
Continuous Checkpointing System for Enhanced Model
Recovery

by

Dhayaneshwar Balusamy

August 19, 2024

A thesis submitted to the

Faculty of the Graduate School of

the University at Buffalo, The State University of New York

in partial fulfilment of the requirements for the

degree of

Master of Science

Department of Computer Science and Engineering

Copyright by

Dhayaneshwar Balusamy

2024

All Rights Reserved

ii

Acknowledgements

I am immensely grateful for the support and guidance I received during the development of

this thesis. Foremost, I extend my deepest gratitude to Dr. Jinjun Xiong for his invaluable

supervision throughout my research journey. His expertise and profound insights have been

pivotal in shaping this research work.

I also wish to express my sincere appreciation to Amir Nassereldine, whose expert guid-

ance and assistance have been instrumental in my development and the successful completion

of this work. Additionally, I am grateful to Jerry Chen, whose technical insights greatly con-

tributed to the research. I am also thankful to Dr. Kaiyi Ji, a member of the thesis defense

committee, for his constructive feedback and suggestions.

I owe a debt of gratitude to the Department of Computer Science and Engineering at the

University at Buffalo for providing the resources and supportive environment that facilitated

my research.

Most importantly, I extend my heartfelt thanks to my family, whose love, support, and

encouragement have been my ongoing source of strength and motivation. I dedicate this

accomplishment to them.

iii

Table of Contents

Acknowledgements iii

Table of Contents iv

List of Tables vii

List of Figures viii

Abstract x

Chapter 1:

Introduction 1

Chapter 2:

Related Work 4

Chapter 3:

Checkpointing Strategy 8

3.1 Motivation . 8

3.2 Technical Implementation and Challenges 9

Chapter 4:

Methodology 11

4.1 Checkpointing Operation . 12

4.1.1 Updated Embedding Extraction . 13

iv

TABLE OF CONTENTS v

4.1.2 Asynchronous Operations Framework 15

4.1.3 Non-blocking Data Handling With Streams 18

4.1.4 Data Serialization . 20

4.1.5 Chunking Mechanism . 22

4.1.6 Data Streaming with Kafka . 24

4.1.7 Marker-based State Management . 25

4.1.8 Saving Non-Embedding Parameters 26

4.1.9 Distributed Scalability of Continuous Checkpointing 27

4.1.10 Hybrid Parallelism in DLRM . 28

4.2 Recovery Operation . 30

4.2.1 Asynchronous Data Recovery . 31

4.2.2 Model State Reconstruction . 34

4.2.3 Dynamic Data Production to Kafka 35

Chapter 5:

Datasets and Experimentation 38

5.1 Datasets Overview . 38

5.1.1 Criteo Display Advertising Challenge Dataset 38

5.1.2 Synthetic Data . 39

5.2 Experimentation . 40

5.2.1 Hardware Configuration . 40

5.2.2 Distributed Backend . 40

5.2.3 Baseline and Benchmark Comparisons 41

Chapter 6:

Results 43

6.1 Checkpointing Operation . 43

6.1.1 Single-Node Single-GPU . 43

TABLE OF CONTENTS vi

6.1.2 Single-Node Multi-GPU . 45

6.1.3 Multi-Node Multi-GPU . 47

6.2 Recovery Operation . 49

6.2.1 Single-Node Single-GPU . 49

6.2.2 Single-Node Multi-GPU . 50

6.2.3 Multi-Node Multi-GPU . 51

Chapter 7:

Conclusion and Future Work 52

Bibliography 54

List of Tables

4.1 Optimizer Runtime and Total Runtime: Base vs. Continuous DLRM 15

4.2 Performance Comparison of Multi-Processing Queue vs. Quick Queue 17

4.3 Memory sizes of sparse layers for various configurations 22

4.4 Non-Embedding Parameters Save Time Compared to Entire Model Save Time 26

5.1 DLRM Model Configuration Parameters for Synthetic Data 39

6.1 Checkpoint Runtime using Synthetic Data in Single-Node Single-GPU 44

6.2 Checkpoint Runtime using Criteo Dataset in Single-Node Single-GPU 45

6.3 Checkpoint Runtime using Synthetic Data in Single-Node Multi-GPU 46

6.4 Checkpoint Runtime using Criteo Dataset in Single-Node Multi-GPU 47

6.5 Checkpoint Runtime using Synthetic Data in Multi-Node Multi-GPU 48

6.6 Checkpoint Runtime using Criteo Dataset in Multi-Node Multi-GPU 49

6.7 Recovery Runtime using Synthetic Data in Single-Node Single-GPU 50

6.8 Recovery Runtime using Criteo Dataset in Single-Node Single-GPU 50

6.9 Recovery Runtime using Synthetic Data in Single-Node Multi-GPU 50

6.10 Recovery Runtime using Criteo Dataset in Single-Node Multi-GPU 50

6.11 Recovery Runtime using Synthetic Data in Multi-Node Multi-GPU 51

6.12 Recovery Runtime using Criteo Dataset in Multi-Node Multi-GPU 51

vii

List of Figures

1.1 DLRM Architecture . 2

3.1 Training Job Failure CDF in Meta Cluster 9

3.2 Normalized Model Size Over 2 Years in Meta 9

3.3 Fraction of Model Size Updated . 10

3.4 Consistency of Model Updates Across Time Intervals 10

4.1 Overall Workflow in Continuous Checkpointing 12

4.2 Overview of Updated Embedding Extraction 13

4.3 Asynchronous Operations Framework Overview 16

4.4 Operations in Asynchronous Process . 16

4.5 Execution Flow with CUDA Copy Stream 18

4.6 Sequential Operations Without CUDA Copy Stream 19

4.7 Overlapped Operations With CUDA Copy Stream 19

4.8 Custom Serialization and Deserialization Performance Comparison 21

4.9 Chunking of Serialized Data . 23

4.10 Kafka Deployment Configurations . 24

4.11 Marker placements in the Kafka Stream . 25

4.12 Non-Embedding Parameters Saving Workflow 27

4.13 Distributed Data Streaming with Kafka Partitions 28

4.14 Hybrid Parallel Training Scheme in DLRM [4] 29

4.15 Recovery Operation Workflow Overview . 31

viii

LIST OF FIGURES ix

4.16 Loading Service Operation Architecture . 32

4.17 Parallel Data Retrieval inside Loading Service 33

4.18 Deployment Configurations for DLRM Training and Loading Service 34

4.19 Before and After Compaction Visualization 35

4.20 Overview of Updated Embeddings Integration 36

4.21 Sample Recovery Operation from a Partition 37

5.1 Scaling Up GPU Configurations with NCCL 41

6.1 Single-Node Single-GPU with Synthetic Data 44

6.2 Single-Node Single-GPU with Criteo Data 45

6.3 Single-Node Multi-GPU with Synthetic Data 46

6.4 Single-Node Multi-GPU with Criteo Data 47

6.5 Multi-Node Multi-GPU with Synthetic Data 48

6.6 Multi-Node Multi-GPU with Criteo Data . 49

Abstract

The training of the Deep Learning Recommendation Model (DLRM) is a computationally

demanding task that often takes place across distributed computing environments and uti-

lizes large datasets. Traditional checkpointing methods which periodically store the model’s

state on disk, are not only inefficient but can also cause potential disruptions to training.

This research work focuses on increasing checkpointing frequency while also reducing train-

ing interruptions by introducing a novel continuous checkpointing method, especially for

DLRMs. The proposed method uses leverages efficient asynchronous operations and Kafka

for efficient data streaming of updated embeddings. With this method, real-time model data

can be stored without interfering the ongoing training sessions.

The implementation was also extended to support large-scale distributed training and

benchmarked on various training infrastructures. Extensive experiments were conducted

using both synthetic data and the Criteo Kaggle Display Advertising Challenge Dataset to

evaluate the performance of the continuous checkpointing system against traditional method.

The data collected on the model checkpointing time, recovery time, and overall runtime

demonstrated that continuous checkpointing significantly enhances training performance,

and reduces data-loss compared to traditional methods.

This research concludes by successfully developing a complete checkpointing system that

includes highly efficient checkpointing and recovery operations. It also establishes a robust

framework that ensures data integrity and enables rapid recovery post-failure. By integrating

a continuous checkpointing mechanism with DLRM, this work contributes substantially to

the field of machine learning, offering a scalable, and efficient method for training large-scale

models in distributed environments.

x

Chapter 1

Introduction

Recommendation systems are a subset of machine learning technology that leverages large-

scale data to assist in the prediction and identification of preferences within an ever-expanding

array of choices. Recommendation systems utilize machine learning algorithms such as col-

laborative filtering, clustering, and deep neural networks to analyze datasets containing user

behavior, preferences, and interactions. These algorithms enable to predict and provide rec-

ommendations that closely align with the user’s history such as previous purchases, viewing

habits, and search patterns. Recommendation systems are essential in e-commerce and dig-

ital media as they allow businesses to enhance customer satisfaction and increase revenues

by precisely predicting and catering to customer requirements. Additionally, they help users

to navigate through overwhelming choices by providing tailored suggestions, and thereby

improving user engagement and retaining customer interest. Major companies like Amazon,

Facebook, and YouTube utilize recommendation systems extensively to personalize user ex-

periences. Amazon recommends products based on browsing and purchasing history [1],

Facebook customizes the feed to show relevant content [2], and YouTube suggests videos

that align with past viewing behaviors [3], driving engagement and content discovery on

these platforms.

Recommendation systems have evolved significantly with the advent of deep learning

technologies, leading to the development of Deep Learning Recommendation Models (DLRM)

[4]. DLRM represents a combination of recommendation systems with deep learning tech-

1

INTRODUCTION 2

Figure 1.1: DLRM Architecture

niques and designed to use massive amounts of data to predict user preferences with highest

accuracy. As shown in Figure 1.1, the DLRM architecture combines categorical data, pro-

cessed through embedding layers, with numerical features in dense layers in the model to

output the probability of click. In DLRM, the categorical data is processed using embed-

dings, while the continuous data is handled by a bottom MLP (multilayer perceptron). The

model then explicitly calculates second-order interactions between these features. These re-

sults are subsequently processed by a top MLP, and a sigmoid function is used to estimate

the probability of a click.

Training Deep Learning Recommendation Models presents a unique set of challenges due

to their complexity and the scale at which they operate. These challenges not only include

the computational demands, but also ensuring the training process is reliable and efficient.

Common failures during training process include hardware malfunctions such as GPU failures

due to overheating, and software issues like memory leaks or data pipeline bottlenecks,

which can interrupt the training cycle [5]. The process of traditional checkpointing further

exemplifies these difficulties due to the computational intensity and the massive scale of data

involved. The traditional checkpointing techniques which periodically save the entire model

INTRODUCTION 3

state to disk are not only slow and resource-intensive but also disruptive to the training

process. These techniques frequently cause interruptions which may lengthen the training

period and can potentially affect the model’s training process.

Furthermore, in the distributed training of DLRM the need to synchronize state across

multiple nodes further exacerbates the issues. The synchronization process is prone to in-

ducing latency, and can complicate the recovery process in the event of any failure. In these

scenarios, hardware failures and network outages are also typical problems that can result in

partial or total data loss if the checkpointing system fails to precisely and regularly capture

the most recent state of every node. The importance of reliable training processes neces-

sitates a more robust, efficient, and less intrusive checkpointing solution to maintain data

integrity, reduce training interruptions, and enable swift recovery after any failures.

This thesis introduces a novel continuous checkpointing system specifically designed to

address the training challenges of Deep Learning Recommendation Models (DLRM). Tradi-

tional checkpointing methods, which periodically save the state of the model to disk have

proven to be inefficient and interruptive, particularly in distributed environments handling

large-scale data. The proposed system leverages Kafka streaming and asynchronous opera-

tions to provide efficient and reliable checkpointing, ensuring that model states specifically

embeddings are saved continuously without interrupting the training process. This novel

approach significantly enhances the efficiency and reliability of DLRM training.

The main objective of this research is to develop a checkpointing and recovery system

that minimizes training disruptions, optimizes resource usage, accelerates recovery opera-

tions, and enhances checkpointing frequency to significantly reduce training data loss. By

incorporating a continuous checkpointing system, the system ensures high data integrity and

resilience against training failures, and thereby supporting the demands of large-scale dis-

tributed recommendation model training. The effectiveness of the system was tested using

synthetic data and real-world datasets. These tests evaluate the key performance metrics

and also the operation of the system in a range of distributed training scenarios.

Chapter 2

Related Work

The foundational paper, Deep Learning Recommendation Model for Personalization and

Recommendation Systems [4] by Naumov et al. (2019) introduces the Deep Learning Recom-

mendation Model (DLRM), a state-of-the-art neural network framework designed specifically

for recommendation tasks, distinguishing itself by its ability to efficiently process categorical

and continuous features. While DLRM provides comprehensive insights recommendation

systems, it does not incorporate an efficient checkpointing system. This highlights an oppor-

tunity for the development of specialized checkpointing system which addresses the specific

needs of large-scale recommendation system training while also enhancing resilience and

operational efficiency.

Developing an efficient checkpointing system, especially in distributed training environ-

ments requires sophisticated techniques to optimize data handling, enhance fault tolerance,

and improve system recovery. The study conducted by Rojas et al. (2021) [6] provides

valuable insights into checkpoint-restart mechanisms and emphasizes the need for more so-

phisticated checkpointing solutions tailored to the complex demands of training large-scale

deep neural networks. Continuous checkpointing system significantly enhances fault toler-

ance without compromising on training efficiency, thereby filling a critical gap identified by

Rojas et al. in existing DL frameworks. The study by Tonmoy Dey et al. [7] highlights the

use of multi-level checkpointing strategies to reduce I/O traffic and boost efficiency in HPC

systems by incorporating AI techniques.

4

RELATED WORK 5

The work by Bogdan Nicolae et al. [8] introduces an efficient asynchronous checkpointing

approach in deep learning that uses fine-grained sharding and augmented execution graphs

to minimize serialization and I/O overheads on HPC platforms, showing improvements in

performance with models like ResNet. However, it does not address all the challenges of

checkpointing in real-world operational environments, such as continuous data persistence

and real-time model state recovery. Similarly, Trishul Chilimbi et al. [9] discusses the Adam

project, which enhances the efficiency and scalability of distributed deep learning systems

through optimized balance of computation and communication and asynchronous updates,

resulting in improved model accuracy due to the system’s ability to handle larger models.

Additionally, Aurick Qiao et al. [10] presents a framework that leverages inherent self-

correcting properties of machine learning algorithms to provide an fault tolerance strategy,

reducing recovery costs and improving reliability in various ML models training. While

effective for minor disturbances, this might not support for all error types or high data

volumes in real-time. The study by Sze et al. [11] provides a exploration into computational

complexities and hardware demands of deep neural networks, emphasizing the need for

specialized hardware and algorithmic strategies . This study underscores the importance of

efficient processing techniques in systems like continuous checkpointing system, where the

rapid processing and storage of model states are vital for maintaining performance without

sacrificing accuracy.

ByteCheckpoint [12] presents a PyTorch-native checkpointing system tailored for Large

Language Models, addressing prior limitations by incorporating checkpointing resharding

for parallel LLM training. It also introduces asynchronous tensor merging, I/O optimiza-

tions, and disaggregated data/metadata storage architecture to enhance management across

various training frameworks and parallelism strategies. Check-N-Run [13] introduces a check-

pointing system optimized for training massive recommendation systems within Facebook’s

infrastructure. By only checkpointing the changed parts of the model at certain frequency

and reducing the data size through quantization, Check-N-Run enhances checkpoint effi-

RELATED WORK 6

ciency. ByteCheckpoint and Check-N-Run, while advanced than previous systems, does not

address continuous and granular checkpointing to reduce data loss and rapid state recovery

during training interruptions, an area where continuous checkpointing excels.

For checkpointing in distributed settings, the work by R. Koo and S. Toueg. [14] details a

distributed algorithm for creating consistent checkpoints and a rollback-recovery mechanism.

L. Wang et al. [15] explores a coordinated checkpointing protocol for next-generation super-

computers, assessing the scalability and its ability to handle failures during checkpointing,

providing insights into fault tolerance at a massive scale. Fault Tolerance in Distributed Sys-

tems: A Survey [16] provides a exploration on fault tolerance in distributed systems which

is a critical aspect in the continuous checkpointing system.

The research presented by Hestness et al., [17] examines the optimization potential of

heterogeneous CPU-GPU processors, emphasizing the role of unified memory architectures

in reducing data movement overheads and enhancing compute and cache efficiency. This

analysis holds significance for the continuous checkpointing system by highlighting the need

for efficient data management, which are essential for reducing checkpointing latency. The

effectiveness of using CUDA streams for overlapping data transfers with computations has

been demonstrated in various studies, showing substantial performance improvements in

both data transfer-intensive and compute-intensive kernels [18, 19, 20]. These studies provide

a foundation for integrating similar strategies in the continuous checkpointing, aiming to

minimize the latency impacts and enhance the performance of data transfers in checkpointing

processes.

The studies by Guozhang Wang et al. [21] and Shubham Vyas et al. [22] emphasize

Apache Kafka’s robust architecture in stream processing which ensures correctness and high

throughput in distributed systems. Regarding the optimization of Apache Kafka configura-

tions specifically the partitioning of topics, studies by Theofanis P. Raptis et al. [23, 24] have

highlighted the complexity of achieving optimal partition distribution in high-volume data

environments. These works underscores the importance of finely tuned partition strategies to

RELATED WORK 7

accommodate the demanding performance and resource utilization requirements of real-time

data streaming applications, especially continuous checkpointing system. The study by Han

Wu, Zhihao Shang, and Katinka Wolter. [25] introduces a queueing-based model to optimize

Kafka configurations for predicting performance impacts from broker and partition settings.

The study presented by Feng He et al. [26] explores advanced techniques in inter-process

communication and the optimization of data transfer for computational tasks in multi-core

architectures. Dominik Straßel, Philipp Reusch, and Janis Keuper. [27] addresses critical

issues related to managing Python workflows on High-Performance Computing systems,

particularly in the GPU-based machine learning applications. The continuous checkpointing

system leverages and complements these studies by implementing efficient multi-process

operations in checkpointing and recovery systems, integrating seamlessly with HPC systems

to improve the robustness and efficiency of long-running training processes.

Jackson et al. [28] focuses on enhancing data streaming efficiency across various real-time

applications by empirically testing a range of streaming technologies and serialization proto-

cols. This study extensively tests serialization libraries, including MessagePack, ProtoBuf,

and Pickle. Their work parallels the developments in the continuous checkpointing system,

which utilizes a custom serialization protocol that is optimized for checkpointing large and

sparse tensor data more efficiently than standard serialization libraries.

Chapter 3

Checkpointing Strategy

3.1 Motivation

Checkpointing is essential for enhancing the reliability of training large-scale machine learn-

ing models, particularly in complex distributed environments. The necessity for implement-

ing a reliable checkpointing system is driven by several factors as described below.

• Preventing Data Loss: Training machine learning models in industrial settings can

be interrupted by hardware failures, power outages, or other disruptions. This is

addressed by checkpointing which saves the model’s state data at regular intervals so

that training can resume from the most recent stored state rather than from beginning.

This preserves both time and computational resources which are vital in real-world

industrial settings.

• Minimizing Costs and Time from Training Disruptions: Restarting the model

training from the beginning is expensive and time-consuming, especially when done in

large-scale. By enabling the resuming of training process from a previously saved state,

checkpointing minimizes the resources and time lost due to interruptions. This is espe-

cially crucial in commercial and research domains where efficient resource management

is essential for sustaining project viability.

8

CHECKPOINTING STRATEGY 9

• Consistency and Fault Tolerance in Distributed Systems: In distributed set-

tings where multiple nodes are used in training machine learning models, the nodes

may not always be in synchronization due to various factors. Checkpointing provides a

common recovery point for all the nodes to maintain training consistency and enhance

fault tolerance.

3.2 Technical Implementation and Challenges

Traditional checkpointing involves pausing the training process at specified intervals, writ-

ing the current model state to persistent storage, and then again resuming training. Tradi-

tionally, implementing checkpointing involves using libraries that provide support for these

operations. Libraries such as PyTorch offer functions like torch.save to write the model or

tensor to a file and torch.load to retrieve them.

The checkpointing process involves complex technical considerations that must be care-

fully managed to ensure system efficiency and data integrity. Determining the optimal

checkpoint frequency is necessary because more frequent checkpoint operations may impede

system performance due to increased overhead of data writing and storage, while infrequent

checkpoints may result in data loss in the event of a failure since recent state is not cap-

tured. As models size increases, the demand for storage can also cause bottlenecks in write

operations and storage capacity.

Figure 3.1: Training Job Failure
CDF in Meta Cluster

Figure 3.2: Normalized Model Size
Over 2 Years in Meta

CHECKPOINTING STRATEGY 10

The Figures 3.1 and 3.2 reflects the work presented by Eisenman et al. [13]. The analysis

shows training job failures across 21 clusters over a month, revealing that the longest 10%

of failures occurred after at least 13.5 hours, and the top 1% after at least 53.9 hours. These

jobs require 128 GPUs spread across multiple nodes and interacts with various systems in

the network. A single failure in any interdependent component can significantly disrupt the

entire training operation. Moreover, the significant increase in model sizes like tripling over

two years as shown in Figure 3.2, presents challenges for checkpointing systems.

Figure 3.3: Fraction of Model Size Up-
dated

Figure 3.4: Consistency of Model Up-
dates Across Time Intervals

Figures 3.3 and 3.4 continue to explore the dynamics of model training as initially de-

tailed by Eisenman et al. [13]. The first figure shows that the fraction of recommendation

model modified during training remains relatively small even when processing up to 11

billion records. The second graph highlights the consistency in the fraction of the model

size modified over specific time intervals, emphasizing the sparsity of updates in large-scale

models.

These observation presents opportunities for optimizing computation and storage effi-

ciently, and continuous checkpointing system can be instrumental in overcoming these chal-

lenges. By focusing on only the updated embeddings of the model, we ensure effective

resource utilization using continuous checkpointing. Furthermore, by integrating efficient

data streaming and decoupling checkpointing operations from model training can further

enhance the system’s performance.

Chapter 4

Methodology

The methodology section focuses on the implementation of the continuous checkpointing

system tailored for Deep Learning Recommendation Model (DLRM). The section introduces

a refined approach to managing large-scale embedding data from DLRM training. By em-

ploying a asynchronous process to decouple checkpointing operations from model training

and leveraging data streaming platforms like Kafka, the system ensures that updated em-

beddings from training are efficiently captured and stored. This method not only minimizes

the impact on training performance but also significantly reduces the data loss compared to

the traditional checkpointing systems by increasing the checkpointing frequency.

Furthermore, a standalone loading service has been introduced to manage the retrieval

of the complete model state from the updated embeddings that are streamed during check-

pointing. This ensures that in the event of a system failure or training interruption, the

model can be quickly restored to a recent state, thereby reducing the training downtime

which is essential in real-world industrial settings.

Overall, this dual approach significantly streamline the checkpointing and recovery pro-

cess in model training, and provides a robust framework for handling large-scale recommen-

dation model training tasks in distributed settings to ensure both efficiency and reliability.

11

METHODOLOGY 12

Figure 4.1: Overall Workflow in Continuous Checkpointing

4.1 Checkpointing Operation

The Checkpointing Operation within the continuous checkpointing system is designed to

enhance the efficiency and robustness of training Deep Learning Recommendation Models

(DLRM). This operation addresses the inefficiencies of traditional checkpointing methods

by integrating several novel techniques: efficient extraction of updated embeddings, asyn-

chronous data processing, optimized serialization processes, and robust data streaming mech-

anisms. The primary focus is the continuous saving of updated embeddings, while the rest

METHODOLOGY 13

of the model (non-embedding parameters) is saved at required intervals. This approach sig-

nificantly reduces the interruptions associated with traditional checkpointing activities by

eliminating the need to pause the training process for data saving. Additionally, the system’s

capability to capture data continuously minimizes potential data loss between checkpoints

and ensures that the most recent state of the model is preserved in cases of unexpected

training failures.

The architecture of the checkpointing operation leverages asynchronous data handling

and Kafka for data streaming to ensure that embedding updates are captured and stored

with minimal impact on ongoing training operations. The system’s design includes:

4.1.1 Updated Embedding Extraction

The updated embedding extraction component of the checkpointing operation is essential for

extracting the updated embeddings during model training. This process focuses on precise

identification and extraction of embeddings that have been updated during each training

cycle. The processes involved in the extraction of updated embeddings are illustrated in

Figure 4.2, which provides an overview of the entire mechanism.

Figure 4.2: Overview of Updated Embedding Extraction

• Flagging Embeddings During Creation: During the creation of embedding layers,

specific flags are added to identify tensors as embedding among optimizer parameters.

This differentiation enables the system to apply specific operations related to contin-

uous checkpointing to these parameters within the optimizer. Embedding layers are

METHODOLOGY 14

flagged with an attribute (is embedding param), allowing the optimizer to recognize

and handle these parameters separately, such as extracting updated embedding indices

or applying standard optimization algorithms.

• Custom Optimizer: The optimizer in DLRM has been enhanced with a wrapper to

extract updated embeddings efficiently. It can be seen in Figure 4.1 where the custom

optimizer component integrates into the checkpointing workflow. Our implementation

utilizes a stochastic gradient descent (SGD) optimizer, and this functionality can also

be extended to other types of optimizers. The optimizer’s step method evaluates each

parameter to determine if it is marked as an embedding parameter. For params that

are flagged, and where updates has occurred are indicated by non-zero gradients from

backward pass, the optimizer efficiently extracts these specific updated embedding

indices.

Identifying these indices allows the system to track the parts of embedding matrix that

have changed during training, and significantly reduces the additional computations

required to extract the updated embedding. The indices of the embeddings that have

updated are compiled into a list (updated indices list), which records the embed-

dings indices that need to be updated in the optimization process. Following this, in

the (single tensor sgd) function, we temporarily store all the values of the embed-

ding tensor along with the updated indices in a tuple, which is later added to multi-

processing queue. We strategically store this information as it enables the extraction

and processing of the updated embedding values, such as performing unique operations,

and moving from GPU to CPU in later stages through non-blocking asynchronous op-

erations instead of performing them inside the optimizer, which blocks the training

process. By separating this data-capturing process from the training computations,

we enhance system efficiency by enabling embeddings to be processed independently

from the main training workflow.

This table 4.1 provides a comparison of the optimizer performance between the cus-

METHODOLOGY 15

Table 4.1: Optimizer Runtime and Total Runtime: Base vs. Continuous DLRM
Description Base Optimizer (s) Custom Optimizer (s)

Synthetic Data for 100 Epochs
Total Time in Optimizer 0.5997 0.7607
Total Training Runtime 1591.08 979.09

Criteo Dataset for 5 Epochs
Total Time in Optimizer 40.963 43.148
Total Training Runtime 3446.25 3292.27

tom optimizer used in the continuous checkpointing system and the base optimizer in

DLRM with traditional checkpointing operations across two different datasets. Despite

a slight increase in optimizer runtime, which accommodates additional computations

for updated embedding extraction, this is minimal and negligible when compared to

the significant benefits obtained in total runtime reduction. This demonstrates the

efficiency of the custom optimizer in extracting updated embeddings without adding

significant overhead to the training process.

4.1.2 Asynchronous Operations Framework

The Asynchronous Operations Framework plays a central role in the continuous checkpoint-

ing system for efficient data handling and transmission of data streams. This architecture is

designed to manage the flow of data between the model and the Kafka messaging system,

ensuring that checkpointing operations does not interrupt the training process. An overview

of asynchronous processing and operations involved is shown in Figure 4.3 and Figure 4.4.

The components of this architecture includes:

• Dedicated Asynchronous Process: A dedicated asynchronous process as seen in

Figure 4.1 is used to handle the processing of data taken from the queue and to send

updated embeddings to Kafka without interrupting the main training process. Figure

4.4 provides an overview of operations within the asynchronous process. This decou-

pling is essential to ensure that the computation intensive operations in the training

process is not being blocked or slowed down by the operations of data handling and

METHODOLOGY 16

Figure 4.3: Asynchronous Operations Framework Overview

network communication in checkpointing. The asynchronous process is responsible for

collecting updated embeddings from the queue, extracting updated values from indices,

moving from device to host, serializing, and then producing the data to Kafka.

Figure 4.4: Operations in Asynchronous Process

The extraction of updated values from all values as mentioned in custom optimizer

section, using the updated embedding indices also leverages a parallel processing mech-

anism where each embedding layer is processed in parallel to extract the values. By

assigning a dedicated process, the system can decouple the computational load related

to data handling from the training computations. This separation helps to improve

the performance of the continuous checkpointing process.

METHODOLOGY 17

• Event-driven Architecture: In continuous checkpointing system, we use a queue to

manage the flow of data between the custom optimizer used in training and an asyn-

chronous checkpointing process. As the training progresses and updated embeddings

are generated, they are efficiently transferred to separate processes for additional han-

dling before producing to Kafka without disrupting the ongoing training computations.

The Quick Multiprocessing Queue enhances this data flow by addressing the bottle-

necks in standard multiprocessing queues. The Quick Multiprocessing Queue [29] is

specifically designed to optimize data transfer speeds between concurrent processes in

a multiprocessing environment. This queue outperforms the standard queue by re-

ducing the overhead associated with putting and getting elements, which is essential

for high-throughput data handling in continuous checkpointing system. The key to

the Quick Multiprocessing Queue’s performance is its ability to minimize the locking

and synchronization overhead that typically slows down standard queues, especially

in multi-processing environment. By reducing the lock contention, the Quick Queue

ensures that data can be enqueued and dequeued with minimal delay. Faster queue

operations also facilitates the operations in asynchronous process to spend less time

waiting for data availability and be optimized for performing necessary computations.

Table 4.2: Performance Comparison of Multi-Processing Queue vs. Quick Queue
Operation Multi Processing Queue (s) Quick Queue (s)
Put Operation 1.621× 10−5 1.669× 10−6

Get Operation 0.001159 1.669× 10−6

This table highlights the performance of Quick Queue and Multi-Processing Queue,

demonstrating faster put and get operations for updated embeddings in continuous

checkpointing system. Even though the differences in timings may appear minimal,

these advantages accumulate significantly over the course of training process that in-

volves a large number of batches.

METHODOLOGY 18

4.1.3 Non-blocking Data Handling With Streams

In high-performance computing environments, the ability to manage data operations asyn-

chronously is essential for efficiency. This is achieved by non-blocking data handling with

streams, which allows data processing tasks to run concurrently with core computational

activities. Using streams, various GPU computational tasks can overlap in execution with

data transfer operations, thus maximizing the utilization of GPU resources [18, 19, 20]. For

instance, data being moved from device to host can be processed in one stream while the

another stream handles computations for the subsequent training batch.

CUDA Streams are used in continuous checkpointing system to manage the frequent

transfer of data from the device to host. This operation prepares the data needed for se-

rialization and subsequent transmission to Kafka without interfering the ongoing training

processes on the GPU. To initiate the transfer, we create a CUDA Stream and the data

transfer commands are issued on this stream. The use of a separate stream for these opera-

tions ensures that they are not blocking other computations occurring on the default stream,

allowing the GPU to continue executing other tasks concurrently.

Figure 4.5: Execution Flow with CUDA Copy Stream

METHODOLOGY 19

Sample execution flow of kernel computations and data transfers with CUDA Streams is

shown in Figure 4.5. By facilitating concurrent data operations alongside GPU computations,

CUDA Streams ensure that the system can handle frequent device-to-host copy operations

efficiently without interruptions.

Figure 4.6: Sequential Operations Without CUDA Copy Stream

Figure 4.7: Overlapped Operations With CUDA Copy Stream

Figures 4.6 and 4.7 provide a comparison of memory operations in NVIDIA’s Nsight pro-

filer [30] for our Continuous Checkpointing system. In Figure 4.7, we demonstrate the use

of CUDA streams, which enable the overlapping of memory operations and computational

kernels. We leveraged various streams such as Stream 13 (copy stream), and the Default

Stream, which are actively engaged in allowing the overlap of multiple tasks. While the

Default Stream executes computational kernels, Stream 13 handles memory operations (in-

dicated in red blocks in the figures) like data transfer between host and device (DtoH). In

contrast, Figure 4.6 depicts the scenario without the use of CUDA streams, shows a sequen-

tial execution of tasks where operations are queued one after the another without overlap,

METHODOLOGY 20

resulting in reduced efficiency in high-throughput scenarios. We see that the difference in

operation handling between the two figures highlights the effectiveness of CUDA streams

in enhancing parallel processing capabilities and optimizing the performance of memory-

intensive operations.

4.1.4 Data Serialization

Data serialization is required for encoding the tensor embeddings into a format suitable

for transmission over networks and for persistent storage. This process coverts the sparse

embedding tensors into a compact and manageable format that preserves the integrity of data

during storage and retrieval through network. By efficiently packaging the data, serialization

reduces I/O overhead involved in transmitting data across a network, and writing and reading

from storage devices. Serialization works by encoding the data into a structured format that

includes both the raw data and metadata necessary for deserialization. In the continuous

checkpointing system, embedding tensor indices and values are serialized using their specific

data types optimized for computational performance.

We use a custom data serializer component to enhance this process within the continu-

ous checkpointing system to facilitate faster serialization and reliable data exchange to the

streaming platform. This setup helps convert sparse embedding tensors into binary data

format that is suitable for network transmission and persistent storage. Serialization tasks

are performed inside the asynchronous process such that model training is not interrupted.

• Custom Binary Serialization: The system employs a custom binary serialization

process tailored to handle the specific requirements of updated embeddings data. This

is designed to serialize large sparse data efficiently by encoding them into a binary

format. The serialized format includes metadata such as data types and tensor shapes,

allowing the consumer or recovery process to deserialize and reconstruct the original

embedding data accurately.

METHODOLOGY 21

• Header and Metadata: Each serialized message starts with a header (e.g., ’CSER’

for custom serialization) that identifies the format of the data packet as custom serial-

ized, followed by metadata about the number of layers, data types, and other essential

parameters. This approach ensures integrity and consistency in data handling.

• Data Encoding: The tensor indices and values are encoded using appropriate data

types that minimize space while preserving the accurate precision. For example, indices

might be stored as int64, and embedding values are stored in formats like float32 or

float64 depending on the embedding structure.

Figure 4.8: Custom Serialization and Deserialization Performance Comparison

The performance data illustrated in the Figure 4.8 highlights the efficacy of the custom

serializer compared to the standard Pickle across various data sizes as shown in Table 4.3,

specifically when handling sparse data with indices of type torch.int64 and values of type

torch.float32. We observed that our custom serializer consistently outperforms the Pickle

across various data sizes by a average of 79% faster serialization and 54% faster deserial-

ization performance. It shows improved performance in small and medium data, significant

improvement in handling large data, and consistent performance gains in varying data sizes.

The use of buffer io.BytesIO provides a dynamic memory allocation mechanism that

supports the serialization of variable-sized data structures without needing predefined mem-

ory size. Memory views are employed to create a memory-efficient representation of the

tensor indices and values. By using memoryview, the serialization process avoids copying

METHODOLOGY 22

Layer Small (Bytes) Medium (Bytes) Large (Bytes) Varying (Bytes)
1 1200 12000 1200000 1200
2 1200 12000 1200000 2400
3 1200 12000 1200000 3600
4 1200 12000 1200000 4800
5 1200 12000 1200000 6000
6 1200 12000 1200000 7200
7 1200 12000 1200000 8400
8 1200 12000 1200000 9600

Table 4.3: Memory sizes of sparse layers for various configurations

the data, and creates a view on the existing buffers. These optimizations ensure that the

serialization process is efficient in space and time, thus allowing the asyncronous operations

to proceed without any major interruption caused by data serialization tasks.

4.1.5 Chunking Mechanism

The chunking mechanism component is designed to handle the serialized data, as shown in

Figure 4.4 following serialization step, that exceed the maximum message size threshold of

the Kafka producer. This method breaks down large chunks of serialized data into smaller

manageable pieces which are sent sent sequentially to ensure the data is transmitted both effi-

ciently and reliably. The chunking mechanism implemented in the send large data to kafka

function checks the total size of the binary data to be sent and compares it with a predefined

maximum size. If the data exceeds the threshold, the function divides the data into smaller

chunks such that each conforms within the size limit.

• Chunk Size Determination: The maximum allowable chunk size is set based on

Kafka’s configuration, ensuring that each chunk can be efficiently managed by Kafka’s

internal mechanisms without message drop or delay. The max size parameter is con-

figurable, allowing for adjustments based on network conditions or performance re-

quirements.

• Sequential Data Chunking: If the data size exceeds the maximum size, the seri-

METHODOLOGY 23

Figure 4.9: Chunking of Serialized Data

alized data is divided into multiple chunks. The number of chunks (num chunks) is

determined by dividing the total data length by max size and rounding up to ensure

all data chunks is produced to Kafka.

• Metadata Inclusion: Along with chunked data, each chunk includes metadata nec-

essary for reassembling the chunks at the consumer. This metadata contains chunk id,

total chunks, and rank required to correctly reproduce the data again during recov-

ery process. In our implementation, as illustrated in Figure 4.9, we show how each

chunk of data includes not only the segment of the serialized data but also the meta-

data necessary for correct reassembly at the destination. We ensure that every piece

of data is partitioned and labeled with its respective metadata, and leveraging this

structure to facilitate efficient and accurate data reconstruction during recovery.

• Asynchronous Sending: The chunks are then sent sequentially and asynchronously

to Kafka, allowing the main training process to continue without interruptions by data

transfer to Kafka.

METHODOLOGY 24

4.1.6 Data Streaming with Kafka

Once the embedding data is processed in the separate asynchronous process, the serialized

data is produced to Kafka as illustrated in Figure 4.1. Kafka is specifically employed for

continuous checkpointing due to its high throughput, fault tolerance, and distributed nature,

which are critical for handling large-scale data streams efficiently. Also, Kafka’s partitioning

capabilities are essential for distributed checkpointing operations, as they allow for the seg-

regation of data streams based on parameters such as model ranks. The Figure 4.10 shows

Kafka deployment configurations with a single node setup for localized operations, which

can reduce latency from data transfer over network, and a multi-node setup that enhances

scalability and distributes computational load across several nodes.

Figure 4.10: Kafka Deployment Configurations

Optimized data streaming with Kafka leverages the capabilities of Confluent Kafka to

manage data streaming within the system efficiently. The Kafka producer is configured

[25] with custom settings that are optimized for the specific requirements of the embedding

data. Key configurations include increasing the message.max.bytes setting, which allows

the producer to send larger messages than Kafka’s default limits. This is essential when

dealing with large model states or embeddings that sometimes exceed typical message sizes.

Additionally, queue.buffering.max.kbytes is increased to provide a larger buffer space on

METHODOLOGY 25

the producer side, which helps in accommodating bursts of data without dropping messages

or causing back pressure in the system.

The Kafka producer uses these settings to efficiently manage the flow of data such that

messages are produced with minimal latency. By efficiently managing data streams and

utilizing Kafka’s partitioning capabilities, the architecture can scale out to handle increasing

data in distributed settings without significant reconfiguration of the underlying infrastruc-

ture.

4.1.7 Marker-based State Management

In continuous checkpointing system, marker-based state management enables the synchro-

nization between the embedding data in Kafka stream and the non-embedding parameters.

Markers are placed within the data stream to indicate the significant checkpoints which are

essential for accurate, targeted recovery of model states during the recovery operation when

necessary.

Figure 4.11: Marker placements in the Kafka Stream

Markers serve as indicators within the continuous stream of embedding data being sent

to Kafka as shown in Figure 4.11. Their primary purpose is to:

• Indicate Checkpoints: Markers signal significant points in the training process, such

as the end of an epoch where non-embedding parameters is saved. This signaling also

helps us in identifying which portions embeddings in the data stream correspond to

specific states of the model.

METHODOLOGY 26

• Facilitate Targeted Recovery: In the event of system failure or when model rollback

is required, markers allow for precise restoration of the model at that point. Since at

the marker point the non-embedding parameters is saved to disk, and also the complete

embedding is available, the model can be restored at that point and the training can

be continued.

4.1.8 Saving Non-Embedding Parameters

With the placement of markers within the Kafka stream, the Non-Embedding Parameters

(rest of the model with weights of MLPs, model architecture details, optimizer state infor-

mation, training state like epoch number, etc.,) is concurrently saved to disk. This part of

the model typically constitutes less than 1% of the entire model size, but it includes essential

components that are not voluminous as embeddings. We save the non-embedding parame-

ters to disk using the normal save operation using torch.save. By saving these components

concurrently with sending of markers, the system maintains a consistent state across all parts

of the model, ensuring that restoration can be performed reliably.

Table 4.4: Non-Embedding Parameters Save Time Compared to Entire Model Save Time
Save Frequency Non-Embedding Parameters Save (s) Entire Model Save (s)

Synthetic Data for 100 Epochs
Every Epoch 1.029 803.04

Every 2 Epochs 0.532 404.36
Every 3 Epochs 0.350 281.56

Criteo Dataset for 5 Epochs
Every Epoch 0.016 187.65

Every 2 Epochs 0.007 56.63
Every 3 Epochs 0.004 20.28

The table 4.4 contrasts the save times for non-embedding parameters in continuous check-

pointing system against full model save times in a base DLRM implementation across differ-

ent save frequencies for both Synthetic and Criteo datasets. The results demonstrate that

saving non-embedding parameters is significantly faster compared to saving the entire model.

This efficiency underscores the practicality of frequent saves of smaller non-embedding model

METHODOLOGY 27

components which minimizes disruption and enhances the frequency of checkpointing, thus

significantly reducing data loss.

Figure 4.12: Non-Embedding Parameters Saving Workflow

4.1.9 Distributed Scalability of Continuous Checkpointing

Distributed Scalability is essential for continuous checkpointing system to scale for dis-

tributed training with mulitple-nodes and it is achieved through partitioned data streaming

using Kafka. By directing data streams into Kafka topic partitions based on the rank of

embedding processing devices, the system ensures that data handling remains efficient and

manageable even if the scale of operations increases.

Partitioned data streaming involves distributing the data across various partitions within

a Kafka topic. Each partition is an independent channel that handles a subset of the embed-

ding based on the rank in which they are processed, allowing for parallel processing and data

management. Kafka can also be configured to run on any node in the network as required.

This strategy is particularly beneficial in distributed environments where embedding data

from multiple devices need to be processed, as shown in Figure 4.13.

METHODOLOGY 28

Figure 4.13: Distributed Data Streaming with Kafka Partitions

The integration of this partitioning mechanism into the system is achieved as follows:

• Rank-Based Partition Assignment: Each device in the distributed system is as-

signed a unique rank. We use this rank in the data streaming process, as it determines

the partition to which the device’s embedding data is sent. By mapping the rank to a

specific partition, the system ensures that all data of that device process is streamed

consistently to the same partition, as depicted in Figure 4.13. This consistency is nec-

essary for maintaining integrity of the data, which is particularly necessary during the

recovery operation to recover the embeddings to their respective processing ranks.

• Kafka Producer Configuration: The Kafka producer is configured to recognize the

rank of the data and use this information to route the data to the appropriate partition.

This is done by specifying the partition value in the producer’s send method, ensuring

that each data is produced to the correct partition based on its rank.

4.1.10 Hybrid Parallelism in DLRM

The complexity of DLRM necessitates a sophisticated approach to parallelism, especially due

to memory-intensive nature of embeddings and computationally intensive characteristics of

the multi-layer perceptrons (MLPs). To efficiently manage these aspects, DLRM employs a

METHODOLOGY 29

hybrid parallel approach [4]:

• Model Parallelism for Embeddings: Due to the large size of embeddings which can

require several gigabytes of memory, model parallelism is used. This type of parallelism

distributes parts of the model (particularly the embeddings) across multiple devices to

fit within memory constraints without needing to replicate large embeddings on every

device.

• Data Parallelism for MLPs: The MLP components, which are smaller in mem-

ory but substantial in computational demands benefit from data parallelism. This

approach allows for the concurrent processing of samples on different devices, with

communication only required for accumulating updates during the backward pass.

Figure 4.14: Hybrid Parallel Training Scheme in DLRM [4]

The rank-based handling of embeddings provides an efficient way to manage embeddings

in the distributed training process, based on the hybrid parallel approach described for

DLRM. In the context of model parallelism of embeddings, embeddings are divided and

distributed across multiple devices where each device is responsible for a portion of the

embeddings. The rank-based system aligns each portion of the embeddings with a specific

device to organize the storage, retrieval, and processing of this data.

METHODOLOGY 30

As we discussed earlier, data for each rank is produced to the corresponding partitions

of a Kafka Topic, facilitating efficient and targeted data management. When a system

recovery or rollback is needed, embeddings can be precisely retrieved from their designated

partitions and restored to the appropriate device, ensuring that training can resume without

inconsistencies or data integrity issues. This embedded handling strategy guarantees logical

and effective data operations in distributed settings.

4.2 Recovery Operation

The recovery operation refers to the process of restoring a model’s state from previously

saved checkpoints. These checkpoints represent snapshots of the model’s parameters and

state at specific intervals during training. This is crucial for recovery and continuity purposes,

enabling the system to revert to a known state in the event of failures and to resume training.

In continuous checkpointing system, a standalone loading service is designed to man-

age the complexities associated with the recovery operation efficiently. The loading service

continuously builds the complete embeddings using updated embeddings on top of initial em-

bedding. This service ensures that the process of retrieving, and integrating the embeddings

does not interfere with the ongoing training operations, and enables faster model recovery

by continuously preparing embeddings for instant training recovery when necessary.

• Immediate Availability for Recovery: The system ensures that a complete ver-

sion of the embeddings is always available in case of a failure or need to revert to a

previous state by constantly preparing and updating the embeddings. This availability

reduces the recovery time and complexity, as the system does not need to reconstruct

embeddings from the beginning of the training process every time from Kafka stream.

• Reduction of Recovery Time: Continuously preparing complete embeddings mean

that we can efficiently load the most recent state directly, which is readily available,

rather than processing all historical data from Kafka from the start of the training.

METHODOLOGY 31

This approach significantly speeds up the recovery process, making it both faster and

less resource-intensive.

Figure 4.15: Recovery Operation Workflow Overview

It is also essential that the embeddings loaded from the checkpoints are synchronized with

the non-embedding parameters. The loading service by utilizing markers in data stream as

shown in Figure 4.12, ensures that the embeddings align with the specific training epochs or

iterations.

4.2.1 Asynchronous Data Recovery

Asynchronous data recovery operations ensures that the process of updating the embeddings

is both efficient and scalable. Using a multi-process approach, this method spawns multiple

Kafka consumers where each consumer is dedicated to a specific partition that corresponds to

a model rank. We implemented this strategy for enhancing the performance of the recovery

operation across the distributed system with multiple producers. The asynchronous recovery

METHODOLOGY 32

process is designed to handle multiple data streams concurrently, which is achieved through

the following mechanisms:

Figure 4.16: Loading Service Operation Architecture

• Dedicated Kafka Consumers: In this setup, multiple Kafka consumers are spawned

and each consumer is assigned to a specific partition corresponding to the model’s rank.

This assignment means that each consumer handles data exclusively from its designated

partition. As illustrated in Figure 4.17 and Figure 4.16, this focused approach min-

imizes unnecessary data processing. Each consumer processes only the data relevant

to their operation, reducing the overhead and potential errors that could occur when

dealing with unrelated information like embeddings from other ranks which may vary

METHODOLOGY 33

in structure or layers. This targeted method of handling data not only enhances the

speed of data processing but also decreases the potential of data mismatches when

reconstructing the complete embedding’s state.

Figure 4.17: Parallel Data Retrieval inside Loading Service

• Parallel Data Retrieval: The multi-process approach which allows for parallel data

retrieval operations from Kafka consumer, as described above, is key to handling large

volumes of data efficiently, and it reduces the time required to load the necessary

data from Kafka. Parallel processing as depicted in Figure 4.17 ensures that while

one consumer is retrieving and processing data from its partition, other consumers

can continue processing their partition data simultaneously. This overlap in processes

significantly reduces the overall processing time of the loading service.

• Optimized Service Deployment: Optimizing recovery operations is crucial for dis-

tributed training, especially regarding the deployment of the loading service relative to

METHODOLOGY 34

model training nodes as shown in Figure 4.18. Given that local data retrieval is typ-

ically faster than cross-network operations, deploying the loading service on the same

node as the model training can reduce latency and data transfer times. Alternatively,

deploying the loading service on a separate node can enhance system scalability and

distribute the computational load. This also reduces the risk of a single point of failure

impacting both training and recovery processes.

Figure 4.18: Deployment Configurations for DLRM Training and Loading Service

4.2.2 Model State Reconstruction

The reconstruction of the complete embedding involves continuously updating embeddings

by deserializing and integrating the updated embedding data. Continuous embedding prepa-

ration keeps the model’s embeddings up-to-date by applying incremental updates up to the

latest checkpoint embedding. By utilizing technique similar to log compaction as shown in

Figure 4.19, we enhance system efficiency for rapid recovery when required.

The deserialization process transforms serialized binary data back into a usable model

state. This involves custom deserialization methods that similar the serialization process,

using the meta-data like number of layers, data types, and other essential parameters which

helps to maintain data integrity and reassembles the structure correctly. Once the data has

been deserialized, it is integrated to reconstruct complete embeddings.

METHODOLOGY 35

Figure 4.19: Before and After Compaction Visualization

Therefore, by continuously updating and integrating the updated embeddings on top of

initial embedding as illustrated in Figure 4.20, the system enables the ability to quickly

recover from disruptions. This capability is essential for maintaining high performance and

lowering down-time in real-time training scenarios.

4.2.3 Dynamic Data Production to Kafka

In distributed training, managing the complete updated embeddings requires integration

with Kafka. This integration involves producing updated embeddings to topic partitions

and leveraging marker points for accurate recovery.

Complete embeddings are updated and sent to a Kafka topic that is organized into

partitions based on specific marker points, as represented in Figure 4.16. Each partition is

dedicated to storing a complete snapshot of embeddings that align with particular marker in

the training process. This partitioning ensures efficient data organization and helps in the

accurate retrieval of model states when necessary by synchronizing complete embedding in

partition with non-embedding parameters.

When the system needs to recover or revert to a previous state, it uses these markers to

METHODOLOGY 36

Figure 4.20: Overview of Updated Embeddings Integration

find and load the correct embeddings from the designated partition. This approach makes

sure that the embeddings and other model parameters are synchronized and match the

state recorded at the checkpoint. The system is also designed to handle storage efficiently,

giving the option to either retain or delete old embeddings from Kafka depending on storage

availability and operational needs.

This Figure 4.21 illustrates the process of restoring a model from a specific snapshot

(Marker 4). It demonstrates the selective retrieval of data that are necessary to reconstruct

a complete model state for a particular rank (Rank 0 in this case).

The Figure 4.21 shows ’Partition 4’, which contains complete embedding data for multiple

ranks at that marker point. For the restoration of the model at Rank 0, only the embedding

data corresponding to Rank 0 is retrieved from this partition. This selective retrieval ensures

that only relevant data is loaded into the model’s state. Along with the embeddings, the

non-embedding parameters saved at Marker 4 are retrieved from file system. This includes

METHODOLOGY 37

Figure 4.21: Sample Recovery Operation from a Partition

non-embedding parameters (rest of model) that are essential for the complete reconstruction

of the model state. The combined data forms the complete model state for Rank 0, enabling

the model to be reloaded to the state it was in at the snapshot taken at Marker 4.

Chapter 5

Datasets and Experimentation

5.1 Datasets Overview

In the development and testing of the continuous checkpointing system for Deep Learning

Recommendation Model, two types of datasets were utilized to validate the system’s per-

formance across a range of training configurations. The datasets include the Criteo Display

Ad Challenge Dataset and DLRM-generated synthetic and random data tailored for various

training contexts.

5.1.1 Criteo Display Advertising Challenge Dataset

The Criteo Display Advertising Challenge Dataset [31] is an extensively utilized resource for

benchmarking click-through rate (CTR) prediction models. This dataset consists of seven

days of click-through data, providing a substantial amounts of real-world interactions for

recommendation model training and testing.

The dataset is composed of both categorical and continuous values structured as follows:

• Label: This is the target variable that indicates whether an ad received a click (1) or

not (0).

• Integer Features (I1-I13): There are 13 columns of integer features in the dataset

consisting of count data. These features provide quantitative insight into various at-

38

DATASETS AND EXPERIMENTATION 39

tributes associated with the ads, such as the number of times an ad was shown, inter-

action rates, and other relevant metrics for CTR predictions.

• Categorical Features (C1-C26): The dataset includes 26 categorical features, which

are anonymized and hashed into 32 bits to protect user privacy. These features encode

aspects of the ad’s context such as device type, user demographic, ad category, and

other factors that could influence an ad being clicked.

In the context of the continuous checkpointing system described in this thesis, the dataset

provides a testing ground to validate the system’s performance under real-world conditions.

5.1.2 Synthetic Data

To complement the real-world data, random and synthetic generated datasets generated

by the Deep Learning Recommendation Model (DLRM) were also used. We crafted these

datasets to simulate a variety of training environments and stress tests, offering a controlled

setting to evaluate the system’s performance across different data characteristics and scales.

The generation of this synthetic data is facilitated through scripts available in the DLRM

code base [4]. We conducted the tests with the following architectural parameters, along

with varying data sizes for synthetic data.

Table 5.1: DLRM Model Configuration Parameters for Synthetic Data
Parameter Description Configuration Description
Bottom MLP architecture 3 layers with 512, 512, and 64 neurons
Top MLP architecture 4 layers with 1024, 1024, 1024, and 1

neurons
Sizes of Embedding Tables 8 embedding tables with 80,000 entries
Sparse Feature Size Embedding dimensionality of 64
Interaction Operation Dot product
Mini-batch Size 2048 samples per mini-batch
Number of Indices per Embedding Lookup 100 indices
Synthetic Data Sizes Data sizes of 10,000, 25,000, and 50,000

DATASETS AND EXPERIMENTATION 40

Utilizing both the Criteo dataset and synthetic data enables thorough examination of

the system’s operational capabilities. With this method, the checkpointing system is tested

under realistic conditions provided by the Criteo dataset, while also being validated in a

range of configurations through synthetic data, thereby ensuring operability across various

environments.

5.2 Experimentation

To evaluate the continuous checkpointing system performance, experiments were conducted

across multiple server configurations each equipped with state-of-the-art GPUs and large

memory capacities. This setup ensured that the system’s capabilities were tested under

conditions that resembled industry-level data processing demands.

5.2.1 Hardware Configuration

The development and experimentation utilized four servers for various training configurations

like Single-Node Single-GPU, Single-Node Multi-GPU and Multi-Node Multi-GPU:

• Servers with NVIDIA RTX A6000 GPUs: These servers are each equipped with

4 NVIDIA RTX A6000 GPUs, providing 48 GB of memory per GPU for a total of 192

GB per server. This setup is particularly suited for processing extensive computations

and large datasets efficiently.

• Servers with NVIDIA A100 GPUs: Each of these servers features 2 NVIDIA

A100 GPUs with 80 GB of memory per GPU, amounting to 160 GB per server.

5.2.2 Distributed Backend

In distributed training of Deep Learning Recommendation Model (DLRM), NVIDIA NCCL

(NVIDIA Collective Communications Library) is leveraged as the distributed backend. This

DATASETS AND EXPERIMENTATION 41

library enables multi-GPU and multi-node communications required for managing data

transfers during distributed training. NCCL offers specialized communication protocols for

computation needs of large-scale recommendation systems training.

Figure 5.1: Scaling Up GPU Configurations with NCCL

Additionally, DLRM’s scalability and synchronous training across multiple GPUs and

nodes is supported by PyTorch’s distributed framework. This framework accommodate wide

range of deployment scenarios from single-node, multi-GPU setups to configurations involv-

ing multiple nodes and GPUs. Leveraging libraries such as nn.DistributedDataParallel

and nn.DataParallel, PyTorch facilitates data parallelism by replicating the model on each

device and managing the communication necessary for synchronizing updates across devices.

5.2.3 Baseline and Benchmark Comparisons

In evaluation of continuous checkpointing system, its performance was systematically bench-

marked against base Deep Learning Recommendation Model (DLRM) setup which uses

standard PyTorch checkpointing methods for checkpointing and recovery operations. This

comparative analysis is necessary for demonstrating the specific efficiency gains and perfor-

mance enhancements achieved by the continuous checkpointing system.

• Comparison Focus: Performance benchmarks were set against the base DLRM con-

figuration which uses torch.save for checkpointing and torch.load recovery oper-

DATASETS AND EXPERIMENTATION 42

ations. Comparing against the baseline version demonstrates the efficiencies gained

with the continuous checkpointing system.

• Experimental Conditions: Benchmarking tests were performed with a variety of

data sizes, embedding sizes, and training durations (number of epochs) to ensure the

system was assessed under comprehensive configurations.

• Datasets: The experimentation utilized both synthetic data generated to simulate

various training scenarios, and real-world data from the Criteo Display Advertising

Challenge Dataset.

Chapter 6

Results

This section details the results of runtime evaluation of checkpointing and recovery operations

with continuous checkpointing system, compared to traditional PyTorch checkpointing in

various configurations. We conducted tests across different environments including single

node with single GPU, single node with multiple GPUs, and multiple nodes with multiple

GPUs using both synthetic data for 100 epochs and the Criteo dataset for 5 epochs. The

experiments focused on various data sizes and checkpointing frequencies to comprehensively

assess the performance enhancements achieved with continuous checkpointing. These results

are crucial for understanding how continuous checkpointing can optimize the checkpointing

process in terms of speed and efficiency in diverse computational setups.

6.1 Checkpointing Operation

6.1.1 Single-Node Single-GPU

Tables 6.1 and 6.2 show that continuous checkpointing significantly reduces save times com-

pared to base checkpointing across both synthetic and Criteo datasets on a single-node

single-GPU setup. The improvement is more noticeable with larger data sizes and more

frequent checkpointing, highlighting continuous checkpointing’s effectiveness in minimizing

overhead in training processes.

43

RESULTS 44

Table 6.1: Checkpoint Runtime using Synthetic Data in Single-Node Single-GPU
Save Frequency Data Size Base Checkpointing Continuous Checkpointing

(seconds) (seconds)
Every Epoch 10,000 336.49 229.41

25,000 808.83 534.75
50,000 1591.08 979.09

Every 2 Epochs 10,000 250.67 220.23
25,000 598.97 507.24
50,000 1194.72 969.09

Every 3 Epochs 10,000 239.10 216.65
25,000 544.54 506.76
50,000 1118.78 954.92

Figure 6.1: Single-Node Single-GPU with Synthetic Data

RESULTS 45

Table 6.2: Checkpoint Runtime using Criteo Dataset in Single-Node Single-GPU
Save Frequency Base Checkpointing (s) Continuous Checkpointing (s)

Every Epoch 3446.25 3292.27
Every 2 Epochs 3368.87 3287.07
Every 3 Epochs 3342.20 3283.90

Figure 6.2: Single-Node Single-GPU with Criteo Data

Figures 6.1 and 6.2 illustrate the runtime advantages of continuous checkpointing over

traditional methods using both synthetic and real-world Criteo dataset. We can see that

continuous checkpointing consistently outperforms the base checkpointing method in terms

of runtime by approximately 30% in synthetic and 5% in Criteo data. The improvement

over the base method appears modest in the Criteo dataset is due to substantial volume of

data being saved with continuous checkpointing.

6.1.2 Single-Node Multi-GPU

Tables 6.3 and 6.4 demonstrate that continuous checkpointing is significantly faster than base

checkpointing in save times on a single-node with multiple GPUs setup across both synthetic

RESULTS 46

and Criteo datasets. The data shows marked time reductions for various checkpointing

frequencies and data size with continuous checkpointing compared to base checkpointing.

Table 6.3: Checkpoint Runtime using Synthetic Data in Single-Node Multi-GPU
Save Frequency Data Size Base Checkpointing Continuous Checkpointing

(seconds) (seconds)
Every Epoch 10,000 328.93 203.68

25,000 801.57 463.48
50,000 1671.36 880.66

Every 2 Epochs 10,000 251.29 198.43
25,000 602.42 452.92
50,000 1193.89 865.13

Every 3 Epochs 10,000 242.59 196.35
25,000 541.24 446.68
50,000 1062.61 861.19

Figure 6.3: Single-Node Multi-GPU with Synthetic Data

RESULTS 47

Table 6.4: Checkpoint Runtime using Criteo Dataset in Single-Node Multi-GPU
Save Frequency Base Checkpointing (s) Continuous Checkpointing (s)

Every Epoch 3574.49 3302.60
Every 2 Epochs 3496.51 3288.73
Every 3 Epochs 3471.98 3282.77

Figure 6.4: Single-Node Multi-GPU with Criteo Data

6.1.3 Multi-Node Multi-GPU

Tables 6.5 and 6.6 illustrate the performance of continuous checkpointing over base check-

pointing in a multi-node environment with multiple GPUs using synthetic and Criteo datasets

respectively. For the synthetic dataset, continuous checkpointing consistently achieves sig-

nificant time savings across various data sizes and save frequencies.

RESULTS 48

Table 6.5: Checkpoint Runtime using Synthetic Data in Multi-Node Multi-GPU
Save Frequency Data Size Base Checkpointing Continuous Checkpointing

(seconds) (seconds)
Every Epoch 10,000 374.27 171.76

25,000 757.87 435.70
50,000 1426.05 856.32

Every 2 Epochs 10,000 249.52 173.15
25,000 571.58 430.70
50,000 1083.65 863.29

Every 3 Epochs 10,000 225.20 170.13
25,000 513.09 429.59
50,000 970.40 869.15

Figure 6.5: Multi-Node Multi-GPU with Synthetic Data

RESULTS 49

Table 6.6: Checkpoint Runtime using Criteo Dataset in Multi-Node Multi-GPU
Save Frequency Base Checkpointing (s) Continuous Checkpointing (s)

Every Epoch 3709.15 3398.47
Every 2 Epochs 3619.03 3391.73
Every 3 Epochs 3587.94 3385.56

Figure 6.6: Multi-Node Multi-GPU with Criteo Data

Figures 6.5 and 6.6 demonstrate the performance in a multi-node multi-GPU environment

with continuous checkpointing in reducing runtimes compared to base checkpointing by

approximately 40% for synthetic data and 5% for Criteo dataset. The results highlight

continuous checkpointing’s efficiency in reducing checkpointing times and scalability across

different data sizes and checkpoint frequencies even in multi-node distributed setup.

6.2 Recovery Operation

6.2.1 Single-Node Single-GPU

Tables 6.7 and 6.8 show differences in recovery operation times between continuous and base

checkpointing methods on a single node with a single GPU. While continuous checkpointing

RESULTS 50

generally exhibits slightly more load time compared to the base method, the differences are

minimal and unlikely to impact overall system performance significantly. In practical sce-

narios, this slight increase in load times of less than a second with continuous checkpointing

is offset by its substantial improvements in checkpointing operation efficiency.

Table 6.7: Recovery Runtime using Synthetic Data in Single-Node Single-GPU
Data Size Base Checkpointing (s) Continuous Checkpointing (s)
10,000 0.09976 0.63970
25,000 0.09981 0.50413
50,000 0.09857 0.66877

Table 6.8: Recovery Runtime using Criteo Dataset in Single-Node Single-GPU
Base Checkpointing (s) Continuous Checkpointing (s)

1.20537 2.28374

6.2.2 Single-Node Multi-GPU

Tables 6.9 and 6.10 shows the load times for continuous and base checkpointing on a sin-

gle node with multiple GPUs. Continuous checkpointing shows slightly longer load times

compared to the base method but the differences are minimal in practical applications.

Table 6.9: Recovery Runtime using Synthetic Data in Single-Node Multi-GPU
Data Size Base Checkpointing (s) Continuous Checkpointing (s)
10,000 0.09384 0.54548
25,000 0.09631 0.65086
50,000 0.09107 0.61471

Table 6.10: Recovery Runtime using Criteo Dataset in Single-Node Multi-GPU
Base Checkpointing (s) Continuous Checkpointing (s)

1.31874 2.48593

RESULTS 51

6.2.3 Multi-Node Multi-GPU

Tables 6.11 and 6.12 shows that continuous checkpointing has slightly longer recovery times

than base checkpointing on multi-node with multiple GPUs, but the differences are minimal.

This is due to the continuous checkpointing’s process of loading data from Kafka partitions,

but the impact on practical applications remains negligible.

Table 6.11: Recovery Runtime using Synthetic Data in Multi-Node Multi-GPU
Data Size Base Checkpointing (s) Continuous Checkpointing (s)
10,000 0.08921 0.67014
25,000 0.08736 0.66839
50,000 0.08791 0.62437

Table 6.12: Recovery Runtime using Criteo Dataset in Multi-Node Multi-GPU
Base Checkpointing (s) Continuous Checkpointing (s)

1.45381 2.89582

Chapter 7

Conclusion and Future Work

The implementation and deployment of the continuous checkpointing system, as discussed

in this thesis, bring significant improvements to the large-scale training of recommenda-

tion models. This architecture not only improves the robustness but also streamlines the

management of checkpointing process across diverse computational settings.

The system efficiently minimizes training disruptions by increasing the frequency and pre-

cision of checkpoints, and utilizing standalone loading service to decrease downtime. This

enhancement allows for a seamless progression in recommendation model training. Its effec-

tiveness is further proven through extensive testing with both synthetic and real datasets,

confirming the checkpointing system’s functionality across various training conditions and

its efficiency in real-world deployment scenarios.

Additionally, the system demonstrates its scalability through successful implementation

in diverse environments ranging from single to multi-node distributed configurations. This

flexibility helps the system to scale according to the infrastructure requirements. The check-

pointing system along with the loading service facilitates quicker restoration from failures

which is essential for operational efficiency. Quick restoration of model states from check-

points minimizes interruptions to ongoing activities, which is invaluable in time-sensitive

and resource-limited real-world settings.

Lastly, the system presents better performance than traditional methods in run-time

efficiency, delivering quicker training times and more efficient bandwidth usage. These im-

52

CONCLUSION AND FUTURE WORK 53

provements not only accelerate the model training but also reduce computational demands,

resulting in more efficient resource utilization. Additionally, by performing more frequent

checkpointing operations compared to traditional methods, the system significantly reduces

data loss.

In future works, we will focus on expanding our system’s effectiveness across a broader

range of machine learning models, particularly those where embeddings play a major role,

such as in natural language processing. This includes exploring compatibility with models

like BERT [32], known for their complex embedding layers. We plan to implement quantiza-

tion techniques as discussed in [33] and reduce embedding sizes using methods like Plug-in

Embedding Pruning [34]. These steps are essential to decrease model size and speed up data

streaming over networks. Additionally, we will develop more robust fault recovery protocols

to increase the system’s resilience against various types of failures. These enhancements

will ensure higher system availability and reliability, which are critical for continuous op-

erations in real-time industrial settings. Furthermore, we aim to develop advanced data

compression techniques to improve serialization efficiency, enabling faster data transmission.

These improvements will help minimize latency and maximize throughput during data ex-

changes, which are crucial for keeping pace with evolving technological demands and further

optimizing machine learning workflows.

In conclusion, the continuous checkpointing system has potential to advance the reliable

large-scale training for recommendation models. By enhancing efficiency, scalability, and

robustness, it has not only improved over current checkpointing techniques but also paved

the way for further developments. The ongoing enhancements and future expansions are

expected to enhance the system’s applicability, contributing greatly to the field of machine

learning.

Bibliography

[1] Brent Smith and Greg Linden. “Two Decades of Recommender Systems at Ama-
zon.com”. In: IEEE Internet Computing 21.3 (2017), pp. 12–18. doi: 10.1109/MIC.
2017.72.

[2] Udit Gupta et al. The Architectural Implications of Facebook’s DNN-based Personalized
Recommendation. 2020. arXiv: 1906.03109 [cs.DC]. url: https://arxiv.org/abs/
1906.03109.

[3] Paul Covington, Jay Adams, and Emre Sargin. “Deep Neural Networks for YouTube
Recommendations”. In: Proceedings of the 10th ACM Conference on Recommender
Systems. RecSys ’16. Boston, Massachusetts, USA: Association for Computing Ma-
chinery, 2016, 191–198. isbn: 9781450340359. doi: 10.1145/2959100.2959190. url:
https://doi.org/10.1145/2959100.2959190.

[4] Maxim Naumov et al. Deep Learning Recommendation Model for Personalization and
Recommendation Systems. 2019. arXiv: 1906.00091 [cs.IR]. url: https://arxiv.
org/abs/1906.00091.

[5] Devesh Tiwari et al. “Understanding GPU errors on large-scale HPC systems and
the implications for system design and operation”. In: 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). 2015, pp. 331–342.
doi: 10.1109/HPCA.2015.7056044.

[6] Elvis Rojas et al. A Study of Checkpointing in Large Scale Training of Deep Neural
Networks. 2021. arXiv: 2012.00825 [cs.DC]. url: https://arxiv.org/abs/2012.
00825.

[7] Tonmoy Dey et al. “Optimizing Asynchronous Multi-Level Checkpoint/Restart Config-
urations with Machine Learning”. In: 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 2020, pp. 1036–1043. doi: 10.1109/
IPDPSW50202.2020.00174.

[8] Bogdan Nicolae et al. “DeepFreeze: Towards Scalable Asynchronous Checkpointing
of Deep Learning Models”. In: 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID). 2020, pp. 172–181. doi: 10.1109/
CCGrid49817.2020.00-76.

[9] Trishul Chilimbi et al. “Project adam: Building an efficient and scalable deep learn-
ing training system”. In: 11th USENIX symposium on operating systems design and
implementation (OSDI 14). 2014, pp. 571–582.

54

https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1109/MIC.2017.72
https://arxiv.org/abs/1906.03109
https://arxiv.org/abs/1906.03109
https://arxiv.org/abs/1906.03109
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1906.00091
https://doi.org/10.1109/HPCA.2015.7056044
https://arxiv.org/abs/2012.00825
https://arxiv.org/abs/2012.00825
https://arxiv.org/abs/2012.00825
https://doi.org/10.1109/IPDPSW50202.2020.00174
https://doi.org/10.1109/IPDPSW50202.2020.00174
https://doi.org/10.1109/CCGrid49817.2020.00-76
https://doi.org/10.1109/CCGrid49817.2020.00-76

BIBLIOGRAPHY 55

[10] Aurick Qiao et al. “Fault Tolerance in Iterative-Convergent Machine Learning”. In:
Proceedings of the 36th International Conference on Machine Learning. Ed. by Kama-
lika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. PMLR, 2019, pp. 5220–5230. url: https://proceedings.mlr.press/v97/
qiao19a.html.

[11] Vivienne Sze et al. Efficient Processing of Deep Neural Networks: A Tutorial and Sur-
vey. 2017. arXiv: 1703.09039 [cs.CV]. url: https://arxiv.org/abs/1703.09039.

[12] Borui Wan et al. ByteCheckpoint: A Unified Checkpointing System for LLM Develop-
ment. 2024. arXiv: 2407.20143 [cs.AI]. url: https://arxiv.org/abs/2407.20143.

[13] Assaf Eisenman et al. Check-N-Run: A Checkpointing System for Training Deep Learn-
ing Recommendation Models. 2021. arXiv: 2010 . 08679 [cs.IR]. url: https : / /

arxiv.org/abs/2010.08679.

[14] R. Koo and S. Toueg. “Checkpointing and Rollback-Recovery for Distributed Systems”.
In: IEEE Transactions on Software Engineering SE-13.1 (1987), pp. 23–31. doi: 10.
1109/TSE.1987.232562.

[15] L. Wang et al. “Modeling coordinated checkpointing for large-scale supercomputers”.
In: 2005 International Conference on Dependable Systems and Networks (DSN’05).
2005, pp. 812–821. doi: 10.1109/DSN.2005.67.

[16] Abdeldjalil Ledmi, Hakim Bendjenna, and Sofiane Mounine Hemam. “Fault Tolerance
in Distributed Systems: A Survey”. In: 2018 3rd International Conference on Pattern
Analysis and Intelligent Systems (PAIS). 2018, pp. 1–5. doi: 10.1109/PAIS.2018.
8598484.

[17] Joel Hestness, Stephen W. Keckler, and David A. Wood. “GPU Computing Pipeline
Inefficiencies and Optimization Opportunities in Heterogeneous CPU-GPU Proces-
sors”. In: 2015 IEEE International Symposium on Workload Characterization. 2015,
pp. 87–97. doi: 10.1109/IISWC.2015.15.

[18] N. V. Sunitha, K. Raju, and Niranjan N. Chiplunkar. “Performance improvement
of CUDA applications by reducing CPU-GPU data transfer overhead”. In: 2017 In-
ternational Conference on Inventive Communication and Computational Technologies
(ICICCT). 2017, pp. 211–215. doi: 10.1109/ICICCT.2017.7975190.

[19] B. van Werkhoven et al. “Performance Models for CPU-GPU Data Transfers”. In: 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
2014, pp. 11–20. doi: 10.1109/CCGrid.2014.16.

https://proceedings.mlr.press/v97/qiao19a.html
https://proceedings.mlr.press/v97/qiao19a.html
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/1703.09039
https://arxiv.org/abs/2407.20143
https://arxiv.org/abs/2407.20143
https://arxiv.org/abs/2010.08679
https://arxiv.org/abs/2010.08679
https://arxiv.org/abs/2010.08679
https://doi.org/10.1109/TSE.1987.232562
https://doi.org/10.1109/TSE.1987.232562
https://doi.org/10.1109/DSN.2005.67
https://doi.org/10.1109/PAIS.2018.8598484
https://doi.org/10.1109/PAIS.2018.8598484
https://doi.org/10.1109/IISWC.2015.15
https://doi.org/10.1109/ICICCT.2017.7975190
https://doi.org/10.1109/CCGrid.2014.16

BIBLIOGRAPHY 56

[20] Burak Bastem et al. “Overlapping Data Transfers with Computation on GPU with
Tiles”. In: 2017 46th International Conference on Parallel Processing (ICPP). 2017,
pp. 171–180. doi: 10.1109/ICPP.2017.26.

[21] Guozhang Wang et al. “Consistency and Completeness: Rethinking Distributed Stream
Processing in Apache Kafka”. In: Proceedings of the 2021 International Conference on
Management of Data. SIGMOD ’21. Virtual Event, China: Association for Computing
Machinery, 2021, 2602–2613. isbn: 9781450383431. doi: 10.1145/3448016.3457556.
url: https://doi.org/10.1145/3448016.3457556.

[22] Shubham Vyas et al. “Literature Review : A Comparative Study of Real Time Stream-
ing Technologies and Apache Kafka”. In: 2021 Fourth International Conference on
Computational Intelligence and Communication Technologies (CCICT). 2021, pp. 146–
153. doi: 10.1109/CCICT53244.2021.00038.

[23] Theofanis P. Raptis, Claudio Cicconetti, and Andrea Passarella. “Efficient topic par-
titioning of Apache Kafka for high-reliability real-time data streaming applications”.
In: Future Generation Computer Systems 154 (2024), pp. 173–188. issn: 0167-739X.
doi: https://doi.org/10.1016/j.future.2023.12.028. url: https://www.
sciencedirect.com/science/article/pii/S0167739X23004892.

[24] Theofanis P. Raptis and Andrea Passarella. “On Efficiently Partitioning a Topic in
Apache Kafka”. In: 2022 International Conference on Computer, Information and
Telecommunication Systems (CITS). 2022, pp. 1–8. doi: 10.1109/CITS55221.2022.
9832981.

[25] Han Wu, Zhihao Shang, and Katinka Wolter. “Performance Prediction for the Apache
Kafka Messaging System”. In: 2019 IEEE 21st International Conference on High Per-
formance Computing and Communications; IEEE 17th International Conference on
Smart City; IEEE 5th International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS). 2019, pp. 154–161. doi: 10.1109/HPCC/SmartCity/DSS.2019.
00036.

[26] Feng He et al. “Algorithm for Improving Processor Utilization in Multi-core Processor
Environment by Python Language”. In: 2021 IEEE 4th Advanced Information Man-
agement, Communicates, Electronic and Automation Control Conference (IMCEC).
Vol. 4. 2021, pp. 775–779. doi: 10.1109/IMCEC51613.2021.9481962.

[27] Dominik Straßel, Philipp Reusch, and Janis Keuper. “Python Workflows on HPC Sys-
tems”. In: 2020 IEEE/ACM 9th Workshop on Python for High-Performance and Sci-
entific Computing (PyHPC). 2020, pp. 32–40. doi: 10.1109/PyHPC51966.2020.00009.

[28] Samuel Jackson, Nathan Cummings, and Saiful Khan. Streaming Technologies and
Serialization Protocols: Empirical Performance Analysis. 2024. arXiv: 2407. 13494
[cs.SE]. url: https://arxiv.org/abs/2407.13494.

https://doi.org/10.1109/ICPP.2017.26
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1109/CCICT53244.2021.00038
https://doi.org/https://doi.org/10.1016/j.future.2023.12.028
https://www.sciencedirect.com/science/article/pii/S0167739X23004892
https://www.sciencedirect.com/science/article/pii/S0167739X23004892
https://doi.org/10.1109/CITS55221.2022.9832981
https://doi.org/10.1109/CITS55221.2022.9832981
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00036
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00036
https://doi.org/10.1109/IMCEC51613.2021.9481962
https://doi.org/10.1109/PyHPC51966.2020.00009
https://arxiv.org/abs/2407.13494
https://arxiv.org/abs/2407.13494
https://arxiv.org/abs/2407.13494

BIBLIOGRAPHY 57

[29] Ramon Invarato Menendez.Quick Multiprocessing Queue. https://pypi.org/project/
quick-queue/. Accessed: 2024-08-09. 2021.

[30] NVIDIA Corporation. NVIDIA Nsight Systems. https://developer.nvidia.com/
nsight-systems. Version 2023.4.1. Accessed: 2023-11-22. 2023.

[31] Criteo AI Lab. Criteo Dataset. https://ailab.criteo.com/ressources/. Accessed:
2024-08-09. 2024.

[32] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. 2019. arXiv: 1810.04805 [cs.CL]. url: https://arxiv.org/
abs/1810.04805.

[33] Qijiong Liu et al. Vector Quantization for Recommender Systems: A Review and Out-
look. 2024. arXiv: 2405.03110 [cs.IR]. url: https://arxiv.org/abs/2405.03110.

[34] Siyi Liu et al. Learnable Embedding Sizes for Recommender Systems. 2021. arXiv:
2101.07577 [cs.LG]. url: https://arxiv.org/abs/2101.07577.

https://pypi.org/project/quick-queue/
https://pypi.org/project/quick-queue/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://ailab.criteo.com/ressources/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2405.03110
https://arxiv.org/abs/2405.03110
https://arxiv.org/abs/2101.07577
https://arxiv.org/abs/2101.07577

	Title Page
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Related Work
	Checkpointing Strategy
	Motivation
	Technical Implementation and Challenges

	Methodology
	Checkpointing Operation
	Updated Embedding Extraction
	Asynchronous Operations Framework
	Non-blocking Data Handling With Streams
	Data Serialization
	Chunking Mechanism
	Data Streaming with Kafka
	Marker-based State Management
	Saving Non-Embedding Parameters
	Distributed Scalability of Continuous Checkpointing
	Hybrid Parallelism in DLRM

	Recovery Operation
	Asynchronous Data Recovery
	Model State Reconstruction
	Dynamic Data Production to Kafka

	Datasets and Experimentation
	Datasets Overview
	Criteo Display Advertising Challenge Dataset
	Synthetic Data

	Experimentation
	Hardware Configuration
	Distributed Backend
	Baseline and Benchmark Comparisons

	Results
	Checkpointing Operation
	Single-Node Single-GPU
	Single-Node Multi-GPU
	Multi-Node Multi-GPU

	Recovery Operation
	Single-Node Single-GPU
	Single-Node Multi-GPU
	Multi-Node Multi-GPU

	Conclusion and Future Work
	Bibliography

