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Abstract

From smart appliances to other Internet-of-Things (IoT) devices, there are billions of micro-

controllers in use today. The C programming language has an entrenched reputation within

such embedded systems. This is mainly due to the requirement of such systems for low-

latency and real-time operations – all of which C can provide. However, due to its proximity

to the hardware, C extends generous flexibility towards the programmer, which in itself is

highly favorable in embedded systems. But, as a consequence, this leads to various security

issues, the chief among them being control-flow integrity (CFI), wherein a function callee

should always return to the legitimate function caller. There has been a lot of work in this

space, especially for microcontrollers. Other works ensure CFI while protecting their security

mechanisms using existing hardware features like the Memory Protection Unit (MPU).

We propose a novel CFI protection mechanism that uses an existing hardware feature

called the Data Watchdog and Trace Unit (DWT) present on Arm Cortex-M microcon-

trollers. We use a traditional shadow stack to protect against corruption of return addresses,

ensuring backward-edge integrity. This shadow stack is protected by the DWT Unit with

compile-time instrumentation using the LLVM compiler framework. We analyze our imple-

mentation and demonstrate the security of our mechanism with acceptable performance and

memory overheads.

x



Chapter1

Introduction: Security is a State of Mind

The security of microntrollers is crucial in this day and age. ARM processors, which take up

a significant portion of the semiconductor market, is often understated. For example, Tom’s

Hardware reported that in the fourth quarter of 2020 alone, more than 6 billion Arm-based

chips were produced [1]. Other major players in this space, such as Intel and AMD, unlike

ARM, don’t publicly report units sold; but, given their revenue disclosures, it is possible to

approximate their numbers in units. Gartner estimated that Intel sold 275 Million units in

2020 [2]. While that is stll a huge number, it’s nowhere close to ARM. Therefore, owing to

ARM’s current hegemony, securing systems which utilize its processors is more important

than ever.

Fortunately, security researchers and academics, have strived to formulate and implement

low-cost security mechanisms to improve the security of these devices. However, the security

mechanisms proposed have not yet been implemented in real-world devices due to a various

reasons ranging from these mechanisms having high-performance overhead, or high memory

overhead or imposing restrictions in number of available hardware features such as registers,

among others. As such, there is still ongoing research in designing an effective, low-cost

security mechanism for embedded devices.

When programming, different pieces of code may need to be executed in different orders.

This implies there is a flow of execution, and attacks might want to disrupt this flow, to hijack

it executing their own code. Ensuring this doesn’t happen is the objective of control-flow

integrity (CFI). Guaranteeing that functions, when called, always return to their legitimate

caller, has been a focus of study since the seminal paper on it was published almost 20

1
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years ago [3]. Owing to its importance, there has been much research on the topic within

embedded systems [4], with each mechanism having its strengths and weaknesses.

However, from our observations detailed in Chapter 2: Related Work, we see the need

for a different way of ensuring backward-edge integrity. In this document, we introduce

a novel control-flow protection mechanism that disallows an attacker from hijacking the

execution of a program by ensuring the legitimacy of the return address of each protected

function. This is achieved by utilizing hardware components present in ARMv7 and ARMv8

architecture boards called the ”Data Watchdog (DWT)” to dynamically monitor memory

regions which store copies of the return address and other regions that are essential to the

monitoring-hardware components.

The document is arranged as follows: Chapter 2 references past work related to our

novel mechanism. Chapter 3 provides the background information required to understand

our design. Chapter 4 elaborates on the design of the proposed mechanism. Chapter 5 gives

details of the implementation of the design. Chapter 6 gives the data from the evaluation.

Finally, we give our closing arguments in Chapter 7: Conclusion.



Chapter2

Related Work: Back to the Future

CFI has been in the forefront of execution-flow protection since the 1990s. In particular,

backward-edge protections have been in use since the early 2000s, for example, stack canaries

[5]. The stack canary/stackguard is a common backward-edge protection mechanism utilized

by most industry-standard compilers like LLVM/Clang, and GCC [6]. Likewise, different

implementations guaranteeing CFI exist such as Control Flow Guard from Microsoft [7] and

Indirect Function-Call Checks by Google [8].

However, CFI for embedded systems is still relatively immature. While many RTOS

and related firmware implement stack canaries, they do so in an insecure way which allows

easy bypasses [9]. Forward-edge integrity is still largely absent on the popular RTOS like

FreeRTOS and MbedOS.

CFI for baremetal embedded systems are usually classified based on what mechanism they

use to ensure integrity. Broadly, the classifications of the mechanisms are: 1) conventional

shadow stacks, 2) register-based shadow stacks, and 3) architecture-based hardware.

Silhouette [10] is a forward and backward-edge CFI mechanism. It offers compile time

instrumentation which enables backward-edge protection using parallel shadow stacks and

course-grained forward-edge protection using labelling. Silhouette uses the MPU to protect

it’s shadow stack and modifies all store instructions to unprivileged instructions while only

allowing the prologue and epilogue to use privilege instructions.

There are proposals to CFI which do not use conventional shadow stacks. One of these

techniques is register-based shadow stacks. There are two significant contributions to this.

One is the Zipper Stack [11] and the other is µRai [12] proposes a register-based backward-

3
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edge CFI, since the shadow stack requires hardware isolation.

The other kind of CFI proposed for embedded systems is using processor architecture

extensions, for example, ARM TrustZone. TrustZone splits instructions into secure and non-

secure mode with each mode having it’s own memory region. CFIcare [13] uses the TrustZone

to secure the shadow stack. It replaces all function calls with supervisor (svc) calls that

passes on a parameter to the Branch monitor which runs in the privileged context. This

branch monitor then uses the parameter to find the valid return address for that supervisor

call. In their evaluation, their maximum performance overhead was 513%.

From these previous works we observe that:

1. Most implementations use a form of the shadow-stack to ensure backward-edge in-

tegrity during execution.

2. They use the MPU or another architecture-based feature like ARM TrustZone to pro-

tect the shadow stack

3. They require reserving a register for special use like a status register or pointer resgister.

From these observations, we propose an alternative solution that:

1. Utilizes a compact shadow stack that utilizes less memory. This is an important

distinction in memory-contrained embedded systems. The performance overhead is a

trade-off with less memory used for the shadow stack.

2. Propose the use of the DataWatchdog Unit to monitor memory regions instead of the

MPU or TrustZone. There could be benefit here since in armv7-M, the MPU can

only monitor 8 memory regions, thereby freeing up use of the MPU for other purposes

and TrustZone requires making SVC calls which have some overhead due to context

switching from non-secure to secure.

3. Utilize unused DWT registers as General Purpose Registers (GPRs) for instrumentation

thereby not needing to reserve any GPR.



Chapter3

Background: The long ARM of the law

3.1 Embedded Systems

A microcontroller unit is a small computer with just one integrated circuit. It can contain

one or more CPUs, one memory region and input/output interfaces. Microcontrollers are

generally used in embedded applications which utilize very low resources but require real-

time processing.

The history of MCUs goes back more than fifty years, however, the modern variants

of what is considered MCUs are about 2 decades old. While MCUs are as old as regular

performance computers, their security has been comparatively overlooked. Considering how

many billions of microcontrollers are in use today, it begs the question: to what extent can

we trust these devices?

3.2 ARM: an Overview

Advanced RISC Machines, or ARM, are processors designed by ARM Ltd. The ARM proces-

sors belong to a family of processors called the Reduced Instruction Set Computing (RISC).

Unlike other CPU juggernauts like Intel and AMD, ARM does not manufacture their own

processors, they only design the Instruction Set Architecture and license other companies

(like STMicroelectronics, Nucleo to name a few) to manufacture them with some minor

modifications [14]

ARM provides multiple families of processors, one popular such family is the Cortex

5



BACKGROUND: THE LONG ARM OF THE LAW 6

processors, which are broadly differentiated in three groups:

• Cortex-M: the microcontroller series, intended for low-power, low-latency operations.

• Cortex-R: real-time embedded series, intended for high-availability operations.

• Cortex-A: for high-performance applications, usually seen in general-purpose appli-

cation processors like that of Apple computers. [15].

The ARM Architecture is defined in the ARM Architectural Reference Manual (”ARM

ARM” for short). In this thesis, we mainly focus on the microcontroller profile version 7,

aptly named, ARMv7-M where the ”M” stands for microcontroller. These processors are

designed for embedded systems with a focus on deterministic real-time execution. Its features

include [16]:

1. Provides a simple pipeline design for use in multiple markets and applications.

2. High determinism in operations with minimal latency due to short pipelines.

3. Great support for C/C++ targets.

4. Provides excellent debug and profiling support for event-driven systems.

5. Provides Thumb2 technology which combines 16-bit and 32-bit instructions for code

density and performance.

6. Memory Protection Unit (MPU) for memory access control.

Likewise, our implementation can be extended to support ARMv8-M, in fact, the se-

curity mechanism becomes simpler due to improvements of v8 over v7. Armv8-M builds

upon ARMv7-M, maintaining backwards compatability, with some notable differences, i.e,

improvements [16]:

1. An improved, but optional, MPU programmer’s model.
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2. Stack pointer limit checking.

3. Improvements in the support for multi-processing.

4. Better support for the DWT unit.

3.2.1 ARMv7-M Cortex-M4 Architecture

Figure 3.1: STM32 Cortex-M4 Block Diagram

A simplified block diagram of the Cortex-M4 architecture is shown in figure 3.1. The

processor is designed by ARM, and connected to it are peripherals manufactured by chip

companies like STMicro. The types of peripherals connected to the chip varies based on the

board’s design.

3.2.1.1 Nested Vector Interrupt Controller

ARMv7-M provides low latency exception and interrupt handling due to the close integra-

tion of the Nested Vector Interrupt Controller (NVIC). It provides configurable interrupt
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handling. This NVIC in ARMv7-M architecture supports 496 interrupts. The number of

external interrupt lines supported is System-on-Chip (SoC) dependent. All NVIC interrupts

have a programmable interrupt priority, which is achieved by using an exception number

with each priority.

In our implementation, we utilize the NVIC to set the Debug Monitor Exception, which

is triggered by the Data Watchpoint and Trace unit (DWT).

3.2.1.2 Data Watchpoint and Trace Unit (DWT)

The DWT supports a wide range or features, the support of each is implementation defined.

The features include [16]:

• Watchpoints, where the processor enters the debug state or trigger a DebugMonitor

exception

• Data tracing

• For use by an external resource through signalling, like an ETM

• PC value tracking

• Cycle count matching

• Exception trace

• Performance profiling counters

3.2.1.3 Memory Protection Unit

Some Cortex M3 and M4 MCUs have a feature called the Memory Protection Unit (MPU). It

is a programmable hardware unit used to define access to memory permissions for different

memory regions [17]. In Cortex-M4, the MPU has eight programmable memory regions

where each region has its own starting addresses, sizes, and settings.
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3.2.2 ARM Processor Modes

In conventional computing, i.e, x86/x64, there are two modes of operations, kernel mode

and user mode. The kernel mode has access to all system peripherals and system memory,

among other things. Therefore, the Operating System (OS), which needs access to every-

thing, runs in kernel mode and the applications run in user mode. Since applications run

in their own isolated-address space, they do not have direct access to system resources, so

when they need to access such resources that only the kernel can interact with, there will be

a privilege escalation wherein the application executes a syscall instruction which grants

the application access to kernel-mode resources temporarily [18].

Likewise, in ARM, specifically in the Cortex-M family of processors, there also executes

modes of operations: handler mode and thread mode [19]. When a processor is started,

it enters into the thread mode by default. The handler mode is invoked when an interrupt

is triggered.

Cortex-M offers an additional level of control known as privileged and unprivileged

instructions. Their properties work in lock step with the two modes described above [19]:

• Thread mode: privileged instructions can access all system resourced. Unprivi-

leged mode prevents the modification of protected memory regions. When privileged

resourced need to be accessed from unprivileged mode, the SVC (Supervisor Call) in-

struction is executed, which is similar to the syscall we saw earlier in x86.

• On processor reset, by default it starts in thread mode. When the processor is in

handler mode, the instructions are always executed in privilege mode.

This level of granularity is important within the Cortex-M architecture, which ensures that

unprivileged instructions do no access protected memory-mapped regions such as system

timers and system control registers.



BACKGROUND: THE LONG ARM OF THE LAW 10

Address Name Type
0xE000EDFC DEMCR RW
0xE0001020 + 16n DWT COMPn RW
0xE0001024+16n DWT MASKn RW
0xE0001028+16n DWT FUNCTIONn RW

Table 3.1: Data Watchdog and Trace Unit Register Addresses

3.2.3 Data Watchpoint and Trace Unit

The Data Watchpoint and Trace Unit is the most important hardware mechanism of this

thesis’s goal. It consists of three classes of registers: Comparators, Function, Mask. All three

of which are required to work together for monitoring of memory regions. The important

memory addresses of this unit are given in the table 3.1.

3.2.3.1 Comparators

Figure 3.2: DWT COMPARATORn [16]

The purpose of the comparator is to compare the value it holds with the following:

• A data address

• An instruction Address

• A data value

• The cycle count value

The DWT unit can have anywhere from 0 to 15 comparators. The Armv7-M specification

for the board used in our testing has a total of 4 comparators. Each comparator can monitor

a 32KB region of memory.
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3.2.3.2 Mask Register

Figure 3.3: DWT MASKn Register [16]

If the DWT unit(s) is being used to monitor a range of addresses, then the mask register

is used to specify that range. There is a mark register for every comparator supported by the

implementation. The MASK field shown in Figure 3.3 is used to define the number of bits

to ignore when comparing the data address in the equivalent comparator. In the ARMv7-

M implementation we used for our evaluation in Chapter 6, each mask register supports

monitoring 32KB of memory.

3.2.3.3 Function Register

Each comparator has a function register associated with it. The function registers are used

to control what action to make when a match occurs. A match is when a memory region

is accessed as defined in the FUNCTION bits as shown in Figure 3.4. The MATCHED bit

indicates if the comparator has matched since the bit was last read. The function register

supports a variety of different operations, which are defined in the reference manual [16].

Figure 3.4: DWT FUNCTIONn Register [16]
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3.2.3.4 DEMCR Register

The Debug Exception and Monitor Control Register is used to enabled various debug and

trace features. For the DWT unit specifically [16], as shown in Figure 3.5 the TRCENA

bit is used to enable/disable the DWT functionality, i.e, monitoring memory regions. The

MON EN bit is used to allow the DWT to generate debug events. When the MON EN bit

is set, the DWT unit can trigger the DebugMon Handler exception when a match occurs.

Figure 3.5: DEMCR Register [16]

3.3 LLVM

LLVM is a compiler infrastructure something like the popular GNU Compiler Collection

(GCC), but unlike GCC, it is not a compiler itself but offers a collection of modular and

reusable compiler tool chain technologies. GCC is limited in that it offers robust compiler

frontends used to compile supported programming languages. LLVM on the other hand, is

not a compiler itself, but offers a framework with front-ends and back-ends to build compilers.

GCC has widespread use, however, lately LLVM has been gaining a bit of popularity. LLVM

tends to write more performant code than GCC [20] while GCC tends to generate slightly

more optimized code with 1-4% performance increase [21]
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3.3.1 Classical Compiler Design

The compilation phase is chiefly broken down into three phases [22]:

1. Front End

The front end is responsible for parsing the source code, checking for errors and building

the internal representation of the written code called the Abstract Syntax Tree (AST).

(a) Lexical Analysis: converts the code (which is in plain text) to token

(b) Syntax Analysis: performs analysis on the token stream to check if the grammar

rules of that language are followed, and then builds the AST.

(c) Semantic Analysis: checks for semantic errors like type mismatches and adds type

information to the AST.

2. Middle End

The middle end or the optimizer is responsible for a broad range of transformations

which tries to improve the performance of the code by eliminating any redundancies

such as duplicate code, dead code, etc.

3. Back End

This phase is responsible for creating target-specific code from the optimized interme-

diate representation from the optimizer. The back end has to ensure that it generates

correct code that is supported on the target architecture. It’s commonly divided into

sub-phases [23]:

(a) Instruction Selection: translates IR into target machine instructions.

(b) Register Allocation: allocates CPU registers to hold variables and temporary

values.

(c) Instruction Scheduling: reorders instructions to minimize execution time while

preserving program semantics.
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3.3.2 LLVM IR

Figure 3.6: LLVM Compilation Process

LLVM offers a high-end compiler for C/C++/Objective-C which is as performant as

GCC. Like GCC, it utilizes the classical compiler design discussed before. Clang, as a

frontend, is responsible for parsing the source code into an Abstract Syntax Tree (AST) and

lowers it into an intermediate representation (IR). Then an optimizer transforms this IR

into a more optimal version. Finally, the backend takes this optimized IR and converts it

into the target architecture’s machine code.

From Figure 3.6, we see that LLVM only refers to the optimizer and backend of the

compilation process. Now, since LLVM works at the IR level of the compilation process:

when creating a backend, we are concerned in modifying this IR so that when the backend

(llc) performs instruction translation from IR to machine code, LLVM is instrumenting the

instructions required for this design.

1 int square(int) {

2 return x * x

3 }

Listing 3.1: Regular C Function

1 define i32 @square(i32 %x) {

2 %1 = mul i32 %x, %x

3 ret i32 %1
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4 }

Listing 3.2: Equivalent IR Representation

In Listing 4, we see a simple C function which takes an integer as an argument and

returns the square of that integer. In Listing 5, the LLVM IR of the same C function is

shown. This example is meant to demonstrate how LLVM converts code to the IR level.

The reasoning behind this particular structure and how the optimizer converts the AST

into IR is out-of-scope of this document. Interested readers might want to take a look at

Compiler Design books talking about LLVM [24] and compiler-design engineers who write

about LLVM [25]

3.3.3 LLVM Table Gen Description Files

Figure 3.7: ARM Target Definition with TableGen

For the backend to convert the instructions into correct machine code, there needs to be

a library of information that LLVM can look at to perform this translation. LLVM offers this

functionality in the form of the TableGen. The TableGen is itself an interpreted language

processed from target description files (.td) which generates relevant C++ code that is used

in code generation. This is to enable modularity of generating code so that these TableGen
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files can be reused even when compiling to different architectures. The build process for a

specific architecture, ARM, is shown in Figure 3.7.

3.3.4 LLVM Code Generation

LLVM uses the Static Single Assignment (SSA) based representation. LLVM provides an

infinite number of virtual registers which can hold values of various primitive types, which

implies that every operand can be saved in a different virtual register. The code generation

process is explained below [26]:

1. Target-Independent Optimizations: the IR is optimized using common optimiza-

tion techniques such as dead code elimination, loop invariant code motion, and subex-

pression elimination, among others.

2. Instruction Selection: The LLVM IR is lowered to MachineIntr IR that is target

specific. For ARM, the ARMInstructionSelector class handles this when the LLVM

IR instructions are mapped to ARM machine instructions.

3. Scheduling and Formation: The MachineInstrs are put into a basic block ordering

and the instruction stream is formed. The ARMTargetMachine class coordinates this

process.

4. SSA-based Optimizations: while the machine code is still in SSA form, certain

optimizations like peephole optimizations and instruction combining are performed.

5. Register Allocation: LLVM uses a greedy register allocator by default. LLVM

allows use of an infinite number of virtual registers which are mapped to ARM physical

registers.

6. Prolog/Epilog Insertion: The function prologue and epilogue, which handle func-

tion setup and stack management, are inserted. This process is handled by ARMFrameLowering

class.
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7. Late Machine Code Optimizations: Optimizations like dead code elimination and

peephole optimizations are done again but this time on non-SSA machine instructions.

8. Code Emission: The final machine instructions are encoded into executable code,

either in assembly or object code format. The ARMAsmPrinter class prints the assembly

code.

3.4 Control Flow Integrity

This document mainly deals with proposing a new security mechanism for ensuring Control

Flow Integrity (CFI) in embedded systems. CFI was first systematized in 2009 [3]. It

ensures that during run-time, a particular program has a definitive execution path defined

in a Control-Flow Graph (CFG). The CFG, being a policy, needs to be determined ahead of

time so that it can be enforced. This is implementation-dependent and has much research

since it’s proposal [27, 28, 29, 30]. As defined in [3], our proposed mechanism enforces CFI by

instrumenting machine code LLVM. The limitation of this approach is that the source code

is required to do compile-time instrumentation using LLVM. There are ways of achieving

this without source code: by utilizing binary code instrumentation [13]; however, that is out

of the scope of this document.

In particular, we focus on ensuring the backward-edge integrity of embedded systems.

This is achieved using a shadow stack, which maintains a copy of the return addresses of

the original stack. This shadow stack is protected by some mechanism that prevents the

attack from corrupting it. Therefore, when a function needs to return to its caller, it uses

this shadow stack to get the legitimate return address even if the attacker has corrupted the

return address on the original stack.
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Design: Measure Once, Cut Twice

There are two ways of constructing a software design. One way is to make it

so simple that there are obviously no deficiencies. And the other way is to make

it so complicated that there are no obvious deficiencies.

- C. A. R. Hoare

4.1 Threat Model

In our threat model, we consider a powerful attacker has the following capabilities:

• Full knowledge of memory layout

• Ability to read and write to arbitrary memory locations

• The Hardware-Abstraction Library and C libraries are part of the Trusted-Computing

Base

One of the attacker’s goals is to hijack the control-flow of the embedded software by

injecting shell code or return-oriented programming (ROP) gadgets.

4.2 Compact Shadow Stack

The C/C++ languages are vulnerable to control-hijacking attacks due to the way they handle

function calls and returns. In these languages, the function callee stores the return address

to the function caller and upon finishing executing, loads this saved return address into

18
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the instruction pointer so that the next instruction gets executed from the saved point. In

conventional hijacking attacks, an attacker finds a way to rewrite this saved return address

by using buffer overflow vulnerabilities. In particular, ensuring the integrity of these return

addresses on a function’s stack is called backward-edge integrity. Function pointers, for

example, constitute forward-edges and are protected by CFI. Most CFI mechanisms assume

that the backward-edges are protected.

A shadow stack is one kind of backward-edge protection – stack canaries and safe stacks

being the other heavily utilized options – which maintains a copy of the return addresses.

There are two main kinds of shadow stacks: 1) compact shadow stacks and 2) parallel shadow

stacks [31].

The compact shadow stack shown in figure 4.1 stores a copy of all the return addresses

of the functions called during execution. The storage mechanism is elementary, storing each

return address next to each other while maintaining a pointer to the current top of the

”stack” of return addresses. The parallel shadow stack is a similar mechanism; however, it

stores the return addresses relative to the offset of the stack pointer of each function. As

it implies, the parallel shadow stack requires more memory space as it has a parallel copy

of the main stack, while the shadow stack has a smaller memory overhead but requires an

additional pointer. Both these designs suffer in support for multi-threading and exception

handling, but, in the case of microcontrollers, which are by design single-threaded do not

suffer from this lack of support.

We chose the compact shadow stack for our design as it offers a minimal memory overhead

and due to the DWT Comparators in armv7-M only supporting monitoring of 32KB of

memory per comparator.
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Figure 4.1: Traditional Shadow Stack

4.3 Data Write Monitoring

The primary objective in monitoring the compact shadow stack is to prevent an attacker

from modifying the return address to prevent control-flow hijacking. We handle this re-

quirement by utilizing the Data Watchdog and Trace Unit to monitor the shadow stack

region. The configuration of registers of the DWT unit are set at the startup file of each

application/program. The values of each of these registers is given in table 4.1.

4.4 Function Prologue

The function prologue needs to be modified to do the following:

1. Disable COMP0 which protects the shadow stack

2. Store LR to the address pointed by COMP1

3. Increment COMP1 value by 4 bytes
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4. Enable COMP0 again

The reasoning for modification of the prologue is as follows:

• Since the return address of the function caller has to be stored in the shadow stack,

write monitoring the shadow stack region needs to be disabled first.

• In ARM, the return address of a function is stored in the LR register, so we store its

value to the shadow stack using the pointer COMP1

4.5 Function Epilogue

The function epilogue has to be modified to do the following:

1. Decrement COMP1 value by 4 bytes

2. Load LR with the value at the address pointed to by COMP1

The reasoning behind the modification of the epilogue is as follows:

• Since the value has to be read from the shadow stack, write protection for the shadow

stack does not need to be disabled.

• We load the return address from the shadow stack using the pointer to either LR or PC

depending on the function being instrumented.
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Name Address Value Function
DWT COMP0 0xE0001020 0XE00000 Set to start of Shadow Stack
DWT MASK0 0xE0001024 0X1f Set to monitor first 32KB of Shadow Stack
DWT FUNCTION0 0xE0001028 0X06 Set to monitor writes of address in COMP0
DWT COMP1 0xE0001030 0xE00000 + 4n Serves as the Shadow Stack Pointer
DWT COMP2 0xE0001040 0xE000EDFC Set to address of DEMCR register
DWT MASK2 0xE0001044 0x01 monitors 4 bytes from address in COMP2
DWT FUNCTION2 0xE0001048 0x06 monitors writes for COMP2
DWT COMP3 0xE0001050 N/A N/A

Table 4.1: DWT Comparator Values and Functions
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Implementation: Guarding the Gates

5.1 Code Base

To implement our design, we utilized the existing code base from Silhouette CFI [10] with

their code publicly available on Github [32]. Silhouette uses LLVM 9.0.1 to instrument the

instructions in the prologue and epilogue. Since an older version of LLVM is being used, the

pass is written in accordance with the legacy PassManager [33]. If this implementation were

to be ported to a newer version, then the new PassManager should be utilized [34].

5.2 Components of the LLVM BackEnd Pass

ARM Back-end code generation is achieved by overriding the functions in ARMPassConfig

which are virtual functions from TargetPassConfig. The TargetPassConfig class speci-

fies target-independent code generation options for the sole purpose of use by other code

generation passes. The steps for registering a new LLVM Backend pass with the Legacy

PassManager are given below:

1. All the backend passes are usually kept in the llvm/lib/Target/ARM directory. One

can see other passes of the ARMBackend CodeGen process such as ARMCallingConv.cpp

and ARMLoadStoreOptimizer.cpp.

2. Create a new file related to the pass being implemented, in our case, ARMShadowStack.h

and ARMShadowStack.cpp being the header files and the definitions files respectively.
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3. Define the functions in these files and within the Main Class of the header file, make sure

to include a virtual function called runOnMachineFunction. The LLVM PassManager

calls this function to run the pass. Therefore, this function should have the logic

defined in other functions in the definition file.

5.3 DWT Unit Configuration

As mentioned in Chapter 4, during startup the DWT configuration is set. This involves 56

lines of C code that does the following:

1. Sets the DWT registers with the values mentioned in Table 4.1

2. Enables the MON EN and TRCENA bits in the DEMCR register

3. Sets the Priority of the DebugMonitor Exception.

4. The configuration also includes a custom DebugMon Handler function that is triggered

if there is illegal access of the shadow stack.

5.4 Function Prologue

To implement the design of the function prologue, we need to set the relevant bits of the

Comparators, Function and Mask registers. This is achieved by using the relevant machine

instructions, as shown in Listing 5.1.
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1 // prologue - needs 2 free registers

2 movw Rx , #4128 // COMP0 lower address: 0x1020

3 movt Rx , #57344 // COMP0 higher address: 0xe000

4 mov.w Ry , #0 // null offset

5 str.w Ry , [Rx , #8] // disable FUNC0: ss write -protection

6 mov.w Ry , #16 // offset to access COMP1

7 ldr.w Ry , [Rx , Ry] //load stack pointer

8 str.w LR , [Ry] // store LR at dereferenced stack pointer location

9 addw Ry , Ry , #4 // incr shadow stack pointer by 4 bytes

10 str.w Ry , [Rx , #16] // store it back to COMP1

11 mov.w Ry , #6 // monitor writes in FUNC0

12 str.w Ry , [Rx , #8] // re-enable FUNC0

Listing 5.1: DWT Function Prologue

The function prologue requires two free registers for instrumentation. If an instrumented

function does not have enough free registers available, we reserve the required number by

pushing a register, i.e, the push instruction, in particular, registers R4 through R6 and use

them in the prologue. After the prologue, we restore the registers by popping their values

using the pop instruction.

5.5 Function Epilogue

The function epilogue, shown in Listing 5.2, reads the return address from the shadow stack

based on the current shadow-stack pointer value and loads it into the LR register. Due to

this process just being a read, and not a write, the DWT configuration does not need to be

modified.

1 // epilogue - needs 3 free registers

2 add sp , #4 // to balance the stack

3 movw Rx , #4144 // COMP1 lower address: 0x1030

4 movt Rx , #57344 // COMP1 upper address: 0xe000

5 mov.w Ry , 0 // null offset

6 ldr.w Ry , [Rx , Ry] // load current shadow stack pointer

7 mov.w Rz , #0 // null offset

8 subw Ry , Ry , #4 // decr ement pointer first

9 str.w Ry , [Rx] // # store updated ss pointer to COMP1

10 ldr.w LR , [Ry , Rz] // # load ss value to LR

Listing 5.2: DWT Function Epilogue
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The function epilogue requires three free registers. Like the prologue, we reserve and

restore registers to meet this requirement. The reason for the third register is due to LLVM

not allowing the use of a static offset during instrumentation; it only allows the offset in a

register, as seen in line 9 of Listing 5.2.

5.6 Limitations

• The Shadow stack is only 32KB in size, which means that only 8192 functions can be

protected (assuming 4 bytes per return address).

• For every function that is instrumented, 2 and 3 registers need to be reserved for

the prologue and epilogue respectively, this causes more instructions of pushing and

popping from the stack, adding to performance overhead.

• Every store instruction is a privileged store instruction: this implies that an attacker

could alter the memory-mapped DWT regions, causing the mechanism to fail. A

possible solution to this could be implementing a more fine-grained mechanism to

protect the DWT region without using the MPU.



Chapter6

Evaluation: To Shreds you say?

The board used for the evaluation was a STMicroelectronics STM32F469 Discovery kit,

which uses the STM32F469NIH6 MCU that is based on the ARM Cortex-M4 core with

DSP and FPU. The MCU has a 180 MHz max CPU frequency, 2MB Flash memory, 384KB

SRAM. It also has a 4MB SDRAM. We evaluated our implementation using the BEEBS

benchmark [35].

6.1 Validation

We validate the security mechanism by writing a test program that tries to modify contents

on the shadow stack, which is at a known fixed point in memory defined in the linker script.

The DWT monitoring this region will immediately trigger a DebugMon Handler exception

and control will be transferred to a custom handler. Depending on user requirements, this

handler can be modified to meet any criteria, but for demonstration purposes, this custom

handler resets the system.

6.2 Methodology

Building on Silhouette, we used Clang 9.0.0 to compile the BEEBS Benchmark suite. We

compiled and evaluated three versions of the benchmark: Baseline, Shadow Stack Only

and DWT enabled. We want to demonstrate any differences in performance between a

parallel shadow stack and a compact shadow stack. We also used the default compile-time

27
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optimization (-O3) options, as well as the default LLVM link-time optimization flag (-flto).

The benchmark, BEEBS [35], short for ”Bristol/Embecosm Embedded Benchmark Suite”

is an open source benchmark suite designed to evaluate the energy consumption of embedded

processors. This benchmark has been used in previous works to evaluate research studies

[10, 36].

6.3 Results

Previous works [31] have mentioned that parallel shadow stacks will outperform compact

ones and from our analysis, we observe the same. However, it is important to note that this

performance decrease is a trade-off for lower memory utilization compared to the parallel

shadow stack.

We have included the results from running each benchmarks 30 times and recording their

execution times. Table 6.1 shows the code-size overhead for each program, and Table 6.2

shows the run-time overhead for each program. However, as the authors of Silhouette note,

many of the programs in BEEBS are small in both input size and processing, leading to

small execution times (in ms) that offer insufficient data to be meaningful. As such, we have

chosen to retain only those programs which had an execution time of 1s or more. This is

shown in Table 6.3.

Our design is seen to have a geometric increase of 1.8% in code size and a geometric

increase of 12.2% in performance overhead. Notably, the maximum overhead seen is only

an 85% increase over the baseline. Compared to Silhouette, there is a significant difference

in performance overhead. This is because of the extra store and load operations in every

function prologue and epilogue, causing an increase in CPU cycles.



EVALUATION: TO SHREDS YOU SAY? 29

Table 6.1: BEEBS: Code-size increase comparison

Baseline Shadow Stack DWT Enabled

Benchmark Text Size Text Size Increase (%) Text Size Increase (%)

aha-compress 32472 32884 1.27 33048 1.77

aha-mont64 37052 37464 1.11 37628 1.55

bs 31604 31940 1.06 32092 1.54

bubblesort 33028 33516 1.48 33692 2.01

cnt 32300 32788 1.51 32964 2.06

compress 33356 33768 1.24 33932 1.73

cover 31632 31968 1.06 32120 1.54

crc 32028 32512 1.51 32688 2.06

crc32 32796 33208 1.26 33372 1.76

ctl-stack 32672 33084 1.26 33248 1.76

ctl-string 32948 33552 1.83 33744 2.42

ctl-vector 32892 33316 1.29 33476 1.78

cubic 45932 46412 1.05 46596 1.45

dijkstra 33604 34168 1.68 34356 2.24

dtoa 45152 45864 1.58 46072 2.04

duff 32052 32540 1.52 32716 2.07

edn 36040 36452 1.14 36616 1.6

expint 32140 32552 1.28 32716 1.79

fac 31832 32244 1.29 32408 1.81

fasta 32480 32892 1.27 33056 1.77

fdct 32628 33040 1.26 33204 1.77

Continued on next page
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Table 6.1 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Text Size Text Size Increase (%) Text Size Increase (%)

fibcall 31564 31900 1.06 32052 1.55

fir 34992 35404 1.18 35568 1.65

frac 32684 33172 1.49 33348 2.03

huffbench 36084 36496 1.14 36660 1.6

insertsort 32328 32664 1.04 32816 1.51

janne complex 31560 31896 1.06 32048 1.55

jfdctint 33540 34028 1.45 34204 1.98

lcdnum 32012 32348 1.05 32500 1.52

levenshtein 33360 33692 1 33868 1.52

ludcmp 35084 35496 1.17 35660 1.64

matmult-float 33536 34032 1.48 34208 2

matmult-int 34856 35344 1.4 35520 1.9

mergesort 36988 37480 1.33 37660 1.82

miniz 63216 64192 1.54 64452 1.96

minver 32500 32912 1.27 33076 1.77

ndes 36724 37288 1.54 37476 2.05

nettle-aes 44436 44924 1.1 45100 1.49

nettle-arcfour 34172 34584 1.21 34748 1.69

nettle-cast128 39904 40316 1.03 40480 1.44

nettle-des 36836 37248 1.12 37412 1.56

nettle-md5 31760 32096 1.06 32248 1.54

nettle-sha256 35672 36160 1.37 36336 1.86

Continued on next page
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Table 6.1 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Text Size Text Size Increase (%) Text Size Increase (%)

newlib-exp 31592 31928 1.06 32080 1.54

newlib-log 32200 33104 2.81 33280 3.35

newlib-mod 31592 31928 1.06 32080 1.54

newlib-sqrt 32752 33164 1.26 33328 1.76

ns 36984 37456 1.28 37620 1.72

nsichneu 41196 41608 1 41772 1.4

picojpeg 47696 48916 2.56 49200 3.15

prime 31924 32232 0.96 32412 1.53

qrduino 49376 50016 1.3 50216 1.7

qsort 32232 32644 1.28 32808 1.79

qurt 31624 32036 1.3 32200 1.82

recursion 31660 32192 1.68 32368 2.24

select 32056 32468 1.29 32632 1.8

sglib-arraybinsearch 32324 32736 1.27 32900 1.78

sglib-arrayheapsort 32596 33008 1.26 33172 1.77

sglib-arrayquicksort 32464 32876 1.27 33040 1.77

sglib-dllist 33028 33440 1.25 33604 1.74

sglib-hashtable 33148 33560 1.24 33724 1.74

sglib-listinsertsort 32464 32876 1.27 33040 1.77

sglib-listsort 32836 33248 1.25 33412 1.75

sglib-queue 33584 33996 1.23 34160 1.72

sglib-rbtree 33060 33768 2.14 33956 2.71

Continued on next page
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Table 6.1 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Text Size Text Size Increase (%) Text Size Increase (%)

slre 35348 36080 2.07 36280 2.64

sqrt 32332 32744 1.27 32908 1.78

st 37220 37636 1.12 37800 1.56

statemate 32832 33244 1.25 33408 1.75

stb perlin 35716 36208 1.38 36380 1.86

stringsearch1 34932 35344 1.18 35508 1.65

strstr 31812 32224 1.3 32388 1.81

tarai 31776 32308 1.67 32484 2.23

trio-snprintf 36896 37580 1.85 37780 2.4

trio-sscanf 37460 38248 2.1 38472 2.7

ud 34480 34892 1.19 35056 1.67

Geometric Mean 1.31 1.81

Table 6.2: BEEBS: Run-time comparison

Baseline Shadow Stack DWT Enabled

Benchmark Text Size Text Size Performance (%) Text Size Performance (%)

aha-compress 524 528 100.76 528 100.76

aha-mont64 655 658 100.46 658 100.46

bs 5 5 100 5 100

bubblesort 2571.67 2670.1 103.83 2762 107.4

cnt 47 54 114.89 53.77 114.4

Continued on next page
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Table 6.2 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Run Time Run Time Performance (%) Run Time Performance (%)

compress 310.67 322.73 103.88 332.73 107.1

cover 65 73.9 113.69 65 100

crc 37.27 44.47 119.32 42.17 113.15

crc32 636 713.5 112.19 787.2 123.77

ctl-stack 449.53 510.8 113.63 479.8 106.73

ctl-string 1211.2 1446.6 119.44 1528.4 126.19

ctl-vector 773.07 873.6 113 797.73 103.19

cubic 22996.4 25811.7 112.24 28592 124.33

dijkstra 40600 40967 100.9 40978 100.93

dtoa 727 767 105.5 771 106.05

duff 16 23 143.75 23.73 148.33

edn 2500.13 2592.4 103.69 2681 107.23

expint 93 97 104.3 96.87 104.16

fac 91.47 46.73 51.09 44.6 48.76

fasta 14110.13 15201.4 107.73 16277 115.36

fdct 130 133 102.31 133 102.31

fibcall 2 2 100 2 100

fir 15127.6 15873.7 104.93 16210 107.16

frac 8817 8853 100.41 8853 100.41

huffbench 46130 46134 100.01 46133 100.01

insertsort 21 21 100 21 100

janne complex 8.6 3.6 41.86 3 34.88

Continued on next page
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Table 6.2 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Run Time Run Time Performance (%) Run Time Performance (%)

jfdctint 101.8 115.93 113.88 124.8 122.59

lcdnum 5.4 13.87 256.79 6 111.11

levenshtein 6269.2 8410.2 134.15 9356 149.24

ludcmp 239 243 101.67 243 101.67

matmult-float 299 321 107.36 324 108.36

matmult-int 5901 5909 100.14 5909 100.14

mergesort 31222 31413 100.61 31513 100.93

miniz 28 47 167.86 46.37 165.6

minver 52.6 55.7 105.89 55.7 105.89

ndes 1938 2051 105.83 2054 105.99

nettle-aes 7027 7035 100.11 7037 100.14

nettle-arcfour 562 565 100.53 565 100.53

nettle-cast128 342 348 101.75 346 101.17

nettle-des 369 369 100 372 100.81

nettle-md5 3 3 100 3 100

nettle-sha256 710.47 745.4 104.92 770.33 108.43

newlib-exp 3.8 28.6 752.63 3 78.95

newlib-log 34.2 63.67 186.16 64 187.13

newlib-mod 3 9.5 316.67 3 100

newlib-sqrt 60.2 74.07 123.03 83.8 139.2

ns 187.67 218.33 116.34 243 129.48

nsichneu 382.33 415 108.54 449.67 117.61

Continued on next page
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Table 6.2 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Run Time Run Time Performance (%) Run Time Performance (%)

picojpeg 28743.67 44227.33 153.87 53301 185.44

prime 11102 363 3.27 11101 99.99

qrduino 43586 43633 100.11 43632 100.11

qsort 57 60 105.26 59.9 105.09

qurt 11.47 13.6 118.6 11.6 101.16

recursion 168.87 508.53 301.14 511.07 302.65

select 17 20 117.65 19.9 117.06

sglib-arraybinsearch 787.2 822.33 104.46 846.67 107.55

sglib-arrayheapsort 886.2 891.57 100.61 892.73 100.74

sglib-arrayquicksort 762.33 761.53 99.9 756.73 99.27

sglib-dllist 1289 1311.87 101.77 1330.73 103.24

sglib-hashtable 273 486.13 178.07 455.4 166.81

sglib-listinsertsort 1298.87 1332.8 102.61 1362.73 104.92

sglib-listsort 1078.33 1072.03 99.42 1061.73 98.46

sglib-queue 2063.47 2102.13 101.87 2137.8 103.6

sglib-rbtree 7424.4 10818.67 145.72 11224 151.18

slre 4172 5228 125.31 5270 126.32

sqrt 55665 55869 100.37 55717 100.09

st 20063 20066 100.01 20029 99.83

statemate 25 28 112 27.9 111.6

stb perlin 2985.73 3562.13 119.31 3697 123.82

stringsearch1 303 306 100.99 306 100.99

Continued on next page
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Table 6.2 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Run Time Run Time Performance (%) Run Time Performance (%)

strstr 57 61 107.02 60.87 106.78

tarai 68.47 146.07 213.34 142.8 208.57

trio-snprintf 900.7 998.7 110.88 1021.8 113.45

trio-sscanf 1308.6 1543.23 117.93 1538.9 117.6

ud 355.6 333.33 93.74 290.4 81.66

Minimum 3.27 34.88

Maximum 752.63 302.65

Geometric Mean 110.83 110.21

Table 6.3: BEEBS: Meaningful Run-time comparison

Baseline Shadow Stack DWT Enabled

Benchmark Run Time Run Time Performance (%) Run Time Performance (%)

bubblesort 2571.67 2670.1 103.827474 2762 107.4010273

ctl-string 1211.2 1446.6 119.4352708 1528.4 126.1889036

cubic 22996.4 25811.7 112.242351 28592 124.3325042

dijkstra 40600 40967 100.9039409 40978 100.9310345

edn 2500.13 2592.4 103.6906081 2681 107.2344238

fasta 14110.13 15201.4 107.7339472 16277 115.3568394

fir 15127.6 15873.7 104.9320447 16210 107.1551337

frac 8817 8853 100.4083021 8853 100.4083021

Continued on next page
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Table 6.3 – continued from previous page

Baseline Shadow Stack DWT Enabled

Benchmark Run Time Run Time Performance (%) Run Time Performance (%)

huffbench 46130 46134 100.0086711 46133 100.0065034

levenshtein 6269.2 8410.2 134.1510879 9356 149.2375423

matmult-int 5901 5909 100.1355702 5909 100.1355702

mergesort 31222 31413 100.6117481 31513 100.9320351

ndes 1938 2051 105.8307534 2054 105.9855521

nettle-aes 7027 7035 100.1138466 7037 100.1423082

picojpeg 28743.67 44227.33 153.868069 53301 185.4356107

qrduino 43586 43633 100.1078328 43632 100.1055385

sglib-dllist 1289 1311.87 101.7742436 1330.73 103.2373933

sglib-listinsertsort 1298.87 1332.8 102.6122707 1362.73 104.9165813

sglib-listsort 1078.33 1072.03 99.41576326 1061.73 98.46058257

sglib-queue 2063.47 2102.13 101.8735431 2137.8 103.6021847

sglib-rbtree 7424.4 10818.67 145.7177684 11224 151.1771995

slre 4172 5228 125.3116012 5270 126.3183126

sqrt 55665 55869 100.366478 55717 100.093416

st 20063 20066 100.0149529 20029 99.83053382

stb perlin 2985.73 3562.13 119.3051616 3697 123.8223148

trio-sscanf 1308.6 1543.23 117.9298487 1538.9 117.5989607

Minimum 710.47 745.4 99.41576326 770.33 98.46058257

Maximum 55665 55869 153.868069 55717 185.4356107

Geometric Mean 109.0743296 112.2028587
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Conclusion: Thats All Folks

In conclusion, we present a novel backward-edge integrity security mechanism that utilizes

the Data Watchdog and Trace unit to monitor the shadow stack. We implemented our design

on an ARMv7-M board from STMicro. The evaluation of which shows that our design has

very insignificant code-size overhead with a geometric increase of 1.81%. In performance

analysis, we observed a geometric increase of 12.1% over the baseline, with the maximum

overhead observed being an increase of 85%. Considering our architecture that utilizes a

smaller memory-size shadow stack, we find this performance overhead to be an acceptable

trade-off.

We also propose some directions for future work: reduce the CPU cycles for each prologue

and epilogue by reserving a GPR to store the DWT address that is used for instrumentation.

Also, disallow configuring of the DWT monitor except at the prologue of each protected

function.

38



Bibliography

[1] Anton Shilov. 842 Chips Per Second: 6.7 Billion Arm-Based Chips Produced in Q4 2020
— tomshardware.com. [Accessed 07-04-2024]. url: https://www.tomshardware.com/
news/arm-6-7-billion-chips-per-quarter.

[2] Gartner Inc. Gartner Says Worldwide PC Shipments Grew 10.7 in Fourth Quarter of
2020 and 4.8 for the Year. [Accessed 07-04-2024]. 2021. url: https://www.gartner.
com/en/newsroom/press-releases/2021-01-11-gartner-says-worldwide-pc-

shipments-grew-10-point-7-percent-in-the-fourth-quarter-of-2020-and-4-

point-8-percent-for-the-year.

[3] Mart́ın Abadi et al. “Control-flow integrity principles, implementations, and applica-
tions”. In: ACM Trans. Inf. Syst. Secur. 13.1 (2009). issn: 1094-9224. doi: 10.1145/
1609956.1609960. url: https://doi.org/10.1145/1609956.1609960.

[4] Xi Tan et al. Where’s the ”up”?! A Comprehensive (bottom-up) Study on the Security
of Arm Cortex-M Systems. 2024. arXiv: 2401.15289 [cs.CR].

[5] Crispin Cowan et al. “StackGuard: automatic adaptive detection and prevention of
buffer-overflow attacks”. In: Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7. SSYM’98. San Antonio, Texas: USENIX Association, 1998,
p. 5.

[6] Perry Wagle and Crispin Cowan. “StackGuard: Simple Stack Smash Protection for
GCC”. In: Proceedings of the GCC Developers Summit. GNU. 2003, pp. 243–256. url:
https://gcc.gnu.org/pub/gcc/summit/2003/Stackguard.pdf.

[7] Microsoft C++ Team. Visual Studio 2015 Preview: Work-in-Progress Security Feature.
Nov. 2014. url: https://devblogs.microsoft.com/cppblog/visual- studio-
2015-preview-work-in-progress-security-feature/.

[8] Caroline Tice et al. “Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM”.
In: 23rd USENIX Security Symposium (USENIX Security 14). San Diego, CA: USENIX
Association, Aug. 2014, pp. 941–955. isbn: 978-1-931971-15-7. url: https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/presentation/

tice.

[9] Xi Tan et al. “Is the Canary Dead? On the Effectiveness of Stack Canaries on Mi-
crocontroller Systems”. In: ACM/SIGAPP Symposium On Applied Computing (SAC).
2024.

39

https://www.tomshardware.com/news/arm-6-7-billion-chips-per-quarter
https://www.tomshardware.com/news/arm-6-7-billion-chips-per-quarter
https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-says-worldwide-pc-shipments-grew-10-point-7-percent-in-the-fourth-quarter-of-2020-and-4-point-8-percent-for-the-year
https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-says-worldwide-pc-shipments-grew-10-point-7-percent-in-the-fourth-quarter-of-2020-and-4-point-8-percent-for-the-year
https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-says-worldwide-pc-shipments-grew-10-point-7-percent-in-the-fourth-quarter-of-2020-and-4-point-8-percent-for-the-year
https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-says-worldwide-pc-shipments-grew-10-point-7-percent-in-the-fourth-quarter-of-2020-and-4-point-8-percent-for-the-year
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://arxiv.org/abs/2401.15289
https://gcc.gnu.org/pub/gcc/summit/2003/Stackguard.pdf
https://devblogs.microsoft.com/cppblog/visual-studio-2015-preview-work-in-progress-security-feature/
https://devblogs.microsoft.com/cppblog/visual-studio-2015-preview-work-in-progress-security-feature/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice


BIBLIOGRAPHY 40

[10] Jie Zhou et al. “Silhouette: Efficient Protected Shadow Stacks for Embedded Systems”.
In: 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 1219–1236. isbn: 978-1-939133-17-5. url: https://www.usenix.org/
conference/usenixsecurity20/presentation/zhou-jie.

[11] Jinfeng Li et al. “Zipper Stack: Shadow Stacks Without Shadow”. In: Computer Secu-
rity – ESORICS 2020. Ed. by Liqun Chen et al. Cham: Springer International Pub-
lishing, 2020, pp. 338–358. isbn: 978-3-030-58951-6.

[12] µRAI: Securing Embedded Systems with Return Address Integrity. en-US. url: https:
//www.ndss-symposium.org/ndss-paper/murai-securing-embedded-systems-

with-return-address-integrity/.

[13] Thomas Nyman et al. CFI CaRE: Hardware-supported Call and Return Enforcement
for Commercial Microcontrollers. 2017. arXiv: 1706.05715 [cs.CR].

[14] Arm Ltd. Licensing Arm Technology — arm.com. [Accessed 07-04-2024]. 2024. url:
https://www.arm.com/products/licensing.

[15] Apple starts its two-year transition to ARM this week — engadget.com. https://
www.engadget.com/apple-arm-transition-timeline-191106454.html. [Accessed
13-04-2024].

[16] ARM Ltd. ARMv7-M Architecture Reference Manual. https : / / documentation -

service.arm.com/static/64b7f5c638511951cb79fc45. [Accessed 07-04-2024].

[17] Joseph Yiu. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors.
3rd ed. Newnes, Apr. 2024. isbn: 978-0124080829. url: https : / / www . amazon .

com/Definitive- Guide- Cortex%C2%AE- M3- Cortex%C2%AE- M4- Processors/

dp/0124080820.

[18] Andrew S. Tanenbaum. Modern Operating Systems — pearson.com. https://www.
pearson.com/en-us/subject-catalog/p/modern-operating-systems/P200000003311/

9780133591620. [Accessed 13-04-2024]. 2014.

[19] Yigeng Zhu. amazon.com. https://www.amazon.com/Embedded-Cortex-M-Microcontrollers-
Assembly-Language/dp/0982692676/. [Accessed 13-04-2024]. 2023.

[20] Comparing clang to other open source compilers — opensource.apple.com. url: https:
//opensource.apple.com/source/clang/clang-23/clang/tools/clang/www/

comparison.html.

[21] Alibaba Cloud. GCC vs. Clang/LLVM: An in-depth comparison of C/C++ compilers.
2024. url: https://www.alibabacloud.com/blog/gcc-vs--clangllvm-an-in-
depth-comparison-of-cc%2B%2B-compilers_595309.

https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-jie
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-jie
https://www.ndss-symposium.org/ndss-paper/murai-securing-embedded-systems-with-return-address-integrity/
https://www.ndss-symposium.org/ndss-paper/murai-securing-embedded-systems-with-return-address-integrity/
https://www.ndss-symposium.org/ndss-paper/murai-securing-embedded-systems-with-return-address-integrity/
https://arxiv.org/abs/1706.05715
https://www.arm.com/products/licensing
https://www.engadget.com/apple-arm-transition-timeline-191106454.html
https://www.engadget.com/apple-arm-transition-timeline-191106454.html
https://documentation-service.arm.com/static/64b7f5c638511951cb79fc45
https://documentation-service.arm.com/static/64b7f5c638511951cb79fc45
https://www.amazon.com/Definitive-Guide-Cortex%C2%AE-M3-Cortex%C2%AE-M4-Processors/dp/0124080820
https://www.amazon.com/Definitive-Guide-Cortex%C2%AE-M3-Cortex%C2%AE-M4-Processors/dp/0124080820
https://www.amazon.com/Definitive-Guide-Cortex%C2%AE-M3-Cortex%C2%AE-M4-Processors/dp/0124080820
https://www.pearson.com/en-us/subject-catalog/p/modern-operating-systems/P200000003311/9780133591620
https://www.pearson.com/en-us/subject-catalog/p/modern-operating-systems/P200000003311/9780133591620
https://www.pearson.com/en-us/subject-catalog/p/modern-operating-systems/P200000003311/9780133591620
https://www.amazon.com/Embedded-Cortex-M-Microcontrollers-Assembly-Language/dp/0982692676/
https://www.amazon.com/Embedded-Cortex-M-Microcontrollers-Assembly-Language/dp/0982692676/
https://opensource.apple.com/source/clang/clang-23/clang/tools/clang/www/comparison.html
https://opensource.apple.com/source/clang/clang-23/clang/tools/clang/www/comparison.html
https://opensource.apple.com/source/clang/clang-23/clang/tools/clang/www/comparison.html
https://www.alibabacloud.com/blog/gcc-vs--clangllvm-an-in-depth-comparison-of-cc%2B%2B-compilers_595309
https://www.alibabacloud.com/blog/gcc-vs--clangllvm-an-in-depth-comparison-of-cc%2B%2B-compilers_595309


BIBLIOGRAPHY 41

[22] James Alan Farrell. Compiler Basics. 1995. url: https://www.cs.man.ac.uk/~pjj/
farrell/compmain.html.

[23] Chris Lattner. LLVM. The Architecture of Open Source Applications (Volume 1). 2011.
url: https://aosabook.org/en/v1/llvm.html.

[24] Mayur Anand et al. LLVM Cookbook. Packt Publishing, May 2015. isbn: 9781785285981.

[25] Miguel Young de la Sota. A Gentle Introduction to LLVM IR. Aug. 2023. url: https:
//mcyoung.xyz/2023/08/01/llvm-ir/.

[26] Jonathan Chuang. About - Low Level Virtual Machine Backend Tutorial. url: https:
//jonathan2251.github.io/lbd/about.html.
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