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Abstract

This work offers a detailed investigation into General-Purpose Computing on Graphics

Processing Units (GPUs), particularly focusing on their use in network analysis for cal-

culating betweenness centrality. After exploring the background and foundational princi-

ples of GPUs, including the CUDA programming model, the work delves into the results

achieved through various techniques. Three primary approaches are examined: the Triv-

ial Method with Single-Dimensional Threads, which shows considerable overhead; the

Multi-Dimensional Threads method, which yields significant improvement, especially for

dense graphs; and the cuBLAS method, standing out as the most efficient across different

densities. While these results demonstrate substantial computational potential, they also

reveal challenges in the experimental phase, such as potential errors in the computation of

centrality and accuracy issues related to floating-point arithmetic. The concluding part of

the work outlines the ongoing research to refine these methods and overcome the identified

challenges. In sum, this work not only provides insights into the technological aspects

of GPU-based graph analysis but also presents promising results and avenues for future

exploration and innovation.
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Chapter 1

Introduction: General-Purpose

Computing on GPUs

Graphics Processing Units (GPUs) were initially conceived to render graphics, specifically

through parallel execution of simple calculations. This parallel processing made GPUs

adept at determining RGB values for myriad display pixels, a functionality that originally

served the demands of visual computing [24]. However, this computational advantage

soon found applications beyond rendering graphics. Scientists and technologists recognized

the potential for GPUs to parallelize algorithms, a feature highly applicable to fields that

require independent calculations for numerous data points. From data-intensive computing

to molecular simulations and network analysis, the parallelization capabilities of GPUs have

been harnessed to solve complex problems at an unprecedented scale [16].

The blossoming of deep learning research also owes much to the parallel processing

capabilities of GPUs. Training deep learning algorithms in parallel has become not just

feasible but also efficient, transforming GPUs from specialized hardware into a staple

component of research labs and data centers [5]. This transformation has been accompanied

by increased investments in both hardware and software optimizations for GPUs, further

cementing their importance in contemporary computing [8].
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The trajectory of multi-threaded processing has steadily focused on enhancing the par-

allel application’s execution throughput. A standout example is NVIDIA’s Tesla A100

GPU, equipped with tens of thousands of threads operating through multiple simple, in-

order pipelines. Since 2003, many-threaded processors like GPUs have outpaced others in

floating-point performance.

In 2021, the peak floating-point throughput of the A100 GPU reached staggering fig-

ures: 9.7 TFLOPS for 64-bit double-precision, 156 TFLOPS for 32-bit single-precision,

and 312 TFLOPS for 16-bit half-precision. By contrast, Intel’s recent 24-core processor

reaches only 0.33 TFLOPS for double-precision and 0.66 TFLOPS for single-precision [16].

The increasing disparity in peak floating-point calculation throughput between GPUs and

multicore CPUs highlights the raw potential these chips offer.

The substantial performance gap between GPUs and CPUs can be attributed to their

differing design philosophies. CPUs are primarily optimized for sequential code perfor-

mance. This optimization includes various design features aimed at reducing the latency of

operations at the expense of chip area and power, such as large last-level on-chip caches,

sophisticated branch prediction logic, and intricate execution control logic. This approach,

known as latency-oriented design, inevitably consumes resources that could otherwise be

used to enhance arithmetic execution units and memory access channels.

Conversely, the design philosophy behind GPUs is greatly influenced by the booming

video game industry. This market drives a relentless demand for enormous floating-point

calculations and memory access per video frame in advanced games. Consequently, GPU

designers seek to allocate most of the chip area and power to maximize floating-point

calculations and memory access throughput [16]. This distinct approach has propelled

GPUs into a class of their own, fueling both technological innovation and a broad array of

scientific and industrial applications.

Following the extensive examination of GPUs, their history, design philosophies, and

broad applications, this work further delves into specialized areas where GPUs have be-
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come a pivotal technology. One such area is the CUDA programming model, explored

in Chapter 2. This chapter provides readers with an insight into the core architecture of

CUDA, a fundamental framework that enables the GPU’s parallel computing capabilities.

From executing simple parallel programs to understanding memory hierarchies, this chapter

provides the foundational knowledge necessary for GPU programming.

In Chapter 3, the focus shifts to a specific application of GPU technology in the field of

network analysis. By introducing the concept of betweenness centrality for networks and

graphs, this chapter lays the groundwork for understanding a key metric that measures the

importance of a node within a network. The parallelization capabilities of GPUs offer a

substantial advantage in calculating betweenness centrality, and this chapter explores the

traditional and modern methods of computation.

Chapters 4 and 5 expand on the concept of betweenness centrality by introducing novel

approaches to accelerating its calculation. Chapter 4 explores a matrix multiplication-based

approach, leveraging the inherent parallelism in GPUs to handle large and complex networks

efficiently. Chapter 5, on the other hand, takes a unique path by employing the Katz

Diminishing Walk method. This innovative technique further optimizes the computation of

betweenness centrality.

The concluding Chapter 6 encapsulates the journey of the work by reflecting on the

discussions and highlighting potential future directions.

In summary, this work offers a comprehensive and accessible exploration of GPUs, from

their origins in rendering graphics to their transformation into a powerhouse for parallel

computation. By focusing on specific applications like betweenness centrality and providing

concrete examples of novel methods, it bridges the gap between theoretical understanding

and practical application.

3



Chapter 2

The CUDA programming model

2.1 An overview of CUDA and related programming inter-

faces

The pursuit of parallel computing has led to the creation of various programming languages

and models over the years, reflecting a dynamic field of research and development. Among

these, CUDA, OpenMP, and OpenCL have emerged as particularly prominent and widely

utilized.

2.1.1 OpenMP (Open Multi-Processing)

OpenMP is a popular model for shared memory multiprocessor systems, provides compiler

automation and runtime support to abstract many parallel programming details from pro-

grammers. This allows for a degree of performance portability across different systems

produced by various vendors, as well as different generations from the same vendor [19].

Originally designed for CPU execution, OpenMP has been extended to support GPU exe-

cution, although effective programming still requires an understanding of detailed parallel

programming concepts. The compilers for OpenMP are continually evolving, making it a

valuable tool but also one with areas that may fall short [23].
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2.1.2 OpenCL

In 2009, Open Compute Language [12] was developed collaboratively by major indus-

try players, including Apple, Intel, AMD/ATI, and NVIDIA. Similar to CUDA in many

respects, OpenCL allows efficient parallelism and data delivery in massively parallel pro-

cessors [13]. Unlike CUDA, however, OpenCL relies more on APIs and less on language

extensions, a feature that enables quicker adaptation of existing compilers and tools. Al-

though OpenCL offers standardization and can run on all processors supporting its language

extensions and API, high performance on a new processor might require application modi-

fications.

2.1.3 CUDA

NVIDIA’s CUDA (Compute Unified Device Architecture) has emerged as a prominent tool

in parallel programming, particularly for NVIDIA GPUs. Unlike models like OpenMP and

OpenCL, CUDA provides explicit control over parallel programming details, making it a

robust and educational tool for parallel computing enthusiasts [16]. Its unique attributes

include the integration with NVIDIA’s GPU architecture, which aligns the programming

model with the hardware for efficient utilization, and the single-instruction, multiple-thread

(SIMT) architecture that allows straightforward mapping of parallelism [16].

A significant feature of CUDA is its low overhead in generating threads, enabling the

creation of numerous lightweight threads that can be efficiently scheduled on the GPU.

This leads to a granular control that is invaluable in many parallel computing contexts [16].

Alongside, CUDA’s versatile memory hierarchy, encompassing shared, constant, and local

memory, supports optimized data access patterns and allows tailoring memory usage to

specific applications [16].

Compared to OpenMP, which automates parallel programming to an extent but requires

understanding of detailed parallel concepts, CUDA’s explicit control offers both a learning
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opportunity and a solution where OpenMP may fall short. On the other hand, OpenCL,

similar in key concepts to CUDA, relies more on APIs and less on language extensions,

allowing quicker adaptation but possibly needing modifications for high performance on

new processors [16].

Moreover, CUDA’s mature ecosystem, complete with development tools, libraries, and

community support, positions it as a comprehensive platform for not only development

but also debugging, profiling, and optimization. This complete package has seen CUDA

become the go-to choice for those looking to exploit the potential of GPGPUs, especially

on NVIDIA’s hardware, and further distinguishes it from contemporaries like OpenMP and

OpenCL.

2.2 CUDA Programming Model

2.2.1 Data v/s Task Parallelism

In parallel computing, two common paradigms are data parallelism and task parallelism.

CUDA is predominantly focused on data parallelism, where the same operation is performed

on different pieces of data simultaneously. This contrasts with task parallelism, where

different operations are performed on the same or different data.

In CUDA, data parallelism is implemented by defining a parallel kernel that applies a

function to multiple elements of a dataset. It allows handling large data arrays efficiently by

utilizing the parallel processing capabilities of the GPU.

Following, we will now illustrate the key features of a typical CUDA program and

finally show how to vectors can be added on a GPU in CUDA

2.2.2 Host and Device in CUDA

In CUDA terminology:
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• Host: Refers to the CPU and its associated memory.

• Device: Refers to the GPU and its associated memory.

The host controls the device and dictates tasks to be performed on the device. The device is

responsible for executing parallel computations.

2.2.3 Kernel Function

Kernels are special functions written in CUDA C that are executed on the GPU. They are

launched by the host using a unique execution configuration that specifies the number of

threads and blocks.

A kernel function typically looks like the following:

1 __global__ void myKernel(int *a, int *b, int *c) {

2 int index = threadIdx.x;

3 c[index] = a[index] + b[index];

4 }

The global qualifier indicates that the function is a kernel that runs on the device but

is called from the host.

Threads are grouped into blocks, and blocks are organized into a grid. The launch

configuration specifies these dimensions:

5 myKernel<<<numBlocks, threadsPerBlock>>>(a, b, c);

Other private qualifiers are also present in a GPU.

2.2.4 Threads, Blocks and Grids

Threads are the smallest execution units in CUDA. They execute the same instruction but on

different data, following the single-instruction, multiple-thread (SIMT) architecture. Each

thread is identified by a unique ID within a block. Thread IDs can be one-, two-, or three-
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dimensional, depending on how the threads are organized. The thread ID is accessed using

the built-in variables threadIdx.x, threadIdx.y, and threadIdx.z.

Blocks are groups of threads that can be scheduled on the same processor core and can

cooperate with each other by sharing data through shared memory. Each block has a unique

ID within the grid. Like thread IDs, block IDs can be one-, two-, or three-dimensional.

Block IDs are accessed using the built-in variables blockIdx.x, blockIdx.y, and blockIdx.z.

The grid is a set of blocks executed on the GPU. The grid’s dimension determines

how many blocks exist within the grid. It’s defined in terms of the number of blocks,

not threads, in each dimension. Threads within a block are organized in a one-, two-,

or three-dimensional array. Blocks within a grid are also organized in a one-, two-, or

three-dimensional array.

The following illustrates how threads, blocks, and grid can be mapped within each other:

• [threadIdx.x, threadIdx.y, threadIdx.z]: The [x,y,z]-dimension ID of a thread within

its block

• [blockIdx.x, blockIdx.y, blockIdx.z]: The [x,y,z]-dimension ID of a block within the

grid

• [blockDim.x, blockDim.y, blockDim.z]: The number of threads in the [x,y,z]-dimension

of a block

• [gridDim.x, gridDim.y, gridDim.z]: The number of blocks in the [x,y,z]-dimension

of the grid.

The hierarchical structure of threads, blocks, and the grid in CUDA allows developers to

match the parallelism of the problem domain to the architecture of the GPU in a flexible and

effective manner. It also aids in developing efficient parallel algorithms that are sensitive to

the hardware’s memory hierarchy and execution model.
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2.2.5 Data Transfer

Data is transferred between host and device using API calls like cudaMemcpy(). CUDA

also offers unified memory that allows shared memory space between the host and device,

simplifying memory management.

2.2.6 Execution Cycle on GPU

The following steps illustrate in general how CUDA uses GPU to load kernels and run

program:

• Copy data from host to device memory

• Configure and launch kernel

• Execute kernel on device

• Copy results back to host memory

2.2.7 CUDA example

The following shows adding two vectors on a GPU using CUDA:

6 __global__ void add(int *a, int *b, int *c, int N) {

7 //Replace loop with thread indexing achieving paralelism

8 int index = threadIdx.x + blockIdx.x * blockDim.x;

9 if (index < N)

10 c[index] = a[index] + b[index];

11 }

12

13 int main() {

14 int N = 1000;

15 int *a, *b, *c, *d_a, *d_b, *d_c;

16

9



17 // Allocate host memory

18 a = (int*)malloc(N*sizeof(int));

19 b = (int*)malloc(N*sizeof(int));

20 c = (int*)malloc(N*sizeof(int));

21

22 // Allocate device memory

23 cudaMalloc(&d_a, N*sizeof(int));

24 cudaMalloc(&d_b, N*sizeof(int));

25 cudaMalloc(&d_c, N*sizeof(int));

26

27 // Initialize host data

28 // ...

29

30 // Copy to device

31 cudaMemcpy(d_a, a, N*sizeof(int), cudaMemcpyHostToDevice);

32 cudaMemcpy(d_b, b, N*sizeof(int), cudaMemcpyHostToDevice);

33

34 // Launch kernel

35 int threadsPerBlock = 256;

36 int numBlocks = (N + threadsPerBlock - 1) / threadsPerBlock;

37 add<<<numBlocks, threadsPerBlock>>>(d_a, d_b, d_c, N);

38

39 // Copy result back to host

40 cudaMemcpy(c, d_c, N*sizeof(int), cudaMemcpyDeviceToHost);

41

42 // Free device memory

43 cudaFree(d_a);

44 cudaFree(d_b);

45 cudaFree(d_c);

46

47 // Free host memory

48 free(a);

49 free(b);
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50 free(c);

51

52 return 0;

53 }

2.3 cuBLAS

The cuBLAS library, developed by NVIDIA, is a GPU-accelerated implementation of the

BLAS (Basic Linear Algebra Subprograms) library. It enables high-performance linear

algebra computations on NVIDIA GPUs by taking advantage of the parallel processing ca-

pabilities inherent to the architecture [22]. Designed to be highly compatible with existing

CPU-based BLAS implementations, cuBLAS allows developers to easily port linear alge-

bra parts of their applications to the GPU, thus significantly accelerating the computations.

The library includes a variety of functions to handle common vector and matrix operations,

ranging from basic operations like scalar multiplication to more complex routines like solv-

ing linear systems. By utilizing the parallel processing power of NVIDIA GPUs, cuBLAS

brings substantial performance improvements to scientific, engineering, and data analysis

applications [22].
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Chapter 3

Betweenness Centrality for Networks

(Graphs)

3.1 An overview of centrality metrics

Centrality metrics, constituting a cornerstone in graph theory, are integral to the analysis of

complex networks, particularly in the context of large graphs. These metrics illuminate the

prominence and influence of nodes within a network, playing a vital role in various domains

including social science, biology, transportation, and computer science [21].

The challenge of identifying the top-k nodes, or the nodes that rank highest according

to a particular centrality measure, is a long-standing problem with significant implications.

Methods for determining the most central nodes must be both fast and accurate to be practi-

cal. Traditional centrality metrics leverage diverse network features, such as connections,

paths, and local density, to ascertain node importance [11]. These characteristics provide

insights into the structural role and influence of nodes within the network.

However, computing these metrics is inherently compute-intensive. Algorithms for

calculating centrality can involve traversing all paths between all pairs of nodes, leading

to a computational complexity that grows rapidly, often exponentially with the size of the
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graph [3]. Consequently, for vast real-world networks, it may be infeasible to compute

exact centrality metrics within realistic time frames.

This computational challenge has spurred interest in parallelizing centrality metrics.

Parallel algorithms can divide the computational workload across multiple processors, sig-

nificantly speeding up calculations. This approach has become crucial, especially with the

advent of large-scale data [1]. However, the development of efficient parallel algorithms

for centrality measures is non-trivial, owing to the complex dependencies between different

parts of the graph. The ongoing research in this domain strives to overcome these challenges,

focusing on creating parallel algorithms that maintain accuracy while offering substantial

speedups [20].

In conclusion, centrality metrics remain an essential and multifaceted area of graph anal-

ysis. The computational demands of calculating these metrics in large graphs necessitate in-

novative approaches, particularly parallel computing techniques. Continued advancements

in this area are vital for unlocking the full potential of centrality analysis in understanding

and manipulating complex large-scale networks.

3.2 Betweenness Centrality

Betweenness centrality is a widely used measure in network analysis that quantifies the

importance of a node within a graph. It’s defined as the fraction of all shortest paths

between pairs of nodes that pass through the node in question. The formula for betweenness

centrality for a vertex v is given by:

CB(v) =
∑
s ̸=v ̸=t

σst(v)

σst

where σst is the total number of shortest paths from node s to node t, and σst(v) is the

number of those paths that pass through v.
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3.3 Importance and Intuition

• Control over flow: Betweenness centrality identifies nodes that act as bridges or

gateways within the network structure. In transportation networks, a node with high

betweenness centrality might represent a critical intersection or hub through which a

significant portion of traffic flows [11].

• Community Structure: It helps uncover community structure within a network, iden-

tifying nodes that connect different clusters. In social networks, such nodes might

represent individuals who connect disparate social groups [21]

• Vulnerability Analysis: Identifying nodes with high betweenness centrality can high-

light vulnerabilities in a network. In an internet network, these nodes could be critical

servers or routers whose failure would significantly disrupt communication [4].

• Large Networks Consideration: In the context of large networks, betweenness cen-

trality computation becomes particularly challenging. Since the calculation involves

considering all shortest paths between all pairs of nodes, it has high computational

complexity. Parallelization and approximation algorithms are often used to make this

computation tractable for large-scale graphs [1]

3.4 Applications of Betweenness Centrality

• Analysis of Biological Networks

– Protein-Protein Complex Structures In a study by O’Meara [9], betweenness

centrality was applied to analyze the topology of small-world networks of

protein-protein complex structures. This mathematical representation allowed

researchers to identify key proteins and interactions that have high importance

in biological functions
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– Lethality and Centrality in Protein Networks Oltvai [15] explored the relation-

ship between lethality and centrality in protein networks, discovering that pro-

teins with higher betweenness centrality were more essential for the survival

of the organism, suggesting a fundamental link between network topology and

biological function

– Decomposition of Biological Networks Westhead’s [25] work utilized between-

ness centrality to decompose biological networks, enabling researchers to detect

community structures and identify critical proteins within complex biological

systems

• Identification of Key Actors in Terrorist Networks

– Mapping Networks of Terrorist Cells Krebs [17] applied betweenness central-

ity to map and analyze the networks of terrorist cells, identifying key actors

and connections, thereby providing insights for intelligence agencies and law

enforcement

– Graph-Based Technologies for Intelligence Analysis Marcus’s [7] work in uti-

lizing graph-based technologies to analyze intelligence data involved the use of

betweenness centrality. This approach helped in identifying influential actors

within complex, covert networks

• Organizational Behavior, Supply Chain Management Jakomin [6] explored the power

dynamics within the supply chain using betweenness centrality. This analysis allowed

for a better understanding of the relationships and influence within the supply chain,

leading to more efficient management strategies

• Transportation Networks Amaral’s [14] research on the worldwide air transportation

network used betweenness centrality to study centrality anomalies, community struc-

tures, and cities’ global roles. The findings provided insights into the efficiency and

robustness of global transportation systems
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• Computer Networks Puzis’s [10] work on routing betweenness centrality in computer

networks revealed insights into optimal routing paths and network efficiency. The

application of betweenness centrality in this context helped in improving the overall

performance and reliability of computer networks

3.5 Serial Computations of Betweenness Centrality

3.5.1 Traditional Serial Implementation

The conventional method to calculate betweenness centrality computes the shortest paths

between all pairs of nodes and counts how many times each node appears on a shortest

path. The implementation is trivial and follows an O(N3) complexity. The following code

represents the trivial implementation described above:

54 int n = ...; // Number of vertices

55 double centrality[n];

56 memset(centrality, 0, sizeof(centrality));

57

58 for(int s = 0; s < n; s++) {

59 for(int t = 0; t < n; t++) {

60 if(s != t) {

61 // Find the shortest paths from s to t

62 // ...

63

64 for(int v = 0; v < n; v++) {

65 // If v is on a shortest path from s to t:

66 // increment centrality[v]

67 centrality[v] += ...;

68 }

69 }

70 }

71 }
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3.5.2 Brandes’ Algorithm

Ulrik Brandes[3] developed an optimized algorithm for calculating betweenness centrality,

a significant improvement over traditional approach. This algorithm is applied to both

unweighted and weighted graphs with complexities of O(NM) and O(N ∗M +N2logN)

respectively.

The algorithm can be divided into two main components:

• Single Source Shortest Paths Enumeration (SSSP): Using breadth-first search (BFS),

shortest paths from a source node to all other nodes are determined

• Backpropagation: Accumulates the betweenness centrality scores for each node based

on the trees formed in the previous step

Brandes’ realization was that in a BFS tree, child nodes have a fixed and systematic

contribution to their parents’ centrality scores. This realization is formalized in the back-

propagation phase. The core concept revolves around the incremental contribution from

children to predecessors in terms of the number of shortest paths. This concept is captured

in the equation:

δ[w] = δ[w] +
σ(w)

σ(v)
· (1 + δ[v])

Here:

• δ[v] is the dependency score for node v, initially 0 for leaf nodes.

• σ(v) is the number of shortest paths from the source node to node v

In the forward step, the algorithm performs BFS, updating distances and cumulative

scores of the shortest paths from parents to their children: σ(w) = σ(w) + σ(v)

• Incremental Contribution (+1): By moving one level up, there’s an additional inter-

mediate node through which the shortest path travels, hence the ”+1” in the equation.
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• Proportional Contribution: Each child contributes to each parent equally, in propor-

tion to the connections between children and parents in the tree.

We have presented the pseudo code for Brandes’ algorithm in serial computation [See

Algorithm 1]

Algorithm 1 Brandes’ Algorithm for Betweenness Centrality
for each vertex v ∈ V do

centrality[v]← 0
end for
for each vertex s ∈ V do

Initialize empty lists P [w] for all w ∈ V
σ[s]← 1
d[s]← 0
Initialize empty queue Q
Initialize empty stack S
Enqueue s into Q
while Q is not empty do

Dequeue v from Q
Push v onto S
for each neighbor w of v do

if d[w] < 0 then
Enqueue w into Q
d[w]← d[v] + 1

end if
if d[w] = d[v] + 1 then

σ[w]← σ[w] + σ[v]
Append v to P [w]

end if
end for

end while
Initialize δ[v]← 0 for all v ∈ V
while S is not empty do

Pop w from S
for each v ∈ P [w] do

δ[v]← δ[v] + σ[v]
σ[w]
· (1 + δ[w])

end for
centrality[w]← centrality[w] + δ[w]

end while
end for

We now illustrate steps of Brandes’ algorithm. In Fig. 3.1 we show a tree with completed
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BFS. Now following Brandes’ accumalation equation Figs. 3.2 - 3.5 will illustrate how

Figure 3.1: Brandes Step 1: BFS and σ enumeration

scores are accumulated from children to predecessors

Figure 3.2: Backpropagation - δ accumulation level 0 to level 1

Due to the effectiveness of Brandes’ algorithm in calculating betweenness centrality,

it has become a foundational technique for parallelization, particularly on GPUs. Some

of the initial works in this area explored coarse-grained and fine-grained parallelism [20],

setting the stage for subsequent refinements and the development of more mature methods

for efficiently computing betweenness centrality on parallel architectures [27] [1].

19



Figure 3.3: Backpropagation - δ accumulation level 1 to level 2

Figure 3.4: Backpropagation - Source gets the final score

3.6 Historical Approaches to Parallelizing Betweenness

Centrality

Zhiao and Zhang [28] contributed to the field by developing a fast network centrality anal-

ysis using GPUs. Their approach significantly accelerated the calculation of betweenness

centrality in biological networks. However, a potential shortcoming could be that their

method may not be easily adaptable to other types of networks or heterogeneous computing

environments .
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Building upon this, Sariyüce [27] explored betweenness centrality on both GPUs and

heterogeneous architectures. Their work extended the applicability of parallel computa-

tion techniques beyond GPUs, allowing for more versatile implementations. They also

introduced graph pre-processing techniques which reduced the computational overhead sig-

nificantly. However, the complexity of managing different hardware configurations might

have posed challenges in achieving optimal performance across all architectures

McLaughlin et al. [20] focused on scalability and high performance of betweenness

centrality on the GPU. Their research provided valuable insights into handling large-scale

networks, but the specialized focus on GPU architectures might limit its application to

systems with different computational resources or those relying on non-GPU parallelism

Vella et al.[2] extended the application of betweenness centrality to multi-GPU sys-

tems, offering the ability to handle even larger data sets by distributing the computation

across multiple GPUs. While this approach increased scalability, it might have introduced

complexities in coordination and synchronization between GPUs, which could impact the

efficiency of the algorithm .

Finally, Charan et al. [26] presented efficient parallel algorithms for dynamic closeness

and betweenness centrality, focusing on the adaptability to changes within the network

structure. Their contribution lies in handling dynamic networks, a crucial aspect in many

real-world applications. However, their work might lack thorough evaluation across various

types of networks, which could affect the generalisation of their algorithms

In this research, our primary focus has been on the work by McLaughlin et al. [20],

which serves as a competitive benchmark for our study. McLaughlin and his collaborators

have developed and validated a method that is particularly efficient for handling large graphs.

While their approach employs multiple GPU clusters, we have chosen to restrict ourselves

to a single GPU setup in our experiments, thus differentiating our study from theirs in terms

of computational resources.

One of the most notable features of McLaughlin et al.’s [20] work is the work-efficient
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utilization of list-based traversals in graph analysis. This aspect is in stark contrast to

our approach, which relies on matrix-based techniques. The difference in these methods

is not merely computational but also conceptual. The list-based traversals enable certain

optimizations and efficiencies in their algorithm that are specifically tailored for handling

complex graph structures, whereas our matrix-based approach offers a different set of

advantages, particularly in terms of flexibility and parallelism.

The comparison between these two approaches is not just theoretical but has practical

implications as well. We anticipate that our matrix-based approach will outperform the

method by McLaughlin et al. [20] in specific scenarios where load balancing becomes a

critical factor. Our method’s inherent ability to distribute computational work evenly across

the processing units could lead to better performance under certain conditions. However,

this expectation is not without its challenges and requires thorough investigation and experi-

mental validation. We believe that this comparison will shed light on the trade-offs between

these two strategies and contribute to the ongoing dialogue on the most effective techniques

for large-scale graph analysis.

3.7 Experimental Setup

Our experiments were conducted using NVIDIA’s Tesla V100 GPUs, with support from

the University at Buffalo’s Centre for Computational Research. The Tesla V100 is a high-

end GPU designed specifically for data centers, high-performance computing (HPC), and

deep learning applications. It employs NVIDIA’s Volta architecture, marked by several

significant technological advancements. With 5,120 CUDA cores, the Tesla V100 facil-

itates highly parallel processing capabilities. It is equipped with up to 32 GB of High

Bandwidth Memory 2 (HBM2), providing rapid data transfer rates essential for large-scale

data processing. Capable of delivering 15 teraflops of single-precision or 7.5 teraflops of

double-precision performance, the V100 is a powerful tool. It also supports NVIDIA’s
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NVLink, an energy-efficient, high-bandwidth interconnect that facilitates quick communi-

cation between GPUs, as well as between GPUs and CPUs, enabling multi-GPU scaling

for increased computational power. The Tesla V100 is well-suited for professional and

scientific workloads like simulations, data analytics, deep learning training and inference,

and other tasks demanding immense parallel processing power.

All our programming is based on CUDA C. We focused our evaluation on processing

time, excluding data load/unload times to ensure an equal comparison with benchmarks

[20]. Our input graphs were assumed to be in edge format, with continuous node numbering

ranging from 0 to (N-1). Since all data preprocessing occurs during the read phase, it does

not contribute to the algorithm’s run time.

We employed a batch-based job submission system and utilized CUDA’s high-resolution

clocks to time our executions. The results were derived from an average of three runs for

each observation. The calculation of speedups have been kept simple:

Speedups(multiples) =
Benchmark(milliseconds)

OurMethod(milliseconds)

3.8 Benchmarks

In the following table we present the benchmark times from [20] tested as per the experi-

mental setup described above:

Table 3.1: Benchmark (Time in milliseconds)

#Nodes 1% 3% 5% 10% 25% 50% 75% 100%
1000 2 4 6 9 18 35 51 52
3000 24 58 85 155 398 855 1475 1083
5000 104 248 349 708 2172 5604 9120 4962
7000 385 678 943 2613 7922 18567 28859 16585
10000 1637 2051 3306 9319 26657 58326 86182 49324
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Chapter 4

Matrix Multiplication Based Approach

to Accelerating Betweenness Centrality

4.1 Adjacency Matrix Representation for Graphs

The adjacency matrix is a square N×N matrix that represents a graph, where N is the number

of vertices. In this representation, the cell at the ith row and jth column holds a value that

indicates whether there is an edge between vertex i and vertex j.

This structure is optimal for GPU processing due to coalesced memory access, allowing

threads to read or write simultaneously to adjacent memory locations. This utilizes the

GPU’s memory bandwidth to enable massive parallelization, streamlining graph algorithms.

However, the drawback of this representation is its O(N2) space complexity, making

it inefficient for large sparse graphs as it consumes significant memory for relatively few

connections. In our work, we overlook the memory bandwidth constraints to focus on

algorithm development, saving data structure optimization for future efforts. Figure 4.1

illustrates adjacency matrix representation on a toy graph
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Figure 4.1: Example graph for adjacency matrix

and its corresponding matrix is given by:



0 1 1 0 1

1 0 0 1 0

1 0 0 0 1

0 1 0 0 0

1 0 1 0 0


Adjacency matrix has the property of being symmetric and for graphs with no self-loops

they have all 0 diagonal entries.

4.2 BFS Formulated as Matrix Multiplication

Assume a graph represented by adjacency matrix A with entries aij . Multiplying the adja-

cency matrix by itself (squaring it) results in a new matrix where the entry aij represents

the number of paths of length 2 between vertices i and j. In general, the kth power of the

adjacency matrix gives the number of distinct paths of length k between any two vertices.
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BFS explores the graph level by level. The kth level vertices are those that can be

reached from the source vertex in exactly k steps. By repeatedly multiplying the adjacency

matrix, we can determine the connectivity of vertices at each ”level” or depth of the graph.

In other words, the kth power of the adjacency matrix can provide information about which

vertices are reachable in k steps.

This relationship between BFS and matrix multiplication extends to a more general

mathematical concept where matrix multiplication is defined over semi-rings. This allows

one to express graph algorithms, including BFS, as algebraic expressions, which can then

be implemented and optimized using well-established linear algebra techniques. from a

given starting vertex, which corresponds to the kth level of the BFS traversal.

Our algorithmic formulation is divided into two principal steps: executing parallel

Breadth-First Search (BFS) through matrix multiplication and conducting parallel back-

propagation.

4.3 Methods of BFS through Matrix Multiplication

We have tested the following methods for parallel matrix multiplication for parallel BFS

• 1-Dimensional threads based on flattened arrays

• Multi-Dimensional threads based on flattened arrays

• cuBLAS library based

The idea is to test GPU’s capabilities in both trivial approach and utilizing its optimized

cuBLAS libraries and finally evaluating the optimum method based on computational time.

We choose this optimum method to compare against the benchmark.
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4.4 Results

In this section we will present all the actual computational times and the speedups with

respect to benchmark.

4.4.1 Contribution to Computational Time

We vary the BFS methodology as stated previously [Section 4.3] and note the contribution

of BFS and backpropagation steps to net computational times. The numbers shown below

are average for all random graphs but the variations are low and can be disregarded

Table 4.1: Computational Time Contribution by Each Method (in %)

Steps in Algorithm Trivial 1D Threads Trivial nD Threads cuBLAS
BFS 79.1% 62.4% 57.4%
Backpropagation 20.9% 37.6% 42.6%

The exact numbers have been included in appendix.

Since we do not alter the backpropagation step, this clearly shows the potential of

cuBLAS based method.

4.4.2 Speedups with respect to benchmark

To further reinforce the point we present speedups for the three methods as discussed in

sections 3.7 and 3.8

Table 4.2: Speedups of Our Algorithm Using 1-Dimensional Trivial Matrix Multiplication

#Nodes Graph Density
1 5 25 50 75

1000 0.0574 0.0326 0.3239 0.4718 0.2101
3000 0.0074 0.0201 0.0532 0.1080 0.2456
5000 0.0059 0.0149 0.0611 0.1628 0.3172
7000 0.0096 0.0195 0.0749 0.2051 0.3397
10000 0.0179 0.0238 0.0862 0.1897 0.3481
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Table 4.3: Speedups of Our Algorithm Using Trivial Matrix Multiplication with n-
Dimensional Threads

#Nodes Graph Density
1 5 25 50 75

1000 0.0294 0.1112 0.4294 0.7758 1.0462
3000 0.0141 0.0624 0.3226 0.6642 1.1071
5000 0.0125 0.0540 0.3740 0.9133 1.4820
7000 0.0201 0.0675 0.4680 0.9434 1.5014
10000 0.0292 0.0808 0.4546 0.7063 1.0590

Table 4.4: Speedups of Our Algorithm Using cuBLAS-Based Matrix Multiplication

#Nodes Graph Density
1 5 25 50 75

1000 0.0309 0.1179 0.4294 0.7758 1.1392
3000 0.0154 0.0680 0.3371 0.6922 1.1950
5000 0.0169 0.0607 0.3995 0.9778 1.5950
7000 0.0226 0.0754 0.4948 1.0646 1.7054
10000 0.0340 0.0933 0.4779 0.9386 1.4632

4.5 Discussion

We now present the discussion of the particular results, we will discuss more generally later

• Trivial Method with Single-Dimensional Threads: This approach experiences sub-

stantial overhead, failing to surpass the benchmark for any type of graph. The lack of

optimization in this method leads to this expected outcome, as no significant efforts

are made to improve the performance

• Multi-Dimensional Threads: Transitioning to multi-dimensional threads, provided by

CUDA for convenient mapping of complex structures on GPU SMs, yields a marked

improvement in results. Specifically, this method outperforms the benchmark for

dense graphs with a 75% density and approaches the benchmark for a 50% density.

Although there is a slight performance boost for very sparse graphs, the gains are

more pronounced as the density increases

• cuBLAS Method: Among the three techniques, the cuBLAS method stands out as
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the most efficient. It not only delivers promising speedups for a 50% density but also

sets new standards for dense graphs. The superior performance of this method had

been anticipated, owing to its perfect load balancing and avoidance of list and other

structure-based methods, which often lead to inefficiencies.
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Chapter 5

Katz Diminishing Walk Based Approach

to Accelerate Betweenness Centrality

5.1 Formulation

In the context of parallelizing the Breadth-First Search (BFS) discovery, we’ve previously

explored repeated matrix multiplication. However, we now turn to a method that aims to

enumerate all possible BFS trees in a linear parallelization step, inspired by the concept of

Katz’s diminishing walks.

Ideally, we would like to construct a blocking matrix, B, as the sum of powers of the

adjacency matrix A, up to the diameter of the graph, W:

B = A+ A2 + A3 + ...+ AW

This matrix would encode all possible k-step paths, encompassing the entire structure

of the BFS trees. But calculating this sum directly is problematic, as determining the value

of W without performing a BFS is infeasible, and the computational cost of this approach

is substantial. We address the above challenges by resorting to an infinite series expansion,

given by:
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B = A+ A2 + A3 + ...+ AW + AW+1 + ...+ Ainf

orB =
1

I − A

Where I is an identity matrix of size N and A is the graph’s adjacency matrix. However,

this formulation is often unstable, and the matrix I − A can be singular and thus non-

invertible.

Therefore, we augment a factor α <0 to stabilize the above given equation as:

B =
1

I − α ∗ A

orB = I + α ∗A+ (α ∗A)2 + (α ∗A)3 + ...+ (α ∗A)W + (α ∗A)W+1 + ...+ (α ∗A)inf

This has a two-fold advantage:

• It stabilizes the above given formulation

• Due to its diminishing nature, higher exponential terms vanish hence higher power

multiplications which are redundant do not contribute significantly

We aim to construct the matrix I − α ∗ A during data read and then parallelize the

inversion of matrix using Gauss-Jordan elimination method. The step on backpropagation

remains intact.

Consider the example graph given below [Fig 5.1]. Choosing α as 0.05 we first construct

the matrix I − α ∗ A, following which we calculate the inverse (blocking matrix)
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Figure 5.1: Example graph for Katz diminishing walks



1 −0.05 0 0 0

−0.05 1 −0.05 −0.05 0

0 −0.05 1 −0.05 −0.05

0 −0.05 −0.05 1 −0.05

0 0 −0.05 −0.05 1




1.003 0.05 0.003 0.003 0

0.05 1.008 0.053 0.053 0.005

0.003 0.53 1.008 0.056 0.053

0.003 0.53 0.056 1.008 0.053

0 0.005 0.053 0.053 1.005


Note that every column or row represents a tree from a particular source. The values in
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that column/row denote their distance from the source node in orders of magnitude of α For

example, nodes which are two level down, and would have been discovered by A2 are at a

magnitude of α2 as compared to the source. Their specific values do not matter as long as

nodes on the same level stay clustered at the same exponent of α.

5.2 Gauss-Jordan Elimination on GPU for Square Invert-

ible Matrices

We briefly discuss how to perform Gauss-Jordan elimination to inverse a matrix-augmented

pair

5.2.1 Data Preparation

• Input: A given N X N ivertible matrix A with augmented idenity matrix of size N X

N

• Output: A turns into idenity matrix whereas I turns into A−1

5.2.2 Parallelization Strategy

• Each row can be handled independently, allowing parallelism across rows

• Synchronization is needed within the steps to ensure that each row operation is per-

formed correctly

5.2.3 Algorithm Steps

• Pivoting: Find the pivot element for each column, swap rows if necessary to make

sure the pivot element is non-zero, and handle the corresponding entries in the identity

matrix
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• Forward Elimination: Make all entries below the pivot element zero. This step can

be performed in parallel for all rows below the pivot

• Backward Elimination: Make all entries above the pivot element zero and scale the

row to make the pivot element one. This can also be done in parallel

The pseudocode for the described method is presented below:

Algorithm 2 Gauss-Jordan Elimination for Inverting Matrices
Require: A: an n× n invertible matrix, I: an n× n identity matrix
Ensure: A−1: the inverse of A

for i = 0 to n− 1 do
// Pivot
p← findPivot(A, i)
SwapRows(A[i, :], A[p, :]) ▷ Can be parallelized
SwapRows(I[i, :], I[p, :]) ▷ Can be parallelized
// Scale Pivot Row
A[i, :]← A[i, :]/A[i, i] ▷ Can be parallelized
I[i, :]← I[i, :]/A[i, i] ▷ Can be parallelized
for j = 0 to n− 1; j ̸= i do

// Eliminate Other Rows
factor ← A[j, i]/A[i, i]
A[j, :]← A[j, :]− factor · A[i, :] ▷ Can be parallelized
I[j, :]← I[j, :]− factor · I[i, :] ▷ Can be parallelized

end for
end for
return I

This method has the potential to speed up the algorithm further as we can guarantee

linear time complexity in both BFS and backpropagation steps.

5.3 Mock Benchmarking

We have benchmarked the above provided method on a few real life graphs provided by

SNAP repository [18]
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Table 5.1: Comparing Katz diminishing walk with Bader et al on real-world network

Network #Nodes #Edges Speed Up %Error Magnitude
ego-Facebook 4,039 88,234 1.05 0.5
musae-twitch 34,118 429,113 1.4 0.89
musae-facebook 22,470 171,002 1.22 1.2
musae-github 37,700 289,003 1.005 1.7
feather-deezer-social 28,281 92,752 2.6 25
feather-lastfm-social 7,624 27,806 1.8 2
twitch-gamers 168,114 6,797,557 1.776 1.8
gemsec-Deezer 143,884 846,915 1.443 1.2
gemsec-Facebook 134,833 1,380,293 1.289 1.3

5.4 Discussion

It is clear, both theoretically and practically, that the method demonstrates significant com-

putational potential. However, it is important to note that this method is still in the experi-

mental and developmental stage. The current version may lead to errors, sometimes with

substantial discrepancies, in the computation of centrality. This problem primarily arises

from an imbalance in sharing paths between children in a tree, as they amplify their paths

differently, which can lead to falling into the incorrect bracket of α. Since the actual tree

structure is entirely dependent on the range of alpha values, this imbalance can significantly

distort the tree’s structure.

Figure 5.2: Dis balanced tree leading to error in Katz based approach

Another challenge faced in the development of this method is the accuracy of floating-

35



point arithmetic. For a long enough graph, the α values may become indistinguishable

further down the tree, resulting in the classification of every node as a leaf node. This issue

hints at the necessity of devising a hybrid approach that combines weak and strong α values,

utilizing them as needed.

In conclusion, this method is still in a prototyping phase, and our team is actively work-

ing on developing solutions to these challenges. The ongoing research and development

are aimed at refining the approach and addressing the identified issues to realize its full

potential.

36



Chapter 6

Discussions and Future Works

6.1 General Discussions

• GPU-based Algorithms for Graphs: The study and utilization of GPU-accelerated

computations have demonstrated transformative potential. Leveraging the compu-

tational power of GPUs not only leads to significant speed improvements but also

enables the handling of complex structures. This has broad applications, ranging from

real-time data analysis to scientific simulations, and opens new doors for innovative

thinking and problem-solving in computational graph theory

• Linear Algebra-based Algorithms: Our work emphasizes the importance and advan-

tage of researching linear algebra-based algorithms for graphs. These algorithms

align with the mathematical structures inherent in graph theory and offer a more

scalable and accurate approach. The pivot towards linear algebra-based methods rep-

resents a groundbreaking step, enabling more efficient mapping of complex structures

and computations

• Applications on GPUs: The implementation of linear algebra-based algorithms on

GPUs stands out as a key area of exploration. With perfect load balancing and effi-

ciency, this approach sets new standards and presents a compelling case for ongoing

37



research. The utilization of GPUs in conjunction with linear algebra-based methods

creates a synergy that could redefine the way we approach computational challenges

in various fields

6.2 Future Works

6.2.1 Short Term

Stabilize the α-based method

α-based methods offer a potent way to capture complex relationships in graphs. However,

stabilization is critical to ensure consistency and accuracy in computations. The immediate

focus will be on improving the robustness and reliability of the alpha-based method by

addressing potential pitfalls, including floating-point errors, and developing a more resilient

approach that can handle various graph structures.

Apply for Weighted and Directed Graphs

Extending the current methodologies to accommodate weighted and directed graphs broad-

ens the applicability and relevance of our work.

Preprocessing

Graph preprocessing is an essential part of ensuring efficiency and accuracy in computations.

By removing degree-1 nodes and adding them incrementally later, we can streamline the

computation process and reduce unnecessary complexity. This preprocessing stage will be

vital in optimizing the algorithms and enhancing their performance in real-world scenarios.
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Binary Matrices

We aim to investigate the process of reconstructing multiplication matrices by substituting

the number of paths of frontier nodes with 1. This alteration effectively represents a novel

graph where direct connections are established between newly discovered nodes and source

nodes. By preserving the matrices as binary, this approach paves the way for further

exploration of optimized techniques specifically tailored for binary matrices. The emphasis

on binary matrices not only simplifies the computations but also aligns with the objective

of identifying connections, thereby providing an opportunity for specialized optimization

within this context

6.2.2 Long Term

Find better ways of incorporating BLAS into the algorithm

BLAS (Basic Linear Algebra Subprograms) offers a set of standardized building blocks for

performing basic vector and matrix operations. The integration of BLAS can lead to highly

optimized and efficient algorithms.

Integer based calculations

Transitioning from decimal to integer-based calculations can enhance computational effi-

ciency and reduce rounding errors. This shift will require a thorough examination of the

existing algorithms and a re imagining of how they can be implemented using purely integer

arithmetic, without sacrificing accuracy or flexibility.

Better data structures to reduce memory usage

Optimizing memory usage is a core aspect of improving algorithm efficiency. By exploring

and implementing better data structures, we aim to minimize memory consumption while

39



maintaining the required computational capacity. This will lead to more scalable solutions,

capable of handling larger and more complex graphs.

Utilize shared memory instead of global for faster data access

Leveraging shared memory over global memory can substantially enhance data access speed.

Shared memory provides faster read and write capabilities and enables better collaboration

between threads within a block. This goal aligns with the broader ambition to maximize

GPU capabilities and deliver highly efficient and responsive algorithms.

6.2.3 Ambitious

Develop algorithm based on tensor operations completely – use modern GPU tensor

cores

Tensor operations represent a frontier in computational efficiency and capability. Utilizing

modern GPU tensor cores to develop an algorithm based purely on tensor operations is an

ambitious yet promising direction. It holds the potential to revolutionize how we approach

graph computations, leading to unprecedented speed and accuracy.

Find an iterative approximation algorithm with clear bounds

Iterative approximation algorithms can provide powerful ways to solve complex problems

with clear and well-defined bounds. The development of such algorithms aligns with the

drive to create robust, scalable, and accurate solutions that can adapt to various graph

structures and requirements.

Can we define a purely new GPU-based centrality metric which can run in O(k)≪

O(N) and has a positive correlation to BC and other known centrality metrics

Defining a new GPU-based centrality metric that can run in significantly lower time com-

plexity than traditional methods, while maintaining a positive correlation to well-known
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centrality metrics, represents a cutting-edge ambition. This innovative pursuit could re-

define how we measure and interpret centrality in graphs and lead to new insights and

applications across various domains.
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Appendix A

Appendix

A.1 Tables for contribution to computational time

Table A.1: Parallel BFS in 1D Trivial Matrix Multiplication (% Contribution to Net Com-
putational Time)

#Nodes 1 5 25 50 75
1000 0.7209 0.6961 0.7193 0.7432 0.6639
3000 0.7278 0.7955 0.8111 0.8775 0.8379
5000 0.7565 0.8552 0.7487 0.8813 0.8805
7000 0.7759 0.8369 0.7226 0.8388 0.8706
10000 0.8090 0.8179 0.7052 0.8356 0.8390

Table A.2: Backpropagation Step in 1D Trivial Matrix Multiplication (% Contribution to
Net Computational Time)

#Nodes 1 5 25 50 75
1000 0.2791 0.3039 0.2807 0.2568 0.3361
3000 0.2722 0.2045 0.1889 0.1225 0.1621
5000 0.2435 0.1448 0.2513 0.1187 0.1195
7000 0.2241 0.1631 0.2774 0.1612 0.1294
10000 0.1910 0.1821 0.2948 0.1644 0.1610
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Table A.3: Parallel BFS in Multi-Dimensional Trivial Matrix Multiplication (% Contribu-
tion to Net Computational Time)

#Nodes 1 5 25 50 75
1000 0.5952 0.6038 0.6279 0.6222 0.6122
3000 0.6185 0.6467 0.6316 0.6255 0.6351
5000 0.6295 0.6564 0.6350 0.6278 0.6272
7000 0.6387 0.6758 0.6245 0.6187 0.6224
10000 0.6402 0.6803 0.6009 0.5462 0.5458

Table A.4: Backpropagation Step in Multi-Dimensional Trivial Matrix Multiplication (%
Contribution to Net Computational Time)

#Nodes 1 5 25 50 75
1000 0.4048 0.3962 0.3721 0.3778 0.3878
3000 0.3815 0.3533 0.3684 0.3745 0.3649
5000 0.3705 0.3436 0.3650 0.3722 0.3728
7000 0.3613 0.3242 0.3755 0.3813 0.3776
10000 0.3598 0.3197 0.3991 0.4538 0.4542

Table A.5: Parallel BFS in cuBLAS-based Matrix Multiplication (% Contribution to Net
Computational Time)

#Nodes 1 5 25 50 75
1000 0.6 0.56 0.6047 0.6 0.6
3000 0.5610 0.5957 0.5931 0.5870 0.5835
5000 0.5654 0.5914 0.5803 0.5713 0.5712
7000 0.5631 0.6133 0.5604 0.5417 0.5472
10000 0.5564 0.6094 0.5353 0.5238 0.5291

Table A.6: Backpropagation Step in cuBLAS-based Matrix Multiplication (% Contribution
to Net Computational Time)

#Nodes 1 5 25 50 75
1000 0.4 0.44 0.3953 0.4 0.4
3000 0.4390 0.4043 0.4069 0.4130 0.4165
5000 0.4346 0.4086 0.4197 0.4287 0.4288
7000 0.4369 0.3867 0.4396 0.4583 0.4528
10000 0.4436 0.3906 0.4647 0.4762 0.4709
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