peatedly applying transforms selected by the heuristic H .
We call the sequence of instances reached in this way a trace.

Definition 10 (Trace). The trace of a policyP = ⟨ D,H ⟩
on instanceC0, denoted Trace(P,C0), is defined as the infinite

sequence of instances [C0,C1, . . .] starting with C0, and with

subsequent instances Ci obtained as:

Ci
def
= Ti (Ci−1) where Ti = H(Ci−1)

Although traces are infinite, we are specifically interested
in policies with traces that reach a steady (fixed point) state.
We say that such a trace (resp., any policy guaranteed to
produce such a trace) is terminating.

Definition 11 (Terminating Trace, Policy). A trace

[C1,C2, . . .] terminates after N steps if and only if ∀i, j > N :
Ci = Cj ,. A policy P is terminating when

∀C∃N : Trace(P,C) terminates after N steps

A policy’s domain may be large, or even infinite as in the
case of the hierarchical transforms. However, only a much
smaller fragment will typically be useful for any specific
instance. We call this fragment the active domain.

Definition 12. The active domain of a policy ⟨ D,H ⟩,
relative to an instance C (denoted DC ) is the subset of the

policy’s domain that does not behave as the identity on C .

DC
def
= { T | T ∈ D ∧T (C) , C }

4.1 Bounding the Active Domain

A policy’s heuristic function will be called numerous times
in the course of an index transition, making it a prime can-
didate for performance optimization. We next explore one
particular family of policies that admit a stateful, incremental
implementation of their heuristic function. This approach
treats the heuristic function as a ranking query over the ac-
tive domain, selecting the most appropriate (highest scoring)
transform at any given time. However, rather than recom-
puting scores at every step, we incrementally maintain a
priority queue over the active domain. For this incremental
approach to be feasible, we need to ensure that only a finite
(and ideally small) number of scores change with each step.

Definition 13 (Enumerable Policy). A policy ⟨ D,H ⟩
is enumerable if and only if its active domain is finite for every

finite instance C , or equivalently when ∀C : |DC | ∈ N

We are particularly interested in policies that use the hier-
archical transforms as their domain. We also refer to such
policies as hierarchical. In order to show that hierarchical
policies are enumerable, we first define a utility target func-
tion that “unrolls” an arbitrarily deep stack of LHS and RHS

meta transforms. The target function returns (1) The atomic
transform at the base of the stack of meta transforms and (2)
the descendant that this atomic transform would be applied
to.

Definition 14. Given a hierarchical policy ⟨ ∆,H ⟩ and
an instanceC , let the target function f ∗C : DC → (C

∗ ×A) of

the policy on C is defined as follows

f ∗C (T )
def
=


⟨ C,T ⟩ if typeof(C) ∈ {Array, Sorted}
⟨ C,T ⟩ else if T ∈ A
f ∗C1
(T ′) else if T = LHS[T ′]

f ∗C2
(T ′) else if T = RHS[T ′]

Lemma 1 (Injectivity of f ∗C ). The target function f ∗C of

any hierarchical policy ⟨ ∆,H ⟩ for any instanceC is injective.

Proof. By recursion over C . The base case occurs when
typeof(C) ∈ {Array, Sorted}. In this case C∗ = {|C |}. Fur-
thermore, ∀T : LHS[T ] = RHS[T ] = id and so DC ⊆

A. The target function always follows its first case and is
trivially injective. The first recursive case occurs for C =
Concat(C1,C2). By definition, a hierarchical transform can
be (1) An atomic transform, (2) LHS[T ], or (3) RHS[T ]. Each
of the latter three cases covers one of each of the three parts
of the definition of a hierarchical transform. Assuming that
f ∗C1

and f ∗C2
are injective, f ∗C will also be injective because

each case maps to a disjoint partition ofC∗ = C∗1 ⊎C
∗
2 ⊎{|C |}.

The proof for the second recursive case, where typeof(C) =
BinTree is identical. Thus ∀C : f ∗C is injective □

Using injectivity of the target function, we can show that
any hierarchical policy is enumerable.

Theorem 2 (Hierarchical policies are enumerable).
Any hierarchical policy ⟨ ∆,H ⟩ is enumerable.

Proof. Recall the definition of hierarchical transforms

∆ = A ∪ { LHS[T ] | T ∈ ∆ } ∪ { RHS[T ] | T ∈ ∆ }

By Lemma 1, |DC | ≤ |C
∗×A| ≤ |C∗ |× |A|. By Proposition 1,

C∗ is finite and the set of atomic transforms A is finite by
definition Thus, DC must also be finite. □

Intuitively, there is a finite number of atomic transforms
(|A), that can be applied at a finite set of positions within
C (|C∗). Any other hierarchical transform must be idempo-
tent, so we can (very loosely) bound the active domain of a
hierarchical policy on instance C by |C∗ | × |A|

4.2 Scoring Heuristics

As previously noted, we are particularly interested in policies
that work by scoring the set of available transforms with
respect to their utility.

6



Definition 15 (Scoring Policy). Let score : (D ×C) →
N0 be a scoring function for every transform, instance pair

(T ,C) that satisfies the constraint: (T (C) = C) ⇒ (score(T ,C) =
0) A scoring policy ⟨ D,Hscore ⟩ is a policy with a heuristic

function defined asHscore(C)
def
= argmaxT ∈D(score(T ,C))

In short, a scoring heuristic policy one that selects the
next transform to apply based on a scoring function score,
breaking ties arbitrarily. Additionally, we require that trans-
forms not in the active domain (i.e., that leave their inputs
unchanged) must be assigned the lowest score (0).

As we have already established, the number of scores that
need to be computed is finite and enumerable. However, it
is also linear in the number of atoms in the instance. Ide-
ally, we would like to avoid recomputing all of the scores
at each iteration by precomputing the scores once and then
incrementally maintaining them as the instance is updated.
For this to be feasible, we also need to bound the number of
scores that change with each step of the policy. We do this
by first defining two properties of policies: independence,
which requires that the score of a (hierarchical) transform be
exclusively dependent on its target atom (Definition 14); and
locality, which further requires that the score of a transform
be independent of the node’s descendants past a bounded
depth. We then show that with any scoring function that sat-
isfies these properties, only a finite number of scores change
with any transform, and consequently that the output of the
scoring function on every element of the active domain can
be efficiently incrementally maintained.

Definition 16 (Independent Policy). Let C<
be the set

of instances with C as a left child.

C< = { Concat(C,C ′) | C ′ ∈ C }
∪ { BinTree(k,C,C ′) | k ∈ I ∧C ′ ∈ C }

and define C>
symmetrically as the set of instances with C

as a right child. We say that a hierarchical scoring policy

⟨ ∆,Hscore ⟩ is independent if and only if for any T , C

∀C ′ ∈ C< : score(T ,C) = score(LHS[T ],C ′)
∀C ′ ∈ C> : score(T ,C) = score(RHS[T ],C ′)

Definition 17 (Local Policy). An independent hierarchi-

cal scoring policy ⟨ ∆,Hscore ⟩ is local if and only if:

∀T∀C1∀C2 s.t. (C∗1 − {|C1 |}) = (C
∗
2 − {|C2 |}) :

score(T ,C1) = score(T ,C2)

The following definition uses the policy’s target function
(Definition 14) to define a weighted list of all of the policy’s
targets.

Definition 18 (Weighted Targets). Let ⟨ ∆,Hscore ⟩ be

a hierarchical scoring policy. The weighted targets of instance

C , denotedWC : {| A × N0 |} is bag of 2-tuples defined as

WC =
{�� 〈 T ′, score(T ,C ′) 〉 �� T ∈ DC ∧ (C

′,T ′) = f ∗C (T )
��}

Theorem 3 (BoundedTargetUpdates). Let ⟨ ∆,Hscore ⟩

be a local hierarchical scoring policy,C be an instance,T ∈ DC
be a transform, and C ′ = T (C). The weighted targets of C and

C ′ differ by at most 4 × |A| elements.��(WC ⊎WC ′) − (WC ∩WC ′)
�� ≤ 4 × |A|

The proof, given in Appendix C, is based on the observa-
tion that the independence and locality properties restrict
changes to the target function’s outputs to exactly the set
of nodes added, removed, or modified by the applied trans-
form, excluding ancestors or descendants. In the worst cases
(Divide, Crack, orMerge) this is 4 nodes.

Theorem 3 shows that we can incrementally maintain the
weighted target list incrementally, as only a finite number
of its elements change at any policy step. This allows us to
materialize the weighted target list as a priority queue, who’s
first element is always the policy’s next transform.

5 IMPLEMENTING THE SAI RUNTIME

So far, we have introduced cog and shown how policies can
be used to gradually reorganize a cog instance by repeatedly
applying incremental transforms to the structure.
In this section, we discuss the challenges in translating

SAIs from the theory we have defined so far into practice. As
already noted, cog instances describe the physical layout of
a SAI. We implemented each atom as a C++ class using the
reference-counted shared_ptrs for garbage collection. To
implement the Array and Sorted atoms, we used the C++
Standard Template Library vector class.

5.1 Concurrency and Handles

Because SAIs rely on background optimization, efficient con-
currency is critical. This motivated our choice to base the
SAI index on functional data structures. In a functional data
structure, objects are immutable once instantiated. Only the
root may be updated to a new version, typically through an
atomic pointer swap. Explicit versioning makes it possible
for the background worker thread to construct a new version
of the structure without taking out any locks in the process.
Only a short lock is required to swap in the new version.

Immutability does come with a cost: any mutations must
also copy un-modified data into a new object. However, care-
ful use of pointers can minimize the impact of such copies.

Example 3. Figure 5.a shows the effects of applying LHS[Sort]
to an immutable cog instance, replacing an unsorted Array X
with a Sorted equivalent X’. Note that in addition to replacing
X, each of its ancestors must also be replaced.
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Figure 5: Classical immutable data structures (a) vs

with handles (b).

Replacing a logarithmic number of ancestors is better than
replacing the entire structure. However, even a logarithmic
number of new objects for every update can be a substantial
expense when individual transforms can take on the order of
micro-seconds. We avoid this overhead by using indirection
to allow limited mutability under controlled circumstances.
Inspired by early forms of memory management [11], we
define a new object called a handle.

Handles store a pointer to a cog atom, and all cog atoms
(i.e., BinTree and Concat), as well as the root, use handles
as indirect references to their children. Handles provide clear
semantics for a programmer expectations: A pointer to an
atom guarantees physical immutability, while a pointer to
a handle guarantees only logical immutability. Thus, any
thread can safely replace the pointer stored in a handle with
a pointer to any other logically equivalent atom. Accordingly,
we refer to such structures as semi-functional data structures.

Example 4. Continuing the example, Figure 5.b shows the

same operation performed on a structure that uses handles.

Ancestors of the modified node are unchanged: Only the handle

pointer is modified.

We observe that cog atoms can safely be implemented
using handles. The only correctness property we need to
enforce is structural correctness, which depends only on the
node itself and the logical contents (D (·)) of its descendants.
Thus only logical consistency is needed and handles suffice.

Similarly, the LHS and RHS and meta transform creates
an exact copy of the root, modulo the affected pointer. Fur-
thermore the only node modified is the one reached by un-
rolling the stack of meta transforms, and by definition correct
transforms must produce a new structure that is logically
equivalent. Thus, any hierarchical transform can be safely,
efficiently applied to a SAI by a single modification to the
handle of the target atom (Definition 14).

5.2 Concurrent Access Paths

We have already described the get method in Section 1.1. The
remaining access paths instantiate iterators that traverse the
tree, lazily dereferencing handles as necessary. Un-ordered

iterators provide two methods:
➤ r ← Get() returns the iterator’s current record
➤ Step() advances the iterator to the next record
Additionally, ordered iterators provide the method:
➤ Seek(k) advances to the first record r where r ⪰ k
For iterators over Sorted and Array atoms, we directly use
the C++ vector class’s iterator. Generating an ordered itera-
tor over an Array atom forces a Sort first. Iterators for the
remaining atom types lazily create a replica of the root in-
stance using only physical references to ensure consistency.
Unordered iterators traverse trees left to right. Ordered iter-
ators over Concat atoms are implemented using merge-sort.
We implement a special-case iterator for BinTrees that it-
erates over contiguous BinTrees, lazily loading nodes from
their handles as needed.

5.3 Handles and Updates

Handles also make possible concurrency between a SAI’s
worker thread and threads updating the SAI. In keeping with
the convention that structures referenced by a handle point-
ers can only be swapped with logically equivalent structures,
a thread updating a SAI must replace the root handle with
an entirely new handle. Because the worker thread will only
ever swap pointers referenced by a handle, it will never undo
the effects of an update. Better still, if the old root handle
is re-used as part of the new structure (as discussed in Sec-
tion 1.1), optimizations applied to the old root or any of its
descendants will seamlessly be applied to the new version
of the index as well.

5.4 Transforms and the Policy Scheduler

Our policy scheduler is optimized for local hierarchical poli-
cies. Policies are implemented by defining a scoring function

N0 ← score(T, C) where T ∈ A

Based on this function, the policy scheduler builds a prior-
ity queue of 3-tuples ⟨ handle,A,N0 ⟩, including a handle
to a descendant of the root, an atomic transform to apply
to the descendant instance, and the policy’s score for the
transform applied to the instance referenced by the handle.
As an optimization, only the highest-scoring transform for
each handle is maintained in the queue. The scheduler itera-
tively selects the highest scoring transform and applies it to
the structure. Handles destroyed (resp., created) by applied
transforms are removed from (resp., added to) the priority
queue. The iterator continues until no transforms remain in
the queue or all remaining transforms have a score of zero,
at which point we say the policy has converged.

5.5 Example Policy: Crack-Sort-Merge

As an example of policies being used to manage cost/benefit
tradeoffs in index structures, we compare two approaches
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to data loading: database cracking [12] and upfront organi-
zation. In a study comparing cracking to upfront indexing,
Schuhknecht et. al. [25] observe that for workloads consist-
ing of more than a few scans, it is faster to build an index
upfront. Here, we take a more subtle approach to the same
problem. The Crack transform has lower upfront cost than
the Sort transform (scaling asO(N ) vsO(N logN )), but pro-
vides a smaller benefit. Given a fixed time budget or fixed
latency goal, is it better to repeatedly crack, sort, or mix
the two approaches together. We address this question with
a family of scoring functions scoreθ , parameterized by a
threshold value θ as follows:

scoreθ (T,Array([r1 . . . rN ])) =


N if T = Sort and N < θ

N if T = Crack and N < θ

0 otherwise

Arrays smaller than the threshold are sorted, while those
larger are cracked. Larger instances are preferred over smaller.
All other instances are ignored. Once all Arrays are sorted,
the resulting Sorteds are iteratively Mergeed, ultimately
leaving behind a single Sorted.

This is one example of a parameterized policy, a reorgani-
zational strategy that uses thresholds to guide its behavior.
Once such a policy is defined, the next challenge is to select
appropriate values for its parameters.

6 POLICY OPTIMIZATION

A SAI’s performance curve depends on its policy. As we may
have a range of policies to choose from — for example by
varying policy parameters as mentioned above — we want
a way to evaluate the utility of a policy for a given work-
load. Naively, we might do this by repeatedly evaluating
the structure under each policy, but doing so can be expen-
sive. Instead, we next propose a performance model for SAIs,
policies, and a lightweight simulator that approximates the
performance of a policy over time. Our approach is to see
each transformation as an overhead performed in exchange
for improved query performance. Hence, our model is based
on two measured characteristics of the SAI: The costs of ac-
cessing an instance, and the cost of applying a transform. A
separate driver program measures (1) the cost of each access
path on each instance atom type, varying every parameter
available, and (2) the cost of each case of every transform.

Example 5. As an illustrative example, we will use the

Crack-or-Sort policy described above. This policy makes use of

the Array, Sorted, and BinTree atoms, as well as the Crack
and Sort transforms. For this policy we need to measure 5

factors.

Operation Symbol Scaling
Get(Array([r1 . . . rN ])) α(N ) O(N )
Get(Sorted([r1 . . . rN ]))) β(N ) O(log2(N ))
Get(BinTree(k,C1,C2))) γ O(1)
Crack(Array([r1 . . . rN ])) δ (N ) O(N )
Crack(Array([r1 . . . rN ])) ν (N ) O(n log2(n))

The driver program fits each of the five functions by conduct-

ing multiple timing experiments, varying the size of N where

applicable.

The simulator mirrors the behavior of the full SAI, but
uses a lighter-weight version of the cog grammar that does
not store actual data:

Cℓ = Array(N0) | Sorted(N0)

| Concat(Cℓ,Cℓ) | BinTree(Cℓ,Cℓ)

The simulator iteratively simulates applying transforms to
instances expressed in Cℓ according to the policy being simu-
lated. After each transform, the simulator uses the measured
cost of the transform to estimate the cumulative time spent
reorganizing the index. The simulator captures multiple per-
formance metrics metric : C → R.

Example 6. Continuing the example, one useful metric is

the read latency for a uniformly distributed read workload on

a Crack-or-Sort index.

latency(C) =


α(N ) if C = Array(N )
β(N ) if C = Array(N )
γ + |C1 |

|C | latency(C1)

+
|C2 |
|C | latency(C2) if C = BinTree(C1,C2)

where |C | is the sum of sizes of Arrays and Sorteds in C∗.

The simulator produces a sequence of status intervals:
periods during which index performance is fixed, prior to
the pointer swap after the next transform is computed. A
user-provided utility function aggregates these intervals to
provide a final utility score for the entire policy. Given a
finite set of policies, the optimizer tries each in turn and
selects the one that best optimizes the utility function. Given
a parameterized policy, the optimizer instead uses gradient
descent.

Example 7. Examples of utility functions for Crack-or-Sort

include: (1) Minimize time spent with more than θ Get() la-
tency, (2) Maximize throughput for N seconds, (3) Minimize

runtime of N queries.

7 ON THE GENERALITY OF SAIS
Ideally, we would like cog to be expressive enough to en-
code the instantaneous state of any data structure. Infinite
generality is obviously out of scope for this paper. However
we now take a moment to assess exactly what index data
structure design patterns are supported in a SAI.
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# Data Calculator Primitive SAI Note

1 Key retention ◗ No partial keys
2 Value retention ❍

3 Key order ◗ K-ary orders unsupported
4 Key-Value layout ❍ No columnar layouts
5 Intra-node access ●

6 Utilization ✗

7 Bloom filters ❍

8 Zone map filters ◗ Implicit via BinTree
9 Filter memory layout ❍ Requires filters (7,8)
10 Fanout/Radix ❍ Limited to 2-way fanout
11 Key Partitioning ●

12 Sub-block capacity ✗

13 Immediate node links ❍ Simulated by iterator impl.
14 Skip-node links ❍

15 Area links ❍ Simulated by iterator impl.
16 Sub-block physical location. ❍ Only pointed supported
17 Sub-block physical layout. ◗/ ✗ Realized by merge rewrite
18 Sub-block homogeneous ●

19 Sub-block consolidation ● Depends on policy
20 Sub-block instantiation ● Depends on policy
21 Sub-block link layout ❍ Requires links (13,14,15)
22 Recursion allowed ●

●: Full Support ◗: Partial Support ❍: Support Possible
✗: Not applicable to immutable data structures

Figure 6: SAI support for the DC Taxonomy [16]

As a point of reference we use a taxonomy of data struc-
tures proposed as part of the Data Calculator [16]. The data
calculator taxonomy identifies 22 design primitives, each
with a domain of between 2 and 7 possible values. Each of
the roughly 1018 valid points in this 22-dimensional space
describes one possible index structure. To the best of our
knowledge, this represents the most comprehensive a survey
of the space of possible index structures developed to date.

The data calculator taxonomy views index structures through
the general abstraction of a tree with inner nodes and leaf
nodes. This abstraction is sometimes used loosely: A hash
table of size N, for example, is realized as as a tree with
precisely one inner-node and N leaf nodes. Each of the tax-
onomy’s design primitives captures one set of mutually ex-
clusive characteristics of the nodes of this tree and how they
are translated to a physical layout.

Figure 6 classifies each of the design primitives as (1) Fully
supported by SAI if it generalizes the entire domain, (2) Par-
tially supported by SAI if it supports more than one element
of the domain, or (3) Not supported otherwise. We further
subdivide this latter category in terms of whether support
is feasible or not. In general, the only design primitives that
SAI can not generalize are related to mutability, since SAI’s
(semi-)immutability is crucial for concurrency, which is in
turn required for optimization in the background.

SAI completely generalizes 7 of the remaining 22 primi-
tives. We first explain these primitives and how SAIs gener-
alize them. Then, we propose three extensions that, although

beyond the scope of this paper, would fully generalize the
final 14 primitives. For each, we briefly discuss the extension
and summarize the challenges of realizing it.

Key retention (1). This primitive expresses whether inner
nodes store keys (in whole or in part), mirroring the choice
between Concat and BinTree.

Intra-node access (5). This primitive expresses whether
nodes (inner or child) allow direct access to specific children
or whether they require a full scan, mirroring the distinction
between cog nodes with and without semantic constraints.

Key partitioning (9). This primitive expresses how newly
added values are partitioned. Examples include by key range
(as in a B+Tree) or temporally (as in a log structured merge
tree [22]). Although a SAI only allows one form of insertion,
policies can converge to the full range of states permitted
for this primitive.

Sub-block homogeneous (18). This primitive expresses
whether all inner nodes are homogeneous or not.

Sub-block consolidation/instantiation (19/20). These
primitives express how and when organization happens, as
would be determined by a SAI’s policy.

Recursion allowed (22). This primitive expresses whether
inner nodes form a bounded depth tree, a general tree, or a
“tree” with a single node at the root. SAIs support all three.

7.1 Supporting New cog Atoms

Five of the remaining primitives can be generalized by the
addition of three new atoms to cog. First, we would need
a generalization of BinTree atoms capable of using partial
keys as in a Trie (primitive 1), or hash values (primitive
3) Second, a unary Filter atom that imposes a constraint
on the records below it could implement both boom filters
(primitives 7,9) and zone maps (primitives 8,9). These two
atoms are conceptually straightforward, but introduce new
transforms and increase the complexity of the search for
effective policies.
The remaining challenge is support for columnar/hybrid

layouts (primitive 4). Columnar layouts increase the com-
plexity of the formalism by requiring multiple record types
and support for joining records. Accordingly, we posit that
a binary Join atom, representing the collection of records
obtained by joining its two children could efficiently capture
the semantics of columnar (and hybrid) layouts.

7.2 Atom Synthesis

Five of the remaining primitives express various tactics for
removing pointers by inlining groups of nodes into contigu-
ous regions of memory. These primitives can be generalized
by the addition of a form of atom synthesis, where new atoms
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are formed by merging existing atoms. Consider the Linked
List of Example 1. Despite the syntactic restriction over cog,
a single linked list element must consist of two nodes (a
Concat and a (single-record) Array), and an unnecessary
pointer de-reference is incurred on every lookup. Assume
that we could define a new node type: A linked list element
(Link(R,C)) consisting of a record and a forward pointer.
Because this node type is defined in terms of existing node
types, it would be possible to automatically synthesize new
transformations for it from existing transformations, and
existing performance models could likewise be adapted.
Atom synthesis could be used to create inner nodes that

store values (primitive 2), increase the fanout of Concat and
BinTree nodes (primitive 10), inline nodes (primitive 16),
and provide finer-grained control over physical layout of
data (primitive 17).

7.3 Links / DAG support

The final four remaining properties (13, 14, 15, and 20) ex-
press a variety of forms of link between inner and leaf nodes.
Including such links turns the resulting structure into a di-
rected acyclic graph (DAG). In principle, it should be possible
to generalize transforms for arbitrary DAGs rather than just
trees as we discuss in this paper. Such a generalization would
require additional transforms that create/maintain the non-
local links and more robust garbage collection.

8 EVALUATION

We next evaluate the performance of SAIs in comparison to
other commonly used data structures. Our results show that:
(1) In the longer term, SAIs have minimal overheads relative
to standard in-memory data structures; (2) The SAI policy
simulator reliably models the behavior of a SAI; (3) In the
short term, SAIs can out-perform standard in-memory data
structures; (4) Concurrency introduces minimal overheads;
and (5) SAIs scale well with data, both in their access costs
and their organizational costs.

8.1 Experimental setup

All experiments were run on a 2×6-core 2.5 GHz Intel Xeon
server with 198 GB of RAM and running Ubuntu 16.04 LTS.
Experimental code was written in C++ and compiled with
GNU C++ 5.4.0. Each element in the data set is a pair of key
and value, each an 8-Byte integer. Unless otherwise noted,
we use a data size of up to a maximum of 109 records (16GB)
with keys generated uniformly at random. To mitigate exper-
imental noise, we use srand() with an arbitrary but consistent
value for all data generation. To put our performance num-
bers into context, we compare against (1) R/B Tree: the
C++ standard-template library (STL) map implementation (a

classical red-black tree), (2) HashTable the C++ standard-
template library (STL) unordered-map implementation (a
hash table), and (3) BTree a publicly available implementa-
tion of b-trees1. For all three, we used the find()method for
point lookups and lower_bound()/++ (where available) for
range-scans. For point lookups, we selected the target key
uniformly at random2. For range scans, we selected a start
value uniformly at random and the end value to visit approx-
imately 1000 records. Except where noted, access times are
the average of 1000 point lookups or 50 range scans.

We specifically evaluated SAIs using the Crack-Sort-Merge
family of policies described in Section 5.5, varying the crack
threshold over 106, 107, 108, and 109 records. When there are
exactly 109 records, this last policy simply sorts the entire
input in one step. For point lookups we use the get() access
path, and for range scans we use the ordered_iterator()
access path. By default, we measure SAI read performance
through a synchronous (i.e., with the worker thread paused)
microbenchmark. We contrast synchronous and asynchro-
nous performance in Section 8.4.
Synchronous read performance was measured through a

sequence of trials, each with a progressively larger number
of transforms (i.e., a progressively larger fragment of the
policy’s trace) applied to the SAI. We measured total time
to apply the trace fragment (including the cost of selecting
which transforms to apply) beforemeasuring access latencies.
For concurrent read performance a client thread measured
access latency approximately once per second.

8.2 Cost vs Benefit Over Time

Our first set of experiments mirrors Figure 1, tracking the
synchronous performance of point lookups and range scans
over time. The results are shown in Figure 7a and Figure 7b
The x-axis shows time elapsed, while the y-axis shows index
access latency at that point in time. In both sets of exper-
iments, we include access latencies and setup time for the
R/B-Tree (yellow star), the HashTable (black triangle), and
the BTree (pink circles) We treat the cost of accessing an
incomplete data structure as infinite, stepping down to the
structure’s normal access costs once it is complete.
In general, lower crack thresholds achieve faster upfront

performance by sacrificing long-term performance. A crack
threshold of 106 (approximately 1

105 cracked partitions) takes
approximately twice as long to reach convergence as a thresh-
old of 109 (sort everything upfront)

Unsurprisingly, for point lookups the Hash Table has the
best overall performance curve. However, even it needs up-
wards of 6 minutes worth of data loading before it is ready.

1https://github.com/JGRennison/cpp-btree
2We also tested a heavy-hitter workload that queried for 30% of the keyspace
80% of the time, but found no significant differences between the workloads.
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Figure 7: Performance improvement over time as each SAI is organized

By comparison, a SAI starts off with a 10 second response
time, and has dropped to under 3 seconds by the 3 minute
mark. The BTree significantly outperforms the R/B-Tree on
both loading and point lookup cost, but still takes nearly 25
minutes to fully load. By that point the Threshold108 policy
SAI has already been serving point lookups with a compara-
ble latency (after its sort phase) for nearly 5 minutes. Note
that lower crack thresholds have a slightly slower peak per-
formance than higher ones before their merge phase This is
a consequence of deeper tree structures and the indirection
resulting from handles.The performance at convergence of
the 108 threshold point scan trial is surprising, as it suggests
binary search is as fast as a hash lookup. We suspect this due
to lucky cache hits, but have not yet been able to confirm it.

8.3 Simulated vs Actual Performance

Figure 8 shows the result of using our simulator to predict
the performance curves of Figure 7a. As can be seen, perfor-
mance is comparable. Policy runtimes are replicated reliably,
features like time to convergence and crossover are repli-
cated virtually identically.

8.4 Synchronous vs Concurrent

Figures 9a, 9b, and 9c contrast the synchronous performance
of the SAI with a more realistic concurrent workload. Per-
formance during the crack phase is comparable, though ad-
mittedly with a higher variance. As expected, during the
sort phase performance begins to bifurcate into fast-path
accesses to already sorted arrays and slow-path scans over
array nodes at the leaves.
The time it takes the worker to converge is largely un-

affected by the introduction of concurrency. However, as
the structure begins to converge, we see a constant 100µs
overhead compared to synchronous access. We also note
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Figure 8: Predicted performance using the simulator.

periodic 100ms bursts of latency during the sort phases of all
trials. We believe these are caused when the worker thread
pointer-swaps in a new array during the merge phase, as the
entire newly created array is cold for the client thread.

8.5 Short-Term Benefits for interactive

workloads

One of the primary benefits of SAIs is that they can provide
significantly better performance during the transition period.
This is particularly useful in interactive settings where users
pose tasks comparatively slowly. We next consider such a
hypothetical scenario where a data file is loaded and each
data structure is given a short period of time (5 seconds) to
prepare. In these experiments, we use a cracking threshold of
105 (our worst case), and vary the size of the data set from 106
records (16MB) to 109 records (16GB). The lookup time is the
time until an answer is produced: the cost of a point lookup
for the SAI. The baseline data structures are accessible only
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Figure 9: Synchronous vs Concurrent performance of the SAI on point lookups.
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Figure 10: Point lookup latency relative to data size.

once fully loaded, so we model the user waiting until the
structure is ready before doing a point lookup. Up through
107 records, the unordered_map completes loading within
5 seconds. In every other case, the SAI is able to produce a
response orders of magnitude faster.

8.6 DataSize Vs TransformTime

Figure 11 illustrates the scalability of SAI from the perspec-
tive of data loading. As before, we vary the size of the data
set and use the time taken to load a comparable amount
of data into the base data structures. Note that data is ac-
cessible virtually immediately after being loaded into a SAI.
We measure the cost for the SAI to reach convergence. The
performance of the SAI and the other data structures both
scale linearly with the data size (note the log scale).

8.7 CrackThreshold Vs ScanTime

Figure 12 explores the effects of the crack threshold on perfor-
mance at convergence of the Crack-Sort policy. The Merge
Policy was excluded from testing as at convergence it would
lead to one huge sorted array of size 109 irrespective of the
crack threshold. In these set of experiments the crack thresh-
old for cracking an array in the JITD structure was varied
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Figure 11: The time required to load and fully organize

a data set relative to data size

from 106 to 109. For each, we performed one thousand point
scans, measuring the total time and computing the average
cost per scan. This figure shows the overhead from handles
— at a crack threshold of 109, the entire array is sorted in a
single step. As the crack threshold grows by a factor of 10,
the depth of the tree increases by roughly a factor of three,
necessitating approximately 3 additional random accesses
via handles rather than directly on a sorted array, and as
shown in the graph, increasing access time by roughly 1 µs.

9 RELATEDWORK

SAIs specifically extend work by Kennedy and Ziarek on Just-
in-Time Data Structures [17] with a framework for defining
policies, tools for optimizing across families of policies, and a
runtime that supports optimization in the background rather
than as part of queries. Most notably, this enables efficient
dynamic data reorganization as an ongoing process rather
than as an inline, blocking part of query execution.
Our goal is also spiritually similar to The Data Calcula-

tor [16]. Like our policy optimizer, it searches through a
large space of index design choices for one suitable for a
target workload. However, in contrast to SAIs, this search
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happens once at compile time and explores mostly homo-
geneous structures. In principle, the two approaches could
be combined, using the Data Calculator to identify optimal
structures for each workload and using SAIs to migrate be-
tween structures as the workload changes.
Also related is a recently proposed form of “Resumable”

Index Construction [2]. The primary challenge addressed
by this work is ensuring that updates arriving after index
construction begins are properly reflected in the index.While
we solve this problem (semi-)functional data structures, the
authors propose the use of temporary buffers.

Adaptive Indexing. SAIs are a form of adaptive index-
ing [8, 14], an approach to indexing that re-uses work done
to answer queries to improve index organization. Exam-
ples of adaptive indexes include Cracker Indexes [12, 13],
Adaptive Merge Trees [9], SMIX [28], and assorted hybrids
thereof [15, 17]. Notably, a study by Schuhknecht et. al. [25]
compares (among other things) the overheads of cracking to
the costs of upfront indexing. Aiming to optimize overall run-
time, upfront indexing begins to outperform cracker indexes
after thousands to tens of thousands of queries. By optimiz-
ing the index in the background, SAIs avoid the overheads
of data reorganization as part of the query itself.

Organization in the Background. Unlike adaptive in-
dexes, which inline organizational effort into normal data-
base operations, several index structures are designed with
background performance optimization in mind. These begin
with work in active databases [29], where reactions to data-
base updates may be deferred until CPU cycles are available.
More recently, bLSM trees [26] were proposed as a form of
log-structured merge tree that coalesces partial indexes to-
gether in the background. A wide range of systems including
COLT [24], OnlinePT [3], and Peloton [23] use workload

modeling to dynamically select, create, and destroy indexes,
also in the background.

Self-Tuning Databases. Database tuning advisors have
existed for over two decades [4, 5], automatically selecting
indexes to match specific workloads. However, with recent
advances in machine learning technology, the area has seen
significant recent activity, particularly in the context of index
selection and design. OtterTune [27] uses fine-grained work-
load modeling to predict opportunities for setting database
tuning parameters, an approach complimentary to our own.

Generic Data Structure Models. More spiritually similar
to our work is The Data Calculator [16], which designs cus-
tom tree structures by searching through a space of dozens of
parameters describing both tree and leaf nodes. A similarly
related effort uses small neural networks [18] as a form of
universal index structure by fitting a regression on the CDF
of record keys in a sorted array.

10 CONCLUSIONS AND FUTUREWORK

In this paper, we introduced SAIs a type of in-memory index
that can incrementally morph its performance characteristics
to adapt to changing workloads. To accomplish this, we for-
malized a composable organizational grammar (cog) and a
simple algebra over it. We introduced a range of equivalence-
and structure-preserving rewrite rules called transforms that
serve as the basis of organizational policies that guide the
transition from one performance envelope to another. We
described a simulation framework that enables efficient opti-
mization of policy parameters. Finally, we demonstrated that
a SAI can be implemented with minimal overhead relative
to classical in-memory index structures.

Our work leaves open several challenges. We have already
identified three specific challenges in Section 7: New atoms,
Atom synthesis, and DAG support. Addressing each of these
challenges would allow cog to capture a wide range of data
structure semantics. There are also several key areas where
performance tuning is possible: First, our use of reference-
counted pointers also presents a performance bottleneck for
high-contention workloads — we plan to explore more ac-
tive garbage-collection strategies. Second, Handles are an
extremely conservative realization of semi-functional data
structures. As a result, SAIs are a factor of 2 slower at con-
vergence than other tree-based indexes. We expect that this
performance gap can be reduced or eliminated by identifying
situations where Handles are unnecessary (e.g., at conver-
gence). A final open challenge is the use of statistics to guide
rewrite rules, both detecting workload shifts to trigger policy
shifts (e.g., as in Peloton), as well as identifying statistics-
driven policies that naturally converge to optimal behaviors
for dynamic workloads.
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A CORRECTNESS OF EXAMPLE

TRANSFORMS

As a warm-up and an example of transform correctness, we
next review each of the transforms given in Figure 4 and
prove the correctness of each.

Proposition 2 (Identity is correct). Let id denote the

identity transform id(C) = C . id is both equivalence preserving
and structure preserving.

Lemma 2 (Sort is correct). Sort is both equivalence pre-

serving and structure preserving.

Proof. For any instance C where typeof(C) , Array,
correctness follows from Proposition 2.
Otherwise C = Array([r1, . . . , rN ]), and consequently

Sort(C) = Sorted(sort([r1, . . . , rN ])). To show correctness
we first need to prove that
D (Array([r1, . . . , rN ])) = D (Sorted(sort([r1, . . . , rN ])))

Let the one-to-one (hence invertable) function f : [1,N ] →
[1,N ] denote the transposition applied by sort.

D (Sorted(sort([r1, . . . , rN ]))) = D
(
Sorted(

[
rf −1(1), . . . , rf −1(N )

]
))

)
=
{��� rf −1(1), . . . , rf −1(N ) ���}
= {| r1, . . . , rN |}

= D (Array([r1, . . . , rN ]))

giving us equivalence preservation. Structure preservation
requires that

[
rf −1(1), . . . , rf −1(N )

]
be in sorted order, which

it is by construction. Thus, Sort is a correct transform. □

Lemma 3 (UnSort is correct). UnSort is both equiva-

lence preserving and structure preserving.

Proof. For any instance C where typeof(C) , Sorted,
correctness follows from Proposition 2.
Otherwise C = Sorted([r1 . . . rN ]) and we need to show

first that D (Sorted([r1 . . . rN ])) = D (Array([r1 . . . rN ])).
The logical contents of both are {| r1 . . . rN |}, so we have
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equivalence. Structure preservation is a given since any
Array instance is structurally correct. □

Lemma 4 (Divide is correct). Divide is both equivalence
preserving and structure preserving.

Proof. For any instance C where typeof(C) , Array,
correctness follows from Proposition 2.
Otherwise C = Array([r1 . . . rN ]) and we need to show

first that

D (Array([r1 . . . rN ])) =

D
(
Concat

(
Array(

[
r1 . . . r ⌊ N

2
⌋ ]),Array([r ⌊ N

2
⌋
+1 . . . rN

]
)

))
Evaluating the right hand side of the equation recursively
and simplifying, we have

=
{���r1 . . . r⌊ N2 ⌋ ���} ⊎ {���r⌊ N2 ⌋+1 . . . rN ���}

=
{���r1 . . . r⌊ N2 ⌋ , r⌊ N2 ⌋+1 . . . rN ���}

= {| r1 . . . rN |} = D (Array([r1 . . . rN ]))

Hence we have equivalence preservation. The Array in-
stances are always structurally correct andConcat instances
are structurally correct if their children are, so we have struc-
tural preservation as well. Hence, Divide is correct. □

Lemma 5 (Crack is correct). Crack is both equivalence

preserving and structure preserving.

Proof. For any instance C where typeof(C) , Array,
correctness follows from Proposition 2.
Otherwise C = Array([r1 . . . rN ]) and we need to show

first that
D (Array([r1 . . . rN ])) =

D
(
BinTree

(
k,Array(

[
ri

�� ri ≺ k
]
),Array(

[
ri

�� k ⪯ ri
]
)
) )

Here k = id (ri ) for an arbitrary i . Evaluating the right hand
side of the equation recursively and simplifying, we have

=
{�� ri �� ri ≺ k

��} ⊎ {�� ri �� k ⪯ ri
��}

=
{�� ri �� (ri ≺ k) ∨ (k ⪯ ri )

��}
= {| r1 . . . rN |} = D (Array([r1 . . . rN ]))

Instances ofArray are always structurally correct. The newly
created BinTree instance is structurally correct by construc-
tion. Thus Crack is correct. □

Lemma 6 (Merge is correct). Merge is both equivalence
preserving and structure preserving.

Proof. For any instanceC thatmatches neither ofMerge’s
cases, correctness follows from Proposition 2. Of the remain-
ing two cases, we first consider

C = Concat(Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

The proof of equivalence preservation is identical to that of
Theorem 4 applied in reverse. In the second case

C = BinTree( _ ,Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

Noting that BinTree( _ ,C1,C2) ≈ Concat(C1,C2) by the
definition of logical contents, the proof of equivalence preser-
vation is again identical to that of Theorem 4 applied in re-
verse. For both cases, structural preservation is given by the
fact that Array is always structurally correct. ThusMerge

is correct. □

Lemma 7 (PivotLeft is correct). PivotLeft is both equiv-

alence preserving and structure preserving.

Proof. For any instanceC thatmatches neither ofPivotLeft’s
cases, correctness follows from Proposition 2. Of the remain-
ing two cases, we first consider

C = Concat(C1,Concat(C2,C3))

Equivalence follows from from associativity of bag union.
D (Concat(C1,Concat(C2,C3))) = D (C1) ⊎ D (C2) ⊎ D (C3)

= D (Concat(Concat(C1,C2),C3))

Concat instances are structurally correct if their children
are, so the transformed instance is structurally correct if
α(C1), α(C2), and α(C3). Hence, if the input is structurally
correct, then so is the output and the transform is structurally
preserving in this case. The proof of equivalence preservation
is identical for the case where

C = BinTree(k1,C1,BinTree(k2,C2,C3)) and k1 ≺ k2

For structural preservation, we additionally need to show:
(1) ∀r ∈ D (C1) : r ≺ k1, (2) ∀r ∈ D (C2) : k1 ⪯ r , (3) ∀r ∈
D (BinTree(k1,C1,C2)) : r ≺ k2, and (4) ∀r ∈ D (C3) : k2 ⪯
r given that C is structurally correct.

Properties (1) and (4) follow trivially from the structural
correctness of C . Property (2) follows from structural cor-
rectness of C requiring that ∀r ∈ (D (C2) ⊎ D (C3)) : k1 ⪯ r
To show property (3), we first use transitivity to show that
∀r ∈ D (C1) : r ≺ k1 ≺ k2. For the remaining records,
∀r ∈ D (C2) : r ≺ k2 follows trivially from the structural
correctness of C . Thus PivotLeft is correct 3 □

Corrolary 2. PivotRight is correct.

B LHS / RHS ARE META TRANSFORMS

Proof. We show only the proof for LHS; The proof for
RHS is symmetric. We first show that LHS is an endofunctor.
The kind of LHS is appropriate, so we only need to show that
it satisfies the properties of a functor. First, we show thatLHS

commutes the identity (id). In other words, for any instance

3Note the limit on k1 ≺ k2, which could be violated with an empty C2.
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C , LHS[id](C) = C . In the case where C = Concat(C1,C2),
then

LHS[id](C) = Concat(id(C1),C2) = Concat(C1,C2)

The case where typeof(C) = BinTree is identical, and
LHS[T ] is already the identity in all other cases. Next, we
need to show that LHS distributes over composition. That
is, for any instance C and transforms T1 and T2 we need that

LHS[T1 ◦T2](C) = (LHS[T1] ◦ LHS[T2]) (C)

If C = Concat(C1,C2), LHS[T1 ◦ T2](C) = Concat(C ′1,C2),
where C ′1 = T2(T1(C1)). For the other side of the equation:

(LHS[T1] ◦ LHS[T2]) (C) = LHS[T2](LHS[T1](C))

= LHS[T2](Concat(T1(C1),C2)

= Concat(T2(T1(C1)),C2)

The case where typeof(C) = BinTree is similar, and the
remaining cases follow from LHS[T ] = id for all other
cases. Thus LHS is an functor. For LHS to be a meta trans-
form, it remains to show that for any correct transform T ,
LHS[T ] is also correct. We first consider the case where
C = Concat(C1,C2) and assume that T (C1) is both equiva-
lence and structure preserving, or equivalently that D (C1) =

D (T (C1)) and StrCor (C1) =⇒ StrCor (T (C1)).

D (LHS[T ](C)) = D (Concat(T (C1),C2))

= D (Concat(C1,C2)) = D (C)

Thus, LHS[T ] is equivalence preserving for this case. The
proof of structure preservation follows a similar pattern

StrCor (LHS[T ](C)) = StrCor (Concat(T (C1),C2))

= StrCor (T (C1)) ∧ StrCor (C2)

Given StrCor (C) = StrCor (C1) ∧ StrCor (C2) and the
assumption of StrCor (C1) =⇒ StrCor (T (C1)), it follows
that LHS[T ] is structure preserving for this C . The proof for
the case where C = BinTree(k,C1,C2) is similar, but also
requires showing that ∀r ∈ D (T (C1)) : r ≺ k under the
assumption that ∀r ∈ D (C1) : r ≺ k . This follows from our
assumption that D (T (C1)) = D (C1). The remaining cases of
LHS are covered under Proposition 2. Thus, LHS is a meta
transform. □

C TARGET UPDATES ARE BOUNDED

Proof. By recursion over T . The atomic transforms are
the base case. By definition id is not in the active domain, so
we only need to consider seven possible atomic transforms.
For Sort or UnSort to be in the active domain, typeof(C)
must be Array or Sorted respectively. By the definition
of each transform, typeof(C ′) will be Sorted or Array re-
spectively By Theorem 2, the active domain of any Array

or Sorted instance is bounded by |A| and by construction,
|WC | = |DC | ≤ |A|. Hence, the total change in theweighted

targets for this case is at most 2 × |A|. Following a similar
line of reasoning, the weighted targets change by at most
4× |A| elements as a result of anyDivide,Crack, orMerge.
Next consider C = Concat(Concat(C1,C2),C3), and conse-
quently C ′ = PivotLeft(C) = Concat(C1,Concat(C2,C3)).
For each transform of the form LHS[LHS[T ]] in the active
domain of C , there will be a corresponding LHS[T ], as C1 is
identical in both paths. Similar reasoning holds forC2 andC3.
Because the policy is local, the weighted targets are indepen-
dent of any LHS or RHS meta transforms modifying them.
Thus, at most, the active domain will lose T and LHS[T ] for
T ∈ A, and gainT andRHS[T ] forT ∈ A, and the weighted
targets will change by no more than 4×|A| elements. Similar
lines of reasoning hold for the other case of PivotLeft and
for both cases of PivotRight. The recursive cases are trivial,
since the weighted targets are independent of prefixes in a
local policy. □
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