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Abstract

Human motion synthesis involves generating videos of a human performing specified actions

from a reference image through pose inputs. Applications such as fitness and dance training

apps, e-commerce virtual try-ons, and social media content creation would greatly benefit

from human motion video synthesis that supports view changes and accepts motion directives

through textual inputs. Current models are typically restricted to generating videos with

a fixed camera view and require precise pose inputs to be given by users, limiting their

applicability in various 3D application scenarios.

Traditionally, producing human action videos with view changes requires generating

clothed 3D mesh models and rigging them to pre-scripted actions. While this process allows

for full 3D view changes, it is complex, time-consuming, and not user-friendly. Moreover,

many use cases do not require fully-fledged view changes; minor viewpoint adjustments from

the front view often suffice to create the illusion of dynamic 3D videos.

This thesis presents a novel pipeline for generating human action videos from text with mi-

nor viewpoint changes. By leveraging a single reference image and textual pose instructions,

our approach bypasses the need for manual 3D animation. Instead, we utilize a combination

of off-the-shelf generation models to synthesize human action videos from given text instruc-

tions and employ depth-based view synthesis techniques to create dynamic, view-changing

videos of moving humans with minimal production time and effort.

Our method offers a more efficient, cost-effective, and accessible alternative to traditional

methods. The simplicity of our pipeline also facilitates further video editing and manipu-

lation, including background modifications. By democratizing the creation of high-quality,

dynamic video content, our solution bridges the gap between complex 3D simulations and

practical content creation, making it accessible to a broader audience.
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Chapter1

Introduction

1.1 What is Human Motion Video Synthesis?

Human Motion Video Synthesis involves generating videos of a human performing specified

actions from a reference image, offering a unique approach to content creation. This process

relies heavily on pose inputs to generate the motion video. The pose sequences are extracted

from reference videos of other humans using pose detectors or from motion capture systems.

This heavy reliance on pose inputs gives control over the generation of long and complex

motion but has severe limitations.

For example, the reliance on pose inputs restricts the use of more intuitive methods,

such as text-based instructions for video generation. Additionally, these models typically

lack camera control, operating from a fixed viewpoint due to being trained on datasets that

do not account for changes in perspective or camera angles. These limitations significantly

diminish the dynamic quality of the generated videos.

Previous works, such as those by Kim et al.[1] and Jiang et al. [2], have explored the use

of text-based instructions for action generation. However, these methods do not incorporate

reference-view images, relying instead on text alone to generate the entire video. Other

models, like VideoComposer [3], allow for multimodal inputs, combining both reference

images and text to generate human action videos. However, these models cannot generate

1



INTRODUCTION 2

long and intricate actions and lack full camera control.

Figure 1.1: An example of Human Motion Video Synthesis.

Addressing these limitations by incorporating textual prompts and enabling cam-

era or viewpoint changes within synthesized videos could unlock numerous applications.

For instance, in fitness and dance training apps, users could receive personalized, dynamic

demonstrations of exercises and dance moves from different angles, enhancing their learning

experience. In e-commerce, virtual try-ons could be significantly improved by allowing cus-

tomers to view themselves performing various actions in different outfits, providing a more

comprehensive understanding of the product.

1.2 Traditional Methodology

Traditional methodology for generating human action videos with view changes is a

highly complicated process. First, a fully clothed, textured 3D model resembling the human

in the reference video is created. This model is then rigged to a skeleton, allowing the user

to manipulate the 3D model using pose inputs. The desired actions are scripted into these

pose inputs, which guide the model’s movements frame by frame. Since the final product

includes a complete 3D model, it enables full 3D camera view changes while the dynamic

motion is performed.

However, this method has significant drawbacks. Generating 3D mesh models, rigging

them, and scripting actions is complex and time-consuming, requiring substantial technical
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Figure 1.2: The process of Textured Mesh Rigging. [4].

expertise. Each step demands precise attention to detail, from accurately modeling clothing

and body shapes to correctly implementing movement dynamics. Additionally, the need for

specialized software and expertise in 3D modeling makes this approach less accessible to

casual users, limiting its usability for broader applications.

1.3 Our Pipeline

To address the limitations of traditional methodologies, we propose an alternative pipeline

designed to simplify the process of generating human action videos while still achieving

a compelling illusion of full 3D. For many applications, full-fledged 3D view changes are

unnecessary; minor adjustments to the viewpoint, especially from a front-facing perspective,

can be sufficient to create the impression of a dynamic video. This insight forms the basis

of our novel pipeline, which leverages text-based instructions and a single reference image to

produce human action videos with slight viewpoint changes.

Our pipeline is divided into three key sections, each playing a specific role in the video

generation process. The first section focuses on synthesizing pose sequences directly from

text instructions. By translating textual descriptions into a sequence of poses, this section

eliminates the need for pre-scripted inputs, offering a more intuitive and flexible approach
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to guiding human motion.

The second section is responsible for generating forward-facing human action videos.

Using the synthesized pose sequences and the reference image, this section creates videos

that capture the specified human motion sequence from a front-view camera.

Finally, the third section converts the forward-facing videos into view-changing videos.

By applying subtle adjustments to the camera angle or perspective, this section creates the

impression of a more dynamic 3D experience. While these viewpoint changes are minor,

they are significant enough to provide a sense of depth and movement, making the videos

more immersive without the need for complex 3D modeling.

Through this streamlined approach, our proposed pipeline offers a practical and efficient

alternative to traditional methods, making the creation of dynamic human action videos

more accessible and less time-consuming while still delivering high-quality results suitable

for a wide range of applications.



Chapter2

Related Work

2.1 3D Avatar Generation Models

3D avatar generation models build on advanced 3D reconstruction techniques to create fully

textured human assets from text or image inputs. These frameworks are capable of gener-

ating detailed full-body avatars in a short amount of time, but they typically require mesh

rigging and pose inputs to animate the avatars. Moreover, they often lack the ability to

model the background or other elements of the scene. For example, Kolotouros et al. [5]

generates front and back views of an avatar, which are then combined into a textured mesh

using pixel-aligned 3D reconstruction. Huang et al. [6] take a different approach by pro-

gressively optimizing a 3D model and its textures with texture guidance extracted through

visual query models. Chen et al. [7] starts by estimating the mesh structure and then build

the textures using IPAdapter, showcasing another method of integrating texture generation

into the 3D reconstruction process.

2.2 Pose parameterized Volumetric Avatar Models

Pose-parameterized volumetric avatar models offer an alternative approach by eliminating

the need for explicit mesh rigging. These models internally parameterize the avatar based

on poses, making them more adaptable for dynamic animations. However, they typically

5



RELATED WORK 6

require monocular video input for training. Jiang et al. [8] introduce a method that divides

the full scene into a scene NeRF (Neural Radiance Field) model and a human NeRF model,

which are jointly trained on a video to reconstruct both the scene and the avatar. Kocabas

et al. [9] propose a Gaussian-based model that uses MLP networks to parameterize Gaussian

splats in canonical space, simplifying the avatar generation process. Similarly, Hu et al. [10]

improve upon this by employing an encoder model with an optimizable tensor to better

capture pose-based variations in the avatar.

2.3 2.5 D Generation

2.5D generation models provide another layer of depth to image-based representations, of-

fering potential for more realistic and dynamic visuals. These models typically operate on

image data, making them simpler yet effective for certain applications. Shih et al. [11]

introduce a method that uses Layered Depth Images (LDIs) instead of traditional meshes,

leveraging their simplicity to predict edge and mesh inpainting for occlusion handling in

nearby views. However, this approach is limited to still images and is not suitable for videos.

Tucker et al. [12] take a different approach by using Multi-Plane Images (MPIs) to achieve

similar 2.5D effects, offering a more robust solution for single-view view synthesis.

2.4 Image to 3D diffusion models

Image-to-3D diffusion models represent a cutting-edge approach to conditional generation

tasks, where 3D assets are created from a single reference image using diffusion models.

These models have even evolved to convert video sequences into 4D assets, but they often

struggle with human generation due to their training on object-centric datasets and lack

of input control. The advancements in this area are built upon foundational work such

as Liu et al. [13], which pioneered zero-shot image-to-3D generation. Subsequent models,

including Lin et al. [14], Sargent et al. [15], and Liu et al. [16], have focused on improving
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consistency in 3D generation. Ren et al. [17] push the boundaries further by extending

3D mesh generation to 4D for short video sequences, building upon the work of Tang et al.

[18], who introduced the concept of score distillation sampling for Gaussian splatting for 3D

models.



Chapter3

Methodology

3.1 Overview

Our proposed pipeline is structured into three distinct sections, each designed to leverage

existing tools and models to streamline the process of generating human action videos from

text instructions and a reference image. As depicted in Figure 2.1, the entire pipeline is

built upon off-the-shelf generators and estimators, ensuring that the implementation is both

practical and efficient.

The first section of the pipeline focuses on generating pose sequences directly from textual

descriptions. This is followed by the second section, which uses these sequences to create

forward-facing human action videos. Finally, the third section applies minor viewpoint

changes to enhance the dynamic quality of the generated videos. Each stage plays a crucial

role in ensuring that the final output is both visually appealing and functionally effective for

a variety of applications.

8
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Figure 3.1: The overview of our pipeline.
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Figure 3.2: Demo 1 of the full pipeline.
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Figure 3.3: Demo 2 of the full pipeline.
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Figure 3.4: Demo 3 of the full pipeline.
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3.1.1 Section 1: Pose Sequence Generation from Text

Figure 3.5: Pipeline of ATOM.

The initial stage of the pipeline is dedicated to generating pose sequences based on

given textual instructions. To achieve this, we employ off-the-shelf language-guided motion

synthesis models that are specifically designed for this task. This process significantly reduces

the need for manual pose scripting, making the generation of human action sequences more

accessible and less labor-intensive. In our experiments, we utilize the ATOM [19] model for

this task.

ATOM, or ATomic mOtion Modeling, is a state-of-the-art model for generating motion

sequences from text. Given a dataset of text-motion pairs {(yi,Mi)}, where yi represents

text and Mi is a motion representation Mi = [p1, . . . , pT ] of SMPL body poses at each time

step t, the model utilizes a Conditional Transformer VAE (Variational Autoencoder) to align

motion representations with text. The encoder captures the structure of the motion sequence

and transforms it into a compact latent representation, while the decoder generates motion

sequences from this latent representation and the corresponding text embeddings.

The learning objective of ATOM is consistent with standard CVAEs, including recon-
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struction loss and Kullback-Leibler (KL) divergence.

Lrec =
1

T

T∑
t=1

∥pt − p̂t∥22

LCVAE = Lrec + wKLLKL

A distinctive feature of ATOM is the integration of an atomic action codebook into

the decoder as a key-value pair. The underlying principle is that motion sequences can be

decomposed into a series of smaller, atomic actions. These actions are stored in a learnable

matrix A ∈ RN×D, where N represents the number of atomic actions, and D is the hidden

dimension corresponding to the latent space of each action.

To ensure the effectiveness of this decomposition, ATOM introduces two additional loss

functions: Ldiv, a diversity constraint that ensures the uniqueness of atomic actions.

Ldiv = ∥AAT − I∥F

∥.∥F is the Frobenius norm. This objective forces the atomic action codebook matrix to

be orthogonal, i.e, Unique from each other.

Another added constraint is,

Lspa = −
∑
l

∑
h

max(Hl,h)

Hl,h is the attention map. This encourages sparsity by maximizing the attention weights in

the cross-attention layer. This approach prevents over-segmentation of actions and ensures

that the atomic actions relating to a sequence are unique and distinct.

ATOM is particularly well-suited for our needs because it works solely on text prompting,

allowing it to generate nuanced and contextually appropriate pose sequences. Moreover, its

new additions like atomic action codebook, allows model to produce smoother motion and

motion transitions.
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The output poses of ATOM are SMPL[20] poses. The Skinned Multi-Person Linear

Model (SMPL) is a 3D human body model derived from body scans encompassing a wide

range of poses. This model is represented by meshes containing approximately 7,000 3D

points.

SMPL[20] parameterizes these points in terms of pose θ, shape/identity β, and soft tissue

dynamics σ. To manage the high-dimensional shape parameters β, Principal Component

Analysis (PCA) [21] is employed to obtain a lower-dimensional representation for each mesh

identity.

Figure 3.6: RGB Image, joints, skeleton, SMPL and SMPL-X [22]

The mesh is reconstructed using Linear Blended Skinning (LBS), which involves blending

a template mesh T using joints J ∈ R3K , pose parameters θ⃗ ∈ R3K , blend weights W ∈

RN×K , and a template T ∈ R3N . LBS works by linearly combining the transformed vertices

of the template mesh based on their proximity to joints and the associated blend weights.

The formula for this operation is:
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W (T, J,W, θ⃗) → Vertices

While SMPL uses LBS, it incorporates a more complex model where the template TF is

a function of both β⃗ and θ⃗. Additionally, the joints J are parameterized as a function of the

shape β.

For 3D representation, SMPL is the most commonly used pose. These poses are low

dimensional representation of the full mesh. An alternative for basic SMPL is SMPL-X [22]

or expressive which includes detailed face and hand models in it. Number of joints in SMPL

can vary based on datasets. HumanML3D has 22 joints and KIT-ML has 21 joints.

Once the pose sequences are generated, they need to be formatted for use in the sub-

sequent stages of the pipeline. Human action video generation models in Section 2 typi-

cally accept pose data using 2D poses. Since most of these models were trained on static

non changing cameras, they wernt built using 3D poses. Most commonly used 2D poses

are OpenPose [23], DensePose [24] or DWPose [25], three widely-used 2D pose estimation

frameworks.

OpenPose[23] is a notable 2D pose model that identifies 135 keypoints, which include

body, face, hand, and foot keypoints. This model utilizes a Convolutional Neural Network

(CNN) designed to detect keypoints in real-time for multiple individuals simultaneously. An

alternative variant, known as the Body-25 model, focuses solely on the 25 body keypoints,

omitting the face, hand, and foot keypoints when such detailed information is not required.

To convert SMPL (Skinned Multi-Person Linear) models to OpenPose format, there are

three main approaches:

Using a BodyModel Regressor: A joint regressor can be trained to map SMPL/SMPL-

X joints to OpenPose joints. This method offers high accuracy and speed. However, literature

typically provides regressors only for body-18 and body-25 keypoints. While facial keypoints

can be derived from face contours in models like SMPL-X, such conversions are not feasible

for the basic SMPL model. It might be because face, hand and foot keypoints are hard to
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regress due to their close proximity with nearby points.

Matching Corresponding Keypoints Across Conventions: This method involves

mapping keypoints from one convention to another, but it may result in missing values or

inaccuracies, particularly depending on the training specifics of the model. While direct

conversion from SMPL to OpenPose 135 keypoints is not feasible, conversion from SMPL-

X to OpenPose 135 keypoints is possible. In our case, we tested SMPL-X to Openpose

using MMHuman3D’s [26] inbuilt converter for DNA Rendering dataset with good success.

ATOM’s outputs however are SMPL. To get this working, SMPL first needs to be converted

into an SMPL-X model that can be mapped to Openpose ( like SMPLify-X[22] version or

MMHuman3D version). This can be done by regressing SMPL mesh with SMPL-X mesh

which is significantly time consuming. For this project we tested converting to Body-25

model this way but full Openpose has not been tested.

Figure 3.7: SMPL converted to openpose and overlayed on RGB image using HumanMM3D
[26]

Rendering the Mesh Per Time Step and Running the Detector Directly: This

approach involves rendering the SMPL mesh for each time step and then applying the de-
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tector. Although this method may not be as accurate as using a model regressor, it can still

yield satisfactory results. However, it may struggle with occlusions.

DWPose [25] is another comprehensive pose estimation framework designed to track

body, hand, and face poses across multiple individuals in images. It employs a two-stage

distillation process to enhance pose detection accuracy. Additionally, DWPose is optimized

for integration with ControlNet models in diffusion-based generation frameworks.

Unlike Openpose, generating DWPose from SMPL pose is not straightforward and con-

tains a different set of challenges. Since there is no direct conversion method available, the

DWPose detector must be applied to SMPL-generated meshes. This involves rendering nor-

mal maps from SMPL using a static camera setup and then feeding these maps into the

DWPose detector. While this approach is faster than the SMPL-to-SMPL-X conversion, it

can introduce artifacts and distortions, necessitating careful handling during the subsequent

video generation phase.

In our experiments, we use Open3D [27] to generate and render the SMPL meshes. For

the SMPL mesh corresponding to pose pt at time step t, we employ a static camera with a

large focal length to render the mesh using a normal renderer. Since the models discussed

in Section 2 are designed for static cameras, we opted for this approach. However, SMPL-

generated meshes often exhibit significant movement. Therefore, using a camera with a

large focal length positioned at a greater distance allows us to cover a substantial area and

accommodate the mesh’s motion effectively.

In the second stage of our pipeline, we focus on generating forward-view videos of human

actions using off-the-shelf Human Action Video Generators. For this purpose, we utilize

UniAnimate [28].
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Figure 3.8: DWPose Generation Process

3.1.2 Section 2: Human Action Video Generation

UniAnimate is a state-of-the-art model designed specifically for generating realistic human

action sequences. The driving pose sequence for UniAnimate is provided by DWPose, as

detailed in the previous section. This integration requires the application of the DWPose

generation process described earlier.

Previous methods in this domain, such as MagicAnimate [29], MagicPose [30], and DisCo

[31], employ separate 3D U-Net networks to encode and retain appearance information. Un-

like these methods, UniAnimate does not use this approach. Instead, UniAnimate proposes

using a unified video diffusion architecture. This architecture encodes all relevant informa-

tion—including the reference image, reference pose, and driving pose—into a single input for

the diffusion models. By concatenating or stacking this information, UniAnimate enables

joint modeling of appearance and motion, improving the cohesiveness of generated sequences.

Specifically, reference information is concatenated and broadcasted to the noised input

shape, which is then stacked with noised input which was concatenated with driving pose.

Additionally, UniAnimate introduces a robust technique for generating long video se-

quences. While previous methods often rely on a sliding window approach for generating

long sequences, this can lead to discontinuities between windows. Unianimate shows that
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using just last frame from previous window, and conditioning it with noise inputs for next

window, we can get rid of discontinuity issues among different windows.

Furthermore, UniAnimate demonstrates that replacing temporal transformers with tem-

poral mamba significantly reduces computational complexity while achieving comparable

results. This modification streamlines the process without compromising the quality of the

generated video sequences.

Figure 3.9: Pipeline of UniAnimate

By leveraging UniAnimate, our pipeline can efficiently produce high-quality forward-view

videos based on the pose sequences generated in Section 1. The model’s ability to handle

large sequences of frames makes it particularly effective for generating videos that require

a high degree of temporal continuity. This capability is crucial for applications where fluid

and realistic motion is essential, such as in fitness demonstrations or dance tutorials.

3.1.3 Section 3: View Changing Video Generation

The third and final stage of our pipeline is dedicated to transforming the generated forward-

view videos into dynamic, view-changing videos. This is achieved through depth-based

view synthesis techniques, which allow for the creation of novel perspectives from the orig-
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Figure 3.10: Front View Output Generated using DWPose and UniAnimate

inal video frames. To accomplish this, we first generate metric depth for each frame using

DepthAnything [32], a tool designed to produce accurate depth maps from standard video

frames.

DepthAnything [32] represents the state-of-the-art in monocular depth estimation. It

utilizes a Dense Prediction Transformer architecture and is trained with a universal training

model, enabling it to effectively leverage data from diverse sources. This approach allows

DepthAnything to outperform previous models such as MiDaS [33] in depth accuracy and

robustness.

In our experiments, DepthAnything’s metric depth video exhibits significantly less flick-

ering compared to MiDaS. For our evaluations, we employ metric depth rather than relative

depth to get better background modeling. However, because metric depth values are not

inherently bounded, the final depth values are not normalized. This is because normalizing

these values would produce results comparable to those obtained with relative depth, rather

than absolute depth.

Once the depth maps are generated, we explore two distinct methods for synthesizing

new views. The first method involves generating a point cloud from the RGBD images

and rendering this point cloud from new viewpoints. This technique effectively simulates
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Figure 3.11: Video and Depth Images

different perspectives but introduces occlusions—areas where information is missing due to

the projection of 3D points into 2D space.

Given a 2D homogeneous pixel coordinate (u, v, 1) and depth Z, the 3D homogeneous

world coordinate point (X, Y, Z, 1) can be recovered as follows:

1. Apply depth to the pixel, Specifically, we will assume that the point is Z distance

from camera center on the ray.

points =


(upixel + 0.5) ∗ z

(vpixel + 0.5) ∗ z

z


2. Use inverse of intrinsic matrix K to back-project the 2D pixel coordinates to a ray in
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camera space. 
X

Y

Z

 = K−1 ·


(upixel + 0.5) ∗ z

(vpixel + 0.5) ∗ z

z


3. Apply inverse of extrinsic matrix to these points to get world coordinates

Pworld = [R|T ]−1.Pcamera

Figure 3.12: backprojected pointcloud and its occlusion mask

To address these occlusions, we employ an infilling process. A common approach is to

use bilinear interpolation to fill the missing areas. In this method, bilinear interpolation

is applied to the generated pointcloud at each timestep of the video. However, the results

reveal that point cloud warping causes two types of occlusion areas: small/thin occlusions

and large occlusions. Bilinear interpolation struggles to fill small or thin occlusions, especially

in objects with low thickness. Although it can address larger areas, the absence of a temporal

context leads to significant discontinuities between timesteps, making the filled areas appear
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Figure 3.13: Pointcloud Generation

unnatural.

To overcome these limitations, we explore a second method that involves generating

meshes from the depth maps. Unlike point clouds, meshes consist of interconnected triangles

that interpolate colors from nearby vertices, effectively smoothing out many of the small holes

that occur during view synthesis.

Meshes are typically generated using one of two main approaches:

Poisson Surface Reconstruction[34]: This technique is often used for building wa-

tertight surfaces and is more appropriate for datasets with dense, multi-view point clouds.

Ball Pivoting Surface Reconstruction[35]: It works by pivoting a ball around the

points and connecting them to form a mesh. This approach is suitable for our scenario, as

our points are generated from a single view.

The process is pretty straight forward. However, given that our data consists of an RGB

image with corresponding depth information, such a complicated process is not necessary.
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Since our data is an RGB image with corresponding depth, we can directly use neighbourhood

pixel property to generate a good mesh.

This method involves forming triangles for each pixel by connecting it with its two nearest

neighbors based on depth information.

Figure 3.14: Mesh Generation

However, depth predictions from single-image depth estimation models are not always

precise, and the generated triangle meshes inadvertently connect foreground objects with

the background, leading to unnatural artifacts. To mitigate this, we use a filtering process

that identifies and removes triangles with overly stretched edges/pixels, by thresholding the

length of the triangle. By refining the mesh in this way, we reduce the occurrence of artifacts,

leading to cleaner and more realistic view-changing videos.

Specifically,

1. Points are projected to world space like before. Each point is identified by its pixel

location.

2. Two faces can be formed with each pixel. For pixel [u, v], a triangle is formed for

following tuples

face1 = ([u, v], [u+ 1, v], [u+ 1, v + 1])
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face2 = ([u, v], [u+ 1, v + 1], [u, v + 1])

The order of points in the faces matter since normals are generated based on the it.

3. Artifact removal: Edge distances are distances between two points of the triangle.

EdgeDistances = (∥p2− p1∥2, ∥p3− p1∥2, ∥p3− p2∥2, )

if any of the edge distances are greater than threshold, do not generate that face. These are

the faces that usually connect background to foreground.

Figure 3.15: Regular Triangle Mesh[36]

After generating the meshes, any remaining occlusions or artifacts are addressed using

video inpainting techniques. For this task, we utilize ProPainter [37], a state-of-the-art video

inpainting model that excels in extrapolating missing flow information in masked areas before

inpainting them. This approach significantly improves the visual quality of the final view-

changing video, producing results that are both more accurate and visually coherent.

ProPainter operates with three main components. First, it includes a recurrent flow
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completion module that identifies and addresses corrupted flow in masked areas, completing

the flow both forward and backward across frames. Once the flow is completed, the model fills

the masked regions by using the flow information from the neighboring frames—specifically,

pixels from the previous frame (t-1) and the subsequent frame (t+1) are used to fill in the

gaps at the current frame (t).

After this initial filling, the remaining unfilled areas, known as residual flow areas, along

with the already filled regions, are refined and completed using mask-guided flow transformer

blocks. These blocks propagate features effectively across the video sequence, ensuring a

coherent and continuous visual flow. ProPainter’s efficiency is further enhanced by its sparse

strategy, which processes only a subset of tokens, making it both fast and robust, particularly

in handling long sequences.

Figure 3.16: ProPainter Architecture

Together, these methods allow our pipeline to produce compelling and dynamic videos

that simulate minor viewpoint changes, enhancing the overall visual experience without the

need for complex 3D modeling or extensive manual intervention.

3.1.4 Optional Component: Changing background

Incorporating background changes during the generation of view-changing videos is an op-

tional but impactful component of our pipeline. This process involves replacing the back-

ground after generating the forward-view video but before initiating view-changing video
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synthesis. After Section 2, once the forward-facing video has been generated, the back-

Figure 3.17: Image of a real Ice Rink used as Background [38]

ground can be changed using segmentation techniques. By employing models such as the

Segment Anything Model (SAM) [39] or the Grounded Segment Anything Model (Grounded

SAM) [40] with ”person” as the prompt, we can isolate the human figure from each frame of

the video. These segmented frames can then be composited onto a new background, allow-

ing for a seamless transition into the view-changing video generation process in Section 3.

Initially, we experimented with extracting and compositing the depth maps alongside

the RGB images. However, this approach led to suboptimal results, as the composited depths

introduced significant artifacts and distortions. Instead, we found that passing the compos-

ited images directly into the DepthAnything [32] model yielded much better outcomes, as it

allowed for more accurate depth estimation and integration with the new background.

The results, as shown in the accompanying figures, demonstrate that while the composit-

ing process effectively integrates the human figure with the new background, it can also

introduce minor distortions relative to the original video generation. Despite these chal-

lenges, the final output still successfully maintains the coherence of the scene, with the new

background blending smoothly into the view-changing video.
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Figure 3.18: Composited Depth

Figure 3.19: Generated Depth
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Figure 3.20: Rendering new background
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Experiments and Results

4.1 Dataset

For Section 1, 5 text,motion pairs were selected from HumanML3D [41] dataset. Qualitative

metrics are calculated for this subset.

For our experiments, we utilized the DNA Rendering dataset [42], which provides a

diverse set of video sequences well-suited for evaluating components of our proposed pipeline.

The dataset comprises of more than 500 sequences, each consisting of 224 frames. Of these,

5 sequences are selected for evaluation of the pipeline. These sequences are captured from

multiple viewpoints, however we will only be using the main/front view, henceforth called

as reference view.

The DNA Rendering dataset features subjects with varied clothing, body shapes, and

motion patterns, providing a comprehensive basis for testing the robustness and versatility

of our pipeline. This variability ensures that our evaluation covers a wide spectrum of

scenarios, reflecting real-world applications and challenges. Additionally, the availability of

3D optimized SMPL and SMPL-X models, along with object masks, facilitates accurate pose

extraction and depth map generation, further enhancing the reliability of our experiments.

4.2 Evaluation Process

Given the uniqueness of our approach, particularly its reliance on single-view depth predic-

tion, we lack ground truth information and a baseline to perform a direct evaluation. To

31
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address this, we utilize the DNA Rendering dataset to compare the outputs of Section 2

and Section 3 of our pipeline. This comparison allows us to assess the effectiveness of our

forward-view video generation and view-changing techniques. Additionally, we conduct ab-

lation studies to investigate the impact of various components within the pipeline, providing

insights into the contributions of each stage and the overall performance of the proposed

methods.

4.3 Quantitative results for Section 1

Table 4.1 presents the FID (Frechet Inception Distance) [43] and R Precision scores for the

text-motion pairs generated using the HumanML3D model. The results indicate that the

performance of this subset closely aligns with the scores reported in the original paper.

The FID score, calculated between the ground truth motion and the generated motion,

serves as a key metric in this evaluation. Specifically, a contrastive model [44] was trained

to map text to motion, and the features extracted from this model were used in the FID

calculation. A higher FID score indicates better alignment between the generated and real

motion sequences.

For R Precision, the evaluation involved selecting each motion sequence’s ground truth

text and comparing it against 30 other random texts from the dataset. Motion vectors were

extracted, and the Euclidean distance between these vectors was calculated. If the ground

truth text ranked within the top k results, it was considered a successful retrieval. The

average accuracy was then computed for the top three positions.

Table 4.1: Quantitative results for Section 1
Method FID R Precision
Real Motion 0.002 0.797
In paper 1.691 0.569
Our Subset 3.284 0.482
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4.4 Quantitative results on Reference View

To evaluate the performance of Sections 2 and 3 of our pipeline, we leverage the ground

truth data provided by the DNA Rendering dataset. This allows us to generate outputs for

both sections and compare them against the reference view using qualitative metrics. For

Section 2, we assess the forward-view videos generated from the pose sequences. For Section

3, we generate a mesh, remove artifacts and inpaint any holes using video inpainting. This

allows us to understand how well the pipeline is able to replicate the ground truth data.

Table 4.2: Evaluation results on Sec 2 and Sec 3 using reference view videos.
Seq Name Section PSNR[45] SSIM[45] FVD[46]
0034 04 Sec2 25.57 0.894 209.75

Sec2 + Sec3 24.94 0.875 342.92
0088 09 Sec2 27.33 0.897 174.11

Sec2 + Sec3 26.39 0.880 212.81
0092 11 Sec2 29.72 0.936 328.98

Sec2 + Sec3 28.21 0.917 385.13
0190 11 Sec2 27.53 0.913 145.75

Sec2 + Sec3 26.46 0.894 200.93
0813 01 Sec2 28.56 0.900 293.76

Sec2 + Sec3 27.2 0.882 395.26

The results show that Section 3 outputs have minimal impact on PSNR and SSIM but the

increase in FVD is significant. This indicates that artifact removal and inpainting process

tends to distort the output video making it slightly more unrealistic and dissimilar from

ground truth.

4.5 Quantitative results on Novel View

To conduct a quantitative evaluation of the generated view-changing videos, a consistent

novel view path is essential. For our analysis, we generate a spherical path within the same

plane as the reference camera. This setup involves positioning new cameras which are facing

at target which is 2 units along the forward axis of the reference camera, with a radius of
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0.2 units from the reference camera center. Due to the absence of ground truth data for

these novel views, we employ no-reference quality metrics to both quantify the quality of the

generated videos and facilitate comparative analysis.

4.5.1 No Reference Image Quality Assessment

For assessing image quality without reference, we use several parameters. First, we employ

the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)[47]. BRISQUE gen-

erates a quality score by measuring potential losses in ”naturalness” due to distortions. It

analyzes the statistical features of locally normalized luminance coefficients and compares

them to a model based on images of known quality. The resulting score ranges from 0 to

100, where a lower score indicates better image quality.

Additionally, we use the Blur Score, computed via the Variance of Laplacian. The Lapla-

cian operator, a differential operator representing the divergence of the gradient, highlights

rapid intensity changes and performs edge detection. By calculating the variance, we assess

the level of blurriness in the image. A higher variance indicates better sharpness and less

blurriness. These metrics are typically calculated per frame and averaged to provide an

overall quality score.

4.5.2 No Reference Video Quality Assessment

For video quality assessment, we use the Disentangled Objective Video Quality Evalua-

tor (DOVER) [48]. This model evaluates video quality from both technical and aesthetic

perspectives, providing an overall score between 0 and 1. Trained on the DIVIDE-3k [48]

dataset, DOVER’s score reflects how well the video performs compared to other videos in

the dataset. This assessment helps gauge the overall visual and perceptual quality of the

generated view-changing videos.
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4.5.3 3D Correspondences

To evaluate the accuracy of novel view generation, we analyze high-confidence correspon-

dences between the reference view and the novel views. We use the “LoFTR: Detector-

Free Local Feature Matching with Transformers” [49] model to identify and match features

across frames. By thresholding based on confidence scores, we determine the number of

high-confidence correspondences. A higher number of these correspondences indicates a bet-

ter alignment and accuracy of the generated novel views relative to the reference. We use a

threshold of 0.8 confidence score.

Table 4.3: Novel view evaluation results on 0034 04 .
0034 04 BRISQUE Blur DOVER Corrs
Reference Video 35.71 334.80 0.759 –
Depth Warping with Bilinear
Interpolation

34.51 652.89 0.690 3111.91

Mesh Rendering with arti-
facts

35.91 226.65 0.698 3144.92

Mesh Rendering with video
inpainting

34.69 193.27 0.746 3154.25

Table 4.4: Novel view evaluation results on 0088 09 .
0088 09 BRISQUE Blur DOVER Corrs
Reference Video 35.69 228.40 0.787 –
Depth Warping with Bilinear
Interpolation

36.24 465.59 0.734 3140.89

Mesh Rendering with arti-
facts

38.73 155.77 0.706 3156.78

Mesh Rendering with video
inpainting

37.10 124.36 0.772 3184.45

Depth warping with bilinear interpolation consistently yields better scores on pooled

single-image quality metrics but shows lower performance on video quality metrics and cor-

respondences. This is consistent with our modeling, as bilinear interpolation relies solely on

data from the current frame to interpolate information. Interestingly, even meshes with arti-

facts tend to score higher on DOVER and correspondences. However, video inpainting after
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Table 4.5: Novel view evaluation results on 0092 11 .
0092 11 BRISQUE Blur DOVER Corrs
Reference Video 41.64 247.26 0.843 –
Depth Warping with Bilinear
Interpolation

42.49 361.04 0.787 3132.57

Mesh Rendering with arti-
facts

45.01 160.52 0.780 3135.83

Mesh Rendering with video
inpainting

42.89 125.04 0.825 3143.63

Table 4.6: Novel view evaluation results on 0190 11 .
0190 11 BRISQUE Blur DOVER Corrs
Reference Video 38.56 265.97 0.782 –
Depth Warping with Bilinear
Interpolation

38.67 421.99 0.716 3257.54

Mesh Rendering with arti-
facts

41.11 175.01 0.725 3266.88

Mesh Rendering with video
inpainting

39.06 139.04 0.756 3264.97

Table 4.7: Novel view evaluation results on 0813 01 .
0813 01 BRISQUE Blur DOVER Corrs
Reference Video 40.71 205.46 0.827 –
Depth Warping with Bilinear
Interpolation

38.91 360.08 0.777 3062.93

Mesh Rendering with arti-
facts

41.42 141.77 0.772 3078.33

Mesh Rendering with video
inpainting

39.64 104.77 0.810 3083.21
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artifact removal significantly improves the scores, with all metrics showing enhancements

over sequences containing artifacts.

4.6 Qualitative outputs on Novel View

Figure 4.1: Depth Warping and Bilinear Interpolation

Figure 4.2: Mesh With Artifacts
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Figure 4.3: Mesh Without Artifacts and with occlusion masks

Figure 4.4: Mesh after video inpainting
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4.7 Quantitative results on Viewpoint Change

We also need to evaluate how the output videos are affected by changes in the viewpoint.

Specifically, we will vary the radius of novel view spherical path and obtain quantitative

results to assess the impact.

Table 4.8: Quantitative results on Viewpoint Change .
Radius from center
(units)

BRISQUE Blur DOVER Corrs

0.1 35.59 170.62 0.765 3834.22
0.2 34.69 193.27 0.746 3154.25
0.3 33.34 201.68 0.725 2499.54
0.4 32.08 208.71 0.720 1913.45
0.5 30.75 219.73 0.676 1438.21

The results indicate that the output quality tend to degrade rapidly the further the

viewpoint. The change in correspondences indicate that the model fails to figure out missing

data using inpainting if the holes are too big.

4.7.1 Comparison between Reference Image and Final Output

We can evaluate how closely the generated final output frames resemble the reference image

by leveraging the capabilities of the CLIP (Contrastive Language-Image Pretraining) [50]

model. CLIP is a network trained on image-text pairs, and we utilize its powerful encoding

capabilities for this comparison.

First, we extract the CLIP image features of the reference image. Then, for each frame

in the generated sequence, we similarly extract the CLIP image features. The similarity

between the reference image and each frame is quantified by calculating the cosine similarity

between their respective features. All cosine similarity scores are then pooled and averaged

to produce a final similarity score.



EXPERIMENTS AND RESULTS 40

Sequence Name indicates the Sequence whose first frame was used as the reference image.

Text indicates what text was used to generate the final video.

The results of these similarity scores are reported here. The closer the scores are to 1 the

more similar their resemblance.

Table 4.9: Evaluation results on Sec 2 and Sec 3 using reference view videos.
Seq Name Section Text Clip-I Score
0034 04 Sec 2 ” a person

walking for-
ward”

0.891

Sec 2 + Sec 3 ” a person
walking for-
ward”

0.884

0092 11 Sec 2 ” a person
waving his
hand”

0.823

Sec 2 + Sec 3 ” a person
walking for-
ward”

0.825

0190 11 Sec 2 ” a person do-
ing a spin”

0.911

Sec 2 + Sec 3 ” a person do-
ing a spin”

0.894

0813 01 Sec 2 ” a person
kicking the
air”

0.873

Sec 2 + Sec 3 ” a person
kicking the
air”

0.868

The clip-I scores from section 2 and section 3 results indicate that there are indeed

deformations formed from the process.

4.7.2 Comparison between Text and Final Output

We can assess how closely the final output matches the input text description. Similar to

the comparison with the reference image, this process involves using text features instead of

image features.
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However, since CLIP operates on individual frames, it lacks the capability to evaluate

temporal dynamics. As a result, CLIP treats the motion described by the text as if it were

occurring in each frame independently. To better account for the temporal aspect, we can

employ a contrastive model designed for video analysis.

For this purpose, we use X-CLIP [51], an extension of CLIP that is adapted for video.

X-CLIP samples 8-16 frames from the entire video and compares the features between the

text and the video. It then outputs a probability indicating how well the text matches the

video.

Limitations:

- X-CLIP only analyzes a subset of frames (8-16), which may not fully capture the entire

video’s content.

- X-CLIP is trained on generalized text, whereas our input is focused solely on motion

descriptions. This is why the output probability of the model is always 1 irrespective of any

action specified.
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Limitations and Future Work

While the pipeline developed in this work shows promising results, there are several limita-

tions that need to be addressed.

5.0.1 Human Intervention

One significant limitation is the need for human intervention when rendering meshes with a

static camera, as discussed in Section One. To achieve optimal results, the camera must be

manually positioned. This is particularly important because the mesh can move significantly

within the world space, potentially causing it to drift out of the frame. Additionally, manual

adjustment is often required to ensure that the mesh correctly aligns with the floor, further

complicating the process.

Eliminating the need for user intervention and automating the pose sequence generation

in this context is a potential direction for future work. Developing methods to automate

camera positioning or adapting the mesh to stay within the frame and properly aligned could

significantly enhance the efficiency and usability of the pipeline.

5.0.2 Dependence on 2D Pose

The reliance on 2D pose estimation models, such as OpenPose and DWPose, stems from the

fact that most available data on the internet is inherently 2D rather than 3D. While these

models are effective for standard video generation tasks, they fall short when it comes to 3D

applications. Specifically, 2D poses lack critical information about the human body’s shape
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and depth within 3D space, limiting their utility in more complex 3D scenarios.

Future work could focus on developing models that utilize 3D poses, enabling the creation

of 3D camera-parameterized diffusion models for human motion video generation. Such ad-

vancements would allow for the direct generation of 3D videos of human motion, overcoming

the limitations imposed by the current dependence on 2D pose data.

5.0.3 Mesh Generation and Distortions

The pipeline currently relies on single-view metric depth prediction, which is susceptible

to various distortions and artifacts. Because depth prediction depends solely on individual

images rather than video sequences, the generated data often exhibits abrupt and abnormal

changes between consecutive frames, leading to visible flickering in the depth image video.

To address these issues, future work could explore the use of video-based depth predic-

tions, which may provide more consistent results across frames. Additionally, incorporating

SMPL meshes into the depth generation process could further improve depth consistency.

This approach not only mitigates the challenges posed by limited data but also produces

more reliable and coherent depth information.

5.0.4 Lack of Data for Complete Pipeline

A significant challenge in developing the complete pipeline is the scarcity of comprehensive

datasets that include paired text, camera poses, and video data, which are essential for both

training and evaluation. Acquiring such data is inherently difficult, and even when available,

establishing a reliable correspondence between these elements poses an additional challenge.

One potential solution is to start with available text-video pairs and then infer the camera

poses using structure-from-motion (SfM) pipelines. This approach could help bridge the data

gap and facilitate the development and evaluation of more robust models.
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Conclusion

In this work, we presented a novel pipeline for generating human action videos with mi-

nor viewpoint adjustments using a single reference image and textual pose instructions.

Our pipeline addresses several limitations of current human motion video synthesis models,

particularly their inability to handle textual prompts and generate view-changing videos.

By leveraging off-the-shelf tools and integrating depth-based view synthesis techniques, our

pipeline offers a more accessible and efficient solution for creating dynamic video content

without the need for complex 3D modeling or animation.

Through a series of experiments using the DNA Rendering dataset, we evaluated the

performance of our pipeline across different stages/sections. The dataset’s availability of

reference view video allowed us t evaluate the results of section 2 and section 3. In the

absence of ground truth for novel views for section 3, we employed no-reference qualitative

metrics, such as BRISQUE, Blur Score, and DOVER, to quantify the visual quality of

the synthesized videos. These metrics, along with high-confidence correspondence analysis,

demonstrated the effectiveness of our pipeline in producing visually coherent and realistic

view-changing videos.

While our results indicate that the proposed methods can generate compelling and realis-

tic human action videos, we also identified areas for improvement. The reliance on single-view

depth prediction, for instance, introduces certain challenges due to deformations and inac-

curacies. Combining camera control directly in diffusion process and building modules to

directly correlate text with image are possible future directions to go for mitigating these

issues.
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Overall, our pipeline offers a significant step forward in the field of human motion video

synthesis, particularly in applications where full 3D view changes are not required. By

simplifying the video generation process and enabling the use of text prompts, our approach

opens up new possibilities for content creation in areas such as fitness training, virtual try-

ons, and social media. Future work could focus on further refining the depth prediction and

view synthesis techniques, as well as combining segments presented in pipeline into a single

generation task.
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