
Run-time Model Extraction of a Java-based
UAV Controller

Manjusha Choorakuzil1, Adam Czerniejewski1

Jevitha K.P.2, Swaminathan J.2

Lukasz Ziarek1, Bharat Jayaraman1

1 - University at Buffalo
2 - Amrita University

Abstract. This case study discusses the structural and behavioral prop-
erties of jUAV, a Java-based adaptation of Paparazzi-UAV, the open-
source system that consists of ground station software and autopilot
systems for both autonomous and manual flying of unmanned aerial ve-
hicles. Although the system has been popular and used widely, there
hasnt been a high-level analysis of its structure and behavior. We carry
out such an analysis by extracting finite-state automata from execution
of the Java-based flight controller of the UAV. Our experiments were car-
ried out using the open-source Eclipse plugin JIVE, which automatically
extracts an execution trace from the execution of Java program. Using
this execution trace and JIVEs state diagram feature, we were able to
construct finite state machine (FSM) that clarify important properties
of the controllers cyclic behavior. We employ byte-code instrumentation
(BCI) to efficiently obtain long execution traces (on the order of a million
execution events), and we present the automata for key use cases, such
as circling around a point, and show how its correctness properties can
be stated. The paper also presents experimental results to clarify that
the overhead caused BCI does not adversely affect the real-time behavior
of the periodic tasks that the UAV needs to perform.

1 JUAV: Java-based Paparazzi UAV

Model-checking [3] is an established method for the verification of safety-critical
software and hardware systems, and several practical tools have evolved over the
years to support this methodology. Often, design-time models are not available
although there is a need to reason about software correctness. Even when they
exist, there is often a big conceptual gap between design-time models and their
implementation. Hence it is desirable to extract from a run-time execution of a
system run-time models that are amenable to formal analysis, either to validate
that the run-time models adhere to design-time models or to check that the
run-time models have the desired properties. In this paper, we explore model
extraction for the embedded autopilot of Paparazzi UAV [1, 2] (see Figure 1).
Although Paparazzi UAV is a popular open source platform in use today, there
hasn’t been a high level analysis of its structural and behavioral properties. We
feel that the embedded autopilot is an ideal candidate to show the usefulness

Telemetry Data
Ground Command

Radio LinkGround Control Center

Telemetry
Data

Ground
Command

Message Backend
Server

Telemetry
data

Ground
Command

Simulator

Ground Control Station

Flight Dynamic
model

Sensor
Simulation

Ground Communication Bus

Telemetry
data

UAV

Hardware Modules

Flight Status

Sensor
Values

Flight
Model

FBWAutopilot SPI

Fig. 1. Paparazzi UAV Architecture

of model extraction since it consists of many complex subsystems, including
navigation, stabilization, and guidance. The system we analyze in this paper,
called jUAV [4], is a direct port of the Paparazzi UAV’s embedded autopilot
to Java. depicts the architecture of Paparazzi UAV. In this paper we use run-
time model extraction on the embedded autopilot of jUAV and reason about its
run-time behavior. The embedded autopilots of both Paparazzi UAV and jUAV
are amenable to high-level finite state machine modeling because their execution
follows a repetitive and cyclic pattern.

Our run-time model is extracted from executing the jUAV program. Our
experiments were carried out using the JIVE system [5] which automatically
extracts an execution trace from a run of a Java program. Using this execution
trace and a specification of key attributes of interest, JIVE synthesizes a finite
state machine summarizing the changes to these attributes. The main contri-
bution of this paper is in providing high-level finite-state models clarifying the
behavior of the autopilot subsystem of the unmanned aerial vehicle. These mod-
els may also be used to verify properties of the UAV for typical navigational
commands, such as flying to a point, hovering over a point, or circling a point.
We bring out the cyclic and periodic nature of the tasks in the autopilot program
and find correlations between executions of its various subtasks.

2 Model Extraction using JIVE

JIVE extracts a sequence of run-time events for a run of a Java program. The
events include new object instantiation, thread start/end, method call/exit, field

read/write, local variable read/write, line step, etc. From the standpoint of state
diagram generation only field write events and method call/exit events are of
main interest. There could be many useful models of a program, each with respect
to different set of entities of interest to a programmer. Therefore, we let the user
specify the key attributes of interest in various classes and/or objects. This
information, together with the execution trace of the program, enables us to
formulate a simple algorithm shown below for state diagram construction. (There
are undoubtedly refinements of this algorithm, but we omit their discussion due
to limited space.)

Fig. 2. Algorithm for State Diagram Construction

Using the above method, we have extracted a number of finite-state models
to clarify different aspects of the operation of jUAV. We highlight two such
models. The first is depicted in Figure 3 which shows that different tasks are
executed at different frequency intervals. If the Main Periodic task is executed
at a frequency ‘F’, the frequency of various periodic tasks such as Telemetry,
Radio Control, and Electrical can be described as a suitable fraction of‘F’. The
state diagram in Figure 3 shows the actual repetition counts for every transition
generated from executing the program, and the relative frequency values are
obtained from these counts. This table shows that the basic operation of jUAV
agrees with the published frequencies (in Hz) given in the last column of the
table.

The second finite-state model is depicted in Figure 5 which corresponds to
the UAV performing the use-case of going to a point and then circling around
it, as depicted in Figure 4. Each state has two components: the symbolic name
of the UAV’s current direction, obtained by a mapping of its coordinates (GPS
readings), and the distance from the center of the circle. Figure 5 shows the

Fig. 3. Frequency Analysis of Periodic Tasks

result of mapping these coordinates. This model enables us to verify that the
UAV was indeed circling aroud a point. For simplicity, we have illustrated just
eight compass directions in the state machine. Assuming that each symbolic
name such as NorthEast, East, SouthEast, etc., refers to a compass direction of
the UAV, D is the distance between the point to the center of the circle, and k
is the radius of the circle ±T, where ‘T’ is the tolerance, it is straightforeward
to formulate the property of circling around a point.

3 Performance Analysis

jUAV has a core set of periodic tasks (Figure 3) which need to run after a
minimum time period has elapsed. In our experiments, these periodicities are
treated as deadlines. For instance, the key periodic tasks of electrical, fail-safe,
radio control, telemetry modules and main periodic must be complete every
100ms, 50 ms, 16.6 ms, 1.9 ms respectively. To evaluate jUAV’s response, we
compare the deadlines with and without byte code instrumentation.

We show a cumulative distribution function (CDF) in which vertical lines
are drawn to indicate the deadlines of the periodic tasks: electrical, failsafe,
radio control and telemetry modules. The CDG shows that jUAV meets all
these deadlines with and without byte code instrumentation (for execution trace
generation). A second observation is that jUAV without BCI meets the deadlines
imposed by main periodic (deadline of 1.9 ms), but jUAV with BCI misses
this deadline. This is not surprising since the instrumentation code periodically
writes out all events that were logged during the execution of main periodic
cycle. These periodic file-writes caused additional delays. To reduce the delays,
we experimented with different filters which control the frequency of these file-
writes. We noticed that the graph became smoother as the filter-size increases.
The graph shown above is for a filter size of 50,000, which means a file write event

Fig. 4. Flight Path for jUAV

Fig. 5. Flight Directions

occurs after every 50,000 logged events. We plan to make the logging process
more efficient to significantly reduce the variance between the two graphs.

4 Conclusions and Further Work

We have presented a case study of extracting high-level models clarifying the
runtime behavior of jUAV, a Java-based adaptation of the well-known Paparazzi
system for flying unmanned aerial vehicles. Despite the large code base for jUAV
– about 10,000 lines of Java code – the core operation of the flight controller is
cyclic in nature and hence finite state automata serve as good high-level models
for clarifying the behavior of the system. These automata were extracted from
from run-time execution traces of the jUAV system. We used the state diagram
extraction feature of the JIVE system in conjunction with Byte Code Instru-
mentation for efficient generation of large execution traces. We able to show
that the cyclic behavior of jUAV aligned with the design specification of the
C-based Paparazzi UAV with respect to the frequency with which various im-
portant functions are performed. Additionally, we extracted automata for several
key use cases and illustrated the case of circling around a point in the paper.

As part of our current and future work, we are investigating how to extract
automata-based models of complex programs efficiently and with as minimal user
intervention as possible, and also online generation of automata as the program
executes. A key issue in analyzing run-time behavior is how representative is a
single run of the system. In our case study, the execution trace for use-case of

Fig. 6. Performance with and without BCI

circling around a point captured over 48,000 iterations of the system and visited
numerous times all the major components needed for this use-case. Sometimes,
this need not be the case and we might need to take union the automata from
multiple runs to obtain more comprehensive mode for the use-case at hand.

References

1. Paparazzi project. http://paparazzi.enac.fr/wiki/Main_Page
2. Brisset, P., Drouin, A., Gorraz, M., Huard, P., Tyler, J.: The Paparazzi Solution:

Rapport Technique (2006)
3. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986), http://doi.acm.org/10.1145/5397.5399

4. Czerniejewski, A., Dantu, K., Ziarek, L.: jUAV: A Real-Time Java UAV Autopilot.
In: 2018 Second IEEE International Conference on Robotic Computing (IRC). pp.
258–261 (Jan 2018)

5. Ziarek, L., Jayaraman, B., Lessa, D., Jayaraman, S.: Runtime visualization and
verification in JIVE. In: Proceedings of Runtime Verification - 16th International
Conference, RV 2016, Madrid, Spain. pp. 493–497. Springer (2016)

