
iii

Automatic Memory Management in ORB SLAM-3

by

Shreyas Athreya Venkatesh

12th January 2024

 A thesis submitted to the

faculty of the Graduate School of

the University at Buffalo, The State University of New York

in partial fulfillment of the requirements for the

degree of

Master of Science

Department of Computer Science and Engineering

iv

Copyright by

Shreyas Athreya Venkatesh

2024

All Rights Reserved

v

Acknowledgements

I would like thank my advisor and mentor, Dr. Lukasz Ziarek, who provided me with the

opportunity to pursue a thesis and guiding me throughout this research journey. His inclusivity not

only instilled confidence in me to develop research ideas but also motivated me to become a better

individual. I would also like to thank Dr. Kathik Dantu for the suggestions for improving this

thesis.

I would also like to thank Mr. Nitin Vinod, my colleague, for the constant brainstorming

sessions during the past year and without his support, this thesis would not be possible.

Finally, I would like to thank my friends and family for all their support.

vi

Abstract

Advances in visual simultaneous localization and mapping (VSLAM) systems profoundly

impact mobile robotics, augmented reality, and virtual reality domains [1] by enabling them to

create accurate map representations of their surroundings and precisely locate themselves in it.

VSLAM applications are frequently deployed in an embedded system where they often encounter

operational challenges such as insufficient memory, restrictions on processing power due to

resource constraints and adherence to stringent timing requirements etc. The limitations imposed

by finite memory and the unbounded growth of dynamic memory represent critical issues that

could restrict the scalability of SLAM systems in large-scale environment [2] that involve longer

operational times and increased map complexity. This thesis addresses this issue in ORB-SLAM-

3 by presenting an automatic memory management strategy using the reference counting scheme.

The testing and profiling on the EuRoC dataset demonstrate the viability of such a scheme with

minimal execution overhead. Additionally, an alternative keyframe redundancy marking scheme

is presented in this thesis with a time complexity analysis.

vii

TABLE OF CONTENTS

Acknowledgements ..v

Abstract .. vi

List of Tables ... ix

List of Figures ..x

1. Introduction ..1

1.1 Thesis Contributions: ...2

1.2 Thesis Structure ...2

2. Background and Related Work ..3

2.1 Real-Time Systems ..3

2.1.1 Functional requirement: ... 4

2.1.2 Temporal requirements: ... 4

2.1.3 Real-Time Challenges in SLAM System ..5

2.2 Understanding SLAM and Visual SLAM systems ..6

2.2.1 Cameras used in SLAM systems ... 9

2.3 Typical Visual SLAM structure. ..10

2.3.1 Front-End ... 11

2.3.2 Back-end .. 15

2.4 Memory Management and Concurrency Control ..16

2.4.1 Types of Allocations and Typical program layout .. 18

2.4.2 Manual Memory Management ... 19

2.4.3 Automatic memory management: Garbage collection .. 20

2.4.3.1 Mark and Sweep Garbage collector [20] .. 22

2.4.3.2 Compact Collector .. 22

viii

2.4.3.3 Generational Collector [38] .. 23

2.4.3.4 Immix Collector [39] .. 24

2.4.4 Reference Counting ... 25

2.4.4.1 Deferred reference counting ... 25

2.4.4.2 Coalesced reference counting ... 26

2.4.4.3 Handling Cyclic structure using reference counting ... 27

2.5 Memory model ...28

2.5.1 Sequential consistency Memory Model ... 29

2.5.2 Relaxed/weaker Memory Model.. 30

2.6 Smart Pointers in C++ ..34

2.7 Related work ..37

3. ORB-SLAM-3[40] ...38

3.1 Tracking Thread: ..40

3.2 Local Mapping Thread:..42

3.3 Loop Closing Thread: ..44

3.4 Experimental Setup ..45

4. [Joint work] Automatic garbage collection of keyframes and MapPoints45

4.1 1st Deletion Attempt: Direct deletion and collecting reference and deletion46

4.2 2nd Deletion Attempt: Using Shared Pointers ...47

4.3 3rd Deletion Attempt: Using custom reference counting scheme.48

4.4 4th Deletion Attempt: Deletion using compare and swap. ..54

4.5 Comparison of both deletion scheme with vanilla ORB-SLAM-3:...................................58

5. Experiments for improving ORB SLAM-3 Keyframe Culling ...66

6. Summary: ...75

ix

References ..76

List of Tables

Table 1: Keyframe Deletion Statistics on the Euroc dataset.. 50

Table 2: Mappoint Statistics on the Euroc dataset .. 51

Table 3: Local Mapping execution statistics on the euroc data set ... 52

Table 4: Tracking execution statistics on the euroc data set ... 53

Table 5: Processing overhead in terms of keyframes ... 53

Table 6: Processing overhead interms of mappoints .. 53

Table 7:Keyframes statistics for compare and swap on the Euroc dataset 54

Table 8: Mappoint deletion Statistics for compare and swap on the Euroc dataset 55

Table 9: Local Mapping execution statistics, Compare and Swap on the Euroc dataset 56

Table 10: Tracking execution statistics, Compare and Swap on the Euroc dataset 57

Table 11: Keyframe overhead, Compare and Swap on the Euroc dataset 57

Table 12: Mappoint overhead, Compare and Swap on the Euroc dataset 57

x

List of Figures

Figure 1: Simple Pose Graph .. 8

Figure 2: Visual SLAM Structure [6] (figure taken from the introduction to Visual SLAM

book fig1.7) ... 10

Figure 3: Memory Layout ... 18

Figure 4: Five-byte allocation with object header .. 20

Figure 5: Simplified x86 block diagram is taken from “C/C++ memory models” by Arthur

et.al [28] .. 31

Figure 6: Shared Pointer Example .. 35

Figure 7: Example of Shared Pointer .. 36

Figure 8: ORB-SLAM-3 Structure ... 39

Figure 9: Simplified Memory Layout of ORB SLAM-3 .. 45

Figure 10: Experimental result of Direct Deletion ... 47

Figure 11: Cyclic References Due to Shared Pointers .. 48

Figure 12: Custom reference counting for subrountines... 49

Figure 13: Deleteion percentage using mutexs ... 52

Figure 14:Deletion percentage for Compare and Swap .. 56

Figure 15:Keyframe Statistics... 59

Figure 16: Keyframe Deletion vs Implementation ... 60

Figure 17: Keyframes marked bad in all implementations ... 60

Figure 18: Percentage difference among deletions ... 61

Figure 19: Percentage difference of mappoints marked for deletion in difference

implementations .. 62

Figure 20: Percentage Difference of mappoints in Map ... 63

Figure 21:Mappoint deletion in different scheme ... 63

Figure 22: Local Mapping Execution statistics .. 64

file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475756
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475757
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475757
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475758
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475760
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475760
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475764
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475765
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475771
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475772
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475773
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475774
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475774
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475775

xi

Figure 23: Tracking Thread Execution Statistics.. 64

Figure 24: Percentage difference of local mapping timing ... 65

Figure 26: Percentage difference of Execution statistics for the tracking thread 65

Figure 27:Incrementing reference counts ... 67

Figure 28: multi-loop structure, where black frame represents keyframes and the gray dots

represent mappoints. ... 68

Figure 29:Alternative incrementing of reference count .. 70

Figure 30:Decrementing reference count .. 72

file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475778
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475779
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475780
file:///D:/MS/Thesis/Thesis/%5bDraft%5d%20Resident%20Memory%20Footprint%20%20Reduction%20in%20ORB%20SLAM-3.docx%23_Toc155475781

1

1. Introduction

Over the last decade, there has been a significant surge in the advancement of autonomous mobile

robotics, augmented reality, and virtual reality. This is primarily credited to the accessibility of

affordable hardware. Simultaneous Localization and Mapping (SLAM) algorithms are ubiquitous

among the autonomous mobile robot and AR/VR domain [3]. SLAM algorithm addresses the

challenge of generating a map in an unknown environment using sensors like Lidars, sonars, or

cameras while simultaneously determining the position/location of the host, typically a mobile

robot or a virtual reality headset/controller, within the generated map. Visual SLAM systems,

which rely on cameras as their primary input source, remain a popular choice for SLAM

researchers because of their simple sensor configuration [3], resulting in increased accuracy and

robustness.

Despite these notable advancements in SLAM algorithms, more progress is needed, to

improve the SLAM system design focusing on efficient memory storage, computational efficiency,

and safety. Moreover, these systems are usually operated under strict timing and resource

constraints setting [1]. From a memory management perspective, real-world and large-scale

implementation of SLAM, such as VineSLAM, LeGO‐LOAM, and LOAM [4], often entail

extended hours of operations, resulting in larger memory requirement due to the possibility of an

unbounded growth of the generated map. Additionally, SLAM researchers have been exploring

multimodal SLAM setups like MIMOSA [5] for increased accuracy and robustness under visual

constraints, adding an extra memory overhead. Consequently, managing memory in SLAM

systems remains an important open problem. This thesis primarily focuses on leveraging idea from

programming languages such as reference counting to manage memory in ORB-SLAM-3 by

reducing the resident memory footprint.

2

1.1 Thesis Contributions:

This thesis addresses the problem of memory management on ORB-SLAM-3 by providing

a framework for automatic garbage collection of dynamic memory objects such as keyframes and

map points. We utilize a reference counting strategy for implementing safe deletion. Furthermore,

we present an optimization over the mutex-based reference counting using a compare and swap-

based strategy. Additionally, we benchmark the performance of both references counted

approaches using the profiling tool Tracy. Contributions comprising of, implementation of

reference counting, compare and swap and profiling and benchmarking of the system, i.e section

4 represent joint work with Mr. Nitin Vinod. The thesis further delves into two experiments. The

first hypothesis states that a relation exists between the deletion of a heap object and its number of

references, thereby providing a mechanism to infer similar object lifetimes. The second hypothesis

examines the viability of replacing a redundancy in the Local Mapping thread.

1.2 Thesis Structure

Section 2 overviews the existing SLAM system design, identifies the similarities among

popular visual SLAM systems, and briefly describes memory management strategies, particularly

in real-time systems, followed by background on reference counting. Section 3 gives a detailed

description of the ORB SLAM architecture. Section 4 (joint work with Mr. Nitin Vinod) presents

our garbage collection experiments and a reference counting-based memory management strategy

for ORB-SLAM-3. We offer an optimization over the reference counting-based solution with the

compare and swap technique. We conclude this section by discussing the performance profile for

reference counting and comparing and swapping garbage collection. Section 5 explores an

alternative framework for marking keyframes as bad(garbage) in the local mapping thread. Section

6 summarizes the thesis and any future work.

3

2. Background and Related Work

The challenge of meeting the stringent timeliness requirements [1] arises due to the real-time

nature of the ORB SLAM 3 system. We begin this section by introducing real-time systems and

design considerations for real-time systems, then understand SLAM systems, particularly graph

SLAM systems followed by a typical Visual SLAM system. Subsequent sections explain memory

management, types of memory management strategies, C++ memory model and some C++

features such as smart pointers as they are used in thesis in later sections.

2.1 Real-Time Systems

Systems that rely on the completion of computations and logical soundness are known as real-time

computing systems [10]. These systems could have a function or a collection of functions that

must adhere to strict deadlines to operate correctly. Real-time systems are required to control the

system's behavior resulting from an external stimulus within strict temporal deadlines. In the case

of a SLAM system, this involves mapping (creating a map of an environment) and localization

(calculating the pose (position and orientation) of a robot within a map) using camera images. The

timing requirements for processes/functions in designing SLAM systems are categorized as soft

and hard. Soft requirements are the processes in a real-time system that can be performed even

after the deadline has passed. On the other hand, processes that cannot miss a deadline are called

hard requirements. Subsequently, real-time systems with hard requirements are called hard real-

time systems, and those without hard requirements are termed soft real-time systems.

According to Kopetz & Steiner et. al [9], a well-designed real-time system must satisfy

functional and temporal requirements. We briefly go over each of these requirements below.

4

2.1.1 Functional requirement:

Functional requirements are the tasks/functions a real-time system must perform every cycle. The

author [9] categorizes them into,

• Data collection requirement

Real-time systems are required to complete the task of data collection and the signal

conditioning algorithm to ensure that the system behavior is appropriate even in rare

transient overloads.

• Direct digital control requirement

Real-time systems require the execution of the control algorithms to complete in time to

provide the actuating variables, such as the speed of a vehicle or the actuating speed of a

motor.

• Man-machine interaction requirement

In typical safety-critical applications, the real-time system needs to relay the system's state

through data logging.

 2.1.2 Temporal requirements:

Temporal requirements in a real-time system result from control loops of an actual time process,

such as behavior control of an automotive engine that requires stringent temporal demands. These

requirements are termed as explicit requirements [10]. Real-time systems designed for human

interaction have less stringent temporal demands as the human perception delay is estimated to be

50-100ms [9]. These requirements are termed implicit requirements and correlate to soft deadlines.

A system designer should also account for the following: context-switching overhead, dealing with

limited priority levels, and jitter, which is the variation in completing a periodic task while

designing a real-time system.

5

2.1.3 Real-Time Challenges in SLAM System

For a SLAM system to be functional, it is essential for its localization and map-building modules

to work in real-time as, a robot’s essential functions such navigation, and interaction with

surrounding environment directly depends on its latency. Below we discuss various components

of SLAM systems as real time systems.

• Sensor Data Processing:

o Latency Concerns and Timing Concerns: The data acquisition process in SLAM

systems using the information from sensors such as cameras, LiDARs, IMU sensors

etc. needs to be processed in real-time. Delays in processing of the data acquisition

can potentially cause outdated maps and inaccurate localization. Hence timing of

sensor data processing needs to meet the real-time constraints.

• Map Building and Optimization Updates:

o Latency Concerns and Timing Concerns: The SLAM system after processing the

sensory information creates an intermediate representation of the sensory

information in the form of a map. This map needs to be real-time as it effects the

localization task and effects accuracy.

• Actuation Control and decision making:

o Latency Concerns and Timing Concerns: The localization information that the

SLAM system provides, is used for the decision making of the trajectory and the

actuation system. The inability of the SLAM pipeline to meet the timeliness

constraints effects the robot’s ability to respond to the environment quickly.

Hence latency and timing challenges faced by SLAM systems need to be addressed for a robot to

be successful in its operation.

6

2.2 Understanding SLAM and Visual SLAM systems

The SLAM problem attempts to solve two separate tasks, localization, and mapping.

Localization problem can be categorized into three separate problems,

• Position Tracking (local localization):

Given a robot’s initial pose, the algorithm would keep estimating the robots position within

the map using the sensor information [50]. In this problem the uncertainty related to the

robot is limited to the region surrounding the robot.

• Global Localization:

Global localization task is to estimate the position of the robot in the map without knowing

the initial coordinates of the robot [50]. The amount of uncertainty in this problem is much

greater than position tracking and thus global localization is a much more challenging.

• Kidnapped Robot Problem:

This Localization is the same as global localization where it finds its position on the map

with an exception that the robot could randomly move from its current location and

switched to a new location and the robot should recover its location [51].

In general, localization is the challenge of estimating the robot’s pose (position and orientation) in

a (given) mapped environment [52]. Possible solutions to the localization problem are probabilistic

methods such as monte Carlo localization (MCL), extended Kalman filter, and machine learning

techniques such as Convolutional neural network (CNN) used in conjunction with MCL for

estimating the robots pose [52].

Mapping problem involves the process of producing a map of the environment, provided

we are given the robots pose and has access to the sensor information and movement of the robot.

The mapping task is challenging as it uses finite state variables of the robot such as robots’ position

7

and sensor information to create a map which lies in the continuous space. As a result, there are

infinitely many variables used to describe the map.

In Simultaneous Localization and Mapping (SLAM), the robot performs two separate

tasks simultaneously, i) localization which means a robot, given its map tries to locate itself in it,

ii) mapping is the task of generating a map of its surroundings using the onboard sensors. In real-

world scenarios we do not have the robots poses nor do we have the map and hence we use SLAM

algorithms to solve this problem. The uncertainty in the map and the robot's pose due to noise in

the robot's motion and sensor readings causes a correlation between the errors in the robot's pose

and the map [7]. Applications of SLAM algorithms include robot vacuum cleaner such as Roomba,

where the environment of the vacuum keeps changing and the robot equipped with its sensors

maps the room and the robots pose. Other application are the Self-driving vehicles with its

environment being on the roads, underground mines, aerial surveillance, or mars rovers where we

do not have the position of the robot nor do we have the map of the environment.

SLAM researchers divide the SLAM problem [6] into the front-end processes:

Transforming the raw sensor data into intermediate representation such as probability distribution

of a landmark (distinctive identifiable points in an image) based on the sensor information and

backend processes: Using the intermediate representation to perform the optimization and state

estimation problem. Based on the mathematical model, filtering approaches and optimization

techniques SLAM algorithms are classified into five categories [7],

• EKF SLAM (Extended Kalman Filter SLAM)

• SEIF SLAM (Sparse Extended Information Filter SLAM)

• EIF SLAM (Extended Information Filter SLAM)

• FastSLAM

8

• GraphSLAM

We will dive deeper into GraphSLAM algorithms as ORB-SLAM 3 falls under this category.

The diagram below is how a simple graph is supposed to look like.

In the above graph the blue triangles represent a pose at their respective time steps. The

solid line connecting two nodes(pose’s) is called a soft motion constraint, where soft indicates

uncertain measurement. There are two types of soft constraints namely motion constraint which

connects two robot poses and measurement constraint which is a dashed line connecting the robots

pose and a feature with a dashed line. A star represents a feature. As the robot moves in the

environment the graph size keeps growing. The constraints move the robot pose based on the

certainty of certain measurements. The goal is to find the best node configuration and minimize

the error in the graph. The final graph finds the robot's most likely path across the environment

and displays every position and landmark that it encountered, together with an environment map

[7]. The GraphSLAM’s front-end tasks involves the construction of the pose graph using the

odometry and sensor measurements. The front-end of SLAM algorithms greatly differ based on

the type of sensor used to perform the task. The back-end of the GraphSLAM is where the

optimization of this graph happens and the result is supposed to be the most probable robot poses.

The back-end of SLAM algorithms largely remains the same among different applications.

𝑥2

𝑥1

𝑥0

Figure 1: Simple Pose Graph

𝑚1

𝑚2

9

Another way to represent this graph instead of robot’s pose is by using a factor graph which is

beyond the scope of this thesis. The most popular back-end libraries are g2o, g2sam and ceres.

ORB-SLAM-3 uses g2o for its back-end computations. In visual SLAM algorithms bundle

adjustment is the popular choice for optimization of the reprojection errors in the pixel coordinates.

GraphSLAM has several advantages over other algorithm techniques, such as decreased

onboard processing capacity requirements and increased accuracy [7]. GraphSLAM methods

estimate an environment's complete path and map rather than simply its most recent pose and map

because they handle the full SLAM problem [7]. This makes it possible to incorporate

dependencies between the current and past positions, increasing accuracy and facilitating the

handling of loop closure. [7]. Furthermore, in improves time and memory complexity over EKF

techniques [7]. Despite these advantages the complexity of the graph increases with increase in

operational time(large-environment).

2.2.1 Cameras used in SLAM systems

Visual SLAM uses cameras to solve the localization and map building problem. The camera

captures a continuous stream of images at a prefixed rate. The type cameras used can be divided

in to three categories and we will the advantages and disadvantages of each camera model,

1. Monocular

Monocular cameras are single camera setup used for SLAM [6]. The benefits of using a monocular

setup lies in its easy setup and low cost. The disadvantage is that we get a low-resolution depth

information of a scene. The depth information is calculated from a scene using motion i.e. multiple

images are used to determine the relative depth from disparity calculation.

2. Stereo

10

A stereo camera setup is preferred over the monocular setup, to overcome the low resolution in

the depth information (section 1.1.2 [6]). The stereo setup is inspired from the binocular vision of

the human eyes in determining the depth information. The drawback of stereo system is that it is

complicated to setup. Furthermore, it requires a complicated calibration process to maintain

accuracy.

3. RGB-D

Depth camera setup is based on the design of laser scanner and works on the principle of time-of-

flight infrared nature of the light to determine the depth information (section 1.1.2 [6]). This setup

however suffers from narrow field of view and works in indoors setting.

2.3 Typical Visual SLAM structure.

As mentioned in the previous sections, the SLAM task is a complex algorithm, and can be broken

down into two sections for easier understanding and processing. These sections include the front-

end used to process the sensory information to come up with the intermediate representation, and

we have the back-end used to perform the optimizations on the intermediate representation. The

diagram below [6] provides a simple understanding of visual SLAM structure.

Figure 2: Visual SLAM Structure [6] (figure taken from the introduction to Visual

SLAM book fig1.7)

Stream of

images

FRONT-

END

BACK-END

RECONSTRUCTLoop

Closing

11

We will look each block of the above diagram in detail.

2.3.1 Front-End

Data Collection and input pre-processing

Data collection can be done using any of the above stated cameras in section. The front-end task

processes the incoming stream of images, to find correspondences in the environment and estimate

the motion and form an intermediate representation for further processing by the back-end.

Servières et al [8] defines the data collection process, as an input search problem, where the aim

is to search for meaningful information from the input image stream. There are two ways to

perform data acquisition as follows,

Direct Methods

Direct search method stated in Servières et al [8], which uses raw pixels intensities as features

which are used to create pixel maps. A pixel map is a three-dimensional representation of the

environment, where each pixel value is assigned a depth value. The computational demands for

using direct methods and performing mapping often requires parallelization and GPU support [8].

This method directly processes the position and the structure of the environment using numerical

optimization techniques. Pose-graph optimization, loop closure and keyframe management are

common modules present in both direct and indirect methods [24].

Feature Based methods

Feature based approaches, encode information from an image, to leverage the easily recognizable

geometric points of interests, such as, edges, corners, or curve segments etc. Feature based

approaches utilize geometric constraints for matching descriptors such as Harris corner detectors

[17], SURF [15], SIFT [14], ORB [16]. They are robustness to noise, illumination, rotation, and

other inaccuracies in the image and are most commonly type in SLAM systems.

12

Initialization

The initialization performs the setup of the local map and camera pose for a visual slam system.

The initialization also generates the first global world frame for the system. The next task involves

triangulation of key points. In stereo camera the two-view reconstruction is employed to

triangulate points where as in monocular setup this step is delayed until two keyframes are

processed. Triangulation of points is a process performed to reconstruct the three-dimensional (3D)

coordinates of a scene from their (2D) projections. The common algorithms implemented by

SLAM systems include five-point algorithm, and eight-point algorithm. The essential matrix is

computed for a stereo image and as soon as two keyframes are processed the essential matrix for

the monocular camera is also computed. Essential matrix relates the 2D image points of a scene

observed in two different images. Furthermore, SLAM systems also use approaches to relate the

homograph matrix used to compute transformations in planar scenes and fundamental matrix used

to compute transformations for general scenes.

Feature Matching/Pose tracking

Computing the matches between two successive images is the purpose of the tracking/feature

matching step. The tracking phase can be performed in three ways, depending on the dimension

of the extracted features, i) A 2D matching is performed that utilizes techniques such as pair wise

Euclidean distance square or normalized cross correlation, and choosing the ones with the lowest

values. These methods however are very computationally expensive with quadratic time

complexity. These methods are seen in systems that perform pure visual odometry [8] ii) 2D -3D

matching [8] is commonly used technique in VSLAM system that are purely monocular because

of lack of depth information from single images. These processes estimate the coordinates of a 3D

point from successive images and use projection geometry to make 2 D correspondences with the

13

new image. iii) The third method is used when the SLAM system has a stereo camera setup that

provides depth information instantly to make the 3D-to-3D correspondences. However, these

techniques are prone to reprojection errors and are still open research areas.

Mapping:

The matched features or pixels are supposed to be mapped onto the 2D or a 3D reconstruction

graph of the environment. Based on the method of intermediate representation, there exits two

ways to build graphs, sparse graph representation, and dense graph representation, as per Servières

et al [8]. Sparse graph representations are preferred when an application demand is to acquire the

most accurate trajectory of the robot. Dense graph representation is preferred when a

reconstruction of the environment is desired. A combination of both dense methods and sparse

method is also stated in [8, 27], in which only specific required areas of a graph are dense.

The SLAM systems that use monocular camera setup require some time for processing

landmark matches. To solve this PTAM [18] suggested a partial computation and placement of

poses. The direct methods of creating maps use the 3D world coordinate and map it voxels in the

map. However, pixel mapping has been found to inaccurate due to lack of gaussian probability

factorization. Alternative methods to provide accurate representation and accounting for

nonlinearity have been suggested in “homogeneous point (HP), anchored homogeneous point

(AHP), and inverse depth parameterization (IDP)” [8].

ORB SLAM - 3 system builds a sparse graph representation using its ORB features. Map

building can also be performed with a collection of spatial points representing the environment or

a map of trajectory. Xiang et. al [6] categories maps into metrical maps and topological maps.

Metric maps [6]

14

Metrical map is supposed to replicate the exact metrical location of objects found in the map. These

maps are further classified as sparse maps or dense maps [6]. Sparse metric maps perform selective

representation of the environment. A similar categorization of the map by Servières et al [8] is

known as semi dense representation of the map. The dense map on the other hand is supposed to

represent as many details as possible about its environment. The dense map can be a 2D dense

map in the form of an occupancy grid or it could be represented in a 3D form know as voxel grids.

Metric maps are known to be storage expensive and continues to be an active area of research.

Topological Maps [6]

A topological map is a graph generated by the mapping algorithms with nodes and edges. These

relational maps are supposed to provide efficient representation for connectivity explanations.

Outlier Management in graph:

Due to the nature of estimation in the intermediate representation creation, i.e., converting real

world environment, which continuous in nature, to a discrete representation, causes outliers to be

added to the graph. These outliers in SLAM systems are typically removed using a function

estimation technique known as Random sample consensus (RANSAC). The RANSAC technique,

picks randomly possible observation candidates, and estimates a function, following which a

consensus is performed to find the best fit. This RANSAC technique is applied over the camera

motion model. Most of the SLAM algorithms also add more candidate nodes than necessary

(keyframe or mappoints) to maintain robustness of the system. However, these additions add a

considerable amount of memory cost to the system. Therefore, redundancy detection, loops are

added in SLAM architectures to detect redundancy and delete such observations from the map.

Loop Closing:

15

The loop closure, is an algorithm, applied to a robot’s graph or trajectory, when the robot revisits

a known environment. The algorithm applied aims to apply corrections wherever necessary to the

graph, where there is an accumulation of drift. Loop closing step is performed in two steps, i) Loop

detection: given the current keyframe features or pixel values, searching through the intermediate

representation graph for similarities. This is also known as place recognition. In situations where

robot makes sudden movements, can lead the robot losing its position in the graph. Place

recognitions is used in similar situations to resocialize the robot. Most SLAM systems use Bag-

of-words representation, provided by the C++ library DBoW2 [43] to find matches, ii) Loop

Closure: Upon detection of a loop, the total accumulated drift for graph is computed, this total

amount of drift is then distributed appropriately for each node of the graph to complete the loop

closure.

Relocalization:

The relocalization is similar to loop closure where, if the robot has lost its position in the graph

then the place recognition algorithm similar to loop closing is applied. However, unlike loop

closure, relocalization is only triggered when tracking is lost. In majority of the implementation,

loop closure is performed in separate thread due to its computational complexity.

2.3.2 Back-end

Primarily, the back-end components of a SLAM system are tasked with processing the noise and

uncertainty present in the graph, and optimizing it, and to uniformly distributing the weights of

these uncertainties among each node(pose/keyframe). The uncertainty could include the robot’s

trajectory or the map environment.

Bundle Adjustment (BA):

16

BA is a state estimation technique, that is used to estimate 3D points in the environment based on

the extracted features and camera images [48]. It particularly estimates the precise orientation of

the camera poses in the graph. Based on the prior/existing estimates of the position of the 3 D point

coordinates and the camera parameter matrix (essential matrix/ fundamental matrix) a reprojection

of the actual points in the world are introduced on to the graph. An error parameter know as

reprojection error is used by bundle adjustment to find the best possible estimates. This problem

is known as the Large least squares problem which requires solving large system of equations to

correct the reprojection error. The resulting solution is proposed to be a statistical optimal solution,

with an assumption of the noise to be gaussian.

Graph Optimization:

The graph used in most SLAM systems is a factor graph (bipartite graph) representing the

factorization of a function [49]. This reduces a large function into product of its component

function. In SLAM systems this function is a joint probability distribution function of the poses

estimated by the front end of the SLAM system. This joint probability function is then applied to

algorithms to provide inferences of the position estimates.

2.4 Memory Management and Concurrency Control

Efficient management of critical resources in a computing system is crucial, especially in real-time

systems. Because memory is finite in a computer, it is common for programs to exceed the size of

the onboard memory. Hence, we need methods to reuse memory and we need to perform

reclamation of memory safely. Programming languages provide developers with the necessary

mechanisms to manage memory in their application. Selecting a programming language is a

critical decision that influences the success of a software project. It plays a crucial role in

performance of the application, development efficiency, scalability, and long-term sustainability.

17

Programming languages are designed in two ways to address the task of memory

management: automatic memory management and manual memory management [20]. Manually

managed languages such as C and C++ provide developers with explicit control over the allocation

and deallocation of memory. On the other hand, automatically managed languages, such as Java

and Python have mechanisms such as garbage collection that automates the task of manual

memory management. These languages mark the memory that is no longer in use, and reclaim all

marked memory locations.

Real-time systems are generally written in C/C++, where memory is managed manually,

leading to the following potential challenges like, inability to ensure type safety when converting

void pointers to any pointer, passing raw pointers across different threads, improper ownership

transfer, and unintended extension of the lifetimes of objects present notable challenges in a C/C++

codebase. Hence, establishing methods for efficient memory reuse and implementing secure

memory reclamation processes are essential steps to enhance systems robustness and reliability.

For a language to exhibit memory safety the Arthur et .al [19] states that it offers spatial

safety (bounds checking), and temporal safety (every memory block allocated should have a

unique identifier). An ideal programming language should [19] i) raise errors due to improper

memory access, ii) enforce only unique identifiers to memory locations and enforce immutability

to these identifies, iii) restriction in revealing the identity of an identifier preventing any memory

misuse, iv) enforcing initialization of every new memory location preventing accesses to

information in a previously freed memory location.

Before we dive deeper into the types of automatic memory management strategies let us look at a

typical program and data layout.

18

2.4.1 Types of Allocations and Typical program layout

Most of the modern programming languages provide static, stack and heap allocations [27]. The

typical data layout in memory is given by the following diagram.

Static Allocation [27]

In static allocation the data static data objects are stored and its layout is determined at compile

time. Additionally, all the static variables are bound to the initial memory locations. The advantage

of the static section is that it is very fast and does not require memory management as it does not

support runtime allocations. However, the size of allocations and variables needs to be fixed at

compile time leading to limited functionality. Another disadvantage is that it does not support

recursion because the value of recursive variable is always fixed thus forbidding recursion.

 Stack Allocation [27]

Stack

Heap

Static

Program Code

Figure 3: Memory Layout

19

The stack provides a way to perform recursion, by utilizing a mechanism called as activation

records or stack frames. In this allocation type, for every new subroutine call, a new stack frame

is created, and pushed on to the stack. The return of a subroutine triggers the deallocation of the

stack frame. The stack model also allows parameters of different size, which allow creation of

variable stack frames sizes. In programming languages like C/C++ or java the stack memory

management is fully automatic. The disadvantage of stack allocation is that the size of a stack

needs to be determined at compile time causing a limitation in providing runtime allocation

capabilities.

Heap Allocation [27]

 The heap memory introduces runtime capabilities which allows creation of objects at runtime and

returning a pointer of the allocated type. Heap memory also allows variable size data structures to

be created at runtime. Allocating data in the heap, also avoids causing stack overflow. The design

of heap however, changes the responsibility of managing memory from the language to the user.

This resulted in issues like memory leaks and dangling pointers. In the next section we shall look

at manual memory management and automatic memory management.

2.4.2 Manual Memory Management

Manual memory management provides the developer with the capability to manage dynamic

memory(heap) directly. The new construct in C++ provides developers with the capability of heap

allocation and delete to deallocate memory. However, manual memory management causes two

critical issues i) memory leaks ii) dangling pointers

20

2.4.3 Automatic memory management: Garbage collection

The contents of the following sections are based on The Art of Automatic Memory Management

by Jones et. al [20], Memory Management and Garbage Collection CS 4120 Spring 2023[21] and

Dmitry Soshnikov blog on writing memory allocator [22].

Garbage collection automates the issue of memory management at a language level and

solves the two critical issues from the manual memory management namely memory leaks and

dangling pointers. However, it should be noted that, any memory automation comes with a tradeoff

such as we storage for speed or speed for storage. In garbage collection, we store meta information

on each object which is known as the object header. For example, if a user were to request 5 bytes

from a managed language, then the resultant object returned could have a size of approximately

14 bytes to 24 bytes [23, 22] or even more.

The contents of the object header could have the following, a mark bit/flag bit, reference

counter etc. depending of the method of garbage collector we use. The location of the object header

could be at the before the user data or it could be at the end.

The figure below provides a visual example of the 5-byte allocation.

Figure 4: Five-byte allocation with object header

Every garbage collector can be described by, three components namely, the mutator, the collector

and the allocator according to Jones et. al [20].

Mutator

21

For a garbage collector, a mutator is the main program or the user program. The user program

operates on the heap allocated objects. However, the mutator does not allocates the heap objects,

another module known as the allocator performs the allocation. The mutator in a multi-threaded

application can have more than one thread manipulating the heap.

Allocator

The allocator directly manipulates the heap by acquiring the resource from the operating system,

and it also assigns the object header. Allocation for memory is performed by a sequential allocator

(bump allocation) or a free list allocator[31]. The sequential allocation method is used by the

mark-compact, and generational garbage collector etc. whereas the free-list allocator is used by

the mark and sweep and the reference counting garbage collectors [31].

Collector

The collector or the garbage collector, is responsible for reclaiming the memory and it also directly

manipulates the heap. In a multi-threaded implementation, the collector can be implemented using

multiple threads. The mutator is put in a “Stop the world” Jones et. al [20] state where all mutator

threads are blocked when the collector processes garbage on the heap. Such garbage collection

cycles are termed as “GC pauses” [30]. It should be noted that not all systems can have such pause

cycles, for example real-time systems, hardware drivers and transactional processing cannot

tolerate GC pause cycles [34]. The garbage collectors are classified as tracing collectors and direct

collectors. The garbage collectors that traverse the heap to classify live objects are called the

tracing collectors. Tracing collectors requires a GC pause cycles to perform heap traversal and

deletion. Direct collectors do not require gc pause cycles and examples of direct collection include

reference counting discussed in greater detail in the section.

22

Before we explore garbage collector in a greater detail, let us understand a few

terminologies

Root: A root is considered as the starting point of the object graph or the references that are live

and accessible from the stack.

Liveness: A object in the heap is alive if it is accessible from the mutator

Reachability: An object is considered reachable if we can traverse the object graph from the root

node at reach that object.

2.4.3.1 Mark and Sweep Garbage collector [20]

The mark and sweep Garbage collector are a tracing garbage collector, that searches and marks

live objects on the heap [20]. The mark and sweep collector work in two phases, i) mark phase that

marks live objects, ii) the sweep phase that reclaims the garbage. The mark bit, is set when the

object is alive in the object header. All nodes that are marked as garbage are freed and added to

the free-list for future consumption. Another important to note is that the mark sweep algorithm is

a non-moving collector. This means that the objects after the GC cycle stay at the same location.

Mark and sweep algorithm cause heap fragmentation that causes increased cache misses.

2.4.3.2 Compact Collector

Mark Compact

Mark compact garbage collector is supposed to provide a better cache locality and faster memory

allocation than the mark and sweep algorithm. The mark compact collector works in two phases,

i) mark phase which traces the heap and sets the mark bit of the live objects. ii) the compact phase

moves the live objects. The objects in a mark compact collector, have a forwarding address field

in its header which denotes where an object is moved. This is performed to reduce fragmentation.

Another benefit is that we get to use the bump allocator which results in faster allocations. The

23

mark compact collector, however is a slower garbage collector as it may require multiple traversals

of the heap.

Copying collector

The copying collector offers a fasters garbage collector than the mark compact collector.

Furthermore, it provides bump allocation which results in a faster allocation. The copy collector

however trades storage (half of the heap reserved for collection) for speed. The heap is divided

into two equal parts, i) from space (area for allocation) and ii) to space (area reserved for garbage

collection). The copying collector works in four stages, i) The first phase, is the tracing stage or

copying stage where we traverse the object graph, copy all the live object pointers from the from

heap to the to heap. This process is fast as the bump allocator is use in the to section of the heap

for allocation. ii) Then we have the forwarding address phase, where the object header of the heap

object in the from section is added the forwarded address of the copied object present in the to

portion of the heap. iii) the next phase is the child pointer fixing stage, where all the child pointers

of the previously allocated space are transferred to the new section. This process is repeated until

all child objects are moved to the from section of the heap. iv) The final step is the swapping step

where the sections from, and to are swapped by changing the bits of each section.

2.4.3.3 Generational Collector [38]

The generational garbage collector is based on the hypothesis, which states that most objects die

young [38]. These typically include local temporary variables whose lifetime is like that of the

local stack variables in the subroutine, however, these variables are allocated on the heap. The

generational garbage collector works by having two separate heap sections i) young (Eden)

generation and ii) old (Tenured) generation. The objects in the young regions are copied to the old

section when they survive several cycles heap collection. The young generation section is garbage

24

collected more frequently than the old generation section. The garbage collection for the young

section is known as the minor cycle whereas the one for the old section is called the major cycle.

In situations where we have a pointer from an object in the old region to an object in the young

region, we term it as an intergenerational pointer. In situations where the root link to such an object

in the young region is lost, however if it still contains an intergenerational link, then such an object

needs to be saved during the GC cycle of the young region. This is done by a write barrier which

saves the object in the young section from deletion.

2.4.3.4 Immix Collector [39]

The immix garbage collector also known as mark region garbage collector is a modern garbage

collection algorithm [39]. The immix GC is a tracing collector which attempts to provide better

cache locality compared to the methods seen thus far, reclaim memory faster than the methods that

we have seen yet. Immix GC also tries to overcome the challenges faced by the copying GC. The

immix garbage collector partitions the heap granularly. It begins by creating blocks in the heap.

The bifurcation can be predetermined or can be done on demand when current block is exhausted.

Further, the block is divided into lines. A block is said to be free if all lines in a block are free. A

block has several lines to be free and rest occupied or the whole block can be occupied. The

garbage collection begins with the marking phase which is done during tracing. The marking is

done in three ways, a region(block) is checked if the alive bit is set, if it is not set no traversal is

needed. However, if a block is set to alive, then the lines inside the block is checked. If a pointer

from the root exists to a line, then traversal is performed to mark all live objects. Then all the lines

that are not set to alive are freed. This completes the mark-region and sweep phase. Then the

copying of all live objects is done to a freed block, by copying and forwarding the child address

25

like the copying collector. This finally results in a defragmented heap and the previous block is

reclaimed by the mutator.

2.4.4 Reference Counting

The reference counting collector is a direct collect. The garbage collector strategies that we have

seen in the above sections, traverse the object graph to identify live objects. In case of a reference

counting collector, are directly work on the object to determine garbage. The reference counting

scheme works on a invariant which is that an object is garbage if and only if its reference count is

zero and in all other cases it is a live object. For the reference counting scheme to work every

object must have slot in its object header that represent the reference count.

A simple reference counting scheme is given below taken from Jones et. al [20],

REFERENCECOUNTING()

addReferece(ref):

 If ref ≠ null

 rc(ref)++

deleteReferece(ref):

 If ref ≠ null

 rc(ref)--

 If(rc(ref) == 0)

 free(ref)

Now we shall look at the methods of reference counting found in the Art of Automatic Memory

Management by Jones et. al [20].

2.4.4.1 Deferred reference counting

Deferred reference counting was introduced to mitigate the cost associated with manipulating the

reference counts. The algorithm postpones reference counting of local variables, such as registers

or stack slots, as most pointer loads are to these variables. However, this may introduce in

accuracies in the maintained reference counts. To maintain accuracy the deferred reference

26

counting (RC), the deferred RC has pauses cycles to correct the inaccuracies and maintain precise

reference counts.

The deferred RC uses a Zero count Table (ZCT), which keeps track of the objects whose

reference count goes to zero. Objects placed in the ZCT are not deleted immediately due to possible

inaccuracies in the deferred operations. As soon as the pause cycle is introduced the objects in the

ZCT are checked for their true count by traversing the roots and marking all referenced objects.

This reference counting method although reduces the cost associated with reference

counting local variables, this strategy introduces the pause cycles where object headers must be

updated and must be done atomically. The cost associated with performing atomic updates are

expensive and should be accounted when planning to use a deferred counting strategy.

2.4.4.2 Coalesced reference counting

The coalesced reference counting was introduced to reduce the cost associated with deferred

reference counting’s atomic updates. It is based on the observation that when an object goes into

intermediate stages, the reference count of such stages can be coalesced into two stages, the before

stage and the after stage. The intermediate increments are canceled out with the decrement

reference counting counts. The author provides an example as follows, let us assume an object X

that refers to an object 𝑂0. The object 𝑂0 in turn refers to objects 𝑂1,𝑂2,… 𝑂𝑛. The reference count

of object 𝑂1 increment is cancelled by its decrement and so on, which can be omitted. The method

places eliminate such counts by copying the objects to a local log before an intermediate

modification. This local log is also known as a local buffer. The method begins by placing a clean

object (object whose pointer fields is not modified) onto the local log. This means that the objects

address and the pointers that it possesses are placed onto the buffer. To avoid duplicate entries, the

27

source object address is checked if it is dirty or not. If not, dirty it is logged. This algorithm also

guarantees thread safety where every thread local buffer is supposed to hold the same information.

This reference counting scheme also requires a stop the world event to process the local

buffers to ensure consistency. During the pause cycle the local log is synchronized among all the

threads, and any duplicate entry, due to concurrency may exist, but is ignored if it has been

accounted for. Before the references count is updated the algorithm check for dirty entries. If such

dirty entries exist the count of the children are incremented followed by a decrement. Any

reference count at this stage if it reduces to zero, then the object is freed and its entry is removed

from the log to avoid double frees.

2.4.4.3 Handling Cyclic structure using reference counting

The major disadvantage with reference counting is that it cannot deleted cyclic structures.

Common ways to deal with such cyclic structures can be done by combining reference counting

with a tracing collector. The cycles for the tracing collector do not need to be very frequent and

can be performed only to delete cyclic structures and all other objects are deleted by reference

counting. Another popular method to reference counting cyclic structure involves having different

types of references. We could define weak references and strong references where we use a weak

reference to close a cycle. A weak reference by itself would not increase its reference count.

However, a reference counting scheme based on weak references quickly becomes vulnerable to

memory leaks and premature deletion if not placed correctly. The most widely used strategy to

deal with cyclicity is the trial detection algorithm [20]. Its algorithm takes advantage of the

observation that in using a tracing collector in conjunction with the reference counting scheme, the

tracing collector does not require scanning the whole object graph, rather it can accomplish

28

detecting cycles by tracing the portion of the graph that has the highest probability of being in the

graph.

Advantages of Reference Counting

Since the managing of pointers, to objects, are not concentrated at specific time instances, the time

cost for collecting garbage is distributed through the program lifetime. Memory is also recycled as

soon as the reference count drops to zero leading to quick deletion as opposed to garbage collection

where deletion happens only during GC cycles. According to the author Jones et. al [20] reference

counting has found widespread adoption in languages like objective-c, swift and in C++ it is used

in smart pointer implementations and applications like photoshop. Furthermore, it is also widely

used in file manager of operating systems.

Disadvantages of Reference Counting

To maintain consistency in the reference counting atomicity of the increment and decrement

operations are required. Adding atomic increment and decrement operation on every heap with

references adds a considerable overhead on the mutator int terms of time and computational cycles.

In contrast garbage collected programs do not impose such costs on the user program or the

mutator. As seen from the above examples reference counting alone cannot be used for deleting

cyclic structures. Since reference counting requires an integer to be maintained for counting, it

adds a storage overhead on every heap object allocated.

The next section explains how language developers define memory models to control concurrency

in the applications.

2.5 Memory model

A memory model provides the basis for how threads should interact with shared data and highlights

the possible read and write operations in a concurrent program, thereby offering semantics to

29

shared variables [29]. Furthermore, it accounts for possible reordering done by the processor,

memory system and compiler. According to Manuel et. al [28] reasoning of a memory model

requires distinguishing three different components i) the program a developer writes, ii) the code

the compiler generates and iii) the operation the CPU performs while executing the code. A typical

workflow of a program C++ program begins with a collection of logical statements written by a

developer, which is compiled, optimized. The optimization process could possibly involve

reordering of statements which are not supposed to change the semantics of the program. These

side effect could result in unintended results such as security vulnerabilities and memory issues

etc. [33], especially in a multi-threaded system. The role of a memory model is to place restriction

on these reordering’s so that the developer can reason through the likely behavior of a multi-

threaded program.

A memory model must define legal reads, writes to shared memory location simultaneously

Sarita et.al [29]. It should also provide visibility of the changes made between different threads

when changes are made to the program by the hardware or the software. A memory model serves

as a template for coordination between a developer, compiler, and the hardware. Java developed a

concurrent memory model around 1995[The Java Memory Model (umd.edu)] attempting to

provide type safety and security guarantees which severed as a basis for C++ 11 memory model.

C++ 11’s memory model is a part of the core language and 𝑠𝑡𝑑: : 𝑡ℎ𝑟𝑒𝑎𝑑, the primary mode for

multithreading in C++ is also part of this standard library. In summary the C++ memory model

should provide, sequential consistency guarantees.

2.5.1 Sequential consistency Memory Model

The sequential memory model borrows its ideas, from the memory access mechanics of a single

threaded application. In a Single threaded application any read instruction, results in a fetch

30

instruction, of the most recent write value to a memory location [28, 29]. Most recent means the

last write instruction according to the program text [28, 29]. In a multi-threaded program, if we

were to follow similar mechanics, where we combine all the instructions from the program, and

order them precisely(interleave) into a single order [28, 29], then the resulting multi-threaded

program would follow the Sequential consistency Memory Model. The author Sarita et.al [29]

states that such a memory model suffers from deficiencies, i) The practical implementation of such

a model is not feasible as it is very computationally expensive and as per Manuel et.al [28] 2018,

none of the hardware architectures provide a complete sequential memory model. ii) Another noted

deficiency stated by Savita et.al [29] is that the current, hardware and the compilers often make

memory access visible to other threads that may not be in order thus violating the sequential

consistency rule.

We shall now look at a hardware model and the C++ memory model which are taken from Manuel

et. al [28].

2.5.2 Relaxed/weaker Memory Model

1. x86 [28]

The X86 is a memory consistency model used by the intel x86 architecture and it describes the

interaction between different hardware threads and the memory. The memory model can be

simplified as given below,

• Storage Subsystem: The storage subsystem includes a shared memory, a global lock and

write buffers per hardware thread and each thread has its own write buffer [28].

• Global lock: indicates when a particular hardware thread has access to memory [28].

• Store Buffer: It refers to a First in First out structure. Whenever a particular thread tries to

access its store buffer, it is supposed to fetch the most recent buffered writes. If a threads

31

store buffer is empty then the information is fetched from the shared memory. Store buffers

are flushed using the mfence instruction [28].

• Read-modify-Write Instruction: Whenever hardware thread executes a read-modify-

write instruction, it must first acquire a global lock. Once it successfully acquires a global

lock, necessary writes are performed, and the thread buffer is flushed followed by a release

of the lock [28].

• Propagation of Buffered Writes: A threads buffered writes can propagated to the shared

memory at any time except when other threads have acquired a lock.

The below figure, is a simplified x86 block diagram [28]

2. C++ Memory Model

The C++ memory model is providing constructs such as C++ atomics and mutexes to provide

visibility among threads and maintain synchronization operations on memory locations. C++ also

presents a synchronization construct fence, that have similar function to a mutex where threads

can acquire and release fences. Fences are provided for achieving synchronization of operations

that do not involve memory locations.

Figure 5: Simplified x86 block diagram is taken from “C/C++ memory

models” by Arthur et.al [28]

32

The execution of a C++ program is defining two types of computations,

• Value computation: The program either steps to a value (that needs to be stored at memory

location) or returns a value at a memory location.

• Side effect: All other operations such as reads/writes to a volatile object, writing to a memory

location, calling a library function and IO’s are side effects.

C++ compiler however is not required to abide by the C++ standard stipulated, if a similar

behavior of the program is observable after code transformations.

The C++ standard also defines the definition of a data race,

A data race is supposed occurs in a multithreaded C++ program, if two (or more) conflicting

threads, are in the condition, where neither of the two threads happens-before the other and at least

one of the threads performs a non-atomic operation [37].

Conflicting thread action is supposed to occur when one thread performs an expression evaluation

that results in modifying a memory location while thread evaluates an expression that results in

either modification of the same memory location or accessing the same memory location [37]

The data race definition mentions, happens-before relation, which means that, if one thread

performs an expression evaluation that mutates a memory location then another thread executing

another expression on the same memory location can see the mutation result of the first threads

execution. If two threads are running in such order then they are supposed to follow the happens

before relation[28]

Now we shall look at the mechanisms, provided by C++ to achieve thread safety during a data race

condition.

C++ Atomics

33

An operation is termed as atomic, when the operation is guaranteed to execute as a single

transaction. Furthermore, other threads will see the state of the memory location either before this

operation has begun or after the operation has been completed. The benefit of this guarantee is that

there is no intermediate state visible to any thread, thus abiding by the happens-before relation.

C++ provides a library for atomic memory operations. Atomics in C++ provides a faster means of

managing concurrency when compared to mutex locks. However, it should be noted that atomic

operations themselves do not provide faster operations when compared to mutexes. A main reason

for such a behavior lies in the size of the critical section. The C++ standard states that if the size

of the atomic class is less than or equal to the size of a pointer the operations such as increment,

decrement store add and compare and exchange are atomic. However, if the size exceeds the size

of the pointer, then the operation becomes lock based.

C++ compare and exchange.

The atomic compare and swap are a conditional exchange. An atomic exchange is a swap operation

consisting of read-modify-write operations done atomically. The syntax for a compare and swap

operation is given by,

𝒙. 𝒄𝒐𝒎𝒑𝒂𝒓𝒆_𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆_𝒔𝒕𝒓𝒐𝒏𝒈(𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅_𝒗𝒂𝒍𝒖𝒆, 𝒏𝒆𝒘_𝒗𝒂𝒍𝒖𝒆)

Where,

x is an atomic variable declared and initialized by std∷atomic<int>x(0)

expected_value is an int

new_value is also an int

The above expression returns a Boolean true if the swap was successful, else it returns a false.

The compare and swap loop of a typical C++ program that performs an increment operation is

given by,

34

𝑠𝑡𝑑 ∷ 𝑎𝑡𝑜𝑚𝑖𝑐 < 𝑖𝑛𝑡 > 𝑥(0);

𝑖𝑛𝑡 𝑥0 = 𝑥;

𝑤ℎ𝑖𝑙𝑒(! 𝑥. 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑠𝑡𝑟𝑜𝑛𝑔(𝑥0, 𝑥0 + 1)

This loop works by first reading the value of x and storing in a local variable. If none of the other

threads change the value of x, then the current thread changes the value of x by incrementing. This

loop continues until the increment is successful. Another point to note is that x0 gets the value of

the new x if the compare and swap fails.

We shall now conclude this section with a few C++ features that would be used in the

implementation of memory management in later sections.

2.6 Smart Pointers in C++

Raw pointers in C++ allow variables to store memory addresses. However, unlike higher-level

abstractions, raw pointers lack automatic memory management features, such as deletion upon

going out of scope, which can result in memory leaks. C++ raw pointers also allows sharing of

memory which means that any thread or part of the program can manipulate a memory location.

Such sharing, lacks ownership (responsibility over a memory location) of memory, and improper

use of raw pointers can potentially cause erroneous or unpredictable behavior such as data

corruption, race conditions. Smart pointers namely unique pointer and shared pointer were added

to C++ to handle these issues. Smart pointers are classes that mimic the behavior of a raw pointer,

but also provide automatic memory management when the destructor for the smart pointer object

is called.

2.6.1 Unique Pointers

The unique pointer is a part of the memory library in C++, is a scoped pointer which means it

automatically deletes itself once the pointers scope ends. Unique pointers are also not allowed to

35

be copied (no data sharing or ownership sharing). However, unique pointers allow ownership

transfers.

2.6.2 Shared Pointers

Shared pointers allow sharing ownership of a memory location and are implemented using

reference counting. The last shared pointer object to a jointly owned memory location handles the

deletion of the object. We shall now see an example of how shared pointers are implemented in

greater detail. This example is taken from David Kieras [32] tutorial on using smart pointers in

C++11.

Let m be an object created in the heap and it is pointed by a shared pointer 𝑝𝑡𝑟1. The constructor

for the ptr1 object also creates a “manager object” [32] which is also dynamically allocated, which

in turn points to the heap object. This “manager object” [32] is already present, when we make

pointer copies. The “manager object” [32] carries two integers, one the number of pointers that are

pointing to the heap object and another the number of weak pointers pointing to the object. In this

example we restrict to only shared pointer counts. The figure below illustrates this process.

Figure 6: Shared Pointer Example

If we were to make two more pointers to the heap object, by copy or by assignment, then the

“manager object’s” [32] count would increase to three as show.

36

Figure 7: Example of Shared Pointer

As the scope of each shared pointer has reached the end, the reference count keeps decrementing,

and the shared pointer with the longest scope is the one that deletes the manager object and the

heap object. If we were to have a cyclic structure, then shared pointers would not be able to

delete the heap object thus leading to a memory leak.

2.6.2.1 Weak Pointers

Weak pointer is also known as an observer pointer, that is a not-owning a reference. Weak pointers

provide a way to break a cyclic structure. Unlike shared pointers weak pointers do not have the

ability to create a manager object. When all the shared pointers to a object have gone out of scope

the and if we still have a weak pointer then, this weak pointer has the ability to retain the manager

object. The manager object as mentioned in the previous paragraph also has a integer count of the

number of weak pointers pointing to it. If the weak pointer references to the manager object goes

below zero then the weak pointers destructor performs the deletion of the manager object. Weak

pointers are different from a regular pointer, where we can query a weak pointer to check if the

manager object (heap object) still exists or not. One distinction to note is that the heap object will

be deleted as soon as the last shared pointer to it goes out of scope however the manager object is

deleted either by the last shared pointer if no weak pointers exist or by the last weak pointer. The

37

weak pointer does not have the ability to access the heap object directly, they can only create new

shared pointers or check if the heap object exists or not. If the heap object is deleted and we create

a shared pointer from a weak pointer we would just get a null pointer.

2.7 Related work

There have been proposals to reorder map information in the form of long-term and short-term

memory [2] [12,13]. Long-term and Short-term memory representation is utilized in [7] RTAB-

Map to offload map information to a SQL database, which has a lower likelihood of being used

by loop closing and retaining rest of the valuable information. The SQL model is noted to limit the

extension in large-scale map-making. Edge-SLAM employs an edge computing infrastructure to

offload local mapping and loop closing while keeping track of the mobile device. C2TAM [2,11]

provides a distributed cloud computing framework where the tracking and relocalization are

performed on the client device while rest of the modules are sent to the cloud service in addition

to the map storage. Li et al. [2] present a redesign of the VSLAM system based on a cloud-based

solution where map storage, map fusion, and real-time components are offloaded to a cloud,

keeping the remaining components on the robot.

38

3. ORB-SLAM-3[40]

ORB-SLAM-3 is like the previously discussed Visual SLAM architecture in sections above. The

tasks that it performs can be divided into the following,

• Front-End tasks

o Feature Detection

o Feature Matching

o Pose Estimation

o Adding data associations to the co-visibility graph

• Back-End tasks

o Bundle adjustment

o Map optimization

Apart from the above stated task the ORB-SLAM-3, also does loop closure, that is responsible

detecting loops and correcting them. To speed up the system, ORB-SLAM-3 runs of three threads,

namely tracking, local mapping and loop closing [41]. The structure of ORB-SLAM is based on

39

the Parallel Tracking and Mapping (PTAM)’s parallelization of mapping and localization

architecture, with an addition of a loop closing thread [41].

We shall now note the following definitions,

Mappoint: A mappoint corresponds to the three-dimensional coordinate in the world and is

derived from the ORB-Features extracted [42].

Keyframe: A keyframe represents the pose (position and orientation) of a camera at a certain time

instance [42].

Map: The map is the collection of mappoints and keyframes [42]

Covisibility Graph: This is a weighted graph of connected keyframes, where an edge in the graph

represents connection between two keyframes and the graphs serve as nodes [42].

The figure below gives an overview of the ORB_SLAM-3 system

Figure 8: ORB-SLAM-3 Structure

40

3.1 Tracking Thread:

The tracking thread begins with extracting ORB features by generating an image pyramid of the

image being processed by the tracking thread. An Image pyramid is an image processing

technique, used for image reconstruction among others. The incoming image is sampled at various

scales by repeatedly dividing the resolution by half and applying a gaussian blur. Now we have a

representation of the current tracking image at different scales. Now the image representation at

different levels, is passed through a function to compute the FAST (Features from Accelerated

Segment Test) corners [44]. FAST is a corner detection technique, that is rotation invariant and

computational easier(faster) to compute than other corner detection algorithm. The final step is to

compute the ORB feature descriptor, which is an extension of the computed FAST descriptors

with an exception of adding intensity centroids [35] and the rotated d Binary Robust Independent

Elementary Features BRIEF feature descriptor. The BRIEF descriptor is used because it has low

memory footprint and fast to compute [45]. ORB SLAM-3 then uses these computed features and

maps them corresponding to the image positions based on the camera parameters provided by the

system. This feature extraction step is performed over every incoming image and stored in a

temporary object known as the frame corresponding to its location coordinate.

As images are added, we perform feature matching, which is performed by using three

different methods namely, search by projection, bag-of-words, and similarity transforms, and then,

the strongest matches are retained to be added to the map [41]. To place matches in a map, a critical

task of initialization is performed to create an initial map provided at least a threshold number of

features is detected. The very first frame is compared against incoming frames for feature

matching. All features detected in the first frame is compared with the current frame of the tracking

thread. If matching is successful the algorithm processed to compute the required transformation

matrices such as the homography matrix and the fundamental matrix depending on the matching

41

of the initial frame and the current frame using RANSAC [46, 47]. The optimum homography and

the fundamental matrices are fixed to finally determine the depth of the features onto the world

coordinates. Then the first frame, and the matched frame are both converted to a keyframe all

corresponding mappoints are added to the map. This marks the completion of initialization, and

since we have estimated nodes present in the graph, we proceed by performing a bundle adjustment

of the graph. The tracking then continues to perform feature matching with every incoming image.

Tracking also performs relocalization which was introduced in the background section in case of

sudden movements or drop in tracking performance.

Code Structure Details:

The Driver code which is also the tracking thread initializes a system object, which in turn spawns

the necessary threads, local mapping, loop closing, and viewer(optional). Once necessary

initialization is completed, the tracking thread loops over all the images of the dataset or could run

on a live stream of images. Each image after resizing, calls the function

𝑠𝑦𝑠𝑡𝑒𝑚. 𝑇𝑟𝑎𝑐𝑘𝑀𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟(𝑖𝑚𝑎𝑔𝑒) (based on the camera model, which in this case is

monocular) that performs a couple of system and timing checks for synchronization and then

triggers the function 𝐺𝑟𝑎𝑏𝐼𝑚𝑎𝑔𝑒𝑀𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟(𝑖𝑚𝑎𝑔𝑒). This function converts the image in

grayscale and creates a Frame object. The constructor for the frame object, calls

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑂𝑅𝐵(𝑖𝑚𝑎𝑔𝑒𝐺𝑟𝑎𝑦) performs feature extraction. At the end of the

𝐺𝑟𝑎𝑏𝐼𝑚𝑎𝑔𝑒𝑀𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟() function the function, 𝑡𝑟𝑎𝑐𝑘() is called. The track function performs

necessary initialization of the following objects,

• Atlas: Collection of Maps (done only once)

• Map: Collection of Keyframes and Mappoints

42

The track function further calls the 𝑇𝑟𝑎𝑐𝑘𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒() that does the matching of the

current keyframe and the previous keyframe. The function also converts the features in the current

frame into a bag of words representation. Furthermore, it tries to use the computed bag of Words

to find possible matches with the previous keyframe. 𝑡𝑟𝑎𝑐𝑘() further calls

𝑇𝑟𝑎𝑐𝑘𝑊𝑖𝑡ℎ𝑀𝑜𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙(), which does the feature matching by a function called

𝑠𝑒𝑎𝑟𝑐ℎ𝑏𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(). The function 𝑡𝑟𝑎𝑐𝑘𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑝() called by 𝑡𝑟𝑎𝑐𝑘() also performs feature

matching in the local map (subset of keyframes from the complete map). The 𝑡𝑟𝑎𝑐𝑘() functions

at the end, checks if a new keyframe is necessary, if yes creates a new keyframe. Additionally,

whenever the map is added with keyframes or mappoints, a 𝑝𝑜𝑠𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛() is performed

using the g2O library.

System and Timing challenges:

The performance of the tracking thread is crucial in maintaining the accuracy and overall

functioning of the system. If the tracking thread processes keyframes slower, it can lead to a drop

in the keyframes throughout the system. It has been noted in Sofiya et al [1]. that the effect of

dropping keyframe in regions with sparse feature density or fast camera movements can lead to

the system calling the 𝑟𝑒𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛() function. This function stops the other threads and

performs a place recognition throughout the keyframe database to find matches and relocalize.

This action is noted to be computational expensive leading and possibly leading a failure of the

system [1]. As per Sofiya et. al [1] tracking on an average requires 17 ms when running on the

KITTI dataset and images are streamed at 10 frames per second.

3.2 Local Mapping Thread:

Any new keyframe processed by tracking is added to the local mapping threads keyframe queue.

The local mapping thread checks and updates all the nodes and connections of the added keyframe.

43

As mentioned in the background section, any addition to the graph requires a optimization and

updation check to make sure that the graph is as optimum as possible. Then spurious and

redundancies are removed based on heuristic criteria for both, MapPoint and keyframe. New

mappoints are added to the graph based on the new keyframe added and the existing covisible

keyframes. At the end of the local mapping thread Bundle adjustment is performed on the graph

to adjust the estimates where ever necessary.

Code Structure Details:

The local-thread spawned in the tracking phase, creates a local mapping object. This object has a

function 𝑟𝑢𝑛(), which is a while true loop, that runs all the local-mapping tasks. Firstly, the

function 𝑆𝑒𝑡𝐴𝑐𝑐𝑒𝑝𝑡𝐾𝑒𝑦𝐹𝑟𝑎𝑚𝑒𝑠() that informs the tracking thread of the local mapping status of

whether it is processing keyframes or not. Next the local mapping thread maintains a queue to

maintain incoming keyframes which are added by tracking thread. The next function call is

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑒𝑤𝐾𝑒𝑦𝐹𝑟𝑎𝑚𝑒(). This function processes the incoming keyframes and inserts them into

the existing map. Any addition of keyframes cause all the links of the covisibility graph to the

updated. 𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝐶𝑢𝑙𝑙𝑖𝑛𝑔() is the next function that is executed which is responsible to remove

mappoints that are redundant or mappoints which are considered outliers. The

𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡() function is then executed that triangulates matches on the current

keyframes. This is done with the help of querying for the covisible keyframes to the current frame

and checking for matches. Then the 𝑆𝑒𝑎𝑟𝑐ℎ𝐼𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() function is called that checks and

updates connections in the covisibility graph. The 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝐶𝑢𝑙𝑙𝑖𝑛𝑔() function is then called on

the current keyframe (first in the queue). The 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝐶𝑢𝑙𝑙𝑖𝑛𝑔() function, checks for

redundancy of a keyframe, and marks a keyframe bad. Finally, 𝑙𝑜𝑐𝑎𝑙𝑏𝑢𝑛𝑑𝑙𝑒𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡() is

44

performed to optimize the local map, followed by adding the current keyframe to the loop closing

threads queue.

System and Timing challenges:

The effect of slower processing of local mapping has indirect effect on the system. Both tracking

and loop closing, would end up searching larger maps, which is a computationally expensive task,

which in turn could cause the tracking thread to get slower that as seen above could end leading to

relocalization. As per Sofiya et. al [1] local mapping thread on an average requires a 103 ms when

running on the KITTI dataset and images are streamed at 10 frames per second.

3.3 Loop Closing Thread:

The loop closing thread performs two task loop detection and loop closure. Newly added

keyframes to system that start from tracking pass through local mapping for adding in map and

finally checked for possible loops i.e. checking for previously visited places. This is done by

iterating through the covisibility graph. Every keyframe in the covisibility graph is matched with

the incoming keyframe, followed my periodically checking for keyframe in the atlas. The ORB-

SLAM-3 system also maintains a keyframe database where periodically a query is passed, for

detecting matches with every keyframe every added. If a loop is finally detected and based on the

methods mentioned in the background section the loop is closed.

Code Structure details:

The loop closing thread performs loop detection and correction if a drift occurs in a loop. Similar

to the local mapping, the system thread creates the loop closing object. The loop closing function

𝑟𝑢𝑛() is passed as an argument to the newly spawned thread loop closing. The loop closing thread

performs detection of similarities of the complete graph and the atlas based on the newly added

keyframe. This is done by calling the function 𝑁𝑒𝑤𝐷𝑒𝑡𝑒𝑐𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝑅𝑒𝑔𝑖𝑜𝑛𝑠(). The function

45

validates the prospective matches, and if it finds two different maps having similarities it will

merge them into one and performs a complete bundle adjustment. The 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐿𝑜𝑜𝑝() function

performs updation of all connected keyframes and mappoints based on the detected loop. Based

on the accumulated drift it also performs optimization on the essential graph followed by running

the 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑢𝑛𝑑𝑙𝑒𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡() initiating bundle adjustment on all the components of the graph.

System and Timing challenges:

The loop closing thread, if detects a loop, locks the whole map data structure, which means

connected keyframes and mappoints are locked. This locking of the whole map is done to perform

loop closure, which distributes offset corrections throughout the graph. However, the mapping of

the whole graph results in performance drop on all the threads. According to Sofiya et. al [1], the

loop closing thread requires approximately 202 ms when images are streamed at 10 frames per

seconds.

3.4 Experimental Setup

The experiments performed in the following sections was based on the following setup,

 CPU: i5-8300H CPU @2.30GHz

RAM: 32 GB

System Type: Ubuntu 22.04.3 LTS, x64

4. [Joint work] Automatic garbage collection of keyframes and MapPoints

The figure below describes a conceptual view of the memory layout for the ORB-SLAM-3

system.

Program Instructions, Initialized Static Data, Global Variables

Heap

Register

Stack

Trackin

Register

Stack

Local-

Register

Stack

Loop-Closing

46

Each thread, tracking, local mapping, and loop closing are represented with their own

registers and stack. We have a common heap followed by the space in memory for program

instructions and uninitialized static data and global variables. The images in the heap show in

figure are supposed to represent keyframes (keyframes are not images; they are features from the

images as mentioned in previous sections) and we could also assume that mappoints to be present

in the heap. The stars on the stacks each stack is supposed to represent references to the heap

allocations. The green ticks on keyframes are supposed to represent good heap allocations allowed

to live and the ones crossed in red are supposed to be bad heap allocations required to be culled.

In the following figures, we will be looking at the figure shown above; however, we will only

represent the crossed ones as they are the topic of discussion for deletion.

Now we go over each deletion scheme, which begins with an explanation of the experiment

performed followed by the results in the form of a experimental outcomes and issue that need

addressing.

4.1 1st Deletion Attempt: Direct deletion and collecting reference and deletion

Experiment: Direct Deletion of the heap allocation in the local mapping thread, specifically in the

functions, 𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑝𝑝𝑖𝑛𝑔: : 𝑀𝑎𝑝𝑃𝑜𝑖𝑛𝑡𝐶𝑢𝑙𝑙𝑖𝑛𝑔() or 𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑝𝑝𝑖𝑛𝑔: : 𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝐶𝑢𝑙𝑙𝑖𝑛𝑔(),

when the heap objects are marked as bad. Another minor attempt involved in saving the marked

47

bad references and deleting them in the next iteration. This also results in a segmentation fault as

we have local copies of reference that may not be possible to forceable remove from containers.

\

Result: Failure, as there are references to the heap allocations present, that results in any of the

stack objects dereferencing the heap allocation resulting in a segmentation fault.

Experiment outcomes: This exercise does indeed confirm that that keyframes and mappoints

references are being used by the other threads.

Issues that need addressing: No deletion of heap allocations.

4.2 2nd Deletion Attempt: Using Shared Pointers

Experiment: In this experiment, instead of using raw pointers, we utilize shared pointers. Shared

pointers, as mentioned in the background section, works on the principle of reference counting.

This attempt involves, replacing the left-hand side of all the new instances of keyframes and

mappoints with, shared pointers with the same types.

Register

Stack

Trackin

Register

Stack

Local-

Register

Stack

Loop-Closing

Program Instructions, Initialized Static Data, Global Variables

Figure 10: Experimental result of Direct Deletion

48

Figure 11: Cyclic References Due to Shared Pointers

Result: Failure to delete any heap allocation. The nature of heap allocations such as mappoints

and keyframes in ORB-SLAM-3 are cyclic. This cyclicity results in the reference count never

reducing to zero, and hence none of the heap allocations are deleted leading to memory leaks. The

figure shows one of the possible scenarios for the cyclicity to arise. For simplicity the illustration

below refers one thread (local mapping) pointing to the possible scenarios. i) we have a reference

of a MapPoint, and since this mappoint is common between the two bad keyframes, we could have

all the following unordered pair of relations denoted by arrows. So, none of the pointers ever go

out of scope.

Experiment Outcomes: This experiment shows that shared pointer implementation of ORB-

SLAM-3 is possible, however it should be noted that there is no deletion.

Issues that need addressing: The lack of deletion of heap allocations using shared pointers

indicate that reference counting exposes the cyclicity in ORB-SLAM-3 codebase.

4.3 3rd Deletion Attempt: Using custom reference counting scheme.

Experiment: In this attempt we, perform a simple reference counting strategy as described in the

above sections. Due to the scale of the ORB-SLAM-3 system, we performed the reference

49

counting of keyframes and mappoints incrementally. By incrementally, we mean we identified the

containers into which these heap allocations are added such as the following,

• 𝑚𝑣𝑝𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠,

• 𝑚𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐾𝑒𝑦𝐹𝑟𝑎𝑚𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠

• 𝑚𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠.

We perform an increment, whenever a keyframe or a mappoint is used and perform a deletion

whenever, this count goes to zero. The figure below illustrates, how increment and decrement is

performed in a local scope. For simplicity we only shown this for one thread, however, this

mechanism can be extended for all the threads. We also have a simplified program counter as

shown in the figure for thread Local mapping. Furthermore, we have the Functions A, B and C

that need to be executed. So, whenever any container of MapPoint or keyframe pointer is utilized,

we perform an increment shown in green plus in the illustration and perform a decrement before

the scope ends shown in blue minus sign.

Figure 12: Custom reference counting for subrountines

Through our experiment we have identified that reference counting the containers

𝑚𝑣𝑝𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠, 𝑚𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 was sufficient for performing a deletion

50

of keyframes that did not result in a memory issues. The ORB-SLAM-3 system marks keyframes

as bad in the keyframe culling loop in the local mapping thread. We also observed from the

previous experiments that, the reference count of keyframes do not reduce to zero at the end of the

keyframe culling function. The possible explanation for this behaviour can be attributed to live

references of the marked bad keyframes in use by the other threads. To tackle this problem, we

collect the references in a set (choice of set was chosen due to possibility of repeated keyframes

references being collected). We loop through this container at the end of the keyframe culling

function every iteration, and check for a zero count of the keyframes. We delete the keyframe at

zero. For mappoints we follow a similar strategy of reference counting. We collect the mappoint

references that are marked bad in a set. At the end of the mappoint culling function in the local

mapping thread, we perform the deletion of mappoints at reference count of zero.

Dealing with cyclicity: As noted in the shared pointer scheme of reference counting, we need to

break the cycle manually. We do this by adding the deletion

Result: The experiment results in successful deletion of mappoints and keyframes. We show the

results of the deletion on the EuRoC micro aerial vehicle datasets and the experiments were

conducted for ten iterations on each dataset and compare them to Vanilla ORB SLAM 3.

Keyframe Deletion Statistics:

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle datasets

Table 1: Keyframe Deletion Statistics on the Euroc dataset

Number of Keyframes marked to be deleted 94

Number of Keyframes deleted 65

Memory saved in percentage 69%

Average Execution time 125 Seconds

51

Approximate size of each Keyframe 4720 Bytes

Raw Memory marked for deletion 0.44 MB

Raw Memory deleted 0.30 MB

Raw memory saved 0.14 MB

MapPoint Deletion Statistics:

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset

Table 2: Mappoint Statistics on the Euroc dataset

Number of MapPoints marked to be deleted 13,183

Number of MapPoints deleted 12,833

Memory saved in percentage 97%

Average Execution time 125 Seconds

Approximate size of each Keyframe 752 Bytes

Raw memory marked for deletion 9.91 MB

Raw memory deleted 9.65 MB

Raw memory saved 0.26 MB

52

Figure 13: Deletion percentage using mutexs

The above is a summary of the deletion statistic.

Execution time statistics and overhead:

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset

Local Mapping Thread

Table 3: Local Mapping execution statistics on the euroc data set

Vanilla ORB-SLAM-3 ~ 228 ms

Reference counted ORB-SLAM-3 ~ 255 ms

Drop-in execution time due to reference

counting

~ 11.18% ~ 27ms slower

Tracking Thread

53

Table 4: Tracking execution statistics on the euroc data set

Tracking thread Vanilla ORB-SLAM-3 ~ 19.88 ms

Tracking thread Reference counted ORB-

SLAM-3

~21.15 ms

Drop-in execution time due to reference

counting

~6.19% ~ 1.27ms slower

Processing Overhead:

Keyframes

Table 5: Processing overhead in terms of keyframes

Vanilla ORB-SLAM-3 ~ 406

Reference counted ORB-SLAM-3 ~ 376

Percentage drop in keyframe processing ~7.6% ~ 30 fewer keyframes processed

Mappoints

Table 6: Processing overhead interms of mappoints

Vanilla ORB-SLAM-3 ~ 15170

Reference counted ORB-SLAM-3 ~ 13189

Percentage drop in Mappoints processing ~13.96% ~ 1980 Mappoints unprocessed

Experiment Outcomes: This experiment provides a successful deletion of heap allocations in the

ORB-SLAM-3 codebase. Reference counting is used for deletion with mutex locks for

maintaining invariance of the integer responsible for reference counting. The statistics of the

54

deletion results in a processing overhead of 11% and 6% increase for local mapping and tracking

thread respectively. We also process 30 fewer keyframes when compared to vanilla ORB-

SLAM-3 which could be attributed to the use of mutexes for maintaining sequential consistency.

Issues that need addressing: The overhead due to addition of mutexes which results in processing

of fewer keyframes could result in backlog of keyframes in the tracking thread, which could in

turn result in relocalization call. As stated in [1], relocalization incurs a computational overhead

that could result in the SLAM system crashing.

4.4 4th Deletion Attempt: Deletion using compare and swap.

Experiment: In the background section, we explained lock-less synchronization method compare

and swap. This experiment is supposed to be an optimization over the regular reference counting

framework. In this experiment we replace all the reference counting mechanism that employs

mutex locks, and instead we use 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑠𝑡𝑟𝑜𝑛𝑔 a C++ construct discussed in detail

in the above sections. The result of this experiment is shown below.

Keyframe Deletion Statistics:

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset

Table 7:Keyframes statistics for compare and swap on the Euroc dataset

Number of Keyframes marked to be deleted 98

Number of Keyframes deleted 70

Memory saved in percentage 71%

Average Execution time of the program 125 Seconds

Approximate size of each Keyframe 4720 Bytes

Raw Memory marked for deletion 0.46 MB

Raw Memory deleted 0.33MB

55

Raw memory saved 0.13 MB

MapPoint Deletion Statistics:

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset

Table 8: Mappoint deletion Statistics for compare and swap on the Euroc dataset

Number of MapPoints marked to be deleted 13305

Number of mappoints deleted 12939

Memory saved in percentage 97%

Average Execution time 125 Seconds

Approximate size of each Keyframe 752 Bytes

Raw memory marked for deletion 10.00 MB

Raw memory deleted 9.73 MB

Raw memory saved 0.27 MB

56

Figure 14:Deletion percentage for Compare and Swap

The above is a summary of the deletion statistic.

Execution time statistics and overhead:

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset

Local Mapping Thread

Table 9: Local Mapping execution statistics, Compare and Swap on the Euroc dataset

Vanilla ORB-SLAM-3 ~ 228 ms

Compare and Swap Reference counted ORB-

SLAM-3

~ 247 ms

Drop-in execution time due to reference counting ~ 8% ~ 19 ms slowers

Tracking Thread

57

Table 10: Tracking execution statistics, Compare and Swap on the Euroc dataset

Vanilla ORB-SLAM-3 ~ 19.88 ms

Compare and Swap Reference counted ORB-

SLAM-3

~ 20.68 ms

Drop in execution time due to reference counting ~ 3.94% ~0.8 ms slower

Processing Overhead:

Keyframes

Table 11: Keyframe overhead, Compare and Swap on the Euroc dataset

Vanilla ORB-SLAM-3 ~ 406

Compare and Swap Reference counted ORB-

SLAM-3

~ 383

Percentage drop in keyframe processing ~5.83% ~ 23 fewer keyframes

processed

Mappoints

Table 12: Mappoint overhead, Compare and Swap on the Euroc dataset

Vanilla ORB-SLAM-3 processed ~ 15170

Compare and Swap Reference counted ORB-SLAM-3 processed ~ 13305

Percentage drop in Mappoints processing ~13.09% ~ 1865

Mappoints unprocessed

Experiment Outcomes: This experiment provides another successful deletion of heap allocations

in the ORB-SLAM-3 codebase. Reference counting is used for deletion with compare and swap

58

loops for maintaining invariance of the integer responsible for reference counting. The statistics

of the deletion results in a processing overhead of 8% and 3% increase for local mapping and

tracking thread respectively. We also process 23 fewer keyframes when compared to vanilla

ORB-SLAM-3 which could be attributed to the use of compare and swap instructions for

maintaining sequential consistency. When compared with the mutex based reference counting,

compare and swap performs slightly better because, mutex based locks according to the C++

standards, put a thread to sleep, if it fails to acquire a lock. Since the critical section for reference

counting is one instruction i.e either increment or decrement, compare and swap on the other

hand works similar to a spin lock, which means it keeps trying to increment. Thus, it could be

noted that the mechanism required to wake a thread from sleep in this experiment could be

costlier than continuedly check for synchronized reads.

Issues that need addressing: The possible presence of memory leak because of keyframes and

mappoints due to subset reference counting must be addressed, as the current scheme reference

counts containers that do not result in segmentation fault on the Euroc data set. A thorough

reference counting for every container where keyframes and mappoints are added would be

necessary for not only guaranteeing safety (potential of deleted references being dereferenced)

but also eliminating the possibility of memory leaks due to keyframes and mappoints.

4.5 Comparison of both deletion scheme with vanilla ORB-SLAM-3:

In this section we summarize the results from the two deletion strategies

Deletion Statistics:

The below figure gives Keyframes deletion statistics.

59

Figure 15:Keyframe Statistics

The trend lines in the figure represents the summary of keyframe statistics that was calculated

using the tables show in the appendix section. The number of keyframes processed, keyframes

retained in map, keyframes marked for deletion and the actual deletion of keyframes are shown

together.

The Blue themed trendline shows the processed keyframes with vanilla ORB_SLAM-3

leading the trend with 7% greater keyframes when compared to the mutex based reference counting

(RF) and 5.8% greater keyframes processed as compared to the atomic compare and swap

operation (CAS). There is no significant difference in the processing of the RF and CAS

implementation. The figure provides a summary of comparisons.

The yellow themed trendline represents the keyframes in the map. We note a slight

decrease in the number of keyframes in the map as shown in the figure, where we RF and CAS

have approximately 2% fewer keyframes than the vanilla ORB-SLAM -3 implementation.

60

The green themed trendline also follows a similar trajectory where RF and CAS have fewer

keyframes than vanilla.

Finally, the red themed lines represent deletion with CAS having approximately 8%

greater deletion compared to RF.

Figure 16: Keyframe Deletion vs Implementation

Figure 17: Keyframes marked bad in all implementations

61

Figure 18: Percentage difference among deletions

Figure 19: Total Number of keyframes deleted

The line graph shown in figure represents a summary like the keyframe statistic, with an of deletion

shown in a separate trendline graph for better visibility. From the graph we can see that vanilla

ORB_SLAM-3 allocates approximately 13% greater mappoints as compared to the other

counterparts. The mappoints in map are similar in the three implementations with 4% to 6% greater

mappoints in map in the Vanilla ORB-SLAM-3. The deletion statistics for mappoints among

keyframes and mappoints are identical with negligible difference. The bar charts are accompanied

to provide easier statistic difference among the trendlines.

62

Figure 19: Percentage difference of mappoints marked for deletion in

difference implementations

The below figure gives Mappoints deletion statistics.

Figure 20: MapPoint Statistics

63

Figure 20: Percentage Difference of mappoints in Map

Figure 21:Mappoint deletion in different scheme

64

Execution Statistics and Overhead statistics:

 Figure 22: Local Mapping Execution statistics

Figure 23: Tracking Thread Execution Statistics

65

The summary of the execution statistics show that both tracking and local mapping threads

run faster in vanilla ORB-SLAM 3. We see a 12% drop in execution timing in RF implementation

as compared to vanilla orb slam and 7% drop in CAS execution timing. CAS however is faster

than RF statistically, by 4% faster execution in the local mapping thread. The tracking behavior

among the different implementations follow an identical trend with only a 6% overhead for RF

Figure 25: Percentage difference of Execution statistics for the

tracking thread

Figure 24: Percentage difference of local mapping timing

66

compared to vanilla and 3% compared to CAS. RF and CAS differ by 2% faster execution by the

CAS implementation.

5. Experiments for improving ORB SLAM-3 Keyframe Culling

In this section we go over an experiment with the following hypothesis,

The computation necessary to compute redundancy of a keyframe in the keyframe culling function

of the local mapping thread can be replaced with an alternative mechanism that is possibly more

efficient.

Before exploring the mechanism for the above-mentioned hypothesis, let us first examine

the current marking (𝑠𝑒𝑡𝐵𝑎𝑑𝐹𝑙𝑎𝑔) scheme, its time complexity. Let us consider a keyframe 𝒌 to

be redundant, then the following expression evaluates to true.

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 > 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑡ℎ ∗ 𝑛𝑀𝑃𝑠

Where,

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠: integer count of redundant mappoints in

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑡ℎ :
0.9 ∶ 𝑖𝑓 𝑚𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟
0.5 ∶ 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑚𝑒𝑟𝑎 𝑚𝑜𝑑𝑒𝑙

 }

𝑛𝑀𝑃𝑠 : number of mappoints present in keyframe 𝑘

Both 𝑛𝑀𝑃𝑠 and 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑡ℎ do not require additional computation.

The figure below illustrates when a count for 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 is incremented,

67

Let mappoint 𝑀𝑝𝑖
be added to a

keyframe 𝑘 . If 𝑀𝑝𝑖
 is present at the same scale or at a finer scale in the keyframes 𝑘𝑖1

, 𝑘𝑖2
and

𝑘𝑖3
then this mappoint 𝑀𝑝𝑖

 is increments 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for keyframe 𝑘. The

condition for mappoint redundancy is as follows,

𝒔𝒄𝒂𝒍𝒆𝑳𝒆𝒗𝒆𝒍𝒊𝟏
<= 𝒔𝒄𝒂𝒍𝒆𝑳𝒆𝒗𝒆𝒍 + 𝟏

Where,

𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖1
is the similarity index of keyframe 𝑘𝑖1

 for the mappoint 𝑀𝑝𝑖

𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙 is the similarity index of a keyframe 𝑘 for the mappoint 𝑀𝑝𝑖

In the local mapping thread, of Vanilla ORB-SLAM-3, the loop responsible for counting

redundant keyframes, employs the above-mentioned check for every keyframe in the set of

covisible keyframes. Let 𝜅𝑐𝑖
 be the set of covisible keyframes present at time 𝑡𝑖, and 𝒏𝜿𝒄𝒊

, the

number of keyframes in 𝜅𝑐𝑖
. Let 𝑘𝑖 be a keyframe in 𝜅𝑐𝑖

, 𝛭𝑖 be the set of mappoints in 𝑘𝑖 and 𝒏𝜧𝒊

be the size of this set. Let 𝑚𝑖 be a mappoint in 𝛭𝑖 that has a set 𝝅𝒎𝒊
 of connected keyframes of

size 𝒏𝝅𝒎𝒊
. The figure and the psuedo code below illustrate the computation or work required to

Figure 26:Incrementing reference counts

68

complete one iteration of the keyframe culling function in the local mapping thread. the complexity

of the keyframe culling loop can be given by 𝑶(𝒏𝜿𝒄𝒊
∗ 𝒏𝜧𝒊 ∗ 𝒏𝝅𝒎𝒊).

Alternatively, we can compute 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 while adding mappoints to a

keyframe. Let us understand the alternative mechanism by looking at an example that goes over

all the steps required for marking a keyframe as bad. We look at this example in the reverse order,

beginning with a keyframe that is marked bad, and work our way through incrementing

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 and decrementing nRedundantObservations.

Figure 27: multi-loop structure, where black frame represents keyframes and the gray dots

represent mappoints.

KeyframeCulling() ⋮

 for every 𝑘𝑖 ∈ 𝜅𝑐𝑖
 do

 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ← 0

 for every 𝑚𝑖 ∈ 𝛭𝑖

 for every 𝓀𝑖 ∈ 𝜋𝑚𝑖

 If 𝑚𝑖 present in greater than or equal to three keyframes

 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠++

https://en.wiktionary.org/wiki/%E2%8B%AE

69

 end if

 end for

 end for

 end for

Let us assume a keyframe k, that is marked for deletion. This means that keyframe k

evaluates 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 > 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑡ℎ ∗ 𝑛𝑀𝑃𝑠 to true as a result of

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 going from an initialized value of zero to passing the threshold

number of redundant mappoints. There are two ways to mutate 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠,

• We increment 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 when we find at least three keyframes with

the same mappoint present in keyframe k at either the same scale or at a finer scale.

• We decrement 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠, when a mappoint is removed from a

keyframe that was connected to three or more keyframe.

To maintain the correctness of this implementation, we add a data structure as follows,

• 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠: A container (hash map) the size of

𝑚𝑣𝑝𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑠(container with all mappoints in a keyframe), that maintains a list of

connections made with a mappoint.

70

Figure 28:Alternative incrementing of reference count

The above figure shows an example case of the increment operation due to the addition of a

mapppoint 𝑴𝒑𝒊
 to the keyframe 𝒌. In this example, mappoint 𝑴𝒑𝒊

 was already connected to

keyframes 𝒌𝒊𝟏
, 𝒌𝒊𝟐

, and 𝒌𝒊𝟐
. We iterate through the 𝜋Mpi

(container with connected keyframes to

𝑴𝒑𝒊
) i.e connected keyframes and check similarity (𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖1

<= 𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙 + 1). In this

example, we assume the condition to be true for the keyframes 𝑘𝑖1
, 𝑘𝑖2

, and 𝑘𝑖2
 and we add three

connected keyframes to Redundant_mappoint_connections[Mpi] for the current keyframe

𝑘. Since the size of Redundant_mappoint_connections[Mpi] is three we perform an increment

of 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for keyframe 𝑘. Additionally, also add 𝑘 to 𝑘𝑖1
, 𝑘𝑖2

, and 𝑘𝑖2
′𝑠

Redundant_mappoint_connections[Mpi] and if their size of

Redundant_mappoint_connections[Mpi] should go beyond three, which in this example is

71

true, we perform an increment of 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for 𝒌𝒊𝟏
, 𝒌𝒊𝟐

, and 𝒌𝒊𝟐
 respectively.

The algorithm below illustrates this increment operation.

ADDMAPPOINT()
 ⋮
for every 𝓀𝑖 ∈ 𝜋Mpi

(where, 𝓀i is a keyframe, 𝜋Mpi
is the container with connected keyframes to Mpi)

 If Mpi is present in 𝓀i at same scale or below (𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖1
<= 𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙 + 1) then

 Add 𝓀𝑖 to 𝑘′𝑠 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi]

Add 𝑘 to 𝓀𝑖′𝑠 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi]

If 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi] size greater than or equal to three then

 𝑘 → 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠++
end if
If 𝓀𝑖′𝑠 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi] is size greater than or equal to three then

 𝓀𝑖 → 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠++

 end if

 end if

end for

The time complexity of this operation would be 𝑂(𝒏𝝅𝐌𝐩𝐢
)

where,

𝑛𝜋Mpi
 is the size of 𝜋Mpi

𝜋Mpi
 data structure representing the connected keyframes to mappoint Mpi .

Now we look at an example case, for decrementing 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 due to the

removal of a mapppoint 𝑴𝒑𝒊
 form keyframe 𝒌. The figure below illustrates an example of the

decrement operation.

https://en.wiktionary.org/wiki/%E2%8B%AE

72

Figure 29:Decrementing reference count

Since, 𝑀𝑝𝑖
 is connected to keyframes 𝒌𝒊𝟏

, 𝒌𝒊𝟐
, and 𝒌𝒊𝟐

 i.e. connected to three or more keyframes

we perform a decrement of 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Furthermore, we iterate through 𝜋Mpi

and remove 𝑘 from its 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi] and if the size of this

container should fall below three, we perform a decrement of 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for all

such keyframes. The algorithm given below illustrates the decrement operation.

ERASEMAPPOINTMATCH () , REPLACEMAPPOINTMATCH()
 ⋮
If 𝑘 → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖] size is greater than three

 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠- -
end if
Clear the 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖] container in 𝑘

for every 𝓀𝑖 ∈ 𝜋Mpi

 If 𝑘 present in 𝓀𝑖 → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖]

 Remove 𝑘 from 𝓀𝑖 → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖]

 If size of 𝓀𝑖 → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖] drop below three

 𝓀𝑖 → 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠- -

 end if

 end if
end for

The time complexity of the above functions would be 𝑂(𝒏𝝅𝐌𝐩𝐢
),

where,

https://en.wiktionary.org/wiki/%E2%8B%AE

73

𝑛𝜋Mpi
 is the size of 𝜋Mpi

𝜋Mpi
 data structure representing the connected keyframes to mappoint Mpi .

Controlling concurrency:

Since we could potentially have all the three threads namely tracking, local mapping and loop

closing calling the functions 𝑎𝑑𝑑𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡(), 𝑒𝑟𝑎𝑠𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑀𝑎𝑡𝑐ℎ (), and

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑀𝑎𝑡𝑐ℎ(), this could lead in a data race condition.

We use a mutex lock to protect the 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 container and make the

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 variable atomic.

Relevant calculations and Experimental results,

In summary, we reduce the time complexity of keyframe culling function, in a local mapping

thread, which has a time complexity of 𝑶(𝒏𝜿𝒄𝒊
∗ 𝒏𝜧𝒊

∗ 𝒏𝝅𝒎𝒊
) to 𝑶(𝒏𝜿𝒄𝒊

).

However, we incur an increased time complexity in 𝑎𝑑𝑑𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡(), 𝑒𝑟𝑎𝑠𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑀𝑎𝑡𝑐ℎ () ,

and 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑀𝑎𝑡𝑐ℎ() which was 𝑂(1) to 𝑂(𝒏𝝅𝐌𝐩𝐢
).

Another method to compare the two schemes can be, the amount of work that a keyframe does to

maintain state and the amount of time a keyframe is repeated in a keyframe culling.

Based on statistical results, we find that a keyframe is repeated in keyframe culling approximately

30 times. The amount of work required would be 30* 𝑶(𝒏𝜿𝒄𝒊
∗ 𝒏𝜧𝒊

∗ 𝒏𝝅𝒎𝒊
).

On the other hand, we find the count of the number of times a mappoint undergoes state changes

through its lifetime is ~10,000 times. Furthermore, we find that the maximum number of

mappoints a keyframe can have been ~1024. So, the amount of work a keyframe undergoes to

maintain state can be approximately given by 10,000 ∗ 1024 ∗ 𝑂(𝒏𝝅𝐌𝐩𝐢
).

74

Finally, we propose that work required for one keyframe in the alternative scheme would be lesser

than the current marking scheme in Vanilla ORB-SLAM-3,

10,000 ∗ 1024 ∗ 𝑂(𝒏𝝅𝐌𝐩𝐢
) < 30*1024* 𝑶(𝒏𝜿𝒄𝒊

∗ 𝒏𝝅𝑴𝒑𝒊
)

The summary of the time complexities for each function call is given below,

 Previous Marking Scheme Current Marking Scheme

𝑲𝒆𝒚𝒇𝒓𝒂𝒎𝒆𝑪𝒖𝒍𝒍𝒊𝒏𝒈() 𝑂 (𝒏𝜿𝒄𝒊
∗ 𝒏𝜧𝒊

∗ 𝒏𝝅𝒎𝒊) 𝑶(𝒏𝜿𝒄𝒊
)

𝑨𝒅𝒅𝑴𝒂𝒑𝒑𝒐𝒊𝒏𝒕() 𝑶(𝟏) 𝒏𝜧𝒊
 ∗ 𝑶 (𝒏𝝅𝑴𝒑𝒊

)

𝑹𝒆𝒑𝒍𝒂𝒄𝒆𝑴𝒂𝒑𝑷𝒐𝒊𝒏𝒕() 𝑶(𝟏) 𝒏𝜧𝒊
 ∗ 𝑂(𝒏𝝅𝑴𝒑𝒊

)

𝑫𝒆𝒍𝒆𝒕𝒆𝑴𝒂𝒑𝒑𝒐𝒊𝒏𝒕() 𝑶(𝟏) 𝒏𝜧𝒊
 ∗ 𝑂(𝒏𝝅𝑴𝒑𝒊

)

75

6. Summary:

In this thesis we introduce a mutex based reference counting scheme for implementing deletion in

the ORB-SLAM-3. We then provide a lock-free implementation of the reference counting scheme.

In comparison to mutex-based reference counting, compare and swap exhibits slightly superior

performance. This could possibly be because mutex-based locks, as mandated by C++ standards,

force a thread to sleep if it is unable to obtain a lock. Comparing and swapping, on the other hand,

functions more like a spin lock and since the critical section of reference counting consists of an

increment or a decrement, a compare and swap could perform better than mutex locking. The

reference counting scheme works successfully work on the “EuRoC micro aerial vehicle datasets”

with reference counting a subset of the codebase. However, this does not provide safe deletion on

other data sets or on other architectures. For running the reference counting scheme on other

datasets, we would require completing the reference counting for the complete ORB_SLAM-3

codebase rather than a subset.

Furthermore, this thesis introduces an alternative strategy for marking keyframes and

mappoints for deletion which is potentially possible to reduce redundant computation. The

theoretical analysis suggests a possible improvement in performance in local mapping thread.

However, it should also be noted that an improvement in local mapping does not imply

improvement in the SLAM performance as the strategy could add an overhead on the tracking

thread.

76

References

[1] Semenova, S., Ko, S. Y., Liu, Y. D., Ziarek, L., & Dantu, K. (2022). A quantitative

analysis of system bottlenecks in visual SLAM. HotMobile ’22.

https://doi.org/10.1145/3508396.3512882

[2] Li, F., Yang, S., Yi, X., & Yang, X. (2018). Towards Visual SLAM with Memory

Management for Large-Scale Environments. In Lecture Notes in Computer Science (pp.

776–786). https://doi.org/10.1007/978-3-319-77383-4_76

[3] Barros, A., Michel, M., Moline, Y., Corre, G., & Carrel, F. (2022). A comprehensive

survey of visual SLAM algorithms. Robotics, 11(1), 24.

https://doi.org/10.3390/robotics11010024

[4] Xue, G., Wei, J., Li, R., & Cheng, J. (2022). LEGO-LOAM-SC: an improved

simultaneous localization and mapping method fusing LEGO-LOAM and Scan context

for underground coalmine. Sensors, 22(2), 520. https://doi.org/10.3390/s22020520

[5] MIMOSA: A Multi-Modal SLAM Framework for Resilient Autonomy against Sensor

Degradation. (2022, October 23). IEEE Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9981108

[6] Zhang, T., & Gao, X. (2021). Introduction to Visual SLAM. In Springer eBooks.

https://doi.org/10.1007/978-981-16-4939-4

[7] S. Das, “Simultaneous localization and mapping (SLAM) using RTAB-map,”

arXiv.org, https://arxiv.org/abs/1809.02989 (accessed Jan. 5, 2024).

[8] Servières, M., Renaudin, V., Dupuis, A., & Antigny, N. (2021). Visual and Visual-

Inertial SLAM: state of the art, classification, and experimental benchmarking. Journal

of Sensors, 2021, 1–26. https://doi.org/10.1155/2021/2054828

77

[9] Kopetz, H., & Steiner, W. (2022). Real-Time systems. In Springer eBooks.

https://doi.org/10.1007/978-3-031-11992-7

[10] The concise handbook of real-time systems - UFPE. (n.d.-b).

https://www.cin.ufpe.br/~svc/str/rthandbook.pdf

[11] L. Riazuelo, J. Civera, and J. M. Montiel, “C2TAM: A Cloud framework for

cooperative tracking and mapping,” Robotics and Autonomous Systems, vol. 62, no. 4,

pp. 401–413, Apr. 2014, doi: 10.1016/j.robot.2013.11.007.

[12] F. Dayoub, G. Cielniak, and T. Duckett, “Long-term experiments with an adaptive

spherical view representation for navigation in changing environments,” Robotics and

Autonomous Systems, vol. 59, no. 5, pp. 285–295, May 2011, doi:

10.1016/j.robot.2011.02.013.

[13] “An adaptive appearance-based map for long-term topological localization of mobile

robots,” IEEE Conference Publication | IEEE Xplore, Sep. 01, 2008.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4650701

[14] T. Lindeberg, “Scale invariant feature transform,” Scholarpedia, vol. 7, no. 5, p. 10491,

Jan. 2012, doi: 10.4249/scholarpedia.10491.

[15] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in

Lecture Notes in Computer Science, 2006, pp. 404–417. doi: 10.1007/11744023_32.

[16] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient alternative to

SIFT or SURF," 2011 International Conference on Computer Vision, Barcelona, Spain,

2011, pp. 2564-2571, doi: 10.1109/ICCV.2011.6126544.

78

[17] C. G. Harris, “A combined corner and edge detector,” 1988.

https://www.semanticscholar.org/paper/A-Combined-Corner-and-Edge-Detector-Harris-

Stephens/6818668fb895d95861a2eb9673ddc3a41e27b3b3

[18] G. Klein and D. Murray, “Parallel tracking and mapping for small AR

workspaces,” in IEEE and ACM International Symposium on Mixed and

Augmented Reality (ISMAR), Nara, Japan, November 2007, pp. 225–234

[19] A. A. De Amorim, C. Hriţcu, and B. C. Pierce, “The meaning of memory safety,” in

Lecture Notes in Computer Science, 2018, pp. 79–105. doi: 10.1007/978-3-319-89722-

6_4.

[20] R. Jones, A. L. Hosking, and J. E. B. Moss, The Garbage Collection Handbook. 2023.

doi: 10.1201/9781003276142.

[21] “CS 4120 Spring 2023.”

https://www.cs.cornell.edu/courses/cs4120/2023sp/notes.html?id=gc

[22] D. Soshnikov, “Writing a memory allocator,” Dmitry Soshnikov, Jan. 04, 2024.

http://dmitrysoshnikov.com/compilers/writing-a-memory-allocator/#allocator-interface

[23] “JEP 450: Compact Object Headers (Experimental).” https://openjdk.org/jeps/450

[24] S. Chandrachary, “A brief introduction to GraphSLAM - Shiva Chandrachary -

Medium,” Medium, Nov. 11, 2022. [Online]. Available:

https://shivachandrachary.medium.com/a-brief-introduction-to-graphslam-

4204b4fce2f0#:~:text=One%20of%20the%20major%20benefits,to%20find%

20the%20optimal%20solution.

https://shivachandrachary.medium.com/a-brief-introduction-to-graphslam-4204b4fce2f0#:~:text=One%20of%20the%20major%20benefits,to%20find%
https://shivachandrachary.medium.com/a-brief-introduction-to-graphslam-4204b4fce2f0#:~:text=One%20of%20the%20major%20benefits,to%20find%

79

[25] N. L. Large, F. Bieder, and M. Lauer, “Comparison of different SLAM approaches for a

driverless race car,” Tm-technisches Messen, vol. 88, no. 4, pp. 227–236, Mar. 2021,

doi: 10.1515/teme-2021-0004.

[26] B. Mishra, R. J. Griffin, and H. E. Sevil, “Modelling software architecture for visual

simultaneous localization and mapping,” Automation, vol. 2, no. 2, pp. 48–61, Apr.

2021, doi: 10.3390/automation2020003.

[27] Engelen, R. A. van. (n.d.). Names, scopes, and Bindings. Computer Science, FSU.

https://www.cs.fsu.edu/~engelen/courses/COP402001/notes5.html

[28] M. Pöter, “Memory models for C/C++ programmers,” arXiv.org, Mar. 12, 2018.

https://arxiv.org/abs/1803.04432

[29] D. Padua et al., “Memory models,” in Springer eBooks, 2011, pp. 1107–1110. doi:

10.1007/978-0-387-09766-4_419.

[30] Berger, E. (2009, Fall). Operating Systems [Lecture 18].

https://people.cs.umass.edu/~emery/classes/cmpsci377/current/notes/lecture_21_gc.pdf

[31] “Memory allocators.” https://www.cs.nmsu.edu/~ekerriga/presentation/index2.html

[32] D. Kieras, Using C++11’s smart pointers - websites.umich.edu,

https://websites.umich.edu/~eecs381/handouts/C++11_smart_ptrs.pdf (accessed Jan. 7,

2024).

[33] “CON33-C. Avoid race conditions when using library functions - SEI CERT C Coding

Standard - Confluence.” https://wiki.sei.cmu.edu/confluence/display/c/CON33-

C.+Avoid+race+conditions+when+using+library+functions

[34] “An Introduction to Real-Time Java Technology: Part 1, The Real-Time Specification

for Java (JSR 1).” https://www.oracle.com/technical-resources/articles/javase/jsr-1.html

80

[35] Paul L Rosin. “Measuring Corner Properties”. In: Comput. Vis. Image Underst. 73.2

(1999), pp. 291–307. issn: 1077-3142. doi: 10.1006/cviu.1998.0719.

[36] “Garbage collection,” Garbage Collection (GC), https://www.ibm.com/docs/en/sdk-

java-technology/8?topic=management-garbage-collection-gc (accessed Jan. 6, 2024).

[37] C++ Working draft - open-std.org, https://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2021/n4892.pdf (accessed Jan. 7, 2024).

[38] T. Domani, E. K. Kolodner, and E. Petrank, “A generational on-the-fly garbage

collector for Java,” ACM, May 2000, doi: 10.1145/349299.349336.

[39] S. M. Blackburn and K. S. McKinley, “Immix,” Sigplan Notices, vol. 43, no. 6, pp. 22–

32, May 2008, doi: 10.1145/1379022.1375586.

[40] “ORB-SLAM3: an accurate Open-Source library for Visual, Visual–Inertial, and

Multimap SLAM,” IEEE Journals & Magazine | IEEE Xplore, Dec. 01, 2021.

https://ieeexplore.ieee.org/document/9440682

[41] “ORB-SLAM: a versatile and accurate monocular SLAM system,” IEEE Journals &

Magazine | IEEE Xplore, Oct. 01, 2015. https://ieeexplore.ieee.org/document/7219438

[42] “Detectsurffeatures,” MathWorks, https://www.mathworks.com/help/vision/ug/visual-

simultaneous-localization-and-mapping-slam-overview.html (accessed Jan. 7, 2024).

[43] “Bags of binary words for fast place recognition in image sequences,” IEEE Journals &

Magazine | IEEE Xplore, Oct. 01, 2012. https://ieeexplore.ieee.org/document/6202705

[44] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner Detection,” in

Lecture Notes in Computer Science, 2006, pp. 430–443. doi: 10.1007/11744023_34.

81

[45] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust Independent

Elementary Features,” in Lecture Notes in Computer Science, 2010, pp. 778–792. doi:

10.1007/978-3-642-15561-1_56.

[46] 12.2 Essential Matrix - CMU School of Computer Science,

https://www.cs.cmu.edu/~16385/s17/Slides/12.2_Essential_Matrix.pdf (accessed Jan. 8,

2024).

[47] M. A. Fischler and R. C. Bolles, “Random sample consensus,” Communications of the

ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981, doi: 10.1145/358669.358692.

[48] Y. Chen1, Y. Chen1, and G. Wang1, “Bundle Adjustment Revisited.” Accessed: May

27, 2023. [Online]. Available: https://arxiv.org/pdf/1912.03858.pdf

[49] “Bipartite graph of factors and nodes - MATLAB,” www.mathworks.com.

https://www.mathworks.com/help/nav/ref/factorgraph.html (accessed Jan. 08, 2024).

[50] L. Romero, E. F. Morales, and L. E. Sucar, “Solving the global localization problem for

indoor mobile robots,” in Lecture Notes in Computer Science, 2003, pp. 416–423. doi:

10.1007/978-3-540-24586-5_51.

[51] “Introduction.” https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/fox99a-

html/node1.html

[52] S. Huang and G. Dissanayake, “Robot Localization: An Introduction,” Wiley

Encyclopedia of Electrical and Electronics Engineering, pp. 1–10, Aug. 2016, doi:

10.1002/047134608x.w8318.

