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Abstract

The proliferation of deepfake technology has raised societal apprehensions regarding the

authenticity of video content circulating on social media platforms. With exponential devel-

opment in the field of deep learning, the production of deepfakes has advanced to the point

where distinguishing them from genuine photos or videos has become exceptionally chal-

lenging. Therefore, the need for reliable detection mechanisms to combat the ramifications

of fake media is now more important than ever. In this study, we explore the evolution of

deepfake media creation, and the current methodologies employed for their detection. We

observe that conventional deepfake detection methods predominantly rely on a single model

architecture for classification. While single models for deepfake detection offer utility, they

are constrained by inherent limitations. They may lack diversity, diminishing their ability to

detect nuanced manipulations and reducing accuracy and robustness against sophisticated

deepfakes. Moreover, these models often struggle to generalize across diverse datasets and

manipulation types, potentially leading to limited performance. Additionally, single mod-

els are prone to overfitting, becoming overly specialized to training data and compromising

detection of constantly evolving deepfake variations. In response to these challenges, our

research delves into the development and assessment of an ensemble of our novel EffiSwinT

model aimed at refining the classification of deepfake videos. EffiSwinT seamlessly inte-

grates a convolutional neural network with an attention mechanism, elevating the model’s

capacity to accurately capture spatial features and thereby enhancing its classification effi-

cacy. Through extensive experimentation and comparative assessment, we present findings

showcasing the superiority of employing an ensemble of EffiSwinT models over single models

for deepfake detection, particularly in terms of precision. Furthermore, we demonstrate the

critical impact of large amounts of training data covering a wide range of manipulation in

improving the performance of ensemble detectors. This study adds to the continual endeav-

viii



ABSTRACT ix

ors aimed at curbing the dissemination of synthetic media and preserving the integrity of

visual content within the digital sphere.



Chapter 1

Introduction

The progress in artificial intelligence has facilitated the development of extremely persuasive

fraudulent videos, audio recordings, and images, causing a significant overlap between what

is genuine and what is artificially created. This type of deceptive manipulation of synthetic

media, also known as deepfakes, presents substantial threats to individuals, businesses, and

society as a whole. They diminish confidence, distort information, and have the potential to

result in serious repercussions.

The word ”deepfake” is derived from the combination of ”deep learning” and ”fake,”

referring to material generated using artificial neural networks. The phenomenon of deep-

fakes first appeared on the internet towards the end of 2017, introduced by a Reddit user

known as ”deepfakes” [1]. This user employed deep learning techniques to overlay the faces

of famous individuals over pornographic videos. The occurrence of this event resulted in a

significant amount of media coverage, which in turn caused a rapid increase in the creation

and distribution of deepfake-generated material. This incident also brought attention to the

potential risks associated with impersonation, identity theft, and the dissemination of false

information on digital platforms. In 2018, BuzzFeed published a deepfake video showcasing

former President Barack Obama [2], therefore highlighting the possible ramifications and

significance of this technology.

Deepfakes can be broadly categorized into two groups depending on the targeted forged

modality – audio deepfakes and visual deepfakes as shown in figure 4.2 [3]. In this research,

we are focusing on the classification of visual deepfakes. Visual deepfakes are further grouped

into the following types based on manipulation level:

1



INTRODUCTION 2

Figure 1.1: Classification of Deepfakes

• Face swap or identity swap

• Lip-syncing

• Face- reenactment or puppet-mastery

• Entire face synthesis

• Facial attribute manipulation

Audio deepfakes are further classified as:

• Text-to-speech synthesis

• Voice conversion.

There are broadly two methods for creating realistic deepfakes: generative adversarial

networks (GANs) [4, 5, 6] and variational autoencoders (VAEs) [7]. GANs use two networks:

the discriminator, which detects real videos, and the generator, which alters videos to trick

the discriminator. VAE-based techniques use two encoder-decoder pairs. Each partner learns

to dismantle and reconstruct one of the two faces involved in the exchange.
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Visual Manipulation Techniques typically found in deepfake datasets are as below:

1. Reenactment

• Expression Reenactment: Source controls the expression of a target.

• Mouth Reenactment (Lip-Syncing): Target’s mouth is controlled by the

source or an audio input that contains speech.

• Gaze Reenactment: Source determines the direction of the target’s gaze as well

as the position of the eyelids.

• Pose Reenactment: Source controls the target’s head position.

• Body Reenactment (Pose Transfer and Human Pose Synthesis): Source

determines the target’s body posture.

Examples of Reenactment manipulations are shown in Figure 1.2 referenced from

[8].

Figure 1.2: Example of Various Types of Facial Reenactment
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2. Replacement

• Transfer: Content from the source is substituted with that of the target.

• Swap: Content transferred to the target from the source is driven by the target.

Examples of Replacement manipulations are shown in Figure 1.3 referenced from

[8].

Figure 1.3: Example of Various Types of Facial Replacement

3. Editing & Synthesis

• Enchantment Deepfake: Attributes of a target are added, altered, or removed.

• Synthesis: Deepfake is created with no target as a basis.

Examples of Editing and Synthesis manipulation techniques are shown in Figure

1.4 referenced from [8].
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Figure 1.4: Example of Editing and Synthesis

The identification of deepfake videos may be categorized into two sections: approaches

that analyze visual artifacts inside individual video frames, and methods that examine tem-

poral aspects over several frames. While the majority of temporal feature-based approaches

rely on deep learning recurrent classification models, the methods that use visual artifacts

inside video frames may be implemented using either deep or shallow classifiers. Our re-

search focuses on visual artifacts within single video frame-based methods. This technique

breaks down videos into individual frames and examines visual artifacts within single frames

to obtain discriminant features. These features are then distributed into either a deep or

shallow classifier to differentiate between fake and authentic videos. Thus, we categorize

approaches depending on the kinds of classifiers they use, namely deep or shallow classifiers.

Deep Classifiers: Deepfake videos are often created with low resolutions, which requires

the use of an affine face warping approach. This technique involves scaling, rotating, and

shearing the face to align it with the original configuration. Due to the difference in resolution
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between the distorted facial area and the surrounding context, CNN models such as VGG16,

ResNet50, ResNet101, and ResNet152 could detect artifacts created by this process. A

proposed approach in [9] utilizes deep learning to identify deepfakes by analyzing the artifacts

seen during the face warping phase of the deepfake generation algorithms.

Shallow Classifiers: Deepfake detection methods often rely on artifacts or inconsisten-

cies between fake and real images or videos. Yang et al. [10] proposed a method observing

differences between 3D head poses based on 68 facial landmarks of the central face region.

The extracted features are fed into an SVM classifier for detection. Experiments on two

datasets showed great performance against competing methods. Another method exploited

artifacts of deepfakes and face manipulations based on visual features of eyes, teeth, and

facial contours. The method exploited missing reflections, details, and texture features ex-

tracted from facial regions based on facial landmarks. Two classifiers, logistic regression,

and a small neural network, were employed to classify deepfakes from real videos. However,

the method requires images to meet certain prerequisites, such as open eyes or visual teeth.



Chapter 2

Related Work

Classification of deepfake videos is considered a binary classification problem. The detector’s

objective is to evaluate the authenticity of an image or video that contains a human face by

classifying it as real or fake.

The majority of research work focussed on this domain uses Convolutional Neural Net-

work (CNN) models for the purpose of detecting deepfake videos. The proposed studies

utilize various strategies, such as augmentation techniques, temporal features combined with

spatial information, recurrent networks, and transformer models, to detect deepfake images

or videos. These strategies aim to enhance the models’ ability to generalize. This section

presents an overview of prior research conducted on the identification of deepfake videos.

In [11], the authors introduced two distinct convolutional neural network (CNN) models,

namely Meso-4 and MesoInception-4, for deepfake media identification. Both of these CNN

networks specifically targeted mesoscopic image features and had a limited number of layers.

The authors evaluated their models on a deepfake detection benchmark and a custom dataset,

achieving outstanding outcomes on both datasets.

A novel recurrent convolutional network aimed at detecting inconsistencies among neigh-

boring frames in a video was introduced by the authors of [12]. They utilized DenseNet

CNN in combination with a gated recurrent neural network (RNN) to capture both tempo-

ral and spatial features. The goal was to find any discrepancies between adjacent frames of

a video that were next to each other. After conducting extensive evaluations on the widely

recognized FaceForensics++ [32] benchmark, the authors obtained highly promising results

in detecting deepfakes.

7
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A deepfake detection benchmark, FaceForensics++ [13], was proposed by Rossler et al. in

[14]. In addition to the benchmark, the authors suggested a basic XceptionNet-based CNN

[15] deepfake detection method. The authors used their deepfake detection benchmark,

FaceForensics++, to train and assess the basic XceptionNet. While the model did quite well

when tested on the high-quality FaceForensics++ dataset’s four subsets, it struggled when

tested on the lower-quality videos.

Using capsule networks for deepfake detection was suggested by Nguyen et al. in [16].

When compared to competing methods that advocated for convolutional neural network

(CNN) models, this one was unique in its proposal to use capsule networks. The detection

approach that relies on capsule networks was tested on four separate deepfake datasets that

include a diverse range of false movies and pictures. Statistically, the authors’ suggested

method outperformed competing deepfake detection methods.

In their groundbreaking work, the authors of [17] created a deepfake media detection

model using convolutional neural networks (CNNs) and support vector machines (SVMs)

with biological data, namely photoplethysmography (PPG) signals. A final classification

score was obtained by fusing the predictions made by the CNN and SVM models. The

CelebDF, Face Forensics, and Face Forensics++ datasets, among others, showed promising

results when evaluated with this deepfake detection model.

Using 3D face decomposition characteristics, Zhu et al. in [18] presented a technique for

detecting deepfakes. A combination of 3D identity texture and direct light characteristics,

as shown by the authors, greatly enhanced detection performance and allowed the model to

generalize well to unknown data when tested in a cross-dataset environment. The Xception-

Net CNN architecture was also used for feature extraction in this investigation. To train

their deepfake detection algorithm, they used both a cropped picture of a face and the 3D

information that went along with it. Additionally, they thoroughly examined many feature

fusion algorithms. First, FaceForensics++ was used to train the proposed model. Then, the

FaceForensics++, the Google Deepfake Detection Dataset, and the DFDC [19] dataset were
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used for evaluation. The model’s generalizability was shown by the encouraging evaluation

statistics obtained for all three datasets, which were compared to the previously described

deepfake detection techniques.

For the purpose of deepfake media identification, Khan et al. [20] suggested using trans-

former architecture. The authors presented a new video-based model for deepfake identifica-

tion that uses both normal cropped face photos and 3D facial characteristics for training. In

addition, the authors demonstrated that their suggested model could learn from fresh data

in small increments without severely losing its training material. The authors demonstrated

that their suggested models performed very well on all of the datasets used to test them,

including FaceForensics++, DFDC, and DFD, three of the most popular deepfake detection

benchmarks.

[21] provides a Multi-modal Multi-scale Transformer (M2TR) model that scans images at

several spatial levels using patches of varying sizes to detect local anomalies. M2TR employs

a complex cross-modality information fusion block to better identify artifacts associated

with forgery by leveraging frequency domain information in addition to RGB information.

The authors demonstrate that their model beats SOTA Deepfake detection algorithms by

respectable margins and prove that M2TR is successful via comprehensive trials.

The authors in [22], combined different types of Vision Transformers with a convolutional

EfficientNet B0 as a feature extractor. This integration enabled them to achieve compara-

ble results to recent methods that employ Vision Transformers. Their approach sets itself

apart by not relying on distillation or ensemble techniques. Additionally, they introduced

a straightforward inference procedure utilizing a voting scheme to effectively handle multi-

ple faces in a video shot. Their experimental results demonstrated impressive performance,

with an AUC of 0.951 and an F1 score of 88.0%, closely approaching the state-of-the-art

performance in the Deepfake Detection Challenge (DFDC).

For the purpose of deepfake detection, an Interpretable Spatial-Temporal Video Trans-

former (ISTVT) was suggested in [23]. To understand spatial artifacts and temporal incon-
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sistencies linked to forgeries, the suggested model integrates a self-subtract mechanism and

a unique deconstructed spatio-temporal self-attention. With the help of the relevance propa-

gation algorithm, ISTVT may additionally display the discriminative zones in terms of both

time and space [46]. Extensive tests were carried out on large-scale datasets, demonstrating

that ISTVT performed very well in deepfake detection inside and across datasets, proving

the efficacy and resilience of the suggested model.

The authors of [24] investigated approaches to improve the ability of deepfake detection

techniques to generalize by utilizing two advanced deepfake detection models, XceptionNet

and EfficientNet. They utilized five databases, namely Google and Jigsaw, Face Forensics++,

DeeperForensics, Celeb-DF (v2), and their own carefully curated dataset named DF-Mobio.

To enhance generalization, they used many augmentation tactics during the training phase,

one of which was a robust approach known as ’data farming’ that entailed the utilization

of random patches. In addition, they performed tests using two few-shot tuning techniques,

namely fine-tuning either the first convolutional layer or the last layer of a pre-trained model,

using 100 seconds of data from the training set of the test database. The findings of their

tests exposed the difficulties linked to generalization in deepfake detection techniques, as

the precision significantly diminished when models trained on one dataset were assessed on

another. Nevertheless, the research revealed that using forceful augmentation during training

and doing few-shot tweaking on the test database might improve the precision of deepfake

detection in cross-database situations.

While much research has focused on developing architectures and feature descriptors for

deepfake classification, there has been minimal examination of the impact of data augmenta-

tion and frame extraction on the efficacy of deepfake detection. The often used pre-processing

step in deepfake classification is the extraction of individual frames from videos and the sub-

sequent detection of facial regions. In contrast to the previously outlined approaches, we

propose a technique that incorporates a combination of multi-level attention mechanisms into

our innovative EffiSwinT ensemble model architecture to improve the accuracy of deepfake
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classification. In addition, we use sophisticated data augmentation methods to preprocess

the datasets, which leads to improved memory usage as a secondary outcome. By conducting

thorough performance research on a wide range of datasets across multiple combinations of

ensemble models, we demonstrate the unparalleled effectiveness of our technique.



Chapter 3

Dataset Overview

Our experiments utilize three well-known datasets, namely Face Forensics++ (FF++) [13],

Face Forensics in the Wild (FFIW10K) [25], and Celeb-DF (v2) [26], for the purpose of

training and evaluating our model.

Face Forensics++ is a comprehensive dataset tailored for deepfake research. It in-

cludes 1000 original video sequences along with their corresponding fake versions, created

using various face manipulation and swapping techniques. The videos primarily feature

unobstructed frontal faces, enabling the production of highly realistic forgeries through au-

tomated methods. The dataset covers five distinct types of deepfake attacks: DeepFakes,

Face2Face, NeuralTextures, FaceSwap, with each category containing 1000 videos. Videos

primarily feature frontal faces without occlusions and are sourced from 977 YouTube videos.

Each subset employs different facial manipulation techniques, providing the diversity needed

to train a robust model.

Face Forensics in the Wild dataset consists of 10,000 high-quality deepfake videos,

with an average of three human faces in each frame. Within the context of Face Forensics

in the Wild, each video comprises an average of three human faces, only certain faces are

modified with selective facial manipulations. The manipulation procedure is fully automatic

and is controlled by a domain-adversarial quality assessment network. This dataset allows

us to evaluate the effectiveness of our algorithm on multi-person videos.

Celeb-DF (v2) dataset consists of 590 genuine videos and 5,639 deepfake videos, amount-

ing to a total of more than two million frames. The videos have an average duration of

roughly 13 seconds, with a typical frame rate of 30 frames per second. The films used

12



DATASET OVERVIEW 13

in this project are obtained from publicly accessible YouTube interviews that showcase 59

celebrities, guaranteeing a wide range of representation in terms of gender, age, and race.

These films showcase a diverse array of variants, encompassing alterations in facial dimen-

sions, orientations, lighting circumstances, and backdrops. DeepFake films are generated

by exchanging facial features between the 59 individuals, resulting in videos in MPEG4.0

format. In our experiments, we employed the Face Forensics++ and Face Forensics in the

Wild datasets to train and test our model on their corresponding test sets for in-dataset

testing. The Celeb-DF (v2) dataset is employed for performing cross dataset testing, and

we did not utilize this dataset for training our models.

Table 3.1: Comparative Analysis of the Deepfake Datasets

Real videos Fake videos Synthetic Methods Faces per frame %
FF++ 1000 4000 4 1

FFIW10K 10000 10000 3 3
Celeb-DF (v2) 590 5693 1 1



Chapter 4

Methodology

Our methodology unfolds through the following sequence of steps: frame extraction, data

augmentation, and model development.

4.1 Frame Extraction

Frame extraction is the process of isolating individual frames from a video. This enables

analysis for signs of manipulation, discrepancies, or common artifacts in deepfake videos.

However, in a video, numerous elements remain consistent across consecutive frames, eval-

uating each consecutive frame as an unnecessarily resource-intensive and time-consuming

process. Thus, to reduce the dataset size, we implemented key-frame extraction.

“Keyframes”, also known as “intra-frames” or “i-frames”, are frames within a video

stream that serve as representative snapshots, offering a concise and accurate summary of

the video’s content. Key frames indicate frames that mark the beginning or end of any

transition, with subsequent frames solely containing information about transitional changes.

Given our concentration on manipulated visual distortions, we believe that concentrating

just on keyframes is sufficient for our algorithm to detect deepfake content. To determine

the most optimal key-frame extraction threshold, we conducted experiments with threshold

values of 0.3, 0.5, and 0.7. Among these, the threshold value of 0.3 demonstrated the highest

level of effectiveness, leading us to select it as the standard for our process. By applying this

threshold, we reduced the pre-processed data size to an average of 128 frames per video.

Furthermore, we utilized the Multi-task Cascaded Convolutional Neural Network (MTCNN)

14
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Figure 4.1: Extracting Faces from Videos

to accurately extract and store the facial regions from the key frames, ensuring high-quality

data for our analysis.

4.2 Data Augmentation

A comprehensive set of data augmentation techniques was applied to the training data to

enhance the robustness and generalization ability of the deepfake detection model. The data

augmentation pipeline consists of a variety of transformations aimed at simulating real-world

variations and distortions that may occur in facial images. These transformations applied

include the following:

• Facial Feature Dropout: This removes facial features from the images randomly in

one of the three different ways - removing the eye region, removing the mouth region,

removing the nose area or keeping the image as it is. This allows for diversity in the

training data.

• Image Compression: Image compression data augmentation technique is applied to
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Figure 4.2: Example of Facial Feature Dropout Augmentation Technique

the training data with a probability of 0.2 and the compression quality is randomly

chosen within the range of 60 to 100. This augmentation introduces variability in

image quality by compressing images at different quality levels, which helps make the

model more robust to variations in image compression that might occur in real-world

scenarios.

• Gaussian Noise: Gaussian noise is a type of statistical noise that follows a Gaussian

distribution. When applied to an image, Gaussian noise introduces random variations

in pixel intensity values, mimicking the noise that can occur during image capture or

transmission. This transformation was applied to each image in the training with a

probability of 0.3.

• Horizontal Flip: This flips the image horizontally, providing additional variations of

the same image.

• Isotropic Resize: This resizes the image while maintaining the aspect ratio. It offers

three options for interpolation methods, providing variations in resizing techniques.

• Padding: This transformation ensures that all images, regardless of their original

dimensions, are resized to have at least the specified minimum height and width, with

the remaining area padded with a constant value according to the specified border
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mode. This helps maintain consistency in the input size of images during training,

which is crucial for deep learning models.

• Random Brightness Contrast: This transformation randomly adjusts the bright-

ness and contrast of the input image. It helps in simulating variations in lighting

conditions that may occur in real-world images.

• Fancy PCA: This transformation applies Principal Component Analysis (PCA) on

the input image to perform color augmentation. It changes the color distribution in

the image by altering the intensity of the principal components, thereby introducing

variations in color.

• Hue Saturation Value: This transformation randomly adjusts the hue, saturation,

and value (brightness) of the input image. It helps in simulating changes in color and

intensity that may occur due to different environmental factors or camera settings.

• To Gray: This converts the input image to grayscale. Grayscale images contain

intensity values representing different shades of gray, ranging from black to white,

with no color information. Converting an image to grayscale removes color information

while retaining the overall structure and luminance information. This augmentation

technique introduces additional variability and diversity in the dataset, which can help

improve the model’s ability to generalize to unseen data and enhance its robustness

against various types of input images, including those without color information.

• Shift Scale Rotate: This transformation introduces variations in the position, size,

and orientation of the input images, which helps in making the model more robust to

variations in facial expressions, poses, and viewpoints in real-world scenarios.

In the validation set only isotropic resize and padding transformations are applied.
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4.3 Model Development

In this research, we propose an ensemble model, EffiSwinT, for detecting manipulated con-

tent. EffiSwinT combines EfficientNet B3 and Swin Transformer architectures.

4.3.1 EfficientNet

EfficientNet [27] is widely recognized for accurately identifying deepfake videos due to its

effective compound coefficient scaling approach. Compound coefficient scaling is a unique

scaling technique that equally modifies the parameters of depth, breadth, and resolution.

EfficientNet demonstrates appropriate scaling by using this coefficient, making it incredibly

effective in a wide range of applications, such as deepfake classification. The significant

accomplishments in the Deep Fake Detection Challenge (DFDC) highlight the efficacy of

pre-trained EfficientNet models, especially when enhanced by face alteration films.

Our study included examining many versions of the EfficientNet architecture, including

EfficientNet B0, B3, B4, and B7. Out of all the variants, EfficientNet B3 stood out as

the best performer, demonstrating better overall performance in comparison to B0. While

B4 and B7 provide improved power and performance, they also need considerably more

processing resources. Therefore, we chose EfficientNet B3 to achieve a favorable equilibrium

between effectiveness and computing efficiency in our implementation.

4.3.2 Swin Transformer

Swin Transformer [28] introduces an innovative approach to compute representations by

using shifted windows. The hierarchical Transformer design improves computing efficiency

by limiting self-attention to non-overlapping local windows, while nevertheless maintain-

ing important connections between these windows. The Swin Transformer utilizes a novel

architecture that efficiently captures information at different sizes, demonstrating a linear

computational cost with respect to the size of the input image. Therefore, the Swin Trans-



METHODOLOGY 19

former is a notable solution for applications that need both rapid and thorough information

processing, such as image recognition and natural language comprehension.

4.3.3 Our Model Architecture

EffiSwinT integrates the strengths of both EfficientNet and Swin Transformer architectures.

In our implementation of the EffiSwinT model, we have incorporated the attention heads

of the Swin Transformer to handle the feature embeddings obtained from EfficientNet B3.

This novel method entails omitting the conventional patch embed layer found in the Swin

Transformer architecture and instead including the EfficientNet B3 as a feature extractor.

This adaption not only simplifies the structure of the model but also considerably reduces

its number of parameters to 13.48 million.

Figure 4.3 depicts a graphical contrast among EfficientNet B3, Swin Transformer, and

EffiSwinT concerning training validation accuracy and training validation loss when sub-

jected to training and testing on the FaceForensics++ dataset. A comparison of EffiSwinT

with the state-of-the-art models in terms of the number of parameters generated is presented

in Table 4.1. The figure 4.4 showcases the architecture of the EffiSwinT model along with

its training pipeline.

Figure 4.3: Graphical comparison between EfficientNet B3, Swin Transformer and EffiSwinT
based on training validation loss and accuracy when Trained and Tested on FaceForensics++
dataset.
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Table 4.1: Comparative study of the number of parameters generated by state-of-the-art
models with our EffiSwinT. EffiSwinT has the lowest parameter count in millions.

Model Size Transformer Size
DenseNet [29] 15.3 M DeiT [30] 86.39M

XceptionNet [15] 22.9 M ViT Hybrid [31] 98.77 M
VGG [32] 138.4 M ViT Base [31] 86 M

Inception-v3 [33] 23.9 M Swin Transformer [28] 27.52 M
ResNet [34] 19.4 M Swin Transformer Attention Head [28] 1.18 M

EfficientNet [27] 10.69 M EffiSwinT 13.48 M

4.3.4 Ensemble Models

Ensemble Learning is a methodology whereby predictions derived from multiple machine

learning models are combined to yield more precise predictions compared to an individual

model. Different types of ensemble learning methods include:

1. Simple Ensemble Methods:

• Max Voting: Max Voting Ensemble Method involves combining predictions from

multiple models and selecting the most frequent prediction as the final output. It

is a simple yet effective technique used in classification tasks to improve accuracy

by leveraging diverse perspectives from various models, ultimately resulting in a

robust decision.

• Averaging: The Averaging Ensemble Method amalgamates predictions from

multiple models by averaging their outputs. After training diverse models on

the same dataset, their predictions are averaged to form the final prediction.

This technique helps reduce overfitting and enhances prediction accuracy through

collective wisdom from diverse models.

• Weighted Averaging: Weighted Averaging Ensemble Method is a technique in

Ensemble Learning where predictions from individual models are combined using
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Figure 4.4: EfiSwinT Architecture
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weighted averages. Each model’s contribution to the final prediction is determined

by its performance or expertise, enhancing accuracy by assigning higher weights

to more reliable models.

2. Complex Ensemble Methods:

• Stacking: Stacking Ensemble Method entails combining predictions from diverse

base models using a meta-model, enhancing prediction accuracy. Initially, base

models make individual predictions. Subsequently, a meta-model aggregates these

predictions for the final output. This method harnesses diverse model strengths,

mitigating weaknesses, and resulting in robust predictions.

• Blending: Blending Ensemble Method combines predictions from diverse mod-

els by training a meta-learner on their outputs. The meta-learner learns to weigh

these predictions optimally, often using a holdout dataset. This technique en-

hances prediction accuracy by leveraging the strengths of various models while

mitigating individual weaknesses, yielding robust and accurate results.

• Bagging: Bagging (Bootstrap Aggregating) is an ensemble learning technique

where multiple models are trained on different subsets of the training data, sam-

pled with replacement. Predictions are then aggregated, often through averaging

or voting, to reduce variance and improve overall performance compared to indi-

vidual models, enhancing robustness and accuracy.

• Boosting: Boosting is an ensemble method where models are trained sequen-

tially, with each subsequent model focusing on the errors made by its predeces-

sors. Through this iterative process, boosting improves predictive performance by

emphasizing difficult-to-classify instances, culminating in a strong learner capable

of accurate predictions.

The EffiSwinT Ensemble architecture combines two separate EffiSwinT models, each

trained on different datasets. By using a weighted average method, the predictions from
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various models are combined to improve the overall accuracy of the forecasts. Every unique

EffiSwinT model is trained for a duration of 50 epochs. This ensemble architecture is pivotal

in harnessing the collective knowledge from diverse datasets. The model architecture of

EffiSwinT Ensemble is depicted in figure 4.5.

Furthermore, our experimentation involves exploring various ensemble configurations,

such as combining EffiSwinT with ResNet50, EffiSwinT with ResSwinT, and EffNetB3 with

ResNet50. These variations broaden the analysis of ensemble techniques, providing insights

into their effectiveness across different model combinations.

4.4 Evaluation Metrics

During our model assessment process, we examined performance in several important param-

eters to thoroughly analyze effectiveness. Accuracy, which is a basic metric that measures

the number of true predictions out of the total number of occurrences, offers a fundamen-

tal assessment of the capability of a model. In addition, we conducted an analysis of the

Area Under the Curve (AUC), which measures the model’s capacity to differentiate between

classes by plotting the true positive rate versus the false positive rate. These measures

together allowed for a detailed evaluation of the model’s performance, providing insights

into both the overall accuracy of predictions and the model’s ability to differentiate between

different classes in classification tasks.



METHODOLOGY 24

Figure 4.5: EfiSwinT Ensemble Architecture
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Experiments and Results

5.1 Experiments

To facilitate our analysis, we used Face Forensics++ and Face Forensics in the Wild datasets

to extract essential frames from each video. Instead of using 300 frames per video, we chose

keyframes from each video, resulting in an average pre-processed data size of 128 frames

per video. This selection is based on a key frame extraction threshold of 0.3. During our

experimentation, we tested threshold values of 0.3, 0.5, and 0.7. Among these values, 0.3

exhibited the greatest degree of optimality. Therefore, we concluded that 0.3 is the most

suitable threshold value and chose to continue with it. Subsequently, each key frame is

subjected to the MTCNN detector to extract and save the face area from the frames. After

extracting frames from the Face Forensics++ dataset, each frame is separated into three

distinct parts: training, validation, and testing. The training section consists of 720 films,

while the validation and testing segments each have 140 videos. For the Face Forensics

in the Wild dataset, we followed the original dataset split described in [25]. This split

includes 16,000 training videos, 500 validation videos, and 3,500 test videos. The training

sets are then divided into batches of 32 images and processed using a dataloader. Before

inputting the batched images into EffiSwinT Ensemble models for classification, several

image augmentation approaches, such as the random ”Face-Dropout” augmentation, are

used on the input images. Subsequently, the trained models are subjected to assessment

using test sets to gauge their performance and ability to generalize. To conduct tests, we

25
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have selected an inference threshold of 0.55 to differentiate between genuine and counterfeit

films. This approach follows the same process as shown before in the figure.

In our experimental setup, we conducted a series of experiments encompassing diverse

model configurations. EffiSwinT underwent training on both the Face Forensics++ and Face

Forensics in the Wild datasets, followed by comprehensive evaluation on Face Forensics++,

Face Forensics in the Wild, and Celeb-DF(v2). Similarly, the EffiSwinT Ensemble model

underwent training on the Face Forensics++ and Face Forensics in the Wild datasets, with

subsequent rigorous testing conducted on the same datasets along with Celeb-DF(v2). Sub-

sequently, all other ensemble models were trained solely on the Face Forensics++ and Face

Forensics in the Wild datasets, reserving Celeb-DF(v2) exclusively for cross-dataset testing.

No models were trained on Celeb-DF(v2) dataset. This systematic approach enabled us to

conduct a thorough analysis of model performance across diverse datasets, shedding light on

their adaptability and efficacy in varied contexts.

5.2 Results

In our investigation, we observed that EffiSwinT demonstrated remarkable performance when

trained on the FaceForensics++ dataset and subsequently tested on both FaceForensics++

and Celeb-DF(v2) datasets. However, its performance noticeably declined when tested on

the Face Forensics in the Wild dataset. Conversely, when trained on the Face Forensics in

the Wild dataset, EffiSwinT exhibited noteworthy performance on both Face Forensics in

the Wild and Celeb-DF(v2) datasets, and its performance dropped when evaluated on Face

Forensics++. The decrease in performance on the FaceForensics++ and Face Forensics in

the Wild datasets may be due to the uneven nature of the FaceForensics++ dataset and the

greater diversity of deepfake videos compared to Face Forensics in the Wild.

The EffiSwinT Ensemble demonstrated superior performance across all datasets in com-

parison to EffiSwinT. This result highlights the effectiveness of using two EffiSwinT models
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trained on separate datasets and using a weighted average ensemble learning method. The

ensemble technique resulted in significant improvements in accuracy and area under the

curve (AUC) scores, highlighting its effectiveness in integrating diverse models to achieve

improved prediction accuracy in deepfake classification. The results for both EffiSwinT and

EffiSwinT Ensemble are shown in Table 5.1.

Table 5.1: Results achieved on evaluation of the EffiSwinT and EffiSwinT Ensemble model
on various datasets.

Model Training Dataset Testing
FF++ FFIW10K Celeb-DF (v2)

Accuracy(%) AUC Accuracy(%) AUC Accuracy(%) AUC
EffiSwinT FF++ 90.23 0.958 66.86 0.846 70.46 0.730

FFIW10K 50.95 0.698 90.50 0.942 53.86 0.531
EffiSwinT Ensemble FFIW10K & FF++ 95.12 0.977 88.83 0.941 74.13 0.760

In comparison to alternative ensemble combinations, EffiSwinT Ensemble demonstrated

the best performance. Table 5.2 and Table 5.3 presents a detailed depiction of these out-

comes.

5.3 Comparison with State of the Art

To demonstrate the effectiveness of our suggested EffiSwinT Ensemble model, we performed

a comparative study of its accuracy and AUC findings in comparison to other cutting-edge

models. The findings are shown in Table 5.4. The findings indicate that our ensemble model

achieved superior performance compared to all cutting-edge models on the Face Forensics++

and Face Forensics in the Wild datasets in terms of accuracy. Furthermore, in terms of the

AUC score, our model demonstrated superior performance compared to all models in the

Face Forensics in the Wild dataset and all models except one in the Face Forensics++

dataset.

Table 5.5 demonstrates a comparative study of cross dataset assessment, which shows

that our EffiSwinT Ensemble model performed better than the state-of-the-art models in
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Table 5.2: Perfomance of different Ensemble Models when Trained on FaceForensics++
Dataset

Ensemble Model Training Dataset Test Dataset Accuracy (%) AUC
EffiSwinT + ResNet50 FF++ FF++ 91.07 0.963

FF++ FFIW10K 66.46 0.848
FF++ Celeb-DF (v2) 72.77 0.742

EffiSwinT + ResSwinT FF++ FF++ 91.07 0.944
FF++ FFIW10K 66.47 0.557
FF++ Celeb-DF (v2) 72.78 0.810

EffNetB3 + ResNet50 FF++ FF++ 86.30 0.913
FF++ FFIW10K 65.13 0.562
FF++ Celeb-DF (v2) 77.03 0.836

Table 5.3: Perfomance of different Ensemble Models when Trained on Face Forensics in the
Wild Dataset

Ensemble Model Training Dataset Test Dataset Accuracy (%) AUC
EffiSwinT + ResNet 50 FFIW10K FF++ 52.98 0.619

FFIW10K FFIW10K 90.59 0.905
FFIW10K Celeb-DF (v2) 55.40 0.636

EffiSwinT + ResSwinT FFIW10K FF++ 51.90 0.608
FFIW10K FFIW10K 90.65 0.906
FFIW10K Celeb-DF (v2) 54.63 0.628

EfficientNet B3 + ResNet 50 FFIW10K FF++ 27.14 0.238
FFIW10K FFIW10K 90.36 0.901
FFIW10K Celeb-DF (v2) 41.70 0.281

the Celeb-DF (v2) dataset, specifically in terms of AUC.

Inspired by [35], we choose to run a comparison of our Effiswint model’s performance,

taking into account the number of parameters created. Our EffiSwinT model demonstrated

a remarkable average accuracy of 90.23% when evaluated on the Face Forensics++ dataset.

It is important to mention that this great level of accuracy was achieved with a very small

number of parameters, amounting to just 13.48 million. Upon comparing these findings

with the data provided in Table 4.1, we can assert that our EffiSwinT model is not only very

efficient in terms of CPU resources, but also surpasses other established deep learning models

in accurately identifying deepfakes. This further supports the notion that our technique
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achieves a remarkable equilibrium between the intricacy of the model and the effectiveness

of detection.

Table 5.4: Comparison of State-of-the-art models with our EffiSwinT Ensemble on the test
set of the same training dataset. Our Ensemble model outperforms all other models in terms
of accuracy in Face Forensics++ and Face Forensics in the Wild dataset and AUC in case
of Face Forensics in the Wild.

Dataset Model Accuracy(%) AUC
FF++ ResNet [34] 87.04 0.992

XceptionNet [15] 88.32 0.997
EfficientNet [27] 87.78 0.994

HRNet [36] 88.74 0.999
VIT [31] 75.73 0.922
BEiT [37] 86.82 0.988

Swin Transformer [28] 87.25 0.988
CaiT [38] 85.48 0.991

EffiSwinT Ensemble 90.95 0.964
FFIW10K XceptionNet [15] 54.1 0.561

MesoNet [11] 53.8 0.554
PatchForensics [39] 58.9 0.616

FWA [40] 60.2 0.631
EffiSwinT Ensemble 88.83 0.941

Table 5.5: Comparison of State-of-the-art models with our EffiSwinT Ensemble on the cross
dataset. Our Ensemble model outperforms all other models in cross dataset validation on
Celeb-DF(v2).

Model Training Dataset Test Dataset AUC
Meso4 [11] FF++ Celeb-DF (v2) 0.609

MesoIncep [11] FF++ Celeb-DF (v2) 0.696
XceptionNet [13] FF++ Celeb-DF (v2) 0.736
EfficientB4 [27] FF++ Celeb-DF (v2) 0.748

EffiSwinT Ensemble FFIW10K & FF++ Celeb-DF (v2) 0.760
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Conclusion and Future Work

As part of this investigation, we have suggested a hybrid model called EffiSwinT, which is

a combination of the convolution model EfficientNet B3 and the transformer model Swin

Transformer. This model is intended to identify deep fakes in a reliable manner. To ensure

that our ensemble model could handle diverse deepfake generation techniques, we trained it

on Face Forensics++ and Face Forensics in the Wild datasets and then tested it on Celeb-

DF (v2) for cross-dataset evaluation and on both Face Forensics++ and Face Forensics in

the Wild datasets for same dataset performance evaluation. We also analyzed the ”Face-

Dropout” method for data augmentation and key-frame extraction for deepfake video frame

extraction. In the context of the same dataset assessment, we compared our proposed model

to state-of-the-art models. The results showed that our model outperformed the state-of-

the-art models in Face Forensics++ and Face Forensics in the wild dataset in terms of

accuracy and area under the curve (AUC). During the evaluation process on the Celeb-DF

(v2) dataset, our ensemble model demonstrated higher performance in comparison to various

other models that are currently considered to be state-of-the-art.

The result is that our ensemble of EffiSwinT models, when combined with the key-

frame extraction and “Face-Dropout” data augmentation strategy, offers amazing detection

performance while being resource-economical in comparison to other techniques that are

currently in use.

From this study, we offer a hybrid model that we name EffiSwinT for reliably detect-

ing deep fakes. The convolutional model EfficientNet B3 and the transformer model Swin

Transformer are both included in this hybrid system. By constructing an ensemble that is

30
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comprised of two EffiSwinT models and use weighted averaging, we can improve the classifi-

cation performance of our model. We trained our ensemble model on Face Forensics++ and

Face Forensics in the Wild datasets to ensure that it was capable of handling a wide variety of

deepfake generation techniques. After that, we tested it on Celeb-DF (v2) for cross-dataset

evaluation and on both Face Forensics++ and Face Forensics in the Wild datasets for evalua-

tion of its performance on the same dataset. In addition, we investigated the ”Face-Dropout”

technique for the purpose of data augmentation and key-frame extraction for the purpose of

deepfake video frame separation.

When compared to the state-of-the-art models in Face Forensics++ and Face Forensics

in the wild, our proposed model performed better on the same dataset in terms of accuracy

and area under the curve (AUC). About the Celeb-DF (v2) dataset, our ensemble model

performed much better than previous models that are considered to be state-of-the-art.

When paired with key-frame extraction and the ”Face-Dropout” data augmentation tech-

nique, our EffiSwinT model ensemble exceeds state-of-the-art approaches in terms of detec-

tion accuracy and resource efficiency. This is the conclusion that can be drawn from the

previous sentence. As part of this investigation, we have suggested a hybrid model called

EffiSwinT, which is a combination of the convolution model EfficientNet B3 and the trans-

former model Swin Transformer. This model is intended to identify deep fakes in a reliable

manner. We trained our proposed ensemble model on datasets such as Face Forensics++

and Face Forensics in the Wild, and then we evaluated it on the same datasets as well as

a cross dataset on Celeb-DF (v2) in order to assess its resilience in identifying a variety

of modification methods. Furthermore, we investigated the process of key-frame extraction,

which involves the extraction of frames from deepfake films. Additionally, we investigated the

method of Face-Dropout, which is used for the enhancement of data. Both with and without

the deployment of the ”Face-Dropout” data augmentation strategy, our model showed supe-

rior performance compared to EfficientNet. In the context of the same dataset assessment,

we compared our proposed model to state-of-the-art models. The results showed that our
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model outperformed the state-of-the-art models in Face Forensics++ and Face Forensics in

the Wild dataset in terms of accuracy and area under the curve (AUC). Our model fared

better in each of the five subsets of the Face Forensics++ dataset when it came to the area

under the curve (AUC). Face Forensics++ and Face Forensics in the Wild are the two inde-

pendent datasets that were used to train the ensemble model that we developed to improve

the generalized performance of deepfake detection. This was accomplished by combining

two different EffiSwinT architectures into the ensemble model. During the evaluation pro-

cess on the Celeb-DF (v2) dataset, our ensemble model demonstrated higher performance in

comparison to various other models that are currently considered to be state-of-the-art.

The result is that our ensemble of EffiSwinT models, when combined with the key-frame

extraction and “Face-Dropout” data augmentation strategy, offers better detection perfor-

mance while being resource efficient in comparison to other techniques that are currently in

use.

In future, the scope of this research can be expanded to incorporate temporal character-

istics alongside spatial characteristics. Given that EffiSwinT and EffiSwinT Ensemble are

primarily image classification models, their application can be extended to a broader range

of tasks. By enhancing the capabilities of these models, we can adapt them to a variety of

different use cases, thereby expanding their application across diverse domains.
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