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Abstract 

Advances in visual simultaneous localization and mapping (VSLAM) systems profoundly 

impact mobile robotics, augmented reality, and virtual reality domains [1] by enabling them to 

create accurate map representations of their surroundings and precisely locate themselves in it. 

VSLAM applications are frequently deployed in an embedded system where they often encounter 

operational challenges such as insufficient memory, restrictions on processing power due to 

resource constraints and adherence to stringent timing requirements etc. The limitations imposed 

by finite memory and the unbounded growth of dynamic memory represent critical issues that 

could restrict the scalability of SLAM systems in large-scale environment [2] that involve longer 

operational times and increased map complexity. This thesis addresses this issue in ORB-SLAM-

3 by presenting an automatic memory management strategy using the reference counting scheme. 

The testing and profiling on the EuRoC dataset demonstrate the viability of such a scheme with 

minimal execution overhead. Additionally, an alternative keyframe redundancy marking scheme 

is presented in this thesis with a time complexity analysis. 
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1. Introduction 

Over the last decade, there has been a significant surge in the advancement of autonomous mobile 

robotics, augmented reality, and virtual reality. This is primarily credited to the accessibility of 

affordable hardware. Simultaneous Localization and Mapping (SLAM) algorithms are ubiquitous 

among the autonomous mobile robot and AR/VR domain [3]. SLAM algorithm addresses the 

challenge of generating a map in an unknown environment using sensors like Lidars, sonars, or 

cameras while simultaneously determining the position/location of the host, typically a mobile 

robot or a virtual reality headset/controller, within the generated map. Visual SLAM systems, 

which rely on cameras as their primary input source, remain a popular choice for SLAM 

researchers because of their simple sensor configuration [3], resulting in increased accuracy and 

robustness. 

Despite these notable advancements in SLAM algorithms, more progress is needed, to 

improve the SLAM system design focusing on efficient memory storage, computational efficiency, 

and safety. Moreover, these systems are usually operated under strict timing and resource 

constraints setting [1]. From a memory management perspective, real-world and large-scale 

implementation of SLAM, such as VineSLAM, LeGO‐LOAM, and LOAM [4], often entail 

extended hours of operations, resulting in larger memory requirement due to the possibility of an 

unbounded growth of the generated map. Additionally, SLAM researchers have been exploring 

multimodal SLAM setups like MIMOSA [5] for increased accuracy and robustness under visual 

constraints, adding an extra memory overhead. Consequently, managing memory in SLAM 

systems remains an important open problem. This thesis primarily focuses on leveraging idea from 

programming languages such as reference counting to manage memory in ORB-SLAM-3 by 

reducing the resident memory footprint. 
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1.1 Thesis Contributions: 

This thesis addresses the problem of memory management on ORB-SLAM-3 by providing 

a framework for automatic garbage collection of dynamic memory objects such as keyframes and 

map points. We utilize a reference counting strategy for implementing safe deletion. Furthermore, 

we present an optimization over the mutex-based reference counting using a compare and swap-

based strategy. Additionally, we benchmark the performance of both references counted 

approaches using the profiling tool Tracy.  Contributions comprising of, implementation of 

reference counting, compare and swap and profiling and benchmarking of the system, i.e section 

4 represent joint work with Mr. Nitin Vinod. The thesis further delves into two experiments. The 

first hypothesis states that a relation exists between the deletion of a heap object and its number of 

references, thereby providing a mechanism to infer similar object lifetimes. The second hypothesis 

examines the viability of replacing a redundancy in the Local Mapping thread. 

1.2 Thesis Structure 

Section 2 overviews the existing SLAM system design, identifies the similarities among 

popular visual SLAM systems, and briefly describes memory management strategies, particularly 

in real-time systems, followed by background on reference counting. Section 3 gives a detailed 

description of the ORB SLAM architecture. Section 4 (joint work with Mr. Nitin Vinod) presents 

our garbage collection experiments and a reference counting-based memory management strategy 

for ORB-SLAM-3. We offer an optimization over the reference counting-based solution with the 

compare and swap technique. We conclude this section by discussing the performance profile for 

reference counting and comparing and swapping garbage collection. Section 5 explores an 

alternative framework for marking keyframes as bad(garbage) in the local mapping thread. Section 

6 summarizes the thesis and any future work. 
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2. Background and Related Work 

The challenge of meeting the stringent timeliness requirements [1] arises due to the real-time 

nature of the ORB SLAM 3 system. We begin this section by introducing real-time systems and 

design considerations for real-time systems, then understand SLAM systems, particularly graph 

SLAM systems followed by a typical Visual SLAM system. Subsequent sections explain memory 

management, types of memory management strategies, C++ memory model and some C++ 

features such as smart pointers as they are used in thesis in later sections. 

2.1   Real-Time Systems 

Systems that rely on the completion of computations and logical soundness are known as real-time 

computing systems [10]. These systems could have a function or a collection of functions that 

must adhere to strict deadlines to operate correctly. Real-time systems are required to control the 

system's behavior resulting from an external stimulus within strict temporal deadlines. In the case 

of a SLAM system, this involves mapping (creating a map of an environment) and localization 

(calculating the pose (position and orientation) of a robot within a map) using camera images. The 

timing requirements for processes/functions in designing SLAM systems are categorized as soft 

and hard. Soft requirements are the processes in a real-time system that can be performed even 

after the deadline has passed. On the other hand, processes that cannot miss a deadline are called 

hard requirements. Subsequently, real-time systems with hard requirements are called hard real-

time systems, and those without hard requirements are termed soft real-time systems. 

According to Kopetz & Steiner et. al [9], a well-designed real-time system must satisfy 

functional and temporal requirements. We briefly go over each of these requirements below. 
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2.1.1 Functional requirement:  

Functional requirements are the tasks/functions a real-time system must perform every cycle. The 

author [9] categorizes them into, 

• Data collection requirement 

Real-time systems are required to complete the task of data collection and the signal 

conditioning algorithm to ensure that the system behavior is appropriate even in rare 

transient overloads. 

• Direct digital control requirement  

Real-time systems require the execution of the control algorithms to complete in time to 

provide the actuating variables, such as the speed of a vehicle or the actuating speed of a 

motor. 

• Man-machine interaction requirement 

In typical safety-critical applications, the real-time system needs to relay the system's state 

through data logging. 

 2.1.2 Temporal requirements: 

Temporal requirements in a real-time system result from control loops of an actual time process, 

such as behavior control of an automotive engine that requires stringent temporal demands. These 

requirements are termed as explicit requirements [10]. Real-time systems designed for human 

interaction have less stringent temporal demands as the human perception delay is estimated to be 

50-100ms [9]. These requirements are termed implicit requirements and correlate to soft deadlines. 

A system designer should also account for the following: context-switching overhead, dealing with 

limited priority levels, and jitter, which is the variation in completing a periodic task while 

designing a real-time system. 
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2.1.3 Real-Time Challenges in SLAM System 

For a SLAM system to be functional, it is essential for its localization and map-building modules 

to work in real-time as, a robot’s essential functions such navigation, and interaction with 

surrounding environment directly depends on its latency. Below we discuss various components 

of SLAM systems as real time systems. 

• Sensor Data Processing: 

o Latency Concerns and Timing Concerns: The data acquisition process in SLAM 

systems using the information from sensors such as cameras, LiDARs, IMU sensors 

etc. needs to be processed in real-time. Delays in processing of the data acquisition 

can potentially cause outdated maps and inaccurate localization. Hence timing of 

sensor data processing needs to meet the real-time constraints. 

• Map Building and Optimization Updates: 

o Latency Concerns and Timing Concerns: The SLAM system after processing the 

sensory information creates an intermediate representation of the sensory 

information in the form of a map. This map needs to be real-time as it effects the 

localization task and effects accuracy. 

• Actuation Control and decision making: 

o Latency Concerns and Timing Concerns: The localization information that the 

SLAM system provides, is used for the decision making of the trajectory and the 

actuation system. The inability of the SLAM pipeline to meet the timeliness 

constraints effects the robot’s ability to respond to the environment quickly. 

Hence latency and timing challenges faced by SLAM systems need to be addressed for a robot to 

be successful in its operation. 
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2.2 Understanding SLAM and Visual SLAM systems  

The SLAM problem attempts to solve two separate tasks, localization, and mapping.  

Localization problem can be categorized into three separate problems, 

• Position Tracking (local localization): 

Given a robot’s initial pose, the algorithm would keep estimating the robots position within 

the map using the sensor information [50]. In this problem the uncertainty related to the 

robot is limited to the region surrounding the robot. 

• Global Localization:  

Global localization task is to estimate the position of the robot in the map without knowing 

the initial coordinates of the robot [50]. The amount of uncertainty in this problem is much 

greater than position tracking and thus global localization is a much more challenging. 

• Kidnapped Robot Problem: 

This Localization is the same as global localization where it finds its position on the map 

with an exception that the robot could randomly move from its current location and 

switched to a new location and the robot should recover its location [51]. 

In general, localization is the challenge of estimating the robot’s pose (position and orientation) in 

a (given) mapped environment [52]. Possible solutions to the localization problem are probabilistic 

methods such as monte Carlo localization (MCL), extended Kalman filter, and machine learning 

techniques such as Convolutional neural network (CNN) used in conjunction with MCL for 

estimating the robots pose [52].  

Mapping problem involves the process of producing a map of the environment, provided 

we are given the robots pose and has access to the sensor information and movement of the robot. 

The mapping task is challenging as it uses finite state variables of the robot such as robots’ position 
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and sensor information to create a map which lies in the continuous space. As a result, there are 

infinitely many variables used to describe the map.  

In Simultaneous Localization and Mapping (SLAM), the robot performs two separate 

tasks simultaneously, i) localization which means a robot, given its map tries to locate itself in it, 

ii) mapping is the task of generating a map of its surroundings using the onboard sensors. In real-

world scenarios we do not have the robots poses nor do we have the map and hence we use SLAM 

algorithms to solve this problem. The uncertainty in the map and the robot's pose due to noise in 

the robot's motion and sensor readings causes a correlation between the errors in the robot's pose 

and the map [7]. Applications of SLAM algorithms include robot vacuum cleaner such as Roomba, 

where the environment of the vacuum keeps changing and the robot equipped with its sensors 

maps the room and the robots pose. Other application are the Self-driving vehicles with its 

environment being on the roads, underground mines, aerial surveillance, or mars rovers where we 

do not have the position of the robot nor do we have the map of the environment. 

SLAM researchers divide the SLAM problem [6] into the front-end processes: 

Transforming the raw sensor data into intermediate representation such as probability distribution 

of a landmark (distinctive identifiable points in an image) based on the sensor information and 

backend processes: Using the intermediate representation to perform the optimization and state 

estimation problem. Based on the mathematical model, filtering approaches and optimization 

techniques SLAM algorithms are classified into five categories [7], 

• EKF SLAM (Extended Kalman Filter SLAM) 

• SEIF SLAM (Sparse Extended Information Filter SLAM) 

• EIF SLAM (Extended Information Filter SLAM) 

• FastSLAM 



8  

 

• GraphSLAM 

We will dive deeper into GraphSLAM algorithms as ORB-SLAM 3 falls under this category.  

The diagram below is how a simple graph is supposed to look like. 

 

 

 

 

 

 

In the above graph the blue triangles represent a pose at their respective time steps. The 

solid line connecting two nodes(pose’s) is called a soft motion constraint, where soft indicates 

uncertain measurement. There are two types of soft constraints namely motion constraint which 

connects two robot poses and measurement constraint which is a dashed line connecting the robots 

pose and a feature with a dashed line. A star represents a feature. As the robot moves in the 

environment the graph size keeps growing. The constraints move the robot pose based on the 

certainty of certain measurements. The goal is to find the best node configuration and minimize 

the error in the graph. The final graph finds the robot's most likely path across the environment 

and displays every position and landmark that it encountered, together with an environment map 

[7]. The GraphSLAM’s front-end tasks involves the construction of the pose graph using the 

odometry and sensor measurements. The front-end of SLAM algorithms greatly differ based on 

the type of sensor used to perform the task. The back-end of the GraphSLAM is where the 

optimization of this graph happens and the result is supposed to be the most probable robot poses. 

The back-end of SLAM algorithms largely remains the same among different applications. 

𝑥2  

𝑥1  

𝑥0  

Figure 1: Simple Pose Graph 

𝑚1

𝑚2  
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Another way to represent this graph instead of robot’s pose is by using a factor graph which is 

beyond the scope of this thesis. The most popular back-end libraries are g2o, g2sam and ceres. 

ORB-SLAM-3 uses g2o for its back-end computations. In visual SLAM algorithms bundle 

adjustment is the popular choice for optimization of the reprojection errors in the pixel coordinates. 

GraphSLAM has several advantages over other algorithm techniques, such as decreased 

onboard processing capacity requirements and increased accuracy [7]. GraphSLAM methods 

estimate an environment's complete path and map rather than simply its most recent pose and map 

because they handle the full SLAM problem [7]. This makes it possible to incorporate 

dependencies between the current and past positions, increasing accuracy and facilitating the 

handling of loop closure. [7]. Furthermore, in improves time and memory complexity over EKF 

techniques [7]. Despite these advantages the complexity of the graph increases with increase in 

operational time(large-environment). 

2.2.1 Cameras used in SLAM systems 

Visual SLAM uses cameras to solve the localization and map building problem. The camera 

captures a continuous stream of images at a prefixed rate. The type cameras used can be divided 

in to three categories and we will the advantages and disadvantages of each camera model, 

1. Monocular  

Monocular cameras are single camera setup used for SLAM [6]. The benefits of using a monocular 

setup lies in its easy setup and low cost. The disadvantage is that we get a low-resolution depth 

information of a scene. The depth information is calculated from a scene using motion i.e. multiple 

images are used to determine the relative depth from disparity calculation.  

2.  Stereo  
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A stereo camera setup is preferred over the monocular setup, to overcome the low resolution in 

the depth information (section 1.1.2 [6]). The stereo setup is inspired from the binocular vision of 

the human eyes in determining the depth information. The drawback of stereo system is that it is 

complicated to setup. Furthermore, it requires a complicated calibration process to maintain 

accuracy. 

3. RGB-D 

Depth camera setup is based on the design of laser scanner and works on the principle of time-of-

flight infrared nature of the light to determine the depth information (section 1.1.2 [6]). This setup 

however suffers from narrow field of view and works in indoors setting. 

2.3 Typical Visual SLAM structure. 

As mentioned in the previous sections, the SLAM task is a complex algorithm, and can be broken 

down into two sections for easier understanding and processing. These sections include the front-

end used to process the sensory information to come up with the intermediate representation, and 

we have the back-end used to perform the optimizations on the intermediate representation. The 

diagram below [6] provides a simple understanding of visual SLAM structure. 

 

 

 

 

 

 

 

 

Figure 2: Visual SLAM Structure [6] (figure taken from the introduction to Visual 

SLAM book fig1.7) 

Stream of 

images 

FRONT-

END 

BACK-END 

RECONSTRUCTLoop 

Closing 
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We will look each block of the above diagram in detail.  

2.3.1 Front-End  

Data Collection and input pre-processing 

Data collection can be done using any of the above stated cameras in section. The front-end task 

processes the incoming stream of images, to find correspondences in the environment and estimate 

the motion and form an intermediate representation for further processing by the back-end. 

Servières et al [8] defines the data collection process, as an input search problem, where the aim 

is to search for meaningful information from the input image stream. There are two ways to 

perform data acquisition as follows, 

Direct Methods 

Direct search method stated in Servières et al [8], which uses raw pixels intensities as features 

which are used to create pixel maps. A pixel map is a three-dimensional representation of the 

environment, where each pixel value is assigned a depth value. The computational demands for 

using direct methods and performing mapping often requires parallelization and GPU support [8]. 

This method directly processes the position and the structure of the environment using numerical 

optimization techniques. Pose-graph optimization, loop closure and keyframe management are 

common modules present in both direct and indirect methods [24]. 

Feature Based methods 

Feature based approaches, encode information from an image, to leverage the easily recognizable 

geometric points of interests, such as, edges, corners, or curve segments etc. Feature based 

approaches utilize geometric constraints for matching descriptors such as Harris corner detectors 

[17], SURF [15], SIFT [14], ORB [16]. They are robustness to noise, illumination, rotation, and 

other inaccuracies in the image and are most commonly type in SLAM systems. 
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Initialization 

The initialization performs the setup of the local map and camera pose for a visual slam system. 

The initialization also generates the first global world frame for the system. The next task involves 

triangulation of key points. In stereo camera the two-view reconstruction is employed to 

triangulate points where as in monocular setup this step is delayed until two keyframes are 

processed. Triangulation of points is a process performed to reconstruct the three-dimensional (3D) 

coordinates of a scene from their (2D) projections. The common algorithms implemented by 

SLAM systems include five-point algorithm, and eight-point algorithm.  The essential matrix is 

computed for a stereo image and as soon as two keyframes are processed the essential matrix for 

the monocular camera is also computed. Essential matrix relates the 2D image points of a scene 

observed in two different images. Furthermore, SLAM systems also use approaches to relate the 

homograph matrix used to compute transformations in planar scenes and fundamental matrix used 

to compute transformations for general scenes.  

Feature Matching/Pose tracking 

Computing the matches between two successive images is the purpose of the tracking/feature 

matching step. The tracking phase can be performed in three ways, depending on the dimension 

of the extracted features, i) A 2D matching is performed that utilizes techniques such as pair wise 

Euclidean distance square or normalized cross correlation, and choosing the ones with the lowest 

values. These methods however are very computationally expensive with quadratic time 

complexity. These methods are seen in systems that perform pure visual odometry [8] ii) 2D -3D 

matching [8] is commonly used technique in VSLAM system that are purely monocular because 

of lack of depth information from single images. These processes estimate the coordinates of a 3D 

point from successive images and use projection geometry to make 2 D correspondences with the 
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new image. iii) The third method is used when the SLAM system has a stereo camera setup that 

provides depth information instantly to make the 3D-to-3D correspondences. However, these 

techniques are prone to reprojection errors and are still open research areas. 

Mapping:  

The matched features or pixels are supposed to be mapped onto the 2D or a 3D reconstruction 

graph of the environment. Based on the method of intermediate representation, there exits two 

ways to build graphs, sparse graph representation, and dense graph representation, as per Servières 

et al [8]. Sparse graph representations are preferred when an application demand is to acquire the 

most accurate trajectory of the robot. Dense graph representation is preferred when a 

reconstruction of the environment is desired. A combination of both dense methods and sparse 

method is also stated in [8, 27], in which only specific required areas of a graph are dense.  

The SLAM systems that use monocular camera setup require some time for processing 

landmark matches. To solve this PTAM [18] suggested a partial computation and placement of 

poses. The direct methods of creating maps use the 3D world coordinate and map it voxels in the 

map. However, pixel mapping has been found to inaccurate due to lack of gaussian probability 

factorization. Alternative methods to provide accurate representation and accounting for 

nonlinearity have been suggested in “homogeneous point (HP), anchored homogeneous point 

(AHP), and inverse depth parameterization (IDP)” [8]. 

ORB SLAM - 3 system builds a sparse graph representation using its ORB features. Map 

building can also be performed with a collection of spatial points representing the environment or 

a map of trajectory. Xiang et. al [6] categories maps into metrical maps and topological maps.  

Metric maps [6] 
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Metrical map is supposed to replicate the exact metrical location of objects found in the map. These 

maps are further classified as sparse maps or dense maps [6]. Sparse metric maps perform selective 

representation of the environment. A similar categorization of the map by Servières et al [8] is 

known as semi dense representation of the map. The dense map on the other hand is supposed to 

represent as many details as possible about its environment. The dense map can be a 2D dense 

map in the form of an occupancy grid or it could be represented in a 3D form know as voxel grids. 

Metric maps are known to be storage expensive and continues to be an active area of research. 

Topological Maps [6] 

A topological map is a graph generated by the mapping algorithms with nodes and edges. These 

relational maps are supposed to provide efficient representation for connectivity explanations. 

Outlier Management in graph: 

Due to the nature of estimation in the intermediate representation creation, i.e., converting real 

world environment, which continuous in nature, to a discrete representation, causes outliers to be 

added to the graph. These outliers in SLAM systems are typically removed using a function 

estimation technique known as Random sample consensus (RANSAC). The RANSAC technique, 

picks randomly possible observation candidates, and estimates a function, following which a 

consensus is performed to find the best fit. This RANSAC technique is applied over the camera 

motion model. Most of the SLAM algorithms also add more candidate nodes than necessary 

(keyframe or mappoints) to maintain robustness of the system. However, these additions add a 

considerable amount of memory cost to the system. Therefore, redundancy detection, loops are 

added in SLAM architectures to detect redundancy and delete such observations from the map. 

Loop Closing: 
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The loop closure, is an algorithm, applied to a robot’s graph or trajectory, when the robot revisits 

a known environment. The algorithm applied aims to apply corrections wherever necessary to the 

graph, where there is an accumulation of drift. Loop closing step is performed in two steps, i) Loop 

detection: given the current keyframe features or pixel values, searching through the intermediate 

representation graph for similarities. This is also known as place recognition. In situations where 

robot makes sudden movements, can lead the robot losing its position in the graph. Place 

recognitions is used in similar situations to resocialize the robot. Most SLAM systems use Bag-

of-words representation, provided by the C++ library DBoW2 [43] to find matches, ii) Loop 

Closure: Upon detection of a loop, the total accumulated drift for graph is computed, this total 

amount of drift is then distributed appropriately for each node of the graph to complete the loop 

closure.  

Relocalization: 

The relocalization is similar to loop closure where, if the robot has lost its position in the graph 

then the place recognition algorithm similar to loop closing is applied. However, unlike loop 

closure, relocalization is only triggered when tracking is lost. In majority of the implementation, 

loop closure is performed in separate thread due to its computational complexity. 

2.3.2 Back-end 

Primarily, the back-end components of a SLAM system are tasked with processing the noise and 

uncertainty present in the graph, and optimizing it, and to uniformly distributing the weights of 

these uncertainties among each node(pose/keyframe). The uncertainty could include the robot’s 

trajectory or the map environment. 

Bundle Adjustment (BA): 
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BA is a state estimation technique, that is used to estimate 3D points in the environment based on 

the extracted features and camera images [48]. It particularly estimates the precise orientation of 

the camera poses in the graph. Based on the prior/existing estimates of the position of the 3 D point 

coordinates and the camera parameter matrix (essential matrix/ fundamental matrix) a reprojection 

of the actual points in the world are introduced on to the graph. An error parameter know as 

reprojection error is used by bundle adjustment to find the best possible estimates. This problem 

is known as the Large least squares problem which requires solving large system of equations to 

correct the reprojection error. The resulting solution is proposed to be a statistical optimal solution, 

with an assumption of the noise to be gaussian.  

Graph Optimization: 

The graph used in most SLAM systems is a factor graph (bipartite graph) representing the 

factorization of a function [49]. This reduces a large function into product of its component 

function. In SLAM systems this function is a joint probability distribution function of the poses 

estimated by the front end of the SLAM system. This joint probability function is then applied to 

algorithms to provide inferences of the position estimates. 

2.4 Memory Management and Concurrency Control 

Efficient management of critical resources in a computing system is crucial, especially in real-time 

systems. Because memory is finite in a computer, it is common for programs to exceed the size of 

the onboard memory. Hence, we need methods to reuse memory and we need to perform 

reclamation of memory safely. Programming languages provide developers with the necessary 

mechanisms to manage memory in their application. Selecting a programming language is a 

critical decision that influences the success of a software project. It plays a crucial role in 

performance of the application, development efficiency, scalability, and long-term sustainability.  
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Programming languages are designed in two ways to address the task of memory 

management: automatic memory management and manual memory management [20]. Manually 

managed languages such as C and C++ provide developers with explicit control over the allocation 

and deallocation of memory. On the other hand, automatically managed languages, such as Java 

and Python have mechanisms such as garbage collection that automates the task of manual 

memory management. These languages mark the memory that is no longer in use, and reclaim all 

marked memory locations. 

Real-time systems are generally written in C/C++, where memory is managed manually, 

leading to the following potential challenges like, inability to ensure type safety when converting 

void pointers to any pointer, passing raw pointers across different threads, improper ownership 

transfer, and unintended extension of the lifetimes of objects present notable challenges in a C/C++ 

codebase. Hence, establishing methods for efficient memory reuse and implementing secure 

memory reclamation processes are essential steps to enhance systems robustness and reliability.  

For a language to exhibit memory safety the Arthur et .al [19] states that it offers spatial 

safety (bounds checking), and temporal safety (every memory block allocated should have a 

unique identifier). An ideal programming language should [19] i) raise errors due to improper 

memory access, ii) enforce only unique identifiers to memory locations and enforce immutability 

to these identifies, iii) restriction in revealing the identity of an identifier preventing any memory 

misuse, iv) enforcing initialization of every new memory location preventing accesses to 

information in a previously freed memory location. 

Before we dive deeper into the types of automatic memory management strategies let us look at a 

typical program and data layout. 
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2.4.1 Types of Allocations and Typical program layout 

Most of the modern programming languages provide static, stack and heap allocations [27]. The 

typical data layout in memory is given by the following diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

Static Allocation [27]  

In static allocation the data static data objects are stored and its layout is determined at compile 

time. Additionally, all the static variables are bound to the initial memory locations. The advantage 

of the static section is that it is very fast and does not require memory management as it does not 

support runtime allocations. However, the size of allocations and variables needs to be fixed at 

compile time leading to limited functionality. Another disadvantage is that it does not support 

recursion because the value of recursive variable is always fixed thus forbidding recursion. 

 Stack Allocation [27] 

Stack 

Heap 

Static 

Program Code 

Figure 3: Memory Layout 
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The stack provides a way to perform recursion, by utilizing a mechanism called as activation 

records or stack frames. In this allocation type, for every new subroutine call, a new stack frame 

is created, and pushed on to the stack. The return of a subroutine triggers the deallocation of the 

stack frame. The stack model also allows parameters of different size, which allow creation of 

variable stack frames sizes. In programming languages like C/C++ or java the stack memory 

management is fully automatic. The disadvantage of stack allocation is that the size of a stack 

needs to be determined at compile time causing a limitation in providing runtime allocation 

capabilities. 

Heap Allocation [27] 

 The heap memory introduces runtime capabilities which allows creation of objects at runtime and 

returning a pointer of the allocated type. Heap memory also allows variable size data structures to 

be created at runtime. Allocating data in the heap, also avoids causing stack overflow. The design 

of heap however, changes the responsibility of managing memory from the language to the user. 

This resulted in issues like memory leaks and dangling pointers. In the next section we shall look 

at manual memory management and automatic memory management. 

2.4.2 Manual Memory Management 

Manual memory management provides the developer with the capability to manage dynamic 

memory(heap) directly. The new construct in C++ provides developers with the capability of heap 

allocation and delete to deallocate memory. However, manual memory management causes two 

critical issues i) memory leaks ii) dangling pointers 
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2.4.3 Automatic memory management: Garbage collection 

The contents of the following sections are based on The Art of Automatic Memory Management 

by Jones et. al [20], Memory Management and Garbage Collection CS 4120 Spring 2023[21] and 

Dmitry Soshnikov blog on writing memory allocator [22]. 

Garbage collection automates the issue of memory management at a language level and 

solves the two critical issues from the manual memory management namely memory leaks and 

dangling pointers. However, it should be noted that, any memory automation comes with a tradeoff 

such as we storage for speed or speed for storage. In garbage collection, we store meta information 

on each object which is known as the object header. For example, if a user were to request 5 bytes 

from a managed language, then the resultant object returned could have a size of approximately 

14 bytes to 24 bytes [23, 22] or even more. 

The contents of the object header could have the following, a mark bit/flag bit, reference 

counter etc. depending of the method of garbage collector we use. The location of the object header 

could be at the before the user data or it could be at the end. 

The figure below provides a visual example of the 5-byte allocation. 

 

Figure 4: Five-byte allocation with object header 

Every garbage collector can be described by, three components namely, the mutator, the collector 

and the allocator according to Jones et. al [20].  

Mutator 
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For a garbage collector, a mutator is the main program or the user program. The user program 

operates on the heap allocated objects. However, the mutator does not allocates the heap objects, 

another module known as the allocator performs the allocation. The mutator in a multi-threaded 

application can have more than one thread manipulating the heap. 

Allocator 

The allocator directly manipulates the heap by acquiring the resource from the operating system, 

and it also assigns the object header. Allocation for memory is performed by a sequential allocator 

(bump allocation) or a free list allocator[31].  The sequential allocation method is used by the 

mark-compact, and generational garbage collector etc. whereas the free-list allocator is used by 

the mark and sweep and the reference counting garbage collectors [31]. 

Collector 

The collector or the garbage collector, is responsible for reclaiming the memory and it also directly 

manipulates the heap. In a multi-threaded implementation, the collector can be implemented using 

multiple threads. The mutator is put in a “Stop the world” Jones et. al [20] state where all mutator 

threads are blocked when the collector processes garbage on the heap. Such garbage collection 

cycles are termed as “GC pauses” [30]. It should be noted that not all systems can have such pause 

cycles, for example real-time systems, hardware drivers and transactional processing cannot 

tolerate GC pause cycles [34]. The garbage collectors are classified as tracing collectors and direct 

collectors. The garbage collectors that traverse the heap to classify live objects are called the 

tracing collectors. Tracing collectors requires a GC pause cycles to perform heap traversal and 

deletion. Direct collectors do not require gc pause cycles and examples of direct collection include 

reference counting discussed in greater detail in the section. 
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Before we explore garbage collector in a greater detail, let us understand a few 

terminologies  

Root: A root is considered as the starting point of the object graph or the references that are live 

and accessible from the stack. 

Liveness: A object in the heap is alive if it is accessible from the mutator 

Reachability: An object is considered reachable if we can traverse the object graph from the root 

node at reach that object. 

2.4.3.1 Mark and Sweep Garbage collector [20] 

The mark and sweep Garbage collector are a tracing garbage collector, that searches and marks 

live objects on the heap [20]. The mark and sweep collector work in two phases, i) mark phase that 

marks live objects, ii) the sweep phase that reclaims the garbage. The mark bit, is set when the 

object is alive in the object header. All nodes that are marked as garbage are freed and added to 

the free-list for future consumption. Another important to note is that the mark sweep algorithm is 

a non-moving collector. This means that the objects after the GC cycle stay at the same location. 

Mark and sweep algorithm cause heap fragmentation that causes increased cache misses. 

2.4.3.2 Compact Collector 

Mark Compact 

Mark compact garbage collector is supposed to provide a better cache locality and faster memory 

allocation than the mark and sweep algorithm. The mark compact collector works in two phases, 

i) mark phase which traces the heap and sets the mark bit of the live objects. ii) the compact phase 

moves the live objects. The objects in a mark compact collector, have a forwarding address field 

in its header which denotes where an object is moved. This is performed to reduce fragmentation. 

Another benefit is that we get to use the bump allocator which results in faster allocations. The 
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mark compact collector, however is a slower garbage collector as it may require multiple traversals 

of the heap. 

Copying collector 

The copying collector offers a fasters garbage collector than the mark compact collector. 

Furthermore, it provides bump allocation which results in a faster allocation. The copy collector 

however trades storage (half of the heap reserved for collection) for speed. The heap is divided 

into two equal parts, i) from space (area for allocation) and ii) to space (area reserved for garbage 

collection). The copying collector works in four stages, i) The first phase, is the tracing stage or 

copying stage where we traverse the object graph, copy all the live object pointers from the from 

heap to the to heap. This process is fast as the bump allocator is use in the to section of the heap 

for allocation. ii) Then we have the forwarding address phase, where the object header of the heap 

object in the from section is added the forwarded address of the copied object present in the to 

portion of the heap. iii) the next phase is the child pointer fixing stage, where all the child pointers 

of the previously allocated space are transferred to the new section. This process is repeated until 

all child objects are moved to the from section of the heap. iv) The final step is the swapping step 

where the sections from, and to are swapped by changing the bits of each section. 

2.4.3.3 Generational Collector [38] 

The generational garbage collector is based on the hypothesis, which states that most objects die 

young [38]. These typically include local temporary variables whose lifetime is like that of the 

local stack variables in the subroutine, however, these variables are allocated on the heap. The 

generational garbage collector works by having two separate heap sections i) young (Eden) 

generation and ii) old (Tenured) generation. The objects in the young regions are copied to the old 

section when they survive several cycles heap collection. The young generation section is garbage 
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collected more frequently than the old generation section. The garbage collection for the young 

section is known as the minor cycle whereas the one for the old section is called the major cycle. 

In situations where we have a pointer from an object in the old region to an object in the young 

region, we term it as an intergenerational pointer. In situations where the root link to such an object 

in the young region is lost, however if it still contains an intergenerational link, then such an object 

needs to be saved during the GC cycle of the young region. This is done by a write barrier which 

saves the object in the young section from deletion. 

2.4.3.4 Immix Collector [39]   

The immix garbage collector also known as mark region garbage collector is a modern garbage 

collection algorithm [39]. The immix GC is a tracing collector which attempts to provide better 

cache locality compared to the methods seen thus far, reclaim memory faster than the methods that 

we have seen yet. Immix GC also tries to overcome the challenges faced by the copying GC. The 

immix garbage collector partitions the heap granularly. It begins by creating blocks in the heap. 

The bifurcation can be predetermined or can be done on demand when current block is exhausted. 

Further, the block is divided into lines. A block is said to be free if all lines in a block are free.  A 

block has several lines to be free and rest occupied or the whole block can be occupied. The 

garbage collection begins with the marking phase which is done during tracing. The marking is 

done in three ways, a region(block) is checked if the alive bit is set, if it is not set no traversal is 

needed. However, if a block is set to alive, then the lines inside the block is checked. If a pointer 

from the root exists to a line, then traversal is performed to mark all live objects. Then all the lines 

that are not set to alive are freed. This completes the mark-region and sweep phase. Then the 

copying of all live objects is done to a freed block, by copying and forwarding the child address 
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like the copying collector. This finally results in a defragmented heap and the previous block is 

reclaimed by the mutator. 

2.4.4 Reference Counting 

The reference counting collector is a direct collect. The garbage collector strategies that we have 

seen in the above sections, traverse the object graph to identify live objects. In case of a reference 

counting collector, are directly work on the object to determine garbage. The reference counting 

scheme works on a invariant which is that an object is garbage if and only if its reference count is 

zero and in all other cases it is a live object. For the reference counting scheme to work every 

object must have slot in its object header that represent the reference count. 

A simple reference counting scheme is given below taken from Jones et. al [20], 

REFERENCECOUNTING() 

addReferece(ref): 

 If ref  ≠ null 

     rc(ref)++ 

deleteReferece(ref): 

 If ref  ≠ null 

    rc(ref)-- 

     If(rc(ref) == 0) 

           free(ref) 

  

Now we shall look at the methods of reference counting found in the Art of Automatic Memory 

Management by Jones et. al [20]. 

2.4.4.1 Deferred reference counting 

Deferred reference counting was introduced to mitigate the cost associated with manipulating the 

reference counts. The algorithm postpones reference counting of local variables, such as registers 

or stack slots, as most pointer loads are to these variables. However, this may introduce in 

accuracies in the maintained reference counts. To maintain accuracy the deferred reference 
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counting (RC), the deferred RC has pauses cycles to correct the inaccuracies and maintain precise 

reference counts.  

The deferred RC uses a Zero count Table (ZCT), which keeps track of the objects whose 

reference count goes to zero. Objects placed in the ZCT are not deleted immediately due to possible 

inaccuracies in the deferred operations. As soon as the pause cycle is introduced the objects in the 

ZCT are checked for their true count by traversing the roots and marking all referenced objects.  

This reference counting method although reduces the cost associated with reference 

counting   local variables, this strategy introduces the pause cycles where object headers must be 

updated and must be done atomically. The cost associated with performing atomic updates are 

expensive and should be accounted when planning to use a deferred counting strategy. 

2.4.4.2 Coalesced reference counting  

The coalesced reference counting was introduced to reduce the cost associated with deferred 

reference counting’s atomic updates. It is based on the observation that when an object goes into 

intermediate stages, the reference count of such stages can be coalesced into two stages, the before 

stage and the after stage. The intermediate increments are canceled out with the decrement 

reference counting counts. The author provides an example as follows, let us assume an object X 

that refers to an object 𝑂0. The object 𝑂0 in turn refers to objects 𝑂1,𝑂2,… 𝑂𝑛. The reference count 

of object 𝑂1 increment is cancelled by its decrement and so on, which can be omitted. The method 

places eliminate such counts by copying the objects to a local log before an intermediate 

modification. This local log is also known as a local buffer. The method begins by placing a clean 

object (object whose pointer fields is not modified) onto the local log. This means that the objects 

address and the pointers that it possesses are placed onto the buffer. To avoid duplicate entries, the 
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source object address is checked if it is dirty or not. If not, dirty it is logged. This algorithm also 

guarantees thread safety where every thread local buffer is supposed to hold the same information.  

This reference counting scheme also requires a stop the world event to process the local 

buffers to ensure consistency. During the pause cycle the local log is synchronized among all the 

threads, and any duplicate entry, due to concurrency may exist, but is ignored if it has been 

accounted for. Before the references count is updated the algorithm check for dirty entries. If such 

dirty entries exist the count of the children are incremented followed by a decrement. Any 

reference count at this stage if it reduces to zero, then the object is freed and its entry is removed 

from the log to avoid double frees. 

2.4.4.3 Handling Cyclic structure using reference counting 

The major disadvantage with reference counting is that it cannot deleted cyclic structures. 

Common ways to deal with such cyclic structures can be done by combining reference counting 

with a tracing collector. The cycles for the tracing collector do not need to be very frequent and 

can be performed only to delete cyclic structures and all other objects are deleted by reference 

counting. Another popular method to reference counting cyclic structure involves having different 

types of references. We could define weak references and strong references where we use a weak 

reference to close a cycle. A weak reference by itself would not increase its reference count. 

However, a reference counting scheme based on weak references quickly becomes vulnerable to 

memory leaks and premature deletion if not placed correctly. The most widely used strategy to 

deal with cyclicity is the trial detection algorithm [20]. Its algorithm takes advantage of the 

observation that in using a tracing collector in conjunction with the reference counting scheme, the 

tracing collector does not require scanning the whole object graph, rather it can accomplish 
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detecting cycles by tracing the portion of the graph that has the highest probability of being in the 

graph. 

Advantages of Reference Counting 

Since the managing of pointers, to objects, are not concentrated at specific time instances, the time 

cost for collecting garbage is distributed through the program lifetime. Memory is also recycled as 

soon as the reference count drops to zero leading to quick deletion as opposed to garbage collection 

where deletion happens only during GC cycles. According to the author Jones et. al [20] reference 

counting has found widespread adoption in languages like objective-c, swift and in C++ it is used 

in smart pointer implementations and applications like photoshop. Furthermore, it is also widely 

used in file manager of operating systems.  

Disadvantages of Reference Counting 

To maintain consistency in the reference counting atomicity of the increment and decrement 

operations are required.  Adding atomic increment and decrement operation on every heap with 

references adds a considerable overhead on the mutator int terms of time and computational cycles. 

In contrast garbage collected programs do not impose such costs on the user program or the 

mutator. As seen from the above examples reference counting alone cannot be used for deleting 

cyclic structures. Since reference counting requires an integer to be maintained for counting, it 

adds a storage overhead on every heap object allocated. 

The next section explains how language developers define memory models to control concurrency 

in the applications. 

2.5 Memory model 

A memory model provides the basis for how threads should interact with shared data and highlights 

the possible read and write operations in a concurrent program, thereby offering semantics to 
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shared variables [29]. Furthermore, it accounts for possible reordering done by the processor, 

memory system and compiler. According to Manuel et. al [28] reasoning of a memory model 

requires distinguishing three different components i) the program a developer writes, ii) the code 

the compiler generates and iii) the operation the CPU performs while executing the code. A typical 

workflow of a program C++ program begins with a collection of logical statements written by a 

developer, which is compiled, optimized. The optimization process could possibly involve 

reordering of statements which are not supposed to change the semantics of the program. These 

side effect could result in unintended results such as security vulnerabilities and memory issues 

etc. [33], especially in a multi-threaded system. The role of a memory model is to place restriction 

on these reordering’s so that the developer can reason through the likely behavior of a multi-

threaded program.  

A memory model must define legal reads, writes to shared memory location simultaneously 

Sarita et.al [29]. It should also provide visibility of the changes made between different threads 

when changes are made to the program by the hardware or the software. A memory model serves 

as a template for coordination between a developer, compiler, and the hardware. Java developed a 

concurrent memory model around 1995[The Java Memory Model (umd.edu)] attempting to 

provide type safety and security guarantees which severed as a basis for C++ 11 memory model. 

C++ 11’s memory model is a part of the core language and 𝑠𝑡𝑑: : 𝑡ℎ𝑟𝑒𝑎𝑑, the primary mode for 

multithreading in C++ is also part of this standard library. In summary the C++ memory model 

should provide, sequential consistency guarantees. 

2.5.1 Sequential consistency Memory Model 

The sequential memory model borrows its ideas, from the memory access mechanics of a single 

threaded application. In a Single threaded application any read instruction, results in a fetch 
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instruction, of the most recent write value to a memory location [28, 29]. Most recent means the 

last write instruction according to the program text [28, 29]. In a multi-threaded program, if we 

were to follow similar mechanics, where we combine all the instructions from the program, and 

order them precisely(interleave) into a single order [28, 29], then the resulting multi-threaded 

program would follow the Sequential consistency Memory Model.  The author Sarita et.al [29] 

states that such a memory model suffers from deficiencies, i) The practical implementation of such 

a model is not feasible as it is very computationally expensive and as per Manuel et.al [28] 2018, 

none of the hardware architectures provide a complete sequential memory model. ii) Another noted 

deficiency stated by Savita et.al [29] is that the current, hardware and the compilers often make 

memory access visible to other threads that may not be in order thus violating the sequential 

consistency rule.  

We shall now look at a hardware model and the C++ memory model which are taken from Manuel 

et. al [28]. 

2.5.2 Relaxed/weaker Memory Model  

1. x86 [28] 

The X86 is a memory consistency model used by the intel x86 architecture and it describes the 

interaction between different hardware threads and the memory. The memory model can be 

simplified as given below, 

• Storage Subsystem: The storage subsystem includes a shared memory, a global lock and 

write buffers per hardware thread and each thread has its own write buffer [28]. 

• Global lock:  indicates when a particular hardware thread has access to memory [28].  

• Store Buffer: It refers to a First in First out structure. Whenever a particular thread tries to 

access its store buffer, it is supposed to fetch the most recent buffered writes. If a threads 
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store buffer is empty then the information is fetched from the shared memory. Store buffers 

are flushed using the mfence instruction [28]. 

• Read-modify-Write Instruction: Whenever hardware thread executes a read-modify-

write instruction, it must first acquire a global lock. Once it successfully acquires a global 

lock, necessary writes are performed, and the thread buffer is flushed followed by a release 

of the lock [28].  

• Propagation of Buffered Writes: A threads buffered writes can propagated to the shared 

memory at any time except when other threads have acquired a lock. 

The below figure, is a simplified x86 block diagram [28] 

   

 

 

 

 

 

 

 

2. C++ Memory Model 

The C++ memory model is providing constructs such as C++ atomics and mutexes to provide 

visibility among threads and maintain synchronization operations on memory locations. C++ also 

presents a synchronization construct fence, that have similar function to a mutex where threads 

can acquire and release fences. Fences are provided for achieving synchronization of operations 

that do not involve memory locations. 

Figure 5: Simplified x86 block diagram is taken from “C/C++ memory 

models” by Arthur et.al [28] 
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The execution of a C++ program is defining two types of computations, 

• Value computation: The program either steps to a value (that needs to be stored at memory 

location) or returns a value at a memory location. 

• Side effect: All other operations such as reads/writes to a volatile object, writing to a memory 

location, calling a library function and IO’s are side effects.  

C++ compiler however is not required to abide by the C++ standard stipulated, if a similar 

behavior of the program is observable after code transformations. 

The C++ standard also defines the definition of a data race, 

A data race is supposed occurs in a multithreaded C++ program, if two (or more) conflicting 

threads, are in the condition, where neither of the two threads happens-before the other and at least 

one of the threads performs a non-atomic operation [37]. 

Conflicting thread action is supposed to occur when one thread performs an expression evaluation 

that results in modifying a memory location while thread evaluates an expression that results in 

either modification of the same memory location or accessing the same memory location [37]  

The data race definition mentions, happens-before relation, which means that, if one thread 

performs an expression evaluation that mutates a memory location then another thread executing 

another expression on the same memory location can see the mutation result of the first threads 

execution. If two threads are running in such order then they are supposed to follow the happens 

before relation[28] 

Now we shall look at the mechanisms, provided by C++ to achieve thread safety during a data race 

condition. 

C++ Atomics 
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An operation is termed as atomic, when the operation is guaranteed to execute as a single 

transaction. Furthermore, other threads will see the state of the memory location either before this 

operation has begun or after the operation has been completed. The benefit of this guarantee is that 

there is no intermediate state visible to any thread, thus abiding by the happens-before relation. 

C++ provides a library for atomic memory operations. Atomics in C++ provides a faster means of 

managing concurrency when compared to mutex locks. However, it should be noted that atomic 

operations themselves do not provide faster operations when compared to mutexes. A main reason 

for such a behavior lies in the size of the critical section. The C++ standard states that if the size 

of the atomic class is less than or equal to the size of a pointer the operations such as increment, 

decrement store add and compare and exchange are atomic. However, if the size exceeds the size 

of the pointer, then the operation becomes lock based.  

C++ compare and exchange. 

The atomic compare and swap are a conditional exchange. An atomic exchange is a swap operation 

consisting of read-modify-write operations done atomically. The syntax for a compare and swap 

operation is given by,  

𝒙. 𝒄𝒐𝒎𝒑𝒂𝒓𝒆_𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆_𝒔𝒕𝒓𝒐𝒏𝒈(𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅_𝒗𝒂𝒍𝒖𝒆, 𝒏𝒆𝒘_𝒗𝒂𝒍𝒖𝒆) 

Where, 

x is an atomic variable declared and initialized by std∷atomic<int>x(0) 

expected_value is an int  

new_value is also an int 

The above expression returns a Boolean true if the swap was successful, else it returns a false. 

The compare and swap loop of a typical C++ program that performs an increment operation is 

given by, 
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𝑠𝑡𝑑 ∷ 𝑎𝑡𝑜𝑚𝑖𝑐 < 𝑖𝑛𝑡 > 𝑥(0); 

𝑖𝑛𝑡 𝑥0 = 𝑥; 

𝑤ℎ𝑖𝑙𝑒(! 𝑥. 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑠𝑡𝑟𝑜𝑛𝑔(𝑥0, 𝑥0 + 1) 

This loop works by first reading the value of x and storing in a local variable. If none of the other 

threads change the value of x, then the current thread changes the value of x by incrementing. This 

loop continues until the increment is successful. Another point to note is that x0 gets the value of 

the new x if the compare and swap fails. 

We shall now conclude this section with a few C++ features that would be used in the 

implementation of memory management in later sections. 

2.6 Smart Pointers in C++ 

Raw pointers in C++ allow variables to store memory addresses. However, unlike higher-level 

abstractions, raw pointers lack automatic memory management features, such as deletion upon 

going out of scope, which can result in memory leaks. C++ raw pointers also allows sharing of 

memory which means that any thread or part of the program can manipulate a memory location.  

Such sharing, lacks ownership (responsibility over a memory location) of memory, and improper 

use of raw pointers can potentially cause erroneous or unpredictable behavior such as data 

corruption, race conditions. Smart pointers namely unique pointer and shared pointer were added 

to C++ to handle these issues. Smart pointers are classes that mimic the behavior of a raw pointer, 

but also provide automatic memory management when the destructor for the smart pointer object 

is called. 

2.6.1 Unique Pointers 

The unique pointer is a part of the memory library in C++, is a scoped pointer which means it 

automatically deletes itself once the pointers scope ends. Unique pointers are also not allowed to 
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be copied (no data sharing or ownership sharing). However, unique pointers allow ownership 

transfers.  

2.6.2 Shared Pointers 

Shared pointers allow sharing ownership of a memory location and are implemented using 

reference counting. The last shared pointer object to a jointly owned memory location handles the 

deletion of the object. We shall now see an example of how shared pointers are implemented in 

greater detail. This example is taken from David Kieras [32] tutorial on using smart pointers in 

C++11. 

Let m be an object created in the heap and it is pointed by a shared pointer 𝑝𝑡𝑟1. The constructor 

for the ptr1 object also creates a “manager object” [32] which is also dynamically allocated, which 

in turn points to the heap object. This “manager object” [32] is already present, when we make 

pointer copies. The “manager object” [32] carries two integers, one the number of pointers that are 

pointing to the heap object and another the number of weak pointers pointing to the object. In this 

example we restrict to only shared pointer counts. The figure below illustrates this process. 

 

Figure 6: Shared Pointer Example 

 

If we were to make two more pointers to the heap object, by copy or by assignment, then the 

“manager object’s” [32] count would increase to three as show. 



36  

 

 

Figure 7: Example of Shared Pointer 

As the scope of each shared pointer has reached the end, the reference count keeps decrementing, 

and the shared pointer with the longest scope is the one that deletes the manager object and the 

heap object. If we were to have a cyclic structure, then shared pointers would not be able to 

delete the heap object thus leading to a memory leak. 

2.6.2.1 Weak Pointers 

Weak pointer is also known as an observer pointer, that is a not-owning a reference. Weak pointers 

provide a way to break a cyclic structure. Unlike shared pointers weak pointers do not have the 

ability to create a manager object. When all the shared pointers to a object have gone out of scope 

the and if we still have a weak pointer then, this weak pointer has the ability to retain the manager 

object. The manager object as mentioned in the previous paragraph also has a integer count of the 

number of weak pointers pointing to it. If the weak pointer references to the manager object goes 

below zero then the weak pointers destructor performs the deletion of the manager object. Weak 

pointers are different from a regular pointer, where we can query a weak pointer to check if the 

manager object (heap object) still exists or not. One distinction to note is that the heap object will 

be deleted as soon as the last shared pointer to it goes out of scope however the manager object is 

deleted either by the last shared pointer if no weak pointers exist or by the last weak pointer. The 
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weak pointer does not have the ability to access the heap object directly, they can only create new 

shared pointers or check if the heap object exists or not. If the heap object is deleted and we create 

a shared pointer from a weak pointer we would just get a null pointer. 

2.7 Related work 

There have been proposals to reorder map information in the form of long-term and short-term 

memory [2] [12,13]. Long-term and Short-term memory representation is utilized in [7] RTAB-

Map to offload map information to a SQL database, which has a lower likelihood of being used 

by loop closing and retaining rest of the valuable information. The SQL model is noted to limit the 

extension in large-scale map-making. Edge-SLAM employs an edge computing infrastructure to 

offload local mapping and loop closing while keeping track of the mobile device. C2TAM [2,11] 

provides a distributed cloud computing framework where the tracking and relocalization are 

performed on the client device while rest of the modules are sent to the cloud service in addition 

to the map storage. Li et al. [2] present a redesign of the VSLAM system based on a cloud-based 

solution where map storage, map fusion, and real-time components are offloaded to a cloud, 

keeping the remaining components on the robot. 
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3. ORB-SLAM-3[40] 

ORB-SLAM-3 is like the previously discussed Visual SLAM architecture in sections above. The 

tasks that it performs can be divided into the following, 

• Front-End tasks 

o Feature Detection 

o Feature Matching 

o Pose Estimation 

o Adding data associations to the co-visibility graph  

• Back-End tasks  

o Bundle adjustment  

o Map optimization 

Apart from the above stated task the ORB-SLAM-3, also does loop closure, that is responsible 

detecting loops and correcting them. To speed up the system, ORB-SLAM-3 runs of three threads, 

namely tracking, local mapping and loop closing [41]. The structure of ORB-SLAM is based on 
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the Parallel Tracking and Mapping (PTAM)’s parallelization of mapping and localization 

architecture, with an addition of a loop closing thread [41]. 

We shall now note the following definitions, 

Mappoint: A mappoint corresponds to the three-dimensional coordinate in the world and is 

derived from the ORB-Features extracted [42]. 

Keyframe: A keyframe represents the pose (position and orientation) of a camera at a certain time 

instance [42]. 

Map: The map is the collection of mappoints and keyframes [42] 

Covisibility Graph:  This is a weighted graph of connected keyframes, where an edge in the graph 

represents connection between two keyframes and the graphs serve as nodes [42]. 

The figure below gives an overview of the ORB_SLAM-3 system 

 

Figure 8: ORB-SLAM-3 Structure 
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3.1 Tracking Thread: 

The tracking thread begins with extracting ORB features by generating an image pyramid of the 

image being processed by the tracking thread. An Image pyramid is an image processing 

technique, used for image reconstruction among others. The incoming image is sampled at various 

scales by repeatedly dividing the resolution by half and applying a gaussian blur. Now we have a 

representation of the current tracking image at different scales. Now the image representation at 

different levels, is passed through a function to compute the FAST (Features from Accelerated 

Segment Test) corners [44]. FAST is a corner detection technique, that is rotation invariant and 

computational easier(faster) to compute than other corner detection algorithm. The final step is to 

compute the ORB feature descriptor, which is an extension of the computed FAST descriptors 

with an exception of adding intensity centroids [35] and the rotated d Binary Robust Independent 

Elementary Features BRIEF feature descriptor. The BRIEF descriptor is used because it has low 

memory footprint and fast to compute [45]. ORB SLAM-3 then uses these computed features and 

maps them corresponding to the image positions based on the camera parameters provided by the 

system. This feature extraction step is performed over every incoming image and stored in a 

temporary object known as the frame corresponding to its location coordinate. 

As images are added, we perform feature matching, which is performed by using three 

different methods namely, search by projection, bag-of-words, and similarity transforms, and then, 

the strongest matches are retained to be added to the map [41]. To place matches in a map, a critical 

task of initialization is performed to create an initial map provided at least a threshold number of 

features is detected. The very first frame is compared against incoming frames for feature 

matching. All features detected in the first frame is compared with the current frame of the tracking 

thread. If matching is successful the algorithm processed to compute the required transformation 

matrices such as the homography matrix and the fundamental matrix depending on the matching 
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of the initial frame and the current frame using RANSAC [46, 47]. The optimum homography and 

the fundamental matrices are fixed to finally determine the depth of the features onto the world 

coordinates. Then the first frame, and the matched frame are both converted to a keyframe all 

corresponding mappoints are added to the map. This marks the completion of initialization, and 

since we have estimated nodes present in the graph, we proceed by performing a bundle adjustment 

of the graph. The tracking then continues to perform feature matching with every incoming image. 

Tracking also performs relocalization which was introduced in the background section in case of 

sudden movements or drop in tracking performance. 

Code Structure Details: 

The Driver code which is also the tracking thread initializes a system object, which in turn spawns 

the necessary threads, local mapping, loop closing, and viewer(optional). Once necessary 

initialization is completed, the tracking thread loops over all the images of the dataset or could run 

on a live stream of images. Each image after resizing, calls the function  

𝑠𝑦𝑠𝑡𝑒𝑚. 𝑇𝑟𝑎𝑐𝑘𝑀𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟(𝑖𝑚𝑎𝑔𝑒) (based on the camera model, which in this case is 

monocular) that performs a couple of system and timing checks for synchronization and then 

triggers the function  𝐺𝑟𝑎𝑏𝐼𝑚𝑎𝑔𝑒𝑀𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟(𝑖𝑚𝑎𝑔𝑒). This function converts the image in 

grayscale and creates a Frame object. The constructor for the frame object, calls 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑂𝑅𝐵(𝑖𝑚𝑎𝑔𝑒𝐺𝑟𝑎𝑦) performs feature extraction. At the end of the 

𝐺𝑟𝑎𝑏𝐼𝑚𝑎𝑔𝑒𝑀𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟()  function the function, 𝑡𝑟𝑎𝑐𝑘() is called. The track function performs 

necessary initialization of the following objects, 

• Atlas: Collection of Maps (done only once) 

• Map: Collection of Keyframes and Mappoints  
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The track function further calls the 𝑇𝑟𝑎𝑐𝑘𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒() that does the matching of the 

current keyframe and the previous keyframe. The function also converts the features in the current 

frame into a bag of words representation. Furthermore, it tries to use the computed bag of Words 

to find possible matches with the previous keyframe. 𝑡𝑟𝑎𝑐𝑘() further calls 

𝑇𝑟𝑎𝑐𝑘𝑊𝑖𝑡ℎ𝑀𝑜𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙(), which does the feature matching by a function called 

𝑠𝑒𝑎𝑟𝑐ℎ𝑏𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(). The function 𝑡𝑟𝑎𝑐𝑘𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑝() called by 𝑡𝑟𝑎𝑐𝑘() also performs feature 

matching in the local map (subset of keyframes from the complete map). The 𝑡𝑟𝑎𝑐𝑘() functions 

at the end, checks if a new keyframe is necessary, if yes creates a new keyframe. Additionally, 

whenever the map is added with keyframes or mappoints, a 𝑝𝑜𝑠𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛() is performed 

using the g2O library. 

System and Timing challenges: 

The performance of the tracking thread is crucial in maintaining the accuracy and overall 

functioning of the system. If the tracking thread processes keyframes slower, it can lead to a drop 

in the keyframes throughout the system. It has been noted in Sofiya et al [1]. that the effect of 

dropping keyframe in regions with sparse feature density or fast camera movements can lead to 

the system calling the 𝑟𝑒𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛() function. This function stops the other threads and 

performs a place recognition throughout the keyframe database to find matches and relocalize. 

This action is noted to be computational expensive leading and possibly leading a failure of the 

system [1]. As per Sofiya et. al [1] tracking on an average requires 17 ms when running on the 

KITTI dataset and images are streamed at 10 frames per second. 

3.2 Local Mapping Thread: 

Any new keyframe processed by tracking is added to the local mapping threads keyframe queue. 

The local mapping thread checks and updates all the nodes and connections of the added keyframe. 
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As mentioned in the background section, any addition to the graph requires a optimization and 

updation check to make sure that the graph is as optimum as possible. Then spurious and 

redundancies are removed based on heuristic criteria for both, MapPoint and keyframe. New 

mappoints are added to the graph based on the new keyframe added and the existing covisible 

keyframes. At the end of the local mapping thread Bundle adjustment is performed on the graph 

to adjust the estimates where ever necessary. 

Code Structure Details: 

The local-thread spawned in the tracking phase, creates a local mapping object. This object has a 

function 𝑟𝑢𝑛(), which is a while true loop, that runs all the local-mapping tasks. Firstly, the 

function 𝑆𝑒𝑡𝐴𝑐𝑐𝑒𝑝𝑡𝐾𝑒𝑦𝐹𝑟𝑎𝑚𝑒𝑠() that informs the tracking thread of the local mapping status of 

whether it is processing keyframes or not. Next the local mapping thread maintains a queue to 

maintain incoming keyframes which are added by tracking thread. The next function call is 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑒𝑤𝐾𝑒𝑦𝐹𝑟𝑎𝑚𝑒(). This function processes the incoming keyframes and inserts them into 

the existing map. Any addition of keyframes cause all the links of the covisibility graph to the 

updated. 𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝐶𝑢𝑙𝑙𝑖𝑛𝑔() is the next function that is executed which is responsible to remove 

mappoints that are redundant or mappoints which are considered outliers. The 

𝑐𝑟𝑒𝑎𝑡𝑒𝑁𝑒𝑤𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡() function is then executed that triangulates matches on the current 

keyframes. This is done with the help of querying for the covisible keyframes to the current frame 

and checking for matches. Then the 𝑆𝑒𝑎𝑟𝑐ℎ𝐼𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() function is called that checks and 

updates connections in the covisibility graph. The 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝐶𝑢𝑙𝑙𝑖𝑛𝑔() function is then called on 

the current keyframe (first in the queue).  The 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝐶𝑢𝑙𝑙𝑖𝑛𝑔() function, checks for 

redundancy of a keyframe, and marks a keyframe bad. Finally, 𝑙𝑜𝑐𝑎𝑙𝑏𝑢𝑛𝑑𝑙𝑒𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡() is 
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performed to optimize the local map, followed by adding the current keyframe to the loop closing 

threads queue.  

System and Timing challenges: 

The effect of slower processing of local mapping has indirect effect on the system. Both tracking 

and loop closing, would end up searching larger maps, which is a computationally expensive task, 

which in turn could cause the tracking thread to get slower that as seen above could end leading to 

relocalization. As per Sofiya et. al [1] local mapping thread on an average requires a 103 ms when 

running on the KITTI dataset and images are streamed at 10 frames per second. 

3.3 Loop Closing Thread: 

The loop closing thread performs two task loop detection and loop closure. Newly added 

keyframes to system that start from tracking pass through local mapping for adding in map and 

finally checked for possible loops i.e. checking for previously visited places. This is done by 

iterating through the covisibility graph. Every keyframe in the covisibility graph is matched with 

the incoming keyframe, followed my periodically checking for keyframe in the atlas. The ORB-

SLAM-3 system also maintains a keyframe database where periodically a query is passed, for 

detecting matches with every keyframe every added. If a loop is finally detected and based on the 

methods mentioned in the background section the loop is closed.  

Code Structure details: 

The loop closing thread performs loop detection and correction if a drift occurs in a loop. Similar 

to the local mapping, the system thread creates the loop closing object. The loop closing function 

𝑟𝑢𝑛() is passed as an argument to the newly spawned thread loop closing. The loop closing thread 

performs detection of similarities of the complete graph and the atlas based on the newly added 

keyframe. This is done by calling the function 𝑁𝑒𝑤𝐷𝑒𝑡𝑒𝑐𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝑅𝑒𝑔𝑖𝑜𝑛𝑠(). The function 
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validates the prospective matches, and if it finds two different maps having similarities it will 

merge them into one and performs a complete bundle adjustment. The 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐿𝑜𝑜𝑝() function 

performs updation of all connected keyframes and mappoints based on the detected loop. Based 

on the accumulated drift it also performs optimization on the essential graph followed by running 

the 𝑔𝑙𝑜𝑏𝑎𝑙𝑏𝑢𝑛𝑑𝑙𝑒𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡()  initiating bundle adjustment on all the components of the graph. 

System and Timing challenges: 

The loop closing thread, if detects a loop, locks the whole map data structure, which means 

connected keyframes and mappoints are locked. This locking of the whole map is done to perform 

loop closure, which distributes offset corrections throughout the graph. However, the mapping of 

the whole graph results in performance drop on all the threads. According to Sofiya et. al [1], the 

loop closing thread requires approximately 202 ms when images are streamed at 10 frames per 

seconds.  

3.4 Experimental Setup 

The experiments performed in the following sections was based on the following setup, 

 CPU: i5-8300H CPU @2.30GHz 

RAM: 32 GB  

System Type: Ubuntu 22.04.3 LTS, x64 

4. [ Joint work] Automatic garbage collection of keyframes and MapPoints  

The figure below describes a conceptual view of the memory layout for the ORB-SLAM-3 

system. 
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Each thread, tracking, local mapping, and loop closing are represented with their own 

registers and stack. We have a common heap followed by the space in memory for program 

instructions and uninitialized static data and global variables. The images in the heap show in 

figure are supposed to represent keyframes (keyframes are not images; they are features from the 

images as mentioned in previous sections) and we could also assume that mappoints to be present 

in the heap. The stars on the stacks each stack is supposed to represent references to the heap 

allocations. The green ticks on keyframes are supposed to represent good heap allocations allowed 

to live and the ones crossed in red are supposed to be bad heap allocations required to be culled. 

In the following figures, we will be looking at the figure shown above; however, we will only 

represent the crossed ones as they are the topic of discussion for deletion. 

Now we go over each deletion scheme, which begins with an explanation of the experiment 

performed followed by the results in the form of a experimental outcomes and issue that need 

addressing. 

 

4.1 1st Deletion Attempt: Direct deletion and collecting reference and deletion 

Experiment: Direct Deletion of the heap allocation in the local mapping thread, specifically in the 

functions, 𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑝𝑝𝑖𝑛𝑔: : 𝑀𝑎𝑝𝑃𝑜𝑖𝑛𝑡𝐶𝑢𝑙𝑙𝑖𝑛𝑔() or  𝐿𝑜𝑐𝑎𝑙𝑀𝑎𝑝𝑝𝑖𝑛𝑔: : 𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝐶𝑢𝑙𝑙𝑖𝑛𝑔(), 

when  the heap objects are marked as bad. Another minor attempt involved in saving the marked 
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bad references and deleting them in the next iteration. This also results in a segmentation fault as 

we have local copies of reference that may not be possible to forceable remove from containers. 

 

 

 

 

 

 

\ 

Result: Failure, as there are references to the heap allocations present, that results in any of the 

stack objects dereferencing the heap allocation resulting in a segmentation fault. 

Experiment outcomes: This exercise does indeed confirm that that keyframes and mappoints 

references are being used by the other threads.  

Issues that need addressing: No deletion of heap allocations.  

 

 

 

4.2 2nd Deletion Attempt: Using Shared Pointers 

Experiment: In this experiment, instead of using raw pointers, we utilize shared pointers. Shared 

pointers, as mentioned in the background section, works on the principle of reference counting. 

This attempt involves, replacing the left-hand side of all the new instances of keyframes and 

mappoints with, shared pointers with the same types.  
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Figure 10: Experimental result of Direct Deletion 
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Figure 11: Cyclic References Due to Shared Pointers 

Result: Failure to delete any heap allocation. The nature of heap allocations such as mappoints 

and keyframes in ORB-SLAM-3 are cyclic.  This cyclicity results in the reference count never 

reducing to zero, and hence none of the heap allocations are deleted leading to memory leaks.  The 

figure shows one of the possible scenarios for the cyclicity to arise. For simplicity the illustration 

below refers one thread (local mapping) pointing to the possible scenarios. i) we have a reference 

of a MapPoint, and since this mappoint is common between the two bad keyframes, we could have 

all the following unordered pair of relations denoted by arrows. So, none of the pointers ever go 

out of scope. 

Experiment Outcomes: This experiment shows that shared pointer implementation of ORB-

SLAM-3 is possible, however it should be noted that there is no deletion. 

Issues that need addressing: The lack of deletion of heap allocations using shared pointers 

indicate that reference counting exposes the cyclicity in ORB-SLAM-3 codebase. 

4.3 3rd Deletion Attempt: Using custom reference counting scheme. 

Experiment: In this attempt we, perform a simple reference counting strategy as described in the 

above sections. Due to the scale of the ORB-SLAM-3 system, we performed the reference 
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counting of keyframes and mappoints incrementally. By incrementally, we mean we identified the 

containers into which these heap allocations are added such as the following, 

• 𝑚𝑣𝑝𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠, 

• 𝑚𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐾𝑒𝑦𝐹𝑟𝑎𝑚𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑠 

• 𝑚𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. 

We perform an increment, whenever a keyframe or a mappoint is used and perform a deletion 

whenever, this count goes to zero. The figure below illustrates, how increment and decrement is 

performed in a local scope. For simplicity we only shown this for one thread, however, this 

mechanism can be extended for all the threads. We also have a simplified program counter as 

shown in the figure for thread Local mapping. Furthermore, we have the Functions A, B and C 

that need to be executed. So, whenever any container of MapPoint or keyframe pointer is utilized, 

we perform an increment shown in green plus in the illustration and perform a decrement before 

the scope ends shown in blue minus sign. 

 

Figure 12: Custom reference counting for subrountines 

Through our experiment we have identified that reference counting the containers 

𝑚𝑣𝑝𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐾𝑒𝑦𝑓𝑟𝑎𝑚𝑒𝑠, 𝑚𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 was sufficient for performing a deletion 
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of keyframes that did not result in a memory issues. The ORB-SLAM-3 system marks keyframes 

as bad in the keyframe culling loop in the local mapping thread. We also observed from the 

previous experiments that, the reference count of keyframes do not reduce to zero at the end of the 

keyframe culling function. The possible explanation for this behaviour can be attributed to live 

references of the marked bad keyframes in use by the other threads. To tackle this problem, we 

collect the references in a set (choice of set was chosen due to possibility of repeated keyframes 

references being collected). We loop through this container at the end of the keyframe culling 

function every iteration, and check for a zero count of the keyframes. We delete the keyframe at 

zero. For mappoints we follow a similar strategy of reference counting. We collect the mappoint 

references that are marked bad in a set. At the end of the mappoint culling function in the local 

mapping thread, we perform the deletion of mappoints at reference count of zero. 

Dealing with cyclicity: As noted in the shared pointer scheme of reference counting, we need to 

break the cycle manually. We do this by adding the deletion   

Result: The experiment results in successful deletion of mappoints and keyframes. We show the 

results of the deletion on the EuRoC micro aerial vehicle datasets and the experiments were 

conducted for ten iterations on each dataset and compare them to Vanilla ORB SLAM 3.  

Keyframe Deletion Statistics: 

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle datasets 

Table 1: Keyframe Deletion Statistics  on the Euroc dataset 

Number of Keyframes marked to be deleted 94 

Number of Keyframes deleted 65 

Memory saved in percentage  69% 

Average Execution time 125 Seconds 
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Approximate size of each Keyframe 4720 Bytes 

Raw Memory marked for deletion 0.44 MB 

Raw Memory deleted 0.30 MB 

Raw memory saved  0.14 MB 

 

MapPoint Deletion Statistics: 

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset 

Table 2: Mappoint Statistics on the Euroc dataset 

Number of MapPoints marked to be deleted 13,183 

Number of MapPoints deleted 12,833 

Memory saved in percentage  97% 

Average Execution time 125 Seconds 

Approximate size of each Keyframe 752 Bytes 

Raw memory marked for deletion 9.91 MB 

Raw memory deleted  9.65 MB 

Raw memory saved 0.26 MB 
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Figure 13: Deletion percentage using mutexs 

The above is a summary of the deletion statistic. 

Execution time statistics and overhead: 

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset 

Local Mapping Thread 

Table 3: Local Mapping execution statistics on the euroc data set 

Vanilla ORB-SLAM-3 ~ 228 ms 

Reference counted ORB-SLAM-3 ~ 255 ms 

Drop-in execution time due to reference 

counting 

~ 11.18% ~ 27ms slower 

 

Tracking Thread 
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Table 4: Tracking execution statistics on the euroc data set 

Tracking thread Vanilla ORB-SLAM-3 ~ 19.88 ms 

Tracking thread Reference counted ORB-

SLAM-3 

~21.15 ms 

Drop-in execution time due to reference 

counting 

~6.19% ~ 1.27ms slower 

 

Processing Overhead: 

Keyframes 

Table 5: Processing overhead in terms of keyframes 

Vanilla ORB-SLAM-3  ~ 406 

Reference counted ORB-SLAM-3  ~ 376 

Percentage drop in keyframe processing ~7.6% ~ 30 fewer keyframes processed 

 

 

Mappoints 

Table 6: Processing overhead interms of mappoints 

Vanilla ORB-SLAM-3  ~ 15170 

Reference counted ORB-SLAM-3  ~ 13189 

Percentage drop in Mappoints processing ~13.96% ~ 1980 Mappoints unprocessed 

Experiment Outcomes: This experiment provides a successful deletion of heap allocations in the 

ORB-SLAM-3 codebase. Reference counting is used for deletion with mutex locks for 

maintaining invariance of the integer responsible for reference counting. The statistics of the 
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deletion results in a processing overhead of 11% and 6% increase for local mapping and tracking 

thread respectively. We also process 30 fewer keyframes when compared to vanilla ORB-

SLAM-3 which could be attributed to the use of mutexes for maintaining sequential consistency. 

Issues that need addressing: The overhead due to addition of mutexes which results in processing 

of fewer keyframes could result in backlog of keyframes in the tracking thread, which could in 

turn result in relocalization call. As stated in [1], relocalization incurs a computational overhead 

that could result in the SLAM system crashing.  

4.4 4th Deletion Attempt: Deletion using compare and swap. 

Experiment: In the background section, we explained lock-less synchronization method compare 

and swap. This experiment is supposed to be an optimization over the regular reference counting 

framework. In this experiment we replace all the reference counting mechanism that employs 

mutex locks, and instead we use 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑠𝑡𝑟𝑜𝑛𝑔 a C++ construct discussed in detail 

in the above sections. The result of this experiment is shown below. 

Keyframe Deletion Statistics: 

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset 

Table 7:Keyframes statistics for compare and swap on the Euroc dataset 

Number of Keyframes marked to be deleted 98 

Number of Keyframes deleted 70  

Memory saved in percentage  71% 

Average Execution time of the program 125 Seconds 

Approximate size of each Keyframe 4720 Bytes 

Raw Memory marked for deletion 0.46 MB 

Raw Memory deleted 0.33MB 
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Raw memory saved  0.13 MB 

 

MapPoint Deletion Statistics: 

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset 

Table 8: Mappoint deletion Statistics for compare and swap on the Euroc dataset 

Number of MapPoints marked to be deleted 13305 

Number of mappoints deleted 12939 

Memory saved in percentage  97% 

Average Execution time 125 Seconds 

Approximate size of each Keyframe 752 Bytes 

Raw memory marked for deletion 10.00 MB 

Raw memory deleted  9.73 MB 

Raw memory saved 0.27 MB 
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Figure 14:Deletion percentage for Compare and Swap 

The above is a summary of the deletion statistic. 

Execution time statistics and overhead: 

The statistics below is a cumulative average across eleven EuRoC micro aerial vehicle dataset 

Local Mapping Thread 

Table 9: Local Mapping execution statistics, Compare and Swap on the Euroc dataset 

Vanilla ORB-SLAM-3 ~ 228 ms 

Compare and Swap Reference counted ORB-

SLAM-3 

~ 247 ms 

Drop-in execution time due to reference counting ~ 8% ~ 19 ms slowers 

 

Tracking Thread 



57  

 

Table 10: Tracking execution statistics, Compare and Swap on the Euroc dataset 

Vanilla ORB-SLAM-3 ~ 19.88 ms 

Compare and Swap Reference counted ORB-

SLAM-3 

~ 20.68 ms 

Drop in execution time due to reference counting ~ 3.94% ~0.8 ms slower 

 

Processing Overhead: 

Keyframes 

Table 11: Keyframe overhead, Compare and Swap on the Euroc dataset 

Vanilla ORB-SLAM-3  ~ 406 

Compare and Swap Reference counted ORB-

SLAM-3  

~ 383 

Percentage drop in keyframe processing ~5.83% ~ 23 fewer keyframes 

processed 

 

Mappoints 

Table 12: Mappoint overhead, Compare and Swap on the Euroc dataset 

Vanilla ORB-SLAM-3 processed ~ 15170 

Compare and Swap Reference counted ORB-SLAM-3 processed ~ 13305 

Percentage drop in Mappoints processing ~13.09% ~ 1865 

Mappoints unprocessed 

Experiment Outcomes: This experiment provides another successful deletion of heap allocations 

in the ORB-SLAM-3 codebase. Reference counting is used for deletion with compare and swap 
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loops for maintaining invariance of the integer responsible for reference counting. The statistics 

of the deletion results in a processing overhead of 8% and 3% increase for local mapping and 

tracking thread respectively. We also process 23 fewer keyframes when compared to vanilla 

ORB-SLAM-3 which could be attributed to the use of compare and swap instructions for 

maintaining sequential consistency. When compared with the mutex based reference counting, 

compare and swap performs slightly better because, mutex based locks according to the C++ 

standards, put a thread to sleep, if it fails to acquire a lock. Since the critical section for reference 

counting is one instruction i.e either increment or decrement, compare and swap on the other 

hand works similar to a spin lock, which means it keeps trying to increment. Thus, it could be 

noted that the mechanism required to wake a thread from sleep in this experiment could be 

costlier than continuedly check for synchronized reads. 

Issues that need addressing: The possible presence of memory leak because of keyframes and 

mappoints due to subset reference counting must be addressed, as the current scheme reference 

counts containers that do not result in segmentation fault on the Euroc data set. A thorough 

reference counting for every container where keyframes and mappoints are added would be 

necessary for not only guaranteeing safety (potential of deleted references being dereferenced) 

but also eliminating the possibility of memory leaks due to keyframes and mappoints. 

4.5 Comparison of both deletion scheme with vanilla ORB-SLAM-3: 

In this section we summarize the results from the two deletion strategies  

Deletion Statistics: 

The below figure gives Keyframes deletion statistics. 
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Figure 15:Keyframe Statistics 

The trend lines in the figure represents the summary of keyframe statistics that was calculated 

using the tables show in the appendix section. The number of keyframes processed, keyframes 

retained in map, keyframes marked for deletion and the actual deletion of keyframes are shown 

together. 

The Blue themed trendline shows the processed keyframes with vanilla ORB_SLAM-3 

leading the trend with 7% greater keyframes when compared to the mutex based reference counting 

(RF) and 5.8% greater keyframes processed as compared to the atomic compare and swap 

operation (CAS). There is no significant difference in the processing of the RF and CAS 

implementation. The figure provides a summary of comparisons. 

The yellow themed trendline represents the keyframes in the map. We note a slight 

decrease in the number of keyframes in the map as shown in the figure, where we RF and CAS 

have approximately 2% fewer keyframes than the vanilla ORB-SLAM -3 implementation.  
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The green themed trendline also follows a similar trajectory where RF and CAS have fewer 

keyframes than vanilla.  

Finally, the red themed lines represent deletion with CAS having approximately 8% 

greater deletion compared to RF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Keyframe Deletion vs Implementation 

Figure 17: Keyframes marked bad in all implementations 
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Figure 18: Percentage difference among deletions 

Figure 19: Total Number of keyframes deleted 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The line graph shown in figure represents a summary like the keyframe statistic, with an of deletion 

shown in a separate trendline graph for better visibility. From the graph we can see that vanilla 

ORB_SLAM-3 allocates approximately 13% greater mappoints as compared to the other 

counterparts. The mappoints in map are similar in the three implementations with 4% to 6% greater 

mappoints in map in the Vanilla ORB-SLAM-3. The deletion statistics for mappoints among 

keyframes and mappoints are identical with negligible difference. The bar charts are accompanied 

to provide easier statistic difference among the trendlines. 
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Figure 19: Percentage difference of mappoints marked for deletion in 

difference implementations 

The below figure gives Mappoints deletion statistics. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: MapPoint Statistics 
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Figure 20: Percentage Difference of mappoints in Map 

 

 

 

 

 

 

 

 

Figure 21:Mappoint deletion in different scheme 
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Execution Statistics and Overhead statistics: 

 

                    Figure 22: Local Mapping Execution statistics 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Tracking Thread Execution Statistics 
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The summary of the execution statistics show that both tracking and local mapping threads 

run faster in vanilla ORB-SLAM 3. We see a 12% drop in execution timing in RF implementation 

as compared to vanilla orb slam and 7% drop in CAS execution timing. CAS however is faster 

than RF statistically, by 4% faster execution in the local mapping thread. The tracking behavior 

among the different implementations follow an identical trend with only a 6% overhead for RF 

Figure 25: Percentage difference of Execution statistics for the 

tracking thread 

Figure 24: Percentage difference of local mapping timing 
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compared to vanilla and 3% compared to CAS. RF and CAS differ by 2% faster execution by the 

CAS implementation. 

5. Experiments for improving ORB SLAM-3 Keyframe Culling 

In this section we go over an experiment with the following hypothesis, 

The computation necessary to compute redundancy of a keyframe in the keyframe culling function 

of the local mapping thread can be replaced with an alternative mechanism that is possibly more 

efficient. 

Before exploring the mechanism for the above-mentioned hypothesis, let us first examine 

the current marking (𝑠𝑒𝑡𝐵𝑎𝑑𝐹𝑙𝑎𝑔) scheme, its time complexity. Let us consider a keyframe 𝒌 to 

be redundant, then the following expression evaluates to true. 

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 > 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑡ℎ ∗ 𝑛𝑀𝑃𝑠 

Where, 

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠: integer count of redundant mappoints in  

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑡ℎ : 
0.9 ∶  𝑖𝑓 𝑚𝑜𝑛𝑜𝑐𝑢𝑙𝑎𝑟                    
0.5 ∶  𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑚𝑒𝑟𝑎 𝑚𝑜𝑑𝑒𝑙

 }    

𝑛𝑀𝑃𝑠 : number of mappoints present in keyframe 𝑘 

Both 𝑛𝑀𝑃𝑠 and 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑡ℎ do not require additional computation. 

The figure below illustrates when a count for 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 is incremented, 
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Let mappoint 𝑀𝑝𝑖
be added to a 

keyframe 𝑘 . If 𝑀𝑝𝑖
 is present at the same scale or at a finer scale in the keyframes 𝑘𝑖1 

, 𝑘𝑖2
and 

𝑘𝑖3
then this mappoint 𝑀𝑝𝑖

 is increments 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for keyframe 𝑘. The 

condition for mappoint redundancy is as follows, 

𝒔𝒄𝒂𝒍𝒆𝑳𝒆𝒗𝒆𝒍𝒊𝟏
<= 𝒔𝒄𝒂𝒍𝒆𝑳𝒆𝒗𝒆𝒍 + 𝟏 

Where, 

𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖1
is the similarity index of keyframe 𝑘𝑖1

 for the mappoint 𝑀𝑝𝑖
 

𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙 is the similarity index of a keyframe 𝑘 for the mappoint 𝑀𝑝𝑖
 

In the local mapping thread, of Vanilla ORB-SLAM-3, the loop responsible for counting 

redundant keyframes, employs the above-mentioned check for every keyframe in the set of 

covisible keyframes.  Let 𝜅𝑐𝑖
 be the set of covisible keyframes present at time 𝑡𝑖,  and 𝒏𝜿𝒄𝒊

, the 

number of keyframes in 𝜅𝑐𝑖
. Let 𝑘𝑖 be a keyframe in 𝜅𝑐𝑖

, 𝛭𝑖 be the set of mappoints in 𝑘𝑖 and  𝒏𝜧𝒊
 

be the size of this set. Let 𝑚𝑖 be a mappoint in 𝛭𝑖 that has a set 𝝅𝒎𝒊
 of connected keyframes of 

size 𝒏𝝅𝒎𝒊
. The figure and the psuedo code below illustrate the computation or work required to 

Figure 26:Incrementing reference counts 
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complete one iteration of the keyframe culling function in the local mapping thread. the complexity 

of the keyframe culling loop can be given by 𝑶(𝒏𝜿𝒄𝒊 
∗  𝒏𝜧𝒊 ∗ 𝒏𝝅𝒎𝒊  ). 

Alternatively, we can compute 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 while adding mappoints to a 

keyframe. Let us understand the alternative mechanism by looking at an example that goes over 

all the steps required for marking a keyframe as bad. We look at this example in the reverse order, 

beginning with a keyframe that is marked bad, and work our way through incrementing 

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 and decrementing nRedundantObservations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: multi-loop structure, where black frame represents keyframes and the gray dots 

represent mappoints. 

KeyframeCulling()        ⋮ 

 for every 𝑘𝑖 ∈ 𝜅𝑐𝑖
 do 

  𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ← 0 

  for every 𝑚𝑖 ∈ 𝛭𝑖  

   for every 𝓀𝑖 ∈ 𝜋𝑚𝑖
 

    If 𝑚𝑖 present in greater than or equal to three keyframes 

     𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠++ 

https://en.wiktionary.org/wiki/%E2%8B%AE
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    end if 

   end for 

  end for 

 end for 

 

Let us assume a keyframe k, that is marked for deletion. This means that keyframe k 

evaluates 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 > 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑡ℎ ∗ 𝑛𝑀𝑃𝑠 to true as a result of 

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 going from an initialized value of zero to passing the threshold 

number of redundant mappoints. There are two ways to mutate 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠,  

• We increment 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 when we find at least three keyframes with 

the same mappoint present in keyframe k at either the same scale or at a finer scale.  

• We decrement 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠, when a mappoint is removed from a 

keyframe that was connected to three or more keyframe.  

To maintain the correctness of this implementation, we add a data structure as follows, 

• 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠: A container (hash map) the size of 

𝑚𝑣𝑝𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑠(container with all mappoints in a keyframe), that maintains a list of 

connections made with a mappoint. 
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Figure 28:Alternative incrementing of reference count 

The above figure shows an example case of the increment operation due to the addition of a 

mapppoint 𝑴𝒑𝒊
 to the keyframe 𝒌. In this example, mappoint 𝑴𝒑𝒊

 was already connected to 

keyframes 𝒌𝒊𝟏
, 𝒌𝒊𝟐

, and 𝒌𝒊𝟐
. We iterate through the 𝜋Mpi 

(container with connected keyframes to 

𝑴𝒑𝒊
) i.e connected keyframes and check similarity (𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖1

<= 𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙 + 1). In this 

example, we assume the condition to be true for the keyframes 𝑘𝑖1
, 𝑘𝑖2

, and 𝑘𝑖2
  and we add three 

connected keyframes to Redundant_mappoint_connections[Mpi ] for the current keyframe  

𝑘. Since the size of  Redundant_mappoint_connections[Mpi ] is three we perform an increment 

of 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for keyframe 𝑘. Additionally, also add 𝑘 to 𝑘𝑖1
, 𝑘𝑖2

, and 𝑘𝑖2
′𝑠 

Redundant_mappoint_connections[Mpi ] and if their size of 

Redundant_mappoint_connections[Mpi ] should go beyond three, which in this example is 
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true, we perform an increment of  𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for 𝒌𝒊𝟏
, 𝒌𝒊𝟐

, and 𝒌𝒊𝟐
 respectively. 

The algorithm below illustrates this increment operation. 

ADDMAPPOINT() 
       ⋮ 
for every 𝓀𝑖  ∈ 𝜋Mpi 

(where, 𝓀i is a keyframe, 𝜋Mpi 
is the container with connected keyframes to Mpi ) 

 If Mpi  is present in 𝓀i at same scale or below (𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖1
<= 𝑠𝑐𝑎𝑙𝑒𝐿𝑒𝑣𝑒𝑙 + 1) then 

  Add 𝓀𝑖 to 𝑘′𝑠 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi ] 

Add 𝑘  to  𝓀𝑖′𝑠  𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi ] 

If 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi ] size greater than or equal to three then 

   𝑘 →  𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠++ 
end if 
If 𝓀𝑖′𝑠 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi ]  is size greater than or equal to three then 

   𝓀𝑖  → 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠++  

  end if 

 end if 

end for 

 

The time complexity of this operation would be 𝑂( 𝒏𝝅𝐌𝐩𝐢
)  

where,   

𝑛𝜋Mpi
 is the size of 𝜋Mpi 

 

𝜋Mpi 
 data structure representing the connected keyframes to mappoint Mpi . 

Now we look at an example case, for decrementing 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 due to the 

removal of a mapppoint 𝑴𝒑𝒊
 form keyframe 𝒌. The figure below illustrates an example of the 

decrement operation. 

https://en.wiktionary.org/wiki/%E2%8B%AE
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Figure 29:Decrementing reference count 

Since, 𝑀𝑝𝑖
 is connected to keyframes 𝒌𝒊𝟏

, 𝒌𝒊𝟐
, and 𝒌𝒊𝟐

 i.e. connected to three or more keyframes 

we perform a decrement of 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Furthermore, we iterate through 𝜋Mpi 
 

and remove 𝑘  from its 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[Mpi ] and if the size of this 

container should fall below three, we perform a decrement of 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 for all 

such keyframes. The algorithm given below illustrates the decrement operation. 

ERASEMAPPOINTMATCH () , REPLACEMAPPOINTMATCH() 
       ⋮ 
If 𝑘  → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖 ] size is greater than three 

 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠- - 
end if 
Clear the 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖 ] container in 𝑘 

for every 𝓀𝑖  ∈ 𝜋Mpi 
 

 If 𝑘 present in 𝓀𝑖 → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖 ] 

  Remove 𝑘 from 𝓀𝑖 → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖 ] 

  If  size of  𝓀𝑖 → 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑀𝑝𝑖 ] drop below three 

   𝓀𝑖  → 𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠- - 

  end if 

 end if 
end for 

 

The time complexity of the above functions would be 𝑂(𝒏𝝅𝐌𝐩𝐢
), 

where,   

https://en.wiktionary.org/wiki/%E2%8B%AE
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𝑛𝜋Mpi
 is the size of 𝜋Mpi 

 

𝜋Mpi 
 data structure representing the connected keyframes to mappoint Mpi . 

Controlling concurrency: 

Since we could potentially have all the three threads namely tracking, local mapping and loop 

closing calling the functions 𝑎𝑑𝑑𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡(), 𝑒𝑟𝑎𝑠𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑀𝑎𝑡𝑐ℎ (), and 

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑀𝑎𝑡𝑐ℎ(), this could lead in a data race condition. 

We use a mutex lock to protect the 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑚𝑎𝑝𝑝𝑜𝑖𝑛𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 container and make the 

𝑛𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 variable atomic. 

Relevant calculations and Experimental results, 

In summary, we reduce the time complexity of keyframe culling function, in a local mapping 

thread, which has a time complexity of 𝑶(𝒏𝜿𝒄𝒊
∗  𝒏𝜧𝒊

∗ 𝒏𝝅𝒎𝒊
) to 𝑶(𝒏𝜿𝒄𝒊

). 

However, we incur an increased time complexity in 𝑎𝑑𝑑𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡(), 𝑒𝑟𝑎𝑠𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑀𝑎𝑡𝑐ℎ () , 

and 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑀𝑎𝑝𝑝𝑜𝑖𝑛𝑡𝑀𝑎𝑡𝑐ℎ() which was 𝑂(1) to 𝑂(𝒏𝝅𝐌𝐩𝐢
). 

Another method to compare the two schemes can be, the amount of work that a keyframe does to 

maintain state and the amount of time a keyframe is repeated in a keyframe culling. 

Based on statistical results, we find that a keyframe is repeated in keyframe culling approximately 

30 times. The amount of work required would be 30* 𝑶(𝒏𝜿𝒄𝒊
∗  𝒏𝜧𝒊

∗ 𝒏𝝅𝒎𝒊
). 

On the other hand, we find the count of the number of times a mappoint undergoes state changes 

through its lifetime is ~10,000 times. Furthermore, we find that the maximum number of 

mappoints a keyframe can have been ~1024. So, the amount of work a keyframe undergoes to 

maintain state can be approximately given by 10,000 ∗ 1024 ∗ 𝑂(𝒏𝝅𝐌𝐩𝐢
). 
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Finally, we propose that work required for one keyframe in the alternative scheme would be lesser 

than the current marking scheme in Vanilla ORB-SLAM-3, 

10,000 ∗ 1024 ∗ 𝑂(𝒏𝝅𝐌𝐩𝐢
) < 30*1024* 𝑶(𝒏𝜿𝒄𝒊

∗ 𝒏𝝅𝑴𝒑𝒊
) 

The summary of the time complexities for each function call is given below, 

 Previous Marking Scheme Current Marking Scheme 

𝑲𝒆𝒚𝒇𝒓𝒂𝒎𝒆𝑪𝒖𝒍𝒍𝒊𝒏𝒈() 𝑂 (𝒏𝜿𝒄𝒊
∗  𝒏𝜧𝒊

∗ 𝒏𝝅𝒎𝒊  ) 𝑶(𝒏𝜿𝒄𝒊
) 

𝑨𝒅𝒅𝑴𝒂𝒑𝒑𝒐𝒊𝒏𝒕( )                             𝑶(𝟏) 𝒏𝜧𝒊
  ∗ 𝑶 (𝒏𝝅𝑴𝒑𝒊

) 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆𝑴𝒂𝒑𝑷𝒐𝒊𝒏𝒕( )                     𝑶(𝟏) 𝒏𝜧𝒊
 ∗ 𝑂(𝒏𝝅𝑴𝒑𝒊

) 

𝑫𝒆𝒍𝒆𝒕𝒆𝑴𝒂𝒑𝒑𝒐𝒊𝒏𝒕( )                          𝑶(𝟏) 𝒏𝜧𝒊
 ∗ 𝑂(𝒏𝝅𝑴𝒑𝒊

) 
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6. Summary: 

In this thesis we introduce a mutex based reference counting scheme for implementing deletion in 

the ORB-SLAM-3. We then provide a lock-free implementation of the reference counting scheme.  

In comparison to mutex-based reference counting, compare and swap exhibits slightly superior 

performance. This could possibly be because mutex-based locks, as mandated by C++ standards, 

force a thread to sleep if it is unable to obtain a lock. Comparing and swapping, on the other hand, 

functions more like a spin lock and since the critical section of reference counting consists of an 

increment or a decrement, a compare and swap could perform better than mutex locking. The 

reference counting scheme works successfully work on the “EuRoC micro aerial vehicle datasets” 

with reference counting a subset of the codebase. However, this does not provide safe deletion on 

other data sets or on other architectures. For running the reference counting scheme on other 

datasets, we would require completing the reference counting for the complete ORB_SLAM-3 

codebase rather than a subset. 

Furthermore, this thesis introduces an alternative strategy for marking keyframes and 

mappoints for deletion which is potentially possible to reduce redundant computation. The 

theoretical analysis suggests a possible improvement in performance in local mapping thread. 

However, it should also be noted that an improvement in local mapping does not imply 

improvement in the SLAM performance as the strategy could add an overhead on the tracking 

thread.  
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