
Topology Dependent Bounds For FAQs
Michael Langberg

University at Buffalo

Shi Li

University at Buffalo

Sai Vikneshwar Mani Jayaraman

University at Buffalo

Atri Rudra

University at Buffalo

ABSTRACT
In this paper, we prove topology dependent bounds on the

number of rounds needed to compute Functional Aggregate

Queries (FAQs) studied by Abo Khamis et al. [PODS 2016] in a

synchronous distributed network under the model considered

by Chattopadhyay et al. [FOCS 2014, SODA 2017]. Unlike the

recent work on computing database queries in the Massively

Parallel Computation model, in the model of Chattopadhyay

et al., nodes can communicate only via private point-to-point

channels and we are interested in bounds that work over an

arbitrary communication topology. This model, which is closer

to the well-studiedCONGESTmodel in distributed computing

and generalizes Yao’s two party communication complexity

model, has so far only been studied for problems that are com-

mon in the two-party communication complexity literature.

This is the first work to consider more practically motivated

problems in this distributed model. For the sake of exposition,

we focus on two special problems in this paper: Boolean Con-

junctive Query (BCQ) and computing variable/factormarginals

in Probabilistic Graphical Models (PGMs). We obtain tight

bounds on the number of rounds needed to compute such

queries as long as the underlying hypergraph of the query is

O (1)-degenerate and has O (1)-arity. In particular, the O (1)-
degeneracy condition coversmost well-studied queries that are

efficiently computable in the centralized computation model

like queries with constant treewidth. These tight bounds de-

pend on a new notion of ‘width’ (namely internal-node-width)

for Generalized Hypertree Decompositions (GHDs) of acyclic

hypergraphs, which minimizes the number of internal nodes

in a sub-class of GHDs. To the best of our knowledge, this

width has not been studied explicitly in the theoretical data-

base literature. Finally, we consider the problem of computing

the product of a vector with a chain of matrices and prove

tight bounds on its round complexity (over the finite field of

two elements) using a novel min-entropy based argument.

ACM Reference Format:
Michael Langberg, Shi Li, Sai Vikneshwar Mani Jayaraman, and Atri

Rudra. 2019. Topology Dependent Bounds For FAQs. In Proceedings of

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Conference (Conference’17). ACM, New York, NY, USA, 38 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In this paper, we prove topology dependent bounds on the

number of rounds needed to compute Functional Aggregate

Queries (FAQs) of [39] in a synchronous distributed network

under the model considered by Chattopadhyay et al. [18, 19].

For ease of exposition, we consider the FAQ-SS problem [7, 39,

51] i.e., FAQ with a single semiring (also called Marginalize a
Product Function in [3]), which is a special case of the general

FAQ problem (defined in Section 5). In FAQ-SS, we are given
a multi-hypergraph H = (V, E) where for each hyperedge

e ∈ E we are given an input function fe :

∏
v ∈e Dom(v) → D.

In addition we are given a set of free variables1 F ⊆ V and

our goal is to compute the function:

ϕF (x) =
∑

y∈
∏
v∈V Dom(v):yF =x

∏
e ∈E

fe (ye) (1.0)

for every x ∈
∏

v ∈F Dom(v), where ye and yF are y pro-

jected down to co-ordinates in e ⊆ V for every e ∈ E and F ⊆

V respectively. Further, all the operations are over the com-
mutative semiring2 (D,+, ·) with additive identity 0. As with
database systems, we assume that the functions are given in

listing representation i.e., the function fe is represented as a list
of its non-zero values: Re = {(y, fe (y)) |y ∈

∏
v ∈e Dom(v) :

fe (y) , 0}3.We defineD = maxv ∈V |Dom(v) |,N = maxe ∈E |Re |,

k = |E | and r as the maximum arity among all functions.

Though our results are semiring agnostic, we mention two

special problems that we consider in this paper. The first prob-

lem is when F = ∅ and the semiring is the Boolean semiring
(D = {0, 1},∨,∧). This corresponds to the Boolean Conjunc-
tive Query (which we will call BCQ).

4
The other problem is

when F = e for some e ∈ E and the semiring is (R≥0,+, ·),
which corresponds to computing a factor marginal in Proba-
bilistic Graphical Models (or PGMs) – here we think of fe as

a probability distribution. The FAQ setup (and even FAQ-SS)
encompasses a large class of problems in varied domains. We

refer the reader to the surveys [3, 40] for an overview of these

applications.

1
We would like to mention here that our results hold only for specific choices

of free variables.

2
A triple (D, ⊕, ⊗) is a commutative semiring if ⊕ and ⊗ are commutative

binary operators over D satisfying the following: (1) (D, ⊕) is a commutative

monoid with an additive identity, denoted by 0. (2) (D, ⊗) is a commutative

monoid with a multiplicative identity, denoted by 1. (In the usual semiring

definition, we do not need the multiplicative monoid to be commutative.) (3) ⊗
distributes over ⊕. (4) For any element d ∈ D, we have d ⊗ 0 = 0 ⊗ d = 0.
3
We use function/relation interchangeably for fe /Re but both mean the same.

4F = V over the Boolean semiring is the natural join problem.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

A

B C D E

R
S T

U

H1

A B

C D

E

F

H2

R

P1

S

P2

T

P3

U

P4

G1

R

P1

S

P2

T

P3

U

P4

G2

Figure 1: Two example queries H1 and H2 and two
topologies – “line" G1 and “clique" G2. H2 has hyper-
edges R (A,B,C), S (B,D), T (C, F) andU (A,B,E).

Given a query q =
(
H ,

{
fe

}
e ∈E ,F

)
, we will consider the

number of rounds needed to compute q in a distributed envi-

ronment. In particular, the underlying communication topol-
ogy5 G = (V ,E) is assumed to be a synchronous network

and we would like to compute q on G with the following con-

straints [18, 19]. Initially, all functions

{
fe

}
e ∈E are assigned

to specific nodes K ⊆ V : 1 ≤ |K | ≤ k (called players). In
each round of communication, O (r · log

2
(D)) bits6 can be si-

multaneously communicated on each edge in E (each such

edge or channel is private to the nodes at its endpoints). At

the end of the protocol, a pre-determined player in K knows

the answer to q. Naturally, we would like to design protocols

that minimize the total number of rounds of communication

(rounds hereon) needed to compute q onG . More generally, we

would like to obtain tight bounds depending onH and G for

this problem for every query topologyH and every network

topologyG . Note that we do not take into account the internal
computation done by nodes inG and we assume that all nodes

in V co-operatively compute the answer to q.

1.1 Why this distributed model?
We believe that the strength of our model is its generality.

Specifically, it captures query computation in three different

paradigms, namely: (1) Computing the natural join query in

the Massively Parallel Computation (MPC) model [2, 9, 10,

37, 45, 46], (2) Computing join and aggregation queries for

sensor networks [13, 25, 50] and (3) Computation of FAQs

on arbitrary topologies using software defined networks and
optical reconfigurable networks like ProjecToR [27]. Before

we discuss these in detail, we would like to mention that the

CONGESTmodel in distributed computing has the same setup

as ours [54] with one crucial difference. Unlike our case, where

we can compute FAQs on any topology in the CONGEST

5
Note that this is distinct from H and is just a simple graph: see Figure 1 for an

example illustrating this difference.

6
This is a natural choice since any tuple in any function can be communicated

with at mostO (r · log
2
(D)) bits. Our bounds seamlessly generalize to the cases

when each edge – (1) can transmit B , r · log
2
(D) bits and (2) has a different

capacity, but for ease of exposition, we will not consider that generalization in

this paper.

model, the topologies for computing a fixed FAQ typically

depend on the query itself.

The sequence of works in the MPC setting focus on comput-

ing the natural join q (which is a special case of FAQ-SS as

mentioned earlier) on a topology G (with p nodes/servers),

which is typically well-connected. Each round of communi-

cation has two phases – (1) internal computation among the

nodes and (2) communication between the nodes bounded by

a node capacity L. The goal in MPC is to minimize the number

of rounds h needed for computing q. There are two different

lines of work in this regime – one where p is fixed and the

goal is to determine h,L [9, 10, 45, 46] and the other is when

h,L are fixed and the goal is to determine p [2]. We compare

both these classes of models with ours in the full paper [47]

and present an executive summary here.

Roughly speaking, the MPC model defined in [9] is a special

case of our model. Moreover, for the case whenH is a star, our

generic protocols obtain the same guarantees as the one in [9,

10] up to a constant factor. We consider two different MPC

models – one with no replication (which we call MPC(0) [9])
and one with replication (which we dub MPC(ϵ) [2, 45]). Both
these models have some differences from ours and among

themselves. For instance, both these models assume a specific

network topology G ′ (as opposed to any topology G in our

case), work on node capacities L (as opposed to edge capacities

in our setting) and prove bounds for the natural join problem

(in contrast, our bounds apply for the more general FAQ).

The input functions are systematically assigned to players

in MPC(0) and are uniformly distributed among players in

MPC(ϵ). The instantation of thesemodels for the settingwhere

p is fixed andh,L is to be determined is the closest to ourmodel.

In particular, whenH is a star, our protocols obtain the same

guarantees as MPC(0) and are slightly worse in MPC(ϵ). Our
model does not (yet) handle the scenario when L is fixed and

the goal is to determine p.
Sensor networks are typically tree-like topologies, where the

goal is to efficiently and accurately report aggregate queries

on data generated by the sensors. Since the sensors can store

only little data, these queries are typically restrictive. We

show in the full paper [47] that our results imply bounds for

some of these queries. Recently, Internet of Things (IoT) de-

vices [1] show the promise of expanding the data storage/class

of queries that can be computed on sensor networks. We be-

lieve that our model/results will find more relevance in the

IoT setting since the sensors used posess more computation

power than those considered in [50]. Finally, our work ini-

tiates the study of computation on general topologies to be

used in emerging technologies like ProjecToR [27], which has

been proposed for use in data centers where topologies can

be changed based on the workload.

1.2 Summary of Our Contributions
Table 1 lists our results and Section 2 contains a detailed

overview of techniques used to obtain the results. We summa-

rize our contributions here. For the sake of brevity, we focus

on the BCQ problem. Our main result is the following. For

2

(hyper)graphsH with constant degeneracy
7
(d) and constant

arity (r), we prove tight bounds (up to constant factors) for

computing any BCQ on any network topology G. Constant
treewidth implies constant d and, as a result, queries having

constant d encompass most well-studied queries that are effi-

ciently computable in the centralized computation model.

Upper Bound. Our upper bound needs protocols for solving

the following two basic algorithmic tasks: (1) set intersection
and (2) sending all inputs to a single node. For (1), our protocol
is new in the FAQ literature and for (2), we use a standard pro-
tocol from flow networks. Interestingly, our results highlight

a notion of width of acyclic queries– the number of internal

nodes for a subclass of GHDs
8
(defined in Section 2.2.2), which

to the best of our knowledge, has not been explicitly studied

in the database literature.

Lower Bound. Our lower bounds follow from known lower

bounds on the (well-studied) TRIBES function in two-party

communication complexity literature (defined in Section 2.2.2).

At a high level, we start with an arbitrary TRIBES instance

and show that it can be reduced to a suitable BCQ problem in

our model. We then prove lower bounds for the corresponding

BCQ problem using known lower bounds on TRIBES.

We note here that the simplicity of our techniques allows

us to extend our results to the general FAQ problem. Fur-

ther, we would like to mention that extending our bounds to

d-degenerate graphs with non-constant d has a known bot-

tleneck of solving BCQ ofH on G whenH is a clique and G
is an edge. In particular, the gaps dependent on d in Table 1

cannot be resolved without addressing this bottleneck.

Finally, we consider the following FAQ-SS problem of Chain

Matrix-Vector Multiplication (MCM): computing Ak · Ak−1
·

. . . · A1 · x, where each player gets x,A1, . . . ,Ak in order and

they would like to compute the product over the finite field

F2.
9
Note that this problem is different from the well-known

Online Matrix Vector Multiplication problem
10

and is related

to k layer neural networks
11
. We prove a tight bound for

this problem. The upper bound is simple but the lower bound

argument (though conceptually simple), is technically themost

involved part of the paper. We use an entropy-based argument

using min-entropy instead of the standard Shannon’s entropy.

This requires more care since we can no longer use the chain

rule.

2 OUR MODEL AND DETAILED
OVERVIEW OF OUR RESULTS

In this section, our goal is to provide a walkthrough of our

results and techniques used to prove them. We start with

a formal definition of our model. Then, we illustrate, with

examples, our results for the case whenH has arity at most

two and subsequently, our new notion of width for GHDs. We

7
Degeneracy is defined as the smallest d such that every sub(hyper)graph in

H has a vertex of degree at most d .
8
An internal node is a non-leaf nodes in a GHD.

9F2 has two elements: the additive identity 0 and multiplicative identity 1.
Addition, and Multiplication are all modulo 2.

10
We illustrate this difference in the full paper [47].

11
In neural networks, a non-linear function is applied after each matrix-vector

multiplication and the multiplication is over reals instead of F2 .

Query G d, r Gap Ref

FAQ L O (1), O (1) Õ (1) Thm 5.1

FAQ A O (1), O (1) Õ (1) Thm 5.1

BCQ A d, 2 Õ (d) Thm 4.1

FAQ A d, r Õ (d2r 2) Thm 5.2

MCM* L 1, 2 O (1) Sec 6

Table 1: The first and second columns denote the query that
we compute and topology on which the query is computed. In
the second column, L denotes a line andA denotes an arbitrary
G . The third column denotes the degeneracy (Definition 3.3)
and arity conditions (d, r). The fourth column denotes the gap
between our upper and lower bounds ignoring polylogarith-
mic factors in N and G (denoted by Õ). The final column de-
notes the relevant result in this paper. Note that all our results
except MCM (denoted by a ‘*’) assume worst-case assignment
of functions in the Query to nodes in G .

conclude this section with our results on Chain Matrix-Vector

Multiplication (MCM).

2.1 Our Model
We first define our model.

Model 2.1. We are given a query q, its underlying hypergraph
H = (V, E) with input functions fe (having at mostN non-zero
values) for every e ∈ E and a topologyG = (V ,E). Further, each
function is completely assigned to a unique node in V . It follows
that there exists a subset K : K ⊆ V that contains the players
with functions and |K | ≤ k = |E |. We assume N ≥ |V (G) |2 and
consider worst-case inputs for the functions.
We would like to compute BCQ (and more generally an FAQ)
of H on G. To design a protocol for this computation, we as-
sume that every node in G has the knowledge of H and G. In
each round of the protocol, at most O (r · log

2
(D)) bits can be

communicated over every edge in E. In particular, this implies
any subset of edges in G can communicate in the same round.
Further, at the end of the protocol, a pre-determined player in K
has the answer to q.
Finally, given the above setup, our goal is to design protocols
that minimize the total number of rounds needed to compute q
assuming worst-case assignment of the functions to players inG .
Note that we do not take into account the internal computation
done by nodes in G and we assume that all nodes are always
available in V (i.e., node failures do not happen) and they co-
operatively compute the answer to q.

We prove both upper and lower bounds on the total number of

rounds needed to compute q onG for every query hypergraph

H and every topology G. While our upper bounds hold for

any assignment of input functions to players in G, our lower
bounds hold for a specific class of worst-case assignments

of input functions to players in G. In Section ??, we further
discuss the assumptions onH and G in the above model.

Before we move to our results for the case whenH has arity

at most two, we would like to point out that our bounds do not

assume that the size of q is negligible compared to N , which is

a standard assumption for computing database queries. Thus,

our results are more general and in particular, for applications

3

in PGMs, this is necessary since the size ofq cannot be assumed

as negligible w.r.t. N .

R

P1

S

P2

T

P3

U

P4

W1

R

P1

S

P2

T

P3

U

P4

W2

(A,B,C)

(B,D) (C, F) (A,B,E)

T1

(A,B,C) (B,D)

(C, F)(A,B,E)

T2

Figure 2: Two directed pathsW1 andW2 for G2 and two
GHDs T1 (with 1 internal node) and T2 (with 2 internal
nodes) both rooted at (A,B,C) for H2. G2 and H2 are in
Figure 1.

2.2 Arity Two
We consider the case whenH has arity at most two and illus-

trate our upper and lower bound techniques through examples.

2.2.1 Upper Bounds. We start with a trivial protocol to com-

pute any queryH on anyG. We then show how to improve

upon it whenH has a special structure. We use two extremal

instances of G for an easy exposition of our results – a line

(least connectivity) and a clique (full connectivity). We refer

the reader to Figure 1 for all examples (exceptH0) considered

in this section.

Trivial Protocol. There is always a trivial protocol to solve any

queryH on any G in which all players send their functions

to one designated player who then computes the answer.

. We consider the topologiesG1 andG2 from Figure 1. We first

start by computing a toy queryH0 on G1.

Example 2.1. Consider the query hypergraph H0 = (V =

{A}, E = {R (A), S (A),T (A),U (A)}) i.e., all edges are self-loops
on A and the line G1. We would like to solve BCQ of H0 on

G1, which in Datalog format is q0 () : −R (A), S (A),T (A),U (A).
In G1, player P1 gets R, P2 gets S , P3 gets T and P4 gets U .

Then, solving BCQ of H0 on G1 is equivalent to checking if

the set-intersection R (A) ∩ S (A) ∩T (A) ∩U (A) is empty. Let’s

assume that player P4 needs to know the answer for this query.

We can solve this query in N + 2 rounds as follows. In the first

round, player P1 sends a value a ∈ Dom(A) such that there

exists R (a) = 1 to player P2 who then checks if S (a) = 1. More

generally, in the i-th round, player Pj for 2 ≤ j ≤ 4 receives an

a from its left neighbor (j − 1) and checks if a is present in its

table. If so, it passes a to its right neighbor (j + 1) (if j ≤ 3) in

the next (i + 1)-th round. Otherwise, it does not pass anything.

Notice that this protocol will terminate once all matching

values of a are passed from P1 to P4 which takesN+2 rounds in

the worst case. In other words, we are computing the semijoin

(see Definition 3.5) query ((R (A) ⋉ S (A)) ⋉ T (A)) ⋉ U (A),
which is equivalent to computing R (A) ∩ S (A) ∩T (A) ∩U (A).
Note that this is much better than the trivial protocol for this
case, which takes 3 · N + 2 rounds.

At the end of this protocol, P4 knows the answer to the query.

It is not too hard to see that we can extend the above protocol

to the case when any other player say Pi for some i ∈ [3] is

designated to know the answer. In particular, we can orient

G1 in such a way that all paths are directed towards Pi and
then run the protocol above simultaneously on all paths (there

are at most two) towards Pi (recall that we assume knowledge

of G for all nodes). Note that Pi would have the answer to the

query and the new protocol takes N + x rounds, where x ≤ 2

depends on the choice of Pi .

It is not too hard to see that our protocol in the above example

can be extended to the case when H is a star. We illustrate

this in the following example.

Example 2.2. Consider the starH1 and the lineG1 in Figure 1.

We would like to solve BCQ ofH1 onG1, which in Datalog for-

mat is q1 () : −R (A,B), S (A,C),T (A,D),U (A,E). In G1, player

P1 gets R, P2 gets S , P3 getsT and P4 getsU . Then, BCQ ofH1

is 1 iff πA (R) ∩ πA (S) ∩ πA (T) ∩ πA (U) is non-empty and 0

otherwise. HEre, πA (·) denotes the projection onto attribute

A. We assume P2 needs to know the answer for this query.

We can solve this query in N + 2 rounds using the same pro-

tocol as in Example 2.1. In other words, we are computing the

semjoin query
12 ((πA (R) ⋉ πA (S)) ⋉ πA (T)) ⋉ πA (U). Note

that each node needs to compute πA (·) internally for this com-

putation but this doesn’t need any communication between

the nodes. At the end of this protocol, P2 knows the answer

to the query.

We now show how to do the same computation (i.e., BCQ of

H1) on G2.

Example 2.3. Consider the star H1 and the clique G2 in Fig-

ure 1. We would like to compute BCQ ofH1 on G2, which in

Datalog format is same as q1 from Example 2.2. In G2, player

P1 gets R, P2 gets S , P3 gets T and P4 gets U . We assume that

Dom(A) is split into two halves and P2 needs to know the

answer for this query.

We can solve this query in
N
2
+2 rounds as follows.We consider

the two edge-disjoint directed pathsW1 andW2 (see Figure 2)

onG2 that end with P2. Our protocol from Example 2.2 runs on

both these paths simultaneously with one caveat – the values

of a in the first half of Dom(A) are sent throughW1 and the

ones in the second half of Dom(A) are sent throughW2. Since

both these directed paths involve the same set of nodes, our

protocol is valid and takes only
N
2
+2 rounds as claimed above.

Note that this is better than our bound in Example 2.2.

The protocols in Examples 2.2 and 2.3 can be generalized to

solve any starH on anyG . Given the protocol for a star, there

12
We would like to mention that casting the computation of BCQ on a star

query as a semijoin is well-known [42].

4

is a natural extension to H being a tree (or more generally

a forest): we handle all the stars of the tree in a bottom-up

fashion (starting with the stars at the "end" of the tree) and

recurse. In particular, we can apply our protocol for the star

case as a black-box on each of these stars. To extend this result

to general d-degenerate graphsH , we first decomposeH into

a forest and a core that contains the roots of all trees in the

forest and all remaining vertices not in the forest. We run the

above protocol on the forest and use the trivial protocol on the

core. For general G, note that we need to find optimal ways

of applying these protocols – for the forest part, we extend

the idea of a paths packing from Example 2.3 to a Steiner

tree (Definition 3.8) packing and for the trivial protocol, we use
standard ideas from network flows (Definition 3.12). We would

like to mention here that our upper bounds hold even when

more than one function is assigned to a player (i.e., |K | < k).
We will crucially exploit this fact in our lower bounds. We

present more details in Section 4.1.

We are now ready to talk about our lower bounds.

2.2.2 Lower Bounds. All our lower bounds follow fromknown

lower bounds on the (well-studied) TRIBES function (see [18]

and references therein) in two-party communication complex-

ity literature. To this end, we first consider an arbitraryTRIBES

instance of a specific size and show that it can be reduced to

a suitable two-party BCQ instance. In particular, solving the

two-party BCQ instance (we constructed) indeed solves the

TRIBES instance (we started with). Thus, known lower bounds

on TRIBES implies lower bounds for BCQ. Finally, we gener-

alize our results from the two-party setting to generalG using

ideas from graph theory and exploit the fact that our (upper

and) lower bounds are for worst-case input functions and

worst-case assignments of input functions to players in G.
We start by defining the two-party communication complexity

model as a special case of Model 2.1.

Model 2.2. Consider two players Alice (a) and Bob (b) on a
graphG = (V = {a,b},E = {(a,b)}) with strings X̄ = (X1, . . . ,Xm)
and Ȳ = (Y1, . . . ,Ym), where Xi ,Yi ∈ {0, 1}N . Further, Alice
gets X̄ , Bob gets Ȳ and both have knowledge of only their in-
puts. The goal for these two players is to compute the boolean
function f (X̄ , Ȳ) :

(
{0, 1}m ·N , {0, 1}m ·N

)
→ {0, 1}. The ran-

domized two-party communication complexity of computing
f , denoted by R (f (X̄ , Ȳ),G, {a,b}), is defined as the minimum
worst-case number of rounds13 needed by a randomized protocol
that deterministically computes f (X̄ , Ȳ) with error at most 1

3
.

We would like to mention that considering the randomized

two-party communication complexity over its deterministic

counterpart makes our lower bounds only stronger. We define

TRIBES and state the lower bound result that we will use in

arguments.

Theorem 2.3 (Jayram et. al [36]). Let TRIBESm,N (X̄ , Ȳ) ≡∧m
i=1

DISJN (Xi ,Yi), where DISJN (Xi ,Yi) is 1 if Xi ∩ Yi , ∅

and 0 otherwise, Xi ,Yi ∈ {0, 1}N for every i ∈ [m] and X̄ =

13
In each round, we assume at most one bit is sent from a to b instead of

O (log
2
(r · D)) bits to be consistent with the two-party communication com-

plexity literature.

(X1, . . . ,Xm), Ȳ = (Y1, . . . ,Ym). Note that in the two-party
model, Alice gets X̄ and Bob gets Ȳ . Given this setup, we have

R
(
TRIBESm,N (X̄ , Ȳ),G, {a,b}

)
≥ Ω(m · N).

We start with an arbitrary TRIBES instance TRIBESm,N (X̄ , Ȳ)
of a suitable size and show that it can be reduced to a suitable

two-party BCQ instance BCQH ,X̄ ,Ȳ . Note thatm is a function

ofH . In particular, such a reduction would imply

R
(
BCQH ,X̄ ,Ȳ ,G, {a,b}

)
≥ R

(
TRIBESm,N (X̄ , Ȳ),G, {a,b}

)
≥ Ω(m · N),

where the final inequality follows fromTheorem 2.3. The above

inequality implies the following since we consider worst-case

input functions for a fixedH .

Corollary 2.4.

R
(
BCQH ,N ,G, {a,b}

)
≥ R

(
BCQH ,X̄ ,Ȳ ,G, {a,b}

)
,

where BCQH ,N denote the class of problems where all functions
inH have size at most N .

We generalize the above result to anyG using ideas from graph

theory. We consider an appropriate cut C = (A,B) of G that

partitions V into two vertex-disjoint subsets A and B and a

correponding assignment, where each function e ∈ E (H) is
assigned to a node in either A or B. Since this is a valid assign-
ment of functions inH to players inG , the minimum number

of rounds needed to compute an instance of BCQH ,N on G
assuming worst-assignments of functions to players in K , de-

noted byR
(
BCQH ,G,K

)
, is at leastR

(
BCQH ,X̄ ,Ȳ ,G, {a,b}

)
.

We reconsiderH1 and G1 from Example 2.2 here.

Example 2.4. Recall we proved an upper bound of N + 2 for

computing BCQ of H1 on G1. We start with an arbitrary

TRIBESm=1,N (X̄ = (X1), Ȳ = (Y1)) instance. With a slight

abuse of notation, we treat X1,Y1 as subsets of [N] (instead

of elements in {0, 1}N). We now construct a corresponding

BCQH1,X̄ ,Ȳ instance from the TRIBES one as follows – we

assign R (A,B) = X1 × {1}, S (A,C) = T (A,D) = [N] × {1} and

U (A,E) = Y1 × {1}. It is not too hard to see that BCQH1,X̄ ,Ȳ
is 1 iff TRIBES1,N (X̄ , Ȳ) is 1, implying that solving the BCQ

instance would solve the TRIBES instance. Finally, to obtain

a lower bound for computing BCQH1,X̄ ,Ȳ on the line G1, we

only need a cut where R andU are on different sides. We con-

sider the cut C = ({P1, P2}, {P3, P4}) of G1 and the assignment

where P1 gets R, P2 gets S , P3 gets T and P4 gets U . Then, we

can use Lemma 2.4 and Theorem 2.3 to obtain the required

lower bound of Ω(N). It’s not too hard to see that the above

lower bound holds for any starH . The same TRIBES instance

can be used for Examples 2.1 and 2.3 as well. While a simi-

lar assignment holds for Example 2.1, Example 2.3 requires a

slightly different assignment since we use a different cut.

For general d-degenerate graphsH , we start by recalling that

m (i.e., size of the TRIBES instance) is a function of H . As

mentioned in Section 2.2.1, we can decomposeH into a forest

and a core. We prove three different lower bounds onH , where

the size of the TRIBES instancem used in our reduction is the

maximum of three different bounds, each one on a different

part ofH . The first one is onH ’s forest part, the second and

5

third ones are onH ’s core part – lower bounded by applying

Moore’s bound [5] and Turan’s theorem [6] respectively. Note

that this covers Step 1 and later we show functional equiva-

lence with a corresponding BCQ instance onH covering Step
2. Finally, for general G in Step 3, we use ideas from [18] to

obtain an appropriate cut for G and use lower bounds from

the induced two-party communication complexity problem

across the cut. Note that the assignment of functions depends

on the cut. We present the details in Section 4.2.

For constant d , our upper and lower bounds match. However,

for non-constant d , we have a gap of Õ (d). We would like to

note that there is a fundamental bottleneck in getting rid of

this factor as the case ofH being a clique is an outstanding

open question
14

(even in Model 2.2) and seems beyond the

reach of current communication complexity techniques [16].

2.3 Notion of Width
We start by defining the notion of GHDs and acyclic (hy-

per)graphs.

Definition 2.5 (GHD). A GHD of H = (V, E) is defined
by a triple ⟨T , χ , λ⟩, where T = (V (T),E (T)) is a tree, χ :

V (T) → 2
V is a function associating a set of vertices χ (v) ⊆

V to each node v of T , and λ : V (T) → 2
E is a function

associating a set of hyperedges to each node v of T such that
the following two properties hold. First, for each e ∈ E, there is
at least one node v ∈ V (T) such that e ⊆ χ (v) and e ∈ λ(v).
Second, for every V ′ ⊆ V , the set {v ∈ V (T) |V ′ ⊆ χ (v)} is
connected in T , called the running intersection property (RIP
hereon). We only consider rooted GHDs.
A reduced-GHD has the additional property that every hyper-
edge e ∈ E has a unique node v ∈ V (T) such that χ (v) = e
(note that this is an equality).

Definition 2.6 (Acyclicity). A hypergraph H = (V, E) is
acyclic iff there exists a GHD (T , χ , λ) in which for every node
v ∈ V (T), χ (v) is a hyperedge in E.

We now define the sub-classes of reduced-GHDs that we con-

sider in this paper. In particular, we construct reduced-GHDs

using the GYO-Elimination order [31, 59, 66] and call them

GYO-GHDs. We start by defining the GYO-reduction of a hy-

pergraphH .

Definition 2.7 (GYO-reduction). For any hypergraphH , the
GYO-reduction is defined as the leftover hypergraph after run-
ning the GYO algorithm (GYOA) [31, 59, 66] onH . For acyclic
hypergraphsH , the GYO-reduction results in an empty hyper-
graph.

We now define C(H) and F(H) based on the GYO-reduction
ofH .

Definition 2.8 (C(H), F(H)). C(H) is the union of the GYO-
reduction ofH and all roots in the forest of acyclic hypergraphs
generated by running GYOA onH . F(H) is the output generated
by running GYOA onH minus C(H).

We are now ready to construct GYO-GHDs.

14
We state this problem formally in the longer version.

Construction 2.9. Let T be the GYO-GHD be obtained from
this procedure.We define the root r ′ ofT with χ (r ′) = V (C(H)).
For each edge e ∈ E with e ⊂ V (C(H)), we create a new node
v ′e in T with χ (v ′e) = e and add the edge (r ′,v ′e) to T in order
to make it a reduced-GHD. Note that we do not enforce any
constraints on the remaining edges in T as long as it remains a
valid GHD.

We argue that the above procedure produces a reduced-GHD

in the full paper [47]. Our new notion of width based on GYO-

GHDs, which we call y (Internal Node Width), is defined as

follows.

Definition 2.10.

y (H) = min

∀T :T is a GYO-GHD of H
y (T)

where y (T) is the number of internal/non-leaf nodes in T .

Unless specified otherwise, in the rest of the paperwhen
we refer to GHDs, we are referring to GYO-GHDs. As an
example in Figure 2, we consider two different GHDs T1 and

T2 for the acyclic hypergraphH2 from Figure 1. Both are out-

comes of Construction 2.9 and while T2 has two internal nodes,

T1 has only one, implying y (H) = 1. ForH1 in Figure 1, it is

easy to construct a GHDwith one internal node (i.e.,y (H) = 1)

by keeping (A,B) as the root and (A,C), (A,D), (A,E) as leaves.
We show how this can be achieved for simple graphs H in

Section 4.

2.4 Chain Matrix-Vector Multiplication
Finally, in this work, we consider the problem of computing

Ak · · ·A1x where the computation is over F2. The player Pi
getsAi for i ∈ [k] and P0 gets x. Player Pk+1

wants to know the

answer (and does not have any input). The topologyG is a line

with Pi connected to Pi+1 for 0 ≤ i ≤ k . We show that when

k ≤ N the natural algorithm that computes the partial product

Ai · · ·A1x at Pi taking Θ(kN) rounds is indeed optimal. By

contrast, if the matrices are assigned randomly to the players

then the optimal number of rounds is Θ(k2N) (this follows
from a trivial protocol). On the other extreme, if all matrices

are assigned to one player, then the problem is trivial. So we

are proving a tight lower-bound for arguably the simplest

assignment of matrices to players that is not trivial.

We note that the existing technique of [18] cannot prove a

lower bound better than Ω(N) for this problem (see the full pa-

per [47] for a more detailed description). To get a better lower

bound of Ω(kN), we use an entropy based inductive argument

to show that at end of the Ω(iN) rounds, in player Pi ’s view,
Ai−1 · · ·A1x has very high entropy. However, Shannon’s en-

tropy is too weak for this argument to go through and we use

the stronger notion of min-entropy, which is omnipresent in

pseudorandomness and cryptography [62]. Unfortunately, this

means that we can no longer appeal to the chain rule and the

arguments become a bit more delicate. Finally, in the process

we prove the following natural result: if A and x have high

enough min-entropy, then Ax has higher min-entropy than

6

x. To the best of our knowledge this result is new, though it

follows by combining known results in pseudorandomness.
15

3 PRELIMINARIES AND NOTATION
Query (Hyper)graphH .

Definition 3.1 (n2 (H)). Using Construction 2.9, we can de-
compose anyH into a core C(H) and a forest F(H). We define
n2 (H) = V (C(H)).

Definition 3.2 (Degree). The degree of a vertex v ∈ H is
given by ���{e ∋ v : e ∈ E}���.

Definition 3.3 (d-degenerate (hyper)graph [43]). In a d-
degenerate (hyper)graph every sub(hyper)graph has a vertex of
degree at most d .

We now define natural join and semijoin.

Definition 3.4 (Natural Join). The join J = ▷◁
e ∈E

Re is a

relation J with attribute setV (H) satisfying the following condi-
tion (where ▷◁ denotes the join operator). A tuple t ∈ J iff for every
e ∈ E (H), the projection of t onto attributes in v (e) - denoted
by πv (e) (t) - belongs to Re . Note that J ⊆

∏
v ∈V (H) Dom(v).

Definition 3.5 (Semijoin). A semijoin J ′ = R1⋉R2 of relations
R1 and R2 is defined as J ′ = R1 ▷◁ πattr(R1)∩attr(R2) (R2), where
attr(·) denotes the attribute set of the relations and ⋉ is the
semijoin operator.

We show in the full paper [47] that natural join and semijoin
are special cases of FAQ .

Network Topology G. We define some standard graph no-

tions that will be used throughout the paper.

Definition 3.6 (MinCut(G,K)). We denote the size of the
minimum cut of G separating vertices in K by MinCut(G,K).

Definition 3.7 (Star Graph). A star is a tree on n vertices
with one internal node and n − 1 leaves (e.g.H1 in Figure 1).

Definition 3.8 (Steiner tree). Given a graphG = (V ,E)
and a set of nodes K ⊆ V , we call a tree T a Steiner tree if it
connects all vertices in K only using edges in E.

In particular, we are interested in Steiner trees with diame-

ter at most ∆ (i.e., distance between any two nodes in K). Let
T∆,K denote the set of all such Steiner trees.

Definition 3.9 (ST(G,K ,∆)). ST(G,K ,∆) denotes the max-
imum number of edge disjoint Steiner trees from T∆,K in G.

We will need this result:

Theorem 3.10 ([48]). ST(G,K , |V (G) |) = Ω(MinCut(G,K)).

Finally, we state a recent result under Model 2.1 on set-

intersection queries over any topology G and any subset of

players K ⊆ V : |K | ≤ k , which we will use frequently in our

arguments.

15
We thank David Zuckerman for showing us the high level proof idea of this

result.

Theorem 3.11 ([18]). Let xu ∈ {0, 1}N for every player u ∈ K .
The number of rounds taken by a protocol that deterministically
computes

∧
u ∈K xu (where the ∧ is bit-wise AND) is given by

Θ
(
min∆∈[|V |]

(
N

ST(G,K,∆) + ∆
))
.

We will use the following notation for a special case of a multi-

commodity flow problem:

Definition 3.12. For every graph G, subset of players K and
integer N ′ ≥ 0, let τMCF (G,K ,N

′) be the minimum number of
rounds needed to route N ′ log

2
(N ′) bits from all players in K

to any one player in K .16

Let the minimum number of rounds taken by a protocol

to determinstically compute BCQ of H on G be denoted by

D (BCQH ,N ,G,K), where each function inH has size at most

N and is assigned to some player inK ⊆ V , |K | ≤ k . The trivial
protocol along with Definition 3.12 implies the following.

Lemma 3.13.

D (BCQH ,N ,G,K) = O (τMCF (G,K ,k · r · N)) .

3.1 Asymptotic Notation
For notational clarity, in our lower bounds, we will ignore the

factor log
2
(N) · log

2
(MinCut(G,K)) · log

2
(n2 (H)). Further,

we ignore these factors while arguing for the tightness of our

bounds, which we denote by Ω̃(·), Õ (·) and Θ̃(·).

4 H IS A DEGENERATE SIMPLE GRAPH
In this section, we consider the class of queries BCQH ,N for

a given d-degenerate graphH with arity r at most two and

all functions have size at most N . We prove upper and lower

bounds that are tight within a factor of Õ (d) for computing

any query in BCQH ,N . The following is our main result.

Theorem 4.1. For arbitrary topology G, subset of players K
and d-degenerate simple graphH , we have

D (BCQH ,N ,G,K) = O

(
y (H) · min

∆∈[|V |]

(
N

ST(G,K ,∆)
+ ∆

))
+O (τMCF (G,K ,n2 (H) · d · N)) . (1.1)

Further, for all simple graphsH , we have

R (BCQH ,N ,G,K) ≥ Ω̃

(
y (H) · N

MinCut(G,K)

)
+Ω̃

(
n2 (H) · N

MinCut(G,K)

)
.

(1.2)

We would like to point out that our upper bound holds for

every assignment of the functions fe to players in K while

our lower bound holds for some assignment of functions to

players in K . We first prove the upper bound (1.1), followed

by the lower bound (1.2). Finally, we argue how our bounds

are tight within a gap of Õ (d).

4.1 Upper Bound
We first consider the case whenH is a star, which will be a

basic building block for our algorithms for generalH .

16
Here, we will consider the worst-case over all possible ways the N ′ log

2
(N ′)

bits are distributed over K . While our upper bounds can be smaller than this,

we use this worst-case measure to simplify our bounds.

7

4.1.1 H is a star. Let P = (v0,v1, . . . ,vk) be the vertices

of the star with v0 as it’s center. In this case, H includes

k relations of the form Rv0,vi for every i ∈ [k]. Note that

computing the corresponding BCQ query q can be solved via

a set-intersection problem where we compute R′P =
⋂k
i=1

R′vi ,
where R′vi = {a0 |(a0,ai) ∈ Rv0,vi for some ai ∈ Dom(vi)}. It
is easy to see that the final output of q is 1 if R′P , ∅ and 0

otherwise. We can solve the resulting set intersection problem

using Theorem 3.11 to compute R′P . The procedure to compute

R′P is described in Algorithm 1, which when combined with

the fact that at most O
(
log

2
(D)

)
bits can be communicated

in each round, implies the following result.

Corollary 4.2. When H is a star, for arbitrary graphs G
and subset of players K , we have

D (BCQH ,N ,G,K) = O

(
min

∆∈[|V |]

(
N

ST(G,K ,∆)
+ ∆

))
.

For the case when G is a line with k vertices, note that

ST(G,K ,∆) = 0 for every ∆ > k − 1 and ST(G,K ,k − 1) = 1,

which in turn implies the following.

Corollary 4.3. Let H be a star and G be a line with k
vertices. Then

D (BCQH ,N ,G,K) = O (N + k).

Note that the above result is a generalization of Example 2.2.

Algorithm 1 Algorithm for Star

1: Input: A star query with attributes P = (v0, . . . , vk) and rela-

tions {R (v0,vi) : i ∈ [k]}. Note that v0 is the center.

2: Output: R′P
3: Each player containing a relation Rv0,vi computes R′vi =
{a0 |(a0, ai) ∈ Rv0,vi ∃ai ∈ Dom(vi) }, ∀i ∈ [k] internally.

4: R′P =
⋂k
i=1

R′vi is computed using Theorem 3.11.

5: return R′P

4.1.2 H is a forest. We now use the above idea to obtain

upper bounds for the case whenH is a forest.

Lemma 4.4. For arbitraryG , subset of playersK andH being
a forest, we have

D (BCQH ,N ,G,K) = O

(
y (H) · min

∆∈[|V |]

(
N

ST(G,K ,∆)
+ ∆

))
.

(1)

Proof Sketch. We keep removing stars from trees in H

in a bottom-up fashion and solve the induced query on each

removed star using Algorithm 1. Since the number of stars we

remove in this process is y (H), the stated bound follows. The

details are in the full paper [47]. □

4.1.3 The general case: d-degenerate graphs. We now state

our upper bound whenH is a d-degenerate simple graph:

Lemma 4.5. For arbitrary G, subset of players K , and any
d-degenerate simple graphH , we have

D (BCQH ,N ,G,K) = O

(
y (H) · min

∆∈[|V |]

(
N

ST(G,K ,∆)
+ ∆

))
+O (τMCF (G,K ,n2 (H) · d · N)) . (2.1)

Proof Sketch. We decompose H into two components

via Construction 2.9 – forest (F(H)) and core (C(H)). We then

use Lemma 4.4 to solve the induced query on F(H). For the
core, we use the trivial protocol of sending all the remaining

relations to one player. The details are in the full paper [47].

□

4.2 Lower Bound
We start with an overview, followed by lower bounds for the

case whenH is a forest and conclude with lower bounds for

all simple graphsH .

4.2.1 Overview. As we showed in Section 2.2.2, we start by

considering an arbitrary TRIBES instance of size m where

m is a function of H . We then construct a corresponding

BCQ instance from it (Step 1) and show that solving the BCQ

instance (we constructed) indeed solves the TRIBES instance

(Step 2). We denote Steps 1 − 2 succinctly by TRIBESm,N ≤

BCQH ,N . Finally, since our lower bounds are for worst-case

assignment of functions to players in G, we show a specific

assignment of functions to players that would help us achieve

the required lower bound (Step 3).

4.2.2 H is a forest. We prove the following lemma.

Lemma 4.6. WhenH is a forest, we have

TRIBES y (H)
2

,N
≤ BCQH ,N .

Proof. For notational simplicity, define y = y (H). Given
H and a TRIBES y

2
,N instance we design a corresponding

BCQH ,N instance. As H is bipartite, let (L,R) be the node
partition ofH and consider the set OL (OR resp.) consisting

of all nodes of degree at least two included in L (R resp.). Let

O equal the largest of OL and OR (i.e., O consists of nodes of

odd or even distance from the roots of the forest). Note that

|O | ≥
y
2
,
17

and assume w.l.o.g. that the size of O is exactly
y
2

(otherwise we take a subset of O). We associate a pair of sets

(So ,To) from TRIBES y
2
,N with each node o ∈ O , such that

TRIBES y
2
,N (Ŝ, T̂) =

∧
o∈O

DISJN (So ,To), (2)

where DISJN (So ,To) = 1 if So ∩To , ∅ and 0 otherwise.

We now construct a corresponding BCQH ,N instance in

detail. We start by defining a pair of relations corresponding

to each pair (So ,To). Let o ∈ O . If o has a parent inH , let op
be its parent. Let oc be a child of o. We consider the relations

RSo = So × {1} and RTo = To × {1}, where the attribute set
of RSo is (o,oc) and that of RTo is (o,op). Here we treat So
and To as subsets of [N] (instead of elements in {0, 1}N). In

the case that o does not have a parent node, it is a root inH

17
Note that in the arity two case, it’s easy to construct a GYO-GHD with y

internal nodes using the structure of H . Details in the full paper [47].

8

with at least two children, and thus we can set op to be a child

of o that differs from oc . Thus, TRIBES y
2
,N (Ŝ, T̂) = 1 iff for

each o ∈ O , the join RSo ▷◁ RTo is not empty. To complete the

description of the BCQ instance, for each o ∈ O , we associate

all additional edges (o,v) adjacent to o inH with the relation

[N] × {1} on attributes (o,v); and remaining edges (u,v) that
are not adjacent to any o ∈ O with the relation {1} × {1}. Note

that no two vertices o1,o2 ∈ O are adjacent inH . Let us denote

the BCQ instance constructed above by q
H , Ŝ,T̂ .

To complete the proof, we show that q
H , Ŝ,T̂ = 1 iff

TRIBES y
2
,N (Ŝ, T̂) = 1. If q

H , Ŝ,T̂ = 1 then there exists a tuple

t ∈
∏

v ∈V (H) Dom(v) that satisfies all relations in q
H , Ŝ,T̂ , i.e.

te ∈ Re for every e ∈ E. Specifically, for each o ∈ O , RSo ▷◁

RTo is not empty which implies that TRIBES y
2
,N (Ŝ, T̂) = 1.

Alternatively, if TRIBES y
2
,N (Ŝ, T̂) = 1, we can find a tuple

t ∈
∏

v ∈V (H) Dom(v) that satisfies all relations inq
H , Ŝ,T̂ . For

each o ∈ O we set πo (t) to be any element in the intersection

of So and To , and for all remaining nodes v we set πv (t) = 1.

It holds that the relations corresponding to edges of the form

(o,op), (o,oc), (o,v), and (u,v) described above are all satisfied.
This concludes our proof. □

Note that the above argument was independent of G. We

nowuse the structure ofG to obtain a lower bound onR (BCQH ,N ,G,K)
using known results for TRIBES y

2
,N .

Lower bounds dependent onG . We show the following lower

bound for arbitrary G, assuming worst-case assignment of

relations to players in K .

Lemma 4.7. For any topology G andH being a forest,

R (BCQH ,N ,G,K) ≥ Ω̃

(
y (H) · N

MinCut(G,K)

)
.

Proof. We first consider a min-cut (A,B) of G that sep-

arates K , where A and B denote the set of vertices in each

partition (A∪ B = V). Using the notation given in the proof of

Lemma 4.6, let q
H , Ŝ,T̂ be the query corresponding to a given

instance TRIBES y
2
,N (Ŝ, T̂). We assign relations {RSo }o∈O to

vertices inA and relations{RTo }o∈O to vertices in B. The other
relations in q

H , Ŝ,T̂ can be assigned arbitrarily. Note that any

protocol to compute q
H , Ŝ,T̂ on G gives a two-party proto-

col (Alice, Bob) for TRIBES y
2
,N . In particular, Alice gets the

sets {So }o∈O (corresponding to RSo) assigned to vertices in

A and Bob gets the sets {To }o∈O (corresponding to RTo) as-
signed to vertices in B (ignoring the additional relations). It

follows that if there exists a R (BCQH ,N ,G,K) round pro-

tocol on G, then we have a two-party protocol (i.e., on a

graph G = ({a,b}, (a,b))) with at most R (BCQH ,N ,G,K) ·
MinCut(G,K) ·

⌈
log

2
(MinCut(G,K))

⌉
rounds. Indeed, we can

simulate the two-party protocol on G across the cut (A,B),
where Alice is responsible for A and Bob for B. In particular,

if Alice needs to send a message to Bob (or vice-versa), it will

be sent across edges crossing the cut. Note that in each round,

at most MinCut(G,K)
⌈
log

2
(MinCut(G,K))

⌉
bits will be ex-

changed betweenAlice and Bob.We need

⌈
log

2
(MinCut(G,K))

⌉

bits in order to know the edge on which the message was sent.

We can now invoke Corollary 2.4 to have

R (BCQH ,N ,G,K) ·MinCut(G,K) ·
⌈
log

2
(MinCut(G,K))

⌉
≥

Ω(y (H) · N).

Thus, we have a lower bound of

R (BCQH ,N ,G,K) ≥ Ω̃

(
y (H) · N

MinCut(G,K)

)
.

□

4.2.3 General H . We are now ready to prove our general

lower bound for all simple graphsH .

Theorem 4.8. For arbitrary G, K ⊆ V , and graph H , we
have

R (BCQH ,N ,G,K) ≥ Ω̃

(
(y (H) + n2 (H)) · N

MinCut(G,K)

)
.

Proof Sketch. We present a proof sketch here. For no-

tational convenience, define y = y (H) and n2 = n2 (H).

Let m = max

(
y
2
, n2

2 log(n2)

)
. In general, as in the proof of

Lemma 4.6, givenH and a TRIBES instance TRIBESm,N (Ŝ, T̂)
we construct a BCQ instance q

H , Ŝ,T̂ such that q
H , Ŝ,T̂ = 1

iff TRIBESm,N (Ŝ, T̂) = 1. To this end we need to “embed” the

m pairs of sets (Si ,Ti) from TRIBESm,N (Ŝ, T̂) as relations in

q
H , Ŝ,T̂ . Form =

y
2
, we embed the pairs (Si ,Ti) in the forest

F(H) as done in Lemma 4.6. Form = n2

2·log(n2)
, we consider

C(H). We then show that it must be the case that C(H) either

includes

(
n2

2 log(n2)

)
vertex-disjoint cycles (referred to as Case

1), or that it has an independent set of size Ω(n2) (referred to

as Case 2). In both cases, we show how one can embed
n2

2 log(n2)

pairs (Si ,Ti) of TRIBESm,N (Ŝ, T̂) inC (H). We defer the proof

to the full paper [47].

Assuming the above embeddings, we conclude thatq
H , Ŝ,T̂ =

1 iff TRIBESm,N (Ŝ, T̂) = 1, where m = max

(
y
2
, n2

2 log(n2)

)
.

Since sum and max are within a factor 2 of each other, we

can write m ≥
y
4
+

n2

4 log(n2)
. We can now apply ideas from

the proof of Lemma 4.7 to obtain the required lower bound

Ω̃
(

(y+n2) ·N
MinCut(G,K)

)
. □

Note that in Theorem 4.1, the upper bound follows from

Lemma 4.5 and the lower bound from Theorem 4.8. We con-

clude this section by noting that when N ≥ |V |2, our upper

and lower bounds differ by Õ (d) factor (for worst-case as-

signments of relations to players). In particular, Theorem 3.10

implies that the first two terms in the upper and lower bounds

match up to an Õ (1) factor. In the full paper [47], we show that

for worst-case assignment of relations, the second terms in

the upper and lower bounds differ by a Õ (d) factor, as desired.

5 HYPERGRAPHSH AND GENERAL FAQ
Our results generalize fairly seamlessly to hypergraphsH . For

constant d, r , our upper and lower bounds match. However,

for non-constant d , we have a gap of Õ (d2 ·r2), which is worse

9

than our gap of Õ (d) for the arity two case. Details are deferred
to the full version [47].

We extend our results from BCQ to the general FAQ prob-

lem. We define the general FAQ problem here, which is a

generalization of FAQ-SS. We are given a multi-hypergraph

H = (V, E) where for each hyperedge e ∈ E, we also have

an input function fe :

∏
v ∈e Dom(v) → D. In addition, we

are given a set of free variables F ⊆ V : |F | = ℓ and18 we

would like to compute the function:

ϕ
(
x

[ℓ]

)
= ⊕(ℓ+1)

xℓ+1∈Dom(xℓ+1)

. . . ⊕(n)

xn ∈Dom(xn)

⊗

S ∈E

fS (xS), (3)

where x = (xu)u ∈V and xS is x projected down to co-ordinates

in S ⊆ V . The variables inV \ F are called bound variables.
For every bound variable i > ℓ, ⊕(i) is a binary (aggregate)

operator on the domainD. Different bound variables may have

different aggregates. Finally, for each bound variable i > ℓ

either ⊕(i) = ⊗ (product aggregate) or (D, ⊕(i) , ⊗) forms a

commutative semiring (semiring aggregate) with the same ad-

ditive identity 0 and multiplicative identity 1. As with FAQ-SS,
we assume that the functions are input in the listing represen-
tation, i.e. the function fe is represented as a list of its non-zero
values: Re = {(y, fe (y)) |y ∈

∏
v ∈e Dom(v) : fe (y) , 0}. Note

that when ⊕(i) = ⊕ is the same semiring aggregate for every

ℓ < i ≤ n, we have the FAQ-SS problem.

For any D, let FAQD,H ,N ,F denote the class of FAQ prob-

lems, where each function inH has at mostN non-zero entries.

(Note that we are not explicitly stating the operators for the

bound variables (⊕(ℓ+1) , . . . , ⊕(n)) since our upper and lower

bounds hold for all such operators.) LetR (FAQD,H ,N ,F ,G,K)
denote the minimum worst-case number of rounds needed by

a randomized protocol with error at most
1

3
that computes any

query in FAQD,H ,N ,F onG with functions assigned to nodes

in K . ForO (1)-degenerate hypergraphsH withO (1)-arity, we
have

Theorem 5.1.

R (FAQD,H ,N ,F ,G,K) = Θ̃

(
(y (H) + n2 (H)) · N

MinCut(G,K)

)
for any D, specific choices of F , arbitrary G and K . When G is
a line, MinCut(G,K) = 1.

For general degenerate hypergraphsH with arity at most

r , we have

Theorem 5.2.

R
(
FAQD,H ,N ,F ,G,K

)
≥ Ω̃

(
(d · y (H) + n2 (H)) · N

d · r ·MinCut(G,K)

)
.

The lower bound differs from the upper bound by a factor of
O (r2d2) in the worst case.

We would like to mention here that our upper bound is a

deterministic protocol and the lower bound is for randomized

protocols. Details are in the full version [47].

18
For a fixed F , the vertices in V can be renumbered so that F = [ℓ] w.l.o.g.

6 MATRIX CHAIN MULTIPLICATION
We consider the following FAQ-SS problem. The network

topology has k + 2 players P0, . . . , Pk+1
such that (Pi , Pi+1) is

an edge (i.e. G is a line) where P0 receives x ∈ FN
2

and Pi for

i ∈ [k] receives Ai ∈ F
N×N
2

. Player Pk+1
wants to compute

Ak · Ak−1
· · ·A1 · x. Alternatively, for every i ∈ [k], define

yi = Ai · yi−1, with y0 = x. Note that we want to compute yk .
Note that this is an FAQ-SS problem since we can re-write the

above as

ϕ (zk) =
∑

(zi)k−1

i=0
∈[N]

k

*.
,

k∏
j=1

Aj (zj , zj−1)
+/
-
X (z0), (4)

where the functions satisfy Aj (x ,y) = Aj [x ,y] and X (z) =
x[z] for every triple of indices x ,y, z ∈ [N].

We note that this problem can be solved inO (kN) rounds.19

Proposition 6.1. The FAQ-SS problem from (4) can be com-
puted in O (kN) rounds.

We prove this proposition in the full paper [47]. We remark

that when k is large, a bottom-to-top fashion merge algorithm

can achieve O (N 2
logk + k) rounds. (See the full version [47]

for details.) In the next section, we prove a tight lower bound

of Ω(kN) for the case k ≤ N .

6.1 The Lower Bound
Wewill argue that the upper bound ofO (kN) rounds in Propo-

sition 6.1 is tight if k ≤ N . Before we do that we collect some

definitions and results related to the min-entropy of a random

variable.

6.1.1 Background. The min-entropy of a random variable X
is defined as H∞ (X) := − log maxx ∈supp(X) Pr[X = x]. For a

random variable X and an event E that is possibly correlated

with X , define H∞ (XE) = − log maxx ∈supp(X) Pr[X = x , E].

Notice that in the above definition, we do not “normalize”

Pr[X = x , E] by a factor of Pr[E].

For random variables X and Y , the conditional smooth

min-entropy Hϵ
∞ (X |Y) is defined as

Hϵ
∞ (X |Y) = sup

E

min

y∈supp(Y)
H∞ (XE|Y = y)

= sup

E

(
− log max

(x,y)∈supp(X ,Y)
Pr[E,X = x |Y = y]

)
where the quantification over E is over all events E (which can

be correlated with X and Y) with Pr(E) ≥ 1 − ϵ . When Y is a

deterministic variable (in other words, we are not conditioning

on any randomized variable), then we simply use Hϵ
∞ (X):

Hϵ
∞ (X) = sup

E

H∞ (XE) , (5)

where again the quantification over E is over all events E with

Pr(E) ≥ 1 − ϵ .
The following lemma will be useful in our analysis:

Lemma 6.2 (Lemma 4 and Lemma 7 of [56]). Let Y be a
random variable with support size at most 2

ℓ . Then we have for
any ϵ ≥ 0, ϵ ′ > 0 and random variable X , that Hϵ+ϵ ′

∞ (X |Y) ≥
Hϵ
∞ (X) − ℓ − log(1/ϵ ′).

19
Note that the trivial algorithm takes Ω(kN 2) rounds.

10

Finally, we will use the following result where h(p) =
−p log

2
p − (1 − p) log

2
(1 − p):

Theorem 6.3. Let the constant γ > 0 be small enough. Let
x ∈ FN

2
, A ∈ FN×N

2
and Y be random variables such that for

every y ∈ supp(Y), x and A are independent conditioned on
Y = y. Moreover for some reals ϵ1, ϵ2 ≥ 0, we have Hϵ1

∞ (A|Y) ≥

(1−γ)N 2, andHϵ2

∞ (x|Y) ≥ α ·N , whereα
def
= 3γ+

√
2γ+h(

√
2γ).

Then Hϵ1+ϵ2+2
−Ω(γN)

∞ (Ax|Y) ≥
(
1 −
√

2γ
)
· N

The proof of Theorem 6.3 follows from known results in

pseudorandomness and appears in the full paper [47].

6.1.2 Showing Proposition 6.1 is tight for k ≤ N . At a high
level, we will prove by induction that for player Pi at time

about γ iN , the min-entropy of yi−1 is at least α · N (and the

situation at Pi+1 should be similar). Since by this time Pi+1

would have received at most O (γ iN) ≤ O (γN 2) bits, this
means Ai has min-entropy at least (1 − γ)N 2

. Thus, we can

apply Theorem 6.3 to argue that at Pi+1 the min-entropy of

yi = Ai · yi−1 is large. To finish the inductive argument we

have to wait forγN more steps but by Lemma 6.2, even then yi
will still have high enough min-entropy. It is natural to wonder

if we can make the same argument using Shannon entropy

instead of min-entropy. In the longer version, we show that

this is not possible.

We define some useful notations before we prove the lower

bound. At any given time t , let mi (t) denote the transcript of
messages exchanged on the link between Pi−1 and Pi till time

t . For i ∈ [k + 1], define ti =
γ
4
· iN , and m̃i = mi (ti). For a

random variable m, we will usem to denote a specific value

of the random variable m. In addition, we use m̃[i]
and m̃[i]

to denote the tuples (m̃1, m̃2, · · · , m̃i) and (m̃1,m̃2, · · · ,m̃i)
respectively.

Let ϵ∗ = 2
−Ω(γN)

be at least thrice the maximum of 2
−γN /4

and the 2
−Ω(γN)

term in Theorem 6.3. We will argue:

Lemma 6.4. Let Ai for every i ∈ [k] and x be all uniformly
and independently distributed. Let γ > 0 be such that20

4γ +
√

2γ + h(
√

2γ) ≤ 1, (6)

and γN /4 is an integer. Then we have the following for every
i ∈ [k + 1]:

H iϵ ∗
∞

(
yi−1 |m̃[i]

)
≥ N (1 − γ −

√
2γ). (7)

The proof appears in the full paper [47]. The above im-

mediately gives us our lower bound (details are in the full

paper [47]):

Theorem 6.5. Any protocol that solves the FAQ-SS prob-
lem from (4) with k ≤ N and large enough N , with success
probability at least 1/2, takes Ω(γkN) rounds.

7 RELATEDWORK
We now survey the most closely related work. Due to lack of

space, a detailed discussion is deferred to the full paper [47].

20
There exists a value γ ≥ 0.01 (for large enough N) that satisfies the required

conditions.

Parallel Database Query Computation. The MPC model has

seen a lot of research activity in the last few years [2, 9, 10, 37,

45, 46]. We compare these models with ours in Section 1.1.

Widths of GHDs. The Internal Node Width y (H) of a GHD
focuses on minimizing the number of internal (non-leaf) nodes

in GHDs of acyclic hypergraphs. There is a related notion

for Tree Decompositions called Lean Tree Decompositions

(LTDs) [11, 24, 60]. For GHDs, the problem of computing GHDs

that minimize certain cost functions of the HDs are studied

in the framework of Weighted GHDs [33, 57]. We refer the

reader to [30] for a recent survey on widths for GHD.

Distributed Computing and Communication Complexity. As
stated earlier, our model is similar to (and different from)

the CONGEST model in distributed computing [54]. Recently,

there has been work on the same model as ours but instead of

minimizing the number of rounds, they focus on minimizing

the total communication of the protocols [14, 19, 20, 55, 61, 63].

Finally, [18] obtained results on minimizing the number of

rounds of protocols in our setup for some well-studied func-

tions in two-party communication complexity literature.

8 FUTUREWORK
We leave the following questions as future work: handling

node failures, finding optimal assignments of functions to

players in G, identifying the optimal topology for a given

query and finally, closing the gap between our upper and

lower bounds for d-degenerate graphs for super-constant d .
We address the assumption that the functions are completely

assigned to players inG in the longer version. We cannot (yet)

handle node failures and the condition that N has to be larger

than the size ofG . We address assumptions on the knowledge

of q and G in the full paper [47].

ACKNOWLEDGMENTS
We thank the anonymous reviewers of PODS’19 for their help-

ful comments. We are greatly indebted to Arkadev Chattopad-

hyay and David Zuckerman for their insights that led to the

results in Section 6. We thank Dan Suciu, Hung Ngo, Martin

Grohe and Oliver Kennedy for helpful discussions. This work

was supported by NSF grant CCF-1717134.

REFERENCES
[1] M. Abu-Elkheir, M. Hayajneh, and N. A. Ali. Data management for the

internet of things: Design primitives and solution. Sensors, 13(11):15582–
15612, 2013.

[2] F. N. Afrati, M. R. Joglekar, C. Ré, S. Salihoglu, and J. D. Ullman. GYM: A

multiround distributed join algorithm. In ICDT, pages 4:1–4:18, 2017.
[3] S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE

Transactions on Information Theory, 46(2):325–343, Mar 2000.

[4] D. Akatov. Exploiting parallelism in decomposition methods for constraint
satisfaction. PhD thesis, University of Oxford, UK, 2010.

[5] N. Alon, S. Hoory, and N. Linial. The moore bound for irregular graphs.

Graphs and Combinatorics, 18(1):53–57, Mar 2002.

[6] N. Alon and J. Spencer. The Probabilistic Method. John Wiley, 1992.

[7] N. Bakibayev, T. Kociský, D. Olteanu, and J. Zavodny. Aggregation and

ordering in factorised databases. PVLDB, 6(14):1990–2001, 2013.
[8] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information

statistics approach to data stream and communication complexity. J.
Comput. Syst. Sci., 68(4):702–732, 2004.

[9] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query

processing. In PODS, pages 273–284, 2013.

11

[10] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In

PODS, pages 212–223, 2014.
[11] P. Bellenbaum and R. Diestel. Two short proofs concerning tree-

decompositions. Combinatorics, Probability & Computing, 11(6):541–547,
2002.

[12] H. L. Bodlaender. Nc-algorithms for graphs with small treewidth. In

Graph-Theoretic Concepts in Computer Science, 14th International Workshop,
WG ’88, Amsterdam, The Netherlands, June 15-17, 1988, Proceedings, pages
1–10, 1988.

[13] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.

In Mobile Data Management, Second International Conference, MDM 2001,
Hong Kong, China, January 8-10, 2001, Proceedings, pages 3–14, 2001.

[14] M. Braverman, F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan. A

tight bound for set disjointness in the message-passing model. In FOCS,
pages 668–677, 2013.

[15] A. Chakrabarti, Y. Shi, A. Wirth, and A. C. Yao. Informational complexity

and the direct sum problem for simultaneous message complexity. In FOCS,
pages 270–278, 2001.

[16] A. Chattopadhyay. Personal communication, 2018.

[17] A. Chattopadhyay, M. Koucký, B. Loff, and S. Mukhopadhyay. Simulation

beats richness: New data-structure lower bounds. In STOC, 2018.
[18] A. Chattopadhyay, M. Langberg, S. Li, and A. Rudra. Tight network

topology dependent bounds on rounds of communication. In SODA, pages
2524–2539, 2017.

[19] A. Chattopadhyay, J. Radhakrishnan, and A. Rudra. Topology matters in

communication. In FOCS, pages 631–640, 2014.
[20] A. Chattopadhyay and A. Rudra. The range of topological effects on

communication. In ICALP, pages 540–551, 2015.
[21] S. Cohen, Y. Kanza, and Y. Sagiv. Generating relations from XML docu-

ments. In ICDT, pages 282–296, 2003.
[22] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artif.

Intell., 113(1-2):41–85, 1999.
[23] Y. Dodis and R. Oliveira. On extracting private randomness over a public

channel. In RANDOM, pages 252–263, 2003.

[24] J. Erde. A unified treatment of linked and lean tree-decompositions. J.
Comb. Theory, Ser. B, 130:114–143, 2018.

[25] J. Gehrke and S. Madden. Query processing in sensor networks. IEEE
Pervasive Computing, 3(1):46–55, 2004.

[26] M. Ghaffari. Improved Distributed Algorithms for Fundamental Graph
Problems. PhD thesis, EECS department of MIT, 2016.

[27] M. Ghobadi, R. Mahajan, A. Phanishayee, N. R. Devanur, J. Kulkarni,

G. Ranade, P. Blanche, H. Rastegarfar, M. Glick, and D. C. Kilper. Pro-

jecToR: Agile reconfigurable data center interconnect. In SIGCOMM, pages

216–229, 2016.

[28] M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman. Rectangles are

nonnegative juntas. In STOC, pages 257–266, 2015.
[29] M. Göös, T. Pitassi, and T. Watson. Query-to-communication lifting for

BPP. In FOCS, pages 132–143, 2017.
[30] G. Gottlob, G. Greco, N. Leone, and F. Scarcello. Hypertree decompositions:

Questions and answers. In PODS, pages 57–74, 2016.
[31] M. H. Graham. On the universal relation. In Tech Report, 1979.
[32] A. Grama, V. Kumar, A. Gupta, and G. Karypis. Introduction to Parallel

Computing. Pearson Education. Addison-Wesley, 2003.

[33] G. Greco, N. Leone, and F. Scarcello. On weighted hypertree decompo-

sitions. In Proceedings of the Twelfth Italian Symposium on Advanced
Database Systems, SEBD 2004, S. Margherita di Pula, Cagliari, Italy, June
21-23, 2004, pages 54–61, 2004.

[34] M. M. Halldórsson and E. Losievskaja. Independent sets in bounded-degree

hypergraphs. Discrete Applied Mathematics, 157(8):1773–1786, 2009.
[35] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and

strengthening hardness for dynamic problems via the online matrix-vector

multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 21–30, 2015.

[36] T. S. Jayram, R. Kumar, and D. Sivakumar. Two applications of information

complexity. In STOC, pages 673–682, 2003.
[37] M. Joglekar and C. Ré. It’s all a matter of degree: Using degree information

to optimize multiway joins. In ICDT, pages 11:1–11:17, 2016.
[38] M. R. Joglekar, R. Puttagunta, and C. Ré. AJAR: aggregations and joins

over annotated relations. In PODS, pages 91–106, 2016.
[39] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions asked frequently.

In PODS, pages 13–28, 2016.
[40] M. A. Khamis, H. Q. Ngo, and A. Rudra. Juggling functions inside a database.

SIGMOD Record, 46(1):6–13, 2017.
[41] J. Kohlas and N. Wilson. Semiring induced valuation algebras: Exact and

approximate local computation algorithms. Artif. Intell., 172(11):1360–1399,
2008.

[42] D. Kossmann. The state of the art in distributed query processing. ACM
Comput. Surv., 32(4):422–469, 2000.

[43] A. V. Kostochka. On almost (k-1)-degenerate (k+1)-chromatic graphs and

hypergraphs. Discrete Mathematics, 313(4):366–374, 2013.
[44] P. Koutris. Lecture notes on acyclic joins, lecture 4. 2016.

[45] P. Koutris, P. Beame, and D. Suciu. Worst-case optimal algorithms for

parallel query processing. In ICDT, pages 8:1–8:18, 2016.
[46] P. Koutris and D. Suciu. A guide to formal analysis of join processing in

massively parallel systems. SIGMOD Record, 45(4):18–27, 2016.
[47] M. Langberg, S. Li, S. V. M. Jayaraman, and A. Rudra. Topology dependent

bounds for computing faqs. In full paper, 2019.
[48] L. C. Lau. An approximate max-steiner-tree-packing min-steiner-cut theo-

rem*. Combinatorica, 27(1):71–90, 2007.
[49] F. T. Leighton and S. Rao. Multicommodity max-flowmin-cut theorems and

their use in designing approximation algorithms. J. ACM, 46(6):787–832,

1999.

[50] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an

acquisitional query processing system for sensor networks. ACM Trans.
Database Syst., 30(1):122–173, 2005.

[51] D. Olteanu and J. Závodný. Size bounds for factorised representations of

query results. ACM Trans. Database Syst., 40(1):2:1–2:44, 2015.
[52] E. J. O’Neil, P. E. O’Neil, and K. Wu. Bitmap index design choices and their

performance implications. In Eleventh International Database Engineer-
ing and Applications Symposium (IDEAS 2007), September 6-8, 2007, Banff,
Alberta, Canada, pages 72–84, 2007.

[53] N. Parzanchevski and A. Ta-Shma. Personal communication, 2018.

[54] D. Peleg. Distributed Computing: A Locality-Sensitive Approach.
[55] J. M. Phillips, E. Verbin, and Q. Zhang. Lower bounds for number-in-

hand multiparty communication complexity, made easy. In SODA, pages
486–501, 2012.

[56] R. Renner and S. Wolf. Simple and tight bounds for information reconcil-

iation and privacy amplification. In ASIACRYPT, pages 199–216, Berlin,
Heidelberg, 2005. Springer-Verlag.

[57] F. Scarcello, G. Greco, and N. Leone. Weighted hypertree decompositions

and optimal query plans. In PODS, pages 210–221, 2004.
[58] A. Ta-Shma. Almost optimal dispersers. Combinatorica, 22(1):123–145,

2002.

[59] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test

chordality of graphs, test acyclicity of hypergraphs, and selectively reduce

acyclic hypergraphs. SIAM J. Comput., 13(3):566–579, 1984.
[60] R. Thomas. A menger-like property of tree-width: The finite case. J. Comb.

Theory, Ser. B, 48(1):67–76, 1990.
[61] P. Tiwari. Lower bounds on communication complexity in distributed

computer networks. J. ACM, 34(4):921–938, 1987.

[62] S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1-3):1–336, 2012.

[63] D. Woodruff and Q. Zhang. Tight bounds for distributed functional moni-

toring. In STOC, pages 941–960, 2012.
[64] D. P. Woodruff and Q. Zhang. Distributed statistical estimation of matrix

products with applications. In PODS, pages 383–394, 2018.
[65] A. C. Yao. Some complexity questions related to distributive computing

(preliminary report). In STOC, pages 209–213, 1979.
[66] C. T. Yu andM. Z. Ozsoyoglu. An algorithm for tree-query membership of a

distributed query. In The IEEE Computer Society’s Third International Com-
puter Software and Applications Conference, COMPSAC 1979, 6-8 November,
1979, Chicago, Illinois, USA, pages 306–312, 1979.

[67] D. Zuckerman. Simulating BPP using a general weak random source.

Algorithmica, 16(4/5):367–391, 1996.

12

A COMPARISONWITH RELEVANT MODELS
A.1 Basic MPC model
We formally define the MPC model used in [9] and the model adopted by [2] here, both in the language of our model (Model 2.1).

We consider the MPC with no replication, which is known as the basic MPC model in the literature.

Model A.1 (MPC(0)). We are given a query q and its underlying hypergraphH = (V, E) with input functions fe having at most N
non-zero values for every e ∈ E. We consider the network topology G ′ with p + k nodes, defined as follows. There are k nodes, each
assigned a function fe for every e ∈ E. We call this set K . There are no edges between any pair of nodes in K . All nodes in K are directly
connected by an edge to every node in a clique with p nodes that are disjoint from K (also a part of G ′). Each vertex in K has capacity
N and all the remaining nodes have capacity L. The capacity of a vertex bounds the number of bits it can receive in each round. Given
this setup, we would like to compute BCQ (and more generally an FAQ) ofH on G ′.
To design a protocol for this computation, we can assume that every node in G ′ has the knowledge of q and G ′. At the end of the
protocol, a pre-determined player in K knows the answer to q.
Finally, given the above setup, our goal is to design protocols that minimize the number of rounds to compute q on G. This model does
not take into account the internal computation done by the p + k nodes and assumes the nodes co-operatively compute the answer to q.

We now summarize the differences of this model from ours.

A.1.1 Differences from our Model.

• MPC assumes a specific choice of a network topology G ′ as opposed to general topology G in our model.

• MPC assumes a specific assignment of functions in E to players in G ′. Our upper bound techniques can handle any

assignment but our lower bounds are for a specific class of assignments. We would like to mention here that this is true for

the models in [2, 9] as well and we consider one such assignment in Model A.1.

• MPC assumes node capacities whereas ours assumes edge capacities.

• The models in [2, 9] design protocols wherein the number of rounds is either constant or a function of k . The number of

rounds in our model are a function of N .

• The models in [2, 9] generally prove results for computing natural join whereas we look at BCQ (and more generally FAQs).

We note that the results of [2, 9] for natural join apply for BCQ as well. This is true for both upper and lower bounds in [9].

We consider two instantations of this model – one by [9] and the other by [2].

A.1.2 Fixing p and Determining L [9]. This model assumes N is larger than the size of G ′ and all the functions fe are matchings

(i.e., skew-free). In other words, for each variable v ∈ e , each of the values xv ∈ Dom(v) can occur in at most one tuple in fe .
Using Proposition 3.2 and Theorem 3.3 in [9], it can be shown that there exists an optimal one round protocol to solve BCQ of any

starH on G ′ with L = Ω
(
k ·N
p

)
. Further, whenH is a forest, BCQ ofH on G ′ takes Θ(log(D ′)) rounds for the same L (where D ′

is the diameter ofH). We would like to mention here that a follow up work [10] handled input functions with specific types of

skew and proved upper and lower bounds for the queries considered above. Since each node in the (p)-clique can have different

capacities in this scenario, we do not discuss it further here.

A.1.3 Fixing L and Determining p [2]. This model assumes the size of G ′ is much larger than N . Assuming L = (k · N)
1

δ for a

fixed small constant δ > 1, we can use the Main Results 1 and 2 from [2] and show that there exists a protocol to solve BCQ of any

starH in: (1) O (k) rounds with p = (k · N)2−
2

δ and (2) O (log
2
(k)) rounds with p = (k · N)6−

2

δ .

Before we instantiate our model for a comparison with the above models, we would like to state that while our model can handle

the constraint where the size of G ′ can be larger than N , our techniques cannot. Hence, we restrict our comparison to the model

in Section A.1.2. We now instantiate our model (Model 2.1) with G ′ and assume that each edge in G ′ has capacity

L′ =
L

k
=

N

p
. (8)

Note that this is a weaker version of Model A.1 since node capacities don’t necessarily translate to equal edge capacities when the

goal is to compute q on G ′. We take this route as it helps us make a fair comparison with Section A.1.2.

A.1.4 Our Results in Model A.1. We show how our upper bound techniques apply for solving BCQ of any starH onG ′. We can in-

stantiate Corollary 4.2with capacity Θ̃(1) to getO
(
min∆∈[|V (G′) |]

(
N

ST(G′,K,∆) + ∆
))

rounds.We claim thatmin∆∈[|V (G′) |]

(
N

ST(G′,K,∆) + ∆
)
=

O
(
N
p

)
. To see this, we show such a Steiner tree packing containing p trees with diameter 2 – each node in the p-clique in G ′

along with all its k edges incident on K forms a Steiner tree. Since there are p such nodes, we can obtain such a packing. Recall

that when each edge in G ′ has capacity L′ (instead of the O (log
2
(D)) capacity in Model 2.1), our upper bound gets divided by L′.

Thus, we have an upper bound of O
(

N
L′ ·p

)
= O (1) (using (8)) i.e., a constant number of rounds.

Note that a lower bound of one round on the number of rounds is trivial. Hence, we can obtain a tight bound of Θ̃(1) for any star

H , resulting in an one round protocol matching results in Section A.1.2.

13

Given the tight results for the star case, there is a natural generalization for our protocol and bounds whenH is a forest using

ideas from the proof of Lemma 4.4. We start by noting that all stars at the same level in H can be computed simultaneously

since each node in K is directly connected to each node in the (p)-clique. In particular, we can run the star protocol used above

on all these stars simultaneously but we still need to be able to uniquely identify the stars computed. It’s not too hard to see

that this can be done with O (log(y (H))) additional information for each internal node v . This results in an upper bound of

O
(
D ′ · log(y (H)) ·min∆∈[|V |]

(
N

ST(G′,K,∆) + ∆
))
= O

(
D′ ·log(y (H)) ·N

p

)
, where ST(G ′,K , 2) = p and D ′ is the diameter ofH . If

we divide our upper bound by L′ and substitute its value from (8), we can use ideas similar to those used in the star case to obtain a

protocol withO (D ′) rounds. However, our lower bound techniques do not work for the assignment of functions to K in Model A.1.

We would like to mention that the model in Section A.1.2 takes Θ(log(D ′)) rounds for this case (though the upper bound only

holds for the special case of matching databases).

Finally, for general simple graphsH , we decomposeH into a core and a forest using Construction 2.9. We use the trivial protocol
on the core, which is basically sending all functions to one player in K and is independent of the induced query in the core. We

would like to mention that this is worse than existing protocols [2, 9] for H with non-constant degeneracy d since we do not

exploit any information about the query.

Before we move to the next model, we would like to mention here that the results of Section A.1.2 and our results match up to a

constant factor for the case whenH is a star. The upper bounds match since the protocols in both cases split the input functions

the same way – the model in Section A.1.2 uses hashes to achieve this and we use Steiner tree packings for the same. The results

however start diverging even whenH is a tree of small depth.

A.2 General MPC model
We now perform our second and final comparison. We formally define the model from [45], which is a followup of [9, 10] and

performs a worst-case analysis of the communication cost for join queries. All the three models are described in [46]. We define it

in the language of our model like we did for Model A.1.

Model A.2 (MPC(ϵ)). Let ϵ be a fixed value s.t. 0 ≤ ϵ < 1. We are given a query q and its underlying hypergraphH = (V, E) with
input functions fe having at most N non-zero values for every e ∈ E. We consider the network topologyG ′′, which is a clique on p. The
input of size k · N is uniformly partitioned across the p nodes. Let K = V (G ′′). It follows that |K | = p. All nodes in G have capacity
L(ϵ). The capacity of a vertex bounds the number of bits it can receive in each round. Given this setup, we would like to compute BCQ

(and more generally an FAQ) ofH on G ′′.
To design a protocol for this computation, we can assume that every node in G ′′ has the knowledge of q and G ′′. At the end of the
protocol, a pre-determined player in K knows the answer to q.
Finally, given the above setup, our goal is to design protocols that minimize the number of rounds to compute q onG ′′. This model does
not take into account the internal computation done by the p nodes and assumes the nodes co-operatively compute the answer to q.

We now summarize the differences of this model from ours.

A.2.1 Differences from our Model.

• MPC(ϵ) assumes a specific choice of a network topology G ′′ as opposed to general topology in our model.

• MPC(ϵ) assumes a uniform distribution of the input across the p nodes instead of one function being completely assigned

to a specific node in G ′′ in our model.

• MPC(ϵ) works with node capacities like Model A.1, whereas ours works on edge capacities.

• The model in [45] designs protocols wherein the number of rounds either constant or a function of k . The number of rounds

in our model are a function of N .

• The model in [45] proves results for computing natural join whereas we look at BCQ (and more generally FAQs). Note that

their upper results for natural join apply for BCQ as well (but lower bound results do not transfer).

We consider the instantiation of this model by [45]. We would like to mention here that the models studied in [2, 9, 10] can all be

instantiated in this setting only for proving upper bounds.

A.2.2 Fixing p and Determining L [45]. This model assumes N is larger than the size of G ′ and there are no restrictions in the

input functions. Using Theorems 3.1 and 3.3 of [45], it can be shown that there exists an optimal one round protocol to solve

BCQ of any starH on G ′′ with L
(
ϵ = 1 − 1

k

)
= Ω

(
N

p1−ϵ

)
= Ω

(
N

p
1

k

)
. Further, whenH is a forest, BCQ ofH on G ′′ takes O (k)

rounds
21

with L
(
ϵ = 1 − 1

ρ∗ (H)

)
= Ω

(
N

p1−ϵ

)
= Ω *

,
N

p
1

ρ∗ (H)

+
-
using ideas in Section 4 of [45]. Here, ρ∗ (H) denotes the edge cover

number ofH (i.e., size of the minimum edge cover ofH).

21
For the case when we are interested in computing the join query of H , then there is also a matching Ω(k) lower bound.

14

We now instantiate our model (Model 2.1) with G ′′ and assume that each edge in G ′′ has capacity

L′′ =
L(ϵ)

p
. (9)

Further, we assume that the input functions are not distributed uniformly but rather based on some pre-determined hash functions.

Note that this certainly makes our model (Model A.1) more restrictive since node capacities don’t necessarily translate to equal

edge capacities when the goal is to compute q on G ′′ and the hash-based split (see Appendix H.6.1) restricts the way in which

input functions can be distributed across nodes in G ′′. We opt for this since it helps us make a fair comparison with Section A.2.2.

A.2.3 Our Results in Model A.2. We now show how our upper bound techniques apply in this model for solving BCQ of any star

H on G ′. We do not compare lower bounds here since (1) [45] lower bounds do not hold for BCQ (or at least it does not follow

immediately from their lower bounds for the join quries) and (2) Our lower bounds for the case when the functions are uniformly

distributed over the players are quantitatively very weak. For the upper bound, we can instantiate Corollary H.6 with capacity

Θ̃(1) to getO
(
min∆∈[p]

(
N

ST(G′′,K,∆) + p · ∆
))

rounds. We claim that min∆∈[p]

(
N

ST(G′′,K,∆) + p · ∆
)
= O

(
N
p + p

)
. To see this, we

show a Steiner tree packing containing
p−1

2
trees with diameter 1 – we can greedily keep picking and throwing out paths of length

p − 1 from G ′′ that contain all the p vertices. Each such path forms a Steiner tree. Since we can identify
p−1

2
such paths, we can

obtain such a packing. Recall that when each edge in G ′′ has capacity L(ϵ) instead of the standard O (log
2
(N)), our upper bound

gets divided by L′′. Thus, we have an upper bound of O

(N
p +p
L′′

)
. Using (9) and the fact N ≥ p2

(from Model 2.1), we get a O
(
p

1

k

)
round protocol. Note that this is worse than the one round protocol by Section A.2.2.

For the case whenH is a forest, we can instantiate Corollary H.7 with capacity Θ̃(1) to get a bound of

O

(
y (H) · min

∆∈[|V |]

(
N · r

ST(G ′′,K ,∆)
+ p · ∆

))
= O

(
D ′ · log(y (H)) · N

p

)
,

where ST(G ′′,K , 1) = p and D ′ is the diameter ofH . We can use ideas from Section A.1.4 and from those used in the star case to

obtain a protocol with O
(
D ′ · p

1

ρ∗(H)

)
rounds. In particular, to get this bound, we divide our upper bound by L′′ and substitute its

value form (9). Note that this is worse than the O (k) round protocol by Section A.2.2.

Finally, for general simple graphsH , we decomposeH into a core and a forest using Construction 2.9. We use the trivial protocol
on the core, which is basically sending all functions to one player in K and is independent of the induced query in the core. As

stated in Section A.1.4, this is worse than existing protocols [45] forH with non-constant degeneracy d since we do not exploit

any information about the query.

A.3 Scope for Future Work
Many open questions arise out of this comparison. We summarize them here and leave them for future work.

• Can we modify our model to handle node failures like Models A.1 and A.2 do, using replication?

• Can we improve over our trivial protocol for cyclic queries using ideas from [2, 9, 10, 37, 45, 46]?

• Can our algorithmic ideas for set intersection be plugged into the Models A.1 and A.2?

• Can we extend our techniques to handle arbitrary distributions of input functions to nodes in the topology?

A.4 Connection to Sensor Networks
Sensor networks are typically tree-like topologies, where the goal is to efficiently and accurately report aggregate queries on data

generated by the sensors. Since the sensors can traditionally store only little data, they stream their data (as they generate them) to

designated points in the topology called storage points. There is a server that has more computational power and initiates these

queries, collects the query answers, reports them and so on. Join/Aggregate queries are computed either between the storage

points or between the server and a storage point [50].

We now restate this setting in our language. The server and the storage points are the nodes inG and the edges are defined based

on the sensor network. The query to be computed onG is a FAQ q (Joins/Aggregates are a special cases of FAQ), whose underlying

query hypergraph isH . The input functions inH are assigned to a subset of nodes K in G. The upper and lower bounds that we

obtain for computing q onG assuming all input functions have size at most N apply for this setting in sensor networks. Further, in

our setup, we can make any pre-determined node in K (say the server) know the answer to q. In particular, this implies our model

captures query computation in Sensor Networks for a specific class of queries.

Due to the theoretical nature of our results, the potential applications of our model/results in the IoT setting are somewhat

speculative. We hope that our work motivates more study of our general model in these applications areas.

A.5 Which Distributed Computing Model to Use?
We believe that different models could be used for different settings. For instance, if all the nodes are interconnected to each other

in a compute farm (i.e., G is a clique) and each node can receive only a certain amount of data in a communication round and we

15

are interested in computing the join query corresponding toH , then the MPC-based models A.1 and A.2 are more suitable. On the

other hand, if we are looking at more general topologiesG, the capacities are on the edges and we are interested in computing

BCQ ofH , then using our model might make more sense.

B THE CLIQUE OPEN PROBLEM
Consider the case whereH is a k-clique with all input functions having size at most N and G is an edge e = (a,b). The goal is to
compute BCQ ofH on G assuming worst-case assignment of functions inH to players in G.

We can prove an upper bound of O (k2 · N) as follows. Consider an assignment where half of the functions (i.e.,
k ·(k−1)

4
of them)

are assigned to a and the other half of them is assigned to b. In particular, a can send all its functions to b to compute the BCQ of

H on G, the upper bound of O (k2 · N) follows. Since we consider worst-case assignments, we can’t prove a better upper bound.

The best lower bound known so far for this query is Ω(k · N), which is worse than the upper bound by a factor of O (k). Going
beyond this bound seems beyond the reach of current two-party communication complexity techniques [16]. We believe that our

work will provide more motivation to solve this outstanding open question in two-party computational complexity.

C MORE RELATEDWORK
We present a detailed discussion of related work here.

Algorithms for FAQ . The authors of [39] defined and presented algorithms to solve the FAQ problem that encompasses many

frequently asked questions in databases, PGMs, matrix operations and logic. A quick followup work re-stated the algorithms

of [39] in the GHD framework [38]. We would like to note here that special instances of FAQ problems (i.e. FAQ-SS from [39])

have been studied before in [3, 7, 22, 41, 51].

Weighted GHDs. The problem of computing GHDs that minimize certain cost functions of the HDs are studied in the framework

of Weighted GHDS [33, 57]. For a given hypergraphH , one way to map our notion of width to their setting is to consider a vertex

aggregating function on every candidate HD T forH . In particular, we can write

Λ
f ′

H (T) =
∑

v ′∈V (T)

f ′
H
(v ′), (10)

where f ′
H
= 1 if v ′ is a internal node and 0 otherwise. It’s not too hard to see that f ′

H
can be computed in linear time in size of T .

Given this setup, Theorem 3.4 in [33] proves that computing Minimal GHDs over HDs for arbitrary vertex aggregation functions

is NP-Hard.

However, this does not hold in our case since there is always a GHD with one internal node (containing all the variables inH). As

a result, considering the minimization over all GHDs for our case is trivial and doesn’t give use tight results. In particular, our

setup is a bit different and we minimize over GYO-GHDs (Construction 2.9). For the tightness of our bounds forH with constant

degeneracy and constant arity, we only need an O (1)-factor approximation of Internal-Node-Width, which we achieve.

Lean Tree Decompositions. We discuss LTDs in detail here. In particular, the LTDs minimize the internal nodes in the following

way – they try to retain only pairs of connected internal nodes whose intersection forms a bridge in the original graphH . The

other nodes are forced to become leaves of one of the internal nodes. While our construction procedure of MD-GHDs tries to

convert existing internal nodes to become leaves of some internal nodes, we do not (yet) see an exact one-to-one mapping of

MD-GHDs to LTDs. We would like to mention here that both the goals of MD-GHDs and LTDs are the same i.e., to minimize the

number of internal nodes. We would like to note here that y (H) can potentially reduce the depth of the GHD as well. Reducing

depth of GHDs (sometimes by increasing the treewidth) has been considered before [2, 4, 12].

Two-party communication complexity. Both the strands of work on round complexity and total communication from [18, 19]

coincide for the special case whenG is just an edge. Note that in this case we have two players and the model coincides with the

very well studied model of two-party communication complexity introduced by Yao [65], which has proved to be an extremely

worthwhile model to study with applications in diverse areas of computer science.

Entropy in communication complexity. Information complexity by now a well established sub-field of communication complexity

that uses Shannon’s entropy to measure the amount of information exchanges in a two party communication protocol and was

essentially introduced in the work of Chakrabarti et al. [15] and was used in a systematic way to tackle multiple problems in [8].

To the best of our knowledge, min-entropy has only been used very recently in communication complexity [28, 29] though it has

found numerous applications in pseudorandomness and cryptography for at least two decades [62]. Our work add to the recently

growing body of work that uses min-entropy to prove communication complexity results [17].

Matrix products in communication complexity. Parallel algorithms for computing matrix/vector products have been studied

extensively [32]. In particular, the communication complexity in these models have been studied: however, these models are

different from ours but are not very relevant. Closer to our work is the work of Woodruff and Zhang [64] in the two-party

communication complexity model where the two parties are given two matrices A1 and A2 and they are interested in computing

16

some statistical property of A! ·A2 (e.g. computing some norms on the product). Also they results are for matrices over integer/reals.

By contrast our work is on computing matrix-vector product (over F2), where the matrix itself is a matrix product and there are

multiple players on the line topology.

Distributed Computing and Communication Complexity. As was mentioned earlier, our model is similar to (and is different from)

the CONGEST model in distributed computing [54] and is still an active area of research. Recently there has been work that

deals with the graph communication model as ours but instead of minimizing the round complexity, these results are for the

case of minimizing the total communication of the protocols. (We note that the total communication corresponds to the message
complexity of distributed protocols.) Most of the work in this area has been for specific classes ofG . For example, the early work of

Tiwari [61] considered deterministic total communication complexity on cases of G being a path, grid or ring graph. There has

been a recent surge of interest for proving lower bounds on total communication for the case when G is a star [14, 55, 63]. This

work was generalized to arbitrary topology by Chattopadhyay et al. [19] who proved tight bounds for certain functions for all
network topologies. A followup work extended the results to some more functions [20]. Results on round complexity in this setup

were recently obtained [18].

D MISSING DETAILS IN SECTION 2
D.1 GYO-GHD is a reduced GHD
The correctness of Construction 2.9 follows from the facts that the GYO-reduction of anyH is unique [21] and the hyperedges

removed while running GYOA form an acyclic forest (Lemma 4.8 in [44]). We define F(H) as the union of all vertices in all

hyperedges in the acyclic forest excluding the roots (as they are included in C(H)). To complete our construction, we need to

argue that T is a reduced-GHD. This follows from our construction i.e., edge e ∈ E satisfies either e ⊆ V (C(H)) (or) e ⊆ V (F(H))
and in both these cases, there always exists a node v ′e in T such that χ (v ′e) =. We argued this already for C(H) and for F(H), this
follows from the definition of acyclicity.

D.2 Example for Construction 2.9
Consider a hypergraphH3 with nodesV (H3) = {A,B,C,D,E, F ,G,H } and hyperedges

E (H3) = {e1 = (A,B,C), e2 = (B,C,D), e3 = (A,C,D), e4 = (A,B,E), e5 = (A, F), e6 = (B,G), e7 = (G,H)}.

We now apply the GYO algorithm (GYOA) [31, 59, 66] onH , which basically keeps performing the following two steps until it

cannot. First, it checks if there is a node that is present in one hyperedge and if so, eliminates it. Second, it deletes a hyperedge

that is contained in another. We document the execution of GYOA onH here. Let E
′
(H3) = E (H3).

• Choose H as it is present in only one hyperedge (G,H). Remove it and the reduced hypergraph now is E
′
(H3) =

{e1, e2, e3, e4, e5, e6, (G)}. Since the edge (G) is subsumed by more than one hyperedge we can remove it from E
′
(H3).

• Choose G as it is present in only one hyperedge (B,G). Remove it and the reduced hypergraph now is E
′
(H3) =

{e1, e2, e3, e4, e5, (B)}. Since the edge (B) is subsumed by more than one hyperedge we can remove it from E
′
(H3).

• Choose F as it is present in only one hyperedge (A, F). Remove it and the reduced hypergraph now is E
′
(H3) =

{e1, e2, e3, e4, (A)}. Since the edge (A) is subsumed by more than one hyperedge we can remove it from E
′
(H3).

• Choose E as it is present in only one hyperedge (A, F). Remove it and the reduced hypergraph now is E
′
(H3) =

{e1, e2, e3, (A,B)}. Since the edge (A,B) is subsumed by more than one hyperedge we can remove it from E
′
(H3).

The GYOA terminates after the final step since it cannot find any more variable that is contained in only one hyperedge. Let

T be the GYO-GHD obtained from this procedure. The final edge set E
′
returned by GYOA is ec = {e1, e2, e3} and the acyclic

forest removed in this process contains the edges ef = {e4, e5, e6, e7} and is rooted at e4. The forest F(H3) is the union of all

vertices in the set ef \ e4. We build the core C(H3) now with vertices that are union of edges in ec and e4 (i.e., the root of acyclic

forest). T is rooted at r ′ with χ (r ′) = ∪i ∈[3]
v (ei) ∪v (e4). We create new nodes v ′ei for every i ∈ [4] and all of them are directly

connected to r ′ (i.e., edge (r ′,v ′ei) is added to E (T)). Thus, T contains the nodes r ′,v ′e1

,v ′e2

,v ′e3

,v ′e4

, e5, e6, e7. Since we do not

enforce constraints on the remaining edges in T as long as it is a valid GHD, we show two sample GYO-GHDs that can be

constructed out of this. The first has edge set E (T) ∪ {(r ′, e5), (r
′, e6), (e6, e7)} (having two internal nodes) and the second has

edge set E (T) ∪ {(e4, e5), (e5, e6), (e6, e7)} (having three internal nodes). It’s not too hard to see that both these are reduced-GHDs

by Definition 2.5.

17

E MISSING DETAILS IN SECTION 3
E.1 Connecting τMCF and MinCut(G,K)

We want to show that under worst-case assignment of relations to players, the bounds τMCF (G,K ,N
′) and N ′

MinCut(G,K) are within

an Õ (1) factor of each other. We first show that this is the case and then argue that our upper and lower bounds are tight within a

Õ (d) factor for a larger class of assignments.

Let (A,B) be a cut that separates K of size MinCut(G,K). First, consider the assignment where half of the relations are assigned

to one player a in A and the rest to another player b in B. Note that in this case τMCF (G,K ,N
′) is upper bounded by number of

rounds needed to send N ′ bits from (say) a to b. By the max-flow-min-cut theorem, we know we can send N ′ bits from a to b in

N ′
MinCut(G,K) + d (a,b) rounds, where d (a,b) is the distance between a and b.

We now somewhat extend the class of assignments so that our upper and lower bounds are still within a factor Õ (d) of each
other. Let (A,B) be the cut as above. Now, let us assume we distribute the relations that embed the TRIBES instance so that the

m = n2

2·log(n2)
pairs (Si ,Ti) of TRIBESm,N (Ŝ, T̂), the Si are assigned to some players in A and the Ti ’s to players in B. The rest of

the relations are divided equally among A and B. Note that our lower bound still holds.

For the upper bound, we have to look at the multicommodity flow that needs to send O (n2 · d · N) bits of flow from all but one

player to a designated player (who is assigned at least one of the (Si ,Ti) in the hard instance for the lower bound). Each of the at

most n2 · d relations denote one “demand" of size N . The sparsity S of the cut (A,B) is defined as the ratio of the number of cut

edges and the size of the maximum demand separated by cut. We have S ≥
MinCut(G,K)

n2 ·d ·N
since MinCut(G,K) is the smallest cut

and the maximum demand separated by any cut is at most n2 · d · N . Using the celebrated result of Leighton and Rao [49], one can

schedule this multi-commodity flow in Õ
(

n2 ·d ·N
MinCut(G,K) + ∆(G,K)

)
rounds, where ∆(G,K) is the largest distance between any two

players in K .

Notation Meaning

q Join query {Ri , Ai }i∈[k]

Ri /Re /Rv (e) Function/Relation

r Upper bound on arity of {Ri }i∈[k]

Ai Attribute set of relation Ri

A(q) All attributes of q

n Size of A(q)

k Size of q (number of relations)

N Upper bound on size of Ri (number of tuples in relation)

H = (V, E) Underlying (multi)-hypergraph of q

F(H), C(H) decomposition of H into forest F(H) and core C(H) using Construction 2.9.

y (H) y (H) =min∀T :T is a GYO-GHD ofHy (T).

n2 (H) |V (C(H)) |

⟨T , χ, λ⟩ Generalized hypertree decompositions (GHD) of V

χ (v) ⊆ V Subset of vertices of V associated to each node v ∈ V (T)

λ (v) ⊆ V Subset of hyperedges of E associated to each node v ∈ V (T)

G = (V , E) Communication graph

K At most k terminal nodes in G

τMCF (G, K, N ′) Round complexity of routing N ′ log
2
(N ′) bits from all players in K to any one player in K .

ST(G, K, ∆) ∆ diameter Steiner tree packing

Table 2: Notations used in our work.

18

F MISSING DETAILS IN SECTION 4

F.1 Proof of Lemma 4.4
Proof. For simplicity, we assume that H has only one tree with y = y (H) internal nodes. Next we show that we can solve

the BCQ problem on H by solving another BCQ problem on H ′ with y − 1 internal nodes defined as follows. We remove the

bottom most star P = (v1, . . . ,v |P |) (where v1 is the center and (v2, . . . ,v |P |) are the leaves) from H . We define V (H ′) =
V (H) \ (v2, . . . ,v |P |) and E (H ′) = E (H) ∪ {(v1)} \ {(v1,vi) : i ∈ [2, |P |]}. Using arguments in Section 4.1.1, we can process P

in O
(
min∆∈[|V |]

(
N

ST(G,K,∆) + ∆
))

rounds and the result computed is R′P =
⋂k
i=2

R′vi , where R
′
vi = πv1

(Rv1,vi). Finally, we set

R′v1

= R′P (while the remaining surviving relations remains the same). It is easy to see that BCQ onH is 1 iff BCQ onH ′ is 1.

Note thatH ′ is also a tree, which implies we can continue this process recursively untilH ′ has only one node left. Thus, the final

answer is given by (R′P
?

, ∅) and the number of recursive calls is bounded by the number of internal nodes y. Further, ifH is a

forest, our argument can be applied individually on each tree, resulting in the upper bound (1). This completes the proof. □

F.2 Proof of Lemma 4.5
Proof. We starty by considering F(H) (via Construction 2.9). Using the protocol in the Proof of Lemma 4.4 (stated above), we

know thatO
(
y (H) ·min∆∈[|V |]

(
N

ST(G,K,∆) + ∆
))

rounds suffice to reduceH to an updated hypergraphH ′ = (V (C(H)),E (H)∪

{(r ′) |r ′ is a root in F(H)). Further, for each root r ′ in F(H), the corresponding relation Rr ′ is the set computed by the algorithm

in the proof of Lemma 4.4. It is easy to check that BCQ onH has the same answer as BCQ onH ′.

We can now use the trivial protocol to solve BCQH ′,N on G, which by Lemma 3.13 gives the upper bound of (2.1), completing the

proof. □

F.3 Proof of Theorem 4.8
We start by stating some standard results that we use in our proof and then prove our general lower bound.

Existing Results: We state two standard graph theory results that we will be use in our lower bound arguments.

Lemma F.1 (Moore’s Bound [5]). Every graph with p > 2|V | edges has a cycle of length at most 2·log(|V |)
log

(p
|V | −1

) .
Theorem F.2 (Turan’s Theorem [6]). If a graphH has n′ vertices and at most n′ · d edges, then there always exists an independent
set of size at least n′

d+1
inH .

Our Results. We are now ready to prove our general lower bound for all simple graphsH .

Proof. For notational convenience, definey = y (H) andn2 = n2 (H). Letm = max

(
y
2
, n2

2 log(n2)

)
. In general, as in Lemma 4.6, given

H and a TRIBES instance TRIBESm,N (Ŝ, T̂) we construct a BCQ instance q
H , Ŝ,T̂ such that q

H , Ŝ,T̂ = 1 iff TRIBESm,N (Ŝ, T̂) = 1.

To this end we need to “embed” them pairs of sets (Si ,Ti) from TRIBESm,N (Ŝ, T̂) as relations in q
H , Ŝ,T̂ . Form =

y
2
, we embed

the pairs (Si ,Ti) in the forest F(H) as done in Lemma 4.6. Form = n2

2·log(n2)
, we consider C(H). We then show that it must be the

case that C(H) either includes
(

n2

2 log(n2)

)
vertex-disjoint cycles (referred to as Case 1), or that it has an independent set of size

Ω(n2) (referred to as Case 2). In both cases, we show how one can embed
n2

2 log(n2)
pairs (Si ,Ti) of TRIBESm,N (Ŝ, T̂) in C (H). In

particular, we prove the following lemma.

Lemma F.3. C(H) either includes
(

n2

2 log(n2)

)
vertex-disjoint cycles (Case 1) or it has an independent set of size Ω(n2) (Case 2).

Proof. By definition, the average degree of C (H) is at least two (because if there is a vertex in C(H) of degree at most one, then

it should be part of F(H), which would contradict Construction 2.9). As long as the average degree is greater than 10, we can use

Lemma F.1 to prove that there exists a cycle in C(H) of length at most log(n2). We can remove this cycle from C(H) and recurse

until the average degree is below 10. Letw be the number of vertex-disjoint cycles we have collected. Ifw ≥
(

n2

2 log(n2)

)
we are in

Case 1. Otherwise, at some point we are left with an induced subgraph of C(H) of size at least n2

2
and average degree at most 10.

In this case, by Theorem F.2, we can find an independent set in the induced subgraph (and thus in C(H)) of size at least Ω(n2),
which is Case 2. □

We now show separately for each case how to embed
n2

2 log(n2)
pairs (Si ,Ti) of TRIBESm,N in C(H). We start with Case 2. In this

case, for large enough n2, C(H) has an independent set of size at least
n2

2 log(n2)
consisting of nodes of degree at least two. We can

thus use a proof identical to that given in Lemma 4.6 to construct the remaining relations of BCQH ,N corresponding to C(H).
Namely, the independent set of C(H) will play the role of the set O in Lemma 4.6.

19

We now address Case 1. Consider a cycleC inC (H) and a pair of sets (Si ,Ti) from TRIBESm,N . Let c1, c2, . . . , cℓ be the nodes inC .

To embed (Si ,Ti) inC we first present Si not as a subset of [N] but rather as a subset of [

√
N] × [

√
N] or alternatively as a relation

RSi over two attributes with domain [

√
N]. Similarly, we associateTi with a relation RTi over two attributes with domain [

√
N]. We

define the relation corresponding to edge (c1, c2) in the cycle as RSi , the relation corresponding to edge (c3, c2) as RTi (note that we

reverse the order of attributes for RTi), and the relations corresponding to the remaining cycle edges as {(i, i) : i ∈ [

√
N]}. Notice,

with this assignment of relations to the edges it holds that DISJ(Si ,Ti) = 1 iff there is an assignment that satisfies all relations in

the cycle. Indeed, if tuple t satisfies all relations on the cycle, then the pair (πc1
(t),πc2

(t)) is in Si , the pair (πc3
(t),πc2

(t)) is in
Ti , and it holds that πc3

(t) = πc4
(t) = · · · = πcℓ (t) = πc1

(t). Thus, we conclude that the pair (πc1
(t),πc2

(t)) is in Si and the pair

(πc2
(t),πc1

(t)) is in Ti , which in turn implies that DISJ(Si ,Ti) = 1. Alternatively, if DISJ(Si ,Ti) = 1 then there exists a pair (α , β)
such that (α , β) ∈ Si ∩Ti . We can now set t with πc3

(t) = πc4
(t) = · · · = πcℓ (t) = πc1

(t) = α and πc2
(t) = β to satisfy all relations

corresponding to the cycle.

We continue in a similar manner for each cycleC in our collection of cycles. Namely, for each cycle, we define relations corresponding

to a pair of sets from TRIBESm,N (Ŝ, T̂) such that the sets intersect iff there is an assignment that satisfies the relations inC . Notice
that the collections of pairs of sets (S,T) corresponding to the cycle collection have pair-wise intersection iff there is an assignment

that satisfies all the relations in the cycle collection. To complete the definition of q
H , Ŝ,T̂ we still need to assign a relation to

all edges in C(H) that do not appear in any of the cycles in the collection. All such edges are assigned the complete relation

[

√
N] × [

√
N] over 2 attributes of domain [

√
N]. Note that the complete relations assigned do not impose any restrictions on the

possible tuples t that satisfy the relations corresponding to the collection of cycles, and thus we have successfully embedded

n2

2 log(n2)
pairs (Si ,Ti) of TRIBESm,N (Ŝ, T̂) in C(H).

Thus, we can conclude that q
H , Ŝ,T̂ = 1 iff TRIBESm,N (Ŝ, T̂) = 1, wherem = max

(
y
2
, n2

2 log(n2)

)
. Since sum and max are within a

factor 2 of each other, we can writem ≥
y
4
+

n2

4 log(n2)
. We can now apply ideas from the proof of Lemma 4.7 to obtain the required

lower bound Ω̃
(

(y+n2) ·N
MinCut(G,K)

)
, as desired. □

G QUERIES WHENH IS A d-DEGENERATE HYPERGRAPH OF ARITY AT MOST r
In this section, we consider BCQs whose underlying hypergraphH is d-degenerate with arity at most r . We prove upper and

lower bounds that are tight within a factor of Õ (d2 · r2) for computing BCQH ,N (for N large enough compared to size of G and

for worst-case assignment of relations to players).

G.1 Main Theorem
We state our main theorem here.

Theorem G.1. For arbitrary G, subset of players K and d-degenerate hypergraphs with arity at most r , we have

D (BCQH ,N ,G,K) = O

(
y (H) · min

∆∈[|V |]

(
N · r

ST(G,K ,∆)
+ ∆

)
+ τMCF (G,K ,n2 (H) · d · r · N)

)
. (11)

Further, for d-degenerate hypergraphsH , we have

R (BCQH ,N ,G,K) ≥ Ω̃ *.
,

y (H) ·N
r +

n2 (H) ·N
dr

MinCut(G,K)
+/
-
. (12)

We prove this theorem in two steps. We first prove the upper bound (11), followed by the lower bound (12). Finally, the arguments

in Appendix E.1 imply that our bounds are tight within a gap of Õ (d2 · r2) (under worst-case assignment of relations to players

and N being large enough).

G.2 Upper Bound
Our proof is similar in nature to that used in the arity two case. For the rest of the section, unless specified otherwise, let T be a

GHD ofH with the root bag being C(H). Analogous to y (H), let y (T) denote the number of internal nodes in the tree of T . In

this section, we will prove our upper bounds in terms of y (T). Since we do not assume anything about T beyond the fact that it

has C(H) as its root, our bound holds for the smallest y (T) over all such GHDs T . This by Definition 3.1 is exactly y (H). We

prove our bounds in terms of y (T) since it makes the exposition simpler.

We compute BCQH ,N on GHD T . We first consider the case when T is a star, which will be a basic building block for our

algorithms for more generalH .

G.2.1 T is a star. LetH be an α-acyclic hypergraph whose GHD T is a star of the form P = (v1, . . . ,vk) with v1 as the center.

By Definition 2.6, H includes k relations of the form Rχ (vi) for every i ∈ [k]. Note that computing the corresponding BCQ

query BCQH ,N can be solved via a set-intersection problem of computing R′P =
∧k
i=2

R′vi , where R′vi = {t ∈ Rχ (v1) : ∃t′ ∈
20

Rχ (vi) s.t. πχ (v1)∩χ (vi) (t) = πχ (vi)∩χ (v1) (t
′)}. Note that the intersection is computed on the attribute set χ (v1) (each entry in

the sets is a r -dimensional vector) as opposed to a single attribute (as was the case for arity two) It is easy to see that the final

output of the BCQH ,N instance is 1 if R′P , ∅ and 0 otherwise.

We describe our algorithm (Algorithm 2) here. We first broadcast the relation Rχ (v1) to all the remaining players containing

relations Rχ (vi) for every i ∈ [2,k] in G. Then, each player containing Rχ (vi) for every i ∈ [2,k] computes R′vi . Finally,

R′P =
⋂k
i=2

R′vi is computed using known upper bounds on set intersection using Theorem 3.11. Using the fact that at most

O
(
log

2
(r · D)

)
bits are communicated in each round, we have the following result.

Corollary G.2. For arbitrary graphs G and subset of players K , we have

D (BCQH ,N ,G,K) = O

(
min

∆∈[|V |]

(
N

ST(G,K ,∆)
+ ∆

))
.

For the case whenG is a line with k vertices, note that ST(G,K ,∆) = 0 for every ∆ > k − 1 and ST(G,K ,k − 1) = 1. In particular,

this implies

Corollary G.3. LetH be α-acyclic, T be a star and G be a line with k vertices. Then,

D (BCQH ,N ,G,K) = O (r · N + k).

Algorithm 2 Algorithm for T is a Star

1: Input: A star P = (v1, . . . , vk) ∈ T and relations {Rχ (vi) : i ∈ [k]}. Note that v1 is the center and the others are leaves.

2: Output: R′P
3: The player containing Rχ (v1) broadcasts it to all players in G .

4: For every i ∈ [2, k], the player containing Rχ (vi) computes R′vi = {t ∈ Rχ (v1) : ∃t′ ∈ Rχ (vi) s.t. πχ (v1)∩χ (vi) (t) = πχ (vi)∩χ (v1) (t
′) }

internally.

5: R′P =
⋂k
i=2

R′vi is computed using Theorem 3.11.

6: return R′P

G.2.2 H is an α-acyclic forest. Similar to the proof of Lemma 4.4, we use the analysis on the star to obtain better upper bounds

forH = F(H).

Lemma G.4. For arbitrary graphs G, subset of players K and any GHD T , we have

D (BCQH ,N ,G,K) = O

(
y (T) · min

∆∈[|V |]

(
N

ST(G,K ,∆)
+ ∆

))
. (13)

Here, y (T) denotes the number of internal nodes in T .

Proof. We start with a proof sketch. We keep removing stars from T in a bottom-up fashion. We solve the induced query on

each removed star P using the analysis of Section G.2.1. Since the number of stars we remove in this process is y (T), the stated
bound follows.

We now formalize our idea using a recursive algorithm. For simplicity, we assume thatH has only one α-acyclic hypergraph
with its corresponding T having y (T) internal nodes. Next, we show that we can solve BCQ problem onH by solving another

BCQ problem on H ′ with y (T) − 1 internal nodes defined as follows. We remove the bottom-most star P = (v1, . . . ,v |P |)
(where v1 is the center and (v2, . . . ,v |P |) are the leaves) from T . We define V (T ′) = V (T) \ (v2, . . . ,v |P |) and E (T ′) =
E (T) \ {(v1,vi) : i ∈ [2, |P |]}. This implies that H ′ is updated as follows – V (H ′) = V (H) \ {χ (vi) ∩ χ (v1) : i ∈ [2, |P |]} and

E (H ′) = E (H) \ {χ (vi) : i ∈ [2, |P |]}. Using the arguments of Section G.2.1, we process P in O
(
min∆∈[|V |]

(
N

ST(G,K,∆) + ∆
))

rounds and compute is R′P = ∩
k
i=2

R′vi , where R
′
vi = {t ∈ Rχ (v1) : ∃t′ ∈ Rχ (vi) s.t. πχ (v1)∩χ (vi) (t) = πχ (v1)∩χ (vi) (t

′)}. Finally, we

set R′χ (v1)
= R′P (while the remaining surviving relations remain the same). It is easy to see that BCQ onH is 1 iff BCQ onH ′ is 1.

Note thatH ′ is also α-acyclic, which implies that we can continue this process recursively until T ′ has only one node left (in

which case we just check if its relation is empty or not). Thus, the final answer is given by (R′P
?

, ∅) and the number of recursive

calls is bounded by the number of internal nodes y (T). Further, ifH is a forest of α-acyclic hypergraphs, our argument can be

applied individually on every hypergraph, resulting in the upper bound (13). This completes the proof. □

G.2.3 d-degenerate HypergraphsH with arity at most r . In this section, we prove our general upper bound result whenH is a

d-degenerate graph of arity at most r .

21

Lemma G.5. For arbitrary G, subset of players K , and any GHD T , we have

D (BCQH ,N ,G,K) = O

(
y (T) · min

∆∈[|V |]

(
r · N

ST(G,K ,∆)
+ ∆

)
+ τMCF (G,K ,n2 (H) · d · r · N)

)
. (14)

Here, y (T) denotes the number of internal nodes in T .

Proof. We start with a proof sketch. We decomposeH into two components – an α-acyclic forest (F(H)) and a core (C(H)).
We then use Lemma G.4 to solve the induced query on F(H). For C(H), we use the trivial protocol that sends all the remaining

relations to one player.

More formally, consider F(H) (via Construction 2.9). Using the protocol in LemmaG.4, we know thatO
(
y (T) ·min∆∈[|V |]

(
N ·r

ST(G,K,∆) + ∆
))

rounds suffice to reduceH (with corresponding GHD T) to C(H). Further, the protocol returns relations of the form R′r for every

root r in F(H). In particular, since χ (r) resides with C(H) for each such root, it is easy to check that BCQ onH has the same

answer as BCQ on C(H).
We can now use the trivial protocol to solve BCQ

C(H),N on G with τMCF (G,K ,n2 (H) · d · r · N) via Lemma 3.13. Note that our

choice of T was arbitrary, which implies y (T) ≥ y (H) (by Definition 3.1). Thus, we have an upper bound of (2.1), completing the

proof. □

G.3 Lower Bounds
We start with an overview of our lower bound. Then, we prove lower bounds for the case when H is a forest of α-acyclic
hypergraphs (i.eH = F(H)). Finally, we use the argument for F(H) to obtain our lower bounds for generalH . As in Section 4.2,

our lower bounds follow from a reduction from the well-studied TRIBES function.

G.3.1 Preliminaries and Notation. We define the concept of Strong Independent Sets (including a lower bound on their size) and

introduce a specific construction of GHDs, which we will use in our lower bound arguments.

Definition G.6 (Strong Independent Set). Given a hypergraphH , a strong independent set I ⊆ V (H) satisfies the following
property. For any pair of vertices u,w ∈ I ,u , w , there exists no hyperedge e ∈ E (H) with {u,w } ⊆ e .

Theorem G.7 (Size of Strong Independent Set [34]). Any d-degenerate hypergraph H with arity at most r has a strong
independent set of size at least |V (H) |

d ·(r−1) .

Construction G.8 (MD-GHD). Let T ′ be a GHD ofH (recall that we mean GYO-GHDs obtained by Construction 2.9 when we
say GHD). We now construct our GHD T from T ′ as follows. We first set V (T) = V (T ′), E (T) = E (T ′) and modify T ′ as follows.
Consider any parent-child pair (u,v) ∈ E (T), where u is the parent and v is the child. If there exists a nodew ∈ V (T) that occurs
above u in T such that χ (v) ∩ χ (u) ⊆ χ (w),22 we perform a modification as follows. We delete the edge e1 = (u,v) from E (T) and
add the edge e2 = (w,v) to it. Note that the subtree rooted at v is still preserved. We continue this process until this operation cannot be
performed.

It is easy to see that T is a valid GHD according to definition 2.5.

G.3.2 Lower Bounds for F(H).

Theorem G.9. When T is a MD-GHD for F(H), we have

TRIBES y (T)
r ,N

≤ BCQH ,N .

Here, y (T) is the number of internal nodes in T .

Proof. GivenH , T and a TRIBES y (T)
r ,N

instance we design a corresponding BCQH ,N instance. LetU = {u1, . . . ,uy (T) } be

the set of internal nodes in T indexed in a bottom up fashion. Namely, if ui is a descendant of uj then j > i . In increasing index

order i , for each internal node ui ∈ U , we consider the star Pi = (v1 = ui ,v2, . . . ,v |Pi |) with v1 as the center and (v2, . . . ,v |Pi |)
as leaves.

We first claim for i = 1 that there exists at least one attribute p1 in the set ∪
|P1 |

j=2

(
χ (v1) ∩ χ (vj)

)
that does not occur anywhere

in T \ P1. This implies, for this fixed p1, that there exist at least two relations incident on it (one of them being Rχ (v1)). Note that

if p1 occurs in T \ P1, then we have a contradiction to the fact that T is a MD-GHD. In particular, this implies {χ (v1) ∩ χ (vi) : i ∈
[2, |P1 |]} ⊆ χ (w), where w = parent(v1) denotes the parent of v1 (if it exists) in T , which follows from RIP of GHDs. Thus, all

nodes (v2, . . . ,v |P1 |) could have been made children ofw along withv1, which means Construction G.8 would not have terminated.

For i = 2, we apply the above argument on T = (V (T) \ {v2, . . . ,v |P1 | },E (T) \ {(v1,vi) : i ∈ [2, |P1 |]}) for p2, and similarly we

continue recursively for i > 2 and pi .
We have shown above that for each ui ∈ U , there exists an attribute pi such that there are at least two relations Rpi,1 ,Rpi,2 on

hyperedges pi,1 , pi,2 ∈ E (H) incident on pi , and in addition, pi does not occur in (any bag of) T = V (T) \ (∪ℓ<iPℓ). We now

22
If there are multiple choices, we pick the topmostw among them.

22

consider the set P = {p1, . . . ,p |y (T) | } of attributes and claim that P includes a strong independent set I of size at least
|y (T) |

r . We

construct such a set greedily. We use the following observation in our analysis: for any pi ,

|{pj | j > i and ∃e ∈ E (H) s.t. pi ,pj ∈ e}| ≤ r − 1.

Assume otherwise, then there exists pi that shares edges with r attributes pj for j > i . By the discussion above, as such edges

include pi they must be associated with ∪ℓ<iPℓ . This implies, via the RIP, that these r attributes together with pi are in χ (ui) in
contradiction to |χ (ui) | ≤ r . We now start the greedy construction with I = {p1}, and remove p1 from P together will all pj that
share an edge with p1. We have removed at most r attributes from P . We continue recursively. At step ℓ we consider the smallest

index i for which pi has not been removed from P . We add pi to I and remove pi and any pj that shares an edge with pi from P . As
all pℓ for ℓ < i have been removed from P , we only remove r additional nodes from P . By the greedy process, the final I is an

independent set of size at least
|y (T) |

r .

Assume w.l.o.g. that the strong independent set I satisfies |I | =
y (T)
r (otherwise we take a subset of I). Associating a pair of sets

(Si ,Ti) from TRIBES y (T)
r ,N

(Ŝ, T̂) with each node pi ∈ I , we have

TRIBES y (T)
r ,N

(Ŝ, T̂) =
∧
pi ∈I

DISJN (Si ,Ti). (15)

We now construct a corresponding BCQH ,N instance in detail. We start by defining a pair of relations corresponding to each

pair (Si ,Ti). Recall that each pi ∈ I corresponds to a ui ∈ U , such that pi ∈ χ (ui) and ∃u
′
i ∈ children(ui) : pi ∈ χ (u ′i). We

set the relations RSi = Si ×
|χ (ui) |
i=2

{1} and RTi = Ti ×
|χ (u′i) |
i=2

{1} (where, for both, the first attribute is pi). In particular, we have

attr(RSi) = χ (ui) and attr(RTi) = χ (u ′i). Further, we treat Si and Ti as subsets of [N] (instead of elements in {0, 1}N). Thus,

TRIBES y (T)
r ,N

(Ŝ, T̂) = 1 iff for each pi ∈ I , the join RSi ▷◁ RTi is not empty. To complete the description of BCQH ,N , we need

to define the other relations in H as well. Note that all the remaining relations R′ = {{Re : e ∈ E (H)} \ {RSi ∪ RTi : pi ∈ I }}
can be incident on only at most one pi ∈ I (as I is a strong independent set). If Re ∈ R′ is incident on pi ∈ I , we define

Re = {(ℓ, 1, . . . , 1) : ℓ ∈ [N]} (where pi is the first attribute in e). Otherwise, we set Re = (1, . . . , 1) (note that the order of attributes
does not matter here). Let us denote the BCQ instance constructed above by q

H , Ŝ,T̂ .

To complete the proof, we show that q
H , Ŝ,T̂ = 1 iff TRIBES y (T)

r ,N
(Ŝ, T̂) = 1. In particular, if q

H , Ŝ,T̂ = 1, there exists a

tuple t ∈
∏

v ∈V (H) Dom(v) that satisfies all relations in q
H , Ŝ,T̂ i.e., te ∈ Re for every e ∈ E (H). Specifically, for each pi ∈ I ,

RSi ▷◁ RTi is not empty, which implies TRIBES y (T)
r ,N

(Ŝ, T̂) = 1. Alternatively, if TRIBES y (T)
r ,N

(Ŝ, T̂) = 1, we can find tuple

t ∈
∏

v ∈V (H) Dom(v) that satisfies all relations in q
H , Ŝ,T̂ . For each pi ∈ I , we set πpi (t) to be in the intersection of Si and Ti ,

and for all remaining nodes v ∈ V (H) \ I we set πv (t) = 1. Note that this implies all the relations in q
H , Ŝ,T̂ are satisfied. This

concludes our proof. □

Note that the above argument was independent ofG . We now use the structure ofG to obtain a lower bound onR (BCQH ,N ,G,K)
using known results for TRIBES y (T)

r ,N
.

G.3.3 Lower Bounds dependent onG. We show the following lower bound for arbitrary G assuming worst-case assignment of

relations to players in K .

Lemma G.10 (Arbitrary G). IfH = F(H), then

R (BCQH ,N ,G,K) ≥ Ω̃

(
y (H) · N

r ·MinCut(G)

)
.

Proof. We first consider a min-cut (A,B) of G that separates K , where A and B denote the set of vertices in each partition

(A ∪ B = V (G)). Using the notation used in the proof of Theorem G.9, let q
H , Ŝ,T̂ be the query computed on a MD-GHD T

corresponding to a given instance TRIBES y (T)
r ,N

(Ŝ, T̂). We assign relations {RSi }pi ∈I to vertices in A and relations {RTi }pi ∈I to

vertices in B. The other relations in q
H , Ŝ,T̂ can be assigned arbitrarily. Note that any protocol to compute q

H , Ŝ,T̂ on G gives a

two-party protocol (Alice, Bob) for TRIBES y (T)
r ,N

(Ŝ, T̂). In particular, Alice gets the sets {Si }pi ∈I (corresponding to RSi) assigned

to vertices in A and Bob gets the sets {Ti }pi ∈I (corresponding to RTi) assigned to vertices in B (ignoring the additional relations). It

is not too hard to see that if there exists a R (BCQH ,N ,G,K) round protocol for TRIBES y (T)
r ,N

on G, then we have a two-party

protocol (i.e., on a graph G = ({a,b}, (a,b))) with at most R (BCQH ,N ,G,K) ·MinCut(G,K) ·
⌈
log

2
(MinCut(G,K))

⌉
rounds (see

Proof of Lemma 4.7 for a detailed discussion). Since R (BCQH ,N ,G,K) ·MinCut(G,K) ·
⌈
log

2
(MinCut(G,K))

⌉
is lower bounded

from Theorem 2.3 by Ω̃
(
y (T) ·N

r

)
and (since by definition of y (H)) y (T) ≥ y (H), we conclude our assertion. □

23

Remark G.11. In the proof above, we invoked an existing lower bound on Theorem 2.3 for TRIBES y (T)
r ,N

(Ŝ, T̂). We would like to

remark here that the lower bound on TRIBES is indeed obtained on a product distribution ˆD on y (T)
r variables. All our arguments use

ˆD as a black-box but such a ˆD always exists (e.g., one of them is defined in Section 2.1 in [19]).

Inspecting the hard distribution defined in Section 2.1 in [19] (which is also used in [36] to prove Theorem 2.3) we observe the

following:

Remark G.12. For every pair of sets (Sj ,Tj) in the TRIBES y (T)
r ,N

(Ŝ, T̂) instance, we have

|Sj ∩Tj | ≤ 1,

where j ∈ [
y (T)
r].

Note that this implies the following based on our lower bound arguments.

Remark G.13. For all our BCQH ,N instances, we have | ▷◁e ∈E (H) Re | ≤ 1.

G.3.4 Lower Bounds for d-degenerate hypergraphsH . We are now ready to prove our general lower bound for all d-degenerate
hypergraphsH .

Theorem G.14. For arbitrary G, subset of players K and d-degenerate hypergraphsH with a MD-GHD T , we have

R (BCQH ,N ,G,K) ≥ Ω̃
*...
,

(
y (T)
r +

n2 (H)
d ·r

)
· N

MinCut(G,K)

+///
-

. (16)

Here, y (T) denotes the number of internal nodes in T .

Proof. Letm1 =
y (T)
r andm2 =

n2 (H)
d ·r . We obtain two independent lower bounds onH and our final bound is the maximum

between them (which is at least half their sum). In general, as in Theorem G.9, givenH and a TRIBES instance TRIBESmi ,N (Ŝ, T̂)

for every j ∈ [2], we construct a BCQ query q
(j)
H , Ŝ,T̂

on H such that q
(j)
H , Ŝ,T̂

= 1 iff TRIBESmj ,N = 1. To this end, we need to

“embed” themj pairs of sets (Si ,Ti) from TRIBESmj ,N (Ŝ, T̂) as relations in q
(j)
H , Ŝ,T̂

. Recall that C(H) is present at the root of T . It

is easy to check that one can apply the reduction on Theorem G.9 to construct q
(1)

H , Ŝ,T̂
with the required properties.

Finally form2, we apply Theorem G.7 on the root of T (i.e., C(H)) to obtain a strong independent set of size at least
n2 (H)
d ·(r−1) ≥

n2 (H)
d ·r (since r ≥ 2). We then use a proof identical to that given in Theorem G.9 to embed the TRIBES instance TRIBESm2,N onto

C(H).

Let m = max(m1,m2) = max

(
y (T)
r ,

n2 (H)
d ·r

)
. Since sum and max are within a factor 2 of each other, we can write m ≥

y (T)
2·r +

n2 (H)
2·d ·r . We can now apply ideas from the proof of Lemma G.10 to obtain the required lower bound Ω̃ *.

,

(
y (T)
r +

n
2
(H)
d ·r

)
·N

MinCut(G,K)
+/
-
.

This concludes our proof. □

We now prove Theorem G.1. The upper bound follows from Lemma G.5. For the lower bound, note that our bounds depend on an

arbitrary MD-GHD T forH . By definition 3.1, we have that y (T) ≥ y (H) and the lower bound (12) follows. Using Definition 2.10,

we have that upper and lower bounds match for the GHD that achieves the internal-node-width y (H) (i.e., y (H) = y (H)).

We conclude this section by noting that when N ≥ |V |2 our upper and lower bounds differ by Õ (d2 · r2) factor (for worst-case
assignments of relations to players). In particular, Theorem 3.10, implies that the first two terms in the upper and lower bounds

match up to an Õ (r2) factor. Using the same arguments as in Appendix E.1, we can show that for worst-case assignment of

relations, we have the second terms in the upper and lower bounds differ by a Õ (d2 · r2) factor, as desired.

H BOUNDS FOR GENERAL FAQS AND ASSUMPTIONS IN MODEL 2.1
In this section, we prove Theorem 5.1 and address assumptions in Model 2.1. We start with the redefinition of the FAQ problem

and state some known results.

H.1 Preliminaries and Existing Results
We define the general FAQ problem here. We are given a multi-hypergraphH = (V, E) where for each hyperedge e ∈ E, we are

given an input function fe :

∏
v ∈e Dom(v) → D. In addition, we are given a set of free variables F ⊆ V : |F | = ℓ. We would like

24

to note that our results hold only for specific choices of F . For a fixed F , the vertices inV can be renumbered so that F = [ℓ]

WLOG. We would like to compute the function:

ϕ
(
x

[ℓ]

)
= ⊕(ℓ+1)

xℓ+1∈Dom(xℓ+1)

. . . ⊕(n)

xn ∈Dom(xn)

⊗

S ∈E

fS (xS), (17)

where we use x = (xu)u ∈V and xS is x projected down to co-ordinates in S ⊆ V . The variables inV \F are called bound variables.

For every bound variable i > ℓ, ⊕(i) is a binary (aggregate) operator on the domain D. Different bound variables may have

different aggregates. Finally, for each bound variable i > ℓ either ⊕(i) = ⊗ (product aggregate) or (D, ⊕(i) , ⊗) forms a commutative

semiring (semiring aggregate) with the same additive identity 0 and multiplicative identity 1. As with database systems, we

assume that the functions are input in the listing representation, i.e. the function fe is represented as a list of its non-zero values:

Re = {(y, fe (y)) |y ∈
∏

v ∈e Dom(v) : fe (y) , 0}. Let FAQD,H ,N ,F =[ℓ]
denote the class of FAQ problems, where each function fe

for e ∈ E has at most N non-zero entries. Note that we are not explicitly (⊕(ℓ+1) , . . . , ⊕(n)) since the developments here hold for

all such choice of operators for the bound variables.

When ⊕(i) = ⊕ for every i ∈ [ℓ + 1,n] and (D, ⊕(i) , ⊗) forms a commutative semiring, we have the FAQ-SS problem. We have

already seen that BCQ and computing some Factor Marginals in PGMs are special cases of FAQ-SS. We restate them in the

language of FAQ for completeness. When F = ∅ and D = {0, 1} (i.e., the Boolean semi-ring), FAQ {0,1},H ,N ,∅ corresponds to the

Boolean Conjunctive Query which we denote by BCQH ,N . Further, if F = V and D = {0, 1}, we have the natural join problem

in Definition 3.4 and if F = e for any e ∈ E with D = {0, 1}, we have the semijoin problem in Definition 3.5. We would like to

mention that Re can be equivalently represented as Rv (e) and Ri (denoting the ith edge/function in |E | = k).
We can use Theorem 9 from [38] to obtain the following result.

Corollary H.1. If there exists a function Re ′ for e ′ ∈ E (H) and other function Re for every e ∈ E (H) \ {e ′} such that the set of
attributes v (e ′) ⊇ (z1, . . . zw) satisfies v (e) does not contain the attributes (z1, . . . , zw) for every e ∈ E (H). Then, we have

*..
,
⊕(д)

д∈Dom(д)

+//
-д∈∪e∈E (H)v (e)

*..
,
⊗

e ∈E (H)

Re
+//
-
=

*....
,

*..
,
⊕(д)

д∈Dom(д)

+//
-д∈∪v∈V (H)\{z

1
, . . .,zw }v

⊗

e ∈E (H)\{e ′ }

Re

+////
-

⊗
*..
,
⊕(z1)

z1∈Dom(z1)

. . . ⊕(zw)

zw ∈Dom(zw)

Re ′
+//
-
.

(18)

We summarize the implication of the above corollary here. In particular, if there exists a relation Re ′ for e
′ ∈ E (H) with

v (e ′) ⊇ (z1, . . . , zw), then we can “push down" the aggregations

*..
,
⊕(z1)

z1∈Dom(z1)

. . . ⊕(zw)

zw ∈Dom(zw)

+//
-
inside every tuple in Re ′ .

We consider the standard centralized model and prove the following result whenH is α-acyclic. We would like to note that this

result follows from FAQ/AJAR [38, 39] but we state it here explicitly for completeness. Further, this result will be used crucially in

our distributed algorithm later.

Theorem H.2. WhenH is α-acyclic, the deterministic complexity of computing FAQD,H ,N ,∅ is Õ (N).

Proof. For any input function f such that fe :

∏
v ∈e Dom(v) → D and an arbitrary set of operators (⊕(i))i ∈[n]

, we can write

Q = ⊕(1)

x1∈Dom(x1)

. . . ⊕(n)

xn ∈Dom(xn)

⊗

e ∈E (H)

Re (19)

using (3). Here, Q is an instance of FAQD,H ,N ,∅, (⊕(i))i∈[n]

. Recall that Re is the listing representation of fe : {(y, fe (y)) |y ∈∏
u ∈e Dom(u) : fe (y) , 0} for every e ∈ E (H). We now use Construction 2.9 onH obtaining a GHD T where each node v ∈ T

corresponds to a hyperedge χ (v) ∈ E (H) (see Definition 2.6).

We describe the algorithm here, which uses a message-passing algorithm (upward pass) on a GHD T . In particular, in a bottom-up

fashion, every node v ∈ T performs two computations – first, it updates the relation Rχ (v) based on the messages received from

all its neighbors. Second, if it is not a root, then it computes the message v needs to send to its parent v ′ = parent(v). We obtain

the final answer for Q in the root.

We now formalize the algorithm above. Since we are considering the centralized model, we can assume that all relations Rχ (v) :

v is a node in ∈ T can be accessed at any point in time without any additional communication. Let v be current node in

consideration in our algorithm. We update the relation Rχ (v) as follows:

Rχ (v) = Rχ (v) · ⊗

u ∈Γ(v)

mu,v , (20)

25

where Γ(v) andmu,v denote the neighborhood of v and the message sent from u to v respectively. Initializew = 1. For every tuple

t ∈ Rχ (v) and for all tuples t′ ∈ mu,v with πχ (u)∩χ (v) (t′) = πχ (u)∩χ (v) (t) for every u ∈ Γ(v), we compute the running product

w = w · f (t′). Then, the tuple t in Rχ (v) is updated as (t′, f (t) ·w). Since |Rχ (v) | ≤ N and |mu,v | ≤ N with χ (v) ⊆ χ (u) ∩ χ (v)

for every v ∈ T ,u ∈ Γ(v), we claim that (20) can be computed in Õ (N) time. To prove this, observe that for a fixed tuple t ∈ Rχ (v) ,
there exists at most one tuple t′ ∈mu,v such that πχ (u)∩χ (v) (t′) = πχ (u)∩χ (v) (t) for every u ∈ Γ(v). Then, we traverse through
all tuples in Rχ (v) in the worst-case and our stated claim follows. We call this Step 1.
If v is not the root of T , the messagemv,v ′ that v needs to send to its parent v ′ = parent(v) ∈ T is computed as follows. Notice

that the variables in the set χ (v) \ χ (v ′) = (z1, . . . , zw) are private to the node v . In particular, all variables in χ (v) \ χ (v ′) are not
present anywhere apart from the subtree of T rooted at v (follows from the running intersection property of T). Notice that the

attributes (z1, . . . , zw) are present in ⊆ (x1, . . . ,xn). Consider the reduced FAQ query at v given by

Qv =
*..
,
⊕(д)

д∈Dom(д)

+//
-д∈∪y∈T ′ χ (y)

⊗

y∈T ′

Rχ (y) ,

where T ′ denotes the set of nodes that haven’t been processed in T so far in the message-up algorithm (which includes v). We

can rewrite Qv by invoking Corollary H.1 as follows:

Qv =

*....
,

*..
,
⊕(д)

д∈Dom(д)

+//
-д∈∪y∈T ′\{v } χ (y)

∏
y∈T ′\{v }

Rχ (y)

+////
-

⊗
*..
,
⊕(z1)

z1∈Dom(z1)

. . . ⊕(zw)

zw ∈Dom(zw)

Rχ (v)
+//
-
. (21)

In particular, we are “pushing down" the aggregations

*..
,
⊕(z1)

z1∈Dom(z1)

, . . . , ⊕(zw)

zw ∈Dom(zw)

+//
-
inside every tuple in the relation Rχ (v)

since they are not contained in any relation Rχ (y) for every y ∈ T ′ \ {v}. In other words, the attributes (z1, . . . , zw) belong
to only relations in the subtree of T rooted at v . Further, observe that this computation is performed at node v . Note that

the aggregations are computed on the annotated values of the relations as follows. For every tuple t ∈ πχ (v)∩χ (v ′)Rχ (v) , the

tuple

*...
,

t,∀t′ ∈ Rχ (v) : ⊕(z1)

πz
1
(t′)

. . . ⊕(zw)

πzw (t′)

f (t′) if πχ (v)∩χ (v ′) (t′) = t
+///
-

is added to the messagemv,v ′ . If v is the root of T , we have

χ (v) = (z1, . . . , zw) and as a result, (21) will have only the right hand side of the product. Thus, the final answer for Q can be

computed from v . Notice that this computation can be done in Õ (N) time since |mv,v ′ | ≤ |Rχ (v) | and we might traverse through

all tuples in Rχ (v) in the worst case. We call this Step 2.
Finally, when the algorithm terminates, we need to argue that we obtain the correct result for Q . Consider the first node v ∈ T
considered in our message up process. The reduced FAQ query Qv = Q’s correctness follows from Corollary H.1. Since we

repeatedly apply the same procedure for all other nodes in v ∈ T \ {v}, the correctness follows. Since both Step 1 and Step 2 take
only Õ (N) time and our choice of (⊕(i))i ∈[n]

was arbitrary, this completes our proof. □

H.2 Main Theorem
We prove the following theorem in our model assuming that any hypergraph can be decomposed into a forest F(H) and a core

C(H) using Construction 2.9.

Theorem H.3. For arbitrary G, subset of players K , any F ⊆ V (C(H)) : |F | = ℓ, and d-degenerate hypergraphsH with arity at
most r , we have

D
(
FAQD,H ,N ,F ,G,K

)
= O

(
y (H) · min

∆∈[|V |]

(
N · r

ST(G,K ,∆)
+ ∆

)
+ τMCF (G,K ,n2 (H) · d · r · N)

)
. (22)

Further, we have

R
(
FAQD,H ,N ,F ,G,K

)
≥ Ω̃

(
y (H) · N

r ·MinCut(G,K)
+

n2 (H) · N

d · r ·MinCut(G,K)

)
. (23)

Both the results hold for any D and any choice of operators (⊕ℓ+1, . . . , ⊕n) over D as defined in Section H.1.

We would like to note here that for simple graphsH , we can overcome the factor of d in the lower bound (see Theorem 4.8). In

particular, we can use similar ideas from there to prove Theorem 5.1.

For both the upper and lower arguments, we consider an arbitrary set of operators (⊕ℓ+1, . . . , ⊕n) over D.

26

H.3 Upper Bound for General FAQs
The upper bound follows from a slight modification of our algorithm to compute BCQH ,N and uses ideas from the Proof of

Theorem H.2 to “push down" a specific subset of operators in (⊕ℓ+1, . . . , ⊕n). We present a proof sketch here. Let’s fix an input

function f such that fe :

∏
v ∈e Dom(v) → D. Using (3), we can write

FAQD,H ,N ,F = ⊕(ℓ+1)

xℓ+1∈Dom(xℓ+1)

. . . ⊕(n)

xn ∈Dom(xn)

*.
,

∏
e ∈E (H)\F(H)

Rv (e)
∏

e ′∈F(H)

Rv (e ′)
+/
-

since F(H) is a sequence of hyperedges in H . Recall that Re : e ∈ E (H) is the listing representation of fe : {(y, fe (y)) |y ∈∏
u ∈e Dom(u) : fe (y) , 0}.

We use the same ideas from the Proof of Lemma G.4 but for each removed star P , we use Algorithm 3 to compute it. In particular,

we show that computing FAQD,H ,N ,F can be solved by computing the product R′P =
∏k

i=2
R′vi . Note that this product can be

computed on a Steiner tree using known results for set-intersection. We basically perform two steps – compute the intersection of

tuples in each R′vi and multiply the annotated values if there is a tuple present in every R′vi . It is easy to see that FAQD,H ,N ,F = R′P .
We describe our algorithm here. We perform a message-passing algorithm (upward pass) starting with a broadcast of the function

Rχ (v1) to all players in G. For every i ∈ [2,k], the player containing Rχ (vi) computes the up messagemvi ,v1
it needs to send

v1 internally (Step 4 in the Algorithm). Notice that the variables in the set Γ(vi,1) = {χ (vi) \ χ (v1)} = (z1, . . . , zw) are private
to the node vi . In particular, the variables in Γ(vi,1) are not present anywhere in the remaining hypergraph. Further, note

that (z1, . . . , zw) ⊆ (xℓ+1
, . . . ,xn). We and “push down" the aggregations

*..
,
⊕(z1)

z1∈Dom(z1)

, . . . , ⊕(zw)

z∈Dom(zw)

+//
-
inside every tuple in

the function Rχ (vi) since these variables do not occur anywhere in the remaining hypergraph. Further, the aggregations are

computed on the annotated values of the relations as follows. In particular, for every tuple t ∈ πχ (vi)∩χ (v1)Rχ (vi) , the tuple

*...
,

t,∀t′ ∈ Rχ (vi) : ⊕(z1)

πz
1
(t′)

. . . ⊕(zw)

πzw (t′)

f (t′) if πχ (vi)∩χ (v1) (t
′) = t

+///
-

is appended to the messagemvi ,v1
.

Then, only one player retains the original Rχ (v1) (say the player containing Rχ (v2)) and all others store an identity map of Rχ (v1)
(with all entries set to a function value of 1) to ensure we don’t multiply Rχ (v1) more than once. Finally, all the players containing

Rχ (vi) : i ∈ [2,k] compute R′vi = Rχ (v1) ×mvi ,v1
with their own version of Rχ (v1) (either actual or the identity map) as follows.

For every tuple t ∈ Rχ (v1) and for all tuples t′ ∈ mvi ,v1
: πχ (vi)∩χ (v1) (t

′) = πχ (vi)∩χ (v1) (t), the tuple t
′′ = (t′′, f (t) · f (t′)) is

appended to R′vi .

Algorithm 3 Algorithm for T is a Star

1: Input: A star P = (v1, . . . , vk) ∈ T and functions {Rχ (vi) : i ∈ [k]}. Note that v1 is the center and the others are leaves.

2: Output: R′P
3: The player containing Rχ (v1) broadcasts it to all players in G .

4: For every i ∈ [2, k], the player containing Rχ (vi) internally computes the the Up Message fromvi tov1,mvi ,v1
= ⊕(z1)

z1∈Dom(z1)

. . . ⊕(zw)

zw ∈Dom(zw)

Rχ (vi) , where Γ(vi,1) = χ (vi) \ χ (v1) = (z1, . . . , zw) ⊆ (xℓ+1, . . . , xn). ▷ All the ⊕(zj)s for every j ∈ [m] are computed on the values

annotated with the tuples in the function.

5: if i = 2 then
6: The player containing Rχ (v2) computes R′v2

= Rχ (v1) ·mv2,v1
internally. ▷ This product is computed on the annotated values on the

function and the message.

7: else
8: Converts Rχ (v1) to an identity map i.e., all entries in it are assigned a value of 1.

9: The player containing Rχ (vi) computes R′vi = Rχ (v1) ·mvi ,v1
internally. ▷ This product is computed on the annotated values on the

function and the message.

10: R′P =
∏k
i=2

R′vi ▷ This product is computed on a Steiner Tree packing like Theorem 3.11.

11: return R′P

Since all the R′vi s are computed on the same attribute set χ (vi) and the annotated tuples in each R′vi can be multiplied in constant

time, then Step 10 of our Algorithm can be computed on Steiner Tree, resulting in an upper bound of

O

(
min

∆∈[|V |]

(
N · r

ST(G,K ,∆)
+ ∆

))
.

We can now repeat the same arguments from the proof of Lemma G.4 (as stated earlier) until the root of T , which gives us the

first term in the required upper bound. We can then apply the naive protocol on the root of T (that contains C(H)), solving

27

it in τMCF (G,K ,n2 (H) · d · r · N) rounds (using Lemma 3.13). Since F ⊆ V (C(H)), we do not require a downward pass in our

message-passing algorithm. In total, we have the desired upper bound for computing FAQD,H ,N ,F . Note that our choices of f

and operator sequence (⊕(i))ℓ<i≤n were arbitrary and thus, our results hold for general FAQD,H ,N ,F . Finally, since our choice of

a GHD was arbitrary, we have y (T) ≤ y (H). This completes the proof.

H.4 Lower Bound for General FAQs
The lower bound follows from the fact that our hard BCQH ,N instance for a d-degenerateH is a hard FAQD,H ,N ,F instance for

the operator set

(
⊕(ℓ+1) , ⊕(n)

)
with ⊕(i) = ⊗ or (D, ⊕(i) , ⊗) forms a commutative semiring with the same additive identity 0 and

multiplicative identity 1 for every ℓ < i ≤ n.

We argue R
(
FAQD,H ,N ,F ,G,K

)
≥ R (BCQH ,N ,G,K) and the above result follows. We start with the BCQH ,N instance from

Section G.3.4. We construct a FAQD,H ,N ,F instance from a given BCQH ,N instance as follows. For each function Re : e ∈ E (H),
we apply the following function f on every tuple t ∈

∏
u ∈v (e) Dom(u): we set f (t) = 1 if t ∈ Re and 0 otherwise. Note that this

implies we can define functions of the form Re = {(t, 1)) : t ∈ Rv (e) } for every e ∈ E (H). We now have a FAQD,H ,N ,F instance

of the form

FAQD,H ,N ,F = ⊕(ℓ+1)

xℓ+1∈Dom(xℓ+1)

. . . ⊕(n)

xn ∈Dom(xn)

⊗

S ∈E

ϕS (xS). (24)

Given this setup, we claim that BCQH ,N is 1 iff FAQD,H ,N ,F is 1 and 0 otherwise. To see why this is true, notice that in all our

hard instances of BCQH ,N , the corresponding join output | ▷◁e ∈E (H) Re | ≤ 1 (from Remark G.13). As a result, we can apply the

sequence of operators (⊕(i))n≤i<ℓ one-by-one from right to left. If ⊕(i) = ⊗ for n ≤ i < ℓ , applying it on at most one value does

not make any difference. Otherwise, since all commutative semirings of the form (D, ⊕(i) , ⊗) have the same additive identity 0 and

multiplicative identity 1, we can conclude that FAQD,H ,N ,F = 1 iff BCQH ,N = 1. Note that the choices of operators (⊕(i))ℓ<i≤n

and D was arbitrary. Thus, we have R
(
FAQD,H ,N ,F ,G,K

)
≥ R (BCQH ,N ,G,K).

H.5 Restriction on Choice of F
Recall that any (hyper)graphH can be decomposed into a core C(H) and a forest F(H) using Construction 2.9. We would like to

mention here that our upper and lower bounds in this paper hold only for the case when F ⊆ V (C(H)). For our upper bounds,
we believe that this is due to the fact that we apply different algorithms on F(H) and C(H). For the lower bounds, we once again
deal with C(H) and F(H) independently and sum the bounds obtain from either of them. We believe that expanding the choices

of F needs new techniques for both the upper and lower bounds.

H.6 Hash-based Split of Relations
In this section, we address the assumption that the input functions inH are completely assigned to players in G. We prove upper

and lower bounds when the input relations are split based on certain kind of hashes. As a by-product, our lower bounds techniques

help us prove bounds when input functions are not split but randomly assigned to players inG (overcoming the assumption of

worst-case assignment of functions to players in G).
We define our setup in detail here.

H.6.1 Our Setup. We first state the condition we need on a hashes used to split relations that is sufficient for our bounds. Then,

we state some realistic scenarios where these conditions are satisfies.

Definition H.4. Given a hypergraph H and GHD T such that the root of T is C(H), we say a family of hash functions
H̃ = {he :

∏
v ∈e Dom(v) → K |e ∈ E} is consistent with T and K if the following holds. Let r ′ be the root of T . If e ⊆ χ (r ′) (i.e. e is

assigned to the root of T), then he can be arbitrary. Now consider a non-root node v in T and let u be its parent.
First, we consider the projection Su,v = πχ (u)∩χ (v)Rχ (v) . Then, for every tuple s ∈ Su,v , we have that hχ (v) (t) is the same for

every {t ∈ Rχ (v) : πχ (v2)∩χ (v) (u) = s}.
Further, we say the set of relations {Re }e ∈E are split according to H̃ , if for any e ∈ E and t ∈ Re , the tuple t is assigned to player

he (t).

It turns out that if tuples in the relations are split according to a family of hash functions as in the above definition, then we can

generalize Algorithm 3 to this case.

Next we observe that our condition on a family of hash functions being consistent with a GHD T and K is reasonable. In other

words, we are assuming that all attributes of Re for every e ∈ E are stored in a global variable elimination order that is compatible

with T . In particular, this implies for any non-root v in T and its parent u, we have that χ (u) ∩ χ (v) is a prefix of χ (v) according
to this variable elimination order. This assumption on the variables in Re being stored in the variable elimination order of T has

28

been made before for GHD-based algorithms used to solve FAQ [38, 39]. Further, “bit-map based" [52] hash functions he do indeed

satisfy the consistency property in Definition H.4.

We note that if the relations themselves are free of skew (which is an assumption made in [9]), then a consistent family of hash

functions will also distribute the tuples in a relation (near) equally among players in K .

H.6.2 Main Theorem.

Theorem H.5. For arbitrary G, subset of players K , any F ⊆ V (C(H)) and d-degenerate hypergraphsH with arity at most r .
Further, assume that the set of relations are split according to hash family H̃ that is consistent with T (where y (T) = y (H)) and K .
Then, we have

D (FAQD,H ,N ,F ,G,K) = O

(
y (H) · min

∆∈[|V |]

(
N · r

ST(G,K ,∆)
+ |K | · ∆

)
+ τMCF (G,K ,n2 (H) · d · r · N)

)
. (25)

Further, if H̃ is is a random hash family where he for e ∈ E are chosen independently and uniformly (conditioned on H̃ being consistent).
we have (with high probability over the randomness in H̃):

R (FAQD,H ,N ,F ,G,K) ≥ Ω̃

(
y (H) · N

r · γ (G,K)
+

n2 (H) · N

d · r · γ (G,K)

)
, (26)

where γ (G,K) is the minimum over all cuts (A,B) separating K of the quantity |E (A,B) | |K |2

(min(|A |, |B |))2 , where E (A,B) is the set of edges crossing
the cut. Here, y (H) and n2 (H) are defined as in Definition 3.1.

We note that when G is a line γ (G,K) is attained at the cut that equally cuts K into two parts and since |E (A,B) | = 1, we get

that γ (G,K) = O (1).
We would like to note here that for simple graphsH , we can overcome the factor of d in the lower bound (see Theorem 4.8). In

particular, we can use similar ideas from the Proof of Theorem 4.8 for upper bounds to obtain the following corollaries.

Corollary H.6. For arbitraryG , subset of players K and any starH . Further, assume that the set of relations are split according to
hash family H̃ that is consistent with T (where y (T) = y (H)) and K . Then, we have

D (FAQD,H ,N ,F ,G,K) = O

(
min

∆∈[|V |]

(
N · r

ST(G,K ,∆)
+ |K | · ∆

))
.

Corollary H.7. For arbitrary G , subset of players K and any forestH . Further, assume that the set of relations are split according
to hash family H̃ that is consistent with T (where y (T) = y (H)) and K . Then, we have

D (FAQD,H ,N ,F ,G,K) = O

(
y (H) · min

∆∈[|V |]

(
N · r

ST(G,K ,∆)
+ |K | · ∆

))
.

H.6.3 Upper Bound. The upper bounds follows from a slight modification of our algorithm to compute FAQD,H ,N ,F when

relations are not partitioned (Section H.3).

We present a proof sketch here. The idea is very similar to the proof in Section H.3. To that end, we modify Algorithm 3 as

follows. Instead of broadcasting Rχ (v1) , the Steps 4 to 10 are applied individually on each tuple in Rχ (v1) as follows.

Let us first start with the case when T is a star with v1 as the center and v2, . . . ,v |P | as the leaves. Let’s fix a tuple t ∈ Rχ (v1) .

It is broadcast to all players in K along with a counter ct ∈ [0, |K |].23 Initially, we set ct = 0. For any player ℓ ∈ K and j ∈ [2, |P |],

define R
(ℓ)
χ (vj)

to be the set of tuples in Rχ (vj) mapped to i by hχ (vj) . Upon receiving (t, ct), player ℓ checks if there exists a tuple

t′ ∈ R (ℓ)
χ (vj)

such that πχ (vj)∩χ (v1)t
′ = πχ (vj)∩χ (v1) (t). If so, then Player i increments c by one, (internally) computes the sum∑

t′∈Rℓ
vj :πχ (vj)∩χ (v

1
) t′=πχ (vj)∩χ (v

1
) (t)

fχ (vj) (t
′)

so that it can contribute to the running product:

v (t) = fχ (v1) (t) ·
|P |∏
j=2

*...
,

∑
t′∈Rℓ

vj :πχ (vj)∩χ (v
1
) t′=πχ (vj)∩χ (v

1
) (t)

fχ (vj) (t
′)
+///
-

,

which is the value corresponding to t for the corresponding FAQ-SS query. Note that the sums and products are computed on the

values corresponding to the tuples as in Section H.3. At the end of the procedure, if c = |K |, then (t,v (t)) is added to the result R′P
and we continue. Note that we can repeat the above procedure for each star in T until we reach the root as we did in Section H.3.

23
This can be done via a Steiner tree packing with min∆∈[|V |]

(
N ·r

ST(G,K,∆) + ∆
)
rounds.

29

The correctness of the above procedure follows from our setup defined in Section H.6.1. Further, the sums can be computed

internally by each player and the products can be computed on a Steiner Tree packing as in Theorem 3.11,
24

resulting in an upper

bound of

O

(
y (H) · min

∆∈[|V |]

(
N · (r + log(|K |))

ST(G,K ,∆)
+ |K | · ∆

))
,

where the log(|K |) additive term is to keep track of the counter ct (and in the final bound is absorbed into the O (·)).
To complete the proof, we use the following trivial protocol on the root of T . In particular, any one designated player should still

receive all the partitions from all relations. Since each player has |K | partitions of all the remaining relations, the round complexity

is given by τMCF (G,K ,n2 (H) · d · r · N) (using Lemma 3.13).

H.6.4 Lower Bound. The lower bound follows similarly from ideas in Section H.4.

We have already shown in Section H.4 that our hard BCQH ,N for a d-degenerateH is a hard instance for FAQD,H ,N ,F as

well. The only difference is that we cannot apply lower bounds on worst-case assignment directly anymore since the relations are

partitioned now. We address the issue here.

Similar to the proof of Lemma G.10, we consider an arbitrary cut (A,B) of G that separates K , where A and B denote the set of

vertices in each partition (A ∪ B = V (G)). For simplicity, we assume |A| = |B | and later show how to get around this restriction.

Using notation given in the proof of Lemma G.4, let q
H , Ŝ,T̂ be the query corresponding to a given instance TRIBES y (H)

r ,N
(Ŝ, T̂).

Note that we partition all relations, which includes {RSi }pi ∈I and {RTi }pi ∈I . Since all the set pairs (RSi ,RTi) for every pi ∈ I in
the TRIBES instance are independent, we start by considering one such pair. In particular, let’s consider RSi . We first note that

the way we have defined RSi every prefix has exactly one extension. Since H̃ is chosen so that the individual hash functions are

independent and uniformly distributed (conditioned on H̃ being consistent), in this particular case because of the afore-mentioned

property of the prefixes, each hash function is a uniformly random hash function. Thus, any tuple in RSi is uniformly distributed

among the players in K .
We now see how the tuples in RSi and RTi are split. In particular, since any tuple in RSi (orTSi) is assigned uniformly to players

in K . In particular, each tuple t ∈ RSi is assigned to either A or B with probability
1

2
(since |A| = |B |). Likewise for tuples in RTi

(since the hash functions for different relations are in independent). More formally, we write “t ∈ A” if a given tuple t is assigned
to vertices in A (similarly for vertices in B). We now have

Pr[t ∈ A] = Pr[t ∈ B] = Pr[t′ ∈ A] = Pr[t′ ∈ B] =
1

2

,

where t ∈ RSi and t′ ∈ RTi . Note that this implies

Pr[(t ∈ A) ∧ (t′ ∈ B)] = Pr[(t′ ∈ A) ∧ (t ∈ B)] =
1

4

.

Thus, in expectation the total number of tuples that satisfy the above property in RSo and RTo is
N
4
. Moreover, this number is at

least
N
8
with probability 1 − 2

−Ω(N)
. Abusing notation, let RSi and RTi denote the tuples of the original RSi and RTi that were

split between A and B, and assume that these relations are exactly of size
N
8
.

In addition to the above, following on Remark G.11, the distribution
ˆD on (Ŝ, T̂) we use in a black-box manner has a property

that |Si ∩Ti | ≤ 1, i.e., there is at most only one value a′ ∈ pi such that Si ∩Ti = a′ (follows from Remark G.12). Thus, we need

this particular tuple to always be split (i.e. one copy goes to A and other goes to B). Otherwise, we can only pass that value

resulting in a protocol with constant number of rounds. We can ensure this by conditioning our expectation on the event that

the tuple containing a′ in both RSi and RTi is always split. Further, it is easy to see that (1) a′ is split with probability at least
1

4

and (2) Conditioned on being split, a′ is still uniformly distributed over the
N
8
locations in RSi and RTi . By another application

of the Chernoff bound, for at least
1

8
of the (Si ,Ti) pairs this special value a

′
is split. In other words, we now have a smaller

TRIBES instance across the (A,B) cut, where we have 1

8
th the number of set Disjointness instances (let these be indexed by I ′ with

|I ′ | = |I |
8
) where each set disjointness instance is

1

8
th the original size. The other relations in q

H , Ŝ,T̂ can be partitioned randomly

and assigned arbitrarily across MinCut(G,K).
We now consider the induced TRIBES function based on I ′. Note that we have argued that with high probability, we have a set

I ′ of size Ω
(
y (H)
r

)
. In particular, we have argued that the relations {RSi }pi ∈I ′ are assigned to vertices in A and {RTi }pi ∈I ′ to B.

In particular, Alice gets the
N
8
tuples in the sets {Si }pi ∈I ′ (corresponding to RSi) assigned to A and Bob gets the

N
8
tuples in the

sets {Ti }pi ∈I ′ (corresponding to RTi) assigned to vertices in B (ignoring the additional relations). It is not too hard to see that if

there exists a z round protocol on G, then there is an O (z · |E (A,B) |) two-party protocol (see proof of Lemma 4.7 for a detailed

discussion). Since z · |E (A,B) | is lower bounded from Theorem 2.3 by Ω̃
(
y (T) ·N

r

)
, we have a lower bound of Ω̃

(
y (H) ·N
r · |E (A,B) |

)
.

24
The algorithm for Theorem 3.11 first thinks of its input as a vector and computes its component-wise AND. These vectors are sub-divided among the edge disjoint

Steiner trees and then the component-wise AND of the smaller vectors is done in a bottom up fashion in a dedicated Steiner tree from the packing. In the current

case we want to compute component-wise product and we can just run the set intersection algorithms where instead of computing component-wise AND we use

component-wise product.

30

Finally, we remove the restriction that |A| = |B |. More generally, instead of a uniform probability of
1

4
of two tuples in Si and Ti

being split, we would have a probability of
min(|A |, |B |) ·max(|A |, |B |)

|K |2 ≥
min(|A |, |B |)

2· |K | . Generalizing the above argument where we

replace the
1

4
with the above probability, we get that if z is the round complexity of a protocol to compute q

H , Ŝ,T̂ , then we have

z · |E (A,B) | ≥ Ω̃

(
y (H) · (min(|A|, |B |))2

r · |K |2
· N

)
.

Our definition of γ (G,K) implies that we have z ≥ Ω̃
(
y (H) ·N
r ·γ (G,K)

)
. Similar arguments can be applied to other TRIBES instances,

completing the proof.

We would like to state here the similar ideas in the proof above can be used to obtain a lower bound of the form Ω̃
(
y (H) ·N
r ·γ (G,K)

)
for the case when the relations {RSi }pi ∈I and {RTi }pi ∈I are not split but only randomly assigned to players in K (instead of a

worst-case assignment). In particular, this removes the assumption of worst-case assignment of functions inH to players in G.

H.7 Assumptions on G andH
We note that if N is much larger than size of G, then all players can send their information (either aboutH or their locality in G)
to one player who can then broadcast the common knowledge back to all players. Unfortunately, for smaller values of N , the

state-of-the-art results in the CONGEST model do not give tight bounds for Steiner tree packing and multi-commodity flow for

arbitrary G as we need [26]. We consider our work to provide further motivation to solve these two fundamental problems in the

CONGEST model.

I PROOF OF PROPOSITION 6.1
We describe our algorithm here. We start by computing y1 = A1 · x, which can be done in O (N 2) rounds. We then successively

compute yi = Ai · yi−1 for every i ∈ [2,k]. Note that this takes O (k · N 2) rounds in total and we would get the final answer in yk .

J DIFFERENCE FROM ONLINE MATRIX VECTOR MULTIPLICATION
We recall the definition of Online Matrix Vector Multiplication (OuMv) here [35]. Given an N × N Boolean matrixM , we receive

N Boolean N × 1 vectors v1 . . . , vn one at a time, and are required to outputM · vi (over the Boolean semiring (D = {0, 1},∨,∧))
before seeing the vector vi+1, for all i ∈ [n − 1].

On the other hand, the Matrix Chain-Vector Multiplication (MCM) we consider in this paper is as follows. Given k matrices

Ai ∈ F
N×N
2

for every i ∈ [k] and one vector x ∈ FN
2
, our goal is to compute Ak · Ak−1

· . . . · A1 · x over F2.

These are in some sense dual problems and our results do not imply anything for OuMv.

K MIN-ENTROPY OF MATRIX-VECTOR MULTIPLICATION
We now prove Theorem 6.3.

K.1 Preliminaries
K.1.1 Min-entropy. To be consistent with usual terminology used in the pseudorandomness literature, we will use the following

equivalent definition as (5):

Hϵ
∞ (X) = sup

X ′∼ϵX
H∞

(
X ′

)
,

where X ′ ∼ϵ X is overall all distributions X ′ that have statistical distance at most ϵ from X . Notice that in the expression, we do
not require supp(X ′) ⊆ supp(X), neither do we restrict the domain of X ′. The equivalence of the two definitions is easy to see as

in the latter definition, we can form the distribution X ′ by moving ϵ probability from X and distribute it evenly on sufficiently

many newly introduced elements outside supp(X).
The following result will be useful:

Proposition K.1. LetD1 andD2 be two distributions. Let f be a deterministic function on the supp(D1)∪supp(D2). IfD1 ∼ϵ D2,
then

f (D1) ∼ϵ f (D2).

For any event E, we will use 1
E
to denote the 0/1-indicator variable for E. We will useUm to denote the uniform distribution

on Fm
2
, where F2 is the finite field of two elements.

31

K.1.2 Matrices and Vectors. We will deal with vectors x ∈ Fn
2
in this section as well as matrices A ∈ Fm×n

2
form ≤ n.25 All

vectors by default are column vectors and all indices start from 1. We will use Ai to denote the ith row of A and for any subset

S ⊆ [m]

def

= {1, . . . ,m}, AS denotes the submatrix indexed by the rows of A indexed by S .
Given two vectors x, y ∈ Fn

2
, we will use

〈
x, y

〉
to denote their inner product over F2.

K.2 Proof of Theorem 6.3
We will argue the general version of Theorem 6.3 (note Theorem 6.3 follows from the result below for n =m = N):

Theorem K.2. Let the constant γ be small enough. Let x ∈ Fn
2
and A ∈ Fm×n

2
(form ≤ n) be distributed such that there exists

a random variable Y such that for every y ∈ supp (Y), conditioned on Y = y, x and A are independent. Further, if for some reals
ϵ1, ϵ2 ≥ 0,

Hϵ1

∞ (A|Y) ≥ (1 − γ)mn,

and
Hϵ2

∞ (x|Y) ≥ α · n,

where

α
def
= 3γ +

√
2γ + h(

√
2γ).

Then,

Hϵ1+ϵ2+2
−Ω(γm)

∞ (Ax|Y) ≥
(
1 −

√
2γ

)
·m.

In the rest of the section we will argue Theorem K.2.

(1) First, we prove the theorem for the case where ϵ1 = ϵ2 = 0 and Y is deterministic. This is done as follows.

(1a) We will argue that A has high enough min-entropy in "most" rows. This will define what is called a "block-source." The

details are in Section K.3.

(1b) We then argue that any A that is a sufficiently good block source, has the following property: the inner product ⟨Ai , x⟩ is
close to a random bit as long as x has min-entropy at least α · n. Further, we can make this argument for each row with

high enough min-entropy by only adding up the "closeness" for each such row. The details are in Section K.4.

(2) Then, in Section K.5, we remove the assumption that ϵ1 = ϵ2 = 0 and Y is deterministic.

K.3 A is a good enough block source
We begin with the definition of a block-source

26

Definition K.3. A random variable A′ over Fm×n
2

is an (η,n′)-block source for some η ∈ [0, 1] and n′ ≤ n if there exists a subset

S ⊆ [m] with |S | ≤ ηm

such that for every A ∈ supp (A′) and every i < S , we have

H∞
(
A′i |A

′
[i−1]

= A
[i−1]

)
≥ n′.

We remark that in the above definition we do condition on all rows in [i − 1] (and not just [i − 1] \ S).
Ideally, we would like to argue that our A is a (γ , (1−γ)n)-block source. We will instead argue something a bit weaker, which is

nonetheless powerful enough to help us prove Theorem K.2. In particular, we will argue that for a certain notion of "badness," (1)

There are very few bad matrices (Section K.3.1) and (2) matrices that are not bad are indeed good block sources (Section K.3.2).

K.3.1 Bad matrices. Before we proceed, we will need couple of other definitions:

Definition K.4. For every A ∈ supp (A) and i ∈ [m], define

pi (A)
def
= Pr

[
Ai = Ai

���A[i−1]
= A

[i−1]

]
, and qi (A)

def
= − log

2
(pi (A)).

Definition K.5. For any τ > 0, we refer to A ∈ supp (A) as τ -rare if there exists an i ∈ [m] such that

pi (A) < 2
−n (1+τ)

(
or equivalently,qi (A) > n(1 + τ)

)
.

The next lemma justifies the naming above:

Lemma K.6. Pr [A is τ -rare] < m · 2−τ ·n .

25
We are changing notation only for this section of the appendix. We have used n to denote the number of variables in a query but in this section we will use it to

define the dimension of vector and matrices as is the norm in linear algebra.

26
This is a more specific definition than the usual definition. We go with the more specific definition since it suffices for our purposes.

32

Proof. Call a matrix A ∈ supp (A) to be τ -rare at i ∈ [m] if pi (A) < 2
−n (1+τ)

– denote this event by E (i,A). We next show that

Pr [A is τ -rare at i] < 2
−τ ·n ,

which would complete the proof via the union bound. In the rest of the proof we prove the above bound.

Indeed, consider the following sequence of relations:

Pr [A is τ -rare at i] =
∑

A∈Fm×n
2

Pr [A = A] · 1
E (i,A)

=
∑

A
[i−1]
∈F

(i−1)×n
2

Pr

[
A

[i−1]
= A

[i−1]

]
·

∑
Ai ∈Fn

2

∑
A

[i+1:m]
∈F

(m−i)×n
2

Pr

[
A = A|A

[i−1]
= A

[i−1]

]
· 1
E (i,A) (27)

=
∑

A
[i−1]
∈F

(i−1)×n
2

Pr

[
A

[i−1]
= A

[i−1]

]
·

∑
Ai ∈Fn

2

Pr

[
Ai = Ai |A[i−1]

= A
[i−1]

]
· 1
E (i,A) (28)

≤
∑

A
[i−1]
∈F

(i−1)×n
2

Pr

[
A

[i−1]
= A

[i−1]

]
·

∑
Ai ∈Fn

2

2
−n (1+τ)

(29)

≤ 2
−τ ·n , (30)

as desired. In the above, (27) follows from definition of conditional probability. (28) follows from the fact that 1
E (i,A) is the same

for all matrices that agree in A
[i] while (29) follows from the definition of the event E (i,A). Finally, (30) follows from the fact that

there are 2
n
possibilities for Ai . □

Next, we argue that every matrix A that is not τ -rare has few rows i ∈ [m] for which qi (A) is small. It is crucial to note the

difference between the situation here and what we need from block sources (in Definition K.3). In Definition K.3, the set of "bad"

rows is the same for all matrices in the support of the distribution. On the other hand, in the lemma below, we show that for every

matrix A, there exists a set of "bad rows." (So ultimately we want to flip the order of quantifiers.)

Lemma K.7. Let A ∈ supp (A) be such that it is not τ -rare. Then there exists a subset S ⊆ [m] of size

|S | ≤
√
τ + γ ·m

such that for every i < S , we have
qi (A) ≥

(
1 −
√
τ + γ

)
· n.

Proof. Define for every i ∈ [m],

q′i (A) = n(1 + τ) − qi (A).

Note that since H∞ (A) ≥ (1 − γ)mn, we have
m∑
i=1

qi (A) ≥ (1 − γ)mn.

Since A is not τ -rare, this in turn implies that

q′i (A) ≥ 0,∀i ∈ [m], and

m∑
i=1

q′i (A) ≤ (τ + γ)mn.

Thus, by a Markov argument we have that the fraction of rows i ∈ [m] for which we have q′i (A) ≥
√
τ + γ · n is at most

√
τ + γ .

Let this set of rows be S . Then note that we have for every i < S ,

qi (A) = (1 + τ)n − q′i (A) ≥ n(1 + τ −
√
τ + γ) ≥ n(1 −

√
τ + γ),

as desired. □

Before we proceed for notational convenience, define

η
def

=
√
τ + γ .

We are now ready for our final set of definitions:

Definition K.8. For every A ∈ supp (A) that is not τ -rare, define B (A) to be a subset S ⊆ [m] such that
(1) |S | ≤ η ·m; and
(2) For every i < S , qi (A) ≥ (1 − η)n.

If A is τ -rare, then we set B (A) = ⊥.

Note that Lemma K.7 shows that the function B (A) is well defined for A ∈ supp(A) which is not τ -rare. For other A’s, B (A) is
defined to be the "exception" symbol ⊥.

33

Definition K.9. Let τ ,δ > 0. We call A ∈ supp (A) to be (τ ,δ)-bad if
(1) A is τ -rare; or
(2) There exists an i ∈ [m] such that

Pr

[
B (A) = B (A) |A

[i−1]
= A

[i−1]

]
< δ . (31)

We will argue in Section K.3.2 that A conditioned on B (A) leads to a block source. But first we argue (using arguments similar

to those used in the proof of Lemma K.6) that the total probability mass on bad matrices is small.

Lemma K.10. For every τ ,δ > 0,

ϵbad
def
= Pr [A is (τ ,δ)-bad] ≤ m · 2−τn +m · δ · 2h (η)m .

Proof. Call a matrix A ∈ supp (A) to be bad at i ∈ [m] if (31) holds (and A is not τ -rare). Further, denote this event by E
′
(i,A).

Then consider the following sequence of relations:

Pr [A is bad at i] =
∑

A∈Fn×n
2

Pr [A = A] · 1
E
′
(i,A)

=
∑

A
[i−1]
∈F

(i−1)×n
2

Pr

[
A

[i−1]
= A

[i−1]

]
·

∑
A

[i :m]
∈F

(m−i+1)×n
2

Pr

[
A = A|A

[i−1]
= A

[i−1]

]
· 1
E
′
(i,A) (32)

=
∑

A
[i−1]
∈F

(i−1)×n
2

Pr

[
A

[i−1]
= A

[i−1]

]
·

∑
S ⊆[m],
|S | ≤ηm

∑
A

[i :m]
∈F

(m−i+1)×n
2

,
B (A)=S

Pr

[
A = A|A

[i−1]
= A

[i−1]

]
· 1
E
′
(i,A) (33)

=
∑

A
[i−1]
∈F

(i−1)×n
2

Pr

[
A

[i−1]
= A

[i−1]

]
·

∑
S ⊆[m],
|S | ≤ηm

Pr

[
B (A) = S |A

[i−1]
= A

[i−1]

]
· 1
E
′
(i,A) (34)

<
∑

A
[i−1]
∈F

(i−1)×n
2

Pr

[
A

[i−1]
= A

[i−1]

]
·

∑
S ⊆[m],
|S | ≤ηm

δ (35)

≤ 2
h (η)m · δ . (36)

In the above (32) follows from definition of conditional probability, (33) follows by re-arranging terms, (34) follows by noting

that E
′
(i,A) is the same for all matrices that agree on A

[i−1]
and have the same B (A), (35) follows from definition of E

′
and (36)

follows from the fact that the number of subsets of [m] of size at most ηm (for η < 1/2) is upper bounded by 2
h (η)m

.

Taking union bound over allm values of i over the bound in (36) along with Lemma K.6 completes the proof. □

K.3.2 A good matrix is a block source. We now argue that A conditioned on B (A) leads to a block source (that will suffice for our

purposes):

Lemma K.11. Let S ∈ supp(B (A)) be a subset of [m] (thus |S | ≤ ηm) or S = ⊥ and ϵ
bad

(S)
def
= Pr[A is (τ ,δ)-bad |B (A) = S]. Then

A|B (A) = S is ϵ
bad

(S)-close to a (η,n(1 − η) − log(1/δ))-block source.

The proof of the above lemma follows from a similar argument in Claim 9 from [58] though there is a bug in the published

proof [53] (which we correct below).

Proof of Lemma K.11. Let A be a matrix with B (A) = S and assume A is not (τ ,δ)-bad (note that this implies S , ⊥). By
definition, for every i < S , we have

qi (A) ≥ (1 − η)n. (37)

Now fix any i < S . Then note that

Pr

[
Ai = Ai |A[i−1]

= A
[i−1]
,B (A) = S

]
≤

Pr

[
Ai = Ai |A[i−1]

= A
[i−1]

]

Pr

[
B (A) = S |A

[i−1]
= A

[i−1]

] (38)

≤
pi (A)

δ
(39)

≤ 2
−n (1−η)+log(1/δ) . (40)

In the above, (38) follows from the fact that for any three events E1, E2, E3, we have Pr

[
E1 |E2, E3

]
≤ Pr

[
E1 |E3

]
/Pr

[
E2 |E3

]
, (39)

follows from definition of pi (·) and A not being (τ ,δ)-bad and (40) follows from (37).

Taking into account that A can be (τ ,δ)-bad, we have that A|B (A) = S is ϵ
bad

(S)-close to an (η,n(1 − η) − log(1/δ))-block
source. □

34

K.4 A good block source A leads to Ax with high min-entropy
We finally prove that a good block source is enough for our purposes:

Lemma K.12. Let A′ be an (η,n(1 − ζ))-block source and x ∈ Fn
2
with H∞ (x) = αn such that

α ≥ 2∆ + ζ .

Further, the distributions A′ and x are independent. Then there exists a subsetT ⊆ [m] with |T | ≥ (1− η)m such that (A′x)T is ϵ-close
toU|T | for

ϵ ≤ |T | · 2−∆n .

We will need to use the following result to prove the above lemma:

Theorem K.13 ([23]). Let y and z be independent random variables on Fn
2
such that

H∞ (y) + H∞ (z) ≥ (1 + ∆)n.

Then (y,
〈
y, z

〉
) is ϵIP-close to Dy ×U1, where Dy is the distribution for y and

ϵIP ≤ 2
−∆n/2−1.

We now prove Lemma K.12 via a very simple modification of Lemma 6 in [67]:

Proof of Lemma K.12. Since A′ is an (η,n(1 − ζ))-block source, there exists a subset T ⊆ [m] of size at least (1 − η)m such

that for all i ∈ T and for every A
[i−1]

:

H∞
(
A′i |A

′
[i−1]

= A
[i−1]

)
≥ n(1 − ζ). (41)

For notational simplicity assume T = [n′] where n′ = (1 − η)m. To prove the lemma we will prove by induction on i from n′ to

0 that for every A
[i], the distribution of

(
x,A′

[i+1,n′]x
)
conditioned on A′

[i] = A
[i] is (n

′ − i) · ϵIP-close to Dx |A
[i] ×Un′−i , where

Dx |A
[i] is the distribution for x|A′

[i] = A
[i]. Note that this claim for i = 0 and Proposition K.1 (where the deterministic function

just drops the x "part") is enough to prove the lemma.

The base case of i = n′ is trivial. Let us assume that the induction hypothesis is true for i + 1. That is for every A
[i+1]

, we have

that the distribution of

(
x,A′

[i+2,n′]x
) ���A′[i+1]

= A
[i+1]

is (n′ − i − 1) · ϵIP-close to Dx |A
[i+1]
×Un′−i−1.

We will now argue the claim for i . Towards that end fix an arbitraryA
[i] and let ˆD be the distribution for A′i+1

|A′
[i] = A

[i]. Then

since the claim on the distribution in the above paragraph holds for every Ai+1, we have that

(
A′i+1
, x,A′

[i+2,n′]x
) ���A′[i] = A

[i]

(call the correspondent distribution D1) is (n
′ − i − 1) · ϵIP-close to D2

def

= ˆD × Dx |A
[i] ×Un′−i−1.

We now apply Proposition K.1 on D1 and D2 (where the deterministic function puts the second component as the new first

component and the new second component is the inner product of the earlier first two components), to get that(
x,A′

[i+1,n′]x
) ���A′[i] = A

[i] ∼(n′−i−1) ·ϵIP

(
x,

(〈
A′i+1
, x

〉
,ui+2, . . . ,un′

)
T

) ���A′[i] = A
[i],

where theuj are independent and uniformly random bits. Since these bits are independent of (x,
〈
A′i+1
, x

〉
), we have by TheoremK.13

that

(
x,

(〈
A′i+1
, x

〉
,ui+2, . . . ,un′

)
T

) ���A′[i] = A
[i] is ϵIP-close to

(
x, (ui+1,ui+2, · · · ,un′)

T

) ���A′[i] = A
[i], which is exactly Dx |A

[i] ×

Un′−i . Then by the triangle inequality we have that the distribution of

(
x,A′

[i+1,n′]x
) ���A′[i] = A

[i] is (n′ − i) · ϵIP-close to

Dx |A
[i] ×Un′−i , as desired.

We finally note that the assumption of T = [n′] is almost WLOG since in the more general case we do the above argument for

all i ∈ [m] but make the above argument only for indices in T (while the conditioning also happens for rows not in T). □

K.5 Putting everything together
We now have all the pieces at our disposal and are finally ready to prove Theorem K.2. We note that Lemmas K.11 and K.12 imply

the following result (if ϵ1 = ϵ2 = 0).

Lemma K.14. Let x and A be independent variables such that

H∞ (x) ≥ (2∆ +
√
τ + γ) · n + log(1/δ),

and
H∞ (A) ≥ (1 − γ)mn.

Then the distribution on Ax is ϵ
bad
+m · 2−∆n -close to a distribution with min entropy at least (1 −

√
τ + γ)n.

35

Proof. For each fixing of B (A) = S , Lemmas K.11 and K.12 imply that Ax conditioned on B (A) = S is ϵ
bad

(S) +m · 2−∆n -close
to a distribution with min entropy at least (1 −

√
τ + γ)n, where we defined ϵ

bad
(S) = Pr[A is (τ ,δ)-bad|B (A) = S].

Then taking into account all possibilities of B (A), the distribution on Ax, which is a convex combination of distributions, is

ϵ ′-close to a distribution with min entropy at least (1 −
√
τ + γ)n, where

ϵ ′ ≤
∑

S ⊆[m], |S | ≤ηm or S=⊥

(
ϵ

bad
(S) +m · 2−∆n

)
· Pr[B (A) = S] = ϵ

bad
+m · 2−∆n ,

as desired. □

Finally to prove Theorem K.2, we will extend Lemma K.14. Before we do that we note that we use the following instantiation of

parameters

∆ = τ = γ ,

δ = 2
−γm−h (

√
2γ)m ,

in Lemma K.14 and this implies the claimed parameters in Theorem K.2.

Now assume we are given Hϵ1

∞ (A′ |Y) ≥ (1 −γ)nm,Hϵ2

∞ (x′ |Y) ≥ αn. Moreover, for every y ∈ supp(Y), we have that conditioned

on Y = y, A′ and x′ are independent. Our goal is to prove Hϵ1+ϵ2+2
−Ω(γm)

∞ (A′x′ |Y) ≥ (1 −
√

2γ)m.

We can assume that there are two events E1, E2 with Pr[E1] ≥ 1 − ϵ1 and Pr[E2] ≥ 1 − ϵ2 and for every y ∈ supp(Y), we have
(D1) H∞ (E1A′ |Y = y) ≥ (1 − γ)nm,

(D2) H∞ (E2x′ |Y = y) ≥ αn,
(D3) conditioned on Y = y, (A′, 1E1

) and (x′, 1E2
) are independent.

(D1) and (D2) are satisfied by the definition of conditional smooth min-entropy. (D3) can be assumed due to the facts that A′ and
x′ are independent conditioned on Y = y, (D1) only involves E1 and A′, and (D2) only involves E2 and x′.

Then we can construct a distribution (A, x) joint with Y such that for every y ∈ supp(Y), we have
(E1) Pr[A = A|Y = y] ≥ Pr[E1,A′ = A|Y = y] for every A ∈ Fm×n , and moreover H∞ (A|Y = y) ≥ (1 − γ)nm,

(E2) Pr[x = x |Y = y] ≥ Pr[E2, x′ = x |Y = y] for every x ∈ Fn , and moreover H∞ (x|Y = y) ≥ αn,
(E3) conditioned on Y = y, A and x are independent.

To see how to guarantee (E1), we focus on a y ∈ supp(Y). Start with the vector θ such that θA = Pr[E1,A′ = A|Y = y] for

every A ∈ Fm×n . Notice that ∥θ ∥1 = Pr[E1 |Y = y] ≤ 1 and ∥θ ∥∞ ≤ 2
−(1−γ)nm

. We then increase coordinates of θ so that

∥θ ∥1 = 1 and ∥θ ∥∞ ≤ 2
−(1−γ)nm

is maintained. This is doable since 2
−(1−γ)nm · 2nm ≥ 1. Then we can guarantee (E1) by defining

Pr[A = A|Y = y] = θA for the new vector θ . Similarly we can guarantee (E2). (E3) can be guaranteed easily. Thus, for every

y ∈ supp(Y) and z ∈ Fm , we have

Pr[E1, E2,A′x′ = z |Y = y] =
∑

A,x :Ax=z
Pr[E1, E2,A′ = A, x′ = x |Y = y]

=
∑

A,x :Ax=z
Pr[E1,A′ = A|Y = y] Pr[E2, x′ = x |Y = y]

≤
∑

A,x :Ax=z
Pr[A = A|Y = y] Pr[x = x |Y = y]

=
∑

A,x :Ax=z
Pr[A = A, x = x |Y = y]

= Pr[Ax = z |Y = y]. (42)

The second and third equalities are by (D3) and (E3) respectively and the inequality is by (E1) and (E2).

Our proof already shows that Hϵ∗
∞ (Ax) ≥ (1 −

√
2γ)m for some ϵ∗ = 2

−Ω(γm)
, as we have (E1), (E2) and (E3). By the definition

of Hϵ∗
∞ , there exists an event E∗ such that Pr[E∗] ≥ 1 − ϵ∗ and Pr[E∗,Ax = z |Y = y] ≤ 2

−(1−
√

2γ)m
for every y ∈ supp(Y) and

z ∈ Fm . Thus, by (42), there exists an event E ′∗ with Pr[E ′∗] = Pr[E∗] ≥ 1 − ϵ∗ such that for every y ∈ supp(Y) and z ∈ Fm :

Pr[E ′∗, E1, E2,A′x′ = z |Y = y] ≤ Pr[E∗,Ax = z |Y = y] ≤ 2
−(1−

√
2γ)m ,

Notice that Pr[E ′∗, E1, E2] ≥ 1 − (ϵ∗ + ϵ1 + ϵ2) by union bound. By the definition of conditional smooth min-entropy, we have

Hϵ∗+ϵ1+ϵ2 (A′x′ |Y) ≥ (1 −
√

2γ)m, which completes the proof of Theorem K.2.

L MISSING DETAILS FROM SECTION 6
L.1 The case of k ≥ N
For simplicity we assume k is an integer power of 2. In the first iteration, each Pi with odd i sends Ai to Pi+1, who then computes

B1

i+1
:= AiAi+1; this iteration takes N 2

rounds. In the second iteration, each Pi with i mod 4 = 2 sends B1

i to Pi+2, who then

computes B2

i+2
= B1

i B
1

i+2
; this iteration takes N 2 + 1 rounds. In general, in the t-th iteration for t ∈ [logk], each Pi with i

36

mod 2
t = 2

t−1
sends Bt−1

i to player Pi+2
t−1 , who then computes Bti+2

t−1
= Bt−1

i Bt−1

i+2
t−1

; the iteration takes N 2 + 2
t−1 − 1 rounds.

So in a total of O (N 2
logk + k) rounds, player Pk will know the product A1A2 · · ·Ak . Using additional O (k + N) rounds, P0 can

send x to Pk . The whole protocol takes O (N 2
logk + k) rounds. The bound can be slightly improved to O (N 2

log(k/N) + k) by
running the merging procedure for only log(k/N) iterations.

L.2 Proof of Lemma 6.4
Proof. We will prove the claim by induction. For the base case of i = 1, Lemma 6.2 implies that (recall that m̃1 = m1 (t1) =

m1 (γN /4) and y0 = x): Hϵ ∗
∞

(
y0 |m̃1

)
≥ H∞ (x) −γN /4− log(1/ϵ∗) ≥ N (1−γ/4−γ/2) ≥ N (1−γ −

√
2γ). Thus, (7) holds for i = 1.

We assume (7) holds for some i ≥ 1; we prove that it also holds with i replaced by i + 1. For any interval [ℓ, r] we use A
[ℓ:r]

to denote the tuple (Aℓ , . . . ,Ar). Conditioned on m̃i = m̃i
, since all communication between P1, . . . , Pi−1 and Pi , . . . , Pk+1

are

independent, we have

(B1) (x,A
[1:i−1]

) is independent of A
[i,k]

.

(B2) yi−1 and m̃[i−1]
are determined by (x,A

[1:i−1]
).

(B3) mi+1 (ti) is determined by A
[i :k]

.

The above properties imply the following, which will be used many times in our analysis:

(C) Conditioned on m̃i = m̃i
, (x,A

[1:i−1]
, yi−1, m̃[i−1]) and (A

[i,k]
,mi+1 (ti)) are independent.

By (C), yi−1

���
(
m̃[i],mi+1 (ti)

)
=

(
m̃[i],mi+1 (ti)

)
has the same distribution as yi−1

���m̃
[i] = m̃[i]

. By the inductive hypothesis, we

have

H iϵ ∗
∞

(
yi−1

����
(
m̃[i],mi+1 (ti)

))
= H iϵ ∗
∞

(
yi−1

����m̃
[i]

)
≥ N (1 − γ −

√
2γ), (43)

where the equality is by Lemma ??. Further, Lemma 6.2 (with ϵ = 0 and ϵ ′ = ϵ∗/3) implies that

Hϵ ∗/3

∞

(
Ai

����
(
m̃i ,mi+1 (ti)

))
≥ N 2 − 2i ·

γ

4

· N − log(ϵ∗/3)

≥ N 2 (1 − γ). (44)

Again by (C), Ai
���
(
m̃i ,mi+1 (ti)

)
=

(
m̃i ,mi+1 (ti)

)
has the same distribution as Ai

���
(
m̃[i],mi+1 (ti)

)
=

(
m̃[i],mi+1 (ti)

)
. Lemma ??

and (44) implies that

Hϵ ∗/3

∞

(
Ai

����
(
m̃[i],mi+1 (ti)

))
≥ N 2 (1 − γ). (45)

By (43), (45), and (by (C)) the fact that Ai and yi−1 are independent conditioned on (m̃[i],mi+1 (ti)) = (m̃[i],mi+1 (ti)), we have
the following via Theorem 6.3:

H
(i+2/3)ϵ ∗
∞

(
yi = Aiyi−1

����
(
m̃[i],mi+1 (ti)

))
≥ N (1 −

√
2γ),

as long as 1−γ −
√

2γ ≥ 3γ +
√

2γ +h(
√

2γ),which follows from (6). By applying Lemma 6.2 again (with ϵ = (i+2/3)ϵ∗ and ϵ ′ = ϵ∗/3),

we get that
27
:H

(i+1)ϵ ∗
∞

(
yi
���m̃

[i+1]

)
≥ H

(i+2/3)ϵ ∗
∞

(
yi
����
(
m̃[i],mi+1 (ti)

))
−Nγ/4− log(ϵ∗/3) ≥ N (1−

√
2γ −

γ
4
−
γ
2
) ≥ N (1−γ −

√
2γ),

as desired. □

L.3 Proof of Theorem 6.5
We will need the following result in our proof.

Lemma L.1. Assume Hϵ
∞ (X |Y) ≥ L. Then for every function f : supp(Y) → supp(X), we have Pr[f (Y) = X] ≤ ϵ + 2

−L .

Proof. By the definition of Hϵ
∞ (X |Y), there exists an event E such that Pr[E] ≥ 1 − ϵ and for every x ∈ supp(X),y ∈ supp(Y),

we have Pr[E,X = x |Y = y] ≤ 2
−L

. In particular, Pr[E,X = f (y) |Y = y] ≤ 2
−L

for every y ∈ supp(Y). So Pr[E, f (Y) = X] ≤ 2
−L

,

which implies Pr[f (Y) = X] ≤ 2
−L + ϵ since Pr[E] ≥ 1 − ϵ . □

Proof of Theorem 6.5. Let Π be any protocol with at most tk+1
= γ (k + 1)N /4 rounds. Lemma 6.4 implies that at the end of

the protocol, we have

H
(k+1)ϵ ∗
∞

(
yk

���m̃
[k+1]

)
≥ N (1 − γ −

√
2γ).

This implies that even if the player k + 1 is given m̃[k+1]
(instead of only m̃k+1 = mk+1 (tk+1

)), it can only output the correct

answer with probability at most

(k + 1)ϵ∗ + 2
−N (1−γ−

√
2γ) ,

27
Note that we are not conditioning onmi+1 (ti+1) = mi+1 (ti + γN /4) instead of the earliermi+1 (ti).

37

by Lemma L.1 (here f (Y) is the output at Pk+1
for Y = m̃[k+1]

and X = yk). For large enough N the above quantity is less than

1/2. □

L.4 Why Shannon entropy does not work for our proof of Lemma 6.4
We will use H

Sh
(D) to denote the Shannon entropy of D, which is defined as follows:

H
Sh

(D) = −
∑

x ∈supp(D)

Pr

X∼D
[X = x] log

2

(
Pr

X∼D
[X = x]

)
.

If we had used Shannon entropy instead of (smooth) min-entropy, we would have to prove a bound of the following form. Let

f : FN×N
2

→ Fm
2

be an arbitrary function. Then as long as H
Sh

(x) and H
Sh

(A) are big enough, Ax| f (A) should have entropy

strictly bigger than H
Sh

(x) (or be close to a distribution that has high enough entropy) as long asm is a small fraction of N 2
. We

now give an example to show this is not possible.

Fix arbitrary linearly independent vectors x∗
1
, . . . , x∗t for t = αN . Then define the following distribution on x: probability mass

of 1 − α is distributed uniformly over the span of x∗
1
, . . . , x∗t (call this span S) and the remaining mass of α is distributed uniformly

over a null space of S . Then note that

H
Sh

(x) = (1 − α) · t + α · (N − t) = 2α (1 − α) · N .

Now consider the case when A is uniformly distributed (i.e. H
Sh

(A) = N 2
) and f (A) =

(
Ax∗

1
, . . . ,Ax∗t

)
. Then note that if x ∈ S ,

then H
Sh

(Ax| f (A)) = 0. This implies that

H
Sh

(Ax| f (A)) ≤ (1 − α) · 0 + α · N ,

which is about a factor two smaller than H
Sh

(x) (for small enough α > 0).

L.5 Existing lower bounds techniques for the matrix-chain problem
We remark that the existing technique of [18] that “stitches" the lower bounds induced by cuts can only give a lower bound

of Ω(N): for any edge (Pi , Pi+1) on the path, we can only prove a lower bound of Ω(N) on the number of bits that need to be

exchanged between Pi and Pi+1, since if suffices for Pi to send the product AkAk−1
· · ·A1x to Pi+1. The lower bound given by

[18] is then the minimum number of rounds needed to make sure that Ω(N) bits are exchanged between {P0, P1, · · · , Pi } and
{Pi+1, Pi+2, · · · , Pk+1

} for every i , which can only be Ω(N). However, this analysis does not capture a very simple fact: Pi needs to
know AkAk−1

· · ·A1x before it can be sent to Pi+1.

38

	Abstract
	1 Introduction
	1.1 Why this distributed model?
	1.2 Summary of Our Contributions

	2 Our Model and Detailed Overview of Our Results
	2.1 Our Model
	2.2 Arity Two
	2.3 Notion of Width
	2.4 Chain Matrix-Vector Multiplication

	3 Preliminaries and Notation
	3.1 Asymptotic Notation

	4 H is a degenerate simple graph
	4.1 Upper Bound
	4.2 Lower Bound

	5 Hypergraphs H and General FAQ
	6 Matrix Chain Multiplication
	6.1 The Lower Bound

	7 Related Work
	8 Future Work
	References
	A Comparison with Relevant Models
	A.1 Basic MPC model
	A.2 General MPC model
	A.3 Scope for Future Work
	A.4 Connection to Sensor Networks
	A.5 Which Distributed Computing Model to Use?

	B The Clique Open Problem
	C More Related Work
	D Missing Details in Section 2
	D.1 GYO-GHD is a reduced GHD
	D.2 Example for Construction 2.9

	E Missing Details in Section 3
	E.1 Connecting MCF and MinCut(G,K)

	F Missing Details in Section 4
	F.1 Proof of Lemma 4.4
	F.2 Proof of Lemma 4.5
	F.3 Proof of Theorem 4.8

	G Queries when H is a d-degenerate hypergraph of arity at most r
	G.1 Main Theorem
	G.2 Upper Bound
	G.3 Lower Bounds

	H Bounds for General FAQs and Assumptions in Model 2.1
	H.1 Preliminaries and Existing Results
	H.2 Main Theorem
	H.3 Upper Bound for General FAQs
	H.4 Lower Bound for General FAQs
	H.5 Restriction on Choice of F
	H.6 Hash-based Split of Relations
	H.7 Assumptions on G and H

	I Proof of Proposition 6.1
	J Difference from Online Matrix Vector Multiplication
	K Min-entropy of Matrix-Vector Multiplication
	K.1 Preliminaries
	K.2 Proof of Theorem 6.3
	K.3 A is a good enough block source
	K.4 A good block source A leads to Ax with high min-entropy
	K.5 Putting everything together

	L Missing details from Section 6
	L.1 The case of kN
	L.2 Proof of Lemma 6.4
	L.3 Proof of Theorem 6.5
	L.4 Why Shannon entropy does not work for our proof of Lemma 6.4
	L.5 Existing lower bounds techniques for the matrix-chain problem

