
Image Enhancement for Unconstrained
Environments

by

Sougato Bagchi

Aug 7th, 2023

A thesis submitted to the
faculty of the Graduate School of

the University at Buffalo, The State University of New York
in partial fulfillment of the requirements for the

degree of

Master of Science
Department of Computer Science & Engineering

ii

Copyright by

Sougato Bagchi

2023

All Rights Reserved

1

Acknowledgements

I want to start by expressing my gratitude to Professor Nalini Ratha for his guidance throughout

the past year. He provided me with the opportunity and encouragement I needed to pursue the

intriguing problems I was interested in, and he also inspired me to persevere through the

challenges. I also thank Professor Karthik Dantu for giving me valuable suggestions and academic

support thought my entire time at UB.

Being a member of the Distributed Robotics and Networked Embedded Systems group has

been incredibly fulfilling. I want to thank everyone for the time we shared and for our discussions.

I will always be grateful for Ninad’s invaluable suggestions and contributions. I would like to

thank Shaoshu for the time we shared together while working and for his technical assistance

whenever I needed it.

I would like to express my gratitude and acknowledgement to my friends especially Vivek,

Vignesh, Sharath and Anusha who have supported me throughout the completion of my thesis with

their encouragement, support, and the dinner parties.

Most of all, I am grateful to my family and my parents and my uncle for showing me an

interest in engineering and guiding me to be a better person.

2

Abstract

In this research we have discussed how modern techniques use Deep Neural Network for

processing low-light images. It involves de-noising and exposure correction which greatly

improves the usability of these images.

De-Noising and exposure-correction both are well studied in the field of computer vision.

Significant progress has been made by researchers to handle both of the problems separately. The

ultimate goal of our work is to combine these into a single problem as most realistic low-light

images inherently come with noise. Traditionally tailor-made solutions like custom de-noising

filters were used to image enhancement. Recent applications have replaced these with DNN

models due to their generalizability in different noise and exposure scenarios. But these models

need a sheer amount of realistic data for training, which is an issue as it requires human labor and

it’s infeasible to capture images that model all types of irregularities.

Therefore, our discussions extend towards investigating ways for generating realistic noisy

low-light images considering both denoising and exposure-correction factors, which can be used

for training any suitable DNN model. The data generation process requires a detailed

understanding of the noise architecture with a digital camera’s image acquisition process. Our

experimentations conclude that irrespective of the DNN model being used the performance gets

better when trained on our synthetic noisy dataset. We have utilized an already existing SOTA

(state of the art) DNN model named LLFLOW, and its generalizability in recovering the images

has been greatly improved in terms of metrics like PNSR(Peak Signal to Noise Ratio), SSIM and

LPIPS. It’s also able to avoid over-exposure circumstances during our testing which is clearly

3

visible for our lab images. We have also tested the model on EarthCam images of New York City

between June 6th & 8th, when the city was clouded with Canadian Wildfire Smoke. Though our

model was not provided with that kind of data for training, it performed fairly well in which it’s

supposed to i.e., improving the illumination of the images. This proves the immense importance

of data on which we train our models.

4

Table of Contents
Acknowledgements ..1

Abstract ...2

Table of Contents ...4

List of Tables ..7

List of Figures ...8

Chapter 1 Introduction..10

Chapter 2 Related Works ..13

2.1. Noise Modeling ...13

2.2. Image Enhancement ...14

2.3. Brief overview of GAN ..15

2.4. LLFLOW ..16

2.4.1. Overview of LLFlow Architecture ... 17

Chapter 3 Image Acquisition Pipeline ...19

3.1. Noise In an Image ..20

3.1.1 Modeling Noise .. 20

3.1.2. Shot/Photon Noise .. 20

3.1.3. Gaussian Approximation of Shot/Photon Noise ... 21

3.1.4. Noise due to sensor characteristic ... 22

3.2. Demosaicing ..24

3.2.1. Finding the RGB image from RGGB combination .. 25

3.3. Digital Gain ..25

3.3.1. Relation between Gain and Exposure ... 25

3.3.2. Calculating Digital Gain ... 26

5

3.4. White Balance ..26

3.4.1. Calculating White Balance ... 26

3.5. Color Correction ...27

3.6. Gamma Compression ...27

3.7. Tone Mapping ...28

3.7.1. Inverse Tone Mapping .. 28

3.7.2. Calculation .. 28

Chapter 4 Our Approach ..30

4.1. Creating Augmented Dataset ..31

4.2. Image Enhancement & Denoising Network ...33

4.3. Robustness Evaluation ..34

Chapter 5 Description of Datasets ..35

5.1. LOL Dataset ..35

5.2. DronesLab Images from Robot Pepper ...37

5.3. VE-LOL-H Dataset ...38

5.4. EarthCam Dataset ...40

Chapter 6 Experiments..41

6.1. Analyzing Experimental Data ...41

6.1.1 Metrics Explanation ... 46

6.2. LOL Train-Eval Split ..47

6.3. Analyzing Image Results ..47

6.3.1. LOL Dataset .. 48

6.3.2 Pepper images .. 51

6.3.3 VE-LOL-H dataset ... 52

6.3.4 EarthCam dataset ... 54

6

Chapter 7 Conclusion ..56

Bibliography ...58

7

List of Tables
Table 6.1: Comparison of LLFlow models trained on different versions of the LOL dataset. 42

Table 6.2: Mean performance of the LLFlow models. Here the mean performance on
different variants of LOL datasets for each model is summarized. .. 43

Table 6.3: We have selected 3 of the best models based on mean performance across all the
modifications on the LOL dataset. .. 44

Table 6.4: Model performance under different type of Noise on the LOL dataset. 44

Table 6.5: Comparison of LLFlow models trained on our datasets Pepper and EarthCam.
Here we have tested the three best performing models from Table 6.2, to understand the
cross-dataset performance, and have a better conclusive result of which one to be preferred. 45

8

List of Figures
Figure 1.1: Comparison of the ORB features detected for a same scene under different
circumstances. ... 10

Figure 1.2: (a) & (b) represent the image pairs generated in traditional way without
considering the noise factor. Image (c) is our custom generated image which will be used
instead of (b) to create the modified pair. ... 11

Figure 2.1: Here although image (b) is more similar with (c) which is the reference image,
but if we are supposed to consider only L1 loss/ pixel-wise loss as the factor then it is likely
to fail in recognizing the difference between image (a) & (b) both of which has the same L1
loss. Source: [1] .. 17

Figure 3.1: Image Acquisition Pipeline .. 19

Figure 3.2: Characteristics curve of shot noise. The square root relationship signifies that in
low-light circumstances this noise will dominate cumulative noise pattern................................. 22

Figure 3.3: RGGB Bayer Pattern .. 24

Figure 4.1: The architecture of our proposed method... 32

Figure 5.1: Image pairs from the LOL dataset which contains 500 captured image pairs. Here
each pair (a)-(c) and (b)-(d) represent an image captured using different camera settings for
the same scene. Here (c) and (d) are captured using low-exposure time. 36

Figure 5.2: Image captured in Davis Hall Room-105/DronesLab. ... 38

Figure 5.3: Typical images from the VE-LOL-H dataset. .. 39

Figure 5.4: Some of the image from our dataset “EarthCam”. The images are captured from
“https://www.earthcam.com/usa/newyork/worldtradecenter" and pose vastly different
texture, artifacts, and color tone. For our purpose we have kept image (a) as the reference for
all the metrics calculations. ... 40

Figure 6.1: The image (c) 𝑥𝑥𝑥𝑥_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 has been generated from (d) 𝑥𝑥𝑥𝑥 with the help of the
unprocess pipeline and then adding read and shot noise. Here 𝑥𝑥𝑥𝑥 is the image captured with
low-exposure time during creation of the LOL dataset. 𝑥𝑥𝑥𝑥 and (b) 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 are image pairs which
are captured for the same scene. Image (a) 𝑥𝑥ℎ is the image with normal exposure generated
from the model 𝜃𝜃. ... 48

Figure 6.2: Compares the way the low light images were generated from 𝑥𝑥𝑥𝑥.
 .. (a) 𝑥𝑥𝑥𝑥_𝑛𝑛𝑛𝑛_𝐶𝐶𝐶𝐶𝐶𝐶_𝑊𝑊𝑊𝑊_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 means that none of the image processing steps like “color correction
matrix” (CCM), “White Balance” (WB) and “Digital Gain” (Gain) were reversed. Shot +
Read noise was added to the Bayer RGGB version of the images and then these were

9

converted back to their sRGB variants. Image (b) 𝑥𝑥𝑥𝑥_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 has also been created from 𝑥𝑥𝑥𝑥,
but here all the unprocessing steps are similar like the 𝑥𝑥𝑥𝑥_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, except for the noise model.
Here the Shot + Read noise was replaced by “Additive White Gaussian Noise” (AWGN)
with 𝜇𝜇 = 0,𝜎𝜎 = 1.5. ... 49

Figure 6.3: Compares the image being generated from model “custom v2_
no_ccm_wb_gain“ {(b), (d)} and “custom v3_RAW_noisy” {(a),(c)} w.r.t the bright
images for the same scenes. Here (e) and (f) are the images captured in proper lighting
conditions and are used to compare the model’s output images. .. 50

Figure 6.4: Image (a) & (b) are generated from the “custom v3_RAW_noisy” model and (c)
& (d) are the outputs from the “pretrained” model. .. 51

Figure 6.5: Image (a) is from the VE-LOL-H dataset, where it's completely unprocessed
whereas the right image (b) is the same image passed via our image enhancement network. 52

Figure 6.6: Typical output from our image enhancement network. The faces are generally
smoothened while the illumination of these images is being adjusted by the network. 53

Figure 6.7: Comparison of the EarthCam image of New York city from June 5th to 7th. Here
images on the left side are the unaltered EarthCam images and on the right are the output for
those images from the “custom v3_RAW_noisy” model. .. 54

10

Chapter 1 Introduction

 Images captured in low-light circumstances are always difficult for a human to perceive. Images

are required in many applications such as surveillance, autonomous driving, vision-based

mapping, and others. Some of these applications need to be robust in all weather conditions, and

for that these will require good-quality images. And as low-light images are always difficult to

infer, we need to modify these images for better visibility. Many computer-vision related

applications are specifically tasked to enhance these low-light images.

(a) No feature detected in low light conditions (b) Features detected in bright light conditions

Figure 1.1: Comparison of the ORB features detected for a same scene under different
circumstances.

The low light image hampers feature detection, these images are tough to infer and lead to severe
degradation of a particular application’s performance. Image src: LOL dataset, with the low light
image being degraded using our custom process described later.

Typically, a digital image is a collection of pixels with different values ranging from 0-

255. For a low light image all the pixels collectively have very low intensities, and therefore the

difference between neighboring pixels is also low which makes it look like every part of the image

https://en.wikipedia.org/wiki/Oriented_FAST_and_rotated_BRIEF

11

is similar and simply dark. So, our objective is to increase the relative difference in the values for

these pixels, which leads to the process of low-light image enhancement.

One of the best ways to deal with low-image quality problems is to train a Deep Learning

model for creating a map [1] between low and high-quality image features. These models typically

need image pairs with one being the undesired one and the other a good-quality image for the same

scene as shown in Figure 1.2(a-b, a-c). Chen, et al. [2] have developed a paired dataset by reducing

the exposure of bright images (Figure 1.2, a) to create poorly exposed images (Figure 1.2, b).

Real low-light images have noise in them due to several factors and the approach

mentioned above doesn’t model that well and so we need to come up with solutions which can

create realistic noisy images in a better way. Another approach could be instead of generating

synthetic images use the same camera for capturing bright and low-light image pairs targeted by

some denoising/enhancement algorithm [3], [4], [5].

(a) Bright Image (b) Image captured using low
exposure time

(c) Image b after adding noise

Figure 1.2: (a) & (b) represent the image pairs generated in traditional way without considering
the noise factor. Image (c) is our custom generated image which will be used instead of (b) to
create the modified pair.

The latter method might prove to be a difficult implementation because of the tremendous human

effort needed. It also requires long exposure shots for capturing noise-free images where some of

the parameters might change, this may lead to a discrepancy in the noisy & noise-free image pairs

for the same scene. The viable solution which might be scalable is developing better ways of

12

modeling noise on the generated low-light images by modifying the exposure of the bright images

from different datasets, and then train models which leads us in better cross-dataset results. Here

our focus was to first create an appropriate dataset by utilizing the low-light images from the LOL

dataset. We have inverted all the image acquisition steps from the sRGB format to the RAW

equivalent and then added noise to match the real-world scenarios. Then we again converted those

noisy RAW images into their sRGB formats to get our desired low-light noisy images. These

images were paired with the bright images from the dataset for training a neural network which in

our case is a Super-Resolution based GAN named LLFLOW [1]. A detailed overview of the image

acquisition process has been discussed in the Image Acquisition Pipeline which is required to

understand our research methodology.

13

Chapter 2 Related Works

2.1. Noise Modeling

Due to differences in sensor size, sensor type, and other aspects of the imaging pipeline, different

cameras emit distinct types of noise. Moreover, in low-light situations, image noise follows the

Poisson-Gaussian pattern instead of the simple Gaussian pattern [5]. So, there are two ways of

creating a noisy-clean image pair dataset i.e., one is to create synthetic noisy images by artificially

providing the required noise on the clean images, and the other method is to capture the image

pairs by changing the parameters like light sensitivity (ISO) and exposure time of a particular

camera. The latter method models the noise more accurately than the other method as there are

real images.

 Anaya et al. [6] have implemented the latter method using different camera/image sensor

systems but this method is tedious and may not model the noise signature of an unknown sensor

on which the dataset was not created. Implementation of the learning-based denoising methods is

becoming increasingly popular in the research community [7] over traditional models like BM3D

[8] & WNNM [9], as they can learn the infinitely possible noise signatures given that we can feed

enough data. For this, it’s not feasible to follow the latter method, instead, we have to find ways

to develop synthetic noisy images.

 One of the ways of creating noisy synthetic images as proposed by Brooks, et al. [10] is to

take the final image from a particular system and then undo all of the image processing steps which

typically take place in a camera system, illustrated in Fig 3. This results in getting synthetic RAW

14

images and changing the parameters, adding noise to these generates RAW noisy images. Also,

they have pointed out from their experimental results that a neural network trained on these

reverse-engineered raw image pairs works better than the one trained on the processed/final image

pairs.

2.2. Image Enhancement

The Retinex model is an effective method utilized for lowlight image enhancement. This states

that an image can be decomposed into two components, reflectance & illumination.

This can be denoted as

𝑆𝑆 = 𝑅𝑅 ∘ 𝐼𝐼 (2.1)

where S is the source image, R is the reflectance, and I is the illumination. Here ◦ denotes the

mathematical operation of element-wise multiplication. Many traditional low-light image

enhancement methods have utilized this theory. This theory has been the inspiration for many of

the deep learning methods created for this task. A Progressive Retinex framework that trains the

illumination and reflection maps in a mutually reinforcing manner is proposed by Wang et al.

2019b [11]. This model has also inspired the framework proposed by Yufei, et al. [1] to extract the

illumination invariant color map that takes care of the color saturation and distortions as the prior

for the low-light image enhancement task. But for better illumination adjustments and noise &

artifact suppression they have utilized a conditional normalizing flow based on Normalizing Flow

[12], which is the transformation of a simple probability distribution (e.g., a standard normal) into

a more complex distribution.

15

 Most of the neural networks for denoising also need a huge amount of image pairs. But in

this field, not many attempts have been made but the one made by Wei, Chen, et al. [2] collected

RAW images from the RAISE [13] dataset and matched its Y channel with that of the real low-

light images collected from different datasets.

2.3. Brief overview of GAN

With the introduction of Generative Adversarial Networks by Goodfellow et al. [14] we have seen

a whole new field of applications. These networks do have the ability to enhance the input data

from what they have learned previously, given that it finds some similarity between its input and

the learned features. Due to this unique ability, it’s one of the most suitable networks for our

purpose of image enhancement and denoising.

The implementation of Adversarial Modeling is made on two layers of multilayer

perceptron.

The first one being the generator whose distribution 𝑝𝑝𝑔𝑔 over data 𝑥𝑥 being initially defined

as a prior over input noise variable 𝑝𝑝𝑧𝑧(𝑧𝑧) and i.e., represented to the dataspace using 𝐺𝐺�𝑧𝑧;𝜃𝜃𝑔𝑔�

where 𝐺𝐺 is the differentiable function with parameters 𝜃𝜃𝑔𝑔.

The second multilayer perceptron is called the discriminator 𝐷𝐷(𝑥𝑥;𝜃𝜃𝑑𝑑), which has a single

scalar as output. Here its task is to find the probability that 𝑥𝑥 came from the original data rather

than from the 1st perceptron 𝑝𝑝𝑔𝑔.

Therefore, both of these networks are being trained with different motives. 𝐷𝐷 is trained to

maximize the likelihood that training examples and samples/outputs from 𝐺𝐺 being assigned the

16

correct label. In addition, we train 𝐺𝐺 to reduce the distance between its output and the input data,

mathematically its task is to minimize log (1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)�).

So, we can call these two modules taking active part in a two-player minimax game with

the value function being 𝑉𝑉(𝐺𝐺,𝐷𝐷), defined as:

min
𝐺𝐺

max
𝐷𝐷

 𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log𝐷𝐷(𝑥𝑥)] + 𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� (2.2)

2.4. LLFLOW

The primary goal of Image enhancement task is to improve the visibility of low-light

images, suppress the source noise and visual artifacts. GANs are one of the most widely used

networks for this purpose for their inherent design. The performance of 𝐺𝐺 depends on how well

log (1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)�) is reduced. As this is a mathematical distance, the method implemented for

calculating the distance greatly affects the performance. Utilizing a pixel-wise loss function for

the Deep learning methods by Wang, Yang, et al. 2019 [11], Chen et al. 2018 [3] have achieved

promising results, but they also subject to some serious issues.

First, a low-light image may correspond to several reference images with different

exposure. Mapping the low-lit pixels and the fusion of bright pixels from these different reference

images may result in improper exposure and visual artifacts. Second, considering pixel-wise loss

as the primary factor may lose contextual information as features are not preserved instead the

pixel values are modified individually. This may lead to deterioration in visual perception quality.

17

Second, for a particular region in an image, pixel-wise loss may fail to differentiate

between the reference image and the enhanced image if the mean value turns out to be similar.

Illustration in Figure 2.1.

(a) noisy image (b) image with

slight brightness variance

(c) reference image

Figure 2.1: Here although image (b) is more similar with (c) which is the reference image, but if
we are supposed to consider only L1 loss/ pixel-wise loss as the factor then it is likely to fail in
recognizing the difference between image (a) & (b) both of which has the same L1 loss. Source:
[1]

 The authors of LLFlow have addressed these issues. They have avoided L1 loss and instead

used the NLL loss and for preserving the perceptual similarity as well as structural similarity they

have added the LPIPS (Learned Perceptual Image Patch Similarity) [15] metric with the traditional

PSNR and SSIM [42]. They have also structured their algorithm/model according to the reinforced

Retinex Theory [11] which incorporates the noise factor. All these make this model robust and

perfect for our use case.

2.4.1. Overview of LLFlow Architecture

We know that the Retinex Theory states that an image can be disintegrated into its reflectance and

illumination components [2], and this is the holy grain for LLFlow’ s image enhancement. The

18

theory’s equation (2.1) has further been reinforced by Y. Wang, et. al. [11] by incorporating the

factor of noise. This greatly improves the robustness of this theory.

𝑆𝑆 = 𝑅𝑅 ∘ 𝐼𝐼 + 𝑛𝑛 (2.3)

Here 𝑛𝑛 denotes noise in the image and LLFlow has taken care of these 3 factors using an

Enhanced Super Resolution GAN (SRGAN) network for training named as Residual-in-Residual

Dense Block (RRDB) [16]. The NLL loss for LLFlow has been optimized in such a way that it

takes care of the components of equ. (2.3).

For the "𝐼𝐼" factor, images are histogram equalized which increases global contrast by

ensuring the values stay in the range of [0,1]. This reduces the difference between x𝑙𝑙 and x𝑟𝑟𝑟𝑟𝑟𝑟 and

ensures that the images stay illumination invariant for the model Ɵ.

For the "𝑅𝑅" factor which aims to minimize the difference due to different color intensities,

a color map 𝐶𝐶(𝑥𝑥) is calculated. 𝐶𝐶(𝑥𝑥) is a ratio which makes it easier for the model Ɵ to compare

x𝑙𝑙 and x𝑟𝑟𝑟𝑟𝑟𝑟 as instead of comparing them directly 𝑔𝑔(𝐶𝐶(𝑥𝑥𝑙𝑙)) and 𝐶𝐶(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟) ratios are compared,

therefore generating better xℎ which is more similar to x𝑟𝑟𝑟𝑟𝑟𝑟.

𝐶𝐶(𝑥𝑥) =
𝑥𝑥

mean𝑐𝑐(𝑥𝑥)
 (2.4)

Here mean𝑐𝑐 calculates the mean value of each pixel among the RGB channels. For taking care of

𝑛𝑛 or noise factor in equation (2.3), a noise map is created and fed to the encoder of the generator

𝑔𝑔. The noise map 𝑁𝑁(𝑥𝑥𝑙𝑙) is estimated as follows:

𝑁𝑁(𝑥𝑥) = max (𝑎𝑎𝑎𝑎𝑎𝑎�𝛻𝛻𝑥𝑥𝐶𝐶(𝑥𝑥)�,𝑎𝑎𝑎𝑎𝑎𝑎�𝛻𝛻𝑦𝑦𝐶𝐶(𝑥𝑥)� (2.5)

Here, 𝛻𝛻𝑥𝑥 & 𝛻𝛻𝑦𝑦 denotes the gradient maps in the x & y directions and max (x, y) function returns

the max value between 𝑥𝑥 & 𝑦𝑦 at pixel channel level.

19

Chapter 3 Image Acquisition Pipeline

As discussed in the previous sections, the efficient way of gathering large amount image data is

by generating synthetic images as it does not need much human labor. The only limitation which

we might face is how good we are at replicating the real-life noisy low-quality images. And to

improve our ways to generate synthetic image we need to understand what goes on behind the

scenes of an image sensor. We also need to understand the type of noise and the stage where it

gets associated in.

Noise gets associated mostly in the first step of the image processing pipeline. This pipeline

consists of various steps which are mentioned Figure 3.1.

Figure 3.1: Image Acquisition Pipeline

20

3.1. Noise In an Image

Noise is an inherent property of the image sensors and it’s generally dominated by photon noise

and sensor noise [17]. Every image is result of the pattern formed from the photoelectric effect on

the image sensors, and the uncertainty in photons hitting the surface of the image sensor leads to

photon noise. The other kind of noise is due to the properties of the image sensor which is

dependent on the physical characteristics of the sensor. There is also another kind of noise called

the dark current noise which is caused by the release of photons from the sensor itself due to heat.

In lowlight conditions, the sensors are unable to capture detail due to the lack of photons and in

these situations, the sensor noise becomes a dominant force in the image distortion.

3.1.1 Modeling Noise

In the field of computer vision noise in an image is often modeled using zero-mean additive

Gaussian distributions, which is quite often signal independent. So, in simple application this kind

of approximation does work but it’s mostly unrealistic. In real image capturing systems Shot Noise

(photon noise), and sensor-based noise contributes in varying proportions to the final RAW image.

This means that the noise pattern is dependent on the scene brightness i.e., number of

photons collected in a particular sensor pixel, and also some sensor-based variables like the sensor

size, number of pixels in the sensor, irregularities in reading the values due to circuit

characteristics.

3.1.2. Shot/Photon Noise

This type of noise is associated with the uncertainty in the measurement of light, which is inherent

to the quantized nature of light. Capturing an image is the result of photelectric effect which occurs

in the image sensor, therefore this effect depends on the randomness in photon detections and can

21

be treated as independent events following a random temporal distribution. As a result, we can call

the photon counting problem following a Poisson distribution with the distribution being described

below in equ 3.1.

𝑃𝑃𝑟𝑟(𝑁𝑁 = 𝑘𝑘) =
𝑒𝑒−𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝑘𝑘

𝑘𝑘!

(3.1)

 Here this is a discrete probability distribution with 𝑁𝑁 being the no. of photons which is measured

on a sensor over time interval 𝑡𝑡, 𝜆𝜆 being the expected no. of photons per unit interval of time,

therefore,

𝜆𝜆 ∝ 𝐻𝐻 (3.2)

where (𝐻𝐻) is irradiance and it is measured as power per unit area, 𝜆𝜆𝜆𝜆 corresponds to the expected

photon count and can be called as the signal. As 𝜆𝜆𝜆𝜆 or photon count follows Poisson distribution,

its variance is equal to its expectation.

𝐸𝐸[𝑁𝑁] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑁𝑁] = 𝜆𝜆𝜆𝜆 (3.3)

 or

𝜇𝜇 = 𝜎𝜎2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (3.4)

Equ 3.3 and 3.4 shows that this type of noise is signal dependent and its standard deviation (𝜎𝜎) is

proportional to the �(signal) .

3.1.3. Gaussian Approximation of Shot/Photon Noise

As the gaussian distribution of this noise is typically accurate, its widely used. Due to equ. 3.4 we

can say that if we have weak signal or if the photon count is small, the photon noise will also be

less and the overall noise will be dominated by other signal-independent noise like the

readout/sensor noise or the dark current noise.

22

While assuming the distribution of photon noise we write the distribution as a Normal

distribution with the mean and variance being the same with the value being equal to 𝜆𝜆𝜆𝜆.

𝑁𝑁~𝒩𝒩(𝜆𝜆𝜆𝜆, 𝜆𝜆𝜆𝜆) (3.5)

As per equ 3.3 and 3.4 we see that Photon/shot noise is proportional to the �(signal) , that means

though this noise increases in absolute term and its absolute ratio is high when the signal level is

low, and it gets weak when we have higher signal level. So, the remedy behind reducing this noise

is to capture images with more photons and we can do that by increasing the exposure time of the

sensor capturing light. But also, there is a limitation in the number of photons that can be captured

by the sensor for a single shot and that is dependent on the type of image sensor that we use.

Figure 3.2: Characteristics curve of shot noise. The square root relationship signifies that in low-
light circumstances this noise will dominate cumulative noise pattern.

3.1.4. Noise due to sensor characteristic

There are several types of noise associated with an image sensor, two of them have been described

here. The first type is due to the internal readout-circuitry, which means that every sensor has

irregularities going on and that is typically specific for each and every sensor. This is mostly known

to the manufacturer and dealt with by them, so these values are mostly proprietary.

23

 Everything which has mass releases or absorbs heat, so while we use these sensors these

do heat up and releases photons and this is the cause for the second type of noise related to the

sensors. This noise is called the dark current noise and usually its value is insignificant compared

to the other noise. There are some scenarios where this noise becomes a significant player and i.e.,

when the signal is too like when we are capturing the image of something which is too far away

and the emitted light reaching the sensor is extremely limited. Examples like telescopes capturing

celestial images like the Milky Way Galaxy, in these scenarios to avoid dark current noise the

sensor is kept in a cool environment with temperature being close to 0 Kelvin.

24

3.2. Demosaicing

An image sensor consists of millions of individual pixels with each being sensitive to either one

of the Red, Green, or Blue spectra of the Electromagnetic wave. So colloquially we call these as

either Red, Green, or Blue pixels, according to the color-filter placed on that particular pixel. Every

sensor has 2x the number of Green pixels as compared to the Red/Blue pixels; this is due to the

fact that the human retina using designated cone cells, during daylight vision are most sensitive to

green light. The RGB pixels of the camera sensor is arranged in a typical RGGB/BGGR Bayer

pattern mentioned in Fig 3.2.

Figure 3.3: RGGB Bayer Pattern

https://en.wikipedia.org/wiki/Bayer_filter

25

3.2.1. Finding the RGB image from RGGB combination

We know that the no. of Red & Blue pixels is half than that of the Green pixels. So, to get a color

image which should be in the format of RGB, a form of interpolation is needed to fill in the blanks.

There are different mathematical ways for this interpolation and the implementation type is subject

to an individual’s choice. This mathematics is known as demosaicing.

 For each and every pixel of the RGB image we are either interpolating the value for the red

pixel or the blue pixel. In this whole image processing pipeline section, our research work been

based on the implementation made by the authors of [10] and [18]. And for that reason, bilinear

interpolation has been used for demosaicing.

3.3. Digital Gain

Gain refers to the ratio between the input signal and the output signal, which in our case will be

numeric value multiplied with the RAW sensor signal to amplify this brightness and contrast. If

we have low gain values, it will make the image dark and reduce the contrast. This is generally

applied once the exposure time has been set for taking the image.

3.3.1. Relation between Gain and Exposure

For a camera system if we increase the exposure time, it will lead to an increase in the amount of

light captured by the sensor and on the other hand if the gain is increased it will increase the voltage

applied to the pixels on the sensor. Both of these factors lead to a brighter image but have different

considerable drawbacks. Long exposure may lead to motion blur if any subject moves while the

picture is being captured and if we increase the gain it will lead to amplification of the background

noise with possible reduction in dynamic range.

26

3.3.2. Calculating Digital Gain

These days most of the digital cameras do apply digital gain to the image they capture, and the

value is set by the manufacturer’s auto exposure software. Though this whole system being a black

box for us, we need calculate the digital gain for creating our own synthetic dataset.

3.4. White Balance

The colors captured in an image depend on two factors. Its color is the product of the

material/object color and the color of the illuminating light. This second factor here is what we

need to take care of, and we counter that with white balance. Our objective is to make the image

look like it’s captured under white-neutral lighting conditions.

3.4.1. Calculating White Balance

The camera systems use a statistical/heuristic approach [19] [20] for calculating the white balance

by estimating the Red & Blue channel gains. Likewise Digital Gain, it’s also a black box The

Darmstadt noise dataset [18] has kept the record of the values and that has been used for our image

inversion process. Though my work has incorporated other datasets, I believe that these values

will lead to somewhat realistic synthetic data.

27

3.5. Color Correction

Most of the time color spectra that we get from the camera sensor for an image doesn’t match with

the standard color spectra like the sRGB. This mismatch led people to incorporate the step of color

correction by multiplying the image vector with a color correction matrix, which is specific to

every camera sensor.

Thankfully the Darmstadt dataset has these values collected and for our use case it’s been

used though being different dataset. To generate synthetic images, using the values from a

completely different dataset where a different camera sensor might have been used may lead to

some imperfections. But our experimental results prove that the generated synthetic images model

the real-life images very closely.

3.6. Gamma Compression

Our vision system is typically more sensitive to the gradient in the darker shades than the brighter

shades. Therefore, gamma compression typically is the process of allocating more bits of data for

low intensity pixels, leading to better dynamic range. For our purpose the standard gamma curve

mentioned in the Darmstadt dataset [18] has been used.

𝛤𝛤(𝑥𝑥) = max(𝑥𝑥, 𝜖𝜖)1∕2.2 (3.6)

𝛤𝛤−1(𝑦𝑦) = max(𝑦𝑦, 𝜖𝜖)2.2 (3.7)

In equ. (3.6), 𝜖𝜖 = 10−8 and while inverting the images equ. (3.7) which is the inverse of (3.6) is

being used. Here 𝑦𝑦 denotes the pixel values of the source image while inversion.

28

3.7. Tone Mapping

Tone mapping is an image processing and computer graphics technique that simulates the

appearance of high dynamic range images in a medium with a more constrained dynamic range by

mapping one set of colors to another. The limited dynamic range of printouts, CRT or LCD

monitors, and projectors makes it impossible to accurately depict the complete spectrum of light

intensities found in real-world scenarios. While maintaining the image features and color look

necessary to fully appreciate the original scene material, tone mapping solves the issue of

significant contrast reduction from the scene radiance to the displayable range.

3.7.1. Inverse Tone Mapping

An image with a low dynamic range can be mapped into an image with a higher dynamic range

using the inverse tone mapping technique. Notably, it is employed to convert SDR videos to HDR

videos.

3.7.2. Calculation

Standard images with low-dynamic range, are often processed using S-shaped curved which

mimics the “characteristics curve” of a film [21]. Considering this to be our case we use a simple

“smoothstep” curve while creating the processed RGB images from the RAW images and while

inversion from RGB images we use the inverse of equ. (3.8).

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 3𝑥𝑥2 − 2𝑥𝑥3 (3.8)

29

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1(𝑦𝑦) =
1
2
− sin�

sin−1(1 − 2𝑦𝑦)
3

�
(3.9)

Here in both of the equations (3.8) & (3.9), the inputs 𝒙𝒙 & 𝒚𝒚 are defined in the range of [𝟎𝟎,𝟏𝟏]. In

real life a simple smoothstep function might not be used. There are many complex edge-aware

local tone mapping algorithms [22] and also for HDR images extreme tone mapping is used. As

these steps are difficult to reverse engineer, we have kept our calculation simple and followed the

steps taken by these authors [10].

30

Chapter 4 Our Approach

As we know, images are formed due to the pattern formed from photoelectric effect on the image

sensors. And these patterns are affected by different kinds of irregularities. There is always some

kind of randomness in the photons which hit the sensor, this causes a type of noise which is known

as the shot noise. As mentioned in “3.1. Noise In an Image”, we know that shot noise is

proportional to the �(signal) which means that when intensity of the signal is low, proportionately

the intensity of shot noise will be high and will dominate the noise pattern. We also need to take a

note of the difference in the electronic pattern formed on different sensors due to their own

characteristics signature and image sensitivity, causing the sensor-dependent readout noise. Our

present research of image enhancement considers these two types of noise.

Also, from the previous section “Image Acquisition Pipeline” we know in the whole

process of image acquisition where the noise gets mixed. Most of the recent image capturing

systems de-noise them immediately. But in our case, we want to create a system which can de-

noise as well as perform exposure correction irrespective of the camera being used for capturing

the image. This is due to the fact that not every camera system does have a good de-noising

system and so the method we choose is to take low-light images and convert them into an

enhanced version where the exposure is proper and also its denoised so that those images can be

used elsewhere.

For our purpose, we need to train a suitable neural network and more importantly we

need to feed it with realistic images. These days researchers choose some form of Super-

Resolution Generative Adversarial Networks, in this field. This kind of network boasts the

31

capability of generating good quality images given that it is able to learn the co-relation between

the factors which differentiate a good and a bad image. Getting a sheer amount of real low-light

images with their corresponding bright image for the same scene is nearly impossible. So, our

job is to create a dataset first which models the real-life irregularities.

4.1. Creating Augmented Dataset

Our experimentation involved inverting the ground truth images which were captured using low

exposure time. In the case of the LOL dataset, image pairs were already present with one being

captured using low exposure time. These images were inverted for converting them to their RAW

format, then synthetic noise as mentioned in section “3.1. Noise In an Image” was added and these

noisy RAW images were processed to get back their sRGB variants.

In case images are not captured using low exposure time, we have implemented a module

which is supposed to change the brightness of the image. It divides the pixel values of the image

by a simple integer and its RAW counterpart is generated using our traditional image un-

processing module. Noise is added on the RAW format and then all the steps are performed

similarly irrespective of the source image being dark or not which is inverting all the un-processing

module’s steps as mentioned in the “Image Acquisition Pipeline” except of “3.2. Demosaicing”.

32

Figure 4.1: The architecture of our proposed method.

The “yellow” boxes are part of the image un-processing module which reverts the steps which
undergoes in a sensor system while acquiring an image. The “violet” boxes collectively convert
the RAW images into their processed sRGB images using the parameters from Darmstadt noise
dataset [18], or we can call that as the processing module. The green box is the Image
enhancement neural network, and here LLFLOW is used. The train & test image are same here
only for illustration purpose so that we can compare the difference between the bright sRGB image
which is the groundtruth vs the enhanced output. Neglecting that bit of a smoothening the enhanced
output image is very similar to the groundtruth.

The generated RAW images’ mosaic form has less no. of R & B data, precisely half than their

original sRGB counterparts. To get the RGB matrix from the RGGB we need a kind of

approximation, which in our case is “bilinear interpolation”. This method has also been used in

the Darmstadt noise Dataset, so we believe this method is fair to use.

The image un-processing module in Figure 4.2 denoted with “yellow” boxes has many

processes which are camera system specific and many a times proprietary. So, inverting those steps

from an sRGB image would be a difficult task. For our process we have used the parameters from

the Darmstadt noise dataset [18]. Though the camera parameters will differ for every system, we

assume here that for our purpose the error will be within tolerance limit.

33

 Adding realistic noise is important, but also where we are adding in the pipeline is also

important. This is clearly understood from “Figure 3.1”, its shows us exactly when a sensor

encounters noise and so what we need to perform in order of mimicking the process. The

importance of each and every step of the unprocess-process pipeline from “Figure 4.1” has been

justified with the ablation study of those steps.

4.2. Image Enhancement & Denoising Network

The neural network implemented in our research is based on the one developed by Yufei, et al.

[1]. Their network follows the Super Resolution GAN architecture which is inspired from the

improved Retinex Theory by Wang, et. al. [11] which takes the illumination, reflectance, and noise

of the low-light images as conditions for learning a one: many relations map from a low-light/ill

exposed image to multiple normal-exposed images of the same scene and it’s due to the fact that

a particular scene may be captured with different illuminations and this mapping will help us

transform the ill-exposed noisy images to properly exposed image with features intact.

The network is based on the improved Retinex theory which incorporates noise as a major

factor (Equation (2.3)) with the help of gradient maps (Equation (2.5). This made us believe that

if we incorporate noise in the train images the network should be able to distinguish the difference

between noise and useful features, given a reference image is provided. The choice of this

particular network is solely due to the reason being that it has already been a state of the art on the

LOL dataset. Our purpose is to check that if we did incorporate artificial noise while training, does

this network’s cross-dataset as well as LOL dataset performance improve.

34

4.3. Robustness Evaluation

The network has been evaluated against LOL dataset with numerous modifications as well as on

other two datasets which we created, named Pepper and EarthCam. We also evaluated our model

for face detection, on the VE-LOL-H dataset which consists of low-light images of people walking

on busy streets. This gave us the idea of how useful our architecture can be in real-world

applications. We have applied our architecture to numerous different scenarios so that we

understand in general the potential and the characteristics of these models. Our experimentation

on the Pepper dataset was crucial, and the severe degradation in the performance of the LLFLOW

network on this dataset as compared to LOL motivated us in developing our architecture. The

Pepper dataset is specifically curated for our purpose, as it has paired images where the low light

images are not captured with less exposure time, instead captured in real dark environment.

Whereas the EarthCam dataset is a bit different, it may not serve our exact purpose due to the

difference in the nature of the images, but we definitely can infer the characteristics of our model.

35

Chapter 5 Description of Datasets

A model/theory can be called robust, only if it works well on different standardized data and on

different kinds of setup. This inspired us to find quantitative results using different metrics on

various datasets. Some of the datasets which we used are publicly available, we also evaluated

using our own dataset which is tailor made for our purpose.

5.1. LOL Dataset

Low Light paired dataset contains 500 image pairs with low-light as well as normal-light images.

For a particular scene most of the low-light images are captured by changing two parameters of

the camera which the authors [2] have used. These parameters are exposure time and ISO, to get a

low-light image. All of these images were resized to the dimensions of 400x600 and converted to

PNG (Portable Network Graphics) format. The authors have extended their dataset by adding 1000

modified RAW images collected from the RAISE [13] dataset. The properties of these 1000 extra

images are matched with that of 250 real-life dark images collected from public datasets like MEF

[23], NPE [24], LIME [25], DICM [26] and Fusion [27]. These 1000 RAW images were

transformed to YCbCr, and their Y channel histogram was calculated. Their Y channel was

modified according to the 250 reference images’ Y channel histogram using Adobe Lightroom.

As the authors of the LLFlow network did work with the original 500 images from the LOL dataset,

we also chose to follow the same for having a fair comparison.

36

(a) Scene A: Image with normal exposure

(b) Scene B: Image with normal exposure

(c) Scene A: Image with low exposure

(d) Scene B: Image with low exposure

Figure 5.1: Image pairs from the LOL dataset which contains 500 captured image pairs. Here each
pair (a)-(c) and (b)-(d) represent an image captured using different camera settings for the same
scene. Here (c) and (d) are captured using low-exposure time.

37

5.2. DronesLab Images from Robot Pepper

KAI is the name given to the department’s SoftBank Pepper Robot. This humanoid robot is one

of the new members of our lab. It has two 5 megapixels camera sensors, one mounted in the mouth

and the other one on the forehead. There is a 3rd camera integrated with the tablet which sits on the

chest of the robot. We have captured some low light images with its tablet and executed our model

to see how well it’s able to enhance these images.

Here our attempt in creating this small, paired dataset is to verify whether the behavior of

our network architecture our on the modified LOL dataset (explained in Chapter 4) tallies with

other datasets. This dataset has only 2 image pairs displayed in Figure 5.2, where the pair is denoted

with the scene name. While creating the paired images, the robot has been kept stationary, and the

images are captured while keeping the lights on for the normal images and off for the low light

images. The images are captured in normal mode (not pro) that helped us in not knowing the image

processing parameters like White Balance, exposure time and Digital Gain. This might work better

for our purpose of evaluating the trained model 𝜃𝜃 in a completely blind circumstance. The brute

force method of creating low-light image under a real low-light environment ensures that noise

characteristics have been well characterized. Due to this reason the dataset has been directly

evaluated without any modification by adding synthetic noise. This may help us in verifying

whether our synthetic noise characterizes the real noise well.

38

(a) Scene A: Image with normal illumination

(b) Scene B: Image with normal illumination

(c) Scene A: Image with low illumination

(d) Scene B: Image with low illumination

Figure 5.2: Image captured in Davis Hall Room-105/DronesLab.

5.3. VE-LOL-H Dataset

Vision Enhancement in the LOw-Light condition (VE-LOL) is a dataset created by Jiaying et al.

[28] to explore the area of low light image enhancement. While creating the dataset they have

considered an important factor for these image enhancement models, and i.e., to evaluate how well

these work for face recognition. They have two separate modules in the dataset, one has the image

pairs similar to the one we used for LOL dataset, those are mainly for training the network and the

other part is for evaluating on low-light images which do contain human face, with the face

39

coordinates being manually labelled. This will greatly help us to understand how well these models

presently work for real-life applications, and are they fit to be deployed in the commercial space

or do we need to improve these models a lot.

VE-LOL-L is the first module of their dataset which do contain 2500 paired images and

among them 1000 pairs are synthesized from the RAISE [13] dataset. While the others are real-

image pairs degraded similarly like ours using the noise modeling by Brooks et al. 2019 [10].

VE-LOL-H is the model which has been utilized by us for understanding the behavior of

our model in areas which require high precision like face recognition. Here 10,940 images in total

(6940 for training and validation and 4000 for testing) were captured in low light and manually

annotated with bounding boxes to identify human faces.

(a)

(b)

Figure 5.3: Typical images from the VE-LOL-H dataset.

The images in this dataset were taken using Sony α6000 and Sony α7 E-mount cameras

with varied capturing settings on a number of busy streets in the Beijing area, catching faces with

a various scale, stances, and appearances making it a truly unconstrained dataset. These images

have a resolution of 1080 x 720, which were downscaled from 6 k x 4 k for our convenience.

40

5.4. EarthCam Dataset

Canadian Wildfire Smoke affected North America, mainly the East Coast during the month of

July. Major cities were engulfed with the some and led to extremely unhealthy air quality.

EarthCam pictures taken between June 6th and 8th show huge variance image texture. So, we

thought about putting those images into our chosen network to observe how those will be

processed.

(a) June 5th

(b) June 6th 11:30pm

(a) June 7th 12pm

(b) June 7th 2pm

 Figure 5.4: Some of the image from our dataset “EarthCam”. The images are captured from
“https://www.earthcam.com/usa/newyork/worldtradecenter" and pose vastly different texture,
artifacts, and color tone. For our purpose we have kept image (a) as the reference for all the
metrics calculations.

https://www.earthcam.com/usa/newyork/worldtradecenter/?cam=skyline_g

41

Chapter 6 Experiments

6.1. Analyzing Experimental Data

The LOL dataset as described earlier is a paired dataset, and all of our modifications are done on

the images captured with low exposure time. Our experiments involve different ways of adding

shot & read noise to these images for training the network. These methods are described below:

• Noise added after the images are passed through the unprocessing module to get

their RAW variants, hence the name “RAW_noisy” been used. After noise being

added the images are converted back to their sRGB format using the processing module.

• Only some of the parts of the unprocessing module were used like leaving the color

correction matrix, white balance, and digital gain while creating the dataset,

leaving only the mosaicking/demosaicing process aside. Hence the name

“no_ccm_wb_gain” been used for this variant of our dataset. Here the noise has

been added to images in their RGGB format without being converted to their

respective RAW variants.

• pretrained: This denotes the original LLFlow model which was trained by the

authors on the unmodified LOL dataset.

The column heading “model type” for the tables in this section denotes the way LLFLOW network

was trained, like “custom v2_RAW_noisy” means that it was trained on the modified dataset

where noise was added to the generated RAW images and then again, those images were converted

42

back to sRGB. For all these tables here ↑ signifies that higher the value its better and similarly ↓

is vice versa. The v2 or v3 for the model signifies:

• v2: - train-validate datasets are modified similarly.

• v3: - train dataset modified but validated using unmodified LOL [28] data.

• pretrained: - pretrained LLFLOW smallNet model.

Model type Eval dataset PSNR
(↑)

SSIM
(↑)

LPIPS
(↓)

custom v2_RAW_noisy LOL 17.45 0.71 0.32

custom v2_RAW_noisy RAW_noisy_eval 22.71 0.81 0.34

custom v2_RAW_noisy no_ccm_wb_gain 20.49 0.60 0.47

custom v3_RAW_noisy LOL 19.23 0.78 0.34

custom v3_RAW_noisy RAW_noisy_eval 21.47 0.79 0.40

custom v3_RAW_noisy no_ccm_wb_gain 20.59 0.66 0.48

pretrained LOL 24.06 0.91 0.14

pretrained RAW_noisy_eval 18.82 0.58 0.71

pretrained no_ccm_wb_gain 19.25 0.61 0.64

custom v2_ no_ccm_wb_gain LOL 16.61 0.66 0.33

custom v2_no_ccm_wb_gain RAW_noisy_eval 17.81 0.63 0.45

custom v2_no_ccm_wb_gain no_ccm_wb_gain 22.82 0.81 0.31

custom v3_no_ccm_wb_gain LOL 17.73 0.69 0.38

custom v3_no_ccm_wb_gain RAW_noisy_eval 19.15 0.69 0.49

custom v3_no_ccm_wb_gain no_ccm_wb_gain 21.52 0.78 0.37

Table 6.1: Comparison of LLFlow models trained on different versions of the LOL dataset.

Here each model has been evaluated against different variants of the LOL dataset using the metrics
PSNR, SSIM and LPIPS. This gives us an idea about each model’s performance. As from this
table it’s not very idea to conclude which one is the best model so we need to conduct certain
calculations on data from this table.

43

Model type PSNR
(↑)

SSIM
(↑)

LPIPS
(↓)

custom v2_RAW_noisy μ = 20.21

 σ = 2.640

𝜎𝜎2 = 6.973

μ = 0.70

σ = 0.105

𝜎𝜎2 = 0.011

μ = 0.37

σ = 0.081

𝜎𝜎2 = 0.006

custom v3_RAW_noisy μ = 20.43

σ = 1.128

𝜎𝜎2 = 1.27

μ = 0.743

σ = 0.072

𝜎𝜎2 = 0.005

μ = 0.406

σ = 0.070

𝜎𝜎2 = 0.005

pretrained μ = 20.71

σ = 2.909

σ2 = 8.46

μ = 0.70

σ = 0.182

𝜎𝜎2 = 0.033

μ = 0.496

σ = 0.311

𝜎𝜎2 = 0.096

custom v2_ no_ccm_wb_gain μ = 19.45

σ = 3.294

𝜎𝜎2 = 10.851

 μ = 0.71

σ = 0.096

𝜎𝜎2 = 0.009

μ = 0.36

 σ = 0.076

𝜎𝜎2 = 0.006

custom v3_no_ccm_wb_gain μ = 19.46

σ = 1.914

 𝜎𝜎2 = 3.666

μ = 0.72

 σ = 0.052

 𝜎𝜎2 = 0.003

μ = 0.41

 σ = 0.066

 𝜎𝜎2 = 0.004

Table 6.2: Mean performance of the LLFlow models. Here the mean performance on different
variants of LOL datasets for each model is summarized.

For each metric the best performing model is highlighted in green. The mean results are
inconclusive for selecting the best model, so we select the models with best mean values and use
standard deviation as an elimination process.

44

Model type PSNR
(↑)

SSIM
(↑)

LPIPS
(↓)

custom v3_RAW_noisy μ = 20.43

σ = 1.128

𝝈𝝈𝟐𝟐 = 1.27

μ = 0.743

σ = 0.072

𝝈𝝈𝟐𝟐 = 0.005

μ = 0.406

σ = 0.070

𝝈𝝈𝟐𝟐 = 0.005

pretrained μ = 20.71

σ = 2.909

σ2 = 8.46

μ = 0.70

σ = 0.182

𝜎𝜎2 = 0.033

μ = 0.496

σ = 0.311

𝜎𝜎2 = 0.096

custom v2_ no_ccm_wb_gain μ = 19.45

σ = 3.294

𝜎𝜎2 =10.851

 μ = 0.71

σ = 0.096

𝜎𝜎2 = 0.009

μ = 0.36

 σ = 0.076

𝜎𝜎2 = 0.006

Table 6.3: We have selected 3 of the best models based on mean performance across all the
modifications on the LOL dataset.

Using standard deviation and variance helped us in deciding which model would be ideal

in our scenario. It’s important to choose a model which has a good mean performance but also,

we need to consider consistency and that’s where the variance and standard deviation comes in.

Using these parameters, we are able to determine which model would be ideal in our use case.

Model type Eval dataset PSNR
(↑)

SSIM
(↑)

LPIPS
(↓)

custom v3_RAW_noisy LOL 19.23 0.78 0.34
custom v3_LOL_AWGN LOL 20.16 0.77 0.45

Table 6.4: Model performance under different type of Noise on the LOL dataset.

45

Comparing the type of noise being added for the models displayed in Table 6.4, we

conclude that the one trained on Additive White Gaussian Noise (AWGN) gets outperformed in

majority of the metrics, namely SSIM and LPIPS. Though the difference in performance for the

metrics PSNR and SSIM is marginal, there’s a significant lead for the model which has been

trained on the custom noise for the metric LPIPS. LPIPS is currently the most sophisticated way

for comparing image quality and has been explained later. This means that our way of adding shot

& read noise leads to better feature preservation and proves that noise doesn’t always follow the

simple Gaussian distribution.

Model type Eval data PSNR
(↑)

SSIM
(↑)

LPIPS
(↓)

custom v3_RAW_noisy Pepper 13.56 0.53 0.49

pretrained Pepper 12.45 0.54 0.57

custom v2_ no_ccm_wb_gain Pepper 13.04 0.44 0.52

custom v3_RAW_noisy EarthCam 11.71 0.53 0.68

pretrained EarthCam 13.31 0.63 0.69

custom v2_ no_ccm_wb_gain EarthCam 12.31 0.63 0.73

Table 6.5: Comparison of LLFlow models trained on our data Pepper and EarthCam. Here we have
tested the three best performing models from Table 6.2, to understand the cross-data performance.

Table 6.3 lists the models which has the best mean performance across all the modifications

of the LOL dataset. We found different evaluation metrics gave us different results, and we got 3

models which are the best in terms of “PSNR”, “SSIM” and “LPIPS”. Therefore, we had to resort

to other quantitative methods like standard deviation and variance to understand which model

46

would be the ideal one for our scenario. Applying that we found, that the “custom v3_RAW_noisy"

model is more consistent than other models. Our results on a handful of images from the Pepper

robot also made us believe that our way of evaluation in the previous experimental section was in

the right direction. Results on the EarthCam dataset (from Table 6.5) may not be very related to

our low-light image enhancement work, but it definitely helps us in better understanding the

network behavior.

6.1.1 Metrics Explanation

 Here 3 metrics have been used extensively to compare the performance. PSNR means Peak-

Signal-to-Noise-Ratio. PSNR is meant to calculate the mean squared error (MSE) comparing the

pixel value difference between the ground truth (𝐼𝐼) and the generated image(𝐾𝐾).

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑚𝑚𝑚𝑚

��[𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝑘𝑘(𝑖𝑖, 𝑗𝑗)]2
𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0

(6.1)

SSIM or Structural Similarity Index Measure [42] is meant to compare the structural

similarity on various windows of an image. It’s the weighted sum of image components like

luminance (𝑙𝑙), contrast (𝑐𝑐) and structure (𝑠𝑠) with their respective weights being 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 and is

calculated between different image windows (𝑥𝑥 and 𝑦𝑦) one from image 𝐼𝐼 and the other from image

𝐾𝐾. The simplified formula for SSIM:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝑙𝑙(𝑥𝑥,𝑦𝑦)𝛼𝛼 ⋅ 𝑐𝑐(𝑥𝑥,𝑦𝑦)𝛽𝛽 ⋅ 𝑠𝑠(𝑥𝑥, 𝑦𝑦)𝛾𝛾 (6.2)

 Both of the above-mentioned methods are more related with comparing image similarity

based on structure of the image or difference of the pixel value, whereas the 3rd metric LPIPS

(Learned Perceptual Image Patch Similarity) [15] , is better used to compare the feature between

47

the ground truth and the generated image. This is done by computing the distance between the

activations of two image patches using some pre-trained network, such as VGG or AlexNet. This

is used to compare images keeping the human perception in mind rather than pixel-value

differences.

6.2. LOL Train-Eval Split

The authors Yufei et al. [1] have utilized only the 500 captured by Wei et al. [2] for the LOL

dataset. 485 image pairs resized to 400x600x3 were kept for training the network, the rest 15 image

pairs were kept for model evaluation. To keep our experimentation similar for easy comparison

we also used the same data with a similar split up.

6.3. Analyzing Image Results

This section gives an overview of the type of images used for our experimentation and how they

look like. Moreover, the output images of the model on these datasets are used for understanding

the behavior of these generative models and how well they fair in a diverse environment. We

also had a better understanding of how we can improve the model in the future.

48

6.3.1. LOL Dataset

(a) Generated Image

(b) Reference Image

(c) Noisy Low Light Image

(d) Paired Low light Image

Figure 6.1: The image (c) 𝑥𝑥𝑙𝑙_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 has been generated from (d) 𝑥𝑥𝑙𝑙 with the help of the unprocess
pipeline and then adding read and shot noise. Here 𝑥𝑥𝑙𝑙 is the image captured with low-exposure
time during creation of the LOL dataset. 𝑥𝑥𝑙𝑙 and (b) 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 are image pairs which are captured for the
same scene. Image (a) 𝑥𝑥ℎ is the image with normal exposure generated from the model 𝜃𝜃.

Figure 6.1 & Figure 6.2 displays different type of low light images generated from 𝑥𝑥𝑙𝑙, but

studies in Section “6.1. Analyzing Experimental Data” shows us that model 𝜃𝜃 trained on

𝑥𝑥𝑙𝑙_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 - 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 also denoted as “custom v3_RAW_noisy“ in Table 6.1, is able to preserve more

features while creating the 𝑥𝑥ℎ as compared to other variants.

49

(a) No unprocessing, Noisy Image

(b) Low Light Gaussian Noise Image

Figure 6.2: Compares the way the low light images were generated from 𝑥𝑥𝑙𝑙.

(a) 𝑥𝑥𝑙𝑙_𝑛𝑛𝑛𝑛_𝐶𝐶𝐶𝐶𝐶𝐶_𝑊𝑊𝑊𝑊_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 means that none of the image processing steps like “color correction matrix”
(CCM), “White Balance” (WB) and “Digital Gain” (Gain) were reversed. Shot + Read noise was
added to the Bayer RGGB version of the images and then these were converted back to their sRGB
variants. Image (b) 𝑥𝑥𝑙𝑙_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 has also been created from 𝑥𝑥𝑙𝑙, but here all the unprocessing steps are
similar like the 𝑥𝑥𝑙𝑙_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, except for the noise model. Here the Shot + Read noise was replaced by
“Additive White Gaussian Noise” (AWGN) with 𝜇𝜇 = 0,𝜎𝜎 = 1.5.

Though we did compare models using quantitative results from Table 6.5 for better

human interpretation we thought of sharing some of the output images. Figure 6.3 compares the

output from two of models based unmodified LOL data. Simply from observation we infer

model “custom v3_RAW_noisy” being able to preserve more details on a kind of data on which

it has not been trained on (i.e., no noise data) though it loses some color contrast w.r.t its

counterpart. This helps us to conclude that this model has more consistent performance than the

other one i.e., “custom v2_ no_ccm_wb_gain“.

50

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.3: Compares the image being generated from model “custom v2_ no_ccm_wb_gain“
{(b), (d)} and “custom v3_RAW_noisy” {(a),(c)} w.r.t the bright images for the same scenes.
Here (e) and (f) are the images captured in proper lighting conditions (reference images) and are
used to compare the models’ output images.

51

6.3.2 Pepper images

(a)

(b)

(c)

(d)

Figure 6.4: Image (a) & (b) are generated from the “custom v3_RAW_noisy” model and (c) & (d)
are the outputs from the “pretrained” model.

The models were given low-light images as discussed in section 5.2. DronesLab Images from

Robot Pepper. We clearly visualize that the image generated from the model Ɵ trained on the

RAW noisy LOL images was able to better preserve the features by maintaining the exposure in a

better way than the one trained by the authors Yufei et al. [1] also denoted as “pretrained” in

Table 6.1. But also, if we observe image (a) & (b) closely we may notice that these images a filled

with visual artifacts more than (c) & (d) and may look noisy in our eyes. Our visual perception

does match with the qualitative results presented in Table 6.1. The image generated from our

52

custom model will definitely be better suited in applications like object detection and to be specific

in our image example like OCR (optical character recognition). There are also various other

domains in which this kind of image enhancement model may be useful.

We have a handful of images from this robot, so we have used this data only for

understanding how our modified model performs w.r.t. the pretrained model.

6.3.3 VE-LOL-H dataset

(a) face detection algorithm completely

failed

(b) face detection algorithm able to detect

at least 1 face

Figure 6.5: Image (a) is from the VE-LOL-H dataset, where it's completely unprocessed whereas
the right image (b) is the same image passed via our image enhancement network.

For our experimentations we took the train folder and passed that thorough our LLFLOW network

(custom v3_RAW_noisy), which was trained on the noisy LOL data, This resulted in images which

were brighter but also somewhat smoothened out and when we applied a face detection network

(RetinaFace [29]) on these images the total percentage of face being detected for the enhanced

images was higher than the original ones. For the enhanced image set it’s approximately 11%

whereas for the original images it’s only 8%, that’s a 37.5% increase. This justifies that in extreme

conditions an intermediate step is necessary which may take care of enhancement scenarios and

makes it easy for the application-based models to work better than they would normally perform.

53

Though our network has resulted in better face detection, facial recognition needs the precise

details of a face which our network is losing while enhancing images. This phenomenon is not

limited to this dataset, but we have observed something similar on our EarthCam dataset. Our

experimentations from the Figure 6.5 make us believe that we need to further investigate and come

up with ways of improving the network.

(a)

(b)

 Figure 6.6: Typical output from our image enhancement network. The faces are generally
smoothened while the illumination of these images is being adjusted by the network.

54

6.3.4 EarthCam dataset

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6.7: Comparison of the EarthCam image of New York city from June 5th to 7th. Here
images on the left side are the unaltered EarthCam images and on the right are the output for
those images from the “custom v3_RAW_noisy” model.

55

In this dataset the images have different textures, lighting conditions and objects. Our purpose here

is to observe the output characteristics of pictures from the model which we have been using for

our experiments. And as it was trained on image pairs which contains low light – bright light

images, it performed fairy well in changing the image illumination for the pair (c)-(d) from Figure

6.6. But for this pair it did lose some intricate detail of the buildings (like the World Trade Center

and the other one in its surroundings), this is due to the smoothening which happen for denoising

these images as its one of the major factors for our trained network as per the Improved Retinex

Theory. Also, the model did perform fairly well in illumination the image for the pair (a)-(b), but

regarding the details neither it did lose nor were there many as the image is filled with smoke.

 For the last 2 pairs the model didn’t perform as we would normally hope, but the reason

for both the pairs (e)-(f) and (g)-(h) is different. For the (e)-(f) pair it’s due to the fact that the NYC

skyline (which is the main feature) in image (e) is overshadowed by a thick layer of smoke and

that makes it impossible to infer what’s the image is about. But for the last pair (g)-(h) is somewhat

different. The purpose of a well illuminated image (g) was to check how does the model handles

these kinds of scenarios, and we believe its hallucinated with that it’s supposed to understand as

noise and what’s a useful feature. This image is filled up with sharp gradients, and this sudden

change in pixel values are most likely considered as noise which needs to be smoothened out.

56

Chapter 7 Conclusion

Image captured in low-light environments has always been hard to perceive due to the lack of

detail and noise being one of the predominant factors in distorting the captured details. Our

characterization of different types of noise and adding them synthetically in the LOL dataset

proved to be useful as it has greatly improved the performance of the Image Enhancement network.

The noise model of the network in section “2.4.1. Overview of LLFlow Architecture” is able to

learn the randomness which becomes predominant in low-light conditions. This has helped us in

creating a network which performs better while enhancing images in blind scenarios. There are

various fields where these kinds of networks may prove to be useful. In autonomous vision based

driving systems, having synthetic images with better illumination will certainly help. It will greatly

improve the object detection capability as proved in the previous section with person detection

being our example.

Our experiments on each different datasets led us in learning something new about these

Generative networks. Our results on Pepper images suggest that though the custom trained network

is able to preserve features better, it also adds unwanted artifacts in some of the generated images.

This is due to the fact that completely modeling noise in a blind scenario is always challenging

and there’s room for improvement. Our experiments on EarthCam led us to conclude that

sometimes the model gets hallucinated and messes up, in those conditions the enhanced image gets

severely altered from the original image and our expectations don’t hold up. From experimentation

on the VE-LOL-H dataset we learned that our present model certainly performs better in face

57

detection tasks as compared to the completely unaltered dark images. But for face recognition it

will require further modifications. The face images are blurred in many cases on the dataset which

is completely unsuitable. Our future work can be about improving the neural network and also

collecting a moderate sized dataset with the same setup which we have used for collecting images

from the Pepper robot. This will help us and other researchers to understand the nature of images

when the signal intensity is low.

Improvement in the performance of the model can be achieved both ways. First is to collect

massive datasets with image pairs being collected from different image scenarios and lighting

conditions. But as we all know there will always be limitations in creating an ideal data set, so we

should consider the second solution. This approach involves the model to understand the context

by matching blobs from the captured image with its pre-trained features, also they are capable of

understanding the type of noise, as the proportion between shot and read noise differ for different

scenarios. This leads in the model performing image enhancement which is specific to each and

every image. Its already being implemented in some of the smartphone cameras, like how they

capture sharp images of the moon in complete pitch-dark conditions. For this scenario the

enhancement process is fulfilled by matching the blurred/noisy blob of the moon from the captured

image with its pretrained features of moon and then adding those pretrained details to fill the gaps.

This process might greatly enhance the theoretical capability of camera systems.

58

Bibliography

[1] W. Yufei and e. al., "Low-light image enhancement with normalizing flow," in

Proceedings of the AAAI Conference on Artificial Intelligence., 2022.

[2] C. Wei and e. al., "Deep retinex decomposition for low-light enhancement," in arXiv

preprint arXiv:1808.04560 (2018).

[3] Chen, Chen and e. al., "Learning to see in the dark.," in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018.

[4] Schwartz, Eli, R. Giryes, Bronstein and A. M., "Deepisp: Toward learning an end-to-end

image processing pipeline," in IEEE Transactions on Image Processing (2018): 912-923.

[5] A. Foi, M. Trimeche, V. Katkovnik and K. Egiazarian, "Practical Poissonian-Gaussian

Noise Modeling and Fitting for Single-Image Raw-Data," in IEEE Transactions on Image

Processing, vol. 17, no. 10, pp. 1737-1754,, Oct. 2008.

[6] Anaya, Josue and A. Barbu, "Renoir–a dataset for real low-light image noise reduction.," in

Journal of Visual Communication and Image Representation 51 (2018): 144-154., 2018.

[7] F. Linwei and e. al., "Brief review of image denoising techniques," in Visual Computing

for Industry, Biomedicine, and Art 2.1 (2019): 1-12., 2019.

[8] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, "Image denoising by sparse 3-D

transform-domain collaborative filtering.," in IEEE Trans Image Process 16(8): 2080–

2095., 2007.

59

[9] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng and L. Zhang, "Weighted nuclear norm

minimization and its applications to low level vision.," in International journal of computer

vision 121 (2017): 183-208., 2017.

[10] T. Brooks and e. al., "Unprocessing images for learned raw denoising.," in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[11] Y. Wang, Y. Cao, Z.-J. Zha, J. Zhang, Z. Xiong, W. Zhang and F. Wu, "Progressive

retinex: Mutually reinforced illumination-noise perception network for low-light image

enhancement.," in Proceedings of the 27th ACM international conference on multimedia.

2019..

[12] Kobyzev, Ivan, S. J. Prince and M. A. Brubaker., "Normalizing flows: An introduction and

review of current methods," in IEEE transactions on pattern analysis and machine

intelligence 43.11 (2020): 3964-3979., 2020.

[13] Dang-Nguyen, Duc-Tien and e. al., "Raise: A raw images dataset for digital image

forensics.," in Proceedings of the 6th ACM multimedia systems conference. 2015..

[14] I. Goodfellow and e. al, "Generative adversarial networks," in Communications of the ACM

63.11 (2020): 139-144..

[15] Z. Richard, P. Isola, A. A. Efros, E. Shechtman and O. Wang, "The unreasonable

effectiveness of deep features as a perceptual metric.," in Proceedings of the IEEE

conference on computer vision and pattern recognition. 2018..

[16] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao2 and X. Tang,

"Esrgan: Enhanced super-resolution generative adversarial networks.," in Proceedings of

the European conference on computer vision (ECCV) workshops. 2018..

60

[17] S. W. Hasinoff, "Photon, Poisson Noise.," in Computer Vision, A Reference Guide 4

(2014): 16., 2014.

[18] Plotz, Tobias and S. Roth, "Benchmarking denoising algorithms with real photographs," in

Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

[19] A. Gijsenij, T. Gevers and J. v. d. Weijer, "Computational color constancy: Survey and

experiments," in TIP, 2011..

[20] J. T. Barron and Y.-T. Tsai, "Fast fourier color constancy," in CVPR, 2017.

[21] R. Davis and F.Walters, "Sensitometry of photographic emulsions and a survey of the

characteristics of plates and films of American manufacture.," in Govt. Print. Off., 1922..

[22] P. E. Debevec and J. Malik, "Recovering high dynamic range radiance maps from

photographs.," in SIGGRAPH, 1997.

[23] K. Ma, K. Zeng, Wang and Zhou, "Perceptual quality assessment for multiexposure image

fusion.," in IEEE Transactions on Image Processing, 24(11):3345, 2015.

[24] W. Shuhang, Z. Jin, Hu, H. Miao and L. Bo, "Naturalness preserved enhancement

algorithm for non-uniform illumination images," in IEEE Transactions on Image

Processing, 22(9):3538–48, 2013.

[25] G. Xiaojie, L. Yu and L. Haibin, "Lime: Low-light image enhancement via illumination

map estimation.," in IEEE Transactions on Image Processing, 26(2):982–993, 2017.

[26] C. Lee, C. Lee and C. S. Kim, "Contrast enhancement based on layered Contrast

enhancement based on layered," in IEEE International Conference on Image Processing,

pages 965–968, 2013.

61

[27] K. Dabov, A. Foi and K. Egiazarian, "Image denoising with blockmatching and 3d

filtering," in Proceedings of SPIE - The International Society for Optical Engineering,

6064:354–365, 2006.

[28] J. Liu, D. Xu, W. Yang, M. Fan and H. Huang, "Benchmarking Low-Light Image

Enhancement and Beyond," in International Journal of Computer Vision (2021), 2020.

[29] J. Deng, J. Guo, E. Ververas, I. Kotsia and Z. S, "Retinaface: Single-shot multi-level face

localisation in the wild.," in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition (pp. 5203-5212)., 2020.

[30] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Bayer_filter.

[31] Abdelrahman, S. Lin and M. S. Brown, "A high-quality denoising dataset for smartphone

cameras.," Proceedings of the IEEE conference on computer vision and pattern recognition.

2018..

[32] A. Abdelhamed, M. A. Brubaker and M. S. Brown, "Noise flow: Noise modeling with

conditional normalizing flows.," in Proceedings of the IEEE/CVF International Conference

on Computer Vision. 2019..

[33] Ledig, Christian; Lucas Theis; Ferenc Huszár; Jose Caballero; Andrew Cunningham;

Alejandro Acosta; Andrew Aitken; et al., "Photo-realistic single image super-resolution

using a generative adversarial network.".

[34] Y. Jiang, X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou and Z. Wang,

"Enlightengan: Deep light enhancement without paired supervision.," in IEEE transactions

on image processing 30 (2021): 2340-2349.

62

[35] D. P. Kingma and P. Dhariwal, "Glow: Generative flow with invertible 1x1 convolutions.,"

in Advances in neural information processing systems 31 (2018).

[36] Kirichenko, Polina, P. Izmailov and A. G. Wilson., "Why normalizing flows fail to detect

out-of-distribution data," in Advances in neural information processing systems 33 (2020):

20578-20589..

[37] C. Jianrui, S. Gu and L. Zhang, "Learning a deep single image contrast enhancer from

multi-exposure images.," in IEEE Transactions on Image Processing 27.4 (2018): 2049-

2062..

[38] C. X, Z. Q, L. M, Y. G and H. C, "No-reference color image quality assessment: From

entropy to perceptual quality.," in EURASIP Journal on Image and Video Processing

2019.1 (2019): 1-14.

[39] C. Cheng, S. Zhang, J. Xing, Z. Lei, S. Z. Li and X. Zou., "Selective refinement network

for high performance face detection.," in Proceedings of the AAAI conference on artificial

intelligence. Vol. 33. No. 01. 2019..

[40] X. Fu, Y. Sun, M. LiWang, Y. Huang, X.-P. Zhang and X. Ding., "A novel retinex based

approach for image enhancement with illumination adjustment.," In 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1190-

1194. IEEE, 2014..

[41] M. Fan, W. Wang, W. Yang and J. Liu., "Integrating semantic segmentation and retinex

model for low-light image enhancement.," in In Proceedings of the 28th ACM international

conference on multimedia, pp. 2317-2325. 2020..

63

[42] Wang, Zhou, et al. "Image quality assessment: from error visibility to structural

similarity." IEEE transactions on image processing 13.4 (2004): 600-612.

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Related Works
	2.1. Noise Modeling
	2.2. Image Enhancement
	2.3. Brief overview of GAN
	2.4. LLFLOW
	2.4.1. Overview of LLFlow Architecture

	Chapter 3 Image Acquisition Pipeline
	3.1. Noise In an Image
	3.1.1 Modeling Noise
	3.1.2. Shot/Photon Noise
	3.1.3. Gaussian Approximation of Shot/Photon Noise
	3.1.4. Noise due to sensor characteristic

	3.2. Demosaicing
	3.2.1. Finding the RGB image from RGGB combination

	3.3. Digital Gain
	3.3.1. Relation between Gain and Exposure
	3.3.2. Calculating Digital Gain

	3.4. White Balance
	3.4.1. Calculating White Balance

	3.5. Color Correction
	3.6. Gamma Compression
	3.7. Tone Mapping
	3.7.1. Inverse Tone Mapping
	3.7.2. Calculation

	Chapter 4 Our Approach
	4.1. Creating Augmented Dataset
	4.2. Image Enhancement & Denoising Network
	4.3. Robustness Evaluation

	Chapter 5 Description of Datasets
	5.1. LOL Dataset
	5.2. DronesLab Images from Robot Pepper
	5.3. VE-LOL-H Dataset
	5.4. EarthCam Dataset

	Chapter 6 Experiments
	6.1. Analyzing Experimental Data
	6.1.1 Metrics Explanation

	6.2. LOL Train-Eval Split
	6.3. Analyzing Image Results
	6.3.1. LOL Dataset
	6.3.2 Pepper images
	6.3.3 VE-LOL-H dataset
	6.3.4 EarthCam dataset

	Chapter 7 Conclusion
	Bibliography

